skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Energy Recovery Electron Linac On Ring Collider

Conference ·
OSTI ID:838209

Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33} (per nucleon) level have been proposed recently as a means for studying hadronic structure. Electron beam polarization appears to be crucial for many of the experiments. Two accelerator design scenarios have been examined in detail: colliding rings and recirculating linac-on-ring. Although the linac-on-ring scenario is not as well developed as the ring-ring scenario, comparable luminosities appear feasible. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations; (2) reduction of the synchrotron radiation load in the detectors; (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. This technology has been demonstrated at Jefferson Lab's IR FEL with cw current up to 5 mA and beam energy up to 50 MeV. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at higher currents (a few hundred mA) and higher energies (a few GeV) as well. The report begins with a brief overview of Jefferson Lab's experience with energy recovery and summarize its benefits. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented next. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed next and a list of required R and D for the realization of such a design is presented.

Research Organization:
Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Sponsoring Organization:
USDOE Office of Energy Research (ER) (US)
DOE Contract Number:
AC05-84ER40150
OSTI ID:
838209
Report Number(s):
JLAB-ACC-00-17; DOE/ER/40150-3239; TRN: US0501348
Resource Relation:
Conference: EPIC 2000, MIT, Cambridge, MA (US), 09/14/2000--09/16/2000; Other Information: PBD: 1 Sep 2001
Country of Publication:
United States
Language:
English