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REPORT SUMMARY 

 
Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect 
degradation. This report summarizes the status of ongoing research to develop signal processing 
algorithms that automate analysis of eddy current test data. The research focuses on analyzing 
array probe data for detecting, classifying, and characterizing degradation in SG tubes. 

Background 
Recent advances in eddy current probe development have resulted in an array probe design 
capable of high-speed data acquisition over the full length of SG tubes. Probe qualification 
programs have demonstrated that array probes are capable of providing similar degradation 
detection capabilities to the much slower rotating probe technology. However, to date, utilities 
have not used the array probe in the field on a large-scale basis due to the large amount of data 
analyst resources and time required to process the vast quantity of data generated by the probe. 
To address this obstacle, EPRI initiated a program to develop automatic data analysis algorithms 
for array probes. 

Objectives 
• To develop algorithms that will automatically analyze array probe eddy current data and 

identify degradation in SG tubes. 

• To achieve values for probability of detection (POD) greater than 80% at a 90% confidence 
level for all known degradation categories. 

• To provide data analysis tools that will allow utilities to take full advantage of array probe 
design by efficiently and accurately processing the vast quantities of data generated by array 
probes. 

Approach 
Argonne National Laboratory (ANL) was contracted by the Department of Energy (DOE) to 
develop algorithms for automatically detecting, classifying, and characterizing degradation in SG 
tubes based on array probe inspection data. At the conclusion of the DOE project, EPRI 
continued funding the algorithm development efforts and began validating the algorithms on 
both laboratory and field array probe data. Algorithm development focused on axially and 
circumferentially oriented cracks. Tube regions included tube support plates (TSPs), U-bends, 
and free span. Algorithm results were compared to both manual data analysis results and 
metallographic results. Following a successful performance demonstration on EPRI’s Automated 
Analysis Performance Demonstration Database, the analysis algorithms can be incorporated into 
a field data analysis system. 
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Results 
Automated Non-Destructive Testing Array Evaluation System (ANTARES) software algorithms 
were developed for use on X-probe™ data. Data used for algorithm development and 
preliminary performance determination was obtained from the U.S. Nuclear Regulatory 
Commission (NRC) mock-up at Argonne and from data provided by EPRI. Filtering algorithms 
were introduced to reduce ovalization effects in the U-bend region. A semi-automatic 
segmentation algorithm was developed based on principal component analysis and filtering. 
Region-specific detection was implemented.  

The algorithms were tested on EPRI Examination Technique Specification Sheet (ETSS) data 
and missed one of fifteen defects. Difficulties in discriminating between inside diameter (ID) and 
outside diameter (OD) defects were observed and the classification algorithm was modified to 
report two defect classes only: “indication” and “non-detectable degradation.” The maximum 
depth of large defects was estimated with good accuracy; however, detailed point-by-point 
profiling algorithms usually implemented with rotating probe signals do not seem appropriate for 
X-probe signals since there is a large uncertainty in phase and amplitude variation. 

Preliminary testing in the U-bend region indicated that it is feasible to find filtering and detection 
parameters to control detection sensitivity and false alarm rate. Detecting small defects will 
probably require better algorithms for TSP removal. 

EPRI Perspective 
Array probes have potential to provide the speed of bobbin coil probes with the accuracy of 
rotating coil probes. They also could eliminate the need to perform large-scale rotating coil 
examinations at locations where the bobbin coil probe is not qualified. For utilities to fully 
benefit from the potential advantages that array probes can provide, automated data analysis 
software must be an integral part of the inspection system. Array probes, coupled with automated 
data analysis, could provide efficiency improvements for both data acquisition and data analysis.  

A current limitation of array probes is that acquisition of a large quantity of data requiring 
manual analysis can delay the inspection schedule. Utilities can only realize the benefits of 
increased inspection speed provided by array probes if they can rapidly analyze the large 
quantities of data generated by the probes. Successful development of automated data analysis 
software for array probe eddy current data would provide utilities with a tool to better realize 
benefits of the array probe design. Utilities would benefit from EPRI-developed automatic data 
analysis software through cost savings associated with a reduction in data analyst staffing levels, 
more consistent data analysis, and shorter inspection schedules. 

Implementation Statement 
This document does not contain any requirements that must be implemented by utilities. 

Keywords 
Steam generators 
Automated data analysis 
Eddy current 
Array probe 

 



 

ABSTRACT 

The Automated Nondestructive Testing Array Evaluation System (ANTARES) has been 
developed under the auspices of the U.S. DOE NEPO program as project NEPO 3-2. The 
development in this project is focused on software algorithms that provide a means to quickly 
and consistently detect and characterize steam generator tubing degradation from data acquired 
from eddy current array probes. The software package ANTARES consists of four modules: data 
preprocessing, defect detection, defect characterization, and tube burst pressure estimation.  
In addition to algorithm development and software implementation, performance testing with 
laboratory grown flaws has also been carried out. As a NEPO program project, the development 
effort has been co-managed by EPRI and DOE. The project has reached the stage where a 
transition to the transfer of the technology to industry is being performed. This EPRI-sponsored 
report is a part of that transfer and is a step to facilitate the eventual usage of the algorithms in an 
industrial environment. It documents the theoretical basis of the algorithms for signal and image 
processing and machine learning in ANTARES, software implementation, and initial testing with 
laboratory grown flaws. Modifications that were performed to adapt the ANTARES algorithms 
and software for implementation in the EPRI AutoAnalysis software are also reported.  

Defect detection is based on a combination of linear and nonlinear image filtering and restoration 
techniques with a sensitive statistical hypothesis test, the Sequential Probability Ratio Test 
(SPRT). Defect characterization is based on nonlinear regression analysis and empirical rules. 
The detection and characterization algorithms have been modified in the version that is planned 
to be implemented in the AutoAnalysis software. The follow-on tube burst pressure estimation 
algorithm is based on an analytical model and an advanced machine learning technique, the 
Support Vector Machine (SVM) algorithm. This algorithm will not be implemented in 
AutoAnalysis.  

Defect detection performance of the original version before the modifications has been evaluated 
with two data sets collected from the U.S. Nuclear Regulatory Commission steam generator 
mock-up at Argonne. Each data set includes 25 tubes. The first test set contains predominantly 
axial outer diameter stress corrosion cracks (SCCs) near the tube support plate. The second set 
contains various types of SCCs. The estimated probability of detection for cracks larger than 
30%-40% through wall (TW) is larger than 60% at the 90% lower confidence limit. Probability 
of detection for cracks larger than 80% TW is 85% at the 90% lower confidence limit. 
Probability of detection for cracks less than 30% appears to be small. Reduced probability  
of detection is observed for defects near dents and at tube roll transitions.  
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Defect characterization performance of the original version has been assessed on a set of  
eight tubes. This is the only available set of laboratory grown flaws with defects that have  
been inspected using array probes and then validated by destructive analysis. Depending on 
difficulties in artifact and noise removal, there can be considerable variation in agreement of  
the estimated depths with fractography results. Defect length is usually underestimated, but an 
exception to this rule is possible overestimation for small defects. 

The modified detection and classification/characterization ANTARES algorithms, which are  
to be transferred to AutoAnalysis have been tested on the Examination Technique Specification 
Sheets (ETSS) dataset and limited field data. Analysis speed has been significantly enhanced  
and performance results on the limited data are similar to the results obtained with the original 
version of ANTARES.  

Performance testing of the burst pressure estimation algorithm is based on a sample of seven 
experimental burst pressure measurements, since burst pressure experimental data are very 
limited. Testing results are good for three cases, while in two cases ANTARES conservatively 
reports that the steam generator tube ligament has ruptured. The analytical model overestimates 
the experimental data significantly for a number of cases. Since the SVM model is trained on 
analytically-generated data, the SVM estimation performs similarly. However, the SVM results 
have the potential to draw closer to the experimental results if the training is performed on 
experimental data. 
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1  
INTRODUCTION 

The Automated Nondestructive Testing Array Evaluation System (ANTARES) has been 
developed under the auspices of the U.S. DOE NEPO program as project NEPO 3-2. The general 
objective is to develop and test an advanced eddy current inspection system to improve the 
detection and characterization of defects in steam generator tubes. The development in this 
NEPO project is focused on software algorithms that provide a means to quickly and consistently 
detect and characterize steam generator tubing degradation from data acquired from eddy current 
array probes. A newly designed array probe has recently been introduced into the nuclear 
industry for steam generator tube inspections [1-3]. The use of this probe has the potential  
of significantly shortening inspection schedules and reducing inspection costs. The current 
limitation of the probe is that the quantity of the data acquired cannot be efficiently analyzed  
in a manual mode. With the large amount of data produced by high-resolution probes, automated 
techniques are expected to play an important role toward minimizing the difficulties that are 
currently encountered with prototype arrays that are under development by the industry. 
Automating the data analysis stage of in-service inspection (ISI) rests on the development of 
modern computer-based algorithms that incorporate various signal processing and data analysis 
schemes involving frequency and spatial domain filters in combination with linear and nonlinear 
multivariate data analysis models [4-8]. Most of the automatic algorithms have been developed 
for single coils [4, 5]. Recently, ongoing development of automatic algorithms for array probes 
has been reported [6-8]. The software package ANTARES has been developed to address  
the need for automated analysis of array probes. The package consists of four modules: data 
preprocessing, defect detection, defect characterization, and tube burst pressure estimation.  
In addition to algorithm development and software implementation, performance testing with 
laboratory grown flaws has also been carried out. As a NEPO program project, the development 
effort has been co-managed by EPRI and DOE. The project has reached the stage where the 
transfer of the technology to industry is being performed. This EPRI-sponsored report is a part  
of that transfer and is a step to facilitate the eventual usage of the algorithms in an industrial 
environment. The report documents the basis of the automated eddy current array probe data 
analysis algorithms for tube flaw detection in ANTARES and the modifications selected to  
adapt the algorithms and software for implementation in the EPRI AutoAnalysis software.  
Both ANTARES detection and classification/characterization algorithms have been modified  
for implementation in EPRI AutoAnalysis software. While the follow-on ANTARES tube burst 
pressure estimation machine learning algorithms are not being implemented in AutoAnalysis, 
they are also included in this report for completeness. The performance testing of the detection 
algorithms with laboratory grown flaws is presented here for both the original and modified 
algorithms. Limited field data testing results for the modified algorithm are also described.  

1-1 



 
 
Introduction 

Defect detection performance with the original ANTARES algorithms is evaluated with two data 
sets collected during X-probeTM inspection of the U.S. Nuclear Regulatory Commission steam 
generator mock-up at Argonne. Each data set includes 25 tubes. The first test set contains 
predominantly axial OD stress corrosion cracks (SCCs) near the tube support plate (TSP).  
The second set of 25 tubes contains miscellaneous types of SSCs. 

The number of laboratory grown flaws with defects that have been inspected using X-probeTM 
array and then validated by destructive analysis is limited. Defect characterization performance 
assessment is therefore based on a small benchmark test of eight tubes.  

Detection and classification/characterization algorithm modifications for AutoAnalysis were 
tested using the Examination Technique Specification Sheets (ETSS) and limited field data. 

Burst pressure experimental data are very limited. Performance testing of the estimation 
algorithms implemented in ANTARES is based on a sample of seven experimental burst 
pressure measurements. 
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2  
ANTARES ALGORITHM LOGIC FLOW 

Eddy current testing (ECT) techniques are routinely used for inspection of steam generator  
(SG) tubes in nuclear power plants. Early detection and characterization of defects contributes  
to improvement in safety and reliability. The objective of the automated data analysis system 
ANTARES is to aide the NDE field inspector by providing real-time assistance with defect 
detection and characterization using array probe data. However, in between the acquisition  
of the eddy current voltage signals by the array probe and the automatic algorithms for defect 
detection and characterization in ANTARES, are a number of data processing steps and 
hardware components. The array probe traversing the steam generator tube provides the 
modulated analog voltage signals. This signal information is amplified and digitized by EC 
instruments which produce what will be referred to as raw EC data. This raw EC data is then 
transmitted to UNIX workstations or PCs where software packages such as EddyViewTM [9]  
or its equivalent, convert the raw EC data into calibrated data which can be analyzed. Options  
are also available in such packages for mixing or filtering the data. Calibration follows the 
industry standards for each of the frequencies. Scaling, rotation, etc., are all part of the standard 
procedure. Once the EC data has been so processed then it is ready to be transmitted to an 
interface which produces ANTARES-format compatible data. This data is then fed into 
ANTARES. The various signal and image processing and data analysis schemes in ANTARES, 
involving linear and nonlinear filtering in combination with statistical detection methods  
and nonlinear multivariate data analysis models produce flaw detection and characterization 
information that can be used by the field inspector to enhance the confidence of the data 
interpretation. Machine learning algorithms are also provided for estimating tube burst  
pressure as a follow-on to the flaw detection and characterization. 

2.1 Main Integrating Algorithm 

The basic structure of the data analysis scheme implemented in ANTARES is presented  
in Figure 2-1. ANTARES is implemented in MATLAB [10]. It consists of a collection of 
MATLAB procedures that are embedded as source code into user-accessible applications. 
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Antares Algorithm Logic Flow 

 

Figure 2-1 
ANTARES Structure Overview 

To facilitate discussion of the algorithms specifically and the function and interfacing between 
the algorithms, the discussion will be couched in terms of the various ANTARES modules  
and the logic flow between them. These are signal preprocessing algorithms, defect detection 
algorithms, defect characterization algorithms and burst pressure estimation algorithms. The 
main ANTARES algorithms have been implemented in four modules: 
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Antares Algorithm Logic Flow 

1. Signal Preprocessing 

2. Defect Detection 

3. Defect Characterization 

4. Burst Pressure Estimation 

This report describes these modules in the current version of ANTARES. These algorithms have 
been developed during the period of and by the NEPO project [11-14]. The implementation is 
specific for X-probeTM applications. Modifications of the software in preparation for the transfer 
to AutoAnalysis are also described.  

The Signal Preprocessing module includes algorithms for data segmentation and noise and 
artifact removal based on filtering techniques. The segmentation procedure in the pre-processing 
stage is specific for the NRC steam generator mock-up data and alterations will have to be made 
for other data sources. 

The Defect Detection module is based on the Sequential Probability Ratio Test (SPRT) and 
image processing algorithms. Chapter 3 describes these algorithms.  

The Defect Characterization module is based on nonlinear regression. The calibration curves  
and the rules for the defect sizing algorithm are specific for the X-probeTM data collected at the 
frequencies of 70 kHz, 200kHz, 300kHz, and 600 kHz and are modified in the version for 
AutoAnalysis, since a different set of frequencies is used for the analysis. Chapter 4 describes  
the algorithm for defect characterization. 

The Burst Pressure Estimation module is based on a specific machine learning algorithm,  
the Support Vector Machine (SVM), and on an alternative mechanistic model based on an 
analytical approach. The SVM algorithm requires an existing burst pressure database for  
training (learning). Chapter 5 describes the estimation algorithms while Chapter 6 outlines  
the burst pressure database. 

The details of the logic flow interfacing between the algorithms are described next. 

2.2 Interfacing between the Algorithms 

Figure 2-2 shows in more detail the information flow for the signal preprocessing, defect 
detection, and characterization modules and the external interfaces in the original version of 
ANTARES. The internal interfacing between the modules is also shown. Figure 2-3 shows the 
modifications in the version for transfer to AutoAnalysis. 
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Figure 2-2 
Detection and Characterization Module in ANTARES 
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Figure 2-3 
Modified Detection and Classification Algorithms 
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2.2.1 Signal Preprocessing Module  

2.2.1.1 Image Formatting 

The original assumption for ANTARES input data is that the calibration has already been 
completed in EddyViewTM (or its equivalent). The modified version of ANTARES now uses 
calibration procedures developed by Michigan State University. 

The first preprocessing step is the creation of multi-component images in the MATLAB format. 
Eight images are used in the present version: four horizontal and four vertical components. All 
images are stored with rows corresponding to the circumferential direction.  

2.2.1.2 Image Segmentation 

The second preprocessing step is data segmentation. In the original version, segmentation is 
based on the specific structure of the U.S. NRC mock-up at Argonne. The landmark signal 
between segments has a large negative component in the vertical direction at 200 kHz. 
Information about the magnitude of the landmark signal and the size of the transition region 
around landmarks is provided by the user. Default values are also provided. After that, automatic 
data segmentation is performed. The user is prompted to select a background line for each 
segment, which is then subtracted from all image components. The data preprocessed in this  
way are used as input to the detection algorithm.  

In the modified version, it is assumed that segmentation is performed using an externally 
provided segmentation algorithm, possibly based on landmarking using bobbin coils, but an 
automated segmentation algorithm for full length tube data based on the principal component 
analysis technique has been developed and tested for implementation. Segmentation is needed 
for full length tubes to improve algorithm sensitivity, since artifacts and noise vary significantly 
along the tube and specific processing algorithms for some parts of the tube are needed. 
Therefore, segmentation can be based on specific tube elements. We tested segmentation based 
on tube support plates. It was found that the circumferential scan at 300 kHz provides the best 
TSP discrimination, due to low signal-to-noise ratio (SNR), but lower frequencies might be 
useful as well. Several segmentation methods have been investigated, including edge detection  
in images [21], wavelet analysis [22], and principal component analysis (PCA) [23]. We have 
found that the standard edge detection methods used in image processing are not very effective 
for localized tube support plates. The reason is that most edge detection methods require image 
gradient evaluation, but transitions in local TSPs are often gradual and noisy, which makes 
gradient evaluation inaccurate. Wavelet decomposition provides the way to find decomposition 
levels where edges can be separated from high frequency noise. However, application of 
sophisticated wavelet decomposition methods for edge detection only is not justified, since 
simpler methods could be as efficient, but much faster. However, if wavelet decomposition 
proves valuable for local TSP removal, application of wavelet analysis for segmentation would 
become more attractive. At present, segmentation is performed using PCA. It has been observed 
that the axial position of local TSPs can be determined with good precision when the PCA of the 
circumferential scan data at 300 kHz is applied along the circumferential direction. The first 
principal component indicates the axial positions of the largest variability. TSP regions are 
characterized by large negative values and can be found by thresholding. Since preprocessing 
and detection parameters could vary among the segments, it is important to classify segments 
properly into free span, TSP, and U-bend regions. A completely automated procedure might be 
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possible, but for initial implementation we used a priori information about the number of TSPs 
for a given steam generator to determine the number of segments. Due to very limited testing, 
this algorithm is not included in the code for implementation in AutoAnalysis. 

2.2.1.3 Additional Preprocessing 

In the original version, line subtraction is performed for each segment based on user interactive 
input. This is not appropriate for automated procedures and has been substituted by a two 
dimensional median filter subtraction. Additional preprocessing algorithms may be added in 
future ANTARES versions. Wavelet de-noising [22] has proved effective for the RPC probes 
analyzed in our preliminary studies [11]. These preprocessing algorithms might be added as  
an option for improving the signal-to-noise ratio in characterization algorithms. 

Two preprocessing algorithms, automatic initial background estimation and image filtering,  
are integral parts of the detection algorithm, as described below.  

2.2.2 Defect Detection Module  

The X-probeTM is designed and calibrated in such a way that the signal components from artifacts 
are primarily in the horizontal direction. Therefore, the best discrimination between defects and 
background is achieved at vertical components. Vertical components are selected for detection 
algorithm, while both components are used for characterization. Due to a good signal-to-noise 
ratio, the frequency of 200 kHz is used for background estimation. All frequencies available 
from X-probeTM arrays are used in ANTARES, to enable detection and characterization of both 
OD and ID defects. The lowest frequency is not used in detection due to very low SNR.  

2.2.2.1 Initial Background Estimation 

The parameters for automatic initial background estimation are selected through the GUI. A 
rectangular background neighborhood is defined. This neighborhood is a sliding window for a 
non-linear filtering operation. The minimum value found in the neighborhood is assigned to the 
central pixel in the current window. In the first iteration, the mean and the variance of the filtered 
image are computed row by row and these values are used as input to the SPRT to make initial 
decision which pixels belong to the background. In the second iteration, only regions determined 
as a part of the background are used to provide mean and variance for defect detection. 

2.2.2.2 Defect Detection 

Defects are detected using the SPRT in two steps. Details of the SPRT algorithm are given  
in Chapter 3. First, a coarse SPRT test is performed to find main peaks, using the mean and 
variance values from estimated background, and a large detection threshold, obtained by 
multiplying the small SDM factor used for sensitive detection by a magnification factor.  
The definition of the SDM factor is given in Chapter 3.  

A sensitive detection procedure is used in the second step to enhance the signals from small 
peaks. The original image is smoothed using a spatial filter. The Wiener filter and a two-
dimensional median filter, described in Chapter 3, are implemented. The difference between  
the original image and the filtered image is used as input to SPRT with a small SDM factor.  
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The defect map for each frequency is formed as a union of defects found in two steps. The 
procedure is repeated for all frequencies and the final defect map is determined as a union of  
all maps. This inevitably leads to false alarms, which are reduced by morphological imaging 
operations erosion and dilation and additional thresholding as follows. 

2.2.2.3 Morphological Operations 

Morphological operations are defined in Chapter 3. Erosion is used immediately after SPRT 
detection to remove SPRT alarms confined to very small regions. A small rectangular structural 
element was found the most appropriate structural element for erosion in ANTARES. Erosion 
operation is very useful for removal of small false defects, but produces too sharp peaks for 
larger defects. This is important for final background estimation and artifact removal. If the 
region of the defect is too narrow, some parts of the defect signal will be falsely assigned to 
background, increasing the background signal. Since this signal is eventually subtracted from  
the original image, the filtered image has reduced peaks. Dilation helps in restoring large peaks. 
It has been observed empirically that slightly larger neighborhoods should be used for dilation 
than for erosion. Since another purpose of the dilation operation is to restore peak connectivity  
in both directions, a diamond shaped structural element seems more appropriate than a 
rectangular region. 

The dilated alarm map is used to mask the regions with defects. The background is extended 
over the boundaries using interpolation methods. This final background image is subtracted  
from the original image.  

2.2.2.4 Final Thresholding and Region of Interest Extraction 

Since morphological operations do not take into account the values of the remaining pixel, some 
small peaks remain after subtraction and lead to unnecessary false alarms. This usually happens 
in tubes without defects, where the automatic background estimation algorithms could trigger 
alarms during sensitive SPRT application. Since most tubes are usually defect-free, this could 
lead to impractical false alarm rates. To avoid this, a final thresholding is performed. All tubes 
with number of defect pixels less than a number prescribed by the user are declared to be without 
defects. In addition, all pixels with magnitude smaller than the given threshold value are 
removed from the alarm map. 

The final threshold is dependent on the magnitude of the signals from X-probeTM and expected 
minimum detectable values. For the laboratory grown defects, this value was found to be of the 
order of magnitude of the response of a 20% OD notch. However, to detect very shallow defects, 
this threshold must be reduced. For a new application, an initial training phase is needed to adjust 
this value.  

The coordinates of the regions of interest (ROI) with potential defects are determined using an 
automated procedure for object detection in images, described in Chapter 3. 

2.2.3 Defect Classification/Characterization Module  

The main function of this module is to determine the profile and length of the defects found in 
the detection algorithm. However, this module also serves for further false alarm elimination. 
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Although most of the false alarms are eliminated in the detection module using the algorithms 
described in Chapter 3, some false alarms remain due to the trade off between the false and the 
missed alarm rate in any detection algorithm. Heuristic rules have been implemented and the 
final discrimination between defects and non-defects is made at the end of the characterization 
module. In the original version, final decision about the defect type was left to the user. In the 
modified version, a set of additional rules has been implemented to enable automated defect 
classification. 

2.2.4 Burst Pressure Estimation Module 

The NEPO project methodology implemented in this module uses the ANTARES code 
estimation of SGT crack characterization as input to estimate the Steam Generator Tube (SGT) 
ligament rupture and burst pressures (Pl and Pb, respectively). It is based upon a machine learning 
algorithm. Only axial crack profiles were considered in this research. 

2.2.4.1 Overall Approach 

Currently, the ANTARES characterization module final output is an estimated crack depth as a 
function of crack length, based on the information collected by the X-probeTM array. The axial 
crack profile is then converted into an equivalent rectangular crack profile [15]. This 
information, along with SGT dimensions, temperature and material properties, is then used to 
predict Pl and Pb. As shown in Figure 2-1, two methods are used for Pl and Pb estimations. One 
method, hereafter referred in this report as the analytical model, is based on a flow-stress model 
developed by ANL under the auspices of a Nuclear Regulatory Commission (NRC) program 
[15]. The other machine learning methodology offers a data-driven alternative to the analytical 
model estimations for Pl and Pb, and uses an advanced pattern-recognition method, based on the 
Support Vector Machine (SVM) algorithm [16]. Here, the SVM was used to solve a regression 
problem, through a general-purpose code developed by ANL [17]. 

2.2.4.2 Burst Pressure Database 

Similar to most of the data-driven numeric algorithms, the use of the SVM algorithm is divided 
into two phases: training and estimation. Up to this point, the analytical model was used to 
generate the training data for the SVM algorithm. Two databases were developed: one for the Pl 
and the other one for the Pb SVM-based estimations. The analytical model that provides for the 
most conservative results for Pl and Pb estimations was used in the data generation. Two SVM 
training cases, which correspond to the most conservative Pl and Pb results respectively, were 
defined, and the optimum SVM training was performed beforehand for each case. The training 
results, equivalent rectangular crack dimensions as well as SGT-specific information introduced 
by the user through a GUI are inputs for the SVM algorithm to estimate Pl and Pb. 

Currently, the SVM training was performed on data generated by using the analytical model. 
Therefore, as shown in this report, the SVM and analytical model estimation are, and should be 
close. However, this may not be the case when sufficient experimental data are used to train the 
SVM algorithm. The results presented in this report show that a machine learning based 
methodology utilizing experimental or hybrid data, as an alternative to a mechanistic-based 
method would be feasible for Pl and Pb estimations. Whenever new Pl and Pb experimental data 
points become available, they will be included in the corresponding database. Eventually, the 
database would be large enough that the SVM training can be performed using only experimental 
data. 
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3  
DETECTION ALGORITHMS 

3.1 The Sequential Probability Ratio Test (SPRT) 

The Sequential Probability Ratio Test (SPRT) [18] is a statistical hypothesis test that differs from 
the standard fixed sample test in the way in which statistical observation are employed. In the 
fixed sample test, a given number of observations are used to select one hypothesis from two or 
more alternatives. The SPRT, however, examines one observation at a time, and at some point 
makes a decision and selects a hypothesis. 

In the tests implemented here, normal signal behavior is defined to be that the signal adheres  
to a Gaussian probability density (pdf) with mean 0 and variance σ2. Normal signal behavior is 
referred to as the null hypothesis, H0. The alternative hypothesis, H1, is that the signal adheres  
to a Gaussian pdf with mean M and variance σ2. In the specific implementation of the SPRT 
algorithm in this code, the mean of the alternative hypothesis is expressed as a multiple of the 
standard deviation. The multiplication factor is denoted as the signal disturbance magnitude 
(SDM) and is defined as 

σ×= SDMM  Equation 3-1 

The SPRT algorithm operates as follows. At each time step in a calculation, a test index is 
calculated and compared to two threshold limits A and B (defined below). The test index is equal 
to the logarithm of the likelihood ratio (Ln), which for a given SPRT is the ratio of the probability 
of the observed data sequence {Y2}= {y1, y2, ... yn } if the alternative hypothesis is true to the 
probability of the observed data sequence if the null hypothesis is true: 

0n

1n

H  }{Y sequence observed of Prob.
H  }{Y sequence observed of Prob.

given
givenLn =  Equation 3-2 

Here H1 corresponds to a defect signal, while H0 corresponds to a non-defect signal. 

The logarithm of the likelihood ratio for the Gaussian distribution defined above can be written 
in the following form 
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 Equation 3-3 

If the logarithm of the likelihood ratio satisfies ln(Ln) ≥  ln(B), then H1 is accepted. If the 
logarithm of the likelihood ratio satisfies ln(Ln) ≤  ln(A), then H0 is accepted. If the logarithm of 
the likelihood ratio falls between these values, then new observation is added and test repeated. 
The threshold limits are 
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β
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A  Equation 3-4 

α
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=
1B  Equation 3-5 

where α is the false alarm probability and β is the missed alarm probability. 

The implementation of the basic test in various steps of the defect detection algorithm and the 
selection of the alternative hypothesis mean for specific steps is described in Chapter 2. 

3.2 Image Filtering 

Linear and nonlinear spatial filtering techniques [19, 20] have been implemented in ANTARES. 

Wiener filter is a linear filter, which is able to adapt to local image variance. Classical pixel-wise 
Wiener filter output b(i,j) i=1,2, … N, j=1,2, …M for a given input noisy image a(i,j), i=1,2,… 
N, j=1,2, …M is given by the following expression 
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where the local image mean µ and variance σ are computed in a N-by-M neighborhood 
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and ν is the noise variance. This filter is adaptive. It performs more smoothing when the variance 
of the image is small. The filter is optimal when the noise is additive, has constant power (“white 
noise”) and the Gaussian distribution. 

In addition to the Wiener filter, two other filtering operations have been implemented through 
sliding window neighborhood. Both filters are nonlinear in nature.  

The first is the median filter, which substitutes the central neighborhood pixel by the median 
value in the neighborhood. 

The median of n observations, xi, i=1,2,…n is denoted by med(xi) and defined by 
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where x(i) denotes the i-the order statistic.  

A two dimensional median filter applied to image a(i,j), i=1,2, … N, j=1,2, …M is defined as 

)),(  ;( , Asrxmedy sjriij ∈= ++  Equation 3-10 

where A is a neighborhood of the central pixel (i,j). This approach is useful if the image noise is 
not Gaussian. The other nonlinear filter implemented in ANTARES determines the minimum 
value in the sliding window and is used for the initial background estimation. 

3.3 Morphological Operations and Thresholding 

Morphological imaging operations are based on shapes in images.  

Erosion and dilation are two fundamental morphological operations. Erosion removes pixels 
from object boundaries, while dilation adds pixels. The number of pixels removed or added to 
the objects depends on the size and shape of the structuring element used to process the image. 
Both erosion and dilation are defined by a structural element. 

A structural element consists of a matrix of 0’s and 1’s. The center pixel identifies the pixel 
being processed. The pixels in the structuring element containing 1’s define the neighborhood of 
the structuring element. Common structural elements are rectangles, rings and diamond-shaped 
objects. The state of any pixel in the output image is determined by applying a rule to the 
processed pixel and its neighbors. 

In erosion of binary images, the output pixel is set to 0 if any of the pixels in the input pixel’s 
neighborhood is 0. In dilation, the output pixel is set to 1 if any of the neighborhood pixels is 1. 

Morphological image processing does not take into account the magnitude of the detected 
potential defects. Final thresholding is implemented to remove small defects. In the modified 
code, different final thresholds could be provided for each of the following segment types: free 
span, roll transition, tube support region, and U-bend. 

Morphological operations are also used for automated ROI extraction. The vertical tube image 
taken at 300 kHz, after detection and morphology operations, is converted to a binary image  
and an automated boundary detection function from the MATLAB Image Toolbox [21] is used. 
Direct implementation of the boundary detection function introduces too large a number of  
ROIs. Additional rule-based ROI elimination is implemented. 
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4  
CLASSIFICATION/CHARACTERIZATION ALGORITHM 

4.1 Defect Characterization 

Defect characterization is performed in two steps: 

1. Defect extraction and initial sizing;  

2. Defect classification and final sizing.  

Defect characterization in the original version of ANTARES is based on the available training 
data collected from the U.S. NRC mock-up at Argonne with the X-probeTM analysis frequencies 
of 70 kHz, 200 kHz, 300 kHz, and 600 kHz. The characterization algorithm does not use the  
70 kHz frequency data. Changes in higher frequencies introduced in some X-probeTM designs 
required new calibration curves and modifications in heuristic rules for the modified version  
of the classification/characterization algorithm. 

In the original version of ANTARES, at the beginning of the characterization algorithm, the 
filtered image from the detection algorithm is displayed and the user is prompted to interactively 
select a defect region for evaluation. In the modified version, all ROI found automatically are 
further analyzed without user intervention. 

When a defect region is selected, the program then computes the amplitude and the phase for 
every pixel in the selected region. The pixel that corresponds to the maximum amplitude at the 
reference frequency is determined. The reference frequency depends on the assumption of the 
defect type. In the original version, the reference frequency is 200 kHz for OD defects and 300 
kHz for ID defects. A single reference frequency of 300 kHz is used in the modified version.  
The pixel with the maximum amplitude is used to evaluate amplitudes and phases at other 
frequencies. This information is used for defect characterization. Heuristic rules are implemented 
to eliminate some false indications.  

In the original implementation, the defect type is determined by inspection of the amplitude  
and phase behavior displayed on the screen. For example, increase of the amplitude and 
counterclockwise rotation of the phase with increased frequency, as well as small phase angles 
indicate ID defects. However, this ideal discrimination is rarely accomplished in practice. The 
range of phase angles for ID defects is very small. Due to the presence of noise and artifacts and 
imperfect filtering algorithms, the errors in the phase estimation are large. For large defects, the 
phases of ID and OD defects could be in the same interval, resulting in substantial uncertainty in 
the classification of defects to OD or ID type. It is also very difficult to discriminate between 
small OD defects and artifacts due to imperfect background removal, because the phase angles 
could be in the same range. Therefore, in the original version the final decision is made by a 
trained analyst. The program displays the following information for both types of defects: the 
phase and amplitude at all four frequencies, as well as an estimated profile for both types. The 
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surface plots of original and final filtered images are also displayed. Based on these displays, one 
of four possible options can be selected: ID defect, OD defect, non-quantifiable indication, or 
non-defect. In many cases, the algorithm automatically offers zero-depth estimations for either 
ID or OD defects. If defects are selected, the estimated type, position, length, and profile are 
saved in a file. In the modified version, heuristic rules are implemented in the program for 
automated defect classification, as described in section 4.3.  

4.2 Calibration Functions 

A simple calibration procedure based on nonlinear regression is implemented. A sophisticated 
multivariate calibration procedure does not seem appropriate for the following reasons. The 
number of defect pixels obtained at the original X-probeTM resolution is very small and extraction 
of a larger number of features is inaccurate. Moreover, the training data are very sparse and 
complex multivariate regression functions would lead to data overfitting.  

Calibration functions are fitted using the standard consisting of 18 EDM notches. The standard 
data were exported from EddyViewTM. Both axial and circumferential C scans are analyzed using 
the detection algorithm with the default detection setup. The final filtered images are used to 
calculate phase and amplitudes of each notch at all four frequencies used for X probes. The most 
consistent phase and amplitude behavior is obtained at 200 kHz and 300 kHz for OD notches and 
300 kHz and 600 kHz for ID notches. These frequencies are therefore used for calibration curve 
fitting.  

The functional form and the parameters depend on the defect type and the scan type. In addition, 
the parameters of the fitting functions are frequency dependent. The shape of the depth 
dependence on the defect signal amplitude suggested an exponential fitting function, while the 
dependence on the phase difference is best fitted by polynomials. Typical calibration curves for 
ID defects are given in Figures 4-1 and 4-2, and for OD defects in Figures 4-3 and 4-4. In the 
figures, the middle line represents the best fit, while the outer lines give the 95% confidence 
intervals. The curves are the outputs from nonlinear fitting algorithms from the MATLAB 
Statistical Toolbox [23].  

The functional forms used for the depth estimation are given below. For each type of defects 
there are four depth estimations based on the amplitude and phase at two frequencies. 

4.2.1 ID Defects 
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Figure 4-1 
An Amplitude Calibration Curve for ID Notches 

 

Figure 4-2 
A Phase Calibration Curve for ID Notches 
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Figure 4-3 
An Amplitude Calibration Curve for OD Notches 

 

Figure 4-4 
A Phase Calibration Curve for OD Notches 
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4.2.2 OD Defects 

))exp(1(100)(%      :ntialcircumfere

))exp(1( 100)(%       :axial

ncalibratio (AMP)  amplitude

AMPbTWdepth

AMPbTWdepth

c

a

×−−×=

×−−×=  Equation 4-3 

       )(%      :ntialcircumfere

                  )(%       :axial
                                          n         calibratio )(  phase

2
210

2
210

φφ

φφ

φ

×+×+=

×+×+=

ccc

aaa

cccTWdepth

cccTWdepth  Equation 4-4 

The amplitude functional dependence is best fitted by an exponential function of the square root 
of the amplitude. The different function for axial ID amplitude functional dependence is the 
result of smaller fitting error and variance and is not based on prior physical insight. The best fit 
for the phase calibration is obtained by a second order polynomial, except circumferential ID 
defect, which are best fitted by a linear function. 

Due to changes in the probe design and frequencies used in the modified algorithm, new 
calibration curves are computed using the same procedure. The X-probeTM data for the 18 notch 
EDM standard taken at frequencies of 100 kHz, 200 kHz, 300 kHz, and 400 kHz were obtained 
from X-probeTM developers and used to compute new calibration curves. The analytical forms of 
the calibration functions are the same, but the coefficients are different. The fitting coefficients 
for both versions are stored in the MATLAB data files. The modified version uses the fitting 
coefficients obtained at frequencies of 100 kHz, 200 kHz, 300 kHz, and 400 kHz, since those 
frequencies are used in recent X-probeTM field examinations. Future modifications in inspection 
frequencies would require new coefficient evaluation. 

4.3 Classification Rules 

Heuristic rules have been implemented in the classification/characterization module to 
discriminate between defects and non-defects. Predicted zero depth is equivalent to non-defect. 
However, predicted non-zero depth does not necessarily indicate a defect. The decision about the 
type of indication is made automatically in the modified version by applying a set of rules. 
General classification rules are given in Table 4-1. Specific implementation contains a 
combination of these rules and empirical constraints. 

Since the details of the classification are not very comprehensive, primarily due to signal 
distortions during preprocessing, both ID and OD defects and unknown indications are lumped in 
a single class “Indication” and all indications positively declared as non-defects are classified as 
“non-detectable degradations” in the modified classification algorithm. Each indication classified 
as OD or ID is assigned a maximum depth estimate internally in the classification function, 
based on the calibration curves and sizing algorithm rules. Limited testing is inconclusive about 
the performance of the sizing algorithm in the modified code and the depth estimate is not 
reported in the final classification algorithm output. 
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Table 4-1 
General Classification Rules 

 Rules Based on Phase Comments Decision 

1 
Clockwise phase rotation with frequency  
increase 

Large phase  

Theoretically should be valid for all 
frequencies 

In practice, rotation direction is 
determined by the least square 
trend fit 

OD 

2 
Counterclockwise phase rotation with frequency 
increase 

Small phase  

Theoretically should be valid for all 
frequencies 

In practice, rotation direction is 
determined by the least square 
trend fit 

ID 

3 
Insignificant phase rotation with frequency 
increase 

Phase at each frequency is larger than 100°  
Any frequency No defect 

4 

Irregular phase rotation 

Small phase  

Signal present at high frequencies  

Phase errors for ID defect could 
cause irregularities 

ID 

 Rules based on amplitude Comments Decision 

5 Amplitude less than the specified threshold For all frequencies No defect 

 Rules based on phase and amplitude Comments Decision 

6 After filtering, signal present at only one 
frequency Any frequency No defect 

7 
Large amplitude  

Large phase  
Lower frequencies No defect 

 Rules based on sizing   

8 

Irregular rotations 

Signal not present at all frequencies 

Sizing indicates zero depth or depth less than 
5% TW 

Based on some rules already 
included in the sizing algorithm  

No defect 

9 

Irregular rotations 

Signal not present at all frequencies 

Sizing indicates non-zero depth 

None of the previous rules apply  

Sizing could be very inaccurate 
when applied to non-defect signals 

Unknown 

10 Estimated depth is less than a prescribed 
threshold 

Could cause some missed defects No defect 

 

4-6 



 

5  
BURST PRESSURE ESTIMATION ALGORITHMS 

This section presents theoretical considerations of the two models included in ANTARES that 
estimate Pl and Pb. The section contains three main subsections. The first subsection discusses the 
ANL equivalent rectangular crack model. The second subsection considers the ANL analytical 
model for Pl and Pb estimation. The last subsection outlines the theoretical aspects  
for the SVM algorithm. 

5.1 Equivalent Rectangular Crack Profile 

The analytical model for Pl and Pb estimations implemented in ANTARES is based on 
throughwall (TW) and part-throughwall rectangular axial cracks (see Section 5.2). In contrast to 
rectangular electro-discharge machining (EDM) notches, the stress-corrosion cracks (SCC) that 
occur in operating SGT are irregularly shaped, have variable depths along their lengths and  
may have one or more TW penetrations in localized regions. Similarly, the ANTARES crack 
characterization module would have as output an estimated irregular axial crack profile [13]. 

Currently, no widely accepted models are available for predicting the ligament rupture pressure 
of cracks with such complex geometries. From a limit analysis viewpoint, it can be argued that 
the collapse behavior of a crack tip ligament with an irregular point-by-point variation of crack 
depth should be similar to that of a crack with a smoothed-out, “average” crack depth profile 
[15]. Therefore, in this research, the axial crack profile estimated by the ANTARES crack 
characterization module was assumed to be equivalent to a rectangular crack profile, as if the 
SGT behaves similarly in the two cases during the plastic collapse of the ligament. 

In this research, the axial equivalent rectangular crack profile was conservatively selected to be 
the rectangular crack with the lowest estimated Pl from a set of candidates with various lengths 
and depths [15]. The candidate crack dimensions were chosen by equating the equivalent 
rectangular area to the original crack area predicted by ANTARES. 

The above procedure was coded into a MATLAB function, which is used at the front end of the 
interface between the characterization and burst pressure estimation modules in ANTARES. 
Reference should be made to Figures 2-1 and 5-1. The equivalent rectangular crack dimensions 
are used in both SVM and analytical model estimations for Pl and Pb. 

In the analytical model for Pb, the estimation does not consider the equivalent crack depth  
(see Section 5.2), as if the whole ligament disappears and the TW crack has an equivalent  
crack length. This assumption is very approximate, but may be very conservative. Also, the  
Pl analytical model is based on the limit analysis viewpoint discussed above and may also be 
conservative. A more advanced analytical model for Pl and Pb estimation is currently under 
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consideration at ANL [24]. The model will be an extension of the equivalent rectangular crack 
model but will also account for the crack growth. Thus, the future model will have the potential 
to predict incremental ligament rupture after the initial ligament rupture event, until the full 
ligament ruptures or the SGT fails unstably (bursts). For now, and to be on the conservative side, 
a set of rules were implemented in ANTARES to define the limits on the range of applications of 
the current methodologies. 

However, the assumptions discussed above may have a reduced impact on the estimation  
results, if a fully data-driven approach to estimate Pl and Pb is taken. Assuming that enough 
experimental data exists to train an SVM model for a specific case, the equivalent rectangular 
crack dimensions may simply be regarded as SGT features. Thus, such a numeric method would 
be based only on experimental data. 

 

Figure 5-1 
SVM Pl and Pb Estimation Module in ANTARES 

5-2 



 
 

Burst Pressure Estimation Algorithms 

5.2 Analytical Model for Pl and Pb Estimation 

This section describes the analytical model for Pl and Pb estimation as a function of equivalent 
rectangular crack dimensions, SGT dimensions and material properties. This model was 
developed by ANL under the auspices of an NRC program [15, 25]. Only Pl and Pb estimations 
for axial cracks are currently treated in ANTARES and are discussed in this report. 

The unstable burst pressure of a thin wall, internally pressurized cylindrical shell with a single 
rectangular TW axial crack is estimated by an equation originally proposed by Hahn et all [25] 
and later modified by Erdogan [27]: 

m
P

mR
hP u

b ==
σ

 Equation 5-1 

where: 

σ  is the flow stress and equals k (Sy + Su); 

Sy and Su are the yield and ultimate tensile strengths, respectively; 

m = 0.614 + 0.481 λ + 0.386 exp(-1.5 λ), the bulging factor; 

( )[ ]
Rh

c
Rh
c 82.1112 4

1
2 =−= νλ  

R
hPu

σ
=  is the burst pressure of the unflawed virgin tube; 

R and h are the SGT mean radius and wall thickness, respectively; 

υ is the Poisson’s Ratio, and 

2c is the axial crack length. 

A general failure criterion for predicting the pressure for the rupture of the crack tip ligament in a 
tube with a partial TW rectangular axial crack can be expressed as [15]: 

Pl = mp Pu Equation 5-2 

where 

mp, the ligament stress magnification factor, is taken to be [27]: 
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a is the rectangular crack depth. 

Equation 5-1 considered an average ligament stress for the axial cracks. 

The flaw stress factor, k, and parameter β are critical factors in predicting Pb and Pl. In this report, 
a value of 1.0 was chosen for β; k was considered to have a value of 0.55 for Alloy 600 SGT 
tubes that operate at temperatures lower than 100 ºC and 0.506 for higher temperatures. These 
values were obtained from correlation and best-fit experiments performed at ANL [15, 25]. 

Another important parameter in Pb and Pl estimation is the SGT material type. The most 
conservative results are obtained when the Alloy 600 material is annealed at high temperature 
since the heat treatment diminishes the flow stress. To cover this most conservative case, the 
training data points for the SVM algorithm were generated using annealed Alloy 600 for which 
the ultimate and yield tensile strengths in Equation 5-1 were considered to be 607 and 179 MPa 
respectively [25]. 

The analytical model described in this section was coded into MATLAB functions. As  
discussed in Section 5.1, the equivalent rectangular dimensions obtained from the ANTARES 
characterization module, as well as the above discussed SGT temperature, dimensions and 
material properties were inputs in estimating the analytical model Pl and Pb.  

5.3 Support Vector Machine Algorithm 

The SVM algorithm is a universal constructive learning procedure based on the statistical 
learning theory [16]. It was initially developed for classification problems with separable data 
and later adapted to solve regression problems. The latter application was considered here to 
estimate Pl and Pb as a function of the equivalent rectangular crack dimensions profile discussed 
in Section 5.1. 

The SVM combines several distinct concepts and features [33]: 

• New implementation of the Structural Risk Minimization (SRM) principle. A more 
robust cost function is considered in the SRM implementation and a regularized risk 
functional that allows for errors is implemented. 

• Input samples are mapped onto a high-dimensional (feature) space by using a priori 
determined, non-linear function based on kernel approach. Thus, the complexity of the 
problem in the highly-dimensional space is control independently of the feature space 
dimensionality. 
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• Linear functions with constraints on complexity are used to approximate or 
discriminate the input samples in high-dimensional spaces. As opposed to many other 
learning approaches, such as neural networks, in which non-linear approximations are used 
directly in the sample space, the SVM uses linear estimation techniques in the feature space. 
The linear estimators provide for accurate estimates for the model complexity and better 
optimization approaches for finding the global minimum solution for the empirical risk than 
the non-linear estimators. Thus, smaller data set for training may be required for the SVM 
than the data set used for training the artificial neural networks. 

• Duality theory of optimization is used to make estimation of model parameters in a  
high dimensional feature space computationally tractable. As shown in the optimization 
theory, solving a dual problem is equivalent of solving the original (primal) problem, if the 
cost and constraint functions are strictly convex [30]. For the SVM, a quadratic optimization 
(QO) problem must be solved to determine the parameters of a linear basis function 
expansion, and for high-dimensional feature spaces, the large number of parameters makes 
this problem difficult, if not impossible to solve. However, in its dual form, this problem  
is practical to solve, since it scales in size with the number of training samples, and the  
linear function corresponding to the solution of the dual problem is given in the kernel 
representation rather than in the typical basis function representation. The solution in the 
kernel representation is written as a weighted sum of support vectors, which are a subset  
of the training data that correspond to the solution of the learning problem.  

Mathematically, the SVM linear regression problem statement is: 

given a set of training data ( ) ( ){ } d
mm xyxyxX ℜ∈ℑℜℑ⊂= ,,,...,, 11 , find the optimum 

(smooth) f(x)=<w, x> + b, w ∈ ℑ, having at most ε deviation  Equation 5-3 
for all training data points in X. 

In Equation 5-3, w is a set of weights to be determined (optimized), b is a free parameter and  
< , > is the inner product in the input space ℑ of dimensions d. 

The SRM principle provides a mechanism for choosing an optimal model that fits a finite data 
sample. The SRM principle penalization approach offers a formalism for adjusting (controlling) 
the complexity of approximating functions that fit available data. This approach is typically 
employed with adaptive methods, such SVM, that use a wide, flexible set of approximating 
functions when the true parametric form is unknown. The penalization approach may be also 
used when the parametric model is known but the number of samples is relatively small. In the 
SVM formulation, a penalization (regularization) approach to the SRM principle translates to: 

find f in Equation 5-3 that minimizes the risk functional 

[ ] ( ) 2

2
),()(,, wRRyxdpxfyxLfR empreg

λ
+=== ∫  Equation 5-4 

where 

L(x, y, f(x)) is the loss (cost) function which measures the discrepancy between the real 
output and the one produced by the learning machine for a given x; 
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p(x, y) = p(x) p(y ⎜ x) is the joint probability distribution function (pdf); 

Rreg is the regularized risk functional; 

( )(∑
=

=
m

i
iiiemp xfyxL

m
R

1
,,1 )  is the empirical risk functional obtained from averaging the 

risk over the training data; and 

λ is the regularization parameter that controls the penalty relative to Remp and should be 
independent of the training data. 

The regression formulation for the SVM algorithm uses a more robust Vapnik ε-insensitive loss 
function instead of a standard quadratic loss function, which is appropriate only for the Gaussian 
noise: 

⎩
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≤
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 if ,0
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ε

 Equation 5-5 

By combining Equation 5-3 through 5-5 and by additional reshaping of the SRM principle, we 
arrive at the following objective (primal) formulation for the SVM regression problem: 
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) Equation 5-6 

where: 

λ
1

=C  is a constant that determines the trade-off between the smoothness of f and the 

amount up to which deviations larger than ε are tolerated; and 
*, ii ξξ  are “slack” variables introduced to cope with the otherwise infeasible constraints 

of the optimization problem. 

It turns out that the optimization problem in Equation 5-6 can be solved more easily in its dual 
formulation [30]. Moreover, the dual formulation provides the key for extending the SVM to 
nonlinear, kernel-based functions. The key idea in the dual formulation is to construct a 
Lagrange function from both the primal function shown in Equation 5-6 as well as the 
corresponding constraints, by introducing a dual set of variables. 

The Lagrange function is given by the primal objective function that needs to be minimized 
minus the sum of all products between constraints and the corresponding Lagrange multipliers 
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[30]. Optimization is then seen as a minimization of the Lagrange function with respect to the 
primal variables or maximization with respect to the Lagrange multipliers, i.e. dual variables. 
Thus, it has a saddle point at the optimal solution in terms of the primal and dual variables. Here 
the Lagrange function is used only as a theoretical device to derive the dual objective function. 

Following the above procedure, we construct the Lagrange function for the primal objective 
function and set the partial derivative of the Lagrange function with respect to the primal 
variables to 0. Then, the following equivalent dual optimization problem results: 

maximize ji

m
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iii
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 Equation 5-7 

where  are the dual Lagrange multipliers. ii αα ,*

From setting to 0 the partial derivative of the Lagrange equation with respect to the primal 
variable w, the following results: 

∑
=

−=
m

i
iii xw

1

* )( αα  and therefore the solution of the initial SVM regression problem  

(Equation 5-3) is: 

( ) ∑
=

+−=
m

i
iii bxxxf

1

* ,)( αα  Equation 5-8 

 

Equation 5-8 represents the support vector expansion, i.e. the weight w can be completely 
described as a linear combination of the selected training data, for which the Lagrange 
coefficients are not 0. Moreover, the complete algorithm can be described in terms of inner 
products. These observations are very important for the formulation of a nonlinear SVM. 

Before discussing the nonlinear SVM extension, a few remarks are in order for the computation 
of the free parameter b in Equation 5-8. This parameter can be computed by exploiting the so 
called Karush-Kuhn-Tucker (KKT) conditions which state that the product between the dual 
variables in Equation 5-7 and the constraints in Equation 5-6 has to vanish at the optimal solution 
[31, 32]. Several useful conclusions can be drawn from this calculation. One conclusion is that 

, i.e. when one dual variable is nonzero, the other one must vanish. Another conclusion 

is that only for 

0* =iiαα

ε≥− ii yxf )(  the Lagrange multipliers may be nonzero, i.e. for all samples 
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inside the ε-sensitive region,  vanish. Thus, not all the training data set is needed to 

describe w, and therefore, we have a sparse expansion of w in terms of xi. The training data 
points for which the Lagrange multipliers are nonzero are called support vectors. Therefore, as 
discussed at the beginning of this section, the function complexity is independent of the input 
space dimensionality and depends only on the number of support vectors. 

ii αα  and *

With these observations in mind, the next step is to generalize the procedure and make the SVM 
algorithm nonlinear. This can be achieved by preprocessing the training data xi by a map  
Φ: ℑ → F into some feature space F and then applying the standard linear SVM regression 
algorithm described above into the feature space. As noted already, the SVM algorithm only 
depends on the inner products between various patterns and therefore, it is sufficient to define 
and use the kernel K(x, x’) = <Φ(x), Φ(x’)> instead of Φ explicitly. This allows the rewriting of 
the SVM algorithm as follows: 
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 Equation 5-9 

The solution of the linear SVM regression problem in the feature space is then: 

∑
=

Φ−=
m

i
iii xw

1

* )()( αα  and  Equation 5-10 ( ) ( )∑
=

+−=
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i
iii bxxKxf

1

* ,)( αα

Note that the difference to the linear case is that w is no longer explicitly given and the quadratic 
optimization (QO) problem in Equation 5-9 corresponds to finding the smooth function in the 
feature space, not in the input space. However, due to the fact that kernels can be associated with 
the smoothness properties via regularization operators, the corresponding functions are also 
smooth in the input space [33]. Moreover, the equivalent kernel representation of the SVM 
algorithm provides for a generalization of the procedure since the solution depends only on the a 
priori determined inner product (kernel) in the feature space. 

The kernel functions must satisfy several mathematical conditions for the nonlinear algorithm to 
hold and their selection is an ongoing research area in the current SVM development. Several 
kernels were considered into the SVM code used in this research: 

Gaussian Kernel, )
'

exp()',( 2

2

σ
xx

xxK
−

−= ;  

Linear Kernel, K(x, x’) = <x, x’>;  
and Polynomial Kernel, K(x, x’) = (<x, x’>+c)p Equation 5-11 
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In coding the SVM procedure, the most complicated and time consuming part in the learning 
process is to solve the QO problem in Equation 5-10. The ANL code uses an advanced QO 
method called the Active Set Algorithm which iteratively searches for the set of variables  
that satisfy the equality constraints in the QO problem. In addition, the code implements 
decomposition methods to make large scale problem feasible. Reference [17] contains more 
information on the general-purpose ANL code that implements the SVM algorithm. 

In running the SVM code, at least three important parameters must be selected by the user: ε,  
C and the kernel K (see Equation 5-9). For the code used in this research a selection of Gaussian 
kernel introduces another parameter, whereas a selection of the polynomial kernel introduces two 
other parameters (see Equation 5-11). All these parameters potentially affect the final model 
complexity. 

Rigorous model selection for the SVM regression is still an open issue. As discussed above, the 
regularization parameter C affects the trade-off between the model complexity and the training 
error. The optimum value can be adjusted using resampling methods [28]. 

In the case of regression problems with noise, parameter ε reflects the noise variance. For SVM 
regression problems without noise (interpolation), the parameter should reflect the pre-specified 
accuracy of interpolation (larger ε’s correspond to smaller number of support vectors) [28]. 

Based on a small number of empirical results for SVM classification problems it appears that the 
type of inner product kernel usually does not have much influence on the classification error 
[16]. For SVM regression problems, preliminary results seem to indicate that the choice of kernel 
is important [28]. The development and selection on good kernels are still open issues. 

In this research, the necessary SVM training data set in Equation 5-3 was generated by using the 
most conservative analytical model described in Section 5.2. For the SVM model used to 
estimate the ligament rupture pressure, the output y in Equation 5-1 corresponds to Pl and the 
input space corresponds to the rectangular equivalent crack dimensions discussed in Section 5.1. 
For the SVM model used to estimate the unstable burst pressure, the output, Pb is formulated  
as a function of the rectangular equivalent crack length, since in this case the ligament is 
assumed to have ruptured (100 % TW). As discussed in Section 5.1, this assumption may be too 
conservative, and may influence the SVM results, since in the current application, the SVM 
estimations are based on data generated by the analytical model shown in Section 5.2. All the 
other parameters, such as SGT temperature, dimensions and material properties, were maintained 
constant during data generation for both SVM models. 

SVM training was performed for both most conservative Pl and Pb SVM cases discussed above. 
During training, optimum SVM parameters that produce the smallest errors in the training data 
sets were found. For these parameters, the corresponding case-dependent support vectors were 
also found. This information is used in the burst Pressure Estimation module of ANTARES 
when SVM estimations for Pl and Pb are computed.  

Note that the current SVM implementation is based on training data generated by using an 
analytical model. However, when sufficient experimental data points for Pl and Pb become 
available for SVM training, corresponding SVM cases can be defined or updated. Then, the 
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SVM analysis will be based on experimental data or on hybrid models (experiment + analytical 
data points) as an alternative to the analytical model estimations. 

The procedure described in this section is summarized in Figure 5-1. Note that the SVM block in 
Figure 5-1 may be replaced by an Analytical Model block. In this case, the connection to the Pl 
and Pb databases are not required. However, other variables such as SGT properties and 
temperature need to be specified by the user. 
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6  
LIGAMENT RUPTURE AND BURST PRESSURE 
DATABASE 

This section presents the Pl and Pb databases used in this project for the SVM training.  
The databases were developed to provide for an effective and reliable information management 
related to the SGT Pl and Pb. The databases will be maintained and updated and the 
corresponding optimum SVM models derived whenever new experimental information  
becomes available. 

As discussed in the previous sections, the analytical model was used to generate training  
data for the SVM algorithm. Also, several SGT ligament rupture and unstable burst pressure 
experiments supported by NRC programs were performed in the High-Temperature Pressure  
and Leak-Rate Test Facility and Room-Temperature High-Pressure Test Facility at ANL  
[15, 34]. Representative and pertinent results were included in two databases, one for Pl  
and the other one for Pb. Table 6-1 shows the experimental data points in the Pl database. 

Table 6-1 
Experimental Points in Pl Database 

Pl, MPa Le, in De, in Temp, °C OD, in Thk, in Material Type Source 

12.4 0.25* 0.045* 20 0.875 0.05 Alloy 600, annealed axial Exp., SGL-413, lab-
grown SCC, [14] 

6.2 0.30* 0.049* 20 0.875 0.05 Alloy 600, annealed axial Exp., SGL-480, lab-
grown SCC, [14] 

32 0.55* 0.024* 20 0.875 0.05 Alloy 600, annealed axial Exp., SGL-494, lab-
grown SCC, [14] 

11.5 0.34* 0.046* 20 0.875 0.05 Alloy 600, annealed axial Exp., SGL-493, lab-
grown SCC, [14] 

13.8 1.5 0.04 20 0.875 0.05 Alloy 600, annealed axial Exp., T3EA80X1.5, 
EDM, [33] 

10.3 0.33* 0.039* 20 0.875 0.05 Alloy 600, 
annealed, assumed

axial Exp., 412 or 535, 
lab-grown SCC, 

13.8 0.58* 0.043* 20 0.875 0.05 Alloy 600, 
annealed, assumed

axial Exp., 732 or 855, 
lab-grown SCC 

* The equivalent rectangular crack dimension was computed from posttest fractography profile 

The databases were developed as Microsoft Access applications. This database system was 
preferred since it has powerful import and export capabilities and user-friendly facilities to 
extract the desired data sets for selective SVM training cases. In addition, the creation or 
modification of fields, data entries, error checks, tables or queries in the database is handled  
by an extensive collection of easy to use features. 
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The SGT database for Pl includes the following parameters (fields): 

1. Data point identification; 

2. Ligament burst pressure Pl generated using the analytical model or obtained from an 
experiment, in MPa (column 1 in Table 6-1); 

3. Crack length or equivalent rectangular crack length, in inch (column 2 in Table 6-1); 

4. Crack depth or equivalent rectangular crack depth, in inch (column 3 in Table 6-1); 

5. SGT temperature at which the experiment was conducted or at which the data point was 
generated, in ºC (column 4 in Table 6-1); 

6. SGT outer diameter (OD), in inch (column 5 in Table 6-1); 

7. SGT thickness, in inch (column 6 in Table 6-1); 

8. SGT material or material identification (column 7 in Table 6-1); 

9. Crack type (column 8 in Table 6-1); 

10. Descriptive data point information (column 9 in Table 6-1). 

The first 7 fields in the Pl database contain numeric data only; the last 3 fields may contain text. 
Data can be entered in the numerical fields only after passing appropriate error checks introduced 
during the database design. 

The Pb database contains the same fields discussed above, with the exception of crack depth 
dimension which is assumed to be 100 % TW in this research. Also, the second field in the Pb 
database corresponds to the unstable burst pressure generated using the analytical model or 
obtained from an experiment. 

The analytical model that provides for the most conservative results for Pl and Pb estimations was 
used in the data generation. As discussed previously, this corresponds to Alloy 600 SGTs that 
were annealed at high temperatures. The annealing treatment resulted in a loss of flow stress, 
which weakened the SGT. Thus, the analytical model for this material consistently provides for 
the lower Pl and Pb estimates when all the other analytical model parameters are maintained 
constant. Therefore, efforts were focused to characterize the case that provides for the most 
conservative analytical results for Pl and Pb estimates. 

As discussed in Section 5.2, functions that code the analytical model for Pl and Pb estimations 
were developed in MATLAB. These functions use the equivalent rectangular crack dimensions 
in their computations. Also, for the SVM analysis, it was assumed here that Pl and Pb depend 
only on the SGT equivalent rectangular crack dimensions (for Pb the crack is assumed through 
wall (TW)). Other variables, such as: temperature and SGT material properties, OD and 
thickness could be added later in the model, if necessary and/or data is available. Using the 
MATLAB functions discussed above, 336 analytical data points were generated and considered 
representative of the most conservative case for the Pl database. Similarly, 40 analytical data 
points were generated for the Pb database. The following parameters were considered in data 
generation: 
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• The equivalent rectangular crack length was uniformly varied from 0.1 in to 2 in, in steps of 
0.05 in, during the analytical model calculation of Pb; 

• The equivalent rectangular crack length was uniformly varied from 0.1 in to 1.5 in, in steps 
of 0.05 in, during the analytical model calculation of Pl; 

• The equivalent rectangular crack depth was varied from 10 to 90 % through wall (TW) in 
variable steps, during Pl and Pb analytical model calculation. The data sample density for 
depths in between 40 and 90 % TW was greater than the corresponding quantity for depths in 
between 10 and 40 % TW, since the former region is considered to be the region of interest 
in ANTARES. 

• Only axial cracks were considered during both Pl and Pb analytical model data generation; 

• SGT at 20°C during both Pl and Pb analytical model data generation; 

• Constant SGT dimensions (7/8 in OD and 0.05 in thickness) for both Pl and Pb data 
generation; 

• Alloy 600, annealed at 1100°C for 10 minutes, as SGT material for both Pl and Pb analytical 
model computations. This material is assumed have ultimate and yield tensile strengths equal 
to 607 and 179 MPa respectively (see Equation 5-1). 

The 336 data points corresponding to the conservative case described above were added to the  
Pl database. Similarly, the 40 data points mentioned above were used to populate an Access 
database for Pb computations. 

Seven experimental points were also added to the Pl database. These points correspond to the 
most conservative case above and were taken from references [15, 34]. The experimental data 
points are presented in Table 6-1. 

Whenever new experimental data points become available, the equivalent database will be 
updated. Eventually, the Pl and Pb databases would include enough experimental data points  
for each case of interest. Then, the SVM training could be based only on experimental data.  
In this research, the experimental data points were used for testing the burst pressure module in 
ANTARES, as described in Section 5. The optimum SVM training was performed by using the 
generated data points that correspond to the most conservative analytical model case discussed 
above. 

The process of extracting data of interest from the database was automated by using 
programmable Microsoft Access queries. Queries are an essential tool in any database 
management system and are used to select records, update tables and add new records to tables. 
In this research several queries were designed to select group of records that meet specified 
criteria. For example, the numeric data file used in the SVM training for the SVM Pl model was 
extracted from the Pl database using a specialized query. Similarly, training data for SVM Pb 
model was extracted from the Pb database. 

Note that the Pl database contains 100 additional data points that were also generated using the 
analytical model. A different material (Alloy 600 M90 SGT) was used in this data generation; 50 
data points are characteristic of 3/4 inch OD tubes and the rest are characteristics of 7/8 inch OD 
tubes. These records were used in the initial stages of this project in testing the applicability of 
the SVM algorithm for this problem and database extraction capabilities.
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7  
BURST PRESSURE ESTIMATION – RANGE OF 
APPLICATION 

This chapter summarizes the range of applications for Pl and Pb estimates that are currently 
implemented in ANTARES and for which the verification and validation described in Chapter 10 
was performed. The ANTARES user should be aware of the following code limitations: 

• Both analytical and SVM estimations for Pl and Pb are based on approximating the real  
crack profile through ANTARES defect characterization module calculations. This  
estimated profile has associated uncertainties due to several approximations made during  
the estimation process. In addition, the defect profile estimated by ANTARES is converted 
into an equivalent rectangular crack profile which represents one of the most important 
parameters for both SVM and analytical Pl and Pb estimations. However, the methodology 
used to compute the equivalent rectangular crack dimensions introduces supplementary 
uncertainties in Pl and Pb estimations since, currently, it does not account for the crack growth 
(see Section 5.1). 

• The code handles only axial cracks since the data used for SVM training considered only this 
case for now. If the selected crack is circumferential, an error message box appears and the 
SGT Pressure Estimations are overridden. 

• The results are representative for Alloy 600 SGT, with 7/8 in OD and 0.05 in thickness at  
20°C. For these cases, the results should be conservative since the SGT material is assumed 
to be annealed at high temperatures. This material was used in the data generation for the 
SVM training and is also used in the analytical model computations for Pl and Pb estimates. 

In addition, the set of rules summarized in Table 7-1 are implemented in the Burst Pressure 
Estimation module. The second and third columns in Table 7-1 represent the equivalent 
rectangular crack depth (ERD in % TW) and length (ERL and in), respectively. 

In addition, whenever both Pl and Pb are reported for a corresponding case (analytical or SVM) 
the following supplementary rule applies: 

• If Pl > Pb, then Pb is not displayed and the module reports that it concludes that the SGT burst 
when the ligament ruptures. 

The rules described in Table 7-1 account for the fact that limited ranges for equivalent 
rectangular crack dimensions were used during data generation for SVM training. Therefore, the 
SVM results are representative only for these ranges. In addition, physical considerations were 
considered in the supplementary rule above. The implementation of these rules in ANTARES 
was also tested during the verification and validation of this module. 
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Burst Pressure Estimation – Range of Application 

Table 7-1 
Rules for Reporting the Burst Pressure Estimation Module Results in ANTARES 

Case ID ERD (% TW) ERL (in) Action 

1 ERD < 10 Any 
Do not report SVM Pl or Pb. Report analytical Pl and 
Pb. Inform the user that the crack dimensions are 
outside the training range for SVM computations. 

2 10 < ERD < 90 ERL < 1.5 Report analytical and SVM Pl and Pb. 

3 10 < ERD < 90 1.5 < ERL < 2
Do not report SVM Pl. Report both analytical Pl and Pb 
and SVM Pb. Inform the user that crack length is 
outside the SVM training range for Pl computation. 

4 10 < ERD < 90 ERL > 2 
Do not report SVM Pl and Pb. Report both analytical Pl 
and Pb. Inform the user that the crack length is outside 
the SVM training range. 

5 ERD > 90 Any 

Do not compute the SVM Pl and Pb and analytical Pl. 
Report analytical Pb only. Inform the user that the 
crack dimensions are outside the training range for 
SVM computation and the tube ligament is 
conservatively declared ruptured due to model 
uncertainties. 
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8  
DETECTION ALGORITHM TESTING 

The performance level of the ANTARES detection algorithm is determined by a set of 
parameters, which can be adjusted for specific applications. A set of default values is provided, 
but the user can change any of these parameters through the GUI. The default values in the 
original version were determined during the initial project training phase based on the X-probeTM 
array data collected at the U.S. Nuclear Regulatory Commission steam generator mock-up at 
Argonne. In the modified version, the default values are plant specific. A set of default values 
was obtained during limited testing for U-bend data. 

The detailed explanation of the parameter setup is given in the ANTARES user manual [14]. For 
completeness, a short description is given here. Four groups of detection parameters are defined: 
probabilities, background, detection, and morphology. 

Probabilities include the false alarm probability alpha (α) and the missed alarm probability  
beta (β) in SPRT. Background parameters define the initial background estimation algorithm. 
Detection parameters define the defect detection algorithm. The SDM factor defines the 
sensitivity of the SPRT test used in each of these algorithms. The parameter range defines an 
appropriate sliding window for spatial filtering. The SDM factor is used in both steps of the 
defect detection algorithm. For the coarse detection step implemented for large peaks, this 
threshold is multiplied by the parameter magnification. The parameter range defines the sliding 
window for filtering. The parameter threshold is an empirical factor and is used for final removal 
of small peaks. Morphology parameters define the structuring elements for erosion and dilation. 
The structuring element for erosion is rectangular, while the dilation structural element is an 
equilateral diamond shape. Detection limit is the maximum number of nonzero pixels in the 
alarm map of a normal segment.  

Default detection parameters are used for performance testing. Parameter settings for axial and 
circumferential scans are presented to the user through a GUI in the original version. Figures 8-1 
and 8-2 depict the default setup for axial and circumferential scans, respectively. 

Indications of defects found in the detection module are further examined in the characterization 
module. A number of heuristic rules have been implemented in the characterization algorithm for 
false call elimination. At the end of the defect characterization, information about the phase and 
the amplitude of a selected defect is displayed in a separate window. Based on the information 
presented on the characterization display, the user makes the final decision about the type of 
indication, whether or not an actual defect is present. 
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Figure 8-1 
Default Detection Parameters for Axial Scan 

 

Figure 8-2 
Default Detection Parameters for Circumferential Scan 
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Detection Algorithm Testing 

Initially, two blind tests were performed for the original version of ANATRES with the USNRC 
mock-up data.. Test 1 includes 25 mock-up tubes with axial OD SCCs in the TSP region. Test 2 
includes 25 miscellaneous SCCs. Each mock-up tube consists of nine segments, which means 
that the total number of evaluated segments is 225 for each test. 

After the initial tests were performed, the modified version was then tested using the 
Examination Technique Specification Sheets (ETSS) dataset and limited field data. 

The notation used for performance evaluation is given in Table 8-1. Positive decision is defect, 
negative decision is non-defect. Decisions are made for each segment. 

Table 8-1 
Table of Test Outcomes 

Notation Explanation 

TP true positive (correct defect decision) 

TN true negative (correct non-defect decision) 

FP false positive (incorrect defect decision) 

FN false negative (incorrect non-defect decision) 

FNTP
FNFNR
+

=  false negative rate (missed alarm rate) 

FPTN
FPFPR
+

=  false positive rate (false alarm rate) 

8.1 Original Version Test 1 

Initial detection results output by the detection module are presented in Table 8-2. For this data 
set, all defects were found with the default parameters, but the number of false alarms was 21, 
which means that the false alarm rate was 11.4%. Further analysis of initial indications using the 
characterization algorithm eliminated 16 false and 2 true calls, leading to the final false alarm 
rate of 2.7% and the final missed alarm rate of 5%. Detailed results are given in Table 8-3. 

8-3 



 
 
Detection Algorithm Testing 

Table 8-2 
Initial Detection Results for Test 1 

Tube Number TP TN FP FN 

1 2 6 1 0 

2 2 7 0 0 

3 3 6 0 0 

4 2 6 1 0 

5 1 8 0 0 

6 2 6 1 0 

7 1 6 2 0 

8 1 7 1 0 

9 2 6 1 0 

10 1 8 0 0 

11 2 6 1 0 

12 1 7 1 0 

13 1 7 1 0 

14 2 6 1 0 

15 2 5 2 0 

16 1 6 2 0 

17 1 6 2 0 

18 1 7 1 0 

19 2 7 0 0 

20 2 7 0 0 

21 2 6 1 0 

22 4 5 0 0 

23 1 8 0 0 

24 1 7 1 0 

25 1 7 1 0 

Total 41 163 21 0 
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Table 8-3 
Final Detection Results for Test 1 

Tube Number TP TN FP FN 

1 2 7 0 0 

2 2 7 0 0 

3 3 6 0 0 

4 2 7 0 0 

5 1 8 0 0 

6 2 7 0 0 

7 1 6 2 0 

8 1 8 0 0 

9 2 7 0 0 

10 1 8 0 0 

11 2 7 0 0 

12 1 8 0 0 

13 1 8 0 0 

14 2 7 0 0 

15 2 7 0 0 

16 1 7 1 0 

17 0 7 1 1 

18 1 8 0 0 

19 2 7 0 0 

20 2 7 0 0 

21 2 7 0 0 

22 4 5 0 0 

23 1 8 0 0 

24 1 7 1 0 

25 1 8 0 0 

Total 39 179 5 2 
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The probability of detection (POD) curve for this test is given in Figure 8-3. Since the number of 
samples is small, the estimated probability values have large uncertainties. This is visible from 
wide confidence limits, which are especially large when the number of samples per bin is small. 

The estimated probabilities presented in Figure 8-3 imply that the axial OD SCCs near TSP 
larger than 40% TW can be detected with the probability near 60% or larger in 90% of the 
detection tests, but a similar defect larger than 90% TW can be detected with probability larger 
than 85% in 90% of the detection tests. An anomaly in the region from 60%-80% has occurred 
due to a missed crack in a dent. Probability of detection for cracks less than 40% TW is 
estimated to be larger than 50% in 90% of the tests. 

 

Figure 8-3 
Probability of Detection for Test 2 

8.2 Original Version Test 2 

Initial detection results with default parameters are presented in Table 8-4. For this data set, 4 
defects were missed and the number of false alarms was 27. Therefore, the missed alarm rate  
was 10% and the false alarm rate was 14.5%. Further analysis of initial indications using the 
characterization algorithm eliminated all but 4 false indications, but it also removed 3 indications 
which were true defects. Detailed results are given in Table 8-5. The final false alarm rate is only 
2%, but the final missed alarm rate is 17.5%. This result indicates that the characterization rules 
are not properly optimized to balance false and missed alarm rates. Although the missed alarm 
rate is large, most missed alarms are shallow, which is evident from the shape of the estimated 
POD curve, given in Figure 8-4. 
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Table 8-4 
Initial Detection Results for Test 2 

Tube Number TP TN FP FN 

1 1 7 1 0 

2 1 8 0 0 

3 2 4 3 0 

4 2 6 1 0 

5 1 7 1 0 

6 3 6 0 0 

7 1 6 2 0 

8 2 6 1 0 

9 2 6 1 0 

10 0 8 0 1 

11 2 5 1 1 

12 1 6 2 0 

13 2 6 1 0 

14 1 7 0 1 

15 1 7 1 0 

16 1 5 3 0 

17 1 5 3 0 

18 2 6 1 0 

19 1 6 2 0 

20 1 6 1 1 

21 1 7 1 0 

22 1 8 0 0 

23 1 8 0 0 

24 3 5 1 0 

25 2 7 0 0 

Total 36 158 27 4 
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Table 8-5 
Final Detection Results for Test 2 

Tube Number TP TN FP FN 

1 1 8 0 0 

2 1 8 0 0 

3 2 7 0 0 

4 2 7 0 0 

5 1 8 0 0 

6 3 6 0 0 

7 1 7 1 0 

8 1 7 0 1 

9 2 6 1 1 

10 0 8 0 1 

11 2 6 0 1 

12 1 7 1 0 

13 1 7 0 1 

14 1 7 0 1 

15 1 8 0 0 

16 1 7 1 0 

17 1 8 0 0 

18 1 7 0 1 

19 1 8 0 0 

20 1 7 0 1 

21 1 8 0 0 

22 1 8 0 0 

23 1 8 0 0 

24 3 6 0 0 

25 2 7 0 0 

Total 33 181 4 7 
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Figure 8-4 
Probability of Detection for Test 2 

The POD curve indicates that the cracks larger than 30% TW can be detected with the 
probability near 60% or larger in 90% of the tests. Probability of detection for cracks less than 
30% TW appears to be very small.  

8.3 Original Version Post Test Examination 

The conclusions of the final defect analysis for the original version are that two defects were 
missed in Test 1 and seven defects in Test 2. One of these defects was, mistakenly, included in 
both data sets. A detailed description of the eight missed defects is presented here in order to 
provide for possible algorithm modifications to enhance the performance. 

Figure 8-5 shows the surface plot of the X probe array signal around the region of a missed axial 
ID 25% TW defect. The filtered defect signal obtained after detection with the default threshold 
and final background subtraction is also presented. The presence of some defect signals can be 
observed. Smaller indications are discarded as non-defect. Analysis of the largest indication is 
presented in Figure 8-6. Phase angles are measured in the counter-clockwise direction and 
computed relative to a reference angle of 150 degrees.  

Since the flaw type (OD vs. ID) is not known a priori, characterization is performed for both 
cases and inspection of the plot gives indication about the possible type. The phase rotation with 
frequency increase is generally a good indicator of the flaw type. The difference in the estimation 
under the two assumptions is due to the difference in the reference frequency at which the peak 
is estimated for ID and OD flaws. Calibration curves also depend on the defect type, as described 
in Chapter 4. 
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Figure 8-5 
Defect 1 Position 

Small positive phase angle and phase increase with frequency visible in Figure 8-6 indicate a 
small ID flaw. However, the estimated defect depth is smaller than 5%, which is considered as 
the absolute limit for defect detection, and the signal is classified as a false call.  

Defect 2 is an axial ID 25% TW defect near a dent. The expected position of this defect is in the 
TSP region in Figure 8-7. No defects were found in this region with the default threshold. The 
threshold has been reduced to a level that triggers multiple false alarms, but the sharp peak in the 
TSP region is the result of incorrect TSP removal, not a flaw signal. 

Defect 3 is an IGA 55% TW and is correctly located, as presented in Figure 8-8. 
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Figure 8-6 
Defect 1 Characterization 
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Figure 8-7 
Defect 2 Position 

 

Figure 8-8 
Defect 3 Position 
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Although the defect signal is evident in the filtered image, characterization does not indicate 
defect, as presented in Figure 8-9. The problem here is probably due to incorrect final filtering 
for small defects. Peak analysis at 200 kHz indicates only one nonzero component. While peak 
analysis at 300 kHz indicates two components, it uses only one of these components for size 
estimation. The direction of phase change is characteristic for an OD defect. The implemented 
heuristic rules incorrectly eliminated this defect. The rule can be modified to include a defect that 
is visible at only one frequency and gives an estimate larger than 10%, but that could increase the 
false alarm rate. Nevertheless, this modification will be considered in the future testing. 

Defect 4 is an axial ID 20% TW defect near a dent. It has not been detected with the standard 
threshold, but a slight threshold reduction to 12 shows a defect signal, as presented in  
Figure 8-10. Characterization, however, indicates an OD flaw, as presented in Figure 8-11. The 
problem here is probably due to an incorrect background estimation and subsequent subtraction.  

Defect 5 is an ID 50% TW defect at roll transition. Several indications in this region are  
visible in Figure 8-12. However, all of them are classified as non-defects by the characterization 
algorithm. Since a periodic artifact component is visible in this case, pre-filtering could improve 
characterization. 

Defect 6 is a shallow axial OD defect. Figure 8-13 shows the tube segment with the defect. The 
vertical component of the signal in this region is below the default threshold value. When the 
threshold value is reduced to 5, some indications could be found. However, such a low threshold 
is not acceptable, since the false alarm rate would be too large. 

Defect 7 is a circumferential  ID 35% TW defect in the transition region presented in  
Figure 8-14. The signal-to-noise ratio in this region is low and it is difficult to discriminate  
small defects from artifacts. The indication presented in the filtered image is found with the 
threshold equal to half of the default value, but is classified as non-defect. 

Defect 8 is an axial 70% ID defect in dent. However, the vertical signal is small, as shown in 
Figure 8-15. Overly conservative artifact (dent) removal leads to a single non-zero component 
and the defect is eliminated. 

Overall, the main difficulty in detection and classification are for shallow defects, or the  
defects in artifacts, where the signal to noise ratio is small. Notable are poor detection for  
defects in dents and at roll transitions. Some improvement could be accomplished using better 
characterization rules or filtering. However, in some cases the probe signal is too small to  
be detected by an automatic algorithm with a reasonable false alarm rate. 
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Figure 8-9 
Defect 3 Characterization 
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Figure 8-10 
Defect 4 Position 
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Figure 8-11 
Defect 4 Characterization 
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Figure 8-12 
Defect 5 Position 

 

Figure 8-13 
Defect 6 Position 
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Figure 8-14 
Defect 7 Position 

 

Figure 8-15 
Defect 8 Position 
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8.4 ETSS Data  

A database with benchmark defects designated as ETSS (Examination Technique Specification 
Sheets) was received from EPRI to test the performance of the modified calibration curves. The 
performance evaluation is presented in Table 8-6. Only one defect was missed with the default 
ANTARES settings. Standard depth estimation rules implemented in the original ANATRES 
characterization algorithm resulted in relatively large errors. In the standard implementation, 
defect type (ID or OD) is determined based on the amplitude and phase trends and the estimated 
maximum depth corresponds to that type. However, some ambiguity in the discrimination 
between large OD and ID flaws has been observed, which degraded the depth estimation. For the 
ETSS data set it was found that better estimation accuracy is obtained when the maximum depth 
is selected regardless of the declared type of the defect. The results presented in Table 8-6 are 
encouraging, but might be caused by generally large defects and high SNR, which is rarely the 
case in field inspection. The problems encountered in OD and ID discrimination for the modified 
calibration curves led to the decision to report the final classification results in the automated 
classification algorithm in two classes only: “ indication” and “ non-detectable degradation”. 
Uncertainty in calibration and sizing accuracy was also the reason to abandon maximum depth 
reporting in the modified automated version of the software. 

Table 8-6 
ETSS Testing Results for Conservative Depth Estimation 

~Max Depth (%) ~Length (A(mm),C(◦)) 
ETSS # File  Defect 

Pos. 
Type 

ANT Met ANT Met 

20400.1 dhr024c96b tube sheet CODSCC 52 58 80 120 

 dhr049c96b tube sheet  52 47 80 87 

20402.1 dhr135c99b TSP-def A LODSCC missed 70 - 12 

  TSP-def B  70 73 10 12 

  TSP-def C  70 86 10 15 

  TSP-def D  100  100 13 15 

20500.1 dhr032c96a expansion CPWSCC 100 83 57 45 

 dhr033c96a expansion  100  100 68 100 

20501.1 dhr036c98a exp-def2 LPWSCC 57 67 9 5 

  exp-def5  100 94 9 20 

  exp-def8  75 72 7 5 

20502.1 dhr033c97 TSP,dent,d1A LPWSCC 70 77 8 10 

  TSP,dent,d1B  55 63 8 5 

  TSP,dent,d2  100 100 17 12 

  TSP,dent,d3  80 87 17 10 
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8.5 U-Bend Data 

Modifications introduced in ANTARES are tested on the X-probeTM data from U-bend regions  
of 10 Diablo Canyon steam generator tubes received from EPRI. Since ANTARES requires 
initial parameter adjustment, this data set served both for training and for testing. Reported 
+point indications have been used as a guidance about possible defects. However, the sensitivity 
and resolution of the +point probe and the X-probeTM are different and it is hard to delineate 
algorithmic performance and probe response. At this point, the default detection parameters have 
been selected to enable detection of the largest indications visible in the filtered X-probeTM data 
in the tube designated in the data set as sg24r5c62. At the same time, the attempt was made to 
control the false calls by selecting the threshold which will produce similar number of defects in 
ANTARES for tubes with a small number of +point indications. With additional information, it 
is possible to further optimize detection parameters and filters, as well as characterization rules.  

Default detection parameters for the U-bend region that have been modified with respect to the 
default parameters for mock-up data are listed in Table 8-7. 

Table 8-7 
Modifications in the Default Detection Settings 

 Axial Scan Circumferential Scan 

 Mock-up U-bend Mock-up U-bend 

Background range (2,16)* (2,12) (2,16) (2,10) 

Detection threshold 12 50 20 20 

* the first number represents the number of pixels in the axial direction, the second number in the circumferential direction 

Modifications in the background range are the result of the decrease of the number of points 
along the circumferential direction from 36 to 32. Threshold modification is due to modifications 
in the signal-to-noise ratio introduced during filtering. The axial threshold is unreliable, since 
only one axial indication is reported by +point probe in the training data set. ANTARES has 
found a number of axial defects, but some of them have a corresponding circumferential 
component.  

Figure 8-16 presents the raw data for an axial flaw and the result of application of the axial 
median filter with a sliding window of 31 pixels. 
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Figure 8-16 
Ovalization Removal for an Axial Defect in Preprocessing Stage 

Although the filtered image still has high noise, two indications only are produced by the 
ANTARES detection algorithm, as presented in Figure 8-17. One of these defects is further 
eliminated using characterization rules. 

Additional circumferential filtering is useful for circumferential scans. Figure 8-18 presents the 
raw and filtered data for a circumferential defect. The circumferential median filter has a window 
of 11 pixels. Detection results are presented in Figure 8-19. One indication is eliminated during 
characterization. 
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Figure 8-17 
Detection Stage Showing an Axial Defect and a False Alarm Eliminated in Characterization 
Stage 

 

Figure 8-18 
Ovalization Removal for a Circumferential Defect in Preprocessing Stage 
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Figure 8-19 
Detection Stage Showing a Circumferential Defect and a False Alarm Eliminated in 
Characterization Stage 

Preliminary results for 10 tubes from the Diablo Canyon U-bend are summarized in Table 8-8. 
Number of indications is the result obtained by the detection algorithm. Empirical rules in the 
characterization algorithm eliminate some of these indications as false defects. 

According to the +point inspection, most defects are ID. However, a number of defects have 
been characterized as OD using modified ANTARES calibration. Just like the results for ETSS 
data, discrimination between OD and ID defects was difficult in numerous cases and somewhat 
arbitrary. For that reason, we presented only the total number of defects of both types. In 
addition, the fact that the same defect could be found both in axial and in circumferential scans is 
not taken into account in Table 8-8. 
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Table 8-8 
Preliminary Results for U-Bend Region 

After Detection After Characterization 

Number of Indications SG Row Col 

Axial Circ 

Number of 
Axial Defects

Number of 
Circ Defects 

Number of 
+Point 

Indications 

21 1 24 2 3 1 0 1 

21 1 43 5 5 1 1 1 

21 5 54 0 6 0 3 7 

22 4 51 3 11 0 4 21 

23 3 86 6 12 3 5 2 

23 3 93 3 5 1 2 1 

24 5 62 6 40 5 23 35 

24 5 68 1 4 0 2 5 

24 6 23 0 7 0 3 5 

24 6 53 0 2 0 1 1 

Comparison with the +point probe results indicated some significant differences. For example, 
the number of defects found in ANTARES for tubes sg21r5c54 and sg22r4c51 is much smaller 
than the number of +point probe indications. This is due either to filtering or to the X-probeTM 

response, since a smaller number of peaks is visible in the filtered data than in the corresponding 
+point plots. On the contrary, significantly larger number of indications and defects is found by 
ANTARES for tube sg23r3c86. This is due to the very noisy data after preliminary filtering and 
indicates that additional filtering is needed. Finally, the results for tube sg24r5c62 show a large 
number of indications, but many of them are eliminated during characterization. In general, the 
initial number of indications after the detection phase is much larger for the U-bend data than for 
the mock-up data. This is an issue for the original version of ANTARES, where each indication 
is characterized individually. This was additional incentive to implement automated ROI 
extraction.  

Differences between ANTARES results and +point probe indications could be attributed to some 
extent to differences in spatial resolution, probe speed, and signal-to-noise ratio of X-probeTM and 
+point probe, as well as general technique limitations. There is also a possibility of +point probe 
overcalls.  

The results presented in Table 8-8 were obtained using manual cropping of defects and visual 
inspection of phase and amplitude trends. Testing with a completely automated procedure 
developed for implementation in the EPRI AutoAnalysis software was repeated for a subset of 
the U-bend data, downloaded from the EPRI AutoAnalysis web site and recommended as an 
array probe testing data set. The raw data used in the testing presented in Table 8-8 was 
calibrated in EddyViewTM, while the downloaded raw data was calibrated using a MATLAB 
calibration software provided by Michigan State University [35]. The detection threshold has 
been changed to accommodate differences in calibration. The results are presented in Table 8-9. 
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Table 8-9 
The Number of Indications for X-Probe Testing Data 

ANL Algorithms 

Axial Circumferential Data 

After 
Detection 

After 
Classification

After 
Detection

After 
Classification 

+Point Indications 

DHR005C062I008 2 2 42 21 35 

DHR005C068I016 1 1 2 0 5 

DHR006C023I017 0 0 5 1 5 

DHR006C053I015 0* 0 0* 0 1 

* To obtain indications in this tube, the threshold has to be very small, which significantly increases false alarms in other 
tubes. 

The difference in the detection and classification results could be attributed to differences in 
calibration, but is more likely due to the somewhat decreased performance of the automated ROI 
extraction and automated classification rules in comparison with visual inspection of detection 
results by a trained analyst, which was used in the original version of ANTARES. 

8.6 Full Tube Length Data 

Data for approximately 30 full length tubes from the Palo Verde steam generator was received. 
However, difficulties were encountered in the initial data analysis, due to the lack of information 
about the standards used with these data and defect types and positions. To start off the analysis, 
a tube with large indications, numbered 031110, was selected. Preliminary analysis in 
EddyViewTM has shown three indications of various sizes. These indications were also found in 
previous inspections with X-probeTM and +point probe. The segmentation threshold was adjusted 
to obtain 14 TSP segments, 14 free span segments, and U-bend, using the segmentation method 
explained in Chapter 2. The plot of the first principal component for this tube evaluated for the 
vertical component of the circumferential scan at 300 kHz is given in Figure 8-20. Slow trend 
observed in the first principal component is removed using the median filter with a large 
window. Negative peaks correspond to TSPs, while a large positive peak corresponds to a large 
indication in this tube. Two smaller negative peaks in the U-bend regions are also visible. 

Positions of the seven TSPs at both sides were correctly determined and the remaining region is 
assigned as the U-bend region. Figure 8-21 presents a typical TSP region. Figure 8-22 presents a 
U-bend region, while Figure 8-23 presents a free span region. Images are displayed in the 
standard ANTARES format: horizontal component followed by vertical components, and 
grouped according to increasing frequency. 

All images are displayed after initial background line subtraction. Noise in the free span and 
ovalization effects are removed using median filters. Localized signals in the TSP region may 
not be appropriate for this type of preprocessing.  
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Figure 8-20 
First Principal Component Used for Segmentation 

We have performed the initial detection analysis of this tube using a large uniform threshold, 
which resulted in indications in the U-bend region only. Detection results for the axial scan are 
given in Figure 8-24. Indications at the same positions are observed in the circumferential 
direction. 

The positions of indications are near “bat wings” and the central support, which correspond 
approximately to those found during previous inspections. Figure 8-25 gives amplitude and 
phase behavior of the largest indication. Two other sharp peaks have similar amplitude and phase 
patterns, which are presented in Figure 8-26. A characteristic of these indications is that the 
phase remains constant with frequency variation. On the other hand, the fourth indication, 
represented by smoother response, has a different amplitude and phase pattern, presented in 
Figure 8-27. It is likely that this indication is due to the false positive signal introduced during 
median filtering in the vicinity of a TSP. Compared to previously observed patterns for notches, 
all these patterns are rather unusual. This may be due either to response specific of large wear, or 
to phase distortions during filtering. More extensive testing is needed to show whether these 
patterns are consistent and whether they can be used for defect and TSP discrimination. 
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Figure 8-21 
TSP Region (Horizontal and Vertical Components Grouped by Frequencies) 
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Figure 8-22 
U-Bend Region (Horizontal and Vertical Components Grouped by Frequencies) 
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Figure 8-23 
Free Span Region (Horizontal and Vertical Components Grouped by Frequencies) 
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Figure 8-24 
Detection in U-bend Region, Tube 031110 

To further investigate amplitude and phase patterns due to incomplete TSP removal, another 
tube, numbered 086053, was analyzed. In the preliminary manual analysis in EddyViewTM by 
project personnel, no defect was found, since the data was very noisy. The position designation 
available in the results of previous inspections by independent sources was not clear either.  
The only fact that was clear was that only one axial indication was found in previous inspections. 
ANTARES, however, found three axial indications in the U-bend region, presented in  
Figure 8-28. Indications were also found in a region with high noise, but were eliminated during 
characterization. The amplitude and phase patterns for indication in the U-bend region, presented 
in Figure 8-29, are very similar to those in Figure 8-27. The general phase trend is similar to OD 
notches, but the negative phase at 100 kHZ and the very fast amplitude decrease can be used to 
discriminate incomplete TSP removal from axial OD notches. 

Although false alarms were eliminated successfully, the position of the reported single axial 
indication remained unresolved. 
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Figure 8-25 
Large Volumetric Wear Characterization 

 

Figure 8-26 
Amplitude and Phase Patterns for Smaller Wear 
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Figure 8-27 
Amplitude and Phase Patterns for Incomplete TSP Removal, Tube 031110 

 

Figure 8-28 
Detection in U-Bend Region, Tube 086053 
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Figure 8-29 
Amplitude and Phase Pattern for Incomplete TSP Removal, Tube 086053 
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9  
CHARACTERIZATION ALGORITHM TESTING 

The main function of the characterization algorithm in the original version of ANTARES is to 
determine the profile and the length of the defects found in the detection algorithm. However, 
this algorithm also serves for further false alarm elimination, as described in the previous section.  

9.1 Fractography Benchmark 

The performance of the characterization algorithm has been evaluated on a set of 8 laboratory 
grown defects, which were destructed and analyzed using fractography. The comparison of 
ANTARES estimates, fractography results, and RPC estimates is given in Table 9-1. 

Table 9-1 
Fractography Benchmark Results 

Sample Depth Sizing TW (%) Length (mm) 

Number Type ANTARES Fractography RPC ANTARES Fractography RPC 

1 LOD 90 100 90 21 22 22 

2 LOD 80 80 75 12 14 14 

3 COD 100 100 95 22 14 20 

4 LID 42 50 30 13 10 10 

5 LODSCC 75 70 60 8 14 12 

6 LOD 60 100 70 10 15 15 

7 LOD 80 100 87 10 18 8 

8 LOD 35 20 40 20 10 20 

Figures 9-1 and 9-2 give graphical comparison of characterization results. 

Table 9-1 and Figures 9-1 and 9-2 show that, on the average, the maximum depth is estimated 
with a reasonable accuracy. However, some extreme errors have been observed, mainly due  
to local artifacts. Similar problems have already been described in defect detection and 
classification. The results of the maximum depth estimation are in most cases similar to RPC 
results. 

Length estimation is less accurate. Length is usually underestimated, due to conservative 
thresholding in the detection and filtering steps. The exception to this rule is possible 
overestimation for small defects, where it is difficult to draw the boundary between the defect 
and background. 
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Figure 9-1 
Depth Estimation Evaluation 

 

Figure 9-2 
Length Estimation Evaluation 

The estimated depths are in good agreement with fractography results for the first 5 samples, 
with a maximum discrepancy of 10%. However, the estimates for the last three samples deviate 
significantly from measured values. Sample 6 is a through wall axial crack located on the edge of 
the tube support plate. It is very difficult to subtract background in this region using the masking 
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technique implemented in ANTARES, since the boundaries of the defect change significantly. 
As a consequence, a part of the signal is also subtracted, leading to a severe underestimation in 
both depth and length. The profile of this defect, presented in the following section in Figure 9-8, 
is very different from the actual defect. Sample 7 is a through wall defect in an artifact that 
produces significant positive vertical component. Again, direct subtraction of the artifact signal 
reduces the defect signal and also reduces estimated depth and length. On the contrary, both the 
depth and length of the small defect in sample 8 are overestimated. This is due to the difficulty  
in discriminating signal from noise for small defects. 

9.2 Profile Comparison 

Estimated profiles show good agreement only in few cases, but in majority of cases exhibit  
only qualitative agreement with fractography data. Detailed point-by-point profiling algorithms 
usually implemented for RPC probe signals do not seem appropriate for X-probeTM signals,  
since there is a large uncertainty in phase and amplitude variation. Therefore, the profiling 
implemented here is very approximate and is based on the rescaled amplitude. The objective is  
to provide an estimate of the equivalent crack depth to be used in the burst pressure estimation 
algorithm.  

Estimated profiles are compared to fractography data and presented in Figures 9-3 through 
Figure 9-10. The largest discrepancy is for the last three samples, mainly due to incorrect 
maximum depth estimation. The difference in the measured and estimated profile shape is  
large since the defect signal amplitude is not a good estimator of the depth. 

 

Figure 9-3 
Profile Estimation for Sample 1 
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Figure 9-4 
Profile Estimation for Sample 2 

 
Figure 9-5 
Profile Estimation for Sample 3 
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Figure 9-6 
Profile Estimation for Sample 4 

 
Figure 9-7 
Profile Estimation for Sample 5 

 

9-5 



 
 
Characterization Algorithm Testing 

 

Figure 9-8 
Profile Estimation for Sample 6 

 

Figure 9-9 
Profile Estimation for Sample 7 
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Figure 9-10 
Profile Estimation for Sample 8 

 

 

 

9-7 





 

10  
BURST PRESSURE ESTIMATION TESTING 

This chapter discusses the results of select verification and validation tests for the Burst Pressure 
Estimation module. The verification process is performed to provide assurance that the module 
individual units and functions as well as the interrelationship between different modules meet the 
design requirements. The validation process tests the functionality of the code as a whole and 
checks how the code results compare with physical reality. 

The first section describes the design and implementation of select verification tests. The second 
section discusses the validation test results performed for this project. 

Experimental data points in the Pl database (see Table 6-1) were used to test the Burst Pressure 
Estimation module in ANTARES. The first six entries in Table 6-1 correspond to lab-grown 
stress corrosion crack (SCC) profile Pl experiments performed at ANL [15, 25]. For these 
experiments, posttest fractography crack profiles were available. As mentioned previously,  
the fractography profiles were converted into equivalent rectangular crack profiles by the 
methodology described in Section 5.1. Then, the experimental Pl along with the equivalent 
rectangular crack dimensions and SGT properties were entered into the corresponding fields  
as experimental data points in the Pl database. 

Similarly, the last entry in Table 6-1 corresponds to an electro-discharge machining (EDM) 
notch profile Pl experiment also performed at ANL [34]. This experimental data point was also 
included in the Pl database and used in the V&V process for the Burst Pressure Estimation 
module. 

Note also that the material properties and environmental conditions for the SGT used in these 
experiments corresponds to the most conservative case discussed previously, for which the SVM 
algorithm was trained using the data generated by the analytical model described in Section 5.2. 

10.1 Module Verification 

During module verification, it was determined whether the Burst Pressure Estimation module 
was correctly implemented in ANTARES and produced expected results. Selected results are 
presented here with the focus on comparison of SVM estimates with analytical model estimates. 

An independent driver that loads the crack profiles and reports the analytical Pl and Pb 
estimations was developed in MATLAB. In addition, independent SVM calculations were 
performed using as input the corresponding equivalent rectangular crack dimensions and the 
optimum parameters and coefficient files produced in the SVM training phases. The results of 
the independent driver and SVM computations are summarized in the last four columns in Table 
10-1. The corresponding Burst Pressure Estimation module results for the same inputs are shown 
in columns 2 through 5 in Table 10-1. 
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The first seven entries in Table 10-1 correspond to the SCC experimental data points shown in 
Table 6-1. For the first six data points, posttest fractography crack profiles were available and 
were used to compute the corresponding equivalent rectangular crack dimensions. These 
fracrography profiles were input to both the Burst Pressure Estimation module and the 
independent driver. As shown above, the independent SVM computation were performed by 
using the equivalent rectangular crack dimensions as one of the inputs. 

Table 10-1 
Test Results 

ANTARES Results Independent Calculations 

Pl, MPa Pb, MPa Pl, MPa Pb, MPa SGT ID 

Anal SVM Anal SVM Anal SVM Anal SVM 

413* 24.3 26.2 36.9 36.9 24.3 26.2 36.9 36.9 

480* 8.9 18.3 33.4 33.3 8.9 18.3 33.4 33.3 

494* 35.9 36.5 22.9 22.9 35.9 36.5 22.9 22.9 

493* 15.9 18.8 31.0 30.9 15.9 18.8 31.0 30.9 

412* 27.6 26.9 31.6 31.6 27.6 26.9 31.6 31.6 

732* 14.5 14.5 21.8 21.9 14.5 14.5 21.8 21.9 

T3EA80X15** 13.6 13.3 10.1 10.0 13.6 13.3 10.1 10.0 

aaa*** 27.5 26.8 24.4 24.4 27.5 26.8 24.4 24.4 

bbb*** 33.8 33.1 33.4 33.4 33.8 33.1 33.4 33.4 

Legend: 
* For the analytical calculations, the input for the Burst Pressure Estimation module and independent driver  

was the posttest fractography crack profile. For SVM calculations, one of the inputs was the corresponding 
equivalent rectangular crack dimensions calculated from the fractography profile. 

** The input for all calculations was the EDM notch profile. 

*** For the analytical calculations, the input for the Burst Pressure Estimation module and independent driver was a 
crack profile estimated by the flaw characterization module of ANTARES. For SVM calculations, one of the inputs 
was the corresponding equivalent rectangular crack dimensions. 

For the seventh entry in Table 10-1, the input for all equivalent calculation discussed above was 
the EDM notch crack dimensions. 

Finally, the last two entries in Table 10-1 are the tests performed to check the ANTARES code 
functionality as a whole. Two SGT with defects were chosen for this test. ANTARES analyzed 
these two SGT and the Burst Pressure Estimation module results were recorded. In addition, the 
crack profiles estimated during the ANTARES runs were extracted (aaa and bbb). As before, 
these profiles were input to the independent driver and the corresponding equivalent rectangular 
crack dimensions represented one of the inputs for the equivalent SVM computations. 
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As expected, the analytical calculations produced by the ANTARES Burst Pressure Estimation 
module and those produced by the independent driver were identical since the same input was 
used (see columns 2 and 6 and columns 4 and 8 in Table 10-1). The equivalent SVM 
computation produced identical results (see columns 3 and 7 and columns 5 and 9 in Table 10-1).  

By further analyzing the results shown in Table 10-1 it is seen that the equivalent case results for 
the SVM and analytical results are generally similar (see columns 2 and 3; 4 and 5; 6 and 7; and 
8 and 9 respectively in Table 10-1). This result is expected since the SVM models were trained 
with data generated by the analytical model. 

However, there are 2 cases (see entries for SGL-480 and 493, i.e. entries 2 and 4 in Table 10-1) 
for which the SVM Pl estimations differ significantly from similar analytical results. This is 
explained by the fact that the SVM training range was limited to values in between 10 and 90 % 
TW for equivalent rectangular depth and up to 1.5 inch for the equivalent rectangular length. For 
these two cases, the equivalent rectangular depth was calculated to be 99 and 93 % TW, 
respectively. The equivalent rectangular depth value for SGL-480 is significantly outside the 
SVM training range. The extrapolation introduced by the SVM algorithm performed reasonably 
for SGL-493. Nevertheless, if the rules discussed in Table 7-1 were to be enforced (see Section 
10.2), the SVM estimation results would have never been reported (see Case 5 in Table 7-1). 

Currently, a fair comparison between the SVM and analytical results can be made by analyzing 
the results produced by the data points in the SVM training data set. Thus, the analytical Pl 
estimates were plotted against the corresponding SVM estimates in Figure 10-1. Similarly, the 
analytical Pb estimates were plotted against the corresponding SVM estimates in Figure 10-2. 
The solid line in these figures represents the “perfect” estimates. 

 

Figure 10-1 
SVM vs. Analytical Estimation for SVM Training Data in the Pl Database 
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It can be seen from Figures 10-1 and 10-2 that an appropriately trained SVM performed very 
well for the SVM training data sets included in the Pl and Pb databases. Thus it can be concluded 
that the SVM algorithm is appropriate for this application. Similar performance is expected if 
sufficient experimental data points are found to properly train an experimentally-based SVM 
model. 

 

Figure 10-2 
SVM vs. Analytical Estimation for SVM Training Data in the Pb Database 

10.2 Module Validation 

This section discusses the performance of the Burst Pressure Estimation algorithm in  
ANTARES when compared with experimental results. The validation was performed only for 
the experimental cases summarized in Table 6-1 and discussed at the beginning of this section. 
As shown previously, these experimental data points represent the case that theoretically would 
produce the most conservative Pl and Pb estimations due to the SGT material properties. This 
conservative case was used in the analytical data generation for the SVM training. 

The validation results are summarized in Table 10-2. Column 4 in Table 10-2 shows the 
experimental Pl reported in references [15, 25 and 34]. No data relevant to the most conservative 
case was found in these references for Pb experiments (see column 7 in Table 10-2). Columns 5 
and 6 and 8 and 9 in Table 10-2 present the ANTARES estimations for Pl and Pb respectively. 
Finally, columns 2 and 3 in Table 10-2 show the computed or real equivalent rectangular crack 
lengths and depths, respectively. 
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Table 10-2 
Comparison between Burst Pressure Estimation Module and Experimental Results 

Pl, MPa Pb, MPa 
SGT ID Le, in De, in 

Exp Anal SVM Exp. Anal. SVM 

SGL-413 0.25* 0.045* 12.4 24.3 26.2 N/A 36.9 36.9 

SGL-480 0.30* 0.049* 6.2 ** ** N/A 33.4 ** 

SGL-494 0.55* 0.024* 32 35.9 36.5 N/A N/A*** N/A*** 

SGL-493 0.34* 0.046* 11.5 ** ** N/A 31.0 ** 

SGL 412 or 535 0.33* 0.039* 10.3 27.6 26.9 N/A 31.6 31.6 

SGL 732 or 855 0.58* 0.043* 13.8 14.5 14.5 N/A 21.8 21.9 

T3EA80X1.5 1.5 0.04 13.8 13.6 13.3 N/A N/A*** N/A*** 

Legend: 

N/A Not Applicable. 

* The equivalent rectangular crack dimensions were computed from posttest fractography crack profile. 

** Corresponding to Case 5 reporting rule in Table 7-1. The SGT ligament is conservatively declared ruptured by ANTARES. 

*** Supplementary reporting rule (see Section 7) applies. 

Note: the SGT characteristics material properties and temperature were considered constant in both models (see Table 6-1) 
 and therefore the SVM model was based only on crack or equivalent rectangular crack dimensions. 

It can be seen in Table 10-2 that ANTARES performed well in estimating Pl for three cases: 
SGL-494, SGL-732 and the EDM notch T3EA80X1.5. In two cases (SGL-480 and SGL-493), 
ANTARES conservatively reports that the SGT ligament has ruptured. Since the experimental 
pressure for which this actually happens is relatively small, this is not a bad approximation. 
However, for currently unknown reasons, ANTARES significantly overestimates Pl for SGL-412 
and 413. 

By further analyzing the results in Table 10-2, it can be seen that usually the analytical model 
overestimates (sometimes significantly) the experimental data for Pl. Since the SVM model is 
trained on analytically-generated data, the SVM estimation performs similarly. However, the 
SVM results have the potential to become closer to the experimental results if the training is 
performed on experimental data. Further research should be performed in order to populate the 
corresponding database with new experimental points. Thus, the Pl and Pb estimation will 
become more reliable and robust since it will be based on two different methodologies, an 
experiment-based method and an analytical method. 
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11  
CONCLUSIONS AND FUTURE WORK 

This document describes the flaw detection and characterization algorithms implemented  
in the original version of the Automated Non-Destructive Testing Array Evaluation System 
(ANTARES), as well as modification for implementation in the EPRI AutoAnalysis software. 
Also included is a description of the machine learning algorithm for the follow-on tube burst 
pressure estimation. The implementation and performance testing of the original version is based 
on the currently available X-probeTM data collected at the U.S. NRC mock-up at Argonne. 
Testing on additional data provided by EPRI, such as ETSS data, U-bend data and some full 
length tube data is also presented for the modifications. Finally, testing of the machine learning 
algorithm for the follow-on tube burst pressure estimation is included.  

Detection performance of the original algorithm has been tested on two data sets and the results 
are evaluated separately. Test 1 includes 25 mock-up tubes with axial OD SCCs in the TSP 
region. Only two defects were missed, with 5 false calls. The average performance is good, with 
the missed alarm rate of 5% and the false alarm rate of 2.7%. The probability of detection curve 
based on this data set shows that defects larger than 40% TW could be detected with probability 
of near 60% or larger at the 90% lower confidence limit (LCL). Exception to this rule is a missed 
70% TW crack in a dent. Probability of detection for cracks less than 40% TW is larger than 
50% at the 90% LCL. Test 2 includes 25 mock-up tubes with various SCCs. For this data set,  
7 defects were missed, with 4 false calls. Therefore, the false alarm rate is only 2%, but the 
missed alarm rate is 17.5%. This result indicates that the characterization rules are not properly 
optimized to balance false and missed alarm rates. Although the missed alarm rate is large, most 
missed defects are shallow, which is evident from the shape of the estimated POD curve. The 
POD curve indicates that the cracks larger than 30% TW can be detected with the probability 
larger than 60% at the 90% LCL. Moreover, the probability of detection for cracks larger than 
80% TW is 85% at the 90% LCL. The probability of detection for cracks less than 30% appears 
to be small. Poor detection is also observed for defects in dents and at roll transitions. Some 
improvement could be accomplished using better characterization rules or filtering. However,  
in some cases the probe signal is too small to be detected by an automatic algorithm with a 
reasonable false alarm rate. 

The performance of the characterization algorithm in the original ANTARES version has been 
evaluated on a set of 8 defects, which were examined using fractography. The estimated depths 
are in good agreement with fractography results for five samples, with the maximum discrepancy 
of 10%. However, the estimates for three samples deviate significantly from measured values. 
Two samples were large defects in artifacts. Artifact signal removal also removed a significant 
part of the signal, resulting in a substantial depth underestimation. The third sample was a very 
small defect. The depth was overestimated, since a part of the noise was not removed, due to a 
low signal to noise ratio. In all cases, the difference between the ANTARES estimates and a 
characterization algorithm based on RPC signals is 10% or less.  
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Length estimation is less accurate. Length is usually underestimated, due to conservative 
thresholding in the detection and filtering steps. An exception to this rule is possible 
overestimation for small defects, where it is difficult to draw the boundary between the  
defect and background.  

Estimated profiles show good agreement only in a few cases, but in majority of cases exhibit 
only qualitative agreement with fractography data. Detailed point-by-point profiling algorithms 
usually implemented with RPC probe signals do not seem appropriate for X-probeTM signals, 
since there is a large uncertainty in phase and amplitude variation. Therefore, the profiling 
implemented here is very approximate and is based on the rescaled amplitude. The objective is  
to provide an estimate of the equivalent crack depth to be used in the burst pressure estimation 
algorithm.  

Comparison of burst pressure estimation results with limited experimental data indicates that 
ANTARES performed well in estimating Pl for three cases, while in two cases ANTARES 
conservatively reports that the SGT ligament has ruptured. Since the experimental pressure  
for which this actually happens is relatively small, this is not a poor approximation. However,  
for currently unknown reasons, ANTARES significantly overestimates Pl for two tubes.  

Furthermore, the analytical model overestimates (sometimes significantly) the experimental  
data for Pl. Since the SVM model is trained on analytically-generated data, the SVM estimation 
performs similarly. However, the SVM results have the potential to draw closer to the 
experimental results if the training is performed on experimental data. Further research should  
be performed in order to populate the corresponding database with new experimental points.  
The Pl and Pb estimation will become more reliable and robust since it will then be based on two 
different methodologies, an experiment-based method and an analytical method. 

To address challenges posed by automatic analysis of array probe field data, several 
modifications in ANTARES have been implemented. A new set of calibration functions has  
been evaluated for the probe frequencies of 100 kHz, 200 kHz, 300kHz, and 400kHz. Filtering 
algorithms have been introduced to reduce ovalization effects in the U-bend region. A semi-
automatic segmentation algorithm has been developed, based on principal component analysis 
and filtering. Region-specific detection has been implemented.  

The modified algorithm was tested on ETSS data. The modified algorithm missed one of fifteen 
defects provided for testing. Difficulties in discrimination between ID and OD defects have been 
observed and the classification algorithm has been modified to report two defect classes only: 
“indication” and “ non-detectable degradation”. The maximum depth of large defects was 
estimated with good accuracy.  

Preliminary testing in the U-bend region indicated that it is feasible to find filtering and detection 
parameters to control detection sensitivity and false alarm rate. Examples of initial full length 
data analysis indicated that it is possible to find large degradations, even with incomplete TSP 
removal. Detection of small defects will probably require better algorithms for TSP removal.  

Detailed and reliable information about degradations would enable better training of the 
detection and classification algorithms with the goal to make the software applicable for field 
inspection. 
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Recent software development efforts resulted in improved automation in the detection procedure 
through automated region of detection extracts and automated implementation of classification 
rules. 

Future development effort may include: 

• improved algorithms for defect detection in the TSP regions and U-bends; 

• improved artifact removal; 

• further evaluation, improvement, and automation of characterization rules,  
as well as development of new classification and characterization algorithms. 
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A  
MODIFIED SOFTWARE DESCRIPTION 

The original ANTARES code has been modified significantly to satisfy software design 
requirements specified by the EPRI AutoAnalysis development team. Main modifications consist 
of the following: 

• all MATLAB scripts have been converted to functions; 

• all global variable have been removed; 

• all GUI functions have been removed; 

• algorithms are accessed through standardized interfaces; 

• input and output format has been adapted for the standard AutoAnalysis format; 

• parameter setup is performed through external functions. 

The ANTARES detection and classification/characterization modules have been modified 
according to the specified requirements. Modified interfaces are described below.  

A.1 Detection Interface 

In addition to coding changes needed to satisfy general requirements, a prefiltering function has 
been added to the detection algorithm. A new function for automated region of interest extraction 
has also been developed. The new functions are prefiltImage and getROIC, presented in the 
flow diagram in Figure A-1. The detection algorithm is encapsulated in the interface 
DoDetection. The functions setPrefiltParameters, setDetectionParameters, and 
setDetectionThresholds have been 1developed for external definition of prefiltering and 
detection parameters. Detailed documentation for the functions comprising the detection 
interface is given below. 
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Figure A-1 
Detection Interface Flow Diagram 
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A.1.1 Detection Interface Documentation 

Module Detection 

Interface eiDetection 

nhood =setPrefiltParameters (nhood_val) 

Description: This function assigns a sliding window neighborhood size for 2-D median filter.  

Inputs: nhood_val – Integer vector with two elements to specify the filtering window 
along rows and columns, respectively. If set to -999 then internal value is used. 

Outputs: nhood – Assigned neighborhood.  

IMA0 = prefiltImage (IMA0, num_freq, nhood) 

Description: This function performs median filter subtraction for the multidimensional image 
structure specified below.  

Inputs: IMA0 – MATLAB 4-dimensional intensity image of the size (nrows, ncols, 
1,2*num_freq) to be filtered. Tube images are concatenated in the following 
order: horizontal-AF1, vertical-AF1, horizontal-AF2…  

num_freq – Integer. Number of frequencies. 

nhood – Integer vector with two elements of the specified filtering window along 
rows and columns, respectively.  

Outputs: IMA0 – Filtered image in the same format as input image.  

[rangeBack, rangeSenDet, erosionSize, dilationSize, minsum]= 
setDetectionParameters (rangeBack_val, rangeSD_val, erosionSize_val 
dilationSize_val, minsum_val) 

Description: This function assigns detection parameters.  

Inputs: rangeBack_val – MATLAB cell array with two cells, one for each scan direction. 
Each cell is an integer vector [nrowb ncolb] for the sliding window used in the 
background estimation. If a cell in the cell array is set to -999 then internal values 
are used for the corresponding scan direction. 

rangeSD_val – MATLAB cell array with two cells, one for each scan direction. 
Each cell is an integer vector [nrowsd ncolsd] for the sliding window used in the 
sensitive detection algorithm. If a cell in the cell array is set to -999 then internal 
values for the corresponding direction are used. 
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erosionSize_val – MATLAB cell array with two cells, one for each scan direction. 
Each element is an integer vector [nrowe ncole] for the erosion size window. 
‘Rectangle’ structural element is assumed. If a cell in the cell array is set to -999 
then internal values for the corresponding direction are used. 

dilationSize_val – MATLAB cell array with two cells, one for each scan 
direction. Each cell is an integer for the dilation size. ‘Diamond’ structural 
element type is assumed. If a cell in the cell array is set to -999 then internal 
values for the corresponding direction are used. 

minsum_val – Integer. The minimum number of pixels per segment to declare 
potential defects. If set to -999 then internal value is used.  

Note: The default filtering range and morphology parameters defined internally 
are dependent on the number of axial channels (NAC). NAC =32 is 
assumed. 

Outputs:  rangeBack – Assigned background filtering widow.  

rangeSenDet – Assigned filtering window for sensitive detection. 

erosionSize – Assigned erosion size. 

dilationSize – Assigned dilation size.  

minsum – Assigned minimum number of pixel for defective segments. 

FinThresh = setDetectionThresholds (FinThresh_val) 

Description: This function assigns final detection thresholds to remove segments with small 
peaks. Final thresholds are dependent on the plant type, the segment type, and  
the scan direction.  

Inputs: FinThresh_val – Real matrix of dimensions 5-by-2, for 5 segment types defined  
in the program and 2 scan directions. The first column is for the axial scans, the 
second column is for the circumferential scan. Segment types are: 

1- free span; 2 –tube sheet, 3- TSP (full circumference); 
4-TSP (“egg crate”); 5 –U-bend. 

If any element of the matrix is set to -999 then internal value is used. 

Outputs: FinThresh – Assigned threshold values.  
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[DAF1, DAF2, DAF3, DAF4, DCF1, DCF2, DCF3, DCF4, defsegA, defsegC, ROICTAx, 
NDAx, NtotAx, ROICTCir, NDCir, NtotCir, status, ercode, errmess ]= 
DoDetection(AF1,AF2,AF3,AF4,CF1,CF2,CF3,CF4, cropStart, cropEnd, 
NSEG,segBounds, segType, preFiltOpt, preFiltNhood, status, num_freq, FinThresh, 
rangeBack, rangeSenDet, erosionSize, dilationSize, minsum) 

Description: This function takes as input 8 matrices with calibrated or filtered axial and 
circumferential scan data in the standard format and transforms them into the 
specific format used in the ANL detection algorithm. It then call the detection 
algorithm and upon successful completion transform the processed data back  
to the standard format.  

Inputs: AF1, AF2, ...CF3, CF4 – Data matrices in the standard input standard format for 
raw or filtered data. Each matrix is a floating point matrix having (2 * N) columns 
corresponding to horizontal and vertical values of all the channels in a particular 
frequency, while rows equal to number of data points in a channel. 

cropStart – Integer. Stating point for the cropped region in the original tube 
coordinates. 

cropEnd – Integer. Ending point for the cropped region in the original tube 
coordinates. 

NSEG – Integer. Number of segments.  

segBounds – Integer vector of segment boundary positions (NSEG +1) in the 
cropped tube coordinates systems (starts with 1).  

segType – Integer vector of size NSEG. – segment type for each segment 

1 – free span; 2 – tube sheet; 3 – TSP (full circumference); 
4 – TSP (“egg crate” ); 5 – U-bend. 

preFiltOpt – Integer. Prefiltering option. preFiltOpt =1 performs prefiltering 
inside the detection algorithm, preFiltOpt =0 no prefiltering. 

preFiltNhood – Integer vector [ n1 n2 ]. Prefiltering neighborhood. 

status – Integer. Program status on input. Status =0 – data in the initial format 
imported. 

num_freq – Integer. Number of frequencies. Assumed num_freq =4. 

FinThresh – Matrix of dimensions (5x2), for 5 possible segment types and 2 scan 
directions. The first column is for the axial scans, the second column is for the 
circumferential scan. Segment types are: 
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1- free span; 2- tube sheet, 3- TSP (full circumference); 
4- TSP (“egg crate”); 5- U-bend. 

rangeBack – MATLAB cell array with two elements, one for each scan direction. 
Each element is an integer vector [nrowb ncolb] for the sliding window used in 
the background estimation.  

rangeSenDet – MATLAB cell array with two elements, one for each scan 
direction. Each element is an integer vector [nrowsd ncolsd] for the sliding 
window used in the sensitive detection algorithm.  

erosionSize – MATLAB cell array with two elements, one for each scan direction. 
Each element is an integer vector [nrowe ncole] for the erosion size window. 
‘Rectangle’ structural element is assumed.  

dilationSize – MATLAB cell array with two elements, one for each scan 
direction. Each element is an integer for the dilation size. ‘Diamond’ structural 
element type is assumed.  

minsum – Integer. The minimum number of pixels per segment to declare 
potential defects.  

Outputs: Processed data DFA1, DFA2, DFA3, ... DCF3, DCF4, which include only 
possible defects. The format is the same as input. 

defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. 

ROICTAx – Cell array of size NSEG (number of segments) with region of 
interest coordinates for each segment. Each cell iseg contains the matrix of the 
region of interest coordinates of the size NDAx(iseg)-by-4, where NDAx(iseg) is 
the number of axial defects in the segment iseg. Region coordinates correspond to 
the image coordinate system as used in imcrop MATLAB function: column-min, 
row-min, width, length. All coordinates are transformed to the full length data 
coordinate system. Regions that cross the boundary are accounted for at the right 
boundary to prevent negative indices and should be wrapped around boundary, if 
needed. 

NtotAx – Integer. Total number of axial defects. 

ROICTCir- Cell array of size NSEG (number of segments) with region of interest 
coordinates for each segment. Each cell iseg contains the matrix of the region of 
interest coordinates of the size NDCir(iseg)-by-4, where NDCir(iseg) is the 
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number of circumferential defects in the segment iseg. Region coordinates 
correspond to the image coordinate system as used in imcrop MATLAB function: 
column-min, row-min, width, length. All coordinates are transformed to the full 
length data coordinate system. Regions that cross the boundary are accounted for 
at the right boundary to prevent negative indices and should be wrapped around 
boundary, if needed. 

NDCir – Integer vector of size NSEG with number of circumferential defects for 
each segment. 

NtotCir – Integer. Total number of potential circumferential defects. 

status – Integer. Program status. 1- internal image structure initialized; 2 – 
segmentation completed; 3 – detection completed  

ercode – Integer. Error code. 1- successful completion; 2- incorrect input 
parameters; 3- errors in tube segmentation; 4 –error in detection 

errmess – Cell array. Each cell is a string with an error message. 

[filt_img, defsegA, defsegC, ROICTAx, NDAx, NtotAx, ROICTCir, NDCir, 
NtotCir,ercode] = Detect (segType, NSEG, seg_imgA, seg_imgC, num_freq, 
FinThresh, rangeBack, rangeSD, erosionSize, dilationSize, minsum)) 

Description: This function is the main driver for the detection algorithm. It calls the detection 
routines and upon successfully completed detection calls a function, which 
determines the coordinates of the potential defect regions.  

Inputs: segType – Integer vector of size NSEG. Assigns a segment type to each segment. 
Segment types are: 1 – free span; 2 – tube sheet; 3 – TSP (full circumference); 4 – 
TSP (“egg crate” ); 5 – U-bend. 

NSEG – Integer. Number of segments. 

seg_imgA – MATLAB cell array with NSEG cells with segmented axial scan 
images. Each cell is a MATLAB 4-dimensional intensity image of the size 
(nrows, ncols,1,2*num_freq). 

seg_imgC – MATLAB cell array with NSEG cells with segmented 
circumferential scan images. Each cell is a MATLAB 4-dimensional intensity 
image of the size (nrows, ncols,1,2*num_freq). 

num_freq – Integer. Number of frequencies. 

FinThresh – Matrix of dimensions 5-by-2, for 5 possible segment types and 2 scan 
directions. The first column is for the axial scans, the second column is for the 
circumferential scan. Segment types are: 
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1- free span; 2- tube sheet, 3- TSP (full circumference); 
4- TSP (“egg crate”); 5- U-bend. 

rangeBack – MATLAB cell array with two elements, one for each scan direction. 
Each element is an integer vector [nrowb ncolb] for the sliding window used in 
the background estimation.  

rangeSD – MATLAB cell array with two elements, one for each scan direction. 
Each element is an integer vector [nrowsd ncolsd] for the sliding window used in 
the sensitive detection algorithm.  

erosionSize – MATLAB cell array with two elements, one for each scan direction. 
Each element is an integer vector [nrowe ncole] for the erosion size window. 
‘Rectangle’ structural element is assumed.  

dilationSize – MATLAB cell array with two elements, one for each scan 
direction. Each element is an integer for the dilation size. ‘Diamond’ structural 
element type is assumed.  

minsum – Integer. The minimum number of pixels per segment to declare 
potential defects.  

Outputs: filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEG-by-2 cells. First column holds processed 4-D images for axial scans, 
second column holds 4-D processed images for circumferential scans. Each cell is 
a MATLAB 4-dimensional intensity image of the size (nrows, 
ncols,1,2*num_freq). 

defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. 

OICTAx – Cell array of size NSEG (number of segments) with region of interest 
coordinates for each segment. Each cell iseg contains the matrix of the region of 
interest coordinates of the size NDAx(iseg)-by-4, where NDAx(iseg) is the 
number of axial defects in the segment iseg. Region coordinates correspond to the 
image coordinate system as used in imcrop MATLAB function: col-min, row-
min, width, length. All coordinates are in the local segment coordinate system. 
Regions that cross the boundary are accounted for at the right boundary to prevent 
negative indices and should be wrapped around boundary, if needed. 

NDAx – Integer vector of size NSEG with number of axial defects for each 
segment. 
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NtotAx – Integer. Total number of axial defects. 

ROICTCir- Cell array of size NSEG (number of segments) with region of interest 
coordinates for each segment. Each cell iseg contains the matrix of the region of 
interest coordinates of the size NDCir(iseg)-by-4, where NDCir(iseg) is the 
number of circumferential defects in the segment iseg. Region coordinates 
correspond to the image coordinate system as used in imcrop MATLAB function: 
col-min, row-min, width, length. All coordinates are in the local segment 
coordinate system. Regions that cross the boundary are accounted for at the right 
boundary to prevent negative indices and should be wrapped around boundary, if 
needed. 

NDCir – Integer vector of size NSEG with number of circumferential defects for 
each segment. 

NtotCir – Integer. Total number of potential circ defects. 

ercode – Integer. Error code. 1- successful completion. 

[ROICTAx, NDAx, NtotAx, ROICTCir, NDCir, NtotCir,filt_img ] = 
getROIC (filt_img,defsegA,defsegC,ImgThresh,segType) 

Description: This function determines the coordinates of the potential defect regions and 
produces the final processed images by removing morphologically small potential 
defects.  

Inputs: filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEG-by-2 cells. First column holds processed 4-D images for axial scans, 
second component holds 4-D processed images for circumferential scans. Each 
cell is a MATLAB 4-dimensional intensity image of the size (nrows, 
ncols,1,2*num_freq). 

defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. 

ImgThresh – Threshold for MATLAB img2bw function (intensity image to binary 
image conversion). In the current implementation, ImgThresh = FinThresh on 
input, but is internally reduced to min(0.01,0.1*FinThresh).  

segType – Integer vector of size NSEG. – segment type for each segment 

1 – free span; 2 – tube sheet; 3 – TSP (full circumference); 
4 – TSP (“egg crate” ); 5 – U-bend. 
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Outputs: ROICTAx – Cell array of size NSEG (number of segments) with region of 
interest coordinates for each segment. Each cell iseg contains the matrix of the 
region of interest coordinates of the size NDAx(iseg)-by-4, where NDAx(iseg) is 
the number of axial defects in the segment iseg. Region coordinates correspond to 
the image coordinate system as used in imcrop MATLAB function: column-min, 
row-min, width, length. All coordinates are in the local segment coordinate 
system. Regions that cross the boundary are accounted for at the right boundary to 
prevent negative indices. Should be wrapped around boundary, if needed. 

NDAx – Integer vector of size NSEG with number of axial defects for each 
segment. 

NtotAx – Integer. Total number of axial defects. 

ROICTCir- Cell array of size NSEG (number of segments) with region of interest 
coordinates for each segment. Each cell iseg contains the matrix of the region of 
interest coordinates of the size NDCir(iseg)-by-4, where NDCir(iseg) is the 
number of circumferential defects in the segment iseg. Region coordinates 
correspond to the image coordinate system as used in imcrop MATLAB function: 
column-min, row-min, width, length. All coordinates are in the local segment 
coordinate system. Regions that cross the boundary are accounted for at the right 
boundary to prevent negative indices. Should be wrapped around boundary, if 
needed. 

NDCir – Integer vector of size NSEG with number of circumferential defects for 
each segment. 

NtotCir – Integer. Total number of potential circ defects. 

filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEG-by-2 cells. First column holds processed 4-D images for axial scans, 
second component holds 4-D processed images for circumferential scans. Each 
cell is a MATLAB 4-dimensional intensity image of the size (nrows, 
ncols,1,2*num_freq). Updated processed image. 

[filt_img, defsegA, defsegC ] = AnalyzeMultSeg (im1, STYPE, NSEG, filt_img, 
defsegA, defsegC, segType, FinThresh, rangeBack, rangeSD, erosionSize, 
dilationSize, minsum) 

Description: This function performs potential defect detection for a segmented image. The 
function is called separately for axial and circumferential scan directions. 
Processed image structure is updated after each function call. 

Inputs: im1 – MATLAB cell array with NSEG cells. Each cell contains a 4-D image for 
the corresponding segment. Placeholder for axial and circumferential scan data 
evaluated in two calls of this function.  
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STYPE – Character. Scan type (‘A’ or ‘C’) 

NSEG – Integer. Number of segments.  

filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEGx2 cells. First column holds processed 4-D images for axial scans, 
second column holds 4-D processed images for circumferential scans. Previous 
values. 

defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. Previous values. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. Previous values. 

segType – Integer vector of size NSEG. – segment type for each segment 

1 – free span; 2 – tube sheet; 3 – TSP (full circumference); 
4 – TSP (“egg crate”); 5 – U-bend. 

FinThresh – Matrix of dimensions 5-by-2, for 5 possible segment types and 2 scan 
directions.  

rangeBack – MATLAB cell array with two cells, one for each scan direction. 
Each cell is an integer vector [nrowb ncolb] for the sliding window used in the 
background estimation.  

rangeSD – MATLAB cell array with two cells, one for each scan direction. Each 
cell is an integer vector [nrowsd ncolsd] for the sliding window used in the 
sensitive detection algorithm.  

erosionSize – MATLAB cell array with two cells, one for each scan direction. 
Each cells is an integer vector [nrowe ncole] for the erosion size window. 
‘Rectangle’ structural element is assumed.  

dilationSize – MATLAB cell array with two cells, one for each scan direction. 
Each cell is an integer for the dilation size. ‘Diamond’ structural element type is 
assumed.  

minsum – Integer. The minimum number of pixels per segment to declare 
potential defects.  

Outputs: filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEGx2 cells. First column holds processed 4-D images for axial scans, 
second column holds 4-D processed images for circumferential scans. Updated 
value. 
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defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. Updated value. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. Updated value. 

[BINDI, POS] = SPRTbackgr3 (IMA, f0, alpha0, beta0, range) 

Description: This function performs initial background assessment. 200 kHz vertical 
component is used for testing.  

Inputs: IMA – MATLAB 4-D image of the size (nrow,ncols,1,2*num_freq) 

alpha0 – Specified false alarm probability.  

beta0 – Specified missed alarm probability. 

f0 – Alternative hypothesis parameter (factor or SDM in SPRT) 

range – Integer vector with 2 components. Rectangular filtering neighborhood.  

Outputs: BINDI – MATLAB cell array with nr cells, where nr is the number of image 
rows. Each cell contains a list of background pixels for the corresponding row. 

POS – Array with nr elements. Each element gives the number of background 
pixels for the corresponding row. 

[defseg, TOTAL] = SPRT_XP2 (IMA0, fback, alpha0, beta0, rangeback, f0, MAG, 
IW, range, strela, minsum, defseg, imseg,TOTAL) 

Description: This function performs defect detection in the specified image segment imseg. 
Uses 2 step SPRT algorithm for coarse and sensitive detection.  

Inputs:  IMA0 – MATLAB 4-D image, defined for each segment and scan type in the 
calling function. 

fback – SPRT SDM factor for initial background estimation . 

alpha0 – SPRT setup for false alarm probability. 

beta0 – SPRT setup for missed alarm probability. 

rangeback – Integer vector with 2 components for background filtering range. 

f0 – SDM factor for fine detection. 
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MAG – Magnification factor for coarse detection.  

IW – Integer for filter type indicator, IW=1 – Wiener filter, IW =2, median filter.  

range – Integer vector for sensitive SPRT filtering range. 

strela – MATLAB structure for erosion structural element.  

minsum – Minimum number of nonzero pixels per segment to declare a defect.  

defseg – Integer vector of segments with defects. Previous value.  

imseg – Current segment index. 

TOTAL – Cell array with alarm maps for segments with defects, previous value. 
Note that each alarm map is of the size ncolumns-by-nrows, due to transpositions 
in SPRT function. Alarms are actually Boolean complement, for display purposes. 
0 represents a defect pixel. 

Outputs: defseg – Updated vector of indices of segments with defects. 

TOTAL – Cell array with alarm maps for segments with defects, update. Boolean 
complement, for display purposes. 0 is a defect pixel. 

ALA = SPRT_rank (residuals, backgr, alpha0, beta0, f0, indi, ALA) 

Description: This function defines SPRT test parameters for background estimation.  

Inputs: residuals – Matrix ncols-by nrows. Note image transposition to adjust for the 
format of SPRT function calls. 

backgr – Matrix ncols-by nrows. Transposed background image. 

alpha0 – SPRT setup for false alarm probability. 

beta0 – SPRT setup for missed alarm probability. 

f0 – SDM factor for background detection. 

indi – Indices of tested components in the multidimensional image. For this 
function, indi = 4 is defined in the calling function for background estimation 

ALA – MATLAB uint8 image of size ncols-by-nrows for SPRT alarms. Previous 
alarm map. 

Outputs: ALA – MATLAB uint8 image of size ncols-by-nrows for SPRT alarms. Updated 
alarm map. 
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ALA = SPRT_selectm (residuals, BINDI, alpha0, beta0, f0, ALA, indi) 

Description:  This is a function for sensitive SPRT test with variance smoothing for image 
residual data.  

Inputs: residuals – Transposed image of the size ncols-by-nrows, adjusted for SPRT 
function calls. 

BINDI – Cell array with nrows cells, where nrows is the number of image rows. 
Each cell contains a list of background pixels for the corresponding row. 

alpha0 – SPRT setup for false alarm probability. 

beta0 – SPRT setup for missed alarm probability. 

f0 – SDM factor for fine detection. 

ALA – MATLAB uint8 image of the size ncols-by-nrows for SPRT alarms. 
Previous alarm map. 

indi – Tested components of multidimensional image.  

In this function indi = 4,6,8. Positive SPRT used (only positive SPRT used for X-
probes). 

Outputs:  ALA – MATLAB uint8 image of size ncols-by-nrows for SPRT alarms. Updated 
alarm map. 

[ALARM1, ALARM2, SPRT1, SPRT2, ASN1, ASN2] = SPRT(residuals, alpha, 
beta, factor, var, mv_flag, p_flag) 

Description: This is a general detection function, which detects either the change in the mean 
(mean SPRT) or variance (variance SPRT tests) on an array of residual signals. 
The function is used here with the positive mean test, which corresponds to 
SPRT1.  

Inputs: residuals – M by N array of input signals. There are N signals, one signal to each 
column in the array. 

alpha – N element vector with the false alarm probability for each signal. 

beta – N element vector with the missed alarm probability for each signal. 

factor – N element vector of multiplicative factors.  

var – N element vector containing the variances of the signals. 
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mv_flag – Perform mean tests if mv_flag = ‘m’ or ‘M’. Perform variance tests if 
mv_flag = ‘v’ or ‘V’ (not used in this program) . 

p_flag – Print/don’t print run progress. 

Outputs: ALARM1 – M by N array of alarm values for SPRT test #1. 

ALARM2 – M by N array of alarm values for SPRT test #2. 

SPRT1 – M by N array of SPRT indices for SPRT test #1. 

SPRT2 – M by N array of SPRT indices for SPRT test #2. 

ASN1 – N element array containing the average sample numbers for SPRT test 
#1. 

ASN2 – N element array containing the average sample numbers for SPRT test 
#2. 

[filt_img, defsegA, defsegC] = PlotFilim(TOTAL, IMA0seg, nhood, defseg, STYPE, 
FinThresh, NSEG, filt_img, defsegA, defsegC,segType) 

Description: Identifies segments with defects and calls function which performs final masking 
and filtering to produce images with defects only.  

Inputs: TOTAL – MATLAB cell array with uint8 alarm maps for segments with defects, 
update. Boolean complement, for display purposes. 0 is the defect pixel. 

IMA0seg – MATLAB cell array with NSEG cells for the segmented input image.  

nhood – MATLAB structure for dilation neighborhood.  

defseg – Working vector with indices of segments with defects. 

STYPE – Character. Scan type (A or C ). 

FinThresh – Matrix of dimensions 5-by-2, for 5 segment types and 2 scan 
directions.  

NSEG – Number of segments.  

filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEG-by-2 cells. First column holds processed 4-D images for axial scans, 
second column holds 4-D processed images for circumferential scans. Previous 
value.  
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defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. Previous value. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. Previous value. 

segType – Integer vector of size NSEG. Segment type for each segment. 

Outputs:  filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEG-by-2 cells. First column holds processed 4-D images for axial scans, 
second column holds 4-D processed images for circumferential scans. Update. 

defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. Update. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. Update. 

[filt_img, defsegA, defsegC ] = PlotFilim2 (TOTAL, IMA0seg, nhood, defseg, 
STYPE, FinThresh, NSEG, filt_img, defsegA, defsegC, segType) 

Description: Final thresholding, masking, and image plotting. 

Inputs: TOTAL – MATLAB cell array with alarm maps for segments with defects. 
Boolean complement, for display purposes. 0 is a defect pixel. 

IMA0seg – MATLAB cell array with NSEG cells. The segmented input image for 
the scan direction defined by STYPE.  

nhood – MATLAB structure for dilation neighborhood.  

defseg – Working vector with indices of segments with defects.  

STYPE – Character. Scan type (A or C ). 

FinThresh – FinThresh – Matrix of dimensions 5-by-2, for 5 possible segment 
types and 2 scan directions.  

NSEG – Number of segments.  

filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEGx2 cells. First column holds processed 4-D images for axial scans, 
second column holds 4-D processed images for circumferential scans. Previous 
value. 

defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. Previous value. 
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defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. Previous value. 

segType – Integer vector of size NSEG. Segment type for each segment 

Outputs: filt_img – MATLAB cell array of processed images for each segment, consisting 
of NSEGx2 cells. First column holds processed 4-D images for axial scans, 
second column holds 4-D processed images for circumferential scans. Update. 

defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. Update. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. Update. 

[IMA, has_defect ] = MaskXP3 (ALA, IMA, nhood, STYPE, FinThresh_comp) 

Description:  Background and defect subtraction using SPRT mask, performed on individual 
segment images for each scan. Final masking and boundary effec fixes. 

Inputs: ALA – MATLAB uint8 image of size nrows-by-ncols for SPRT alarms. Note that 
here the alarm map is transposed to correspond to the standard image format.  

IMA – MATLAB 4-D image for specified segment and scan type. Previous value. 

nhood – MATLAB structural element for mask dilation.  

STYPE – Character. scan type (A or C). 

FinThresh_comp – Component of the FinThresh matrix for specified segment and 
scan type.  

Outputs: IMA – MATLAB 4-D image for specified segment and scan type. Update. 

has_defect – Boolean defect indicator. 

A.1.2 Auxiliary Functions 

nelinfilter – The same as MATLAB function nlfilter, except that a GUI message is removed 

mkconstarray – MATLAB library function, called from the modified unction nelinfilter 

minimag – Finds minimum value of a matrix; used in nelinfilter. 

imextend – Function which extends images along columns (circumferential direction) using 
periodic boundaries; m pixels are added at each side. 
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A.2 Classification Interface 

New nonlinear regression parameters have been determined based on the 18 EDM notch 
standard inspected using modified X-probe frequencies. The modified parameters are stored in 
the MATLAB data files AXIDfitparu, AXODfitparu, CIRIDfitpatu, and CIRODfitparu. 

In addition to coding modifications needed to satisfy general requirements, a new function  
for automated defect classification ClassRules has been developed. The classification  
algorithm is encapsulated in the interface Classify presented in Figure A-2. The function 
setClassificationThresholds has been developed for external definition of classification 
parameters. Detailed documentation for the functions comprising the classification interface  
is given below. 

 

Figure A-2 
Classification Interface Flow Diagram 
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A.2.1 Classification Interface Documentation 

Module Classification 

Interface eiClassification 

[AmpThr, DepthThr] = setClassificationThresholds (AmpThr_val, DepthThr_val) 

Description: This function assigns values for classification thresholds.  

Inputs: AmpThr_val – Amplitude threshold (V). If maximum amplitude (for all 

frequencies) is less than the specified threshold, degradation is declared non-
detectable. Default value used if set to -999. 

DepthThr_val – TW depth threshold (%). If estimated depth value is less than the 
specified threshold, degradation is declared non-detectable. Default value used if 
set to -999. 

Outputs: AmpThr, DepthThr – Assigned threshold values.  

[DAF1, DAF2, DAF3, DAF4, DCF1, DCF2, DCF3, DCF4, ROICTAx, NDAx, 
ROICTCir, NDCir, ercode, errmess] =Classify (DAF1, DAF2, DAF3, DAF4, DCF1, 
DCF2, DCF3, DCF4, num_freq, NSEG, defsegA, defsegC, segBounds, cropStart, 
cropEnd, ROICTAx, NDAx, ROICTCir, NDCir, AmpThr, DepthThr) 

Description: This function classifies preliminary indications into defects and non-defects and 
reports indications which are classified as defects. 

Inputs:  DAF1,DAF2, ..., DCF3,DCF4 – Output from the detection algorithm, which 
contains preliminary indications. Data matrices are in the standard input format 
for filtered data. Each matrix is a floating point matrix having (2 * N) columns 
corresponding to horizontal and vertical values of all the channels in a particular 
frequency, while rows equal to the number of data points in a channel. 

num_freq – Integer. Number of frequencies. Assumed num_freq =4. 

NSEG – Integer. Number of segments.  

defsegA – Integer vector of size NSEGDA with indices of segments with axial 
defects. NSEGDA – total number of segments with axial defects. 

defsegC – Integer vector of size NSEGDC with indices of segments with 
circumferential defects. NSEGDC is the total number of segments with 
circumferential defects. 
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segBounds – Integer vector of segment boundary positions (NSEG +1) in the 
cropped tube coordinates systems (starts with 1).  

cropStart – Integer. Stating point for the cropped region in the original tube 
coordinates. 

cropEnd – Integer. Ending point for the cropped region in the original tube 
coordinates. 

ROICTAx – Cell array of size NSEG (number of segments) with region of 
interest coordinates for each segment. Each cell iseg contains the matrix of the 
region of interest coordinates of the size NDAx(iseg)-by-4, where NDAx(iseg) is 
the number of axial defects in the segment iseg. Region coordinates correspond to 
the image coordinate system as used in imcrop MATLAB function: column-min, 
row-min, width, length. All coordinates are transformed to the full length data 
coordinate system. Regions that cross the boundary are accounted for at the right 
boundary to prevent negative indices and should be wrapped around boundary, if 
needed. 

NDAx – Integer vector of size NSEG with number of axial defects for each 
segment. 

ROICTCir- Cell array of size NSEG (number of segments) with region of interest 
coordinates for each segment. Each cell iseg contains the matrix of the region of 
interest coordinates of the size NDCir(iseg)-by-4, where NDCir(iseg) is the 
number of circumferential defects in the segment iseg. Region coordinates 
correspond to the image coordinate system as used in imcrop MATLAB function 
: column-min, row-min, width, length. All coordinates are transformed to the full 
length data coordinate system. Regions that cross the boundary are accounted for 
at the right boundary to prevent negative indices and should be wrapped around 
boundary, if needed. 

NDCir – Integer vector of size NSEG with number of circumferential defects for 
each segment. 

AmpThr – Amplitude threshold (V). If maximum amplitude (for all frequencies) 
is less than the specified threshold, degradation is declared non-detectable. 
Default value used if set to -999. 

DepthThr – TW depth threshold (%). If estimated depth value is less than the 
specified threshold, degradation is declared non-detectable. Default value used if 
set to -999. 

Outputs:  DFA1, DFA2, DFA3, ... DCF3, DCF4 are updated matrices after classification, 
which include confirmed defects only. The format is the same as input. 
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ROICTAx – Cell array of size NSEG (number of segments) with region of 
interest coordinates for each segment (axial scan). Update after classification. 

NDAx – Integer vector of size NSEG with number of axial defects for each 
segment. Update after classification. 

ROICTCir – Cell array of size NSEG (number of segments) with region of 
interest coordinates for each segment (circumferential scan). Update after 
classification. 

NDCir – Integer vector of size NSEG with number of circumferential defects for 
each segment. Update after classification. 

ercode – Integer. Error code. 1- successful completion; 2- incorrect input 
parameters. 

errmess – Cell array. Each cell is a string with an error message. 

defect_indices = ClassRules (defect_list, NSEG, NDAx, NDCir, INDNZ, AmpThr, 
DepThr) 

Description: This function uses a limited set of empirical rules based on the amplitude and 
phase behavior at different frequencies as well as approximate depth estimation to 
determine whether an indication is an ID defect, OD defect, or non-detectable 
degradation. Since multi-class discrimination is not very accurate, all classified 
defects are reported as one class. Conservative classification is adopted, i.e. all 
defects of an unspecified class are classified as defects. New rules could be added 
as the training base increases. 

Inputs: defect_list – MATLAB cell array. Each cell is a MATLAB structure with the 
following fields:  

class – ‘UN’-unknown (initialization), ‘ID’, ‘OD’, ‘ND’ (non-detectable). 

mabs -Vector with peak amplitudes for all frequencies, starting with the lowest 
frequency. 

mplo -Vector with peak phases for all frequencies, starting with the lowest 
frequency. 

amps – Amplitude slope for increasing frequency (linear LS estimate). 

angs – Phase angle slope for increasing frequency (linear LS estimate). 

depth – Approximate TW depth assessment. Insufficient accuracy for reporting. 
Used only in rules based on sizing. depID and depOD – Temporary fields. 
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NSEG – Number of segments. 

NDAx- NDAx(1:NSEG)vector with number of axial defects for each segment 

NDCir – NDCir(1:NSEG)vector with number of circ defects for each segment. 

INDNZ – Indices of frequencies with nonzero amplitudes. 

AmpThr – Amplitude threshold (V). If maximum amplitude (for all frequencies) 
is less than the specified threshold, degradation is declared non-detectable.  

DepThr – TW depth threshold (%). If estimated depth value is less than the 
specified threshold, degradation is declared non-detectable. 

Outputs: defect_indices – MATLAB cell array of the size NSEG-by-2. Each cell contains a 
vector of indices of degradation classified as defects. Indices correspond to the 
numbering of the preliminary indications. Degradations declared as non-
detectable are removed from the ROI list in the function Classify. 

[mabs, mplo] = AmpPhase (IMA, num_freq, RECT) 

Description: This function finds peak and computes amplitude and phase for each potential 
defect. 

Inputs: IMA – MATLAB intensity image of the dimensions (nrows, ncols, 1, 
2*num_freq) 

num_freq – Number of frequencies. 

RECT – ROI coordinates in the imcrop MATLAB function format: column-min, 
row-min, width, length. Coordinates are extended by few pixels to enable better 
evaluation. 

Outputs: mabs – Vector with peak amplitudes for all frequencies, starting with the lowest 
frequency. 

mplo – Vector with peak phases for all frequencies, starting with the lowest 
frequency. 

[DEPRED, YP, INDNZ] = SIZEID (mabs, mplo, STYPE, AmpThr, DepThr ) 

Description: This function is used for preliminary maximum depth estimation for ID defects. 

Inputs: mabs – Vector with peak amplitudes for all frequencies, starting with the lowest 
frequency. 
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mplo – Vector with peak phases for all frequencies, starting with the lowest 
frequency. 

STYPE – Character. Scan type (‘A’ or ‘C’). 

AmpThr – Amplitude threshold (V). If maximum amplitude (for all frequencies) 
is less than the specified threshold, degradation is declared non-detectable.  

DepThr- TW depth threshold (%). If estimated depth value is less than the 
specified threshold, degradation is declared non-detectable. 

Outputs: DEPRED – Maximum depth estimation. 

YP – vector of estimations based on amplitude and phase 

YP(1) – estimation based on amplitude at 200 kHz 

YP(2) – estimation based on amplitude at 400 kHz 

YP(3) – estimation based on phase at 200 kHz 

YP(4) – estimation based on phase at 400 kHz 

INDNZ – index of frequencies with nonzero amplitudes 

[DEPRED, YP] = SIZEOD (mabs, mplo, STYPE, AmpThr, DepThr) 

Description:  This function is used for preliminary maximum depth estimation for OD defects. 

Inputs: mabs -Vector with peak amplitudes for all frequencies, starting with the lowest 
frequency. 

mplo -Vector with peak phases for all frequencies, starting with the lowest 
frequency. 

STYPE – Character. Scan type (‘A’ or ‘C’). 

AmpThr – Amplitude threshold (V). If maximum amplitude (for all frequencies) 
is less than the specified threshold, degradation is declared non-detectable.  

DepThr- TW depth threshold (%). If estimated depth value is less than the 
specified threshold, degradation is declared non-detectable. 

Outputs: DEPRED – Maximum depth estimation. 

YP – Vector of estimations based on amplitude and phase. 
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YP(1) – Estimation based on amplitude at 200 kHz. 

YP(2) – Estimation based on amplitude at 300 kHz. 

YP(3) – Estimation based on phase at 200 kHz. 

YP(4) – Estimation based on phase at 300 kHz. 

INDNZ – Indices of frequencies with nonzero amplitudes. 

A.2.2 Auxiliary Functions 

imextend – Function which extends images along columns (circumferential direction) using 
periodic boundaries; m pixels are added at each side. 

IDamfit – Analytical function to fit ID amplitudes. 

ODamfit – Analytical function to fit OD amplitudes. 

A.2.3 MATLAB Data Files 

AXIDfitparu – Fitting parameters based on axial ID notches. 

AXODfitparu– Fitting parameters based on axial OD notches. 

CIRIDfitparu– Fitting parameters based on circumferential ID notches. 

CIRODfitparu– Fitting parameters based on circumferential OD notches. 
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