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CHAPTER 1 Introduction

1.1 Single molecule magnets (SMMs)

For a few decades, chemists have developed new classes of magnets based on molecules
rather than on metals or oxides. The idea behind this is the challenge of creating new classes
of materials from which new exciting properties may be expected (see, for example, Kahn [1]).
It was only a decade ago when physicists realized that a particular class of molecular magnets
(MM) i.e., single molecule magnets (SMMs) are excellent zero-dimensional model system for
the study of the nanoscopic or mesoscopic magnetism. The prefix nano- or meso- indicates
that SMMs are positioned at the frontier between single spin behavior and bulk magnetism. In
this interesting regime, one can expect new physical phenomena arising from fhe coexistence
of classical and quantum behaviors [2].

SMMs are exchange coupled clusters, at present, of two to thirty paramagnetic ions (e.g.,
iron dimer [3] to a giant cluster Fe30 [4]), usually from the first period of the transition metals.
The magnetic centers in the molecule are fairly well shielded (i.e., very weak intermolecular
interaction) by large organic ligand shells, and thus the individual molecules are magnetically
almost independent. The weak intermolecular interactions (or zero-dimensionality) in SMMs
allow us to investigate the molecular magnetism, simply by the usual macroscopic measurement
techniques. In fact, the macroscopic quantum phenomena observed in SMMs arises from the
finite size system. Interestingly, some of SMMs can be viewed as real nanosize quantum dots.
In this case, unfilled molecular orbitals, which are delocalized over the entire magnetic metal

cores coupled by metal-metal bonding, provide another interesting class of molecular magnets

!Note that the term “single molecule magnets” is used here not only to the ferro- or ferri-magnetic clusters
but also to non-magnetic rings or clusters.
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in analogy wifh the traditional magnetism of unfilled atomic shells [5].

Thanks to the finite size of SMMs, one may sometimes perform first principles calculations
from the Hamiltonian, and compare it with the experimental results. Although the exact
diagonalization is limited to, for example, systems of eight spins 3/2 (in this case, the total
degeneracy of the spin states is (28 + 1) = 65,536), this feature is very attractive from a
theoretical point of view. One of the big advantages of SMMs is that one can synthesize a
molecular cluster at will, in principle if not in practice, for a specific purpose of investigation.
Indeed, numerous different types of SMMs have been synthesized with different features: (1)
the total spin of molecule in the ground state varies from zero up to 51/2; (2) the symmetry of
structure ranges from simple one dimensional (e.g., rings) to complex three dimensional clusters
(e.g., Fe8, Mnl2ac); (3) the paramagnetic ions in a molecule are coupled via ferromagnetic
(FM) or antiferromagnetic (AFM) interaction with various magnitude of the exchange constant
J. Therefore, together with the ability to proceed with careful measurements and theoretical
methods, SMMs present a wonderful laboratory to explore fundamental problems in magnetism
such as spin correlation and exchange interactions at nanosize scale, which can be a key to
understand the collective spin behavior in conventional magnetic materials.

Among the variety of molecular magnetic systems, here we will briefly review the general
properties of the two classes of SMMs. (1) Ferrimagnetic clusters with a high spin ground state
and a large uniaxial anisotropy such as Fe8 and Mnl2ac; (2) Antiferromagnetic rings, which
consist of an even number of metallic ions forming nearly perfect ring structures with isotropic
nearest-neighbor exchange constant, such as the “ferric wheel” Fel( [6]. For a comprehensive

review of molecular magnetic clusters, we refer to Miller [7], Gatteschi [2, 8, 9], and Caneschi

[10].

Antiferromagnetic rings

Antiferromagnetic (AFM) rings may be regarded as one-dimensional (1D) chains with pe-
riodic boundary conditions due to the perfect coplanar arrangement of the paramagnetic ions.

The magnetic interaction between neighboring ions within individual molecules is of the antifer-



romagnetic Heisenberg type yielding a ground S = 0 state and dominates any other magnetic
effect like single-ion and/or dipolar anisotropies. As a result, AFM rings are an attractive
model system for the study of the qué,ntum spin dynamics of one-dimensional antiferromag-
netic Heisenberg magnetic chains [11]. Since the in&ependent spin paramagnetic behavior at
high temperature evolves towards a correlated collective spin system with decreasing temper-
ature, one can obtain precious information with regard to the spin dynamics in this exactly
solvable finite system as a function of temperature and external field. The obtained results
can also be linked to a better understanding of the bulk system.

The magnetic properties of the AFM rings can be described well by the spin Hamiltonian

12, 13]

N N N
H=-J> 8-Si1+D> S, +eusH > _S;, (1.1)

i=1 i=1 i=1

where J is an antiferromagnetic coupling (J < 0), the second term represents uniaxial single-
ion anisotropies along the easy axis (z) (D < 0), N denotes the number of metal ions, and
the last term is the Zeeman interaction. The magnetic anisotropy, which in most cases is
assumed to be very small, plays an important role e.g., in quantum tunneling of the Néel
vector {12, 14, 15].

By following systematic synthesis schemes one can obtain AFM rings with a wide variety of
properties: (1) different size of the spin of the metallic ion: 1/2 (Cu?t, V4t), 3/2 (Cr3t), 5/2
(Fe3t, Mn?t) etc, (2) different number of ions {odd numbered ring is in particular interesting
because strong spin frustration effects are expected), (3) various strength of the exchange
coupling J.

Apparently, the first AFM ring system that aroused the great interest in physics community
is the molecular ferric wheel [Fe(OMe)2{O2CCH2Cl)]1g (in short Fel) [6]. The structure of
Fel( is shown in Fig. 1.1. Magnetization measurements of Fel0 at low temperature show that
the magnetization increases in a stepwise fashion [11] with increasing field. The first step in
the magnetization is due to the level-crossing from |§ = 0, M = 0} to |$ = 1, M = —1), the
second step is due to the level-crossing from |§ = 1, M = ~1) to |§ = 2, M = —2), and so

on. The field-induced level-crossing effect, which is a manifestation of quantum size effect, has
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Figure 1.1 Structure of ferric wheels Fel0 (left) and Fe6(X) (right) with
X=Na or Li. Hydrogen atoms were omitted for clarity.

been confirmed by NMR measurement [16]. Since the infinite magnetic chain does not show
any step in the magnetization [17], the properties of the AFM rings can be extrapolated to the
infinite chain by making larger and larger rings.

Smaller ferric wheels containing six Fe3* jons, Fe6(Na) and Fe6(Li) also exhibit the field-
induced “stepped” hysteresis behavior [18-20]. In these systems, the alkali-metal ion, Lit or
Nat, is hosted in the center of the ring, and plays an interesting role. Namely, the exchange
constant J changes from 14 K to 21 K by replacing Li* with Na*. Also the magnetic anisotropy
is affected by the replacement of the alkali-metal ion [18]. These significantly different magnetic
properties in the two derivatives may arise from the distortions induced by the alkali-metal
ion on the ring by the so called “host-guest interaction”. Therefore, these Fe6 derivatives can
provide valuable information regarding the origin of the magnetic anisotropy as well as the
spin dynamics itself.

Another interesting AFM ring is a “chromic wheel” CrgFgPivig (Cr8) where HPiv is pivalic



Figure 1.2 Structure of the Mnl2ac clusters (taken from Ref. [10]). The
large symbols denote manganese ions [inner 4 ions are Mn*+
(s = 3/2), outer 8 ions are Mn®** (s = 2)], small dark gray
circle denotes oxygen bridge, and open circles forms the acetate
ligands.

acid, which consists of eight Cr®t (s = 3/2) [21]. It has been found that Cr8 exhibits the level-
crossing effect by specific heat measurement [22] and by NMR measurement [23]. Regarding
spin dynamics, s = 3/2 system could be regarded as a link between gquantum spin 1/2 and
classical spin 5/2 systems. (Unfortunately, there is no bona fide spin 1/2 AFM ring.) Our
NMR study of AFM rings in this thesis has been motivated by the interesting spin dynamics

via spin-lattice relaxation rate 1/7) as a function of temperature and external field.

Ferrimagnetic high-spin clusters

The magnetic properties of these systems are discussed in detail in chapter 3. Here we
limit ourselves to a brief description of the two main clusters of this class and to a mention of
their potential applications.

SMMs such as [Mn12012(CH3COO)16(H20)4] (Mn12ac) [24] and [F6302(0H)12(tacn)5]8+



(Fe8) [25], where both clusters have the ground spin S = 10, show the interesting phenomenon
of superparamagnetiém i.e., slow relaxation of the magnetization [26, 27]. These molecules
can be magnetized at low temperatures, and will remain magnetized even after removal of
the external field. This property is usually associated with bulk magnets. However, it was
shown that this property in SMMs is truly due to the individual molecule, and not to long
range interactions. The physical properties of SMMs are very interesting, due to the size
of the systems. " The properties of a bulk magnet with a large spontaneous magnetization
can be described in a classical framework, using well known theories. On the other hand, a
single large spin is clearly a quantum system. The area between these two limiting regimes is
very interesting from a physical point of view, and it is exactly there that molecular magnets
with the total spin § = 10 are located. Certainly, the discovery of the slow relaxation of
the magnetization in Mnl2ac [26] can be regarded as a major breakthrough in SMMs. The
second breakthrough may be the experimental observation of the quantum tunneling of the
magnetization in Mn12ac [28, 29] and Fe8 [30]. For Fe8, the pure quantum tunneling has been
observed for the first time below 0.4 K. These quantum phenomena have been under intensive
investigatiop, resulting in a substantial body of literature related with those subjects in the
last ten years [31].

Since these molecules are bistable, in the sense that they can be magnetized along two
directions, applications in data storage devices have been proposed. The maximum theoretical
data density would be enormous, since every molecule can be considered as a bit of data. This
information density could be of the order of 100 Tbit/in?, which is three to four orders of
magnitude larger than what is currently possible. For this idea to be realized, a significant
~ challenge is the development of methods for reading and writing such a tiny magnetic moment.
Another challenge is related with the synthesis of SMMs having larger energy barrier for the
regrientation of the magnetization, which would permit storage of information at accessible
temperatures. Although the quantum tunneling is fascinating feature from a physical point
of view, its effect should be suppressed for the application of the data storage because the

tunneling means loss of information. Beyond that, applications in the memory components



of quantum computation [32] are possible. A single crystal of the molecules could potentially
serve as the storage unit of a dynamic random access memory device in which fast electron spin
resonance pulses are used to read and write information [33, 34]. It has also been suggested
that these high-spin ferrimagnetic clusters might be utilized as low-temperature refrigerants
utilizing the magnetocalori‘c effect [35, 36]. The idea for this application arises from the fact
that a large entropy variation, which depends on the sweeping rate of the magnetic field, takes

place around the blocking temperature.

1.2 Nuclear magnetic resonance as a tool to investigate SMMs

Nuclear magnetic resonance (NMR) is a powerful tool to investigate the local static and
dynamic properties of magnetic systems. Among the many successes achieved by NMR tech-
nique in various magnetic materials, we give a few examples related with the motivation for
the investigation of single molecule magnets by NMR. Firstly, NMR has been proved to be a
suitable tool as a local probe to study spin dynamics due to the fact that the nuclei are very
sensitive to the fluctuations of the local field produced by the localized magnetic moments.
The nuclear spin-lattice relaxation (1/73) probes the long time behavior of the spin correla-
tion function since NMR detects the low frequency part of the spin fluctuation spectrum. For
example, in 1D Heisenberg magnetic chains, the long-time iaersistence of spin correlation has
dramatic consequences on the field dependence of 1 /T1 37, 38]. Secondly, NMR spectrum gives
us information on the hyperfine interactions of the nuclei with the local magnetic moments, and
its field dependence provides information of the internal magnetic structure [39-42]. Thirdly,
NMR is a powerful tool for the investigation of quantum tunneling effect [43, 44).

‘We have studied both static and dynamic properties of SMMs by NMR taking advantage

of the above mentioned potentiality of the technique.

1.3 Organization of the dissertation

We began this thesis with a general introduction to single molecule magnets and to nuclear

magnetic resonance (NMR) in Chapter 1. In Chapter 2, we introduce the basic concepts of
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NMR focusing on the nuclear spin-lattice relaxation mechanisms which are applied for single
molecule magnets. Chapter 3 is devoted to the magnetic properties and the spin dynamics in
Fe8 molecular cluster. In particular, the quantum tunneling of the magnetization phenomena
will be described in detail with some novel calculations and insights. 3"Fe NMR measurements
in Fe8 at low temperatures are presented in Chapter 4. There we analyze the 5"Fe NMR
spectrum and the nuclear relaxation rates as a function of external field and temperature in
terms of the hyperfine field and its fluctuations via spin-phonon interactions and tunneling
mechanism. We discovered that the relaxation rate of 5"Fe in zero field or weak fields at low
temperature is due to a strong collision mechanism and thus it measures directly the effective
tunneling rate of the magnetization.

—Chapter 5 is concerned with the temperature and field dependence of the proton 1/73
in antiferromagnetic ring clusters. There we present a scaling formula that is in excellent
agreement with the peak of 1/T7 observed near the temperature which is comparable to the
magnetic exchange energy J/kp and we provide an underlying physical picture in terms of

broadening of the magnetic levels due to acoustic phonons.



CHAPTER 2 Nuclear magnetic resonance and relaxation

ﬁuclea.r magnetic resonance (NMR) has established itself as a powerful technique for the
study of the local static and dynamic préperties of magnetic materials. In this chapter we dis-
cuss the basic concepts of NMR, nuclear spin relaxation mechanism, and pulse NMR methods,
restricting ourselves to the topics which are necessary to understand NMR in single molecule

magnets.

2.1 Magnetic resonance theory

For the discussion in this section we are referring to Abragam [45] and Slichter [46).

2.1.1 Isolated nuclear spins

Consider a nucleus with total spin angular momentum I%. The relation between the angular
momentum and nuclear magnetic dipole moment g is given by u = ~,Al, where -, is the
gyromagnetic ratio. The Hamiltonian which describes the Zeeman interaction between p and

a magnetic field Hp can therefore be written as
H=—p-Hp. (2.1)

The energies of the 21 + 1 eigenstates |m) of Eq. (2.1) are given by E(m) = —y,fiHym, where
m are the eigenvalues of I,, and z denote the direction of Hy. Since the magnetic dipole
transition is allowed for Am = £1, we have AE = y,AiHg = hwy, giving the Larmor frequency
Wy = Ypddp. From the Larmor theorem, the magnetic moment p obeys the classical equation
of motion in a magnetic field,

du

P X (ynHo). (2.2)
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Thus, the expectation value of 4, is time independent while those of u; and p,, vary sinusoidally
with Larmor frequencies wy,.

Now we introduce a transverse, linearly oscillating magnetic field of the form H; () =
H1(Z coswt + §sinwt). It is convenient to transform Eq. (2.2) to a new coordinate system z/,
y', 2 in which Hy || 2’; the z/, 3’ axes rotate about 2’ with constant angular velocity w, and
Hj is taken to lie along z’. One can write the time derivative é11/8¢ in the rotating frame as
Sp /ot = dp/dt + p X w, which yields

§
-;ti = Yol X [ﬁ"Hl + 2 (Ho + i)] ) (2.3)

n

where 7' and 2’ denote unit vectors. The resulting motion of p in the rotating frame, about an
effective field Heg = & Hy+5' (Ho+w/7,) is illustrated in Fig. 2.1. If p is oriented initially along
Z' it will always return to that direction periodically. Thus, there is no net energy transfer, on
the average, between the H) field and the magnetic moment. At resonance (w = —y,Hp) the
effective field is simply H; and p precesses about z' at a rate w; = —~y, Hy. If H; were applied
only for duration 7 such that 8 = n/2 = ~, Hy7 (90° pulse), the magnetic moment is initially
turned along 4/’ direction and remains at rest in the rotating frame. Of course, the moment
precesses with the Larmor frequency in zy plane in the laboratory frame.

For a system of IV identical, non-interacting spins in a volume V, the total nuclear magne-
tization is simply expressed as M = V! Efil pi. Eq. (2.3) is also valid by replacing p with

the total magnetization M.

2.1.2 HRelaxation

From the discussion in previous subsection, one would predict that the magnetization (after
applying 7/2 pulse) should precess indefinitely in the zy plane at the Larmor frequency. In
any real system, however, the transverse magnetization decays to zero and the longitudinal
magnetization relaxes to its equilibrium state along the z axis as a consequence of interactions
among the nuclear spins and between them and their environments. One can usually distinguish

two types of relaxation; the spin-spin and spin-lattice relaxation.
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Hl — .'L',

Figure 2.1 Motion of the magnetic moment g in the rotating coordinate
system.

2.1.2.1 Spin-spin relaxation

The spin-spin interactions (e.g. the classical magnetic dipolar coupling between the nuclear
moments) tend to maintain thermal equilibrium within the nuclear spin system. This interac-
tion leads to the decay of the transverse magnetization in the static field. The characteristic
time of the irreversible decay of the transverse magnetization is defined by the spin-spin (or
transverse) relaxation time 75. The T} process.for solids is generally associated with the spread
in the local fields (thus the spread of the Larmor frequencies) produced by the nearby nuclear
spins. If the distance between the nearest neighbors is r, 1/7% is given as order of magnitude
by:

2

K
1/Ty ~ ynHige ~ % (2.4)
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2.1.2.2 Spin-lattice relaxation

The spin-lattice interactions provide contact between the nuclear spins and a “lattice”
consisting of the other internal degrees of freedom of the system (e.g. phonons, conduction
electrons). Since the specific heat of the lattice is generally much greater than that of the
nuclear spin system, the lattice serves as a heat reservoir of temperature Tr. Here we assume
that the spin-spin couplings are strong enough to maintain the thermal equilibrium among the
nuclear spins during the relaxation with a common “spin temperature” T,. Thus, in the absence
of external perturbations, Ty = Tr. When the perturbation is initially applied, Ty > T},.. After
removal of the perturbation, the spin temperature (i.e. the longitudinal magnetization) will
tend to reach the lattice temperature (i.e. the equilibrium magnetization) with a characteristic
spin-lattice relaxation time T7.

Consider a spin system in thermal equilibrium described by a spin temperature 7. The

probability that the system is found in the energy state i is given by

pi = %GXP(—ﬁsEi); (2.5)

where the partition function Z = ), exp(— G, E;) with 8, = 1/kgT;, and the sum is extended

over the entire states. Then the total average energy

E= ZpiEi (2.6)

can be related at any time to a unique §;. For convenience, we define a zero of energy such
that Tr(E;) = 0, where Tr denotes a trace over the spin eigenstates. The time dependence of

Bs can be derived from
aBs _ dE/dt
dt — dE[dps

(2.7)

We assume that the p;’s obey simple linear rate equations of the form (so called “master”
equation)

L ,
% = Z (piWyi — piWi) (2.8)
J
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where W;; is the transition probability from state i fo j. Since each term in the sum in Eq. (2.8)

vanishes when dp;/dt = 0 (i.e. when G, = 1),
Wij = Wi exp [-fL (E; — B;)). (2.9)

In the high temperature approximation (i.e. yohH, < kpTs), only states for which |E;| < kpTs
contribute significantly to the resonance behavior of the system. In this limit, the partition

function becomes the total number of states, Z = Zy, = (2I+1)". Combining Eqgs. (2.6)—(2.9)

yields
dd_is _ ﬁLIjl‘ Bs. (2.10)

where
1 120y(E - By Wy (2.11)

Ty 2 2 Ezz
If the perturbation is very weak compared to the Zeeman Hamiltonian i.e. H;(t) <« Ho,
one can apply the first-order time-dependent perturbation theory to calculate the relaxation
transition probabilities. In this limit (also called weak collision limit), W;; in Eq. (2.11) is
given by,
Wi = 2T 19) P6(B: — By — hw), (212

where H; is the Hamiltonian of the perturbation. Eq. (2.12) is useful only when the energy
levels of the lattice are exactly known. It can also be used at low temperature when the energy
levels can be approximated by a given dispersion relation e.g. spin wave theory, phonon states,
etc. It is sometimes more convenient to calculate the transition probability from the correlation
function Gy;{t) of Hi. In this semi-classical approach, particularly valid at high temperature,
we can rewrite Eq. (2.12) by using the relation §(z) = 1/27 ffo‘f exp(izt)dt and the Heisenberg
operator representation, A(t) = /P A(0)e~ /R,

1 [t

W, = —
A 72 oo

dtG«,;j (t) e-iwt, (2.13)

where w = (E; — Ej;)/h. For a stationary (or weakly time dependent) perturbation, the

correlation function can be defined by

Gi;(t) = (Ha(®)Ha(0)) = EIH@I {G1HL(0)]9), (2.14)



14

where the bar denotes an ensemble average. If H;(t) is a randomly varying quantity in time, the
correlation function decays exponentially with a correlation time 7. {i.e. G{t) x exp(—7./t)].

The correlation function Gy;(f) is also related to the spectral density function J;;(w) as

+oo
Gy;(t) = “21—7r dw T (w) exp(iwt). (2.15)

-0

J{(w) and G(t) have an inverse relationship. In other words, J(w) contains frequencies up to
* the order of 1/7.. For example, if G(£} decays slowly (i.e. long 7.), J(w) is all bunched up
for small w, while if G(t) decays rapidly (i.e. short 7,) J{w) is distributed in large range of w.
From Egs. (2.13) and (2.15), we have

Jij(wn)
Wi = ”ﬁz = (2.16)
For the case of I = %, one can write
1
-1-_,-;=W%,_%+W_%,%=2m (2.17)

where we utilized the fact that in the high temperature limit W;; = Wj; [see Eq. (2.9)]. It must
be emphasized that Egs. (2.11) and (2.17) are only valid if the spin system can be described
by a spin temperature.

If we have information on the physical basis of the fluctuation of the interaction, 1/7) can

be evaluated from Eqs. (2.13) and (2.17).

2.1.3 Generalized nuclear susceptibilities

Let us assume that the rotating field of amplitude H; is actually produced by a linearly
polarized field H.(t) = 2H;e™*. Note that 2H; is the peak value of a linearly polarized
field while H is the magnitude of the two counter-rotating fields into which H;(f) can be
decomposed. If Hj is sufficiently small, the linear response My(t) of the spin system can be

described by a complex susceptibility, x = x' — ix":
M, = 2HRe{xe ™'} = 2H, () coswt + x" sinwt). (2.18)

The establishment of a transverse magnetization corresponds to an average power dissipation

. w t=2m/w
P=_— f Hy(t)dM, = 2wy H? (2.19)
27 Ji=0
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per unit volume.

On the other hand, the power absorbed by the system per unit volume can be calculated

by the perturbation theory,

P=hw) (pi—pj)Wy

i

(2.20)
= 27"‘-‘-’Hl Z(Pz i) ilpe| ) 126 (B; — By — hw).
i
Since |E; — E;| < kT, in most experiments we have
) e L BiBe (BB _ 1) p [0
(pi —ps) = 7¢ (e g 1) N (2.21)

Substituting Eq. (2.21) into Eq. (2.20) and comparing the resulting expression with Eq. (2.19)
yields

s

X' = mhwfs f(w), (2.22)

where f(w) is the shape function defined by
1 X .
£(2) = 2 3 VGlels) P68 — By — o) (229)
if

Eq. (2.22) may also be expressed as an integral form by the same method used when deriving
Eq. (2.13)

1t 1 oo twi
x' = ﬁwﬁs dtG(t)e™”, (2.24)
oo .

where G(t) = Tr(uz(t)4x(0))-

The real part of x can be obtained from Eq. (2.22) by means of the Kramers-Kronig relation

X (W) = ’P / " do'x WX W) (2.25)

w —w
where P means the principal part.

A phenomenological solution to the problem of the NMR response of a many-spin system
is provided by the Bloch formulation. In this formulation the equation of motion of the
macroscopic magnetization (dM/dt = v,M x H) is modified by the addition of damping terms
of the form —M,/Ts, —M,/Ts, and (Mp — M,)/T1, where Mp is the thermal equilibrium
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magnitude of M. The solution to the resulting equations is given by the Bloch susceptibilities

1 Tg(h.) - w)
Ty — T n .
X @) = gxon T T Ty (2.26)
1 . 1
i
= ZyownT: :
X' (@) 2X0Wn 1+ T {wn —w)2 + V2HITT,' (2.27)

where xo is the static nuclear susceptibility and w, = ypHy is the resonance frequency. One
can easily see that Eqs. (2.26) and (2.27) do not fulfill the Kramers-Kronig relation since these
susceptibilities depend on the strength of Hy. It is only in the limit 2 HZT1Ts < 1 (so called
“linearity condition”) when the H; dependence may be ignored and the frequency response
takes on the characteristic Lorentzian form. If H; is large, the response of the system is

maximized when y2H#T1T> =~ 1. The phenomenon is known as saturation.

2.1.4 Nuclear dipolar broadening and methods of moments

The nuclear dipole-dipole interaction is written as

H2~2 L -ra¥I - 1.
Hap= 3 20 |1, 1, — 30 T mie) | (2.28)
ok ik ik

This interaction produces a homogeneous broadening of the resonance line of the order of
Haip/F (in frequency unit). In solids, a reasonable picture of the real situation is given by the
“rigid lattice” approximation, in which nuclear positions are fixed. A quantitative evaluation
of the broadening of the rescnance lines due to nuclear spin-spin coupling can be obtained by

calculating the moments with respect to {w) = wp,

My = fo (0 — wa) (W) e (2.29)

where f(w) is the normalized shape function defined by Eq. (2.23). If the interactions are
known, the moments can be calculated exactly.

In the case of a Gaussian line shape (i.e. the function x"(w) decreases very fast as |w — whp)
increases), the width of the line corresponds to v/Mz. The second moment due to the dipole-

dipole interaction between like nuclei is given by Van Vleck [47]:

3 1 — 3cos®0;1)?
(Ma)rr = 173*521(1 +1)) ( ) i) , (2.30)
k 7
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where 7y is the distance between the spin I; and Ix, and 8 is the angle between ry; and the

external field H. The coupling between unlike spins is

1 1 —3cos? ;)2
(o)rs = gais(s +1) Y L2 0 .1
k ik

Eq. (2.31) can be interpreted that the local magnetic field seen by nuclei I is proportional to
the magnetic moment ygh+/S(S + 1) of the other species.

2.1.5 Hyperfine interaction

The nuclear magnetic dipole moment can interact with the electronic spin and orbital
magnetic moments via hyperfine coupling mechanism. In view of the character of the coupling,
we can distinguish the interaction into magnetic and quadrupole ones. Here we will discuss
only the magnetic interactions since the quadrupole inferaction, which occurs only with the
nuclear spin I > 1/2, does not appear in this thesis.

The magnetic interactions can be represented by a hyperfine field Hy¢. The total magnetic

interaction is then given by the Hamiltonian
Hp = —vp L - (Hg + Hyg). (2.32)

A nuclear moment at the origin would see a magnetic field produced by an electron,

“ £ r%s—3(r 8
Hy = —gusn [T—;; - %ﬁ"_){ + %5(1')3] ) (2.33)

where up is the Bohr magneton, and s and £ are the electronic spin and orbital angular mo-
mentum operators, respectively. The first term in Eq. (2.33) describes the orbital coupling
arising from the electronic currents. The second term is the dipolar field due to the electronic
spin magnetic moment. In many cases, the orbital term vanishes due to the quenching of the
orbital momentum of the electron, and the dipolar term disappears in a cubic symmetry of the
electron cloud. The third term is called the Fermi contact term. The contact term is non-zero
only if the electronic density at the nucleus sites is non-zero. Therefore, the term will survive
only if unpaired s-electrons are present. However, ions with no unpaired s-electrons sometimes

show very large hyperfine interactions. For example, Mn?* and Fedt ions are not expected to
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have the hyperfine interactions, because both ions have no orbital mechanism (orbital singlet
state) so that there is no dipolar and no orbital hyperfine interactions. Experimentally, how-
ever, a huge hyperfine field has been observed in the ions. A qualitative explanation is that
the exchange interaction between the core s-electrons and the unpaired d-electrons produce
a slight difference between the electronic densities of the core s-electrons with different spin
orientations. This effect is. called core polarization hyperfine interaction and is important, in

particular, for transition elements where the unpaired electrons have no s-character [48].

2.2 NMR in molecular magnets

Basing on the discussion in the previous section we concentrate now on the relation between
spin dynamics and nuclear spin-lattice relaxation in single molecule magnets. We consider
separately the high temperature region (kg7 >> J) where the nuclear relaxation is driven by
the uncorrelated spin dynamics and is thus similar to any paramagnet except for the effect
of the reduced dimensionality, and the intermediate and low temperature region (kT < J)}
where the 1/T} reveals features which are very specific to SMMs being related to the discrete

nature of the magnetic energy levels.

2.2.1 High ternperature region (kT > J)

SMMs are characterized by exchange constants J, which are generally of the order of 1—30
K [except a few species like Cu8 where it can be very large (~ 1000 K}]. In the high temperature
region (kT > J), we treat SMMs as non-metallic paramagnets. In this case, the coupling
between the electronic spin system and the lattice is so strong that the electronic spin system
can be considered as a part of the lattice i.e. in thermal equilibrium at Ty, [49]. Then the
fluctuating local field produced by the fluctuation of the electronic spins induces the nuclear
transition probabilities. The perturbation Hamiltonian for a nuclear spin I can be expressed by
Hy = E{H?ip + B;1-S%} where B; is a hyperfine coupling constant, the two terms represent the

dipolar and the scalar hyperfine interaction, respectively [see Eq. (2.33)]. Then from Eq. (2.13)

together with Egs. (2.16) and (2.17), 1/7} can be expressed in terms of the spectral densities
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of the spin fluctuations as [49-51],

1 et Y]
= 2RVRES(S + 1) ) o TE (we) + > Bisr T (wn) 7 (2.34)
37 i’ '

where 7, 7/ number the electronic spins, we and w, are the Larmor frequencies of the electron
and of the nucleus respectively, a;;» and B;; are geometrical factors related to the dipolar and
scalar hyperfine interaction, and ._’ff; are the transverse and longitudinal spectral densities
of the spin fluctuations.! Eq. (2.34) can also be expressed in terms of collective g-variable as
shown in Appendix A.

In the high temperature limit, one can neglect correlation between the magnetic spins.
Then the pair correlation terms can be set equal to zero and one can rewrite Eq. {2.34) in

terms of the uniform static susceptibility x as

1 (Frye)? 1 gt
=-—— = kpTy | -A® A*P? .
TL = dngiil 5Tx |3 (we) + AP (wy) | , (2.35)

where ®*(w) are the Fourier transforms of the auto-correlation function of the transverse
(¢ = %) and longitudinal (@ = z) components of the electronic spin. On the assumption
of a rapid decay of the correlation function at short times followed by a much slower decay
at long time due fo the almost isotropic Heisenberg nature of the Hamiltonian and the zero
dimensionality ®(w) is peaked at low frequency. However, even small anisotropic terms can
introduce a cut-off frequency at low frequencies. Thus one can model the spectral density as

the sum of two Lorentzian [38, 52, 53] :

P () = 0*(w) = —-2 L4

. , 2.36
AT T P (2.36)

where 'p is the frequency characterizing the initial fast decay and I"4 is the cut-off frequency

which limits the slow decay of the correlation function af long times. If we assume that

1t should be emphasized that in this case the spectral density function is the Fourier transform of the
correlation function of the electronic spin instead of the Hamiltonian or the loca! field. Since only the transverse
component of the local field fluctuations can contribute the nuclear spin-lattice relaxation, Eq. {2.34) could be
written as oo
YT o f dte™nt (Hy (0) Ha (1))
This formula is more general than Eq. (2.34). If we know the physical basis of the fluctuations of the local field,
we can derive the simple equation directly from above formula, as we will see in the next subsection.
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wn L T'4,T'p and I'y < we < I'p, we can approximate Eq. (2.35) as
(h'Yn'Ye)z 1 . Ca 1 1 A
—kpTy|=-A z — )
7 - gy X |2 2+r2+rp TN )| T Erm te B9

This simple formula has been proved to be successful in describing 1/7) as a function of external

fields for SMMs at room temperature [54, 55].

2.2.2 Low temperature region (kgT < J)

At low temperature the SMMSs occupy the lowest magnetic energy states described by the
total spin value S. If one uses Eq. (2.12) to calculate 1/7) one finds no nuclear relaxation
due to the large energy difference among the molecular quantum states compared with the
nuclear Zeeman energy. Of course the situation would change if one introduces a broadening
of the levels (i.e. replace the ¢ functions in Eq. (2.12) with Lorentzians or Gaussians) as will
be explained in the following section. An alternative approach is to use a semi-classical theory
whereby one describes the relaxation in terms of fluctuations of the magnetization associated
with the probability of a molecule to make a transition from a quantum state to another.
We will first describe this simple model and at the end of the section we will consider a
very interesting case which occurs at very low temperature when the magnetic fluctuations
are dominated by quantum tunneling. This latter case gives rise to nuclear relaxation by a
non-perturbative mechanism which is referred to as strong collision.

We express 1/7; in these systems in terms of the correlation function of a perturbation
Hamiltonian H3. From Egs. (2.13)-(2.17), we have

1 _ 3 +00 st
W= f_ @M -

2 400 .
=Tn [ g(HE () HE(0)) e,

2 J
where (H*(t)H*(0)) is the correlation function of the transverse local field H*, and the
longitudinal field component has been omitted since it does not induce nuclear transitions. A
phenomenological model derived from Eq. (2.38) based on the assumption that the hyperfine

field is proportional to the magnetization and the assumption of an exponential decay of the
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correlation function of the magnetization has been used for the analysis of the temperature
dependence of 1/T7 in Fe8 and Mnl2ac [54, 56-59]:

1_4 mi_m Tm  exp(—Enm/ksT) (2.39)
P T s o —LmfrBL ), .
Tl Zm=+101+wnfm

where A is a parameter related with the average square of the fluctuating hyperfine field
(i.e. ¥2{AH%)), Z the partition function, and 7, is the lifetime of the m magnetic quantum
state expressed in terms of the spin-phonon transition probabilities.

In this thesis, we will adopt a slightly different‘ formula than Eq. (2.39) in the analysis of *'Fe
1/T; data obtained in a very low temperature region (T" < 2 K). In fact for the low temperature
case one can consider only the fluctuations of the two hyperﬁhe field values corresponding to
m = 10 and m = +9. The derivation of the formula for 1/T} in this simple case is illustrated
in detail in Appendix B. Finally, the *"Fe NMR at zero and low fields can be explained mostly
by tunneling mechanism that overwhelms the spin-phonon contribution. (The spin-phonon
contribution reappears when we apply a longitudinal field due to rapid decay of the tunneling
contribution.) In this case, we find that the weak collision approximation, which has been
assumed throughout this chapter so far and is valid in most NMR experiments, fails for the
relaxation due to the tunneling mechanism. In this very rare case, the strong collision formula
should be used since each tunneling event induces the nuclear transition so that 1/7} is directly
related to the tunneling rate. The nuclear relaxation in the strong collision limit is illustrated

in detail in Appendix C and will be discussed in Chapter 4.

2.2.3 Intermediate temperature region (kgT ~ J)

When the temperature is comparable to the magnetic exchange constant J/kg, SMMs
show very interesting features. In particular, AFM ring clusters are characterized by an en-
hancement of 1/T} near a temperature of the order of J/kp. An analytic expression of 1/T}
based on a first-principles perturbative treatment of the hyperfine field can be derived either
quantum mechanically [from Eq. (2.12)] or semi-classically [from Eq. (2.34)]. Let’s consider
the latter case. It can be shown that.the correlation function in the Heisenberg model systems

consists of several terms whose time dependence is of the form exp(+iQ¢), where §2 is either
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zero or the frequencies £2., associated with transitions between energy levels with different
S. The longitudinal components of the spectral density J¥ reduces to a sum of terms which
can be expressed as f¥(T,Q)d(wn — Q). Neglecting second-order effects of the field H, it
follows that the transverse components of the spectral density Jj_:7 are sums of terms of the
form f(T)6(wn — Q@ % w,) where w, is the electronic Larmor frequency. However, given that
wr, We & Qox, the only terms which might realistically contribute to 1/T} are f¥(T)6(wn) and
F9(T)é(we £ wy). This corresponds to the fact that only quasi-static fAuctuations allow for
energy-conserving nuclear transitions at wy,we £ wy. In actual fact we expect that these §
functions are somewhat broadened to Lorentzians in the real material. Thus we obtain the

following expression for the temperature and field dependence of 1/T [60]:

wo Wo
2 217

7 (T H) = Fu(T) (2.40)

where wp is a frequency measuring the broadening of the energy levels, B is a constant
which measures the ratio between components of the magnetic dipole interaction tensor [see
Eq. (2.34)], and F,,(r is a T-dependent function.® At high temperature wp > w, and thus
the field dependence of 1/7} is due to the second term in Eq. (2.40) containing w, = v.H.%
In chapter 5, we will show that the first Lorentzian term in Eq. (2.40) is responsible for
the enhancement of 1/T} at intermediate temperature (kg7 ~ J) and that the characteristic
frequency wp has a power law T dependence: wg ox T with o = 3.5. The power law depen-
dence of wp(7") indicates that the lifetime broadening of the Heisenberg energy levels originates
from the coupling of the paramagnetic ions with ecoustic phonons. It is surprising that the
broadening frequency decreases rapidly and reaches the order of the nuclear Larmor frequency
at intermediate temperature (10-30 K). This remarkable finding proves that NMR . is indeed a

unique tool for detecting such low frequency fluctuations.

%It turns out that F..{T) is equivalent to AxT with a constant A.
3 A quantum-mechanical approach based on Eq. (2.12) also gives rise to the same form as Eq. (2.40) by the
analytical calculation of the matrix elements [61].
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2.3 Detection methods

2.3.1 Free induction decay (FID) and spin echoes

The magnetization M, = My can be tipped into the trénsverse plane by an rf pulse of
frequency wy, and duration 7(< Ty) such that v, Hi7 = #/2. Following the n/2 pulse, the
magnetization in the rotating frame decays at a rate ~ 1/T5 ~ 1/T5 +y,AH, where T3 is the
time constant which describes the decay of the magnetization in the zy-plane and AH is the
spread in static field over the sample due to inhomogeneity of the applied field Hy and/or of
internal hyperfine fields. It should be emphasized that Ty is related to the dephasing of the
magnetization in the zy plane, while T3 is related to the irreversible decay of the transverse
magnetization.

As a result of the spread due to field inhomogeneity, some of the components of the magne-
tization start getting ahead of average and some getting behind. The resulting signal envelope
is called the free induction decay (FID). The characteristic time of the decay of FID corre-
sponds to 7. In order to remove the effect of the field inhomogeneity, the spin echo technique
is widely used in pulse NMR experiment. The idea is the following. Suppose that a 7/2 pulse
is applied along z’ axis in the rotating frame. The magnetization is initially along y' axis, and
shortly after it will dephase. If we apply a  pulse along z' axis after a delay 7 that is shorter
than T3, the dephasing spins are rotated w altogether. The result is refocusing of the spins
along —y' axis at time 27, giving rise to the echo. The echo formation is illustrated in Fig. 2.2.

In the following two subsections we illustrate the basic methods used to measure 75 and
Ty in the simplest case. It should be stressed that in SMMs and in general in broad line
NMR. there are many complications which may make the measurement more involved as will

be discussed in specific cases in Chapters 4 and 5.

2.3.2 Measurement of spin-spin relaxation time, 75

The spin echo does not recover the full height of the FID but decays with the intrinsic
relaxation time constant 7. The advantage of the use of spin echo is obvious since the decay

of spin echo is not affected by the field inhomogeneity. The typical pulse sequence for the
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Figure 2.2 Schematic diagram for the formation of spin echo in a
(w/2)y — T — (m) pulse sequence in the rotating frame. Note
that the echo is formed in the opposite direction to the initial
FID since the reconstruction of the magnetization occurs in —y'
direction.
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measurement of T3 is
T/2 —T — 7 — 7 — echo. (2.41)

It is necessary to capture a number of data points by repeating the above sequence with
different values of 7 and to wait between each sequence for a time of the order of 57} for the
equilibrium My (within 1 % of it) to be established. We can find T3 by measuring the spin

echo intensity J(27) as a function of the delay 27 i.e.

I(27) = exp(—27/T3). (2.42)

2.3.3 Measurement of spin-lattice relaxation time, T}

The longitudinal magnetization M, recovers in a time T following a 7/2 pulse. Thus, in
order to measure 71 we should monitor the recovery of M,. This can be done by rotating by
a /2 pulse the magnetization in the zy plane so as to make M, = 0 (saturation) and then
monitoring the growth of M, towards equilibrium by a second 7/2 pulse. A better method
for measuring Ty, particularly suitable for broad lines, consists of saturating the resonance
with a series of 7/2 pulses and measuring the height of the spin echo, which corresponds to

the magnitude of M,(t), following the saturating “comb” and a subsequent pulse sequence

[Eq. (2.41)] ie.

7f2—n—-7w/2—-T1——T —n/2—T — /2 — T3 — 7 — T3 — echo, (2.43)
saturating “comb” pulses detecting pulse sequence

where the delay 7 must fulfill the condition T3 < 7 <« T1, 7 is the variable delay time for
the measurement of 71, and 73 is a fixed delay. 72 should be short compared with 75 (but
long compared T5) in order to maximize the signal intensity. The use of the comb pulses
has the advantage that the system can always be prepared in an initial state of definite spin
temperature (Ts = co). Moreover, it is not necessary to wait 57} before starting next sequence
with different 7. The wait time can be of the order of T7 giving another advantage, in particular,

for long T1. The recovery of M, then follows a time dependence
M, (8) = Mo [1 — exp(—/T1)], (2.44)

where T is given by Eq. (2.17).
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CHAPTER 3 Magnetic properties and spin dynamics in Fe8 molecular

cluster

In this chapter we review the known experimental results for Fe8 and the theoretical de-
scription of the spin dynamics. In doing so we revisit some aspects of the magnetic properties
and propose some new interpretative schemes. After a short introduction of the Fe8 cluster and
the theoretical basis relevant to interpret the magnetic properties, we analyze the experimen-
tal magnetic susceptibility data. In the low temperature range we used the total spin model
Hamiltonian to perform calculations of the magnetization and the magnetic susceptibility as
a function of external field and temperature. The comparison with the experimental data is
given, showing the good agreement between the theory and the experiments. The quantum
tunneling of magnetizatioﬁ (QTM) is the main subject in this chapter. We will review and
discuss the well-known tunneling phenomena found in Fe8 and their physical interpretations.
In particular, tunnel splitting and its oscillations for the field applied along hard axis will be
studied in detail. We propose a simple way to estimate the temperature and the field regime
in which the tunneling can take place, from the calculated static transverse magnetization as

a function of transverse field and temperature.

3.1 Introduction

3.1.1 Structure of Fe8

Fe8 with the formula [FegO2(OH)1a(tacn)s)®t (tacn= CgN3H;s) [25] is one of the best
studied clusters due to its spectacular quantum effects, such as pure quantum tunneling of
magnetization and coherent quantum oscillations [30].

Fig. 3.1 shows the structure of Fe8 cluster, which consists of eight Fe* (s = 5/2) ions almost
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(c)

Figure 3.1 Schematic diagrams of structure of Fe8 cluster. (a) top view (b)
side view {c) exchange pathways connecting Fe?* centers and
the values of the exchange constants from Ref. [62].
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in a plane. There is no rigorous symmetry but it forms approximate Dy symmetry. The four
ions in the middle of the molecule are in the so-called butterfly arrangement, which is similar
to that of an iron oxide (hydroxide). The inner core of the molecule can be regarded as the first
step toward the formation of a triangular planar lattice. Hydroxo bridges connect the central
core to the four peripheral Fe?t ions, while the presence of the organic ligands prevents the
growth of the iron hydroxide. Also the organic ligands separate the Fe8 molecule in the crystal,
resuiting in a typical intermolecular dipolar fields of the order of 0.05 T [63]. Fe8 crystallizes in
the acentric P1 space group with a = 10.522 A, b = 14.05 A, and ¢ = 15.00 A and the unit cell
contains one molecule [25]. The magnetic ground state of the Fe8 cluster is determined by the
paths of intramolecular exchange interactions:* J; ~ —195 K, Jo ~ —30 K, J3 ~ —52.5 K, and
Jy ~ —22.5 K [62, 64]. The intramolecular exchange coupling scheme is shown in Fig. 3.1(c)
together with the spin structure of Fe3* ions in the ground state S = 10. The spin structure
of the ground state with S = 10 has been suggested by the temperature dependence of the
magnetic susceptibility [65], and confirmed by the polarized neutron diffraction (PND) [62]
and *"Fe nuclear magnetic resonance (NMR) spectrum [40]. The ground state are largely split

into 25 + 1 = 21 magnetic sublevels in such a way that the m = +10 components lie lowest

27, 66].

3.1.2 Magnetization and magnetic susceptibility

A sample containing 1 mol of a molecular compound in a magnetic field H acquires a molar

magnetization M related to H through?

oM

— = 3.1
3H = X (3.1)
where x is the molar magnetic susceptibility. If H is weak enough, then x becomes independent
of H,ie., M = xyH. Although yx is the algebraic sum of two contributions (paramagnetic and

diamagnetic), y will refer to the paramagnetic susceptibility only hereafter.

Tn this thesis, we use the convention that the interaction energy is written as the form of H = — 205 Ji55:8;,
where Ji; is the exchange energy between ¢ and j ion spins. Therefore, the interaction is ferromagnetic for Ji; > 0
and antiferromagnetic for Ji; < 0.

*Most elements of the discussion in this subsection can be found in Kahn [1].
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Let’s consider a molecule with an energy spectrum E, (n = 1,2,---.) in the presence of a
magnetic field H. We can define a microscopic magnetization p, for each energy level n as

OE,

Fn=—"3F" (3.2)
then we can write the macroscopic molar magnetization A:
—38E —
M = N{p,) = NZ”( OF,/0H) exp(—E,/kgT) (3.3)

En exp(—En/kBT)
where kp is the Boltzmann constant, N is the Avogadro’s number, and ), exp(—E,/kpT)
can be defined as the partition function Z. Finally, M and x can be expressed in terms of the

partition function Z,
OlnZ

and
&lnz

If each spin under consideration has an independent magnetic moment i.e., no interaction
between the spins, the susceptibility is inversely proportional to the temperature T, which is

known as the Curie law:

C
X=1 (36)
with .
2
C=n (M) g28(5 +1) (3.7)
3kp

where n is the number of the moments per molecule, g the gyromagnetic ratio, and S the
spin of each moment. It is very useful to remember that N ,LL2B/ 3kp in the cgsemu unit is
0.125048612~ 1/8. If there is an interaction between the magnetic moments, Eq. (3.6) should

be modified leading to the Curie-Weiss law:

C
X=7s (3.8)

The Weiss temperature or Weiss constant @ is given by

288+ 1)J

© 3kp

(3.9)

where z is the number of nearest neighbors and J is the exchange constant.
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3.2 Magnetic properties of Fe8

The static magnetic susceptibility was measured with a SQUID magnetometer (Quantum
Design MPMS) on a sample of non-oriented powders in a field of 0.01 T [57]. The temperature
dependence of the magnetic susceptibility multiplied by T, xT’, is shown in Fig. 3.2(b). At
room temperature x7" is about 20 (emu/mol X), which is much smaller than the Curie constant
35 (emu/mol K) expected for eight independent s = 5/2 spins with g = 2. This is due to the
presence of antiferromagnetic coupling among Fe?t ions. On cooling, xT increases steadily
toward a maximum value of 50.6 (emu/mol K) at about 10 K. The maximum value is close to
but smaller than 55 (emu/mol K) expected for a single total spin S = 10. This discrepancy
may be due to the fact that in polycrystalline powders one measures a statistical average for
the direction of the magnetic anisotropy axis oriented in all direction. Below 10 K a small
decrease is observed. The decrease of ¥T' can arise from (i) the magnetic anisotropy (i.e.,
zero-field splitting) and/or (ii) intermolecular antiferromagnetic interactions, whereby the first
explanation has been assumed in the literature to be the most relevant [15, 67]. In the course of
the present research we have revisited the problem and found that the effect of intermolecular
interactions may also be relevant. We give in the following details of our analysis.

Let’s start from 1/x vs T' plot [Fig. 3.2(a)]. At high temperatures (above 150 K), 1/x is
almost linear versus temperature T, being extrapolated to a negative value at T' = 0, which may
be indicative of a ferromagnetic coupling among the spins. Since the Curie-Weiss (CW) law is
valid only in the temperature range satisfying the condition kgT > J, the effective exchange
energy zJ = —270 K, which was estimated from the four exchange constants reported in
Refs. [62, 64, 65], does not fulfill the condition even at room temperature. However, one can
conjecture another possibility. What if the spin of Fe?t is an intermediate spin 3/2, or what if
an equilibrium state between the high spin 5/2 and the low spin 1/2 is formed? In this case,
the interpretation of 7T should be changed. From the fit by Eq. (3.8) from 150 to 300 K [solid
line in Fig. 3.2(a)], one can obtain C = 15.82 (emu/mol K) and © = 58.13 K, corresponding
to an effective spin seg = 1.55 ~ 3 /2 and an effective exchange constant zJ = 44.04 K. It may

be interpreted that s = 3/2 spins interact ferromagnetically with each other via the exchange
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Figure 3.2 Magnetic susceptibility measured at 0.01 T in polycrystalline
powers (a) 1/x vs T plot. The fit by the Curie-Weiss law
“ gives rise to C = 52.77 (emu/mol K) and © = 58.13 K (solid
line), and C' = 15.82 (emu/mol K) and © = —0.42 K (dotted
line). (b) xT vs T plot. Two theoretical curves represent the
Curie-Weiss law with the parameters obtained in (a). From C
and © values, the effective spin and the effective exchange con-
stant can be derived, as designated in (b). For the discussion
of the validity of the use of the CW law, see text.
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énergy zJ = 44.04 K. Although the occurrence of low-spin high-spin transition is unlikely, its
possibility cannot be completely ruled out unless the high temperature (> 1000 K) data are
available.

In any cases, the above analysis is useful for a rough estimate of the crossover temperature
for the collective total spin. The fact that the curve deviates rapidly from the experimental
data below 160 K implies that a ferrimagnetic order among all Fe®* ions starts to take place,
leading to the ground spin § = 10 at low temperatures. Since the energy gap between S = 10
and S = 9 is about 36 K [15, 64], at sufficiently low temperature compared to the energy
gap, each molecule in Fe8 can be described with the total spin S = 10. In fact xT value, or
equivalently the total magnetic moment of the molecule, is saturated to a constant value at
around 15 K. In the very low temperature region (below 10 K), 1/x is almost linear versus T". If
one assumes that the molecules which have a single spin .5 = 10 are coupled via intermolecular
dipolar interaction, then the interaction may be expressed as H = —J' 37, S; - 8;, where J'
is the inferaction energy between molecules, and S is the total spin operator. As long as
J' « kpT, the Curie-Weiss (CW) law could be used. The fit by the CW law gives rise to
C = 52.77 (emu/mol K) and © = —0.42 K [dotted line in Fig. 3.2(b)]. From Egs. (3.7) and
(3.9), one can obtain J' = —5.9 x 107% K, which is reasonably small for the intermolecular
interaction, and S.g = 9.8, which is surprisingly close to the expected total spin S = 10. The
negative J (or the negative ©) indicates an antiferromagnetic coupling among the molecules
leading to the decrease of x7' at low temperatures. The result is also dré.wn in the inset of
Fig. 3.2(b).

A rough estimate of the dipolar field (z(u)/r3, where (1) is taken as gSup = 20ug, and
the nearest neighbors are 2 for Fe8 with the separation length of ~ 10.5 A between centers of
the molecules) yields Hgaip = 2u/r3 = 0.043 T, which is in good agreement with the reported
value (0.05 T) [63]. On the other hand, from the mean field approximation, one can express '
the local field as Hyo = 2J'S/(gup). Using J' and Seg obtained above one has Hy = 0.086
T. Although Hi is a factor of 2 larger than Hygip, the agreement between the two fields

estimated independently could be considered to be satisfactory. A very interesting issue in
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SMMs is the possibility of observing long range ordering (LRO) at low temperature due to the
intermolecular dipolar interaction among the high spin S molecules. The main obstacle to the
establishment of LRO appears to be the fact that the intermolecular dipolar interaction energy
is so small that the predicted ordering temperature falls below the freezing temperature of the
SMM’s magnetization. However, in Fe8 ther presence of a large in—pl_a,ne anisotropy makes
the tunneling between individual easy directions very effective and thus the poésibility of
the establishment of a ground state with ferromagnetic dipolar order below 0.13 K has been
suggested [68]. In fact, the experimental observation of the dipolar ordering in Mn6 molecular
cluster has been reported for the first time by Morello et al. [69].

We consider now in detail the magnetization results at low temperature where quantum
effects may be relevant. Fig. 3.3 shows the field dependence of the magnetization measured on
the single crystal in the external fields along the a axis at 2.0 K (empty circle) and perpendicular
to a axis at 1.8 K (empty triangle) (data taken from Ueda et al. [70]).3

As mentioned above, in the strong coupling limit at low temperatures (roughly below 20

K), the cluster can be described by the simple model Hamiltonian with the total spin S = 10.
H = DS, + BE(S2 — 52) + gusS- H, (3.10)

where Sz, Sy, and S, are the components of the total spin operator, D = —0.293 K is the axial
anisotropy and F = 0.047 K is the in-plane anisotropy {66], and the last term is the Zeeman
energy associated with an external field H.

The exact diagonalization of Eq. (3.10) gives rise to the (25 + 1) = 21 energy levels of the
magnetic quantum number m = —10,—9, -, 9, 10. The field dependences of the energy levels
in the S = 10 ground state are shown in Fig. 3.4. From this energy level scheme, it is possible
to calculate the magnetization directly from Eq. (3.4). First, we performed the calculations of

the magnetization M and the magnetic (differential) susceptibility 3M/0H by using Egs. (3.4)

3The purpose of the magnetization measurements in Ref. [70] was to obtain information regarding the
relationship between the anisofropy axes and the crystal axes in Fe8. Therefore the parallel field H| in Ref. [70]
means that the field is applied along a-axis, one of the crystal axes (a,b,c) not along the easy z axis. Also in
Ref. [70] the sample is rotated around the e axis so that the transverse magnetization is an average value in
zy-plane which is tilted off the perpendicular field to & axis. However, we found that one could use a fixed
azimuthal angle ¢ = 63° from the best fitting procedure.
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lines).
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and (3.5) as a function of an external field that is applied along one of three anisotropy axes.
The results are shown in Fig. 3.5 for the longitudinal field and Fig. 3.6 for the transverse field
at various temperatures designated in the figures. For H applied along easy axis, M saturates
rapidly to 20up and OM/OH decreases accordingly, and both M and OM/0H depend strongly
on the temperature.

For H applied along medium and hard axes, the saturation of M takes place at much higher
field as expected, but there appears to be an interesting feature. The magnetization curves
show an abrupt increase at some field value, which results in a i)ecuﬁar peak in 8M/8H curves
as shown in Fig. 3.6. The peak of dM/8H is much more pronounced at lower temperature
(below 0.5 K). With increasing temperature, the peak shifts to lower field and broadens, and
finally it disappears above a certain temperature (note that there is no peak at 8 X in Fig. 3.6).
The field value at which the peak occurs depends on the orientation of H with respect to the
snisotropy axis. If the F term is zero, the peak positions for both & and y axes coincide at an
intermediate field value. This means that the peak itself is not due exclusively to the presenée
of a transverse anisotropy term. The peak of OM/3H was also derived and investigated in
the other high total spin (S = 10) cluster Mnl2ac [71]. The authors in Ref. [71] ascribed the
origin of the peak to gquantum fluctuations. An enhancement of the amplitude of quantum
fluctuations can indeed influence the susceptibility as will be shown in subsection 3.3.3.3 with
a different approach than used in Ref. [71]. ’

With the assumption that the magnetization data were obtained without any misalignment
effects, we get the dotted lines in Fig. 3.3. For the case of H || z, we introdﬁced an angle between
the easy z axis and the ﬁeld direction, and increased it until we get the correct curve. The
good agreement of the theory with the data (solid line) was obtained with & ~ 15°, which angle
indeed corresponds to the angle between crystal a axis and easy a,nisotfopy axis. Whereas the
transverse magnetization data were accurately fitted with the “misalignment” angle ~ 3.5° off
zy plane and the azimuthal angle ¢ = 63°. Here we used an effectivé overage angle rather
than taking into account the effect of the rotation of the sample, and it is found that this

simplification works very well, as shown in Fig. 3.3. Also the magnetization measured in
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polycrystalline powders at 2 K (filled circle) taken from Delfs et ol [65] is shown in Fig. 3.3
for the comparison.

The temperature dependence of the magnetization at 0.05 T is shown in Fig. 3.7. In (a),
the solid curve was obtained by taking into account the angle between the field direction and
z axis, 15°. It turns out that the temmperature dependence of the transverse magnetization in
Fig. 3.7(b) is very sensitive to the given field value. In order to improve the quality of the
fit, we used the field value 0.052 T instead of (.05 T reported. The transverse magnetization
exhibits complex behavior in the low temperature region. Namely, it makes a broad peak at
around 7 K and increases again at around 3 K. The upturn of the transverse magnetization
at very low temperature is due to the field component along z axis. In fact, the calculation of
the magnetization for the field applied along the zy plane (no z component) does not show the
upturn but becomes T independent at sufficiently low temperature, as drawn in Fig. 3.7(b).

Our calculations for the field and the temperature dependence of the magnetization are in
good agreement with the experimental results in Ref. [70]. Since, however, the measurements in
Ref. [70] have been performed with applied fields along the crystal axes, which do not coincide
with the anisotropy axes, the confirmation of the peak of OM/OH is not established. The
theoretical prediction of the peak of M /0H could be verified with the accurate measurement
of the magnetization. For Mn12ac, the measurement of the magnetization may be very difficult
because the relaxation time of the magnetization is extremely long in the low temperature
region. However, Fe8, for which the magnetization could be measured even at the temperature

below 0.1 K, is a good candidate for the investigation of this interesting quantum effect.

3.3 Quantum tunneling of the magnetization

During the last two decades, there has been a considerable interest in the phenomena
associated with macroscopic quantum tunneling (MQT) of the magnetization in small magnetic
particles. For the observation of MQT, it is required that we have a “macroscopic” variable
controlled by a “microscopic” energy [72]. In this sense, a molecular magnet is a unique system

for the observation of MQT. The magnetization of Fe8 could be treated as a “macroscopic”
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,variable since the spin 5 = 10 of the molecule is associated with many internal degrees of
freedom (8 individual spins of s = 5/2). Whereas the energy involved is the exchange energy
J and the single ion anisotropy.

In 1993, Sessoli et al. [26] reported that the relaxation time of the magnetization measured
in oriented Mnl2ac powder follows an exponential law at low temperature, which gives rise to
magnetic hysteresis of purely molecular origin. Three years later, the magnetic hysteresis was
best observed in a single crystal of Mnl2ac with the distinct steps that demonstrate the fast
relaxation originating from the tunneling mechanism [29]. Ever since the remarkable findings,
quantum tunneling of magnetization (QTM) has been one of the most active research subject
in molecular magnets. Fe8 is an even better cluster than Mnl2ac for studies of QTM due to
following reasons: (i) the relaxation time of the magnetization is much shorter than Mn12ac so
that it can be measured at all accessible temperatures; (ii) it has a sizeable in-plane anisotropy
which is crucial for QTM to take place. In this section, we will deal with the theoretical
aspects of QTM expected in Fe8, basing the calculations exclusively on the single total spin

model approximation.

3.3.1 Tunneling in zero field
3.3.1.1 Easy axis magnetic anisotropy and superparamagnetism

In Eq. (3.10), if D < 0, z is the easy axis of magnetization and the term |D|S2 corresponds
to the height of the energy barrier.* In zero field the energy barrier sepé,rates a set of degenerate
states |+ m) and | — m} with the energy E+,T; = E_pn,, each state being localized on the left
or right side of the barrier, as shown in Fig. 3.8(a). When the thermal energy is larger than
the energy barrier, the molecule behaves like a paramagnet i.e., the magnetization flips freely
and its time average is zero. Upon further cooling, the relaxation rate of the magnetization
771 becomes slow giving rise to superparamagnetic behavior. The relaxation rate follows the
Arrhenius law:

771 = 75  exp(=U/kpT), (3.11)

“For a half-integral spin state, the height of the barrier should be expressed as (S — 1/4)|D|.



42

where 75 ! is the constant rate at infinite temperature® and U/kg is the energy barrier for the
. reorientation of the magnetization. It should be noted that the measured U/kp &£ 22.2 K [27]
in Eq. (3.11) is lower than the expected barrier height calculated from |D|S2, owing to the

effects of quantum tunneling of the magnetization.

3.3.1.2 Transverse magnetic anisotropy and tunnel splitting

The transverse term E(SZ — SZ) is responsible for QTM because the term is non-diagonal
and does not commute with S,, and thus significantly splits the pairs of states with xtm
providing possible tunneling window. Due to the presence of the non-diagonal term in the
Hamiltonian, an eigenstate should be an admixture of the different m states.

Let us consider the new basis |m') which is spanned in the basis of the eigenstates |m) of

S, ie., 1o

)= > emlm). (3.12)

m=—10

The coefficients ¢, = {m|m’) in zero field are tabulated in Tab. 3.1. As it can be seen in

Tab. 3.1, for larger m’, |m) is a superposition of the pair of states | + m) and | — m). For

example, | — 10') and | + 10') states can be written approximately,
' 1
—10) = — 10 —10
| ) \/ﬁ(l +10) + [ —10})

1 (3.13)

|+ 10 = —2(| +10) — | — 10)).
Thus the new ground states are just the pair of symmetric and antisymmetric wavefunctions
of the actual ground states with the energy gap (or tunnel splitting) A. From Tab. 3.1 it is
clear that a simple expression such as Eq. (3.13) is not valid for small 7/ states. In particular
the states |m/| < 5 are so strongly admixed that S, = m is no longer a good quantum number.
However, at very low temperatures, all the molecules can occupy only a few lower energy states

close to the ground states, and thus one can keep using this energy level scheme as a good

s'ro_ ! is sometimes called the relaxation attempt frequency, the frequency with which the magnetization

fiuctuates in a potential well before jumping to the other orientation. The obtained value 7o ~ 2 x 1077 s for
both Fe8 [27] and Mnl12ac [26] is a few orders of magnitude larger than the value observed in classical bulk
superparamagnets (tp ~ 107*® — 1073 5) [73], indicating that the slow relaxation is not a bulk phenomenon
but of molecular origin.
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approximation. Also we can see in Tab. 3.1 the mixture of states differing by 2 in m due to
the second order transverse term.

At first sight, the admixture of [+10) and |—10) seems impossible in the first approximation
of the perturbation theory because the second order transverse term couples m states only by
Am = 2. In fact, only the tenth order perturbation theory can lead to the coupling between
the two lowest states. This explains the extremely small tunne! splitting in the ground doublet,
Ajgg ~ 107° K, and the much larger splitting for smaller m states (see Fig. 3.13). It also explains
the very high power dependence of the tunnel splitting from the perturbation terms and/or
the transverse field as will be discussed further on.

The energies of the m sublevels of the S = 10 ground state for Fe8 in zero field are shown
in Fig. 3.8(a). It is easily seen that the energy levels |m| < 5 is heavily admixed in zero field,
and the highest energy does not simply associate with the m = 0 state a.lone, as also shown in
Tab. 3.1. This implies that in Fe8 the height of the energy barrier is not well-defined. However
the energy level scheme has been quite successful in deseribing the quantum phenomena in the
low temperature region. This is because only the states close to the ground states m = £10
can be populated at very low temperature.

If the temperature is much less than the energy difference between the ground states and the
first excited states, then only the ground states will be occupied. The tunneling process between
two degenerate m states across the barrier can occur coherently or incoherently depending
on the dissipation mechanism caused by the environmental effects such as the spin-phonon
interaction, the intermolecular dipolar interaction, and the hyperfine interaction of the electron
spins with nuclear spins. Coherent process means that if we prepare an initial wavefunction,
for example | + 10) which is localized in right well, the time evolution of the wavefunction will

be

e—iHE/R| | 10y — (e-iE+t/h| +107) e~ Bt/ 10’)) /2 (5.14)
3.14
_ o—iE4t/h (| +107) 4 iU/ _ 10;)) /V2,

where E4 are energies for eigenstates | & 10'), and A = Fy — E_. After a time ¢t = wh/A,

the initial state | + 10) makes transition to the final state | — 10). Hence the wavefunction
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Table 3.1 The coefficient ¢,, = (m|m') obtained from the diagonalization
of the model Hamiltonian Eq. (3.10) in zero field. The signifi-
cant digits were taken up to 3. Thus 0 in this table means just
negligible mixture of the states.
m) [1-10) [+10% [-9) [+9) [-8) [+8) |-7) [+7) |6} [+6)
[+10) | 0.706 0.706 0 0 -0.045 -0.045 0 0 0003 -0.003
|+ 9) 0 0 -0.702. 0702 0 0 0084 0084 0 0
| -+ 8) -0.045  -0.045 0 0 -0.694 -0.694 0 0 0.127 -0.127
|+ 7) 0 0 0.083 -0.083 0 Y -0.678  0.678 0 0
|+6) | 0006 0.006 0 0 0.125 0125 0 0 0644 -0.652
|+ 8) 0 0 -0.014 0.014 0 0 0.176  -0.175 0 0
[+ 4) 0 0 0 0 -0.028 -0.027 0 0 -0.240 0.231
[+ 3) 0 0 0.003 -0003 0O 0  -005 0048 O 0
|+ 2) 0 0 0 0 0.006  0.006 0 0 0.098 -0.073
[+ 1) 0 0 0 0 0 0 0.018 -0.009 0 0
[0) 0 0 0 0 -0.003 0 0 0 -0.062 0
-1 0 0 o 0 0 0 -0.018  -0.009 0 ]
|—2) 0 0 0 0 0.006 -0.006 0 0 0.098  0.073
| —3) 0 0 -0.003 -0.003 0 0 0.080 0.048 0 0
| — 4) 0 0 0 0 -0.028 0.027 0 o -0.240 -0.231
| - 5) 0 0 0.014- 0.014 0 0 -0.176  -0.175 0 0
| — 8) 0.006 -0.006 0 o 0.125 -0.125 0 0 0.644  0.652
-7 0 0 -0.083 -0.083 0 0 0.678  0.678 0 o
[—8) -0.045 0.045 0 0 -0.694 0.694 0 0 0.127 o.127
|—9) 0 0 0702 0702 0 0 0084 0084 0 0
| - 10) 0.706 -0.706 0 0 -0.045 0.045 0 0 0.003 0.003
[m) [1=8) [+5) [-4) [+4) [|-3) [+38) [-2) [+2) [-1) [+1) [0)
i+ 10) 0 0 0 0 0 0 0 0 0 0 0
|+9) | -0.008  0.008 0 0 0 0 0 0 0 0 0
| + 8 0 0 0.021  0.017 0 0 -0.004 0 0 0 0
|+ 7 -0.174 0.179 0 0 -0.068 -0.031 0 0 -0.007 0 0
|+ 6) 0 0 0.239  0.240 0 0 -0.110 -0.040 0 0 -0.005
|+ 8) -0.562 0.617 0 0 -0.369  -0.295 0 0 -0.132 -0.032 0
| +4) 0 0 0430 0591 0 0  -0495 0312 0 0 -0.106
[+3) | 0328 -0284 0 0 -0334 0594 0 0 0527 0258 0
| +2) 0 0 -0.422  -0.306 0 0 -0.316 -0.633 0 0 -0.462
[+ 1) -0.216 0.078 0 0 0.499 0.242 0 0 -0.452 -0.660 0
|0} 0 0 0398 0 0 0 053 0 0 0 -0.743
|—1) 0.216 0.079 0 0 -0.499  0.242 0 0 0.452 -0.660 0
—2) 0 0 -0.422 0.3086 0 0 -0.316 0.633 Y 0 -0.462
-3 -0.328  -0.284 0 0 0.334 -0.594 0 0 0.527 -0.253 0
| — 4} 0 0 0.430 -0.591 0 0 -0.495 0.312 0 0 -0.106
| — 5} 0.562 0.617 0 0 0.369 -0.295 0 o 0.132 -0.032 0
| = 6} 0 0 0.239 -0.240 0 0 -0.110  0.040 0 0 -0.005
[ = 7} 0.174 0.179 0 0 0.058 -0.031 0 0 0.007 0 0
[—8) 0 0 0.021 -0.017 0O 0 -0004 0 0 0 0
|—9) | 0008  0.008 0 0 0 0 0 0 0 0 0
[ — 10) 0 0 0 0 0 0 0 0 0 0 0
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oscillates in time between the states |+10) and |— 10} with the tunneling frequency, wr = A/A.
This phenomenon is also known as Rabi oscillations. On this account, A is called the tunnel
splitting. In incoherent tunneling, the spin can tunnel with a finite probability but without
oscillations due to the damping associated with the environmental effects mentioned above.
In fact, one can observe only incoherent tunneling in Fe8, since the extremely small tunnel

splitting compared to the broadening of the energy levels cannot lead to the coherence.

3.3.1.3 Tunnel splitting and tunneling in the ground state in zero field

The A, in zero fleld can be expressed in terms of the anisotropy constants and the total

spin [74],

A= 8(|D| — E) (S + m)! ( E E))m (3.15)

[m = 1)1 (S —m)! \8(D| -
For Fe8 cluster, Eq. (3.15) gives rise to A1g = 22X 1072 K, Ag = 3.7 x 1077 K, and Ag =
2.62x 1075 K. The results are consistent with the values obtained from the exact diagonalization
- of the Hamiltonian (see Fig. 3.11). Although A, with decreasing m increases rapidly (As ~ 0.3
K), the tunnel splitting with large m is very small. At very low temperature where the
lifetime broadening of the levels becomes very small one can hope to observe the pure quantum
tunneling regime in the ground state. However, even a minute longitudinal magnetic field can
lift the degeneracy of the two £m states and prevent the tunneling. For example, 102 T
corresponds to the energy, gupS; x 107° = 1.3x 1078 K > Ajq, which is large enough to cause
the molecules out of resonance. In particular, the intermolecular dipolar field of about 0.05
T introduces significant longitudinal field components, which destroy the resonance condition.
This can be easily seen by a variational argument [75, 76]. Let’s consider the ground states
| £ m') and their energy E; and E_. It was already shown that those states can be written
as a superposition of | £=m) [Eq. (3.13)]. In order to apply variational principle, let's write the
ground state as

|¥) = sina|+m') + cos a| — m'), (3.16)

and the Hamiltonian as H = Ho+Haip = Ho—7zSs, where v, = guup Haip» with the longitudinal

component of the dipolar field Hysp ,. Using the fact that (+m/|S;|—m/) = (—m/|S.|+m/) = m
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and {(+m'|S,| +m') = (—m/|S;| — m') = 0, we have
(| WY = (+m/[Ho| + m') + Ap, sin? & — mey, sin 20 (3.17)

The minimization of Eq. (3.17) with respect to « leads to,

Yz

tan 2o = —
an 2o A

(3.18)

where A, is the tunnel splitting for S, = m. Since vy, 3> Ap,, the allowed values of « are only
+m/4. Therefore, the ground states are localized in either side of the potential well i.e., either
+m or —m, and the tunneling cannot occur.

The above argument, however, is in contrast with the experimental observation of QTM.
The matching of the energies of the -m) states can be restored by a distribution of hyper-
fine interactions at low T where lifetime broadening due to spin-phonon interaction can be
neglected. This explanation was advanced by Prokofe’v and Stamp (PS) [77, 78]. The funda-
mental idea is the following. Initially, the rapidly fluctuating hyperfine fields bring a fraction
of the molecules to resonance. The tunneling relaxation of the fraction of the molecules mod-
ifies the dipolar fields and brings the initially off-resonant molecules into resonance. In this
way, the experimental observation of the tunneling effect can be possible. Indeed, a Gaussian
lineshape for the distribution of the tunneling rate due to the hyperfine fields was observed ex-
perimentally using an array of micro-SQUIDs by Wernsdorfer et al. [63, 79]. The half linewidth
0.8 mT of the Gaussian is in agreement with the predicted value of 0.3 mT by Prokof’ev and
Stamp. The relationship between the width of the distribution and a typical hyperfine energy
was theoretically probed by the use of Monte Carlo simulations [80]. Also the crucial role of
the hyperfine fields in the tunneling process was confirmed by the remarkable isotope effect:
enrichment with 5"Fe (s = 1/2) enhances both the tunneling rate and the linewidth, while the
enrichment of 2H (s = 1) causes slower rate and smaller linewidth [81, 82].

Af a given low field and at short times, PS theory predicts that the magnetization should re-
lax as M (t) o< 1= +/t/7aqrt Where the rate 1/7g4r is proportional to the energy bias distribution

P(¢y). Indeed, /% relaxation has been observed in Fe8 [63, 83] and Mn12ac [84, 85].
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Figure 3.9 Schematic diagram for the tunneling mechanism by hyperfine
interaction. The energies of the states Lm are separated by
the bias energy £y arising from dipolar interactions among the
molecules. Each state is broadened by the rapidly fluctuating
hyperfine field, allowing the tunneling between two states. The
Gaussian distribution of the tunneling rate by the hyperfine
field for each state is compared with the otherwise very narrow
tunnel window.

3.3.1.4 Incoherent tunneling and funneling in the excited states

At temperatures higher than 0.1 X, the lifetime broadening of the magnetic levels prevents
any coherent tunneling. Also as the temperature is increased the lower m values become
populated and quantum tunneling between excited m states can occur [see Fig. 3.8(a)]. Since
this requires phonon absorptions and emissions, it is called phonon assisted tunneling. The
$unneling process by the thermal assistance is very important mechanism because the tunnel
splitting is much larger for the excited states. In fact, the experimental observations of QTM
in both Mnl2ac and Fe8 at T' > 1 K are mostly associated with this mechanism. Thus the
reversal of the total magnetization M at temperature comparable to the barrier is a complex
phenomenon resulting from the combination of thermal excitation to the lower m values (higher

energy states) combined with tunneling in the excited states. The calculation of the relaxation
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of M in this regime called mixed thermal and tunneling regime or phonon-assisted relaxation
has been performed by many authors [75, 76, 86-90]. In our case we are interested in the
calculation of the tunneling probability between quasi-degenerate m states due to a phonon-
assisted mechanism or incoherent tunneling.

In 1980, Kagan and Maksimov [91] showed that two-well tunnel kinetics of the particle, in
the presence of the interaction only with the phonons, can be solved by taking into account the
one- and two-phonon processes, separately. Recently, their derived formulas were reinterpreted
by Tupitsyn and Barbara [92], and the incoherent tunneling rate is expressed as:®

Afn,m’ Wi
€2 o T AL e+ WA

(3.19)

Pm,m’ =

where Wy, is the lifetime broadening due to spin-phonon interaction, Ap, s is the tunnel

splitting, and &p, v is the longitudinal bias field,
Emmt = Em — Eny + &t (3.20)

where Ep, — Epy is the longitudinal bias caused by the external field H, (zero when H, = 0)
and &t is the longitudinal bias arising from both hyperfine and dipolar fields.

A similar formula has been derived by Villain et al [88, 93], and later by Leuenberger and
Loss, independently [89, 90]. Neglecting slight differences between the two formalism, we can

express the tunneling rate between m and m’ states as:

T A?n,m’ W,
mym’ = (Em, — Em’)2 + an%

(3.21)

We can see that as compared to Eq. (3.19) Eq. (3.21) does not have the internal bias energy
&int and Afn,m, in the denominator. Since A, is expected to be much smaller than the
broadening Wy, for Fe8 system, it is the term &ny that gives rise to the difference between

Eqgs. (3.19) and (3.21).

5Tt is worth pointing out that Kagan and Maksimov have presented two relaxation rates (longitudinal and
transverse) for the molecular magnetization. Eq. (3.19) corresponds to the longitudinal relaxation rate, which
can be associated directly with 1/T1. On the other hand, the transverse relaxation rate (not presented here and
which is the analogue of the NMR. 1/T3) is much smaller than the longitudinal one.
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The PS theory [77, 94] discussed earlier for the tunneling in the ground state also leads to

a prediction for the incoherent tunneling rate:

Flﬁ(f) — %e—[ﬂ/fo (3 22)
V7l ’ '

where both & and I are of the order of the amplitude of the hyperfine bias field. Eq. (3.22) é,nd
(3.21) are almost identical in zero field (¢ = 0 i.e., Ep — Ep = 0) and ' = W,,. However, one
should note that the PS tunneling mechanism is quite different since no spin-phonon broadening
is considered and the tunneling takes place as the hyperfine bias field sweeps through the
matching condition for the £10 states leading to a Landau-Zener tunneling probability.
Since there is not yet a consensus about the mechanism for incoherent tunneling in SMMs
we adopt an expression which approximates all three expressions Eqgs. (3.19), (3.21), and (3.22):
A2

= SmwWm
, é.gﬁ.,m’ + WT%L

(3.23)
The crucial conceptual difference with Eq. (3.21) is that the resonance width is determined
not only by the phonons but also by the internal bias. Wy, in Eq. (3.21) is just phonon transi-
tion probability, while Wy, in our simplified model Eq. (3.23) represents the level-broadening
whatever the origin is. The width W, in higher energy states should increase due to the large
density of states of phonons. For the ground state tunneling, the use of Eq. (3.23) is still valid,
because Wy, can be defined as the hyperfine broadening, which must be regarded as an intrinsic
broadening. Then Wjp has the same meaning as L in Eq. (3.22). In fact, Wip = 2.5 x 108
(rad/s) estimated in Chapter 4 from the NMR measurements corresponds to 2 mK, which is a
correct order of magnitude of the hyperfine energy taking into account the 57Fe enriched sam-
ple measured. It should be emphasized that &y i3 actually time dependent since, according to
PS theory, each tunneling event modifies the internal bias. The extra dynamics of the bias is
hardly implemented in the theoretical model. Fortunately, the dynamics could be treated as
a quasi-static because the change of the bias must be slow compared to typical experimental
time. Then it would be reasonable if we interpret &y as a half-width of the average internal

field distribution.



51

0.4, 0.3,
and 0.04 K

| 1 |
-1 0 1

H (T)

Figure 3.10 Hysteresis loops measured in a single crystal Fe8 at the con-
stant field sweep rate of 0.14 T/s. The figure was extracted
from Ref. [10].

Finally, the total effective tunneling rate can be obtained by summing up Iy, v multiplied

by the Boltzmann factor,

[=) Tppye BnlksT, (3.24)
m

3.3.2 Tunneling in a longitudinal field

If a magnetic field is applied along the z axis the energy levels of the m states change
rapidly with a slope equal to mgup as shown in Fig. 3.4(c). Since the degeneracy is removed,
the tunneling is blocked. The tunneling condition, however, can be restored when +m and

—m -+ n levels come into resonance (i.e., level crossing) at a field value given by
H,(n) =nD/gus, (3.25)

where n is an integer. For example, the first level crossing will occur at ~ 0.22 T as depicted
in Fig. 3.8(b).
The stepped hysteresis observed in Fe8 [10, 30] is an experimental proof of the above ar-

gument. The steps are separated by about 0.22 T and equally spaced, as shown in Fig. 3.10.
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The flat regions correspond to field at which the relaxation is slow, and the sharp steps are
attributed fo fast relaxation, determined by resonant quantum tunneling between +m and
—m + n states. At different values of the field, QTM is éuppressed due to the energy mis-
match. Therefore, the stepped hysteresis are strong evidence of the phonon-assisted QTM.
Moreover, the hysteresis curve becomes temperature independent below ~ 0.4 K, being in
excellent agreement with the temperature iﬁdependent relaxation time of the magnetization
below 0.36 K [95]. These observations demonstrate that a pure quantum tunneling region is
attained at such a low temperature. On the other hand, for Mn12ac, no clear evidence of the
pure quantum tunneling regime was observed.” It is obvious that the difference of the tunnel-
ing mechanism in the two clusters arises from the fact that the transverse magnetic anisotropy
is large enough to establish the tunnel window for the pure QTM region in Fe8 but not in

Mni2ac.

3.3.3 Tunneling in a transverse field
3.3.3.1 Tunnel splitting with an applied field along medium axis

The tunnel splitting can be increased enormously by applying a transverse field along
medium y axis as shown in Fig. 3.11. For sufficiently large transverse field, the tunnel splitting
of the ground state Ajo can become larger than the level broadening § ~ 0.03 K. Our calculation
~ without taking into account the fourth order anisotropy shows that Ajp = 0.037 K > § at 2
T. Under this condition, the coherent QTM can be established. It has been reported that the
observation of the coherence was made experimentally at a transverse field > 2 T and in the
temperature range of a few tenth of mK in Fe8 [96-98]. It should be stressed, however, that
the enhancement of A, by the transverse field does not hold when the symmetry in the energy
level scheme is broken i.e., when the paired states become independent from each other. Above
about 2.5 T, as seen in the Fig. 3.4(b), the tunnel splitting may lose its meaning.

One can apply a transverse field in addition to the longitudinal field which generates the

"Only with applying a transverse field of 3-4 T {i.e., increasing tunnel splitting), the pure tunneling regime
was observed below 0.8 K {85].
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energy matching condition at & field given by Eq. (3.25).2 The calculated tunnel splitting
between m = +10 and m = —10 4 n with an integer n is shown in Fig. 3.12. For very small
field, we observe the parity effect (see inset in Fig. 3.12). Except for the low field region, the
tunnel splitting increases with increasing n, just like the case with increasing m in zero field
(see Fig. 3.11). The parity effect is clearly visible when the field is applied along hard z axis,
-as shown in Fig. 3.13(b). The parity effect could be associated with the Kramer’s theorem if
we introduce an effective total spin. At zero transverse field, them = +10 and m = —-10+n
states form a quasi-ground state corresponding to the effective total spin, (20 — n)/2. For odd

integer n, the total spin is a half integer so that the ground state must be doubly degenerate.

3.3.3.2 Tunnel splitting with an applied field along hard axis: quantum

tunneling oscillation

For H applied along z axis, we see that A, oscillates regularly as a function of the applied
field, as shown in Fig. 3.13(a). The first rﬁinimum occurs at .13 T and the second minimum
at 0.4 T, and so on, the separation between minima Being 0.27 T. Also the number of minima
is determined by m value, that is, 10 for m = 10. The unique quantum feature arises from
constructive or destructive interference of quantum spin phases of two tunnel paths, which is
an analogue of Berry phase [99]. The interest on the geometrical phase arises from the fact
that it, unlike the dynamic phase, is a measurable physical quantity. The quantum oscillation
in small magnetic particles has been predicted theoretically {100-102] utilizing the Feynman
path integral formalism. For the tunneling between degenerate spin doublet separated by the
energy barrier, however, no classical path exists. This problem is detoured by introducing an

imaginary time (or Euclidean time) t = 7. The imaginary-time propagator is given by [103]
Uss = (Fle™Mi) = [ De-s/" (3.26)

where |i) and |f) represent initial and final state, respectively, D is defined via the discretised

version of the path integral, and § = [ dr£ is the classical action defined through the classical

8 Actually we used the precise matching field value, H,(n) = 0.2153296510645n. Later, we will show that the
precise value is required for the simulation of the quantum phase interference effect.
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Lagrangian. In our case, we can assume only two tunneling paths in yz plane, clockwise (path

1) and counterclockwise (path 2). The phase difference for the two paths is deduced to be [101]
(&1 — S52)/h = —iS A1, (3.27)

where &1 and 83 are the actions for the paths 1 and 2, respectively, S is the total spin, and
A1 is the area enclosed by the two instanton paths. Therefore, if Ajg equals nx/S with an
odd integer n, the tunnel splitting is quenched. More precisely, according to Garg [102], the

tunnel splitting is quenched whenever®

H, = 2/2E(D|+ E)(m — n + 1/2)/gus, (3.28)

vu;here m runs from 1 to S, and n is an integer up to m, and E and D are the anisotropy
constants in Eq. (3.10). Also similar results have been derived by using WKB approximation
[104, 105]. Eq. (3.28) explains not only the exact field value for the suppression of the tunnel
splitting but also the number of minima for given m, although Eq. (3.28) will break down when
the higher order Hamiltonian terms are included.

We can also setup quasi-degenerate paired states such as m = +10 and m = —10 4 n with
integer n in the presence of a longitudinal field, nD/gup ~ 0.22n. However, our calculation
shows that the resonant tunneling condition with a longitudinal field can only occur at H,(n) =
0.2153296510645n. Changing the longitudinal field by the amount of 1078 T, we find that the
oscillations disappear completely. It is apparent that the required accuracy is far beyond
the ability of any experimental technique, which explains why there must be a broadening
mechanism for the tunneling (see subsection 3.3.1.3).

The calculated results for n = 0 — 4 are shown in Fig. 3.13(b). The parity effect is clearly
shown. As mentioned previously, the parity effect could be viewed as a result of the different
character of half-integer spin and integer one. The quenching of the tunnel splitting in zero
field for the half-integer spins is easily checked by applying any half-integer m in Eq. (3.28).

Also we find that the number of oscillation is consistent with the effective spin description.

$Garg’s Hamiltonian in the form of H = k152 + k252 is different with Eq. (3.10). In this case, k; and ko in
his formula should be rewritten in terms of D and E, i.e,, ki =2F and ka =D + E.
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The topological phase interference as well as the parity effect have been measured by
experiment, for the first time, by Wernsdorfer and Sessoli [30] by the use of the Landau-Zener

tunneling probability [106--108],

2
Py =1 —exp (Eéﬁimﬁ‘ci—%) , (3.29)
where dH/dt is the constant sweeping rate of the field, and m and m' are the levels which
are crossed. With a fixed sweeping rate, the tunnel splitting A is extracted from Eq. (3.29).
The experimental results, however, revealed quantitative differences with our theoretical cal-
culations. First, energy scale of the tunnel splitting is two orders of magnitude larger than
calculated one. Second, the period of oscillation (0.41 T) is substantially larger than the calcu-
lated one {0.27 T). Third, there are only 4 quenching fields instead of 10. These disagreementé |

could be elucidated by taking into account the fourth order terms in the spin Hamiltonian.

We simulated this situation adding the higher order Hamiltonian to Eq. (3.10),
H' = D2S; + Ea[S(SZ — 82) + (82 — 52)S2) + C (5% + 8%), (3.30)

where Dy = 3.54 x 107° K, B3 = 2.03 x 1077 K, and C = —3.5 x 1075 K. D, and E5 values
are the same as the ones in Ref. [66] but C, which is 8 times larger than the value in Ref. [66]
with the opposite sign, has been determined from the best fit to the experiment. Since the
C term is most important one with regard to the tunnel splitting, this approach should be
acceptable for our purpose. The result is shown in Fig. 3.14, where the experimental data
points were taken from Ref. [30]. Our calculated results reproduce the period of oscillation
' and the correct energy scale in the experiment. But the discrepancy between the theory and
the experiment is still not ignorable. It is believed that there is a possibility of misalignment
effects. Within the single crystal, the anisotropy axes of each molecule may not coincide with
those of the other molecule, making a conic distribution of angles. In other words, there is no
“unique” anisotropy axes for the crystal, and an external field cannot be applied “along” one
 of anisotropy axes. We expect that the distribution angle for z and y axes is much larger than

the one for easy z axis due to the strength of the crystal field.
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of m = 10 levels taking into account the higher order Hamil-
tonian [Eq. (3.30)]. (a) The different azimuthal angle ¢’s are
the same as the ones in the experiment. (b) We consider the
misalignment effect, allowing ¢ to vary up to 3° and applying
a tiny longitudinal field, 8 x 1070 T. The experimental data

were taken from Ref. [30].
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hY

As a matter of convenience, we assume that the sample is experimentally misaligned by
some angle, and expect that the assumption would end up with a similar result as compared to
the one obtained by the exact calculations considering all distribution of the molecules. This
situation has been simulated allowing the azimuthal angle ¢ to vary within £3°. The results
are shown in Fig. 3.14(b) for ¢ = 3°8°, and 17°. We also assumed the longitudinal field
component of 8 x 10720 T for better fit. The theoretical curves fit the experimental data very
nicely except the last oscillation when ¢ = 0. The remained discrepancy may be corrected if
we consider the distribution of the anisotropy axes accurately. However, this is sufficient for
our purpose, and we stop this discussion here.

Furthermore, the fact that the number of minima is 4 agrees with the experiment. At first
sight, this result is rather surprising because it arises from the weak fourth order anisotropy
term, C(S% + S%). In the presence of the fourth order anisotropy, Eq. (3.28) is no longer
true, and the number of oscillations is not determined by m. It is because the fourth order
Hamiltonian term can couple m = +10 states by 5 applications, while the second order term
by 10. This fact is associated with the possible number of the area enclosed by the tunneling

" paths that quenches the tunnel splitting. That is, the number of minima depends directly on
the symmetry of the anisotropy [92]. As an examplé, let us suppose E = 0 and C # 0.
There is no oscillation because x axis is no longer hard axis. For ¢ = 45° (this is new hard
axis), there appear 5 oscillations (as it is the case for Mnl2ac). This is due to the fact that
with increasing H,, the allowed states which can be coupled by the fourth order anisotropy
term are S, = +10, £8, 16, 4, and £2. If both the second and the fourth order terms coexist,
the number of minima depends solely on the relative strength of the anisotropy constants due
to interference between them. Fig. 3.15(a) reflects the interference effect. With increasing
C, the period increases, while the number of minima decreases. If C/E > 1072, there is no
more oscillation. Thus in order to observe the phase effect, C should fulfill the condition,
C/E < 1072, It is noticed that the number of minima is a multiple of an integer.!’ We

emphasize that C must be negative for this argument to hold. For positive C, the behavior is

10This result is in agreement with Ref. [108, 110]. The authors investigate the role of C by introducing
“boundary jump instantons” which interfere with the conventional “continuous” instantons.
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Figure 3.15 Dependence of the quantum phase effect on the fourth order
anisotropy C. (a) The period increases and the number of
minima decreases with increésing C. Note that C is negative
and E = 0.047 K is the second order anisotropy. (b) Tunnel
splitting Ajp in zero field is asymmetric around C = 0. The
argument made in (a) is no longer applicable for C' > 0.

complex. As we can see in Fig. 3.15(b), the tunnel splitting Ajp in zero field shows a different
behavior depending on the sign of C. This is because, for C > 0, Ajp at zero field is not
fixed to maximum but the parity changes smoothly with increasing C, resulting in oscillatory
behavior as shown in Fig. 3.15(b). In other words, the “wave” of the regular quenching of the
tunnel splitting moves to the left. As a matter of fact, the period cannot be defined in this case
because the separation between the minima increases with increasing field for a given positive

C value.

3.3.3.3 QTM in transverse magnetization

‘We go back now to the theoretical results shown in Fig. 3.6 and in particular to the peak
which appears in the curve of M /6H vs H. In the following we want to analyze the origin of
the peak in &M /8H by using a somewhat different approach from Ref. [71]. In Fig. 3.6, it is

noticed that
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1. The peak smears out and moves toward lower fields gradually as T is increased,

2. At low field, OM/OH is smaller at low temperature than at high temperature, and

becomes temperature independent at sufficiently low temperature (< 0.5 K),

3. After the peak, both M and 0M/0H follow the normal behavior as in the case of H

applied along easy axis.

At sufficiently low temperature, only the lowest energy states m = £10 would be occupied.

When a transverse field is applied, the transverse magnetization can be written as:

_ N[ 8B, _p.r OE- _p pr
M= ( 8H © 8H ©

O0E_. OA
=N (_W B Ep*') !

(3.31)

where E4 is the energy for £10 states, and the probabilities of occupation of the two states are
defined by py = exp(—E4/kT)/Z. At low fleld, 0A/BH is so small that Eq. (3.31) is almost
temperature independent. The peak of dM/8H is clearly due to the change of —0FE_/0H
arising from the increase of the splifting of the energy levéls. We will define a cross over field
H, as the field at which the peak of M /OH is located. Since —QE_/0H = —8F,/8H at
H < H., we may interpret that the molecules occupying equally the quasi-degenerate magnetic
levels at H < H, collapse rapidly toward the lowest level at H > H,. We notice that the peak
itself does not become T-independent even at very low T'. The reason is that the second term
in Eq. (3.31) becomes non-negligible at fields close to H, because 8A/3H, which is positive,
starts to increase rapidly. However, it becomes T-independent again at the fields much higher
than H. because p, decreases exponentially with increasing field.

With increasing temperature, the higher energy levels will be occupied. For simplicity, let
us consider an intermediate temperature region in which the first excited doublet (m = 1+9)

could be occupied. Then, the transverse magnetization is written as

_3_1171_6!'—\13( + )_3/—\12 _ OAgy
BH oH P3 T P4 BH P2 oH P4

M. =N ( (3.32)

where we denote each state by a number in such a way that state 1 has the lowest energy

and correspondingly p; is the probability of occupation of the state 1. The first and second
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Figure 3.16 Energy difference between states 1 and 3 and its derivative in
the transverse field along medium y axis. Schematic diagram
for the levels is shown in inset.

terms are the dominant ones as compared with the other two terms. We note that 8A3/0H
is negative at low field (see Fig.. 3.16) so that the magnetization at high T is larger than that
at low T at a given low field. After the peak of OM/OH i.e., at fields above H,, 8A13/0H
becomes positive and keeps increasing, which results in the “normal” field dependence of both
M and OM/3H as in the case of a longitudinal field, as it is evidenced in Fig. 3.6.

The fact that the peak moves toward lower fields and is broadened by increasing T indicates
that the splitting of the levels for smaller m states (+9, £8,...) affects the total magnetization
M progressively. Note that H, decreases with decreasing m, as shown in Fig. 3.4, Furthermore,
the fact that the peak is persistent only in a specific range of temperatures (at 8 K the peak
disappears completely, as shown in Fig. 3.6) suggests that there exists a crossover temperature,
above which the peak of M /0H disappears.

Fig. 3.17 shows the temperature dependence of M and OM/OH calculated at 0.1 T. Indeed,
below about 0.6 K both M and dM/3H become T-independent regardless of the field direction.

In order to define different regions of spin dynamics in the form of a phase diagram we define
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Figure 3.17 Magnetization and magnetic susceptibility vs 7" at 0.1 T'. There
appears a broad but clear maximum of both M and dM/0H.

two crossover temperatures Tpy and Teo. Ty is determined from the temperature above which
M differs by the amount of 0.001% of M. T, is defined as the temperature at which the broad
maximum occurs in M(T) and OM(T)/3H (see Fig. 3.17).

Here, we propose a new interpretation of the crossover temperatures Ty and Ty defined
above. First, the temperature independence of M (or 8M/8H) below T, at low fields is a
required, although probably not sufficient, condition for pure quantum tunneling regime, since
it is obvious that the T-independence of M cannot occur unless most of the molecules occupy
the ground states. Second, the presence of the peak of 8M/8H at a given T' < T¢o could be

thought as an indication of the thermally assisted tunneling regime, since the peak means that
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only the energy levels far below the top of the energy barrier could be occupied. Above Ty,
the tunneling will not essentially contribute to the relaxation of the magnetization since the
thermal relaxation over the top of the energy barrier becomes very fast. Therefore, like the
preceding argument about pure tunneling regime, we argue that the peak of 8M/8H is one of
the required condition for the thermal-assisted QTM.

Although above argument cannot be established at the moment, we performed calculations
of the field dependence of the crossover temperatures. In Fig. 3.18(a), the field dependence of
Te1 and Teo in Fe8 is shown. The diagram, which looks like a phase diagram, shows very nice
picture of three distinct regions. We may classify the regions into pure quantum tunneling
region when T' < T, thermal-assisted tunneling region when T < T < T3, and pure thermal
relaxation region when T' > Ty, For the comparison, also we calculated the magnetization
of Mnl2ac in the same way done in Fe8, and the result is shown in Fig. 3.18(b). As we can
see, for Mnl2ac, the diagram is much simpler due to the absence of the second order in-plain
anisotropy FE, and the crossover temperatures are much higher than those in Fe8 due to the
large axial anisotropy D ~ —0.6 K [111]. T,y ~ 0.6 K of Fe8 is in good agreement with the
experimental result (~ 0.4 K). Unfortunately, the experimental T; in Mnl2ac is not exactly
known because the relaxation time of the magnetization is extremely long (about two months
at 2 K). However, T ~ 1.2 K agrees well with the fact that a pure quantum tunneling regime
is achieved below 0.8 K in the presence of a transverse field 3—4 T [85]. It is clear that T;; and
T.s are essentially determined by the height of the energy barrier (i.e., by the magnitude of D
value).

As discussed above, T,; and Ty in the diagram should be regarded as a rough estimation
for the possible tunneling regime for given magnetic anisotropy parameters. Nevertheless the
theoretical diagram can be a good guidance for the actual experiment, and be useful for the
analysis of the experimental results. The experimental verification of the “phase diagram”
seems possible through the precise measurements of the magnetization on the single crystal.
However, in order to measure Ty, the alignment of the sample should be exact. In fact, even

tiny misalignment of the sample will destroy the otherwise temperature independent region,
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as it has been simulated by introducing small amount of the z field component. Indeed, the
experimental result shows that M increases at very low temperature rather than becoming
T-independent after the broad maximum (see Fig. 3.7). However, T¢o will still be measurable

as long as the misalignment is small, say up to 5°.
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CHAPTER 4 5Fe NMR and relaxation in isotopically enriched Fe8

In this chapter, we discuss 5’Fe NMR measurements performed in oriented powder and
single crystal of enriched ®"Fe8 molecular cluster in the temperature range 0.05-1.7 K in zero
and external fields for both transverse and longitudinal orientation of H with respect to the
anisotropy axis. The **Fe NMR spectrum is analyzed in terms of a major contribution due
to the hyperfine interaction arising from core polarization. The measured temperature depen-
dence of the resonance frequency is explained well by calculating the local average magnetic
moment of the Fe?t ion with a simple model which incorporates the effects of thermal fluc-
tuations. Nuclear spin-lattice relaxation rate (1/73) and spin-spin relaxation rate (1/75) were
investigated via temperature and field dependences. The obtained results are analyzed in terms
of both intrawell thermal fluctuations of the hyperfine fields due to spin-phonon interaction,
and interwell fluctuations due to phbnon assisted quantum tunneling of the magnetization. It
is shown that in zero external field and at low T the 5"Fe 1/T} is dominated by a strong collision
mechanism due to the fact that phonon assisted tunneling transitions generate a sudden rever-
sal of the local quantization field at the nuclear site. The data could be explained satisfactorily
by assuming that the "Fe 1/77 measures directly the effective phonon assisted tunneling rate.
However, in order to fit the data we had to assume a larger in-plane anisotropy than previously
reported, resulting in a much bigger tunneling splitting in zero field. A comparison with pub-
lished data of 55Mn in Mnl2 indicates that a similar tunneling driven relaxation mechanism
applies also in Mn12. Finally the H and T dependence of *'Fe 1 /TgAis well explained simply
in terms of thermal fluctuations of the magnetization without any tunneling contribution. At
very low T the 1/T5 approaches a limiting value which can be explained in terms of the dipolar

interaction between proton and 37Fe nuclei in the quasi static regime.
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4.1 Introduction

Single molecule magnets (SMMs) are magnetic systems formed by a cluster of transition
metal ions within large organic molecules [2, 112]. SMMs are characterized by nearly identical
and magnetically isolated molecules with negligible intermolecular exchange interactions, which
allows the investigation of nanomagnetism from the macroscopic measurement of the bulk
sample. Recently, SMMs have been paid much attention not only for the fundamental physical
properties but also for the potential applications in quantum computing and data storage
[33}. Among the single molecule magnets, Mnl2ac and Fe8 clusters [26, 95], which have a
high total ground state spin (S = 10), are of particular interest due to the superparamagnetic
behavior and the quantum tunneling of the magnetization (QTM) observed at low temperature
[28, 29, 113] due to the large uniaxial anisotropy.

The octanuclear Fe3t cluster [25] (Fe8) is a particularly good candidate for the study of
quantum effects since it couples an uniaxial anisotropy leading to an energy barrier [95] of
~ 25 K to a non negligible in-plane anisotropy. The latter is crucial in enhancing the tun-
neling splitting of the pairwise degenerate magnetic quantum states. In fact', Fe8 shows pure
quantum regime below 0.4 K and periodic oscillations of the tunnel splitting interpreted in
terms of Berry phase [30, 81, 99]. Moreover, it was found that the enrichment of 57Fe isotope
in Fe8 shortens the relaxation time demonstrating that the hyperfine field plays a key part
in QTM [82]. Together with intensive theoretical investigations [78, 80, 94, 114, 115]. QTM
in Fe8 has been revealed by various techniques such as magnetization measurements [30, 81].
ac-susceptibility [95, 96], specific heat measurement [97, 116], high-frequency resonant exper-
iments [117], circularly polarized microwave technique [118], and nuclear magnetic resonance
[43, 119].

Nuclear magnetic resonance (NMR) has proved to be a powerful tool to investigate the
local properties of magnetic systems because the nuclear spin is very sensitive to local fields
and thus provides valuable information on spin dynamics. Several proton NMR studies on Fe8
have been already performed yielding information about hyperfine interaction, fluctuations

of the local moments of Fe®t ions [57], and tunneling effects [43, 70, 119]. In proton NMR,
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however, we can obtain only indirect information due to an averaging effect arising from the
wide distribution of protons in each molecule and the weak hyperfine coupling between Fe
moments and protons.

5TFe is, in principle, a much better than proton since it couples directly to the magnetic
electrons of the Fe3t ions with a strong hyperfine field which allows the investigation of 57Fe
NMR in zero external field. The only drawback is that the strong coupling makes the NMR
signal detectable only in a narrow temperature range. Previous *"Fe NMR studies have yielded .
direct information on the local magnetic structure of the ground state and the hyperfine in-
teractions [40, 41]. In addition to the static effects mentioned above, *"Fe NMR can provide
precious information about the dynamic magnetic properties, including the tunneling effect,
through the measurements of the relaxation rates as a function of temperature and external
field, and by the temperature dependence of the resonance frequency in zero field, which are
the subjects of the present investigation.

In this chapter, we report ' Fe NMR measurements in both a sample of oriented powder
and a single crystal both enriched in the 3“Fe isotope. In Sec. 4.2, the sample properties and
some experimental details are illustrated. After presenting the experimental results in Sec. 4.3,
the hyperfine interactions and static magnetic properties are analyzed in Sec. 4.4 with emphasis
on the temperature dependence of the nuclear resonance frequency in zero field. In Sec. 4.5
we discuss and deduce theoretical spin dynamics models for the nuclear relaxation rates in
the low temperature region. Detailed comparison of the data of the relaxation rates with the
theoretical models proposed in Sec. 4.5 are reported in Sec. 4.6. Also the relaxation rates of
S5Mn are compared with those of 57Fe. In Sec. 4.7, our experimental results and theoretical

analysis are summarized.

4.2 Sample properties and experimental details

The formula of the molecular cluster is [Feg(tacn)gO2(OH)12]3*[Brs - 9H20]%~ (in short
Fe8) where tacn is the organic ligand 1,4,7-triazacyclonane and the ionic charge 8+ of the cation

is compensated by seven bounded Br~ ions and one Br~ counterion. Fe8 consists of eight Fe3+
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Figure 4.1 Schematic diagram of Fe8 molecular cluster. The arrows rep-
resent ionic spin direction of Fe®* ion with s = 5/2 in § = 10
ground state.
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ions (s = 5/2) where the Fe ions are coupled together by twelve pz-oxo and pe-hydroxo bridges
through different exchange pathways resulting in well-known butterfly configuration. The
magnetic properties of Fe8 at low temperatures are characterized by a total spin of § = 10
for each molecule resulting from competing nearest neighbor antiferromagnetic interactions
between the Fedt ions [65].

The S = 10 magnetic ground state of the Fe8 molecular cluster can be described by a total

spin model Hamiltonian,
H = DS: + E(S; — S}) + gusS -H, (4.1)

where S;, Sy and S, are the three components of the spin operator, D and E are the axial and
the rhombic anisotropy parameter, respectively, up is the Bohr magneton, and the last term
of the Hamiltonian describes the Zeeman energy associated with an applied field H.

The crystal structure of Fe8 is shown in Fig. 4.1. _The arrows represent the spin structure
of Fe*t ions in the ground state S = 10. In order to synthesize the °"Fe-enriched Fe8 cluster,
95-% enriched 57Fe foil (53.3 mg, 0.936 mmol) was carefully dissolved in 400 mL of a 3:1 (v/v)
mixture of concentrated HCl and HNOj3 in a Kjeldahl flask. The solution was boiled and HCl
added dropwise to keep the volume constant until evolution of brown NO; fumes ceased. To the
cool concentrated solution excess thionyl chloride was added dropwise (CAUTION: vigorous
evolution of SOy and HCI!) and the unreacted portion was distilled off under nitrogen. The
black lustrous FeCl; residue was dissolved in methanol (4 mL) and treated with a solution
of tacn (112 mg, 0.867 mmol) in methanol (1 mL) with stirring. Yellow [>'Fe(tacn)Cls] was
collected by filtration, washed with ethanol (1.5 mL) and dried under vacuum (194 mg, 76-
% yield). The solid was dissolved in 15 mL of water containing 1.5 mL of pyridine and the
solution was stirred for 1 h before addition of NaBr (3.9 g). After additional 10’ stirring, any
undissolved material was removed by centrifugation and the clear solution was left undisturbed
in a dessiccator at reduced pressure (300-350 mmHg) over PoOs for 2-3 weeks. Crystalline
57Fe8 (126 mg, 67-% yield) was collected by filtration and dried by N; before measurement.
The oriented-powder sample of Fe8 has been prepared by mixing the powdered material with

epoxy (EpoTech 301) and letting it to set in a magnetic field of 7.2 T at room temperature
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for 12 hours. The sample filling factor is about 20-30 % out of the volume of a cylinder with
5 mm diameter and 20 mm length. Orienting the powder sample results in a better signal to
noise ratio and a narrow signal even in zero magnetic field due to the orientation of the grains
with respect to the radio frequency magnetic field. In collaboration with Y. Furukawa we also
succeeded in making a single crystal of 57Fe8 [~ 3 x 2 x 1(mm?)] which was used to investigate
the effect of a field perpendicular to the magnetic easy axis and the relaxation measurements
at low temperatures.

The *"Fe NMR measurements were performed using TecMag Fourier Transform (FT) pulse
spectrometer. A (m/2 — w) pulse sequence (Hahn echo) has been used for the measurements
with 1.5-3 ps w/2 pulse length and 8-12 pus separation between pulses depending on the
spectrometer and experimental conditions. The NMR line was saturated with the comb pulse
train with 10 pulses for the measurement of 77 and the obtained recovery data with variable
delays were fitted to the single exponential recovery law. The experiment has been carried out
in the temperature range of 0.05-~1.7 K by using both a closed cycle *He cryostat in Ames

and a 3He—*He dilution refrigerator cryostat in Sapporo, Japan.

4.3 Experimental results

4.3.1 5"Fe NMR spectrum

The zero-field >’ Fe NMR spectra in Fe8 at 1.5 K is shown in Fig. 4.2(b). A fine structure of
the spectra was observed from the narrow NMR lines, namely, a quadruplet at higher frequency,
a doublet at intermediate frequency, and a second doublet at lower frequency. Hereafter, we
refer to each line as spl-—sp8 from low frequency to high frequency and in Fig. 4.1 the Fe®*
ion site associated with each NMR line is labeled accordingly. The experimental results in
zero field are summarized in Tab. 4.1. When an extefnal field is applied along the easy axis
z of the oriented powder as shown in Figs. 4.2(a) and 4.4(a), the values of the resonance
frequencies of the different lines shift as expected from the model for the internal structure
of the Fe8 magnetic ground state [65]. For the transverse external field, the shift is very

small at low fields while the linewidth of each line is much broader as shown in Fig. 4.2(c).



(a) -
M 07T
= 05T
jroi
)
<
_4? (b) o Sp5>—sp8
wn
=t 3, spd
£ spl sp2 5P, 5P ‘
'5 Zero
Field
(c)
& e e 65 65’ B

Frequency (MHz)

Figure 4.2 The *"Fe NMR spectra and the field dependence in the case
of: (a) H || z (b) zero field (c) H L z. Each line is labeled with
spl—sp8 (see Tab. 4.1).
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nuclear site Frequency (MHz) Heg (T)
spl 63.09 45.86
sp2 63.89 46.44
sp3 65.46 47.58
sp4 65.55 47.65
sp5 71.63 52.07
spb 71.90 52.26
sp7 72.16 52.45
sp8 72.39 52.62

Table 4.1 NMR resonance frequencies and corresponding effective local
fields obtained at 1.5 K in zero field.

Fig. 4.4(b) shows the transverse field {along the medium y axis) dependence of the resonance
frequencies measured in single crystal. The measurements of the temperature dependence of
the resonance frequency v(T) and of the *Fe nuclear spin-lattice relaxation rate reported in
this chapter refer only to the line sp8 in the spectrum (see Fig. 4.2). This is sufficient for the
purpose of studying the relative variations of the hyperﬁﬁe fields and for the study of the spin
dynamics. For confirmation 1/77 has been measured at 1.5 K for each the eight NMR lines in
the 5"Fe spectrum and the results were found to be within 10% error.

The temperature dependence of the resonance frequency, v(T'), in zero field in the temper-
ature range 0.5—1.7 K is shown in Fig. 4.3. Above 1.7 K, the signal is not detectable due to
the very short nuclear spin-spin relaxation time, 75, as explained in details in next section.
The nuclear Larmor frequency decreases gradually as the temperature increases and it drops
rapidly above 1.5 K when the signal becomes undetectable. The behavior of the temperature
dependence of v(T') in Fig. 4.3 can be ascribed to the reduction of the average spin moment,
{S), due to the thermal fluctuations of the magnetic sublevels. The limiting value of v(T) as
T — 0 corresponds to the hyperfine field when the Fe8 molecules occupy the m = +10 ground

state.

4.3.2 Nuclear relaxation rates

The measurements of relaxation rates of 5'Fe were performed in the field range 0-1 T at

1.35 K for the field dependences, and in the temperature range 0.05-1.7 K at zero field for the
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temperature dependence. When a longitudinal field is applied, a fast drop of 1/T; appears
at very low fields, while for higher fields 1/7) decreases monotonically with increasing field
at a much slower rate as shown in Fig. 4.5. On the other hand, as it is shown in Fig. 4.6,
1/T} increases rapidly at low fields and more slowly at higher fields in an transverse field.
In the field range 1—2.5 T, the weak 5"Fe NMR signal cannot be measured since it overlaps
with the much stronger signal from 'H NMR. Due to the strength of the proton signal and its
considerable width, the field range of overlap is very wide. The longitudinal and transverse field
dependences of 1/T5 are shown in Fig. 4.9. The temperature dependence of 1/T} in zero field
is shown in Fig. 4.8. 1/T) shows fast decrease with decreasing temperature as it is expected
due to the reduction of the thermal fluctuations of the hyperfine fields.

The temperature dependence of nuclear spin-spin relaxation rate (1/7T%) is very similar to
one of 1/T although the magnitudes of the two relaxation rates differ by more than three
orders of magnitude as shown in Fig. 4.10. When T is about 1.7 K the value of 1/75 is about
10° s, which is close to the limit of signal detectability in our spectrometer explaining the
disappearance of the signal above 1.7 K. The measured 75 is much shorter than the value
expected for nuclear dipolar interaction in the intermediate temperature range 1-1.7 K. This
circumstance together with the strong temperature dependence indicates that 1/T% is driven

by the slow dynamics of a strong hyperfine interaction above 1 K.

4.4 Hyperfine interactions and static magnetic properties

4.4.1 Hyperfine interactions

The hyperfine field at the Fe* nuclear sites arises mainly from core polarization of inner s
electrons due to 3d-electrons. For a free Fe*t ion, the theoretical value of core polarization field
X per unpaired d-electron is —3.00 a.u. (1 a.u. = 4.21 T [120]). Then we get Heore(Fe) =
5 x x¥ = —63.15 T. Experimentally, the maximum hyperfine field found for Fe?* in a solid had
been reported to be 62.2 T in the antiferromagnetic ionic compound FeF3 using Mossbauer
effect [121]. Thus it is reasonable to assume the value of about 62 T for the core polarization

hyperfine interaction by the half-filled 3d shell in a pure ionic configuration. Since the measured
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effective fields are smaller than the theoretical value (see Table. 4.1), one deduces that there
is strong reduction of the local hyperfine field at the nuclear sites. The reduction can arise
from positive contributions to the total hyperfine field and/or to a delocalization of the 3d
electron due to covalent bonding. The dipolar hyperfine field is normally zero in orbital singlet
state like 34° COnﬁguratio.ﬁ due to quenching of the orbital angular momentum [122]. But if
Fe®* ions in Fe8 do not have pure 3d° configuration, the dipolar term could be non-negligible.
One can make a qualitative estimate the dipolar contribution from quadrupole splitting, Ag,
in Mdssbauer spectroscopy using the fact that Ag arises from an aspherical distribution of
electrons in the valence orbitals and an aspherical charge distribution in the ligand sphere
and/or lattice surroundings with symmetry lower than cubic [123]. The small values of Ag
0.13, —0.11 and 0.057 mm/s, respectively, in Ref. [124] leads to the conclusion that the dipolar
term would be too small to contribute to the main reduction of the local hyperfine fields but
could contribute to the fine splitting of the lines in each Fe group. Therefore, the reduction of
the local fields is attributed to the covalent bonds of Fe®t ions with neighboring ligands. Since
the covalency can result in both delocalization of 3d-electrons and 4s hybridization, one can
describe the configuration of the magnetic electron in the covalent bond as 3d°~%4s¥. From
the comparison of isomer shift values in Mdssbauer spectroscopy [124] to the relation between
isomer shift and partially occupied 4s orbitals by Walker et al. [125] we estimated y < 0.05.
If we consider only the delocalization of 3d electrons, we get £ = 0.75 for spl and sp2, 1.16
sp3 and sp4, and 1.3 for sp5-sp8 from the comparison of the experimental hyperfine field and
the theoretical value of 62 T. The above values for x should bhe viewed as upper limits since
part of the reduction of the negative core polarization field can arise from the positive contact
hyperfine field due to the 4s hybridization y. In fact since the hyperfine field due to a 4s
electron in a neutral Fe atom is estimated to be 380 T [126], even a small admixture y of 4s
character in the wave function can generate a sizable contact hyperfine contribution to the
internal field, resulting in a local internal field in agreement with experiments even for a Fe3+
local moment close to the localized 3d°® configuration. For example, if we assume tentatively

spin moments of 5up for all Fe site, the value of ¥ is estimated to be 0.01,0.009, and 0.006 for



7

the lateral, central, and apical sites, respectively.

It is noted that even by taking the upper limit values for z, our estimation for the 3d
delocalization are still smaller than the values calculated with density functional theory (DFT)
calculations [127] or obtained from polarized neutron diffraction (PND) measurements [62]. For
example, in DFT studies, the authors calculated local spin moments in each Fe group to be
3.9 for lateral sites, —3.6p for central sites and 3.8up for apical sites to be compared with
5up for a localized 3d configuration. The magnitude and the direction of the spin moment
are in qualitative agreement with our NMR results. However, our analysis in NMR spectrum
shows that the spin moment of central sites should be smaller than that of apical sites again
assuming the same hyperfine coupling constant. Furthermore, the difference of the magnitude
of the local moment between lateral sites and central sites as inferred from the position of the
resonance lines in the spectrum (see Fig. 4.2 and Table. 4.1) is much larger than the reported
value. Also the large differences of the spin moments within the same group reported in PND
results [62] are not consistent with NMR results.

The detection of eight different lines leads to a conclusion that there are eight inequivalent
Fe3+ ions. The splittings among NMR lines in each Fe group are less than 300 kHz (i.e, 0.2
T). The fine structure of the NMR, spectrum which gives rise to the splitting for each of the
three main groups of Fe ions suggests that environments for the Fe ions are slightly different
for the different ions within the same group. Since the spin density and/or the character of
the wave function must depend on the bond angles and the distances in the superexchange
bridges, the fine structure of the NMR spectrum could be attributed to small differences in

the covalent bonds for the different ions within the same group.

4.4.2 Reduction of the hyperfine field due to thermal fluctuations

As seen in the previous subsection the dominant contribution to the hyperfine field orig-
inates from contact interaction via a core polarization mechanism. Therefore we can assume
that the resonance frequency is simply proportional to the average local spin moment in the

Fe3T ion, i.e. v = A(s). The reduction of the resonance frequency can arise either from a
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Figure 4.3 Temperature dependence of resonance frequency of sp8 NMR,
line. Theoretical curves were obtained from Eq. (4.2) consider-
ing the two lowest levels (solid line) and all levels up to m = £5
(dotted line). Bloch 732 law (dashed line) is drawn for the
comparison.

decrease with temperature of the hyperfine coupling constant A or from a reduction of the
average spin moment due to thermal fluctuations. Since the temperature dependence of A is
negligible at low temperature the reduction of the hyperfine field is a direct measure of the
reduction of the local magnetization. = We assume that the average local spin moment (s)
is proportional to the average total moment (S) of the molecule. Thus, we express v(T") as a
_statistical average of the total magnetic moment of the molecule on the basis that the average
total moment is reduced by thermal excitations from the magnetic ground state m = £10 to

excited states:

WT) _(S)
v(0) (S)r=0
— 1 Zm lml €Xp (_Em/T)
(=0 ( z ) ’ 4.2)
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where E, is the energy of mth sublevel of S = 10 and Z partition functibn. We assume that the
magnitude of spin moment of a mth state corresponds to the value projected into quantization
axis e.g., 0.9 for m = £9 state. Although this approach is based on a semiclassical picture
of the spin, it provides a very successful theoretical curve. The result is shown in Fig. 4.3.
The theoretical curve, however, depends strongly on the choice of D and E values in the
Hamiltonian, Eq. (4.1). So far the values of D —0.295, —0.276 and —0.293 K, and E 0.055,
0.035 and 0.047 K have been reported by EPR [64], magnetization measurements [70], and
neutron spectroscopy [66], respectively. In our calculation, the best agreement is found for the
choice of the parameters reported in Ref. [66] (D = —0.293 K and F = 0.047 K). In this thesis,
these values of D and F are used in all theoretical calculations.

The three curves in Fig. 4.3 were obtained considering (i) Bloch T%/2 law [128] (dashed
line), (ii) Eq. (4.2) with only two lowest sublevels (m = %10 and m = £9) (solid line), (iit)
Eq. (4.2) with all levels up to m = %5 (dotted line).! As expected, the Bloch T%/2 law based
on spin wave theory does not apply to nanosize molecular magnets.? The agreement with the
cases (ii) and (iii) is quite good with the exception of the last higher temperature three points.
Those points are affected by a large error because the signal becomes very weak due to the
shortening of T5 (see next section). Thus it cannot be established for sure if the resonance
frequency starts to drop rapidly at T > 1.6 K. The drop could indeed take place if higher order

states are included for higher temperature.

4.4.3 Determination of the local spin arrangement in the ground state

As we can see in Figs. 4.2(a) and 4.4(a), with increasing the parallel field, the resonance
lines spl and sp2 shift to a higher frequency, while sp3-sp8 shift to a lower frequency. The
slope of the parallel field dependence of the resonance frequency is ~ |1.37| MHz/T for each

peak, which coincides with the gyromagnetic ratio v, of the 3Fe nucleus. As the resonance

! As discussed in Chapter 3, the levels of |m| < 5 are strongly admixed, and thus the quantum number m
loses any physical significance [67]. Conversely, this fact implies that the height of the energy barrier is not well
defined.

2A theoretical approach to apply the modified spin wave theory has been attempted in Ref. [129). However,
the application of the theory to Fe8 will be difficult due to complicated infernal magnetic structure of Fe8
cluster.
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frequency is proportional to the vector sum of the internal field (Hy,} and external field (Heys),
v = gy |Hing + Hex|, this result indicates that the direction of the internal field at the Fe sites
for sp3 and sp4 is opposite to that for the other peaks. Since, as discussed in previous section,
the internal field at the nuclear site is dominated by core polarization, Hiy is negative and
the direction of the internal field at nuclear sites is opposite to that of the Fe spin moment.
Therefore we conclude that the spin direction of Fe ions for spl and sp2 is antiparallel to the
external field, while that of Fe ions for sp3—sp8 is parallel to the external field.

The observed spectra can be classified info three groups: the first is spl and sp2, the
second is sp3 and sp4, and the third is sp5-sp8. If is reasonable to assign the third group
with four peaks (sp5-sp8) to the four Fe3* ions located at the lateral sites with nearly the
same environment in the cluster. As for the site assignment of the other peaks, one notes that
in the coupling scheme depicted in Fig. 3.1(a) the exchange constant J; = —52.5 K is larger
than Jy = —22.5 K. As a consequence, the spin direction of Fe ions at the central sites must
be opposite to that of Fe ions at the lateral sites and be parallel to that at the apical sites.
Therefore, the first group of two lines spl and sp2 should be associated with the two Fe ions
with spin direction antiparallel to that of the lateral sites. By exclusion, the second group sp3
and sp4 is ascribed to the two Fe ions at the apical sites. Therefore we conclude that the spin
direction of Fe ions for the central sites is antiparallel to the external field, while that of Fe ions
for the apical and lateral sites is parallel to the external fields. This is a direct confirmation of
the spin structure for inner magnetic structure of the cluster as shown in Fig. 4.1.

In order to elucidate the changes of the local Fe’t spin configuration in the superpara-
magnetic state under application of a transverse field along the medium (y) axis which is
perpendicular to the easy axis, we have measured 5'Fe NMR. spectrum in transverse field using
the single crystal. Figs. 4.2(c) and 4.4(b) show the magnetic field dependence of the resonance
frequencies for each peak. As described above, the resonance frequency is proportional to the
effective internal field at the nuclear site, which is the vector sum of Hiy, due to Fe spin mo-
ments and He, due to the external field: |Heg| = |Hint + Hext|- The opposite field dependence

observed in Fig. 4.4(b) of |Heg| for the central sites with respect to the lateral and apical sites
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indicates that the projection along the external field of the spin moments of Fe®* ions at the
central sites is of opposite sign with respect to that of Fe3* ions at the apical and lateral sites.
This leads to the conclusion that the individual spin moments of all Fe ions do not cant inde-
pendently along the direction of the transverse field but rotate rigidly maintaining the same
relative spin configuration.

In order to analyze the experimental results quantitatively, we have calculated the trans-
verse field dependence of |Heg|, following a method used for the analysis of transverse field
dependence of 55Mn NMR spectrum in Mn12 cluster [59]. As pointed out in Ref. [59], in the
presence of a transverse field, the direction of the internal local field, [Hins|, is canted from the
easy axis [1, 59] by 8 = sin~!(M /M,), where M, is the transverse magnetization and M; is
the saturation magnetization of the S = 10 ground state. The length of the effective magnetic

field is given by

| = [Hing + How| = /HZ, + Hq + 2Hins He sin 6, 4.3)

where the sign of Hiy is taken to be positive for Fe ions at the central sites and negative for
Fe ions for the apical and lateral sites, respectively. The agreement of the calculated field
dependence of the resonance frequencies for each site with the experimental results shown in
Fig. 4.4(b) is excellent. We thus confirmed from the microscopic point of view that the local
ferrimagnetic spin configuration of the Fe8 cluster in its S = 10 ground state is not modified

by the transverse magnetic field up to fields of at least 5 T.

4.5 Spin dynamics

4.5.1 Nuclear relaxation due to thermal fluctuations

In the case of a system of nuclear spins acted upon by strong randomly fluctuating local
fields arising from the hyperfine interaction of the nuclei with the electronic spins, 1/7) and
1/T5 can be simply expressed in a semi-classical approach in terms of the correlation function

of a randomly time dependent perturbation term H; in the Hamiltonian representing the
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nuclear-electron coupled system [46, 49],

r = a=p [ odemoNea, o
1 1
E = Jz(0)+2—Tl
+oc
= & [ eaemOdE 5, (45)

where wy, is the nuclear Larmor frequency and J,(w) are spectral densities of longitudinal
(@ = z) and transverse (@ =1) components of the fluctuating local field. It is noted that
Eqs. (4.4) and (4.5) are valid in the weak collision limit in which one assumes that the
correlation time is much shorter than the relaxation time so that many elementary processes
of fluctuations are required to induce a fransition in the stationary nuclear Zeeman energy
levels. In Eq. (4.5), we neglect the contribution due to rigid lattice nuclear dipolar interaction
and we assume the fast motion regime i.e., the fluctuations of the local hyperfine field are
fast with respect to the interaction frequency itself [46]. Since each 3"Fe nucleus is dominated
by the contact hyperfine interaction with the ionic spin of the Fe®t ion to which the nucleus

belongs, one has

My = AT-S = A(L,S, + 1/2(1+ 81 + I_S_)) w6
=yNh{[.H, + I H,),

where we have introduced the local effective hyperfine field H,, (a = z, 1) and -y is the nuclear

gyromagnetic ratio. Under the assumption of an exponential decay of the correlation function

G(t), one has from Egs. (4.4)—(4.6)

1

Te

— = P L 4.7
1
E = "YIZV (AH::?)TC? (4'8)

where (AH?) = A%(S%) and (AHZ) = A%(52) and we neglected the second term in Eq. (4.5)
since T < T7.
In the low temperature region, the fluctuations of the local hyperfine field are due to

the transitions among the low lying m magnetic states. For temperatures below 2 K where
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our measurements were performed, one can make the assumption that the fluctuating field
is due to random jumps between two values of the hyperfine field [46, 130] correspondingly
to the m = +10 and m = +9 states as shown by Goto et al. in Mnl2 [131}. In this model
one can assume a two-state pulse fluctuation with the magnitude h, of the random field
jumps and lifetimes 19 and 71, respectively for the two states. The average fluctuating field
between the two field values H; = mpho/(70 + 1) and Hy = —mhy /(79 + 1) can be written as
(AHo(£)) = T1ha/ (10 + 7).

Utilizing the detailed balance condition for the transition probabilities and some algebra

(see Appendix B), one can derive (AH?) and 7, to be used in Eqgs. (4.7) and (4.8),

AH2 1071 g2 . T2 4.
( a) (TO +T1)2 «™~ 53 ( 9)
ToT1
= R 1, 4.1
Te To+ 71 m (4.10)

where we used the fact that 790 = 7—10 > 1 = 7—g. The lifetimes 70 = 7—10 and 71 = 7—¢ can
be obtained from the spin-phonon transition probabilities [90],
1
-— = Wm—rm+1 + Wm—rm—la (4-11)
Tm

with
(Emzl:l - Em)3
exp[(Emx1 — En)/T] -1’

where 541 = (s F m){s £ m + 1)(2m £ 1)? and the spin-phonon coupling parameter will be

Winom+1 = Cs11

assumed to be the same as derived from proton relaxation in Fe8 [57].

Finally, the forms of 1/T1 and 1/T, are simplified leaving only one fitting parameter,

( 1 ) _wha)® A (4.12)
sp

m H
5 0 1+wir?

(i) = ( h)2112 (4.13)
T2 e FYN 4 1_0' .

In this simple model both 1/7} and 1/7% are determined by lifetimes of two lowest mth magnetic
levels and by the amplitude of fluctuating field, hq.
A more general formula for 1/ had been obtained by Kohmoto et al. [130] using a non-

linear theory of phase relaxation in the pulse fluctuating field instead of using the correlation
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function. We just present the result of the theory without derivation:

1 _ 1 (ywhem)?
—_—= —— 4.14
T, 101+ (ynhym)? (414)
In the regime of (ynh,71)2 < 1 (fast motion i.e., weak collision limit) the above formula
becomes equivalent to Eq. (4.13). While, in the regime of (yxh,71)2 > 1 (slow motion i.e.,

strong collision limit), it leads to:

_—— (4.15)

4.5.2 Nuclear relaxation due to quantum tunneling

The relation between the sublevel broadening &, which reflects the coupling to the environ-
ment such as dipolar and static hyperfine field, and tunnel splitting A is very important for
the observation of the quantum tunneling of magnetization (QTM) phenomenon. If A > 4, a
coherent tunneling may occur. If A is comparable to 4, the coherent tunneling is suppressed
by the decoherence caused by & but an incoherent tunneling takes place. For the condition
of A < 6, only phonon-assisted tunneling is possible. For Fe8 cluster, we expect that, if it is
observable, the phonon-assisted tunneling will be responsible for the additional nuclear relax-
ation rates at low fields because A ~ 1077 K from the experiment [30] is much smaller than
the value § ~ 10~2 K, which is inferred from the typical intermolecular dipolar fields {63].

In the previous investigation of the tunneling effect on nuclear spin-lattice relaxation in Fe8
the proton NMR was used as a probe {43]. Since the hyperfine field change at the proton site
as a result of a tunneling transition is small compared to the Zeeman energy, a perturbative
weak collision approach is still applicable. Thus the proton 1/77 was explained successfully

using the expression:

1 1 , T
1 LY a2 41
(TI)T o (T2)T AQF2+&’%’ (4.16)

where A, (@ = z or 1) is the average fluctuating hyperfine field due to the magnetization
reversal when a tunneling transition occurs, wy, is the nuclear Larmor frequency, and I' is the

phonon assisted tunneling probability [88, 90, 93],

A2 Wi
L= Wit G+Ab

53 P~ Bn/T), (4.17)
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where Ay, is the tunnel splitting for S, = m, W, a level broadening parameter, £ is the
longitudinal component of the bias field, E, the energy of level m, and AE,, _, the energy
difference between Fm levels due to an external longitudinal field. Here we use the concept of
“effective” tunneling probability between all degenerate sublevels instead of using separate I'y,,
in which case Eq. (4.16) should be rewritten as the summation of different contributions for each
m, as was adopted in Ref. [43]. On the other hand, in the case of >*"Fe NMR in zero external field
and in low fields the change of local hyperfine field cannot be treated as a perturbation. In fact
a tunneling transition between pairwise degenerate states -tm results in the rapid inversion of
the local field which is the quantization field for the 57Fe nuclei. This situation is analogous to
the quadrupole relaxation generated by a sudden change of the quantization axis as a result of
a molecular reorientation [132]. In this case a sudden approximation strong collision approach
should be utilized. When the jumps between equilibrium positions accompanied by changes in

the Hamiltonian are fast as for a tunneling transition one finds approximately®

(Ti:l)T or (%)T — ¢(2I), (4.18)

where ¢ is a constant of the order of one, i.e., the nuclear relaxation transition probability
is the same as the tunneling probability (see Appendix C). Note that for the case of 1/T5
Eq. (4.18) is indeed the same as Eq. (4.15) in the slow motion limit. Also the strong collision
result [Eq. (4.18)] can be formally derived from Eq. (4.16) in the limit of slow motion (I" < wy,)

when A = wy,.

4.6 Analysis of the experimental results for nuclear relaxation rates

4.6.1 Spin-lattice relaxation rate (1/71)
4.6.1.1 Longitudinal field dependence

The longitudinal field dependence of 1/T} is shown in Fig. 4.5. The relevant feature here

is the fast decrease of 1/T} up to H; = 0.1 T. If one fits the data with Eq. (4.12) in terms of

2 A simple case of strong collision due to a rapid inversion of a magnetic field has been illustrated by Abragam
[45] pp. 477-479.
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1/Ty (s7)

H, (T)

Figure 4.5 Longitudinal field dependence of 1/73. Dotted line is from
Eq. (4.12), dashed line from Eq. {(4.18) with the appropriate
parameters (see text), and solid line is the sum of the two con-
tributions. Small enhancement at 0.22 T is attributed to the
transitions of the magnetization between m = +10 — n and
m=-94+n wheren=0,1,2--..

the thermal fluctuations of the magnetization one obtains a good fit only at fields higher than
0.2 T by choosing ywhy = 2.73 x 10° (rad Hz) in Eq. (4.12) (see Fig. 4.5). The additional
contribution to 1/T7 at H, — 0 is strongly suggestive of a direct contribution due to phonon-
assisted tunneling. In fact such a contribution, described by Eq. (4.18), would be effective
only at H, = 0 and at the first level crossing (H, = 0.22 T) where a small maximum can be
observed in Fig. 4.5. Outside these field values the tunneling probability in Eq. (4.17) drops
off rapidly due to the breaking of the pairwise degeneracy of the m states [see term AEq, .,
in Eq. (4.17)].

Unfortunately, it appears that the calculated tunnel splitting values obtained by the di-
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“agonalization of Eq. (4.1) are too small to give sizeable contribution to the relaxation rates
at zero and low fields. However, the fact that the experimental value {30] Ajp ~ 1077 K is
three orders larger than the calculated value implies that the higher order Hamiltonian terms
play an important role in determining Ap,. Thus we recalculated Ay, adding the fourth order
Hamiltonian to Eq. (4.1),

H' = Dot + BalS2(S2 — 82) + (2 — 52)52)

(4.19)
+C(S4+5Y),

with the parameters, Dy = 3.54 x 1078 K, E; = 2.03 x 1077 K, and G = 4.3 x 1078 K from
Ref. [66]. We find that the modified Hamiltonian gives rise to still small A, values. Since
the fourth order transverse term, C(S% + 1), is most important with regard to the tunnel
splitting we adjusted C value in order to reproduce a correct order of magnitude of the measured
ground state tunnel splitting Ay ~ 1077 K {30, 81]. Choosing C = —2.7 x 1075, which is
a factor of 6 larger, with the opposite sign, than the value reported in Ref. [66], one obtains
Ao =45x%x 1078 Ag=3.6x 107%, and Ag = 1.3 x 10~ K. It should be pointed out that the
exact values of A,, with lower m could be very different because the other higher order terms
are strongly correlated with each other, and so affect relative values between A,, as well as
absolute values of A,,. Moreover, this fact is not relevant in our analysis as long as A,, values
are within a reasonable order of magnitude because the most important physical quantity in
our analysis is the effective tunneling probability I', which could always be reproduced by small
adjustment of the broadening parameter Wy,. It is noted that the large tunneling splitting
required to explain our data in 5"Fe enriched Feg is consistent with the observation that the
isotopic substitution increases the tunneling rate [82].

With the values of A,, calculated above inserted in Eq. (4.17) and Eq. (4.18), one explains
well the extra contribution found in the H, dependence of 1/T; with the choice of the param-
eters, Wig = 2.5 x 108, Wy = 7 x 109, Wg = 9 x 10%9, £ = 4.4 x 10° (rad Hz), and ¢ = 1 (see
Fig. 4.5). Note that the parameter §, which was fixed in order to restrict the number of free
parameters, corresponds to about 0.05 T (~ 0.033 K), which is a correct order of magnitude

for the intermolecular dipolar fields [77).
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The T and H dependences of I' calculated from the parameters given above are shown in
Fig. 4.11. The remarkable finding is that in this temperature range the low field value of the
57fe relaxation rate 1/T} gives directly the phonon-assisted tunneling rate as a result of the
strong collision mechanism.

Another interesting feature in Fig. 4.5 is the small enhancement of 1/77 found at about
0.22 T. The enhancement could be attributed to QTM between m = +10—nand m = —9+n
states, wheren = (0,1,2- - -, with the knowledge of the fact that level crossings are expected to
occur at 0.22n' T, where n’ is an integer. The enhancement of 1/73 at 0.22 T is consistent with
the stepped hysteresis found in magnetization measurements [30] and the similar enhancement

effect in ac-susceptibility measurement [116].

4.6.1.2 Transverse field dependence

The transverse field dependence of 1/7 is shown in Fig. 4.6. Contrary to the case of the
H, dependence, 1/T\ increases rapidly with increasing H;. The spin-phonon contribution
calculated by Eq. (4.12) appears to be very long compared to the experimental data, and
weakly field dependent (dashed line in Fig. 4.6). Thus we may think that QTM is responsible
for the fast increase of 1/7) because A,, is expected to increase exponentially in an applied
transverse field as calculated from the model Hamiltonian. However, the tunneling contribution
given by Eq. (4.16) with the same parameters used in the H, dependence of 1/T} increases t00
fast leading to the wrong fit of the data above 0.2 T (dashed line in Fig. 4.6).

One may ask why the tunneling contribution predicted by the theory cannot be detected in
the experiments. The answer could be given by the consideration of the fact that our sample is
aligned powder so that it would be difficult to estimate the transverse field dependence of A,
due to the distribution of molecules in zy-plane, and/or a small misalignment of the sample
may greatly reduce the tunneling contribution. We argue that the tunmeling effect on the
relaxation rate 1/73 can be quenched by the presence of a small longitudinal component of the
field. In fact, it was found, by proton NMR in Fe8 single crystal, that the tilting of 5° between

the applied field and the zy plane eliminates the tunneling effects [43]. In our measurements,
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Figure 4.6 Transverse field dependence of 1/7j. Dashed line represents
spin-phonon contribution only [Eq. (4.12)], dotted line is the
result of the calculation of the tunneling contribution without
misalignment of the sample, and solid line is from the canting
effect together with weak contributions from the thermal and
the tunneling fluctuations. [Eq. (4.20)].

the possibility of the misalignment of the sample at least up to 5° should be taken into account.
If so0, it would be difficult to observe the increase of 1/77 due to the tunneling contribution.
In order to irerify this argument, we simulated the situation in which the sample is misaligned
by 3° off zy plane on the assumption of the azimuthal angle ¢ = 45°. As it is clearly seen in
Fig. 4.7, the degeneracies between +£m level pairs at zero field, which are preserved without
tiling angle [Fig. 4.7(a)], are removed immediately by applying the transverse field for the
misalignment of 3° [Fig. 4.7(b)]. It means that the energy difference between £m levels cannot
be treated as the tunnel splitting because +m levels are no longer degenerate states in the

tilted “transverse” field. It should be emphasized that this situation is also true for a tiny
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Figure 4.7 Energy level diagrams of three lowest Xm pairs in an ap-
plied transverse field (a) with no tilting (b) with a tilting angle,
# = 3°. It is evident that a small misalignment of the sample
off zy plane removes the degeneracy of +m sublevels.

misalignment, for example 0.5°. Therefore, the predicted fast increase of Ay, with a transverse
field does not take place in presence of an even small misalignment of the sample.

When a transverse external field is applied, however, we should consider “canting effect”, as
discussed in Sec. 4.4. The transverse components of the fluctuation of the local field generated
by canting of the magnetization could be very efficient for the spin-lattice relaxation process.

Consequently 1/7} due to canting effect should be added to the spin-phonon and the tunneling

1 1 1 1
=== + | = +1l=] . 4.20
Ty (Tl)cant (Tl)sp (T}-)T ( )

contributions,
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Here we assume that (1/77)cant can be obtained replacing yyh,) in Eq. (4.12) with asin®©
where © is the angle between Heg and Hins and o = 4.1 x 10® (rad Hz) has been chosen in
order to fit the data. The agreement between the data and the theory, as it is shown as solid
line in Fig. 4.6, is very good except the small deviations at low fields. Therefore, for the H

dependence of 1/T1, (1/T1)cant > (1/T1)sp + (1/T1)T.

4,6.1.3 Temperature dependence

Fig. 4.8 shows the temperature dependence of 1/T} in zero field. The spin-phonon contri-
bution, which is represented by dotted line in Fig. 4.8, was calculated from Eq. (4.12) with the
same parameter Ynvhy = 2.73 x 10° (rad Hz) as obtained from the analysis of H, dependence
of 1/74. It is clear that the data cannot be explained with the spin-phonon contribution alone.
Thus we consider the tunneling contribution. In calculating the tunneling contribution to 1/7}
from Eq. (4.17) and Eq. (4.18) wé must include the contribution of the tunneling between the
n = +8 states since, although the Boltzmann population of these higher states is low at low
T, the tunneling splitting A, in Eq. (4.17) increases dramatically with decreasing m value.
This is not the case in Eq. (4.12) where only the contribution from the first two sets of levels
m = +10 and m = £9 need to be considered. |

The additional contribution from the tunneling calculated from Eq. (4.18) was added to
Eq. (4.12), and the obtained theoretical curve, represented by solid curve in Fig. 4.8, is in

excellent agreement with the experimental data.

4.6.2 Spin-spin relaxation rate (1/73)
4.6.2.1 Field dependences

The longitudinal and transverse field dependences of 1/7, are shown in Fig. 4.9. In the
longitudinal field, 1/T, decreases at a moderate rate with increasing H, while it is almost
constant in the transverse field. 1/7% in both directions can be fitted by Eq. (4.13) with
ynhy = 2 x 107 (rad Hz). The tunneling contribution calculated from Eq. (4.18) is negligible

so that the spin-phonon contribution is dominant for 1/T%. Also it turns out that the canting
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Figure 4.8 Temperature dependence of 1/77. Theoretical curves are given
by Eq. (4.12) (dotted line) and the additional contribution is
fitted well by adding Eq. (4.18) to Eq. (4.12) (solid line) with
the appropriate choice of the parameters (See text). Below
0.4 K, the leveling off of 1/T7 demonstrates the pure quantum
tunneling regime.

of the magnetization has no effect on the transverse field dependence of 1/T% due to the fact

that it affects only the transverse component of the fluctuation of the magnetization.

4.6.2.2 Temperature dependence

For the temperature dependence of 1/T%, the data is fitted well above 1 K with Eq. (4.13),
but it starts to deviate below 1 K as shown in Fig. 4.10. The discrepancy between the data
and the theoretical curve can be resolved by adding the constant value of 1.6 x 10% s~1. Thus,
1/T% seems to level off at a constant value, as in the case of 1/71. However, the origin of the
leveling-off of 1/7% cannot be the tunneling dynamics because its contribution from Eq. (4.18)

is negligible at all temperatures. We argue below that the constant value of 1/T5 for T — 0 i.e.,
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Figure 4.9 Field dependences of 1/T5 for both longitudinal and transverse
directions. Theoretical curves were obtained from Eq. (4.13)
with ywh, = 2 x 107 (rad Hz). It appears that the tunneling
and the canting effects do not contribute to 1/T5.

1.6 x 10% ™1 arises from the nuclear dipolar interaction mostly between 5“Fe and 'H nuclei.
The irreversible decay of the transverse magnetization (i.e., T» process) due to the nuclear
dipolar interaction mé,y originate from two contributions: (i) the dipolar interaction between
like nuclei, (ii) the fluctuation of the dipolar fields arising from unlike nuclei. For 5"Fe NMR in
Fe8, (i) should be negligible because the second moment Mz due to 37Fe nuclei is estimated to
be of the order of 7 x 102 s~2, which is four orders of magnitude smaller than My ~ 1.6 x 107
s2 for 5"Fe-'H interaction. Then, the contribution (ii) must be dominant one. In the weak
collision fast motion approximation one can express 1/7% in terms of the spectral density at
zero frequency, J;(0), of the fluctuations of the hyperfine field. Since in the present case the
hyperfine field in the dipolar interaction due to the H nuclear moments at the " Fe site one can

write 1/T5 ~ M2J%(0) = Mare, where 7. is a correlation time and Mp is the second moment {47]
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Figure 4.10 Temperature dependence of 1/T5. Dotted line was obtained
from Eq. (4.13) with yyh, = 2 x 107 (rad Hz) and solid line
was obtained adding the constant value 1.6 x 10° s~1, which is
ascribed to the nuclear dipole-dipole interaction between 57 Fe
and 'H nuclei, to Eq. (4.13). The horizontal lines indicate
the range of 75 values above which the echo signal becomes
undetectable depending on the spectrometer used and the ex-
perimental conditions.

of the 'H-5"Fe dipolar interaction. We should point out that the formula mentioned abo_ve is
the same form with Eq. (4.8), and so it is valid only in the fast motion regime i.e., VM, < 1.
If we identify 7. with the proton 7% value (~ 1073 s) measured at low temperatures [119] then
vV Mat, = 4 indicating that the fast motion approximation is not applicable. Then one has to
refer to the quasi-static approximation whereby the effect on 57Fe T, arises from the dephasing
of the Hahn echo due to the slow fluctuations of the 5"Fe~'H dipolar interaction. By using the

line narrowing approach [133] in the nearly static regime one has that the contribution to the
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Figure 4.11  Calculated tunneling probability I" versus T plot. In inset,
T is plotted against H, (solid line) and H, with the tilting
angle, 8 = 3° (dotted line) at 1.35 K.

decay of the echo signal can be expressed approximately as

/788 = ( M )1/3. (4.21)

12Tc
With the values quoted above for My and 7, one has 1/T5% = 1.1 x 10% 57! in excellent

agreement with the low T limiting value of 5"Fe 1/T% of 1.6 x 10% 571,

4.6.3 Comparison of > Fe relaxation rate in Fe8 with 'H relaxation in Fe8 and

55Mn relaxation in Mn12

As can be seen in Fig. 4.8 the 5"Fe 1/T3 vs. T in zero field levels off at low T reaching a
constant T-independent value of about 10~3 s=1. In Fig. 4.12 we show a comparison of our
data with data in the literature about proton 1/7} in Fe8 and 5°Mn 1/7} in Mnl2. In both
cases a T-independent spin-lattice relaxation plateau was observed at values corparable to

what predicted from our extrapolated fitting curve.
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Figure 4.12 Comparison of temperature dependences of "Fe 1/7} in Fe8
with 'H 1/T; in Fe8, extracted from Ref. [58], and **Mn 1/T}
in Mnl2, extracted from Ref. [44]. %*Mn data above 1 K
is found to be proportional to exp(—12.1/T") {dotted line).
Dashed line is the simulated result for the tunneling fluctu-
ations in Mnl2. Inset shows the longitudinal field dependence
of ®Mn 1/T; at 20 mK and 720 mK, extracted from Ref. [134],
demeonstrating that the plateau found in Mn12 is really arising
from the tunneling effect (see text).
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Let us analyze 3Mn 1/7} in Mn12 qualitatively in the framework of our theoretical models.
In Refs. [131] and [44], the %*Mn relaxation data in Mn12 have been interpreted as arising from
the thermal fluctuations [Eq. (4.12)], and the plateau found below 0.7 K has been attributed
to the tunneling between m = %10 ground states. As shown in Fig. 4.12, we find that °Mn
1/T: data [44] above 1 K decreases with decreasing T' in proportion to exp(—AFEym/T), where
AByn ~ 12.1 K is the energy difference between the ground and the first excitéd states (dotted
line in Fig. 4.12). We emphasize that, due to much higher energy barrier (61 K) in Mnl2 than
in Fe8 (25 K), both the thermal [Eq. (4.12}] and the tunneling contribution [Eq. (4.17)] can be
described in Mn12 by considering only the two lowest n states. This implies that it is difficult
1o establish the presence of a contribution of tunneling dynamics to the nuclear relaxation of
55Mn only on the basis of the T' dependence. Then one has to turn to the field dependence in
longitudinal fields as it was done in Fe8. At 1.45 K no anomalous drop of 1/7} at low fields could
be observed in Mnl12 [57, 131] indicating that at this temperature the spin phonon thermal
contribution is still dominant. On the other hand, at lower temperature a fast initial drop of
1/Th at low fields and a small enhancement at the first level crossing (~0.5 T) can be observed
in %Mn relaxation (see inset in Fig. 4.12). This behavior is identical to the one observed
for 57Fe relaxation in Fe8 as shown in Fig. 4.5 and can thus be ascribed to phonon assisted
tunneling. If one assumes for 5°Mn relaxation at low T a contribution given by Eq. (4.18)
and Eq. (4.17) for the two lowest states +10 and £9 i.e. A+ Bexp(—AEw,/T) one finds the
dashed line in Fig. 4.12 with a value for the ratio A/B comparable to the one in Fe8 (Fig. 4.8).

Regarding the comparison of the plateau’s in Fig. 4.12 for the different cases one notes that
the 5Mn results in Mnl2 seem to indicate a tunneling probability larger for Mn12 than for
Fe8. This is surprising in view of the much smaller value of AZ, in Eq. (4.17) expected for Mn12
compared to FeB as a result of the higher anisotropy barrier and small in-plane anisotropy in
the former of the two clusters. It have been suggested that the fast tunneling rate in Mn12 may
arise from a limited number of fast tunneling molecules {44, 134]. We compare now the 5"Fe
data and the 'H data in Fe8 (see Fig. 4.12). Since the 'H 1/T} data {58, 119] were measured

in zero external field the strong collision formula Eq. (4.18) should apply also for protons and
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thus the two sets of data should measure directly the same effective tunneling probability. This
is consistent only if one assumes that the prefactor, ¢, in Eq. (4.18) is one order of magnitude
larger for *H than for 57Fe. This conclusion, although surprising, cannot be refuted without a

detailed calculation of the relaxation in the strong collision limit for both nuclei.

4.7 Summary and conclusions

A comprehensive 5"Fe NMR, study has been carried out in order to investigate the static
and dynamic magnetic properties in Fe8 molecular cluster.

The temperature dependence of the resonance frequency in zero field is well explained in
terms of the average total magnetic moment of the molecule which is reduced by thermal
fluctuations as the temperature increases. We have shown that the hyperfine fields at the
nuclear sites are dominated by the negative core polarization term due to 3d electrons. From
the fine structure of the spectrum within each Fe group, we find that the internal field at the
nucleus is slightly different for each Fe site, whereby the difference can be easily accounted
for by small differences in the covalent bonds, indicating a total lack of symmetry of the Fe8
molecule. We confirmed the internal magnetic structure of the cluster in its S = 10 ground
state, as shown in Fig. 4.1. The ferrimagnetic spin configuration corresponding to the S = 10
ground state has been shown to be robust even when the external magnetic field is applied
perpendicular to the easy axis of the cluster.

The quantum tunneling of the magnetization (QTM) was detected by measuring the nuclear
spin-lattice relaxation rates of ®'Fe as a function of the temperature and of longitudinal field.
We argue that the tunneling contribution to 1/7) should be described in the framework of
a strong collision theory. This leads to the remarkable reéult that at low fields and low T
the relaxation rate is a direct measure of the tunneling rate. For the proper description of
the tunneling effect, we propose a simple phenomenological model in terms of the tunneling
probability that is determined by the tunnel splittings between pairwise degenerate +m states.
. The experimental data are in good agreement with our theoretical calculations when both the

thermal fluctuations due to spin-phonon interaction and the tunneling dynamics are included.
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For the spin-phonon interaction we used values of the spin phonon coupling constant derived
previously from proton NMR, in Fe8. Regarding the tunneling effect we find that in order to fit
the data one has to assume a large fourth order term in the in-plane anisotropy of Fe8. This
result is, however, consistent with previous observations reporting a tunneling splitting much
larger than predicted on the basis of published values of the anisotropy constants and the fact
that the %“Fe isotopic enrichment increases the tunneling splitting.

We compared our %"Fe relaxation data in Fe8 to the °Mn relaxation in Mn12 to show that
in both cases the 1/7} is dominated by phonon assisted tunneling below 0.5 K while in Fe8
the tunneling dynamics can be observed even at intermediate temperatures (1-2 K). When the
magnetic field is applied perpendicular to the main easy axis we find the unexpected result
that the tunneling dynamics does not contribute to the measured 1/77. We demonstrate that
the negligible tunneling effect in the transverse field is due to the breakdown of the degeneracy
of £m pairs by an inevitable tilting of the sample off the zy plane. Finally, it turns oﬁt that

the tunneling dynamics gives no effect on both the temperature and field dependences of 1/T%.
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CHAPTER 5 Scaling behavior of the proton spin-lattice relaxation rate in

antiferromagnetic molecular rings

(This chapter is mostly based on a paper accepted for

publication in Physical Review B [135].)

In this chapter, we present new and refined data for the magnetic field (H) and temperature
(T") dependence of the proton spin-lattice relaxation rate (1/71) in antiferromagnetic molecular
rings as well as a new explicit scaling formula that accurately reproduces our data. The key
ingredients of our formulation are (1) a reduced relaxation rate, R{H,T) = (1/T1)/(Tx(T)),
given by R(H,T) = Aw(T)/(w2(T) + w?;), where x = (OM/0H)r is the differential suscepti-
bility, A is a fitting constant, and wy is the proton Larmor frequency, and (2) a temperature-
dependent correlation frequency w.{T"} which at low T is given by w.(T) x T, that we
identify as a lifetime broadening of the energy levels of the exchange-coupled paramagnetic
spins due to spin-acoustic phonon coupling. The main consequence are: (1) R(H,T) has a
local maximum for fixed H and variable T' that is proportional to 1/H; the maximum occurs
at the temperature To(H) for which we(T) = wy; (2) for low T a scaling formula applies:
R(H,T)/R(H, To(H)) = 2t*/(1 +12*), where t = T/Tp(H). Both results are confirmed by our

experimental data for the choice a = 3.5 £ 0.5.

5.1 Introduction

The discovery that certain transition metal complexes (“magnetic molecules”}) act as indi-
vidual nanomagnets [2] has prompted wide interest in the physics community. The individual
molecules are shielded from each other by a shell of bulky ligands so that the magnetic inter-

actions between neighboring molecules are very small and the observed magnetic properties
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of bulk samples are very nearly intramolecular in origin. Antiferromagnetic (AFM) rings are
magnetic molecules comprising an even number (N) of uniformly spaced paramagnetic metal
ions arranged as a planar ring. The AFM rings can uéualiy be described by the Heisenberg
model of localized spins s interacting via nearest-neighbor exchange (the interaction term for
two successive spins of the ring is Js, +8,41 where J is a positive energy and the spin operators
are in units of i) along with weak anisotropic terms. The energy eigenstates deriving from the
Heisenberg Hamiltonian can be classified by the total spin quantum number S, and due to the
small number of paramagnetic spins in the ring they are well separated in energy. The minimal
energy for each S, as measured relative to the energy of the singlet § = 0 ground state, is
well described by a so-called Landé rule [136], E(S) = (A/2)S(S + 1), and it is convenient
to picture these energies as defining a rotational band [137].. The constant A is the energy
gap to the lowest S = 1 state and it is approximately A = 4J/N. Often it is also possible to
approximate the next one or two higher energy levels for each § iﬁ terms of rotational bands of
successively higher energy. The crystal field anisotropy introduces splittings of the otherwise
degenerate S levels which have been measured accurately by EPR and torque magnetometry
[12]. The anisotropy is in most cases small compared to J and can therefore be neglected in
the temperature range of our measurements. More generally, the structure of the low-lying
excitations, the local spin dynamics, and the broadening of the quantum energy levels of AFM
rings are of great interest in fundamental quantum magnetism and its applications.

NMR has proved to be a powerful tool to investigate the local spin dynamics in magnetic
molecules, and a considerable body of results has accumulated over the past five years mostly

on the dependence of the proton spin-lattice relaxation rate (1/731) on 7' and H [54, 138].

5.2 Experimental results and discussion

The general behavior found in AFM rings is that 1/7} is approximately proportional to
xT, where x = (OM/O0H)r is the differential susceptibility, namely, on cooling it decreases
monotonically from its high T saturated value and at very low T it is well approximated by

exp(—A/kgT). However, a long-standing unexplained feature is that for a number of AFM
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rings 1/77 shows a strong peak superimposed on the x¥T' behavior at a teﬁperature of the
order of J/kg [138]. The peak is particularly noticeable upon defining a reduced relaxation
rate R(H,T) = (1/T1)/(Tx(T)). It has also been observed that in a number of AFM rings all
1/T1 data appear to overlap upon plotting R(H,T)/R(H, Tp) versus t = T/To(H) with To(H)
the temperature of the maximum in R(H,T) for the given choice of H [139]. This finding
prompted the idea that there may be some universal behavior underlying the peak of 1/T}
versus 7" in AFM rings.

Since many of the previous data [139] were incomplete and obtained for a limited range
of external fields we here provide improved data for Fe6(Li), Fe6(Na}, and Fel0, and we also
present data for the first time for the AFM ring Cr8, all with a non-degenerate S = 0 ground
state. In addition, we greatly extend the qualitative ideas of universal behavior suggested in
Ref. [139] by providing an explicit formula for 1/7;. As discussed below our formula has its
origins in the first-principles formula of Moriya based on two-spin time correlation functions,
incorporates generic features of AFM rings in particular the existence of discrete magnetic
energy levels due to the AF exchange between paramagnetic ions, ‘and whose major premise
is that these levels are lifetime broadened due to the coupling of the ion spins to the acous-
tic phonons of the host molecular crystals. In particular we show that all features of our
data can be accurately reproduced by assuming that R(H,T) is given by the Lorentzian-type

expression:!

1 A we(T)

HT = =
RED) = gor = am + oy

(5.1)

where A is a fitting constant independent of both H and T, the width parameter w.(T") will be
assumed to be an increasing function of T but independent of H, and wy is the proton Larmor
frequency. We interpret hw (T") as the lifetime broadening of discrete energy levels originating
in the coupling of the exchange-coupled ion spins to the host molecular crystal. In particular
for low T' we shall assume that w.(T") x T*, where the exponent o will be determined by a

best-fit procedure to our experimental data and, as seen below, we find & = 3.5 £ (.5. This

A Lorentzian expression for 1/T1, often called a BPP formula, is widely used in NMR (see e.g., Abragam
[45] p. 457) and originates in the sampling of the spectral density of “lattice” fluctuations. The source of the
xT factor and the width parameter w.(T) in Eq. (5.1) is briefly discussed in the text.
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Figure 5.1 (a) 'H 1/7 versus T in Cr8; (0) 0.47 T (¥v) 0.73 T (©) 1.23 T
(n) 2.73 T (@) 4.7 T. (b} 1/(T1xT) versus T in Cr8. The inset
shows the measured susceptibility versus T" at 1.2 T. The solid
lines correspond to Eq. (5.1) with A = 1.0 x 10 (rad’Hz?),
C = 1.8 x 10* (rad Hz) and o = 3.5. :
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numerical result suggests that the lifetime broadening at low T is due to spin-acoustic phonon
coupling.

A key feature of Eq. (5.1) is that R(H,T') has a local maximum for fixed H and variable T,
occurring at the temperature, To(H), for which w,(T) coincides with wy.? The corresponding

maximum value of R is given by

R(H, To(H)) = ZwiN (5.2)

namely proportional to 1/H, in very good agreement with our experimental findings.

Moreover, from Eq. (5.1) we have for low 7" the scaling formula,

RHT)  2°
R(H,To(H)) 1+’ (5-3)

where ¢ = T/Tp(H). In particular, we note that according to Eq. (5.3), a plot of R(H, T')/ R(H, Tp)
should be symmetric in the variable log(t).

The four AFM ring systems considered here are: {a) Cr8 = [CrgFgPivyg] (HPiv = pivalic
acid), Cr®t (s = 3/2) ions, J/kp = 17.2 K [21]; (b) Fe6(Li) = [LiFes(OCH3)12(C15H1102)g)B-
(CeHs)4-5CHaCly, Fe®t (s = 5/2) ions, J/kg = 21 K [20); (c) Fe6(Na)= [NaFeg(OCHj3)12(C1s-
H1102)6]7ClOy , J/kp = 28 K [140]; (d) Fel0 = {Fe;o{OCH;)20(C2Ha02Cl) 10}, Fe?t (s =5/2)
ions, J/kg = 13.8 K [11]. The measurements of 1/} have been performed with standard
pulse Fourier Transform spectrometers. The recovery of the nuclear magnetization varies from
almost exponential to strongly stretched exponential depending on the molecule and the range
of T and H. In all cases the measured 1/7; is an average value over the many protons in
the molecule. However, due to the different types of recoveries one should allow for a possible
systematic uncertainty of up to 50% in the absolute values reported. Details about the NMR
measurements can be found in Refs. [54] and [138].

The experimental data for 1/77 for the AFM ring Cr8 are shown in Fig. 5.1(a) for five
choices of H, and the susceptibility data is given in the inset of Fig. 5.1(b). The corresponding

values of the reduced spin-lattice relaxation rate R(H,T) are given in Fig. 5.1(b). The solid

*To(H) has been determined from the position of the maximum of R(H,T) vs. T plot [Fig. 5.1(b)]. It is noted
that the maximum in 1/T1 vs. T plot occurs always at slightly higher temperature than To(H) [Fig. 5.1(a)].
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Figure 5.2 Proton relaxation rate, R = 1/(T1xT), scaled by its maximum
value (see text) versus T/To(H) for the AFM rings and fields
listed. The solid curve is given by Eq. (5.2) with a = 3.5.

curves have been obtained using Eq. (5.1) with A = 1.0 x 10'? (rad? Hz?), C = 1.8 x 10*
(raki Hz) and for low T we use w.(T"} = CT?, where the coefficient C' and the exponent « are
determined by a best-fit procedure; we find that @ = 3.5 £ 0.1 for the Cr8 data. In Fig. 5.2
the solid curve is obtained using Eq. (5.3) for the choice of o = 3.5 (solid curve). Also shown
in Fig. 5.2 are our experimental data for the four AFM rings Cr8, Fe6(Na), Fe6(Li), and Fel0.
Indeed, it would appear that all of the data are consistent with Eq. (5.3) and suggest that
a = 3.5 in all cases. The discrepancy for T/To(H) > 2 is not surprising since the power law
dependence of w, on T is only expected to apply for low T'. For very low T the discrepancies
are thought to be due to different nuclear relaxation mechanisms which can be important

when w(T") becomes very small. In Table 5.1 we give the values of the parameters when the

L
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data for the different AFM rings are fitted separately. It is noted that the parameter A varies
only within a factor of 2 for the different rings. A can be identified with the average square
transverse hyperfine field fluctuations. The interaction is the dipolar interaction between the
protons and the magnetic transition ion averaged over all protons in the molecule. The values
of A in the table are indeed of the correct order of magnitude for such an interaction and the
fact that they are comparable for all AFM rings is consistent with the fact that the location
of the protons with respect to the magnetic ion is on the average similar in all the molecules.
On the other hand the constant (' varies by almost two orders of magnitude for the different
rings. This indicates that this parameter is strongly dependent on the magnetic properties of
the AFM ring as will be shown further on.

For weak magnetic fields (gugH < A) one expects [60] in general that Eq. (5.1) should be
supplemented by a second Lorentzian, where wy is replaced by the electron Larmor resonance
frequency we. However, if w (T') & wy we have we(T) <« w, and it follows that the contribu-
tion of the second Lorentzian is negligible by comparison. To confirm this experimentally we
performed 1/T} measurements on two different nuclei namely *H and "Li in the same AFM
ring Fe6(Li). Given that g/ & 2.6 we selected the fields in the ratio 1:2.6 so as to achieve
the same value of wy. The resulting data for the two species are shown in Fig. 5.3 and they
are both fitted by Eq. (5.1), again with o = 3.5, shown as the solid curve. If in Eq. (5.1)
one were to use w, the data for the two nuclear species would have to fall on two separate
curves (solid curve for 'H and dotted curve for “Li). These measurements thus provide a direct

demonstration that the applied field H affects R(H,T') only via wy.

Molecule A (rad?Hz?) C (rad Hz) o
Cr8 1.0 x 10'2 1.8 x 10* 3.5(0.1)
Fel( 1.9 x 10*2 1.8 x 10° 3.2(0.2)

Fe6(Li) 1.2 x 10*2 1.1 x 104 3.5(0.5)

Fe6(Na) 1.8 x 1012 2.9 x 103 3.5(0.2)

Table 5.1 The values of the parameters. obtained from the best fit of the
1/Th data using Eq. (5.1). Note that the value of C varies de-
pending on a.
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Figure 5.3 1/(TixT) versus T in Fe6(Li) for 'H NMR (left ordinate) and
"Li NMR {(right ordinate) for wy/(2m) = 24.7 and 63.9 MHz.
The solid curve represents Eq. (5.1) with wy = ywH. Ifin
Eq. (5.1) wy were replaced by we = 7.H the 'H and “Li data
would be expected to fall on the solid and dotted curves, re-
spectively.

The use of a power law form for we(T") is restricted to the low-T' regime. However, if we
suppose that Eq. (5.1) is valid over a broad temperature range we can extract the form of w.(7T)
using R{H,T)/R(H,T) = 2wnwc/(w? + w%) in conjunction with 1/7} data. The results are
shown in Fig. 5.4 for the different AFM rings, where the independent variable is chosen as
kgT/A. This log-log plot shows very clearly that the power law behavior at low T and the
subsequent, seeming saturation at high T is a universal feature of these rings and that w.(T’) is
indeed weakly H dependent. A remarkable feature of Fig. 5.4 is that in the low T' (power-law)

regime all of the data appear to coincide with a single curve, i.e., we(T) = D(kgT/A)®, with
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Figure 5.4 Correlation frequency w, extracted from the data and Eq. (5.1)
plotted versus kT /A where A = 4J/N (see text).

a unique value of the constant I},  Further work is needed on different specific systems to
check whether this inference is in fact valid. If confirmed by further experiment this would be
an important issue to be addressed as part of a quantitative theoretical calculation.

We now briefly discuss the theoretical basis for Eq. (5.1). According to the standard formula,
of Moriya [50, 51], which is based on a perturbative treatment of the hyperfine interactions
between nuclear and paramagnetic spins, 1/77 takes the form of a linear combination of the
Fourier time transform, evaluated at wy, of the general two-spin equilibrium time correlation
functions, weighted with the square of components of the nuclear-ion spin dipole interaction
tensor. Since wy is very small compared to the freqﬁency differences (of order JJ/#) between
those eigenstates of the exchange-coupled ion spins that are linked by single-spin operators,

only quasi-elastic fluctuation terms of the spin correlation functions will contribute to 1/71, as
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only these allow for energy-conserving nuclear transitions [60]. However, the ion spins are also
coupled to the lattice and this provides the source of the iifetime broadening Fiuw.(T) of the
discrete magnetic energy levels and hence the Lorentzian broadening of the “elastic” peak. For
AFM rings (even N) the ground state of the exchange-coupled ion spins is a non-degenerate
S = 0 singlet state. The dominant contribution to 1/T) at low temperatures, which originates
from the quasi-elastic terms of both the auto- and pair two-spin time correlation functions, is

therefore proportional to e~2/%sT

, or equivalently to xT'. Finally, we remark that the familiar
critical slowing-down effects associated with phase transitions {38] are absent in AFM rings
and this too is due to the discreteness of the magnetic energy levels and the fact that only
their lifetime broadening is probed by NMR.

Elsewhere we will report evidence that the same description appears to apply for the
giant Keplerate magnetic molecule {Mo72Fe30} where 30 Fe3* ions occupy the sites of an
icosidodecahedron and the ground state is a non-degenerate S = 0 state [4]. On the other
hand, for the magnetic molecule V12, (a 3-dimensional cluster, but the predominant exchange
pathways link a central group of four spins s = 1/2) there is no evidence of a peak in 1/7} at
low T [141]. It is therefore certain that scaling behavior of the spin-lattice relaxation rate is by
no means universal for magnetic molecules. It remains to develop a clear physical explanation
for why scaling behavior occurs for certain magnetic molecules but not for others. It will also
be important to clarify the role of the intrinsic spin of the magnetic ions. In this regard it
would be very useful to synthesize a bona fide AFM ring system composed of spins s = 1/2.
We are aware that a Cu?t octanuclear s = 1/2 AFM ring, Cu8, has been measured and shows
no peak in 1/T} in the temperature range 4-300 K [142]. Since, however, Cu8 has a very large
exchange constant J/kg ~ 1000 K, the peak should be searched at very high T" and thus Cu8
cannot be considered to be a bone fide s = 1/2 ring system for our purpose.

On the theoretical side, work is in progress [143] to calculate w,(T") using a detailed mi-
croscopic model for the interaction between the paramagnetic ions and the lattice. One of
the goals of that work is to support or ultimately refute the apparent dependence of w.(T") on

kgT/A, at least for the AFM ring systems. Another goal is to establish the form of 1/7) for
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arbitrary fields when gugH < A is not fulfilled.

5.3 Summary and conclusion

In this chapter we have shown that the behavior of the proton spin-lattice relaxation rate for
four different antiferromagnetic ring-type magnetic molecules can accurately be characterized
in terms of a scaling law based on Eq. (5.1) and the related Eq. (5.3). A key quantity in this
description is a correlation frequency w,.(T") having what appears to be an S shape behavior
which can be approximated at intermediate temperature by a power-law dependence on T.
Such a temperature dependence suggests that the source of the correlation fréquency is the
coupling of the paramagnetic ions with acoustic phonons. The expected effect of that coupling
is that the Heisenberg energy levels of the AFM ring acquire a frequency width which we
identify with w(T). The observed apparent power law dependence of we(7") indicates that
this quantity decreases rapidly with decreasing 7', whereas it reaches values of the order of the
proton Larmor frequency wy = ynH (i.e., 107-10® Hz) at relatively high T (i.e., 10-30 K). In
this respect NMR, which probes very low frequency fluctuations, appears to be a unique tool
for deriving quantitative information on the thermal broadening of the magnetic energy levels

in some AFM rings.
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CHAPTER 6 General summary

In this thesis, our main inferest has been to investigate the spin dynamics and quantum
tunneling in single molecule magnets (SMMs). For this we have selected two different classes
of SMMs: a ferrimagnetic total high spin S5 = 10 cluster Fe8 and antiferromagnetic (AFM)
fing-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum
tunneling of magnetization in the very low temperature region. The most remarkable experi-
mental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/77) at low temperatures
takes place via strong collision mechanism, and thus it allows to measure directly the tunneling
rate vs T and H for the first time (see Chapter 4). For AFM rings, we have shown that 1/T}
probes the thermal fluctuations of the magnetization in the intermediate temperature range.
We find that the fluctuations are dominated by a single characteristic frequency which has a |
power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions

(see Chapter 5).
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APPENDIX A 1/T} in terms of the wave vector (g) components of the

electronic spins

We can express Eq. (2.34) in terms of the g dependent correlation function of the electronic

spins. By introducing normal coordinates,
1
Sq =~ S;expliq-Ry), (A1)
VN %
where q is a wave vector and N the number of magnetic ions in a crystal, we can express 1/7}

from Eq. (2.34) [49, 51, 54, 144],

2 o]
% _ &’14:_)_ / ; dt cos(wnt) f dg GAi(qxs;t(t)sfq(o» + AZ(qxs;(t)Siq(e») , (A2)

where A®%(q) are the Fourier transforms of the spherical components of the product of two
dipole-interaction tensors, and S* = S,+iS,. According to the fluctuation-dissipation theorem

[145], a response function

Ry = (5(2),82,(0)) = %((33(15)33(;(0)) (S5(0)8Z, (), (A.3)

is related with the correlation function i.e.,

oo —iwt 1 crox o — o — Eﬁ(w) o a
[ atenss s 0) = Bpl)Rgl) = LA @AW, (A4

where o = &, 2, Eg(w) = $hw coth(§iw/kpT), ffw) = ﬁg(w)/ég‘(O), }'?f;(w) is the Fourier
transform of RY(t), and x(g) = (gu 5)?R,(0) is the static susceptibility. In the high temperature

limit, we can approximate Eg(w) = kgT. Then, Eq. (A.2) can be rewritten

(h')fn’}’e)
e kpT
T1 drg? ,u

1EAi(Q)xi(Q)f;E(we)+ZAZ(9)XZ(Q)f§(wn) . (AS)
q

In the high temperature limit, on the further assumption of an isotropic response function,

%Xi(q) = x*(¢) = x(¢ = 0) and by taking a g-independent average value for the dipolar
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hyperfine interaction of the nuclei with the electronic spins i.e., A%(g) = A% [53-55]. Eq. (A.5)

reduces to

i _- (ﬁ'Yn'Ye)2

1
T = g kpTx(0) [EAifiii(we)+Az<I>z(wn)], (A.6)
B

where @*(w) = 3, f#*(w). This formula is the same as Eq. (2.35) which can be derivéd directly

from the real space expression of the nuclear relaxation [Eq. (2.34)].
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APPENDIX B Derivation of the correlation function for two-state

random field fluctuation

Let us assume that the local field jumps randomly between the ground state with lifetime
10 and the excited state with lifetime ;. The time dependent fluctuating field AH,(t) with
o = z, L can be described by pulse-like sudden jumps between the two field values as shown
in Fig. B.1(a). Here we further assume that 79 > 7 and the magnitude of the field variation
is fixed to ha. As depicted in Fig. B.1(b), we may think of simple two level system labeled as
states 1 and 2 in such a way that the average field T ho /(70 + 71) is made zero.

In this simple system, one can express the correlation function as
G(t) = (Ha(t)Ha(0)) = Hi[Hip1(t) + Hapa(t)), (B.1)

where Hy, Hs are the field values of the states 1 and 2, respectively,

Toho Tiha
Hy; = ; Hy =—
! T0+ 7 2 T+ 7

(B:2)

and p1(t) and po(t) are the ensemble average probabilities that in an ensemble in which the
field was H; at ¢ = 0, it will be Hy or Hs at time ¢. On the assumption that p; and po satisfy

the balance equation, we have

dpi(t

—Ei-)- = Waipz — Wiap:

; dt(t) (B.3)
_pdzt_ = Wiap1 — Waips,

where W;; is the transition probability from state ¢ to state j.

If at ¢t = O the field is Hy i.e., p1(0) = 1 and p2(0) = 0 (with normalization), one can obtain

T1 To —t/7,
t) = + e e
Pi(?) To+7T1 Tot+T1 (B.4)
pz(t) — TD _ TO e—t/'rc’

T0+ 71 0+ 71
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Figure B.1 (a) Fluctuating field AH,(t) with the magnitude hy of the field
jump and lifetimes 75 and 7. (b) Simple two level system for

the field fluctuation of states 1 and 2.

where the correlation time 7. is defined by the transition probabilities,

and we utilized the fact that Wis = 1/m and Wa; = 1/7.

[

1
o = Wig + Way

Finally, with Eqs. (B.2) and (B.4) and some simple algebra, Eq. (B.1) becomes

(Ha(O)Ha(t)) =

7071

(B.5)

(B.6)

Note that the exponential time dependence arises from the assumed balance equation. Thus

the expression for 1/T7 becomes:

1 _(mhi)® A

T 0 1+wird’

which can be compared with Eq. (2.39).

(B.7)
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APPENDIX C Nuclear relaxation in strong collision limit

In most NMR measurements, the nuclear relaxation can be described by a perturbative
approach (i.e., weak collision approach). It is obvious that the weak collision approximation
is no longer valid if the local quantization field at the nuclear site reverses suddenly by, for
example, the quantum tunneling of the magnetization.

This situation with a nuclear spin 1/2 is illustrated in Fig. C.1. The two Hamiltonians
are given by Mz p = 7Hg p-I where I is the nuclear spin vector. The corresponding eigenstates
are |t), and |F)p, respectively, and it is obvious that |t), = |F). If the change of the local
field is very fast compared to the nuclear Larmor frequency, i.e., dH\,/dt > wp, one may use
the sudden approzimation. In this case, since the nuclei (spin 1/2) cannot follow the change
of the rapid reversal of the local field, the nuclear spin states cannot change, but the excited
energy state becomes ground state, and vice versa, after the jump of the local field. Therefore

the populations in the two nuclear states must fulfill the following relation:
NZ = Nj. (C.1)

The rate equation for the populations for the Hamiltonian H,

dNg _ W (=Y — |+)a) Ny — W (|+)a — |-)s) NS,
@ (C2)
=2 =W (1) = ) N = W (=)o = [+)) N,

where W denotes the transition rate. Also one can have similar equations for Hp. If is easily
seen that from Fig. C.1 W’s should be symmetric. Therefore,
W(l+)a = |=)5) = W(l+)s = |-)a) = W,

(C.3)
W(—)e = [+)) = W(|=)p = [+)a) = WT.
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Since wn, < kpT at all accessible temperatures i.e., the Boltzmann factor e~“»/*5T . 1, one
can write W = W7F = I" where I is the transition rate of the local field. From Egs. (C.2) and

(C.3), one can have

M, _ —2T(M, — M),
dff\ff (C.4)
Tb = —2I'(Mp — My),

where the magnetizations M, 4 are given by the relationship My = v I(N,, — N}, and My
is the equilibrium magnetization. Here we assumed that M, = M.
Thus, in this simple model, the nuclear spin-lattice relaxation rate 1/7} is equivalent to 2T

i.e., twice the transition rate of the local field:

1
7 ="2T. (C.5)
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