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DISCLAIMER 

 

This report was prepared as an account of work sponsored by an agency of the United States 

Government.  Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights.  

Reference herein to any specific commercial product, process, or service by trade name, 
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recommendation, or favoring by the United States Government or any agency thereof.  The 
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ABSTRACT 

The present report summarizes the work carried out between September 30, 2000 and 

September 30, 2004 under DOE research contract No. DE-FC26-00BC15305. 

During the three-year project period, we carried out extensive studies on the inversion 

post-stack and pre-stack data together with well logs, petrophysical information and fluid flow 

data.  We have achieved all the project goals including development of algorithm for joint 

inversion of pre-stack seismic data, well logs, and time records of fluid production measurements 

using stochastic inversion algorithms which were demonstrated on realistic synthetic and field 

data. Our accomplishments are: 

• Joint inversion of post-stack seismic, well log, fluid flow, and petrophysical data: we 

demonstrated the technique with application to data from the Gulf of Mexico. 

• Development of a robust pre-stack full waveform inversion algorithm: A new approach 

based on iteration-adaptive regularization that makes use of plane wave transformed 

seismic data, was developed and applied to OBC dataset from the Gulf of Thailand.  The 

algorithm was also implemented on a cluster of personal computers. 

• Joint inversion of pre-stack seismic and well-log data: A new stochastic optimization 

algorithm that makes use of the essential features of seismic and well log data was 

developed and tested on realistic synthetic dataset. 

• Joint inversion of pre-stack seismic and fluid flow data: A novel technique was 

developed to optimally combine seismic and flow data.  The technique makes very 

realistic estimate of porosity; sensitivity of the flow parameters to two disparate datasets 

was studied extensively. 
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• Direct estimation of petrophysical parameters from seismic data: The pre-stack waveform 

inversion was modified to invert directly for porosity and saturation using the Biot-

Gassmann equation at each iteration step. 

The final report contains abridged versions of some of our inventions. The works resulted 

in several peer-reviewed publications.  Five papers have been communicated for peer-reviewed 

publication, and seven papers were presented at conferences. All of these publications and 

presentations stemmed from work directly related to the goals of our DOE project. 
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1.  INTRODUCTION 

This report describes work performed by the Center for Petroleum and Geosystems 

Engineering and the Institute for Geophysics, both with The University of Texas at Austin, 

between September 30, 2000 and September 30, 2003 under DOE research contract No. DE-

FC26-00BC15305. 

Work performed by the Center of Petroleum and Geosystems Engineering includes joint 

inversion of post-stack and pre-stack seismic data, well logs, and time records of fluid production 

measurements.  Work performed by the Institute for Geophysics includes development of a new 

parallel algorithm for pre-stack waveform inversion for petrophysical parameter estimation.  The 

CPGE and UTIG collaborated on several aspects of the work. 

The section Results and Conclusions of this report provides a detailed technical summary 

of developments and accomplishments stemming from this project. 
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2.  EXPERIMENTAL 

There are no experimental components of the project to be included in this final report.  

The tasks and components of the project comprise the development of numerical algorithms and 

computer software.  Likewise, the project includes analysis and interpretation of both field and 

numerically-simulated data.  All of these developments are summarized in the section Results 

and Conclusions of the report.  
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3.  RESULTS AND DISCUSSION 

3.A. CENTER FOR PETROLEUM AND GEOSYSTEMS ENGINEERING 

3.A.1:  INTRODUCTION 

3.A.1.1 Problem Statement 

Hydrocarbon reservoir characterization aims at providing accurate descriptions of in-

place hydrocarbon assets, multi-phase fluid-flow parameters, and reliable appraisals of methods 

to produce reserves.  It is not only important to describe the status of the reservoir prior to 

commercial production or enhanced recovery operations, but also to forecast fluid behavior 

accurately under specific production conditions.  The ability to forecast production provides a 

quantitative tool to test whether the assumed reservoir model and fluid-flow properties are 

reliable.  Whenever a discrepancy is found between the forecast and measured fluid production, a 

feedback loop can be enforced to modify the assumed hydrocarbon reservoir model.  Such 

characterization and evaluation procedure often involves a substantial amount of work and 

computer time. 

The main motivation of this project is to improve the construction of reservoir models 

amenable to numerical simulation of hydrocarbon production.  It is envisioned that 

improvements to reservoir characterization described in this project will translate into more 

accurate estimations of reserves, more reliable production forecast, enhanced well placement, 

and optimal design of asset recovery processes. 

The estimation of inter-well petrophysical properties is a central topic of this project.  

Geophysical inverse theory provides an adequate mathematical framework to infer model 

parameters from physical measurements of the model’s behavior (Tarantola, 1987; Menke, 1989; 

Sen and Stoffa, 1995).  In petroleum applications, in-situ measurements of reservoir properties 
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are difficult to perform due to limited spatial accessibility.  Most of the reservoir properties are 

then inferred from indirect measurements (e.g., well logs, seismic data).  Wireline logs and core 

data are routinely used to estimate petrophysical properties in the vicinity of existing wells 

(Bassiouni, 1994).  Well-log data possess high vertical resolution but quite often well locations 

are sparsely distributed within the reservoir.  This causes the corresponding petrophysical 

properties to be statistically biased and hence to be rarely representative of the spatial variability 

within the reservoir.  However, this is often overlooked in practical reservoir characterization 

projects since the well-log data are a primary source of rock and fluid properties. 

By contrast, seismic surveys are carried out on a surface grid to infer a three-dimensional 

(3D) distribution of elastic properties (Brown, 1999).  The seismic acquisition process embodies 

a dense lateral coverage of measurements.  Relatively low vertical resolution (anywhere between 

5 and 25 m) is the most prominent disadvantage of seismic data (Liner, 1999).  Processing errors 

and low signal-to-noise ratios can further limit the use of these measurements.  Different types of 

seismic measurements are delivered for interpretation depending on the acquisition and 

processing techniques.  Seismic measurements considered in this project comprise pre-stack, 

pseudo-angle stack, and post-stack traces.  Pre-stack seismic data are sensitive to spatial 

variations of compressional- and shear-wave velocity.  On the other hand, post-stack and pseudo-

angle stack seismic data are subsets of pre-stack seismic amplitude data and therefore are 

inherently less sensitive to subsurface variations of elastic parameters (Yilmaz, 2002). 

The use of 3D seismic data is widely accepted among reservoir practitioners, especially at 

the stage of deriving geometrical models of reservoir compartments and for estimating vertical 

and lateral continuity (Hilterman, 1999).  Seismic attributes are also commonly used to guide the 

interpretation and delineation of reservoir units (Dorn, 1998; Brown 1999).  Inversion of post-
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stack seismic amplitudes into acoustic impedance has also proved of great practical value in 

reservoir delineation, fluid detection, and well placement (Yilmaz, 2000). 

Well logs and core data are traditionally used to estimate reservoir properties that are 

subsequently extrapolated away from existing wells via geostatistical techniques (Chilès and 

Delfiner, 1999).  There are a number of references that describe the theory and applications of 

geostatistical estimation techniques (e.g., Journel and Huijbregts, 1978; Isaaks and Srivastava, 

1989; Chilès and Delfiner, 1999; Jensen et al., 2000).  Fluid samples and laboratory experiments 

are also used to estimate rock-fluid properties (Tiab and Donalson, 1996).  Subsequently, 

upscaling procedures (Christie, 1996; Kumar et al., 1997; Christie and Blunt, 2001) are 

employed to construct spatially discretized reservoir models amenable to numerical simulation of 

multiphase fluid flow. 

Those popular reservoir characterization procedures all too often miss a crucial step in 

which the 3D seismic data could be used to honor the extrapolation of petrophysical variables 

away from existing wells.  Approaches to this problem have been proposed in the technical 

literature.  To the author’s knowledge, the first suggestion of the quantitative integration of 3D 

seismic data and well logs to constrain hydrocarbon reservoir models can be traced back to 

Journel and Huijbregts (1978).  Estimation of porosity based on regression formulas between 

well-log acoustic impedance (or interval transit time) and porosity were reported by Maureau 

and Van Wijhe (1979).  They applied such regression formulas to infer spatial distributions of 

porosity from seismic-derived acoustic impedances.  Doyen (1988) cokriged average values of 

porosity at well locations with seismic attributes (i.e., time averages of seismic-derived acoustic 

impedance, as well as time averages of seismic-derived interval transit times).  This approach 
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explicitly enforced the same spatial variability of seismic attributes to the estimated inter-well 

porosity. 

Bortoli et al. (1993) and Haas (1993) proposed a stochastic seismic inversion technique 

that decomposed the 3D volume into vertical cross-sections.  Multiple stochastic realizations 

were performed to populate acoustic impedance along a given cross-section.  The cross-section 

of acoustic impedance that best matched the seismic data was retained for subsequent analysis.  

Each simulated cross-section of acoustic impedance was conditioned to honor the well-log data 

and previously accepted cross-sections.  Acoustic impedance was then transformed to porosity 

using calibration functions inferred from well-log data.  Haas and Dubrule (1994) improved the 

latter approach by performing the stochastic inversion on a trace-by-trace basis.  Seismic and 

well-log data were simultaneously honored to produce geostatistical estimates of acoustic 

impedance.  They suggested relating these multiples realizations of acoustic impedance to 

petrophysical properties such as porosity and permeability.  The ensuing estimation technique 

was referred to as geostatistical seismic inversion.  Further developments of Haas and Dubrule’s 

(1994) work can be found in the open technical literature (Debeye et al., 1996; Pendrel and van 

Riel, 1997; Torres-Verdín et al., 1999; Grijalba et al., 2000).  Torres-Verdín et al. (2000) 

compared standard geostatistical estimation techniques with geostatistical inversion of post-stack 

seismic data for reservoir delineation.  They found that geostatistical inversion produced more 

reliable and robust inter-well distributions of acoustic impedance than standard geostatistical 

estimation techniques. 

The methods for integrated reservoir characterization described above make use of post-

stack seismic data.  However, pre-stack seismic data are sensitive not only to compressional-

wave velocity but also to shear-wave velocity and therefore can be used to improve the 
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construction and reliability of petrophysical reservoir models.  Inversion of pre-stack seismic 

data gives rise to distributions of bulk density, and compressional- and shear-wave acoustic 

impedances.  Common uses of pre-stack seismic data and amplitude-versus-offset (AVO) 

variations involve the discrimination of fluids and lithology (Castagna et al., 1998; Roy et al., 

2002).  Recent advances in seismic lithology analysis using AVO can be found in Castagna 

(2001).  Consequently, a robust algorithm is long overdue that can efficiently integrate the 

information borne by the full gather of 3D pre-stack seismic data with well logs and that can 

assess the uncertainty of the estimated petrophysical and elastic properties. 

The novel algorithm developed in this project constructs reservoir models by 

quantitatively integrating measurements with distinct lengths of spatial support.  The main 

objective is the extensive and effective use of the full gather of 3D pre-stack seismic amplitude 

data, well logs, and geological information.  Specifically, this project develops a stochastic 

simulation procedure to extrapolate petrophysical variables laterally away from wells subject to 

honoring the existing 3D pre-stack seismic data in a direct and accurate manner.  Joint 

probability density functions (PDF) are constructed to establish a non-deterministic (statistical) 

link between petrophysical properties (e.g., porosity, water saturation) and elastic parameters 

(e.g., bulk density, elastic velocities or impedances).  The joint PDFs are adjusted to reflect a 

vertical resolution consistent with both well-log and seismic data.  A global inversion technique 

is used to update the initial reservoir model of petrophysical variables, generated with 

geostatistical simulation techniques, in response to a discrepancy between measured and 

synthetic 3D pre-stack seismic data.  Such a strategy naturally lends itself to an efficient 

computer algorithm to assess uncertainty of the constructed reservoir models.  The estimated 

property distributions can subsequently be used to guide the reliable and accurate estimation of 
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other important reservoir properties, such as permeability and permeability anisotropy, for 

instance, to which seismic data have negligible sensitivity.  Validation and testing of the 

algorithm developed in this project is performed on realistic synthetic subsurface models.  The 

main assumptions made by the inversion algorithm include (a) a trace-by-trace local one-

dimensional (1D) model of elastic parameters, (b) the existence of support-dependent 

petrophysical-elastic relationships, (c) seismic signal-to-noise ratios large enough to warrant 

sensitivity to vertical variations of elastic parameters, and (d) well-log data truly representative 

of rock formation properties. 

3.A.1.2 Research Objectives 

The main objective of this work was to develop a novel, efficient, accurate, and robust 

algorithm to quantitatively integrate 3D pre-stack seismic data, well logs, and geological 

information in the construction of hydrocarbon reservoir models.  This new algorithm is based 

on global inversion techniques and stochastic simulation.  Emphasis is placed on the use of 3D 

seismic data, especially the full gather of 3D pre-stack seismic amplitude data, to take advantage 

of their relatively dense lateral coverage and of their enhanced sensitivity to subsurface elastic 

parameters. 

3.A.1.3 Outline of this Report 

This report is divided into three major sections.  The first section includes Sections 3.A.1 

and 3.A.2.  Section 3.A.2 is a brief review of the physical principles, and of the mathematical 

and statistical formulation of technical topics used throughout the project.  It summarizes the 

fundamentals of rock physics and elastic wave propagation, describes the approach used to 

numerically simulate seismic data, summarizes the properties of random variables and of their 

spatial relations, and overviews the principles of fluid flow in porous and permeable media. 
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The second section consists of Sections 3.A.3 and 3.A.4.  This section emphasizes the 

advantages and disadvantages of the quantitative use of post-stack and pseudo-angle stack 

seismic data in integrated reservoir characterization studies that make use of global inversion 

techniques.  Section 3.A.3 describes a procedure for the estimation of spatial variations of 

petrophysical and elastic parameters caused by dynamic reservoir behavior.  The estimation is 

performed from time-lapse seismic measurements.  In Section 3.A.4, a detailed study is 

undertaken to quantify the value of seismic data in the construction of reservoir models and to 

assess their impact in the forecast of hydrocarbon production. 

The last section comprises Sections 3.A.5 and 3.A.6.  This section describes novel 

stochastic inversion algorithms developed in the project to estimate elastic and petrophysical 

parameters from the full gather of pre-stack seismic data.  Section 3.A.5 evaluates different 

factors that condition the estimation of elastic parameters such as types of global optimization 

technique, objective function, sampling strategy, and measures of smoothness.  Based on this 

evaluation, a stochastic inversion algorithm is developed that makes use of simulated annealing 

and geostatistical concepts to concomitantly estimate 1D distributions of elastic parameters and 

their uncertainty.  This global inversion algorithm is also validated against standard inversion 

techniques.  Section 3.A.6 unveils a method for the direct estimation of petrophysical properties 

(and elastic parameters as by-products) that jointly honors the full gather of pre-stack seismic 

data, well logs, property histograms, and quantitative geological information.  The algorithm is 

used to estimate reservoir properties, such as porosity, and their associated uncertainty using 

two-dimensional (2D) and 3D realistic synthetic subsurface models as examples.  In addition, 

static and dynamic comparisons are performed against models generated with standard 

geostatistical techniques. 
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Finally, Section 3.A.7 summarizes the overall conclusions of this project and provides 

recommendations for future research work. 

3.A.2:  MATHEMATICAL PRELIMINARIES 

This Section summarizes basic mathematical concepts that are used through the project.  

A description of inverse problems is presented as well as the methods used to simulate elastic 

properties, and subsequently seismic data.  Some concepts are also discussed concerning wave 

propagation theory, post-stack and pre-stack seismic inversion, geostatistical estimation, and 

fluid flow in porous media. 

3.A.2.1 Introduction 

A strong commercial need exists to develop an efficient and robust algorithm that can 

quantitatively and accurately integrate different types of measurements, such as seismic data, 

well logs, cores, and production data, to characterize hydrocarbon reservoirs and to assess 

uncertainty in reservoir production.  Figure 3.A.2.1 is a generalized flow diagram that shows a 

strategy to integrate seismic data into reservoir characterization studies.  Most of the 

hydrocarbon exploration projects start with acquisition, processing, and subsequently 

interpretation of seismic data.  A large amount of the approaches used today involve the use of 

post-stack seismic data.  However these measurements allow one to make only inferences of 

lithology and fluid properties (see Figure 3.A.2.1).  In the following sections a description is 

presented of the mathematical background of these approaches and of the proposed algorithm 

that involves the stochastic inversion of 3D pre-stack seismic data and well logs. 

3.A.2.2 Formulation of the Inverse Problem 

The inference of reservoir properties (e.g., porosity, permeability, water saturation) from 

observed measurements (e.g., seismic data, production data) belongs to the category of inverse or 
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estimation problems.  Such inverse problems relate model parameters with observed data 

through an often nonlinear mathematical representation.  The choice of model parameters used to 

describe the system is not unique.  A continuous forward problem, for instance, predicts the 

measurements for an arbitrary set of model parameters.  For the case of continuous and scalar 

linear inverse problems, the relationship between the model and the data can be written as 

( ) ( ) ( )dxxmyxCyd ∫= , ,     (3.A.2.1) 

where d are the data, m  is the model, C  is the kernel, and x  and y  are the model and data 

space variables, respectively.  The measurements normally consist of discrete values.  Therefore, 

equation (3.A.2.1) can be discretized to estimate model parameters using a prescribed objective 

function and an optimization algorithm.  In the more general case, nonlinear inference of model 

parameters from measurements requires: (a) an initial guess of the unknown model parameters, 

(b) numerical simulation of the system response using the mathematical representation of the 

model (i.e., forward operator or mathematical model), (c) perturbation of model parameters using 

the optimization algorithm, and (d) a convergence criterion (e.g., value of the objective function, 

number of iterations). 

This project deals with the inverse problem of estimating petrophysical parameters (and 

elastic parameters as by-products) from pre-stack seismic and well-log data and, subsequently, 

with the dynamic evaluation of the inferred static reservoir models.  Thus, the fundamental 

physical laws that are relevant to this problem are: elastic wave propagation theory for seismic 

modeling and mass conservation, Darcy’s law, and the equation of state for the dynamics of the 

reservoir.  Various statistical and geostatistical techniques are also used in the implementation of 

the inversion algorithm developed in this project.  These fundamental laws and relationships are 

combined and implemented as a computer algorithm. 
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3.A.2.3 Generation of Elastic Rock Properties 

The interest in studying different rock physics models is a result of a subsequent need to 

simulate consistent elastic properties and then seismic data.  Pre-stack seismic data constitute the 

main input to the proposed inversion algorithms. 

3.A.2.3.1 Rock Physics Models 

There are several quantitative relationships published in the open technical literature to 

link elastic properties of rocks (i.e., pv  and sv ) with their pore space, pore fluid, fluid saturation, 

pore pressure, and rock composition.  Many of these relationships are based on empirical 

correlations and are often applied to specific basins in the world where their validity has been 

confirmed with experimental data (Wyllie et al., 1958; Hamilton, 1979; Castagna et al., 1985).  

Other relationships stem from effective medium theory and hence are subject to different types 

of operating assumptions (Gassmann, 1951; Biot, 1956; Duffy and Mindlin, 1957; Geertsma, 

1961).  There is no single rock physics model that provides a complete and general formulation.  

3.A.7.5.A. Appendix A describes the assumptions and operating conditions adopted by several 

empirical and theoretical rock physics models. 

3.A.2.3.2 Elastic Relationships 

Usage of experimental mechanical models (see 3.A.7.5.A. Appendix A) requires specific 

petrophysical and mechanical properties of rocks that are not normally available from standard 

laboratory measurements.  Specifically, the relationships introduced by Hamilton (1979) require 

knowledge of both depth and lithology to calculate velocities.  Castagna et al.’s (1985) rock 

physics relationships provide seismic velocity values based on porosity and volume of clay; 

lithology information is needed for a pure rock system.  On the other hand, expressions 

associated with the theoretical models described in 3.A.7.5.A. Appendix A require knowledge of 
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the bulk moduli of the rock, of the fluid, and of the rock’s matrix, of the rock’s bulk rigidity 

modulus, and of the effective pressure, bulk density, and porosity. 

A simple, yet practical way to define these material properties is to make use of a 

combination of values associated with pure components and of additional relationships to link 

the elastic parameters (i.e., bulk modulus) with petrophysical properties such as porosity, for 

instance.  3.A.7.5.B. Appendix B describes the set of relationships used in this project to 

calculate the elastic parameters necessary to uniquely define the rock physics model.  Table 

3.A.2.1 describes common values obtained from the literature for the elastic parameters of 

various pure rock components (Mavko et al., 1998).  The need to provide specific values for 

these components follows from the subsequent objective to numerically simulate multiphase 

flow measurements and seismic data. 

3.A.2.3.3 Comparison of Rock Physics Models 

The experimental formulation of Hamilton (1979) requires knowledge of depth and 

lithology to calculate elastic parameters.  This approach provides consistent burial trend behavior 

for the compressional- and shear-wave velocities, but it is independent of fluid content, porosity 

of the rock, and effective pressure.  Another drawback of this formulation is related to the 

assumption of no lateral variations: two points with the same lithology and depth will exhibit the 

same velocity.  Number 1 in the legend of Figure 3.A.2.2 identifies such a model.  On the other 

hand, Castagna et al.’s (1985) rock physics relationships require specific values of porosity, 

volume of clay, and lithology for the case of a pure component system.  The latter approach 

calculates the elastic velocities taking into account the porosity but ignoring fluid content and in-

situ pressure.  Elastic velocities could change laterally, however, if two points at different depths 
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exhibit the same porosity, in which case the resulting velocity becomes identical.  This means 

that the normal spatial trends of elastic velocity are not always satisfied. 

Geertsma (1961) and Duffy and Mindlin (1957) models were evaluated for the two 

empirical relationships of bulk modulus.  Figure 3.A.2.2 shows a vertical profile of elastic 

parameters obtained with the application of equations (3.A.7.5.B.3) and (3.A.7.5.B.4) in 

3.A.7.5.B. Appendix B.  Such profiles are identified with the letters A and B, respectively.  Biot-

Gassmann-Geertsma’s theoretical model was tested for limiting values of mass coupling factor, 

κ , equal to infinity (perfect coupling) and one (no fluid-solid coupling)(numbers 2 and 3 in the 

legend of Figure 3.A.2.2, respectively).  Even though this model takes into account porosity 

changes and fluid content, the burial trend for elastic velocity is not always consistent with 

nominal burial trends.  However, Duffy and Mindlin’s (1957) formulation does take into account 

the presence and variation of effective pressure.  Mechanical compaction of rocks affects rock 

properties (Bourgoyne et al., 1991).  Vertical profiles of elastic parameters obtained from this 

model are identified with the number 4 in Figure 3.A.2.2 and remain consistent with elastic 

velocity trends and burial-related behavior.  There are no significant differences between 

simulated elastic properties when making use of any of the two approaches to calculate bulk 

modulus (i.e., equations 3.A.7.5.B.3 and 3.A.7.5.B.4 in 3.A.7.5.B. Appendix B). 

Duffy and Mindlin’s (1957) model allows one to calculate elastic velocities that include 

the most important effects (e.g., porosity, fluid content, and mechanical compaction).  Such a 

model provided the most realistic correlation in the presence of shale compaction and is used 

here in combination with equation (3.A.7.5.B.3) in 3.A.7.5.B. Appendix B to compute a bulk 

modulus and, subsequently, to generate the input data necessary to perform the forward 
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modeling of post- and pre-stack seismic data.  Experimental evidence has shown that this model 

accurately reproduces a wide variety of velocities measured on rock samples (White, 1983). 

3.A.2.4 Seismic Modeling 

The study of mechanical vibrations, naturally or artificially induced in the subsurface is a 

subject of central interest to applied seismology.  The recordings of these vibrations are referred 

to as seismograms.  Quantitative calculation of such seismograms is based on wave propagation 

theory.  Below, a description is presented of the seismic acquisition and processing, wave 

propagation theory, and of the methods used to simulate numerically post-stack and pre-stack 

seismic data. 

3.A.2.4.1 Seismic Acquisition, Processing, and Resolution 

Figure 3.A.2.3 is a simplified graphical description of one of the common strategies used 

for acquisition and processing of seismic data.  Panel (a) in this figure shows the array of sources 

and receivers, whereas panel (b) shows the original record of seismic traces or seismic offsets 

(where offset is the distance between source and receiver) measured with such an array.  Source-

receiver offset data are often corrected for travel time differences caused by variations in the ray 

trajectory.  Panel (c) shows the seismic traces (i.e., pre-stack seismic data) after applying a 

normal moveout (NMO) correction whereas panel (d) shows the seismic data that result from the 

addition, or stacking, of the pre-stack seismic traces.  This stacked seismic trace is normally 

referred as post-stack seismic trace. 

In practical applications, one of the advantages of seismic data is that they provide 

exhaustive lateral coverage of the subsurface.  Reflected seismic signals contain frequencies in 

the range from a few Hertz to a few hundred Hertz and are normally sampled at rates of 2 and 

4ms.  The vertical resolution of these measurements is their main practical limitation.  Lateral 
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(horizontal) resolution is largely determined by the distance between adjacent traces and 

commonly ranges between 20-50 m.  Vertical resolution remains controlled by the frequency 

content of the underlying seismic wavelet and commonly ranges between 5-15 m. 

3.A.2.4.2 Wave Propagation Theory 

For a medium with homogenous and isotropic elastic properties, the general equation of 

motion may be written as 

( ) ( ) ( )
2

2 2
t

ρ λ µ µ∂
 = + ∇ ∇ ⋅ − ∇×∇× ∂

u u u ,     (3.A.2.2) 

where u  is the displacement vector, ρ  is density, λ  is the Lame’s constant, and µ  is shear 

(rigidity) modulus.  Lame’s and other elastic constants such as bulk modulus are related to each 

other (Sheriff, 1984).  Equation (3.A.2.2) implies that Newton’s second law is defined in term of 

stress and displacement, and that stress and strain are proportional, that is, they are governed by 

Hooke’s law.  It also assumes small displacements.  For additional details and applications on the 

elastic wave equation, the reader is referred to Elmore and Heald (1969) and to Ben-Menahem 

and Singh (1999). 

Compressional-wave propagation is described as a particular case of equation (3.A.2.2) 

and obtained by taking the divergence of the equation of motion, that is 

( ) ( ) ( )
2

2 2
t

ρ λ µ
∂ ∇ ⋅

 = + ∇ ⋅∇ ∇ ⋅ ∂
u

u .   (3.A.2.3a) 

By defining the divergence of the displacement vector as u⋅∇=Φ , one obtains 
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This yields 

2 2
pv λ µ

ρ
+

= ,   (3.A.2.3d) 

where pv  is compressional-wave velocity. 

The equation for shear-wave propagation is obtained by taking the curl of the equation of 

motion, that is 

( ) ( )
2

2
2t

ρ µ
∂ ∇×

 = ∇ ∇× ∂
u

u . (3.A.2.4a) 

By defining the curl of the displacement vector as u×∇=Ψ , one obtains 
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This yields 

2
sv µ

ρ
= ,   (3.A.2.4d) 

where sv  is shear-wave velocity. 
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3.A.2.4.3 Numerical Simulation of Post-Stack Seismic Data 

Figure 3.A.2.4 is a graphical representation of the phenomenon of reflection and 

transmission of plane waves at a planar interface separating two media.  In the most general case, 

a single incident plane wave on an interface gives rise to four waves: reflected and transmitted 

shear waves and reflected and transmitted compressional waves.  In seismic signal processing, 

the primary echoes or reflections are the most commonly used to infer features and properties of 

the subsurface (Yilmaz, 2000).  The ratio of the amplitude of a reflected wave compared to the 

amplitude of an incident wave is called the reflection coefficient.  If the angle of incidence is 

zero (i.e., the incident plane wave is directed normal to the planar interface), the reflected and 

transmitted waves do not change direction but do change sign.  For the latter situation, the 

primary reflection coefficient, r , for the compressional wave, ppr , is an interface property and is 

given by  

2 1

1 2
pp

AI AIr
AI AI

−
=

+
,     (3.A.2.5) 

where AI  is acoustic impedance and the subscripts 1 and 2 indicate the particular medium above 

(1) or below (2) the interface.  Acoustic impedance is the product of density, times 

compressional-wave velocity.  For a 1D layered medium, the convolution of the time series of 

reflection coefficients, ( )r t , with the seismic wavelet, ( )w t , generates a zero-offset synthetic 

seismogram, ( )s t , or post-stack seismic data.  Each post-stack seismic trace measures amplitude 

variations as a function of seismic travel time.  The mathematical representation of this 

convolution is given by 

( ) ( )( )s t w t r t dτ τ
∞

−∞
= −∫ . (3.A.2.6) 
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This equation tacitly neglects transmission losses, internal multiples, and frequency 

dispersion.  In the frequency domain, the above convolution becomes the product of the Fourier 

transforms of the two functions, namely, 

( ) ( )( )S W Rω ω ω= ,     (3.A.2.7) 

where ω  is angular frequency and S , W , and R  are the Fourier transforms of the functions s , 

w , and r , respectively.  This simple convolution model is the forward operator used in the 

simulation of post-stack seismic data.  The main disadvantage of such a model is that acoustic 

impedance does not provide independent sensitivity to bulk density and compressional-wave 

velocity. 

3.A.2.4.4 Numerical Simulation of Pre-Stack Seismic Data  

Computation of synthetic seismograms for a particular source-receiver arrangement is 

performed under the assumption of a locally 1D distribution of elastic properties (i.e., medium 

properties are only a function of depth or time).  The theory of seismic wave propagation in such 

a medium has been extensively studied (Ben-Menahem and Singh, 1999; Aki and Richards, 

2002) and there are different methods to approach the numerical simulation (Kennett, 1983; Aki 

and Richards, 2002). 

The reflectivity method (Fuchs and Muller, 1971; Kennett, 1983) computes the full-wave 

response of a stack of horizontal layers including all wave modes and mode conversions.  Source 

and receivers are located on the surface.  Numerical integration of the reflectivities (or the 

Thomson-Haskell Reflectivity matrix, or propagator matrix) associated with the layered medium 

is performed in the horizontal wavenumber domain or else over the angle-of-incidence domain.  

Multiplication of the reflectivity function with the source spectrum (Fourier transform of the 

seismic wavelet) and then inverse Fourier transformation are necessary to obtain seismograms 
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for a given source-receiver offset.  In this project, a simplified version of the reflectivity method 

is used to efficiently compute synthetic seismograms for compressional wave (primaries only) in 

offset-time (x, t) domain.  The reader is referred to 3.A.7.5.C Appendix C  for a general 

description of the reflectivity method and to Kennett (1983) for more details about wave 

propagation in stratified media. 

3.A.2.5 Statistical and Geostatistical Modeling 

In petroleum applications, Geostatistics is a tool that allows one to assess inter-well 

reservoir properties and to perform data integration.  It is based on the general theory of random 

variables and stochastic processes (Chilès and Delfiner, 1999).  Reservoir properties at a given 

location can be treated as random variables governed by PDFs.  Most of the stochastic methods 

used for modeling hydrocarbon reservoir properties are based on two operating assumptions: 

second-order stationarity and ergodicity.  The inversion algorithms developed in this project are 

stochastic in nature and make use of random variables and of geostatistical concepts to perform 

the estimation of elastic and petrophysical properties. 3.A.7.5.D Appendix D presents some basic 

descriptors of random variables and geostatistical concepts used throughout the project.  There 

are also a number of references that explain in more detail the theory and applications of such 

techniques (e.g., Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; Chilès and Delfiner, 

1999; Jensen et al., 2000). 

3.A.2.6 Numerical Simulation of Fluid Flow in Porous Media 

A general description of the mathematical formulation used for the numerical simulation 

of a waterflood process is presented in 3.A.7.5.D. Appendix D  Seismic data remain insensitive 

to the small density contrast between oil- and water-saturated rocks; hence, a waterflood 

becomes a stringent test for the sensitivity analysis pursued in this project.  A second reason for 
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selecting a waterflood recovery process for analysis is so that results can provide some insights 

into potential waterfloods in deepwater reservoirs where seismic is a main data source. 

3.A.2.6.1 Fluid, Rock, and Rock-Fluid Properties 

Dynamic evaluations of petrophysical models (i.e., porosity) used as reference and those 

constructed with the join stochastic inversion algorithm developed in this project are performed 

assuming a waterflood process and using a commercial fluid flow simulator (Eclipse).  These 

evaluations require not only of the description of the production/injection constraints but also of 

the description of fluid, rock, and rock-fluid properties.  For the purposes of this project the 

constraints and properties used in the waterflood are clearly defined in each section when 

appropriate.  Additionally, uncertainty associated with fluid and rock-fluid properties is 

neglected in the analysis.  This means that fluid properties and rock-fluid properties (e.g., 

capillary pressure and relative permeability curves) are assumed to be known precisely.  

Therefore, dynamic results remain affected only by the description of the porosity model and the 

assumed porosity-dependent properties. 

Permeability is one of the most important rock properties in the assessment of fluid flow 

through porous media (Bear, 1972; Tiab and Donaldson, 1996).  A common practice in reservoir 

engineering is to relate permeability to porosity using a general transformation, i.e., 

log k a bφ= + .  The nonlinear form of this equation is consistent with empirical observations that 

generally show a linear relationship between permeability plotted on a logarithmic scale and 

porosity plotted on a linear scale.  Permeability-porosity relations are notoriously noisy, a factor 

that is neglected in the dynamic evaluations performed in this project.  The explicit nonlinearity 

of the permeability-porosity relationship contributes significantly to the accuracy of dynamic 

predictions.  Moreover, the interplay between the nonlinearity of such a transformation and the 
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noise is known to lead to additional biases in dynamic predictions of reservoir behavior (Jensen 

et al., 2000).  However, the above described assumptions allow not only to study the impact of 

the petrophysical models constructed with the proposed joint stochastic inversion algorithm on 

dynamic evaluations but also to compare dynamic results on an equal footing with reference 

models.  For instance, the benefit of using a known porosity-permeability transformation is that 

if the true porosity could be estimated then one could accurately estimate permeability. 

3.A.2.7 Summary 

This Section summarizes the physical models and mathematical and statistical concepts 

used to develop a novel stochastic inversion algorithm.  The next section comprises two Sections 

that explore the sensitivity of seismic and reservoir measurements to petrophysical and elastic 

properties via nonlinear inversion.  The overall analysis highlights the use of seismic data in 

reservoir monitoring and modeling. 

Table 3.A.2.1: Assumed elastic parameters associated with pure rock components. 

Pure 
Component 

Dry Bulk 
Modulus 

(GPa) 

Shear 
Modulus 

(GPa) 

Density  
(g/cm3) 

Sand 36 32 2.65 

Shale 22 6.8 2.85 

Water 2.3 - 1.00 

Oil 1.6 - 0.85 
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Figure 3.A.2.1: Flow diagram for integrated reservoir characterization studies that make use of seismic data. 
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Figure 3.A.2.2: Comparison of the simulated one-dimensional distributions of elastic properties using four 

different rock physics models, namely, 1 = Hamilton, 2 = Biot-Gassmann-Geertsma ( ∞=κ ), 3 = 

Biot-Gassmann-Geertsma ( 1=κ ), and 4 = Duffy and Mindlin.  Panels A and B show the 

calculated elastic properties using equation (3.A.7.5.B.3) and (3.A.7.5.B.4) in 3.A.7.5.B. 

Appendix B, respectively. 
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Figure 3.A.2.3: Simplified graphical representation of one of the common strategies for the acquisition and 

processing of seismic traces (Panel a).  Panel (b) shows the actual record of acquired seismic 

traces.  Panel (c) shows the same traces after the application of a normal moveout correction (i.e., 

pre-stack seismic data) and panel (d) shows the stacked seismic trace (i.e., post-stack seismic 

data). 
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Figure 3.A.2.4: Graphical description of the phenomenon of reflection and transmission of plane waves at a planar 

interface (at 0z = ) separating two media with different elastic properties. 
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3.A.3:  RESERVOIR EVALUATION WITH SEISMIC DATA: QUANTITATIVE USE OF SEISMIC DATA IN 

RESERVOIR MONITORING 

This Section introduces a sensitivity analysis to quantify the value of seismic data in the 

monitoring of dynamic reservoir behavior.  The numerical sensitivity analysis is based on 

nonlinear inversion.  Initially, the problem is formulated, then the subsurface model is described 

as well as the forward modeling of the petrophysical, elastic, and seismic parameters.  Several 

numerical experiments are performed and examined to assess the value of time-lapse 3D seismic 

data in detecting dynamic reservoir changes. 

3.A.3.1 Introduction 

An attempt is made in this Section to appraise the ability of time-lapse 3D seismic data to 

infer spatial distributions of petrophysical properties.  To this end, a synthetic, spatially 

heterogeneous hydrocarbon reservoir model is constructed and subject to numerical simulation 

of multiphase fluid flow.  Hydrocarbon production is assumed in the form of one water injection 

well and four oil producing wells.  The synthetic reservoir model exhibits average porosities of 

20% but otherwise poses significant geometrical constraints to the usage of seismic data to 

ascertain petrophysical changes in the reservoir as a result of production.  In addition, the lack of 

a significant density contrast between oil and water makes this example a non-trivial case for the 

assessment of the sensitivity of seismic data to time variations in reservoir properties. 

Simulation of seismic data is performed in time-lapse mode making use of a rock physics 

model that includes the effect of differential mechanical compaction between sands and shales as 

a function of depth of burial.  The numerical sensitivity study presented in this Section is strictly 

based on inversion and hence sheds quantitative light to the spatial resolution properties of noisy 

3D seismic data.  Inversion of noisy post- and pre-stack 3D seismic data is performed to infer 

space-time distributions of elastic parameters within the reservoir. 
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Multiphase fluid-flow parameters have a measurable impact on fluid saturation and pore 

pressure and hence on the spatial distribution and time evolution of elastic parameters.  However, 

the inverted spatial distributions of elastic parameters at best correlate with smooth spatial 

averages of the actual distributions of pore pressure and fluid saturation.  Because time-lapse 

seismic amplitude variations are of the order of 5%, such a correlation would be difficult, if not 

impossible, to ascertain without inversion.  It is also shown that the elastic parameters inverted 

from pre-stack seismic data do provide more degrees of freedom to discriminate between time 

variations of pore pressure and fluid saturation in the reservoir compared to distributions of 

acoustic impedance inverted from post-stack seismic data. 

3.A.3.2 Background and Formulation 

The purpose of hydrocarbon reservoir characterization is to construct geological models 

and their associated spatial distributions of petrophysical properties.  Three-dimensional seismic 

data are widely used to construct geometrical models of reservoir compartments (Dorn, 1998; 

Brown, 1999; Liner, 1999).  Amplitude analysis of seismic data has also proved useful to infer 

lateral and vertical changes in some petrophysical parameters, notably lithology, porosity, fluid 

saturation, and pore pressure (Hilterman, 1999).  On the other hand, wireline logs and core data 

are routinely used to provide an initial estimate of petrophysical parameters in the vicinity of 

existing wells (Descalzi et al., 1988; Johnson, 1994).  These estimates are subsequently 

extrapolated away from wells via geostatistical techniques and upscaling procedures that yield a 

cellular reservoir model amenable to numerical simulation of multiphase fluid flow (Chilès and 

Delfiner, 1999).  Extrapolation of petrophysical parameters away from wells in some instances 

can be performed with the use of seismic data, as done with geostatistical inversion (Torres-

Verdín et al., 1999; Victoria et al., 2001).  More recently, time-lapse seismic data have been 
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acquired and interpreted to gain insight to the dynamic behavior of producing hydrocarbon 

reservoirs (Al-Najjar et al., 1999; Merke1 et al., 2001; Cominelli et al., 2002). 

The objective of this Section is to quantify the spatial resolution of 3D seismic data in the 

inference of static and dynamic properties of hydrocarbon reservoirs.  Measurements consist of 

pre- and post-stack seismic data acquired in time-lapse (4D) mode as well as wireline logs 

acquired before and after the onset of production (if wireline logs were not acquired after the 

onset of production then it is assumed that the original wireline logs were corrected using fluid 

substitution laws to reflect actual values after the onset of production).  Seismic data are 

simulated numerically from a synthetic reservoir model that exhibits a considerable spatial 

variability in its associated petrophysical parameters.  A waterflood enhanced recovery process is 

responsible for the dynamic behavior of the reservoir.  Fluid production and pore pressure 

depletion are forecast using a multiphase reservoir simulator.  Elastic properties are calculated 

from petrophysical parameters via rock physics/fluid substitution equations.  Subsequently, 

seismic data are simulated assuming a nominal Ricker wavelet and a local 1D distribution of 

elastic properties for a given source-receiver gather.  The central technical contribution of this 

Section is the estimation and appraisal of time-lapse reservoir changes by way of inversion. 

3.A.3.3 Using Inversion to Improve Seismic Amplitude Resolution 

Interpretation of 3D seismic data often relies on amplitudes analysis to identify anomalies 

that could be associated with petrophysical properties of hydrocarbon reservoirs.  However, 

petrophysical interpretation directly from seismic amplitudes can be unreliable and inaccurate 

because of wavelet and tuning effects as well as deleterious measurement noise. 

A way to improve the vertical resolution of seismic amplitudes is to perform inversion 

(Sams et al., 1999; Torres-Verdín et al., 1999).  The latter procedure can substantially reduce 
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wavelet effects and hence deliver elastic parameters with a closer connection to petrophysical 

parameters than seismic amplitudes.  In the case of post-stack seismic data, inversion yields 

estimates of compressional-wave acoustic impedance (i.e., the product of bulk density times 

compressional-wave velocity), whereas in the case of pre-stack seismic data, inversion yields 

estimates of bulk density, compressional-wave velocity, and shear-wave velocity, or 

compressional-wave acoustic impedance (PAI), and shear-wave acoustic impedance (SAI).  

Below, a description is presented of the method used in this Section to generate and evaluate 

time-lapse seismic data using as example a waterflood enhanced recovery process.  The same 

method includes a quantitative analysis of the relative merits of inversion to produce estimates of 

elastic parameters and indirectly of petrophysical properties. 

3.A.3.4 Construction of a Synthetic Reservoir Model 

3.A.3.4.1 Geological Model 

Figure 3.A.3.1 shows the synthetic geological model considered in this Section.  It 

consists of two sand bodies embedded in a background shale.  The upper sand body is water-

filled whereas the lower one is saturated with oil.  Fine non-conformal sedimentary layering of a 

fluvial nature was enforced within the sands to subsequently populate petrophysical properties.  

Geometry and dimensions of the sand bodies were specifically designed to assess the spatial 

resolution of seismic data in the presence of wavelet tuning.  This subsurface model consists of 

approximately 30 million cells that were used to simulate seismic data and time records of fluid-

flow measurements.  Dimensions of the subsurface model were also designed to allow for the 

generation of seismic source-receiver angles of up to 45 degrees.  A normal trend of increased 

mechanical compaction with depth was included in the background shale layer.  Table 3.A.3.1 
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summarizes the geometrical dimensions, average elastic properties, and seismic parameters 

associated with the hypothetical subsurface model. 

3.A.3.4.2 Reservoir Parameters and Fluid-Flow Model 

Petrophysical properties within the subsurface model were populated using geostatistical 

algorithms that enforced lithology dependent probability density functions and spatial 

semivariograms.  The porosity field was assumed to be second-order stationary, normally 

distributed (mean value = 20%), and to exhibit a spatial correlation described by spherical 

semivariograms with zero nugget (see Table 3.A.3.1 for details).  A fluid-flow numerical 

simulation grid was constructed to replicate a five-spot waterflood enhanced recovery process 

(one injector and four producing wells) in the oil-saturated sand.  Figure 3.A.3.2 is a 3D view of 

the oil-saturated sand together with a description of the geometry, dimensions, well spacing, and 

well locations.  Under the assumed conditions, seismic data are not strongly sensitive to the 

density contrast between water and oil.  Therefore, a waterflood enhanced recovery process 

provides a difficult challenge for the quantification of the value of seismic data. 

The same gridblock dimensions used to simulate the seismic data were used to simulate 

fluid flow behavior; hence mathematical upscaling was not necessary.  Relationships between 

porosity, permeability, and water saturation were enforced using documented paradigms (Tiab 

and Donalson, 1996) and then used to determine the initial conditions of the reservoir (see Table 

3.A.3.1).  Both Corey-type relative permeability curves associated with a water-wet medium 

(Lake, 1989) and corresponding capillary pressure curves were used in the multiphase fluid-flow 

simulation.  Production wells were set to a constant bottomhole pressure whereas the injector 

well was driven assuming a constant injection pressure.  Fluid and rock properties and fluid-flow 
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simulation conditions associated with the waterflood enhanced recovery process are described in 

Table 3.A.3.2. 

The assumed waterflood production schedule was simulated for a time interval of eight 

years.  Snapshots of fluid and pore pressure distributions at times t0 = 0, t1 = 4, and t2 = 8 years 

after the onset of production were considered for the evaluation of seismic measurements.  

Subsequently, distributions of petrophysical properties were entered to the rock physics/fluid 

substitution models described below to calculate the corresponding spatial distributions of elastic 

parameters. 

3.A.3.4.3 Simulation of Elastic Properties 

Elastic parameters at the production times t0, t1, and t2 were calculated using a Duffy and 

Mindlin’s rock physics/fluid substitution model (3.A.7.5.A. Appendix A) that included the effect 

of compaction.  Additional elastic relationships and pure component properties necessary for 

these calculations are described in 3.A.7.5.B. Appendix B and Table 3.A.2.1 in Section 3.A.2, 

respectively.  Rock physics/fluid substitution models relate the elastic properties with fluid and 

rock properties (e.g., density, porosity, and fluid saturation). 

3.A.3.4.4 Time to Depth Conversion 

Reservoir simulation models traditionally operate in the depth domain whereas seismic 

data are naturally displayed in travel-time-domain.  A time-to-depth relationship was used to 

transform the data from one domain to another.  Sonic logs, check-shots, and stacking velocities 

are often used to perform such a transformation.  In this Section, snapshots of properties were 

transformed from depth to seismic time by making use of the corresponding distribution of 

compressional-wave velocity at a specific time of reservoir production. 
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3.A.3.4.5 Seismic Forward Modeling 

Figure 3.A.3.3 shows the flow diagram adopted in this Section for the forward modeling 

of post- and pre-stack seismic data.  As indicated in Figure 3.A.3.4a, a convolutional model (see 

Section 3.A.2) was used with a 35 Hz zero-phase Ricker wavelet to generate post-stack seismic 

data at the production times t0, t1, and t2.  The simulation of post-stack and pre-stack seismic data 

was performed assuming a time sampling interval of 2ms and a local 1D subsurface model.  On 

the other hand, pre-stack seismic data were simulated as partial stacks for three angle-stack 

intervals, namely, near- (0-15o), mid- (15-30o), and far-offset (30-45o) at the same production 

times, t0, t1, and t2.  Simulation and inversion of full angle gathers was not attempted in this 

Section.  However, extensive numerical exercises showed that the chosen angle-stack intervals 

provide the best compromise between resolution and uncertainty.  The seismic wavelets 

associated with these three angle-stacks are a simple modification of the post-stack Ricker 

wavelet and are shown in Figure 3.A.3.4b.  Simulation of pre-stack seismic data was performed 

using the Knott-Zoeppritz equations (Aki and Richards, 2002) specialized for PP waves and 

corrected for normal-moveout.  Subsequently, random noise (i.e., 10% additive zero-mean, 

uncorrelated Gaussian noise, where the noise percentage is measured in proportion to the global 

energy of the seismic data set) was added to the simulated post- and pre-stack seismic data in an 

effort to replicate practical levels of noise in seismic measurements. 

3.A.3.5 Use of Seismic Data in Reservoir Monitoring 

3.A.3.5.1 Production History 

Figure 3.A.3.5 shows plots of cumulative oil and water production simulated for the 

constructed reservoir model over a period of eight years after the onset of production.  These 

plots indicate that water breakthrough takes place at about 500 days after the onset of production 
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and, consequently, oil production starts to deviate from a straight line after that time.  For the 

purposes of this Section, the most important information yielded by the waterflood simulation 

process is the spatial distributions of fluid saturations (i.e., water and oil) and pore pressure.  

Snapshots of these distributions were “captured” at the times t0, t1, and t2 after the onset of 

production.  As shown in Appendices 3.A.7.5.A and 3.A.7.5.B, the calculation of elastic 

parameters (i.e., bulk density, compressional-, and shear-wave velocities, or impedances) follows 

directly from the geostatistically simulated spatial distribution of porosity and from the computed 

distributions of fluid saturation and pore pressure. 

3.A.3.5.2 Sensitivity of Elastic Parameters to Variations of Petrophysical Parameters 

Figure 3.A.3.6 shows cross-sections along the center of the oil-saturated sand, and 

through the water injection well (Seismic Line 100, the vertical axis is two-way seismic travel 

time), of the absolute values of compressional- and shear-wave velocity and bulk density at time 

t1 after the onset of production.  Comparison between petrophysical and elastic parameters 

indicate that, for this particular model, compressional-wave velocity remains sensitive to 

saturation and pressure changes whereas shear-wave velocity is affected mainly by pressure 

changes.  Because the density contrast between oil and water is small, the PAI and SAI have 

similar behavior to that of compressional- and shear-wave velocity, respectively. 

Histograms of petrophysical variables and of elastic parameters were sampled from the 

reservoir simulations described above in order to explore and quantify a relationship between the 

two sets of variables.  These normalized histograms, shown in Figure 3.A.3.7, were sampled 

along a hypothetical vertical well intersecting the oil-saturated sand at three different times (i.e., 

t0, t1, and t2) after the onset of production.  Pore pressure changes between t0 and t1 are 

significant, whereas those between t1 and t2 are negligible.  In fact, pore pressure at time t2 along 
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this hypothetical well is greater than pore pressure at time t1 as a consequence of water injection.  

Also, despite the fact that changes in water saturation are substantial, bulk density does not 

exhibit significant changes.  Such an unfavorable situation occurs because of the small difference 

between the densities of oil and water.  Consequently, the observed changes in compressional- 

and shear-wave velocity are predominantly due to changes in pore pressure and water saturation. 

3.A.3.5.3 Sensitivity of Seismic Measurements to Variations of Petrophysical Parameters 

The simulated 4D pre- and post-stack seismic data were examined to evaluate the 

sensitivity of the seismic response to changes in petrophysical properties caused by dynamic 

reservoir behavior.  Figure 3.A.3.8 shows cross-sections taken near to the center of the oil-

saturated sand (Seismic Line 90, the vertical axis is two-way seismic travel time) of the near-, 

mid-, and far-angle stack seismic data at different production times.  Panel (a) of this figure 

illustrates the near-, mid-, and far-angle stack seismic data at time t1 after the onset of 

production, panel (b) shows the same angle stacks at time t2 after the onset of production, and 

panel (c) illustrates the absolute value of the relative time difference of these seismic responses.  

From the plots shown in Figure 3.A.3.8, it is found that seismic data exhibit a 4-6% difference 

between times t1 and t2.  Amplitude differences between two volumes of time-lapse seismic data 

are important for the present study because seismic data are the primary input to the inversion 

algorithm. 

3.A.3.5.4 Post-Stack Seismic Inversion 

3.A.3.5.4.1 Description of the Algorithm 

Post-stack seismic inversion transforms the migrated seismic traces into time-domain 

variations of PAI.  A sparse-spike inversion algorithm (Oldenburg et al., 1983) was used to 

estimate 1D distributions of PAI from post-stack seismic data contaminated with 10%, zero-
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mean Gaussian noise.  This algorithm imposes upper and lower bounds of PAI consistent with 

well-log data sampled along the existing five wells.  Low frequency information of PAI is 

missing in the seismic data and hence in the inverted PAIs.  Such information is reconstructed by 

merging low frequency PAI data from well logs with the inverted PAIs. 

3.A.3.5.4.2 Data Misfit Function 

The algorithm used in this Section for the inversion of post-stack seismic data is based on 

a sparse-spike regularization strategy.  This procedure places emphasis on reflectivity models 

that exhibit a prescribed degree of spatial density of reflection coefficients.  Acoustic impedances 

are further constrained to remain within upper and lower bounds inferred from well logs.  

Equation (3.A.3.1) describes the objective function ( E ) used in the inversion for the case of 

post-stack seismic data.  The first additive term ( 1l -norm) of this objective function biases the 

estimation of acoustic impedances toward sparse time sequences of reflectivity coefficients, 

whereas the second additive term ( 2l -norm) enforces a desired degree of data misfit, namely, 

( )( )2
* obs est

i i
i

E r S Sξ= + −∑ ,     (3.A.3.1) 

where i  is the sample index, r  is the value of the reflection coefficient, obsS  and 

estS  are the measured and estimated seismic data, respectively, and ξ  is a parameter that controls 

the relative influence between a low value of data misfit and the sparsity of the estimated 

reflection coefficients (Oldenburg et al., 1983).  The minimization of the objective function 

given by equation (3.A.3.1) is performed directly in acoustic impedance domain rather than in 

reflectivity domain. 

3.A.3.5.4.3 Inversion Resolution 

The plots shown in Figure 3.A.3.9 are intended to be a measure of the vertical resolution 

of the inverted PAI along a time interval of common-mid-point (CMP) post-stack traces in the 
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vicinity of Well No. 2 at time t2 after the onset of production.  Panel (a) shows a cross-section of 

the noisy post-stack seismic data together with a compressional-wave velocity well log.  Panel 

(b) shows a cross-section of the inverted PAI and the actual PAI well log, whereas panel (c) is a 

cross-plot that provides a direct comparison between the actual and inverted PAI at this well 

within the sand.  In an ideal case, all data in this cross-plot should fall along a straight line of 

unity slope.  As a whole, the two sets of acoustic impedance correlate very well, thereby lending 

credence to the inversion.  A similar comparison cross-plot was constructed for a time interval of 

seismic traces along the background shale.  This cross-plot indicated that the inverted PAIs 

within the shale section were in closer agreement with the actual PAIs compared to the inverted 

PAIs within the sand section.  Similar results were obtained when evaluating PAIs inverted from 

post-stack seismic data at times t0 and t1 after the onset of production. 

3.A.3.5.4.4 Evaluation of Results 

Figure 3.A.3.10 shows cross-sections of forward and inverted PAI near to the center of 

the oil-saturated sand (Seismic Line 90, the vertical axis is two-way seismic travel time).  In 

order to emphasize the role played by production time, the cross-sections shown in Figure 

3.A.3.10 were constructed from the absolute difference of PAI at the production times t1 and t2.  

For comparison purposes, the left panel (a) of Figure 3.A.3.10 displays a plot of the absolute 

value of the time difference between distributions of water saturation along the same cross-

section.  The central panel (b) is a cross-section of the absolute difference of the actual 

distribution of PAI, whereas the right panel (c) is a cross-section of the corresponding absolute 

difference of the inverted distribution of PAI.  Clearly, the inverted spatial distribution of PAI is 

a rather smooth version of the actual distribution.  This behavior is partly due to both the 

presence of noise in the inverted post-stack seismic data, and the limited frequency band of the 

Ricker wavelet.  Qualitatively, however, it becomes evident from the plots shown in Figure 



DE-FC26-00BC15305 

-38- 

3.A.3.10 that PAIs bear no clear and definite resemblance with the actual spatial distribution of 

water saturation.  A similar analysis shows that PAI does not portray a clear and definite 

resemblance with the spatial distribution of pore pressure either. 

3.A.3.5.5 Pre-Stack Seismic Inversion 

As a second step of the sensitivity study, angle-stack seismic inversions were performed 

on the simulated normal-moveout corrected pre-stack seismic data contaminated with zero-mean 

Gaussian noise.  In principle, pre-stack data provide considerably more degrees of freedom than 

post-stack seismic data to estimate petrophysical parameters from seismic amplitudes.  This is 

due to fact that pre-stack seismic amplitudes are sensitive to bulk density, PAI and SAI, whereas 

post-stack seismic data are only sensitive to PAI.  It is expected, of course, that such an improved 

sensitivity would translate into better resolving and appraisal properties to infer distributions of 

petrophysical parameters.  The study described in this section is intended to shed quantitative 

light to the resolving power of pre-stack seismic data.  As in the case of the study of post-stack 

seismic data in the previous section, the assessment of spatial resolution is approached via 

inversion. 

3.A.3.5.5.1 Description of the Algorithm 

Pre-stack seismic data were inverted using a sparse-spike algorithm that simultaneously 

makes use of near, mid, and far offsets to estimate values of bulk density, PAI and SAI.  The 1D 

inversions described here were performed using as input the simulated pre-stack seismic data 

contaminated with 10%, zero-mean Gaussian noise.  Moreover, the inversions were performed 

with the same offset-dependent wavelets used in the forward simulations (see Figure 3.A.3.4b) 

and were constrained by trend data sampled along the existing five wells. 
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3.A.3.5.5.2 Data Misfit Function 

For the inversion of pre-stack seismic data, the algorithm works in a similar fashion to 

that of post-stack inversion.  One difference is that the pre-stack inversion algorithm 

simultaneously considers multiple angle-stacked seismic data and simultaneously enforces 

constraints on compressional- and shear-wave velocities and bulk density (or compressional- and 

shear-wave acoustic impedances and bulk density) inferred from well logs.  Equation (3.A.3.2) 

describes the objective function used in the inversion for the case of pre-stack seismic data, 

namely, 

( )( )2

,
* obs est

ij ij
i j

E r S Sξ= + −∑ ,     (3.A.3.2) 

where j  designates the various partial angle-stacks of pre-stack seismic data and the variable ijr  

identifies angle-dependent reflectivity coefficients.  For this particular case, the inversion is 

performed directly in impedance-density domain. 

3.A.3.5.5.3 Inversion Resolution 

The plots shown in Figure 3.A.3.11 are intended to be a measure of the spatial resolution 

of the elastic parameters inverted from pre-stack seismic data along a time interval of CMP 

gathers in the vicinity of Well No. 2 at time t2 after the onset of production.  Panel (a) shows a 

cross-section of the noisy angle-stack seismic data (near, middle, and far) together with bulk 

density, PAI and SAI well logs, respectively.  Panel (b) shows a cross-section of the inverted 

distributions of bulk density, PAI and SAI together with the actual well-log data, and panel (c) is 

a cross-plot that provides a direct comparison between the actual and inverted values of bulk 

density along Well No. 2 and within the oil-saturated sand.  In an ideal case, all data in this 

cross-plot should fall along a straight line of unity slope.  Among the elastic parameters 

estimated by the 1D inversion of pre-stack seismic data, bulk density exhibits the lowest 
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correlation with its actual distribution.  Similar comparison cross-plots were constructed between 

actual and inverted PAIs and SAIs within both the oil-saturated sand and the background shale.  

These cross-plots indicated that the spatial resolution and reliability of the inverted distributions 

of PAI and SAI were higher than those of bulk density.  The spatial resolution of the inverted 

variables was also higher across the background shale segments than across the sand segments.  

Similar results were obtained when evaluating the spatial distributions of PAI, SAI, and bulk 

density inverted from pres-stack seismic data at times t0 and t1.  Parenthetically, Varela et al. 

(2002) found slightly inferior spatial resolution for the inverted elastic parameters when 

performing the inversion in elastic velocity domain. 

3.A.3.5.5.4 Evaluation of Results 

Figure 3.A.3.12 is a graphical summary of the computed (actual) spatial distributions of 

pore pressure, water saturation, and elastic parameters at reservoir production time t0, t1, and t2.  

These distributions are shown in the form of cross-section taken near to the center of the oil-

saturated sand (Seismic Line 90, the vertical axis is two-way seismic travel time).  The 

corresponding cross-sections of inverted elastic parameters are shown in Figure 3.A.3.13. 

In order to emphasize the role played by reservoir production time, Figure 3.A.3.14 

shows cross-sections of the absolute differences of forward and inverted bulk density, PAI and 

SAI taken near to the center of the oil-saturated sand (Seismic Line 90, the vertical axis is two-

way seismic travel time).  These cross-sections were constructed from the absolute difference of 

bulk density, PAI, and SAI at the production time t1 and t2.  For comparison purposes, the left 

panel (a) of Figure 3.A.3.14 displays plots of the absolute value of the time difference between 

spatial distributions of water saturation and pore pressure along the same cross-section.  The 

central panel (b) shows cross-sections of the absolute difference of the actual distributions of 

bulk density, PAI and SAI, whereas the right-hand panel (c) displays the corresponding absolute 
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difference of the inverted distributions of bulk density, PAI, and SAI.  Clearly, the spatial 

distribution of absolute difference of inverted bulk density exhibits a poor resemblance with the 

actual distribution.  This behavior is due to the limited sensitivity of noisy, narrow band pre-

stack seismic data and, more importantly, to relatively small time-lapse variations in bulk 

density.  A similar analysis shows that the spatial distributions of reservoir-time differences of 

PAI and SAI exhibit a high degree of resemblance with the spatial distributions of reservoir-time 

differences of water saturation and pore pressure, respectively.  However, the distributions of 

absolute SAI differences constructed with the inverted distributions of SAI are only marginally 

suggestive of the corresponding absolute differences in pressure and bear no resemble with the 

distribution of absolute difference of water saturation.  On the other hand, the distributions of 

absolute PAI difference constructed with the inverted distributions of PAI are suggestive of the 

corresponding absolute differences of water saturation.  This exercise also showed that, in 

general, compared to post-stack seismic data, a more focused and distinguishable image of the 

saturation and pore pressure distributions could be inferred from the inverted distributions of 

elastic parameters.  The inverted spatial distributions of SAI provided a means to discriminate 

between pore pressure and fluid saturation effects otherwise undistinguishable with PAI alone.  

Similar plots to those shown in Figure 3.A.3.14 were constructed for differences in the 

distributions of elastic parameters between the production times t0 and t1 and between the 

production times t0 and t2.  Conclusions stemming from such plots remain the same as those 

outlined on the basis of Figure 3.A.3.14. 

An analysis similar to that summarized in Figures 3.A.3.13 through 3.A.3.15 was 

performed using the parametric transformations proposed by Berryman et al. (2000) on the basis 

of Lamé’s elastic parameters and bulk density.  The idea behind these simple transformations is 
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the possibility of discriminating between fluid, lithology, and porosity effects on the seismic 

response of rocks using appropriate products and quotients of Lamé’s parameters and bulk 

density.  However, because of the small bulk density contrast between oil- and water-saturated 

sands considered in this Section, it was found that Berryman et al.’s (2000) transformations did 

not shed additional light to lime-lapse reservoir behavior than the standard interpretation based 

on impedances and bulk density. 

The numerical examples considered in this Section did not yield a high point-by-point 

correlation between saturation and pore pressure and elastic parameters.  Because of this, the 

inversions could not be posed to deterministically estimate spatial distributions of pore pressure 

and saturation from pre-stack seismic data.  Work reported by Johnston et al. (2000), Landro 

(2001), and Lumley (2001) shows that is often difficult to deterministically and uniquely relate 

time-lapse 3D seismic amplitude variations with time-lapse variations of either pore pressure or 

saturation.  Time-lapse field studies are commonly riddled with uncertainties to the petrophysical 

cause of time-lapse seismic amplitude variations.  Substantial variations in seismic amplitudes 

can originate from differences in data acquisition and processing of individual time-lapse seismic 

surveys.  Uncertainty in the petrophysical interpretation of time-lapse seismic data is also 

compounded by inadequate assumptions made in the construction of pre-production reservoir 

models as well as poor conditioning of thermodynamic fluid behavior. 

The work presented in this Section strongly suggests that inversion of single-time pre-

stack seismic data could be used to benchmark and quantitatively relate seismic amplitude 

variations in time with dynamic reservoir changes due to production.  Inversion provides a 

unique framework to assess (a) the quality and reliability of seismic data and (b) the sensitivity 

of changes in petrophysical parameters due to changes in elastic parameters.  The numerical 
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examples described in this Section also suggest that inversion naturally lends itself to a 

quantitative assessment of the resolution of seismic data to estimate spatial variations of elastic 

parameters (and of petrophysical parameters) under appreciable tuning conditions.  Inverted 

elastic parameters will naturally exhibit the spatial averaging properties enforced by the 

underlying wave propagation phenomena. 

3.A.3.6 Summary and Conclusions 

The methodology presented in this Section attempted to quantify the spatial resolution 

properties of 3D seismic data to time variations in petrophysical properties by way of inversion.  

A reservoir model was constructed to simulate actual time evolution of reservoir properties due 

to multiphase flow in the presence of geometrical constraints and thin layering.  This reservoir 

model considered the relatively difficult seismic detection case of water displacing oil.  Most 

time-lapse seismic sensitivity studies reported to date have considered examples of oil-gas and 

water-gas mixtures wherein seismic responses are highly sensitive to spatial distributions of fluid 

saturation because of the corresponding large bulk density variations, especially at relatively 

high values of porosity.  In addition, this work assumed that seismic measurements were 

contaminated with a practical amount of noise, but that otherwise were acquired with large 

reflection angles in the source-receiver gathers. 

It was found that inversion does provide an increase in spatial resolution to detect and 

quantify time variations of pore pressure and fluid saturation compared to direct differencing of 

seismic amplitude variations.  Moreover, as opposed to seismic amplitude variations, which are 

sensitivity to layer interface properties, inversion provides a direct quantitative link to layer 

properties, and hence to petrophysical parameters.  The study presented in this Section 

emphasized that the vertical resolution properties of seismic data provide only a smooth 
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representation of the actual spatial distribution of petrophysical properties.  Problems arise in 

thinly bedded reservoirs where seismic data can only provide a rough spatial average of the 

actual distribution of petrophysical properties.  Excessively smooth spatial distributions of elastic 

parameters cannot uniquely distinguish between distributions of pore pressure and fluid 

saturation.  Even under these constraints, pre-stack seismic data do embody more quantitative 

information that post-stack seismic data on the time-varying behavior of producing hydrocarbon 

reservoirs.  Spatial distributions of elastic parameters estimated from pre-stack seismic data 

provide a more focused and clearer indication of saturation and pore pressure distributions than 

the spatial distributions of acoustic impedance estimated from post-stack seismic data.  It is here 

suggested that quantitative sensitivity studies of time-lapse seismic data be carried out directly in 

inverted elastic-property domain rather than in seismic amplitude domain. 

Possible further improvements to the sensitivity study developed in this Section could 

include (a) 1D inversion of full pre-stack gathers instead of joint inversion of three partial angle-

stacks, and (b) 2D inversion of pre-stack gathers along specific cross-sections.  In the following 

Section, a sensitivity analysis of the quantitative use of seismic data in reservoir modeling will be 

presented and analyzed to see their effect on the static and dynamic reservoir responses. 

Table 3.A.3.1: Summary of the geometrical and measurement properties used in the 
construction of the synthetic subsurface model considered in this Section. 

Characteristic Value 

Seismic grid 
200 inlines 

200 crosslines 

Seismic time range 0 – 1.5 s 

Seismic time sampling 
interval 2 ms 

Overall average 
compressional-wave 

2.23 km/s 
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Characteristic Value 
velocity at t0 

Overall average shear-
wave velocity at t0 

0.54 km/s 

Overall average bulk 
density at t0 

2.67 g/cm3 

Semivariograms used for 
the population of porosity: 

Spherical(sill, zyx λλλ ,, ) 

sand: 

(1, 610 m, 457 m, 61 m)  

shale: 
(1, 914 m, 610 m, 122 m) 

Post-stack seismic wavelet 35 Hz Ricker 

Pre-stack seismic wavelets angle-dependent Ricker 

Pre-stack seismic stacks 
near :      0 - 150 

middle : 15 - 300 

far :       30 - 450 

 

Table 3.A.3.2: Summary of fluid and petrophysical properties associated with the 
synthetic hydrocarbon reservoir model considered in this Section. 

Properties Values and 
units 

water density 1.0 g/cm3 
oil density 0.85 g/cm3 

water viscosity 1.0 mPa-s 
oil viscosity 1.5 mPa-s 

water compressibility 4.5x10-4 MPa-1 

Fluid 

oil compressibility 2.9x10-3 MPa-1 
average Swi 0.28 
average Sor 0.25 
φ ( φσφ , ) N(0.20, 0.04) 

horizontal  
permeability 

( )log 3 2.2k φ= +
 

formation 
compressibility 2.47x10-4 MPa-1 

water end point 0.3 
oil end point 0.9 

Reservoir 

vertical to horizontal 
permeability ratio 0.1 
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Properties Values and 
units 

 depth to top of sand 1219 m 
injection pressure 17.2 MPa 

bottom-hole pressure 2.1 MPa 
number of cells 81x81x51 
gridblock size (23m, 23 m, 6m) 

Simulation 

production perforations entire sand 
interval 
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Figure 3.A.3.1: Graphical description of the 3D synthetic geologic model used for the numerical simulation of 

seismic and multi-phase fluid-flow phenomena.  The vertical axis is a two-way seismic travel 

time. 
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Figure 3.A.3.2: Three-dimensional view of the oil-saturated reservoir sand.  Sand dimensions, well spacing, and 

well locations are as indicated on the figure. 
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Figure 3.A.3.3: Flow diagram adopted in this Section for the forward modeling of post- and pre-stack seismic 

data.  The variables t0, t1, and t2 are used to indicate times of data acquisition measured with 

respect to the onset of reservoir production. 
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Figure 3.A.3.4: Forward seismic modeling.  Top panel: (a) shows an acoustic impedance well log, Ricker wavelet, 

and resulting post-stack seismic data.  Bottom panel: (b) shows compressional-, shear-wave 

acoustic impedance, and bulk density well logs, angle-dependent wavelets, and resulting pre-stack 

seismic data. 
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Figure 3.A.3.5: Plot of the time evolution of cumulative oil (COP) and water production (CWP) for the waterflood 

enhanced recovery process. 
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Figure 3.A.3.6: Spatial distributions of petrophysical properties and elastic parameters at time t1 = 4 years after the 

onset of production.  The figures show cross-sections of properties along the center of the sand 

and through the water-injection well (Seismic Line 100, as shown on the top view of the oil-

saturated sand, the vertical axis is two-way seismic travel time), including (a) water saturation, (b) 

pore pressure, (c) bulk density, (d) compressional-wave velocity, (e) shear-wave velocity, (f) 

compressional-wave acoustic impedance, and (g) shear-wave acoustic impedance. 
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Figure 3.A.3.7: Normalized histograms of pore pressure and water saturation, and of their corresponding elastic 

parameters sampled along a hypothetical vertical well intersecting the oil-saturated sand shown in 

Figure 3.A.3.2.  Sets of histograms are shown for times t0 = 0, t1 = 4, and t2 = 8 years after the 

onset of production.  Histogram normalization was performed against the total number of samples. 
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Figure 3.A.3.8: Cross-sections of pre-stack seismic data and of their relative production-time differences.  The 

cross-sections are located near to the center of the oil-saturated sand (Seismic Line 90, the vertical 

axis is two-way seismic travel time).  Panel (a) shows the near-angle (0-15o), mid-angle (15-30o), 

and far-angle (30-45o) seismic stacks at t1 = 4 production years, panel (b) shows the same stacks at 

time t2 = 8 production years, and panel (c) shows the absolute relative difference of these near-, 

mid-, and far-angle stacks.  The amplitude scale is the same for all the plots. 
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Figure 3.A.3.9: Quality control of post-stack seismic inversion along Well No. 2 (see Figure 3.A.3.2) at reservoir 

production time t2 = 8 years after the onset of production.  Panel (a) shows the noisy post-stack 

seismic data (contaminated with 10% zero-mean, Gaussian noise) and compressional-wave 

velocity well log.  Panel (b) shows the inverted and well log compressional-wave acoustic 

impedance.  Panel (c) shows a cross-plot of the actual and inverted compressional-wave acoustic 

impedances within the reservoir sand. 
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Figure 3.A.3.10: Post-stack inversion results.  Cross-sections near to the center of the oil-saturated sand (Seismic 

Line 90, the vertical axis is two-way seismic travel time) of the absolute time differences of (a) 

water saturation, (b) actual compressional-wave acoustic impedance, and (c) inverted 

compressional-wave acoustic impedance, calculated from two time snapshots in the production 

life of the reservoir (t2-t1, where t1 is 4 years and t2 is 8 years after the onset of production.) 
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Figure 3.A.3.11: Quality control of pre-stack seismic inversion along Well No. 2 (see Figure 3.A.3.2) at reservoir 

production time t2 = 8 years after the onset of production.  Panel (a) shows the three noisy angle-

stacks (near, middle and far contaminated with 10% zero-mean, Gaussian noise) and bulk density, 

PAI, and SAI well logs.  Panel (b) shows the inverted and well log bulk density, PAI and SAI.  

Panel (c) shows a cross-plot of the actual and inverted bulk density within the reservoir sand. 

 

 



DE-FC26-00BC15305 

-57- 

(a) (b) (c)

Line 90

t=1.1s

t=1.4s

Forward Bulk Density at t0 Forward Bulk Density at t1 g/cm3

2.2

2.4
Forward Bulk Density at t2

Line 90

t=1.1s

t=1.4s

Forward PAI at t0 Forward PAI at t1 g/cm3*km/sForward PAI at t2

4.87

6.10

Line 90

t=1.1s

t=1.4s

Forward SAI at t0 Forward SAI at t1 g/cm3*km/sForward SAI at t2

2.13

2.74

Line 90

t=1.1s

t=1.4s

Water Saturation at t0 Water Saturation at t1 fractionWater Saturation at t2

0.0

1.0

Pore Pressure at t0

Line 90

t=1.1s

t=1.4s

Pore Pressure at t1 Pore Pressure at t2

4.14

17.24
MPa

 

Figure 3.A.3.12: Cross-sections near to the center of the oil-saturated sand (Seismic Line 90, the vertical axis is 

two-way seismic travel time) of the actual elastic and petrophysical parameters at times (a) t0 = 0, 

(b) t1 = 4, and (c) t2 = 8 years, after the onset of production. 
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Figure 3.A.3.13: Pre-stack inversion results.  Cross-sections near to the center of the oil-saturated sand (Seismic 

Line 90, the vertical axis is two-way seismic travel time) of the inverted elastic parameters at 

times (a) t0 = 0, (b) t1 = 4, and (c) t2 = 8 years, after the onset of production estimated from pre-

stack seismic data. 
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Figure 3.A.3.14: Reservoir production time-differences of pre-stack inversion results.  The panels show cross-

sections near to the center of the oil-saturated sand (Seismic Line 90, the vertical axis is two-way 

seismic travel time) of the absolute time differences of (a) water saturation and pore pressure, (b) 

actual bulk density, PAI, and SAI, and (c) inverted bulk density, PAI, and SAI, calculated from 

two time snapshots in the production life of the reservoir (t2-t1), where t1 is 4 years and t2 is 8 years 

after the onset of production.) 
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3.A.4:  QUANTITATIVE USE OF SEISMIC DATA IN RESERVOIR MODELING 

This Section introduces a sensitivity analysis to quantify the value of seismic data in the 

construction of reservoir simulation models and to assess their impact in the forecast of 

hydrocarbon production.  Initially, the problem is formulated, then the subsurface model is 

described as well as the forward modeling of the petrophysical, elastic, and seismic parameters.  

Subsequently, different numerical experiments are performed and analyzed to assess the value of 

3D seismic data in static and dynamic reservoir evaluation. 

3.A.4.1 Introduction 

Using 3D seismic data has become a common way to identify the size and shape of 

putative flow barriers in hydrocarbon reservoirs.  However, it is less clear to what extent 

determining the spatial distribution of engineering properties (e.g., porosity, permeability, 

pressures, and fluid saturations) can improve predictions (i.e., improve accuracy and reduce 

uncertainty) of hydrocarbon recovery, given the multiple nonlinear and often noisy 

transformations required to make a prediction.  Determining the worth of seismic data in 

predicting dynamic fluid production is one of the goals of the study presented in this Section. 

The problem of assessing uncertainty in production forecasts is approached by 

constructing a synthetic reservoir model that exhibits much of the geometrical and petrophysical 

complexity encountered in clastic hydrocarbon reservoirs.  This benchmark model was 

constructed using space-dependent, statistical relationships between petrophysical variables and 

seismic parameters.  A waterflood condition was simulated numerically in the model to enforce 

time-varying reservoir conditions.  Subsequently, a rock physics/fluid substitution model that 

accounted for compaction and pressure was used to calculate elastic parameters.  Pre-stack and 

post-stack 3D seismic data (i.e., time-domain amplitude variations of elastic responses) were 
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simulated using local 1D approximations.  The seismic data were also contaminated with noise 

to replicate actual data acquisition and processing errors.  Subsequently, an attempt was made to 

estimate the original distribution of petrophysical properties and to forecast oil production based 

on limited and inaccurate spatial knowledge of the reservoir acquired from well logs and 3D 

seismic data. 

Multiple realizations of the various predictions were compared against predictions 

performed with a reference model.  Adding seismic data to the static description affected 

performance variables in different ways.  For example, usage of seismic data did not uniformly 

reduce the variability of the predictions of water breakthrough time; other quantities, such as 

cumulative oil recovery at a given time, did exhibit an uncertainty reduction as did a global 

measure of recovery.  Different degrees of strength of spatial correlation between seismic and 

petrophysical parameters were also studied to assess their effect on the uncertainty of production 

forecast. 

Most of the predictions exhibited a bias in that there was a significant deviation between 

the medians of the realizations and the corresponding value for the reference case.  This bias was 

evidently caused by noise in the various transforms (some of which were introduced 

deliberately) coupled with nonlinearity.  The key nonlinearities seem to be associated with the 

numerical simulation itself, specifically with the transform from porosity to permeability, with 

the relative permeability relationships, and with the conservation equations. 

3.A.4.2 Background and Formulation 

Fluid-flow simulations are routinely used as the main input to the economical evaluation 

of hydrocarbon recovery.  Predictions from these simulations have proven to be sensitive to the 

reservoir description, which is normally known through geology and petrophysics.  Because the 



DE-FC26-00BC15305 

-62- 

latter are based primarily on often sparsely-spaced wells, there is usually considerable 

uncertainty in the description and, hence, uncertainty in the prediction. 

Relatively few reservoir characterization studies have made use of quantitative 

information contained in amplitude variations of 3D seismic data (Debeye at al., 1996; Pendrel 

and van Riel, 1997).  Three dimensional seismic data sample the entire reservoir and thereby 

offer the possibility of filling the spatial gap between usually sparse well locations.  The work 

reported in this Section is motivated by the same possibility to quantitatively use 3D seismic data 

to generate geometrical and structural maps, to assess the spatial distribution and size of flow 

units, and to volumetrically infer some petrophysical properties such as porosity and fluid 

saturations. 

However, there are limits to the use of 3D seismic data for quantitative reservoir 

description.  For instance, (a) the lateral (horizontal) resolution, being largely determined by the 

distance between adjacent traces, is often no better than 20-50 m, (b) the vertical resolution 

remains controlled by the frequency content of the underlying seismic wavelet, and is often no 

better than 5-15 m, hence normally greater than what is needed to model the spatial detail of 

fluid-flow phenomena, and (c) the transformations between what the seismic data measures and 

the input to a fluid-flow model are complex, noisy, and non-linear.  It is not automatically 

obvious, therefore, that the use of seismic data will improve simulation predictions, even though 

they are spatially exhaustive.  Determining the relative benefits and trade-offs of the quantitative 

use of 3D seismic data in reservoir model construction is the goal of this Section.  

Several reservoir characterization techniques are considered to quantify the impact of the 

static reservoir description (i.e., porosity model) on the dynamic forecast of production.  

Inference and forecast are accomplished using several alternative procedures, namely, (a) a 
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homogeneous reservoir model, (b) a layered reservoir model, (c) 3D geostatistical techniques, 

and (d) a 3D geostatistical inversion technique that jointly honors 3D seismic data and well logs.  

The construction procedure implicitly considered (a) the uncertainty associated with statistical 

relations between petrophysical and elastic parameters, and (b) the effect of relative differences 

in geometrical support between the well logs and the seismic data.  Comparisons of results were 

performed in model space (e.g., porosity) and data space (e.g., volume of oil production and 

seismic data).  The conceptual geological representation of the model as well as the recovery 

process are the same for all cases so that differences obtained in dynamic behavior can be traced 

back to the information assumed available to construct each of the models. 

3.A.4.3 Construction of a Synthetic Reservoir Model 

3.A.4.3.1 Simulation of Reservoir Properties 

The synthetic earth model consists of a reservoir sand embedded in a background shale.  

Figure 3.A.4.1 shows the geometry and dimensions of the synthetic reservoir sand.  The same 

figure shows the spacing and location of the wells and the distribution of water saturation within 

the reservoir sand after 4 years of production.  Approximately 30 million cells were used to 

construct a numerical grid to simulate the synthetic seismic data associated with the subsurface 

model.  However, only the reservoir sand was discretized for fluid-flow simulation and this 

included approximately half a million cells.  The size of the blocks used to simulate seismic data 

and those used to simulate fluid-flow behavior were the same, hence mathematical upscaling was 

not necessary. 

The initial model of porosity was constructed stochastically (Gaussian simulation) using 

PDFs and semivariograms for each of the two lithologies (sand and shale).  The porosity field 

was assumed to be second-order stationary, normally distributed, and exhibiting a spatial 
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structure described by a prescribed semivariogram.  This model is hereafter used as the truth 

reference case (referred to as case T).  Table 3.A.4.1 presents a detailed summary of the 

conditions and relations used to simulate the process of waterflood.  Relationships between 

porosity, permeability, and water saturation were enforced using well-documented paradigms 

(Tiab and Donaldson, 1996).  These were subsequently used to determine the initial conditions of 

the reservoir.  Relative permeability curves representative of a water-wet medium (Hornarpour et 

al., 1982) were scaled using power-law functions that depended on residual saturation and 

endpoints (Lake, 1989).  Figure 3.A.4.2 shows the set of capillary pressure and normalized 

relative permeability curves used in the fluid-flow simulations.  These petrophysical relations are 

spatially invariant.  A five-spot waterflood process (one injection well and four production wells) 

with an unfavorable mobility ratio (endpoint mobility ratio of 1.67) was simulated using a finite-

difference algorithm.  Seismic data remain insensitive to the small density contrast between oil 

and water; hence, a waterflood becomes a stringent test for the sensitivity analysis pursued in this 

work.  A second reason for selecting a waterflood recovery process for analysis is so that our 

results can provide some insights into potential waterfloods in deepwater reservoirs where 

seismic is a main data source.  The production wells were set to a constant bottomhole pressure 

and the injector well was assumed driven by a constant injection pressure.  Fluid and rock 

properties and fluid-flow simulation conditions associated with case T are described in Table 

3.A.4.1. 

Permeability cannot be directly inferred from seismic information.  A transformation, i.e., 

5.010log −= φk , was used to infer permeability (in md) from porosity (as a fraction).  The 

nonlinear form of this equation is consistent with empirical observations that generally show a 

linear relationship between permeability plotted on a logarithmic scale and porosity.  As the 
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results in this Section will show, the explicit nonlinearity of this relation contributes significantly 

to the accuracy of the predictions.  Permeability-porosity relations, however, are notoriously 

noisy, a factor that is neglected here.  The interplay between the nonlinearity and the noise is 

known to lead to additional bias in predictions (pp.212 of Jensen et al., 2000).  Addressing this 

complication is left to future work. 

3.A.4.3.2 Simulation of Seismic Data 

Elastic parameters were calculated using a Duffy and Mindlin’s rock physics/fluid 

substitution model (3.A.7.5.A. Appendix A) that includes the effect of compaction.  A local 1D 

distribution of AI, the product of seismic velocity and bulk density, was assumed to simulate 

post-stack seismic data across the reservoir model.  This was accomplished using a convolution 

operator (see Section 3.A.2) implemented with a zero-phase Ricker wavelet centered at 35 Hz.  

Figure 3.A.4.3 shows the Ricker wavelet used in this study and a cross-section of post-stack 

seismic data along Well No. 1.  In addition, pre-stack seismic data were simulated for three 

angle-stack intervals: near (0-15o), mid (15-30o), and far (30-45o), respectively.  The seismic 

wavelets associated with these three angle stacks are a simple modification of the Ricker wavelet 

shown in Figure 3.A.4.3.  Each angle interval is equivalent to what is normally referred to as an 

angle pseudo-stack in reflection seismology.  The three angle pseudo-stacks were generated 

using a distinct synthetic wavelet for each angle-stack and by making use of the Knott-Zoeppritz 

equations (Aki and Richards, 2002).  These equations describe the amplitude of transmitted and 

reflected plane waves as a function of their angle of incidence at a boundary separating regions 

with unequal elastic properties.  Subsequently, random noise (i.e., 10% additive zero-mean, 

uncorrelated Gaussian noise, where the noise percentage is in proportion to the global energy of 
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the seismic data set) was added to the simulated seismic data in an effort to replicate actual noise 

in seismic measurements. 

3.A.4.4 Use of Seismic Data and Other Techniques in Reservoir Characterization 

In the model described above all the variables are completely known.  However, in the 

numerical experiments, the reservoir properties are partially and imperfectly known.  Figure 

3.A.4.4 is a flow diagram that describes the method adopted in this Section for modeling and 

validating several reservoir characterization procedures. 

The amount of data available for quantitative analysis increases as production proceeds.  

Most of these data are dynamic, in the form of production rates and pressures.  Before production 

begins, the available data are mostly static (i.e., they do not stem from fluid-flow in the reservoir) 

and it is the value of this type of data that is the subject of this study.  The kind of information 

assumed here is geologic interpretation, noisy seismic data, seismic interpretation (e.g., 

horizons), well logs, and the degrees of correlation between petrophysical and elastic properties.  

Well information (e.g., logs and core data) is the most important and direct way to gain insight 

about reservoir properties.  This information can be biased because the well locations are not 

commonly representative of the entire population and because of their relatively short spatial 

support.  Core data, especially, is subject to biased sampling.  Aside from bias considerations, all 

of the well data substantially undersample the reservoir.  It is said that the knowledge of the 

reservoir is better at the end of its life; but even then knowledge is restricted to inferences made 

from tests and production history, and to the spatial distribution of the hard data (i.e., wells). 

Normally, major uncertainties in the geologic model are not fully considered in the 

modeling prior and during production because there is a substantial amount of work involved in 

developing alternative models.  The static models evaluated here include different degrees of 
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information in their construction.  They comprise simple models (e.g., homogeneous and 

layered), seismic inversion models, and stochastic models (e.g., geostatistical and geostatistical 

seismic inversion models).  Table 3.A.4.2 summarizes the nomenclature of the estimation models 

considered in this Section.  Since the objective of this study is to evaluate static models and their 

impact on production forecast, all variables remain the same in the waterflood except for 

porosity and other petrophysical properties (e.g., permeability), which are assumed to be 

porosity-dependent.  This assumption allows one to perform a direct comparison between model 

construction, influence of seismic data, and production forecast. 

3.A.4.4.1 Simple Models 

Two simple models are considered in this Section, namely, homogeneous and uniformly 

layered.  These models are commonly used when relatively few data are available for reservoir 

characterization and are only useful to make inferences on the average properties of the field.  In 

the homogeneous case (H), the porosity is spatially constant and equal to the mean value.  Case 

H contains the mean statistical information but cannot capture vertical and lateral spatial 

variability of the petrophysical properties.  The uniformly layered model (L) makes use of the 

well-log data (i.e., porosity) to calculate average properties of each of the 51 simulation layers.  

Case L exhibits vertical spatial variability but cannot capture lateral spatial variability of the 

petrophysical properties. 

3.A.4.4.2 Seismic Inversion Models 

Seismic inversion is a procedure whereby AI is estimated from post-stack seismic data.  

Related to the mechanical properties of the rocks, AI is often correlated with petrophysical 

parameters.  If there is a relationship between AI and petrophysical parameters then a direct 

transformation can be used to generate the reservoir parameters (see Figure 3.A.4.5).  This is 



DE-FC26-00BC15305 

-68- 

case DAI.  Here, the AI estimated from post-stack seismic inversion is transformed into porosity 

using the relationship shown in Figure 3.A.4.5 (top panel), which in turn was calculated using 

well-log data.  The more correlated the variables are, the more accurate the transformation of AI 

into the corresponding petrophysical property.  Although Figure 3.A.4.5 shows correlation 

between AI and porosity, and AI and bulk density, there is some scatter around the main trend.  

In practice, however, there is not always a relationship between AI and petrophysical parameters.  

This is case AIW.  For such a situation, the AI estimated from the post-stack seismic inversion is 

transformed into porosity using the relationship shown in Figure 3.A.4.6 with a small correlation 

coefficient ( 2r = 0.1).  Correlation coefficients ( 2r ) is used as a scale-independent measure of 

similarity between two variables (see 3.A.7.5.D. Appendix D). 

3.A.4.4.3 Stochastic Models 

Stochastic modeling allows the generation of equally probable statistical realizations of 

the spatial distribution of reservoir properties.  If these realizations are subject to fluid-flow 

simulations then the dynamic behavior of the reservoir can also be interpreted in terms of 

statistical properties.  Normally, the range of possible solutions is an important part of the 

reservoir evaluation since in practical cases an analytical solution to the fluid-flow equations is 

not available.  The stochastic approach is one of the techniques that allow one to integrate 

different kinds of information into the static description of the reservoir.  In this section, the 

cases studied include: geostatistical models, and geostatistical seismic inversion for porosity and 

bulk density of the post-stack and far-offset volumes. 

Bias and accuracy are important issues when evaluating stochastic realizations since the 

value of the inferences can be jeopardized by a potential bias in the results.  Bias is a statistical 

sampling or testing error caused by systematically favoring some outcomes over others.  Then, it 
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becomes imperative to identify the source of bias in the estimation procedures to properly 

evaluate the results.  In the studies of this Section, the main sources of bias are nonlinear 

equations, noisy relationships between variables, the nature of the production scheme, and the 

correctness of the physical model, to name but a few. 

3.A.4.4.3.1 Geostatistical Models 

Geostatistical modeling (case G) makes use of the information acquired along the five 

existing wells to build PDFs of reservoir properties (i.e., porosity).  Then, through the use of 

semivariograms, it is possible to build many spatial realizations on the desired variable (i.e., 

porosity).  Each realization has the same probability of occurrence and honors the well data that 

have been imposed in the process of Gaussian stochastic simulation of porosity. 

The calculation of horizontal semivariograms (x- and y-direction) for each lithology is 

difficult because there are only a few number of points available (i.e., wells), which tends to 

produce pure nugget semivariograms (Pizarro and Lake, 1997).  Figure 3.A.4.7 illustrates the 

semivariograms considered in this study.  Zero-nugget spherical semivariograms were used to 

construct the porosity distribution in the truth reference case (case T).  These semivariograms 

have two parameters as input: a range, which indicates the extent or size of the spatial 

autocorrelation, and a variance.  The range is different for each of the three coordinate directions 

in case T.  But because of the difficulty of estimating the range, horizontal ranges were used in 

the statistical models equal to one-half ( Tλλ = 0.5) and twice ( Tλλ = 2) those used in the 

reference case ( Tλ ).  For the vertical semivariograms, wells provide sufficient spatial sampling 

to calculate the corresponding parameters.  The horizontal ranges used in the reference case were 

approximately equal to the well spacing.  Variances for porosity and bulk density were set to the 

values calculated from the sampled well-log data. 
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3.A.4.4.3.2 Geostatistical Seismic Inversion Models 

Geostatistical inversion provides a framework to quantitatively integrate seismic data, 

well logs, and geological information in one step (Bortoli et al., 1993; Haas and Dubrule, 1994).  

In geostatistical inversion, a prior AI model is built and then modified until the global misfit 

between the measured seismic data and the simulated seismic data is reduced to a prescribed 

value (usually the global misfit is less than 5% depending on the amount of noise present in the 

seismic data).  Because AI can often be related to petrophysical parameters, geostatistical 

inversion can be used to directly obtain stochastic models of reservoir parameters that jointly 

honor the seismic and the well-log data. 

In this study, a geostatistical inversion of the noisy post-stack seismic data from case T 

was performed for porosity (case IP) and bulk density (case ID).  The PDFs of those two 

variables for each lithology are shown in Figure 3.A.4.8.  Semivariograms used in the inversions 

were identical to those described earlier (Figure 3.A.4.7).  The relationships used in the 

geostatistical inversion between AI and porosity, and AI and bulk density for each lithology were 

calculated from well-log data.  These are shown in Figure 3.A.4.5.  Given that partial angle 

offsets of the previously generated pre-stack seismic data are available, a geostatistical inversion 

was also performed of the far offset seismic data for porosity (case IPEI) and bulk density (case 

IDEI).  Far offsets of seismic data can be important because the AI of the encasing shale is larger 

than the AI of the reservoir sand (Rutherford and Williams, 1989).  The properties obtained from 

this inversion (porosity and bulk density) were subsequently used in the static description of the 

reservoir. 

3.A.4.5 Static and Dynamic Reservoir Evaluation 

The two main assumptions underlying the reservoir construction methods described 

above are the second-order stationarity of the data and the existing relationship between AI and 
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petrophysical parameters.  Another important issue is the degree of representativeness of the data 

(Bu and Damsleth, 1995).  It is known that, statistically speaking, well information is rarely 

representative of the spatially variability and volume under study.  Often such a fact is 

overlooked but the information is nevertheless used because they are a primary and direct source 

of rock and fluid properties. 

3.A.4.5.1 Consistency in Data Space for Seismic Data 

To ascertain the consistency of the inferred hydrocarbon reservoir models, an assessment 

was performed of the error in predicting the 3D seismic data.  This was accomplished by 

simulating the seismic data at the onset of production for each of the construction methods 

described above.  Subsequently, a correlation coefficient was calculated between the seismic data 

of each case and the seismic data associated with the reference model (case T). 

Figure 3.A.4.9 is a map of the correlation coefficient in data space (i.e., seismic data) for 

an arbitrary statistical realization of case G-1.  The average correlation coefficient ( 2r ) is 0.21.  

Table 3.A.4.3 summarizes the results obtained for the remaining cases considered in this Section.  

Cases H, L, and G exhibit the smallest correlation coefficients.  By construction, cases that make 

use of seismic data in the definition of the reservoir properties must exhibit large correlation 

coefficients.  For instance, Cases DAI and AIW exhibit the largest correlation since the AI is 

calculated through seismic inversion.  Cases IP, ID, IPEI, and IDEI exhibit a large correlation 

coefficient.  Obtaining a correlation map like the one shown in Figure 3.A.4.9 helps one to 

validate the predicted results against other sources of data.   

3.A.4.5.2 Consistency in Model Space for Porosity 

An error assessment was also performed in model space (i.e., porosity).  The porosity 

model of the reference case was compared to the estimated porosity models of all cases.  Figure 
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3.A.4.10 shows a map of correlation coefficients between the actual and estimated porosity for 

the hydrocarbon reservoir model inferred from an arbitrary realization of case G-1.  Table 

3.A.4.3 summarizes the results obtained for other cases considered in this Section and shows that 

cases H, L, and G exhibit the smallest correlation coefficient, whereas cases IP, ID, IPEI, and 

IDEI exhibit a larger correlation coefficient. 

The average correlation coefficients between the measured and simulated seismic data 

are necessarily larger than those between the actual porosity and seismic-inferred porosity.  This 

is because the latter makes use of additional petrophysical relationships that tend to degrade the 

correlation.  The correlation coefficients between the simulated and measured seismic data are 

primarily measures of the errors introduced in the forward and inversion steps. 

When determining global dynamic behavior (e.g., cumulative oil production) the 

agreement in model space is secondary.  For instance, a good prediction of oil recovery can be 

achieved with a simple model.  However, this agreement becomes important when detailed 

studies are necessary such as in the determination of an infill drilling location.  Here, the cases 

with high correlation in model space consistently yielded the closest fluid distribution to that of 

the reference model. 

Many of the following results are shown in the form of Box plots.  A Box plot enables 

one to examine a number of variables and to extract the more salient characteristics of their 

distributions.  It also gives one insight to the global behavior of the corresponding variable.  In a 

Box plot, the y-axis displays the variation of the data and the x-axis displays the names of each 

case.  Each vertical box encloses 50% of the data with the median value of the variable displayed 

as a horizontal line within the box.  Bottom and top boundaries of the box define the 25 and 75 

percentiles of the variable population.  Lines extending from the top and bottom of each box 
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define the minimum and maximum values that fall within a population range.  Any value outside 

of this range, called an outlier, is displayed as an individual point. 

In a Box plot, the reproducibility of a prediction is given by the size of the vertical boxes.  

Bias shows itself as the median value being significantly different from the true value, or when 

the vertical box does not cover the true case.  Therefore, in a sense, increasing the precision of a 

prediction can contribute to the bias if the median value is not brought closer to the true value.  It 

is important to note also that in nearly every practical case, the true value remains unknown. 

3.A.4.5.3 Semivariograms and Property Relationships 

Increasing the range in the property semivariograms amplifies the variability of the 

dynamic behavior for cases that involve the use of semivariograms (cases G, IP, ID, IPEI, and 

IDEI).  The increased variability is consistently observed in different dynamic parameters.  A 

larger range semivariogram produces slightly smaller correlation coefficients when assessing the 

quality of the results in data and model space (see Table 3.A.4.3). 

If the construction of the static model is based on AI but there is no correlation between 

AI and petrophysical parameters (see Figure 3.A.4.6) then the initial static description of the 

reservoir is inconsistent.  Case AIW was designed to show that the lack of correlation between 

acoustic and petrophysical properties causes the seismic data not to contribute positively in the 

construction of a model of reservoir properties.  Nevertheless, seismic data could still be useful 

for boundary identification.  A noisy (scattered) relationship between AI and porosity 

deteriorates the correlation in model space (see Table 3.A.4.3) and leads to dynamic results that 

are biased, hence not representative of the reference case T.  Figure 3.A.4.11 describes the 

original oil in place and cumulative oil recovery after 7 years of production for case AIW.  Case 

AIW is evidently incorrect and therefore excluded from further analysis.  Since the static model 
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is not accurate, this case underpredicts the oil in place by 82.6% and oil recovery after 7 years of 

production by 84.6% compared to case T. 

3.A.4.5.4 Consistency in Data Space for Production Data 

3.A.4.5.4.1 Oil in Place 

Estimation of the original oil in place (OOIP) is an important appraisal tool in the early 

stages of the life of the reservoir.  In this study, OOIP is not critical since all the models exhibit 

the same geometry (i.e., the same geometrical boundaries).  The assumption of a known 

geometry is based on the fact that normally the available seismic data can be used to construct a 

geometrical model of reservoir compartments.  However, it is easily seen that each constructed 

model produces a different set of static distributions of properties (porosity and porosity-

dependent variables) and therefore the OOIP is different in each case.  For comparison, the OOIP 

of each case was normalized against that of case T. 

The Box plots of Figures 3.A.4.12 and 3.A.4.13 indicate that the range of variation of 

normalized OOIP is small (within ± 8% of case T) because it generally satisfies the same global 

statistics.  Variations of OOIP entailed by the realizations for a particular case are also small 

because even though locally varying, the realizations exhibit identical average properties.  OOIP, 

being itself a global quantity, is more sensitive to averages than to variability.  More accurate 

predictions are obtained for those cases that involve the use of seismic data.  Results for a given 

Case exhibit more variability when the range of the corresponding semivariogram is larger than 

that used in the reference case.  The geostatistical inversion for bulk density overpredicts the 

OOIP whereas the one for porosity underpredicts the OOIP.  This behavior can be related to the 

strength of the correlation between porosity and AI, and bulk density and AI (see Figure 

3.A.4.5). 
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Figures 3.A.4.12 and 3.A.4.13 embody a conceptual insight that will be a major 

conclusion of this Section.  For none of the geostatistical or seismic inversion cases (G, IP, IPEI, 

ID and IDEI) do the 25-75 percentile vertical boxes overlap the prediction yielded by the 

reference case.  It is difficult to make firm conclusions about this because of the paucity of 

realizations (10) on which the results were based.  The bias has been exacerbated by the 

reduction in uncertainty caused by adding more data, which is most evident in Figure 3.A.4.12.  

In neither case, Figure 3.A.4.12 or 3.A.3.13, is the bias large; however, it will prove to be 

significant in the global dynamic responses described below.  The source of the bias is the noise 

and the non-linearity of the various transforms required to make the description. 

The OOIP for the realizations in all the following cases was set to that of the reference 

case (case T) so that the dynamic reservoir predictions could be performed assuming a reservoir 

with the same initial volumetrics. 

3.A.4.5.4.2 Oil Recovery 

Oil recovery represents a global dynamic response at a specific time in the life of the 

reservoir.  It depends mainly on the recovery mechanism, production strategy, and time.  An 

example of this is shown in Figure 3.A.4.14 for an arbitrary realization of cases with Tλλ = 0.5.  

Figure 3.A.4.15 shows the results of evaluating the normalized oil recovery after 2010 days of 

production.  For none of the geostatistical or seismic inversion cases do the 25-75 percentile 

vertical boxes overlap the prediction yielded by the reference case.  The recovery for cases H, L, 

and DAI is less than that of case T by 39%, 36%, and 25%, respectively.  Median oil recovery 

for cases with Tλλ = 2 (bottom panel) is within ± 19% of case T.  For those cases with Tλλ = 

0.5 (top panel) the results are within ± 15% of case T.  Even though the outcome of this global 

variable remains biased, the decrease in relative error in oil recovery comes as a direct 

consequence of adding new information in the construction of the property models.  Table 
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3.A.4.4 shows the difference between the maximum and minimum values of the normalized oil 

recovery of the cases shown in Figure 3.A.4.14.  Cases involving seismic data (IP, ID, IPEI, and 

IDEI) entail better forecast precision than the realizations obtained only through the geostatistical 

case (case G).  The latter statement is clear for cases with Tλλ = 0.5.  As shown in Table 

3.A.4.4, for cases with Tλλ = 2 the differences are small.  If oil recovery is evaluated at a given 

pore volume of water injected, there are small differences and the results are not biased.  

However, the volume of water injected is determined by the chosen injection strategy (constant 

injection pressure in our case), as well as by the initial reservoir model description. 

3.A.4.5.4.3 Time of Water Breakthrough 

Figure 3.A.4.16 shows the normalized time of water breakthrough for all cases 

considered in this study.  A wider variability is observed with respect to the variability of 

parameters analyzed before (e.g., recovery).  The range of variation is between 0.5 and 2 times 

the water breakthrough time for case T.  For some of the cases, the 25-75 percentile boxes 

overlap the prediction yielded by the reference case.  Results shown in Figure 3.A.4.16 are less 

biased than those of Figure 3.A.4.15 because they do not exhibit an average dynamic response as 

in the case of oil recovery.  Time of water breakthrough represents a dynamic response of the 

spatial distribution of reservoir properties, especially the permeability distribution. 

3.A.4.5.5 Value of Information 

Figure 3.A.4.17 shows the oil recovery at the time of water breakthrough normalized with 

respect to case T for Tλλ = 0.5.  Oil recovery represents a global dynamic behavior and, as 

discussed earlier, time of water breakthrough is closely related to the spatial distribution of 

properties.  For all cases that involve seismic data the 25-75 percentile boxes overlap the value 
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yielded by the reference case.  In Figure 3.A.4.17, one can quantitatively assess the benefits of 

including more information (i.e., seismic data) into the process of model construction. 

Since the measure of accuracy of a prediction depends on the time at which the prediction 

is taken, a different assessment of accuracy is now considered based on the 2l -norm of the time 

record of cumulative oil recovery, given by 

( ) ( ) ( )[ ]∫
=

=

−=
ttt

t
caseTcaseX

t

dttdtd
t

tU
0

21 ,     (3.A.4.1) 

where ( )tU  is the global least-squares misfit, tt  is total time of simulation, and ( )td  is the 

cumulative oil recovery.  The 2l -norm is a global measure of recovery that does not depend on a 

specific time after the onset of the waterflood.  Figure 3.A.4.18 illustrates the results of 

performing such a calculation.  Values shown in this figure were normalized against the 

homogeneous case (T).  The horizontal axis identifies the particular case and can also be 

interpreted as a measure of the information content (scant information content to the left and 

higher information content to the right).  It is clearly seen that the cumulative uncertainty in time 

decreases as more information is included in the construction of the initial model. 

3.A.4.5.6 Experiment Assuming Linear Relations 

As emphasized earlier, the present Section hypothesizes that the main sources of bias are 

nonlinear flow equations, noisy relationships between elastic and petrophysical variables, the 

production scheme, and the correctness of the physical model.  As part of this work, a decision 

was made to investigate the importance of some of these biases in the predictions of oil recovery.  

To accomplish such an objective, a special case was designed in which all the relationships used 

in the fluid-flow simulator were made linear and precise (relative permeability, porosity-
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permeability), and the fluids exhibited the same viscosity.  This case is not realistic but sheds 

valuable insight to the source of the bias in the prediction of oil recovery. 

Simulations were redone for the reference case (T) and case G-2 (designated case G-2L).  

Results were compared with those presented in Figure 3.A.4.15 and are shown in Figure 

3.A.4.19.  The prediction of oil recovery for this experiment is less biased and more accurate 

than in previous results.  This suggests that the source of the bias in the prediction of oil recovery 

is caused by the nonlinearity implicit in the underlying multi-phase fluid-flow equations. 

3.A.4.6 Summary and Conclusions 

The work presented in this Section was an attempt to assess the value of 3D seismic data 

in the construction of hydrocarbon reservoir models.  Several strategies were considered to 

appraise the influence of the usage of seismic data in the construction of a reservoir model.  

Numerical experiments focused on the relatively difficult case of a waterflood production system 

in which water was injected to displace oil as a way to enhance production efficiency.  Seismic 

data are relatively insensitive to detecting spatial variations in oil and water saturations, 

especially in the presence of low-porosity rock formations (porosities below 15%).  Thus, a 

waterflood experiment constitutes a worst-scenario case study for the usage of seismic data in 

reservoir characterization studies (as opposed to, for instance, the optimal seismic detection 

problem of water and gas saturations in thick, high-porosity formations).  The main appraisal 

tool used in this Section to assess the value of seismic data was the comparison of the time 

record of fluid production measurements with respect to that of a reference (truth) model.  As 

expected, it was impossible to isolate the influence of the usage of seismic data in reservoir 

construction from technical issues concerning non-uniqueness and the definition of ancillary 

fluid and petrophysical variables unrelated to seismic measurements.  Such ancillary variables 
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included the choice of a porosity-permeability relationship, the choice of global relative 

permeability and capillary pressure curves, and the choice of degree of spatial smoothness of 

reservoir variables interpolated from well-log measurements.  Despite these difficulties, an 

attempt was made to compare on equal footing a set of models with different degrees of spatial 

complexity.  This was performed by standardizing the role played by both initial fluid 

volumetrics and the choice of a production scheme on the forecast of fluid production.  

Subsequently, quantitative integration was accomplished using various types of seismic data to 

construct static reservoir models with increasing degrees of spatial complexity.  Even with the 

use of seismic data, the construction of reservoir models remains non-unique (an uncountable set 

of models exist that honor the complete set of available measurements).  Multi-phase fluid-flow 

simulations associated with each set of models (10 individual models per set) were performed in 

order to quantify the predictive power of each set of measurements and these time-domain 

simulations were compared against those of the reference model.  Finally, an effort was made to 

take into account the variability of the time record of production measurements as it directly 

impacted the measure of appraisal.  Global as well as time dependent measures of appraisal were 

explored to quantify the added value of seismic data.  The following conclusions stem from the 

work described in this Section: 

Significant biases in predictions of fluid recovery can be associated with pure fluid-flow 

phenomena to which seismic measurement remain insensitive.  Even with the use of seismic 

data, sources of prediction bias can be more dominant that an incremental reduction in prediction 

bias due to the usage of seismic data.  Sources of prediction bias associated with fluid 

phenomena include the nonlinear nature of the underlying multi-phase fluid-flow equations, 

nonlinear and inaccurate constitutive relationships (e.g., porosity vs.  permeability), noisy 
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measurements, variations in the spatial support of input measurements, and the choice of fluid 

production scheme, among others. 

Reservoir models are often constructed with geostatistical methods that make use of 

spatial semivariograms.  It was found that a considerable degree of variability in static and 

dynamic predictions of reservoir behavior could be caused by the usage of larger than necessary 

semivariogram ranges.  Regardless of the usage of seismic data, accurate estimation of 

semivariogram functions and parameters thereof is crucial to performing reliable forecasts of 

fluid production.  For instance, the accuracy of predicted oil recovery is adversely affected by an 

improper choice of semivariogram range. 

Lack of correlation between elastic and petrophysical parameters causes the seismic data 

not to contribute positively to reduce uncertainty in production forecasts.  Fluid production 

forecasts associated with loosely correlated petrophysical-elastic transforms are rendered biased 

and inaccurate. 

Static and dynamic predictions performed from reservoir models constructed with the use 

of seismic data normally exhibit an incremental decrease in their bias with respect to a nominal 

prediction bias due to pure fluid-flow phenomena.  Global measures of prediction bias show a 

consistent improvement with respect to predictions derived from models that do not make use of 

seismic data.  This conclusion is valid as long as a high degree of correlation exists between 

petrophysical and elastic parameters, and follows from comparison of production variables such 

as recovery efficiency, and time of water breakthrough, for instance. 

In this section (Sections 3.A.3 and 3.A.4), an integrated reservoir evaluation with the use 

of post-stack seismic data and pseudo-angle stack pre-stack seismic data was presented.  The 
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next section comprises two Sections that introduce novel approaches for the stochastic inversion 

of the full gather of pre-stack seismic data and well logs. 

 

 

 

 

 

Table 3.A.4.1: Summary of fluid and petrophysical properties assumed in the 
construction of the numerical reservoir model considered in this Section. 

Properties Values and 
units 

water density 1.0 g/cm3 
oil density 0.85 g/cm3 

water viscosity 1.0 mPa-s 
oil viscosity 5.0 mPa-s 

water compressibility 4.5x10-4 MPa-1 

Fluid 

oil compressibility 2.9x10-3 MPa-1 
average Swi 0.28 
average Sor 0.25 

porosity, φ( φσφ , ) N(0.21, 0.07) 
formation 

compressibility 2.5x10-4 MPa-1 

water endpoint 0.3 
oil endpoint 0.9 

z- to x-permeability 
ratio 0.1 

y- to x-permeability 
ratio 0.7 

Reservoir 

depth to top of sand 1219 m 
injection pressure 17.2 MPa 

bottom-hole pressure 2.0 MPa 
number of cells 81x81x51 

cell size 23x23x6 m 
Simulation 

production perforations entire sand 
interval 
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Table 3.A.4.2: Summary of the nomenclature used for the numerical experiments 
described in this Section. 

Semivariogram  
Perturbations Case Key
Tλ λ =0.5 Tλλ =2.0 

Reference (True) model T - - 
Homogeneous model H - - 

Layered model L - - 
Direct from AI model DAI - - 
Direct from AI model 

(poor correlation transform) AIW - - 

Geostatistics model* - G-1 G-2 
GSI for porosity (post-stack)* - IP-1 IP-2 
GSI for porosity (far offset)* - IPEI-1 IPEI-2 
GSI for density (post-stack)* - ID-1 ID-2 
GSI for density (far offset)* - IDEI-1 IDEI-2 

GSI = Geostatistical Seismic Inversion 
*10 realizations for each semivariogram 

 

Table 3.A.4.3: Average correlation coefficients (r2) in model space (porosity) and data 
space (seismic amplitudes) between an arbitrarily-selected model 
realization and the reference model. 

Case 
2r  model space 

(porosity) 
2r  data space 

(seismic data) 
H - 0.18 

L 0.18 0.21 

DAI 0.44 0.98 

AIW 0.09 0.98 

G-1 0.19 0.21 

IP-1 0.54 0.87 

IPEI-1 0.52 0.93 

ID-1 0.53 0.87 

IDEI-1 0.51 0.93 

G-2 0.17 0.20 
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Case 
2r  model space 

(porosity) 
2r  data space 

(seismic data) 
IP-2 0.53 0.87 

IPEI-2 0.54 0.91 

ID-2 0.51 0.88 

IDEI-2 0.52 0.92 
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Table 3.A.4.4: Range of variation of normalized oil recovery at 2010 days of production. 

Range* of Variation Normalized Oil 

Recovery 

Semivariogram Perturbations 
Case 

Tλ λ  = 0.5 Tλ λ  = 2.0 

G 0.072 0.1123 

IP 0.042 0.084 

IPEI 0.048 0.060 

ID 0.024 0.096 

IDEI 0.036 0.094 

*Range = (maximum – minimum) 
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Figure 3.A.4.1: Three-dimensional view of the distribution of water saturation in the reservoir sand after 4 years of 

waterflood.  Sand dimensions, well spacing, and well locations are as indicated on the figure. 
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Figure 3.A.4.2: Normalized set of relative permeability and capillary pressure curves used to model the 

waterflood.  Normalization of relative permeability was performed against end points. 
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Figure 3.A.4.3: Ricker wavelet used in the simulation of post-stack 3D seismic data (left panel) and cross-section 

of post-stack seismic data along Well No. 1 (right panel). 
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Figure 3.A.4.4: Integrated flow diagram describing the method used in this Section for validating static 

descriptions and dynamic predictions. 
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Figure 3.A.4.5: Relationship between acoustic impedance and porosity (top panel), and acoustic impedance and 

bulk density (bottom panel) constructed from well-log data sampled from the reference case T. 
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Figure 3.A.4.6: Relationship between acoustic impedance and porosity for case AIW.  The correlation coefficient 

(r2) is 0.1. 
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Figure 3.A.4.7: Semivariograms within the reservoir sand in the x, y, and z directions used for the stochastic 

simulations of porosity and bulk density.  The variable λT is the range of the spherical 

semivariogram used in the construction of the reference model, here identified as case T. 
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Figure 3.A.4.8: Histograms of porosity (top panel), bulk density (mid panel), and acoustic impedance (bottom 

panel) sampled from well-log data within the reservoir sand and the embedding shale for case T. 
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Figure 3.A.4.9: Map of correlation coefficient (r2) between vertical columns of seismic amplitudes associated with 

the geostatistical case G-1 and the reference case T.  A coefficient r2 = 1 (dark shading) at a 

particular pixel indicates perfect correlation.  The average r2 for all pixels is 0.21.  Table 3.A.4.3 

summarizes the average correlation coefficients for additional cases. 
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Figure 3.A.4.10: Map of correlation coefficient (r2) between vertical columns of porosity associated with the 

geostatistical case G-1 and the reference case T.  A coefficient r2 = 1 (dark shading) at a particular 

pixel indicates perfect correlation.  The average r2 for all pixels is 0.19.  Table 3.A.4.3 summarizes 

the average correlation coefficients for additional cases. 
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Figure 3.A.4.11: Plot of the predicted original oil in place and oil recovery after 7 years of production assuming 

poor correlation between acoustic impedance and porosity (case AIW).  See Table 3.A.4.2 for a 

definition of the various case studies. 

 

0.90

0.95

1.00

1.05

1.10

H L DAI G-1 IP-1 IPEI-1 ID-1 IDEI-1

O
il 

in
 P

la
ce

 (O
O

IP
 =

 1
 fo

r c
as

e 
T)

 

Figure 3.A.4.12: Box plot of normalized original oil in place for cases with λ/λT = 0.5.  See Table 3.A.4.2 for a 

definition of the various case studies. 
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Figure 3.A.4.13: Box plot of normalized original oil in place for cases with λ/λT = 2.  See Table 3.A.4.2 for a 

definition of the various case studies. 
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Figure 3.A.4.14: Cumulative oil recovery as a function of time for an arbitrarily-selected realization of cases with 

λ/λT = 2.  See Table 3.A.4.2 for a definition of the various case studies. 
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Figure 3.A.4.15: Box plot of normalized oil recovery after 2010 days of production.  Top panel: λ/λT = 0.5.  Bottom 

panel: λ/λT = 2.  All models were initialized with the same volume of original oil in place.  See 

Table 3.A.4.2 for a definition of the various case studies. 
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Figure 3.A.4.16: Box plot of normalized time of water breakthrough.  Top panel: λ/λT = 0.5.  Bottom panel: λ/λT = 

2.  All models were initialized with the same volume of original oil in place.  See Table 3.A.4.2 

for a definition of the various case studies. 
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Figure 3.A.4.17: Box plot of normalized oil recovery at time of water breakthrough for cases with λ/λT = 0.5.  See 

Table 3.A.4.2 for a definition of the various case studies. 
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Figure 3.A.4.18: Box plot of global least-squares misfit (U) for cases with λ/λT = 0.5.  

( ) ( ) ( )[ ]∫
=

=

−=
ttt

t
caseTcaseX

t

dttdtd
t

tU
0

21
, where d(t) is cumulative oil recovery and tt is total time 

of simulation.  See Table 3.A.4.2 for a definition of the various case studies. 
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Figure 3.A.4.19: Box plot of normalized oil recovery after 2010 days of production for cases with λ/λT = 2.  All 

relationships involved in the fluid-flow simulations for case G-2L are linear.  See Table 3.A.4.2 

for a definition of the various case studies. 
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3.A.5:  CONDITIONING RESERVOIR MODELS TO PRE-STACK SEISMIC DATA AND WELL LOGS : 

NONLINEAR ONE-DIMENSIONAL PRE-STACK SEISMIC INVERSION 

This Section describes some factors that control and affect the inversion of 1D pre-stack 

seismic data.  Such factors include optimization technique, sampling strategy, data misfit 

function, and measures of smoothness.  A novel global stochastic inversion technique is 

introduced to estimate and appraise 1D distributions of elastic parameters from surface pre-stack 

seismic measurements.  Numerical experiments are performed on synthetic data sets to evaluate 

inversion factors and the novel inversion algorithm. 

3.A.5.1 Introduction 

Estimation of elastic properties of rock formations from surface seismic data is a subject 

of interest to the exploration and development of hydrocarbon reservoirs.  This Section develops 

a global inversion technique to estimate and appraise 1D distributions of compressional-wave 

velocity, shear-wave velocity, and bulk density, from normal-moveout corrected PP pre-stack 

surface seismic measurements.  The objective is twofold: to evaluate the effect of the choice of 

optimization algorithm and data misfit function, of the sampling strategy, and of the degree and 

type of smoothness criterion enforced by the inversion, and to introduce a new stochastic 

inversion algorithm that efficiently combines sampling and smoothing strategies borrowed from 

the field of geostatistical estimation.  It is found that the choice of optimization technique can 

significantly condition the efficiency of the inversion.  Extensive numerical experiments show 

that very fast simulated annealing is the most efficient minimization technique among alternative 

approaches considered for global inversion.  In addition, an appropriate choice of data misfit 

function is necessary for a robust and efficient match of noisy and sparse surface seismic 

measurements.  Because of the inherent non-uniqueness of the inverse problem, provisions are 
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necessary to control the degree and kind of smoothness criterion enforced in the estimation 

process. 

Several procedures are discussed in this Section to simultaneously enforce smoothness 

and to assess uncertainty of the estimated elastic parameters.  The proposed global inversion 

algorithm is tested on noisy synthetic data to generate smooth 1D models of compressional- and 

shear-wave velocity and bulk density.  A feasibility analysis is also presented of the resolution 

and uncertainty of pre-stack seismic data to infer a 1D distribution of elastic parameters 

measured with wireline logs in the deepwater Gulf-of-Mexico.  In general, the proposed 

inversion algorithm is computationally more efficient than alternative global inversion 

procedures considered in this Section.  It also provides a more flexible way to control the degree 

of smoothness of the estimated elastic parameters, and naturally lends itself to the assessment of 

model uncertainty and data sensitivity. 

3.A.5.2 Background and Formulation 

The physical process of reflection, transmission, and mode conversion of plane waves at 

a horizontal boundary as a function of incident angle has been described by Knott (in 1899) and 

Zoeppritz (in 1919) and has been explored extensively by several of authors (e.g., Aki and 

Richards, 2002).  Pre-stack seismic data are often used to estimate subsurface petrophysical 

properties.  Independent elastic properties derived from pre-stack surface seismic data include 

compressional-wave velocity, shear-wave velocity, and bulk density or PAI, SAI, and bulk 

density as a function of depth or time. 

The problem of estimating 1D distributions of elastic parameters from pre-stack seismic 

data can be approached via nonlinear inversion.  This procedure is equivalent to the 

minimization of an objective function written as the metric of the difference between the 
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measured and numerically simulated pre-stack surface seismic data.  In most applications, 

inversion requires an efficient and accurate forward operator to simulate the measured seismic 

data.  Inversion of pre-stack seismic data yields a 1D distribution of elastic parameters (i.e., 

compressional- and shear-wave velocities and bulk density) from the information content 

available in both time and source-receiver space.  Approaches to this problem include the use of 

different approximations of Zoeppritz equations (Wang, 1999) or else angle stacks (Simmons 

and Backus, 1996).  The inversion algorithm considered in this Section makes use of the 

reflectivity method (Fuchs and Muller, 1971; Kennett, 1983) to compute the full-wave response 

of a stack of horizontal layers including all converted waves and propagation modes.  

Specifically, a simplified version of the reflectivity method is used to efficiently compute 

synthetic seismograms for P waves (primaries only) in offset-time (x, t) domain and devoid of 

transmission losses. 

Estimation methods based on local optimization often fail to produce a global minimum 

when the starting solution is far from the optimal point and the objective function is multimodal 

(Tarantola, 1987).  Applications of local optimization strategies can be found in the open 

technical literature (e.g., Tarantola, 1986; Pan et al., 1988; 1994).  On the other hand, exhaustive 

trial-and-error search methods in model space are difficult to implement in an efficient manner 

because the model space is often extremely large (Sen and Stoffa, 1991; 1995).  The efficiency 

of global optimization methods remains largely controlled by both the expediency of the search 

algorithm in model space and the computer power available to simulate the measurements.  

Examples of global optimization techniques can be found in Kirkpatrick et al. (1983), Sen and 

Stoffa (1991), and Stoffa and Sen (1991).  Hybrid optimization techniques have also been used 



DE-FC26-00BC15305 

-100- 

to include the most important features of local and global inversion methods (Chunduru et al., 

1997; Xia et al., 1998). 

The present Section implements a global optimization technique that is based on 

simulated annealing (SA) as shown in Figure 3.A.5.1.  Such a technique makes use of a random-

walk search method governed by prescribed transition probabilities to find an optimal global 

point in model space (Ingber, 1989). 

Inversion of pre-stack seismic data into a 1D distribution of elastic parameters remains a 

highly nonlinear, nonunique process that requires significant forward modeling capabilities.  Pre-

stack seismic waveforms are modeled assuming a locally 1D distribution of elastic parameters.  

The problem of estimating the corresponding 1D distribution of elastic parameters is here cast as 

the global minimization of an appropriately constructed objective function.  Global optimization 

methods described in this Section implement a Monte Carlo guided search method and a 

minimization schedule based on SA.  They are designed to address the multimodality of the 

objective function without an exhaustive search, and generally pursue the global optimum 

regardless of the starting point in parameter space.  The estimation of model parameters is also 

performed while enforcing physical constrains (e.g., trends) that eliminate the need to search for 

inconsistent models that may also honor the measurements. 

3.A.5.3 Global Optimization Technique 

Simulated annealing is a global optimization method that replicates the thermodynamic 

cooling of a multi-particle physical system (Salamon et al., 2002).  The range of possible global 

energy values adopted by such a system corresponds to the range of values considered by the 

objective function.  Metropolis' procedure emulates the natural process whereby crystal lattices 

of glass or metal relax to a state of lower energy state of thermal equilibrium.  This process is 
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usually referred to as annealing (Metropolis et al., 1953).  The idea behind SA is that the 

objective function relates the global system energy to a given state of the system and various 

manners to bring the multi-particle system to a lower state of thermodynamic equilibrium. 

The optimization algorithm based on SA is given its inception with an initial model, 0m , 

that has an associated energy, ( )0mE .  In this context, the notation m  refers to a vector of size 

N  that contains all of the unknown model parameters ordered in some prescribed fashion and E  

designates the objective function.  A random walk algorithm is then used to select a new location 

in model space, im .  The global energy associated with the new location in model space, 

( )iE m , is then calculated and compared against the prescribed acceptance test.  If the objective 

function decreases then the new location in model space, im , is accepted unconditionally 

( imm =0 ); otherwise, the change is accepted but only with probability equal to 

( ) ( )( )[ ]TEE i /exp 0mm −− , where T  is a control parameter called “temperature”.  Iteratively 

many locations in model space, im , are proposed in sequence.  Each new location may be either 

accepted or rejected according to this criterion.  Such a procedure monotonically decreases the 

system temperature (i.e., cooling schedule) while expectantly reaching the global optimum (see 

Figure 3.A.5.1).  It can be shown that if the rate of temperature decrease is sufficiently slow, a 

global optimum can be found statistically for the global energy function (Ingber, 1989; 1993). 

The numerical study presented in this Section evaluates various random-walk search 

methods associated with a global optimization based on SA.  These search methods include 

Metropolis (Metropolis et al., 1953), heat bath (Geman and Geman, 1984; Rothman, 1986), and 

very fast simulated annealing (VFSA; Ingber, 1989).  These algorithms make use of the same 

acceptance/rejection criterion introduced by Metropolis.  The difference among them is that 
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Metropolis SA draws a new sample in model space from a given PDF, heat bath SA produces 

weighted samples in model space that are always accepted, and VFSA draws a new sample in 

model space from a 1D Cauchy PDF that is a function of temperature.  Metropolis SA and VFSA 

algorithms are a two-step process whereas heat bath SA is a one-step process. 

The search algorithm allows a cooling sc3hedule in which temperature decreases 

exponentially with iteration number or annealing-time, n , given by  

( )NqnTT /1
0 exp −= ,     (3.A.5.1) 

where 0T  is a specified initial temperature, q  is a specified temperature decay rate, and N  is the 

dimensionality of the model parameter space (Ingber, 1989).  These specified parameters are 

adjusted in an empirical manner and are often refined to improve the efficiency of the algorithm.  

Refer to Ingber (1993) for a general summary of practical applications of SA. 

3.A.5.4 Sampling Technique 

The approach to draw an initial model plays a central role in both including apriori model 

information and optimizing the computational efficiency of the algorithm.  Many sampling 

strategies can be implemented depending upon the information or knowledge that is available 

apriori about the model.  One of the simplest assumptions could be the lack of specific 

knowledge about the model parameters.  In that case, only the minimum and maximum values of 

the model parameters would be known apriori.  The initial model would then be drawn from 

uniform PDFs spanning the corresponding range of variation.  With more apriori information 

about the model, global PDFs such as Gaussian distributions, for instance, may be used to 

constrain the search of model parameters including the selection of an initial model.  The spatial 

distribution (i.e., vertical trends), if available, can be used in conjunction with the PDFs of model 

parameters to draw the initial model and to constrain the subsequent selection of model 
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parameters.  In the latter case, each elastic property in the 1D subsurface model will exhibit a 

vertical property trend and each layer will be associated with a specific PDF.  If more 

information or knowledge were available about the 1D distribution of elastic parameters then this 

apriori knowledge could be used to further constrain the inversion. 

3.A.5.5 Data Misfit Function 

To assess the similarities or differences between synthetic and measured pre-stack 

seismic data, several types of fitness or misfit functions were considered in the inversion 

algorithm.  By definition, a solution to the inverse problem, m , entails the smallest misfit or 

prediction error.  There are different metrics, or norms, available to quantify the length or size of 

the misfit vector.  The first type of data misfit function was constructed in the time domain.  

Equations (3.A.5.2) and (3.A.5.3) define the 1l - and 2l -norms of the data misfit vector sampled 

for all the discrete measurement times and offsets, namely,  

1l -norm:   
1

1 1 1 1
( , ) ( , )

Noff NoffNt Nt
obs est

t ij i j i j
i j i j

e e S x t S x t
= = = =

= = −∑ ∑ ∑ ∑ ,     (3.A.5.2) 

and 

2l -norm:   ( )
1/ 2 1/ 2

22

2
1 1 1 1

( , ) ( , )
Noff NoffNt Nt

obs est
t ij i j i j

i j i j
e e S x t S x t

= = = =

   
= = −   

   
∑ ∑ ∑ ∑ ,     (3.A.5.3) 

where estS  and obsS  are the synthetic and measured pre-stack seismic data, respectively, as a 

function of source-receiver distance, ix , and seismic time jt .  In the above equations, tN  is the 

number of discrete time samples per trace for a given source-receiver offset, and offN  is the 

number of source-receiver offsets available in the pre-stack gather. 
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The second type of data misfit function was constructed in the frequency domain using 

the real part of the geometric ( gl ) and harmonic ( hl ) metric of the correlation between synthetic 

and measured pre-stack seismic data described by Sen and Stoffa (1991), given by 

gl -norm: 

*

1
1/ 2 1/ 2

1 * *

1 1

( , ) ( , )

( , ) ( , ) ( , ) ( , )

Nf
obs est

i j i jNoff
j

f g Nf Nfi obs obs est est
i j i j i j i j

j j

S x f S x f
e

S x f S x f S x f S x f

=

=

= =

 
 
 

=  
    
        

∑
∑

∑ ∑
, (3.A.5.4) 

and 

hl -norm: 

*

1
1/ 2 1/ 2

1 * *

1 1

( , ) ( , )
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∑
∑

∑ ∑
, (3.A.5.5) 

respectively.  In the above equations, jf  is frequency, fN  is the number of frequencies, and the 

superscript (*) designates the complex conjugate operator.  Weighted norms may also be 

considered in which time-frequency data for a given source-receiver offset may be assigned a 

specific weight.  These weights could be designed to put all of the source-receiver data on equal 

footing and hence to increase the sensitivity of all the source-receiver traces to a perturbation of 

model parameters.  Exploring the option of source-receiver weights, however, goes beyond the 

scope of this project. 
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3.A.5.6 Measures of Model Smoothness 

Additional terms in the objective function are used to constructively bias the solution 

toward a preconceived notion of model properties.  A general objective function that can adopt 

different metrics, constraints, and apriori information is given by 

( ) ( ) ( )mSSm obsest
modeldata EEE α+= , ,     (3.A.5.6) 

where α  is a user-defined parameter that controls the relative importance of the two additive 

components; dataE  represents the data misfit function (in the present study this term could be any 

of the misfit functions defined in equations 3.A.5.2 through 3.A.5.5), and modelE  represents any 

measure of apriori information and constraints about the model parameters.  Normally, the 

relative weight applied to the data misfit and smoothness terms of the objective function is 

determined by trial and error as there is no universal method to calculate it in a deterministic 

fashion. 

The continuous version of the term modelE  in equation (3.A.5.6) is defined as operating on 

a seismic travel time-domain function ( )tmm =  that contains the continuous model parameters, 

that is ( )tv p , ( )tvs , and ( )tbρ , and is given by 
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where ω , β , γ , and χ  are user-defined positive numbers that control the smoothness of the 

unknown model ( )tm , and 0t  and 1t  are lower and upper time limits of the estimation domain, 

respectively.  The first three terms of equation (3.A.5.7) are measures of the length of the 

solution based on a 2l -norm metric.  These terms are called size, flatness ( )F , and roughness 



DE-FC26-00BC15305 

-106- 

( )R , respectively.  Menke (1989) emphasizes that such a measure of length is the simplest type 

of apriori assumption about a particular model.  The last term of equation (3.A.5.7) is a measure 

of flatness ( 1F ) based on a 1l -norm metric.  Usage of a mixed 2l - 1l -norm is in some cases 

appropriate to reduce deleterious Gibb’s phenomena in the estimation of the continuous function 

( )tm . 

Often, the size and smoothness properties of the model function, ( )tm , are measured with 

respect to an apriori reference model (i.e., refm m− ).  Such a strategy was not used as an explicit 

measure of simplicity in this Section.  Excluding the first additive term, a discrete version of 

equation (3.A.5.7) can be written as 

( ) ( )
1modelE m β γ χ  = + +   1

T T T
F F R R Fm W W W W m W m ,     (3.A.5.8) 

where the superscript ( T ) designates the transpose operator, the vector (m ) contains the model 

parameters, that is ( )sNspNpbNb vvvv ,...,,,...,,,..., 111 ρρ=m , and W is a weighting block matrix.  

For the cases considered in this Section, model parameters change with vertical location (i.e., 

seismic travel time), whereupon model flatness can be calculated using the discrete version of 

the model parameters and is given by 

( ) [ ]mWWmm F
T
F

T=F ,     (3.A.5.9) 

where the block diagonal matrix FW can be written as 
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Each of the block matrices included in equation (3.A.5.10) is determined by the type of 

approximation used to calculate the derivative (e.g., backward, forward, three-point or five-point 

central difference approximation).  For the case of a backward first-difference approximation 

(Burden and Faires, 1993) used for model parameters that are not regularly spaced, XW  is given 

by 


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XW , (3.A.5.11) 

where x  is a generic designation for any of the three elastic parameters and t∆  is the interval 

between consecutive time samples.  The roughness ( R ) of the model parameters can also be 

calculated in a similar manner as the flatness by discretizing the second derivative operator in 

place of matrix xW .  The flatness and roughness terms mentioned above are measures under a 

2l -norm metric; however, it is also possible to characterize similar smoothness terms under a 

1l -norm metric as described by the last term of equation (3.A.5.8).  In the most general case, the 

inversion algorithms considered in this Section are formulated as the minimization of the 

objective function 

( ) ( ) ( ) ( ) ( )mmmSSm obsest
1, FRFEE data χγβ +++= .   (3.A.5.12) 
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3.A.5.7 Proposing an Inversion Algorithm 

Based on extensive numerical experiments, the proposed inversion algorithm makes use 

of the most efficient annealing technique (i.e., VFSA), the most efficient data misfit function 

(i.e., harmonic), and introduces a sampling strategy based on geostatistical concepts.  This 

algorithm makes explicit use of only the data misfit term of the general objective function 

described in equation (3.A.5.12). 

Figure 3.A.5.2 shows a generalized flow diagram of the proposed inversion algorithm.  

At the outset, an initial model is randomly drawn from PDFs of model parameters (i.e., pv , sv , 

and bρ ).  The type of PDF and the value-range constraints depend on the apriori information 

available about the model as discussed in previous sections.  Subsequently, a specified number of 

hard-points are randomly chosen.  A random walk in time designates the next time sample to be 

considered for analysis.  Selection of the corresponding elastic parameters is performed using a 

Kriging estimator provided that the time sample remains within the assumed time correlation 

range of a prescribed semivariogram; otherwise the elastic parameters for this time sample are 

determined using a VFSA model solution rule.  In the most general case, the Kriging of elastic 

parameters is performed using a fixed semivariogram model (e.g., spherical, Gaussian) and fixed 

semivariogram parameters (e.g., range, sill).  Different semivariogram models can be used for a 

specific lithology and for a specific elastic parameter provided that apriori information on the 

corresponding parameters is available.  A Metropolis acceptance/rejection criterion is enforced 

by the algorithm.  Once all the discrete-time samples are visited, the current iteration is 

completed and the target temperature (equation 3.A.5.1) is lowered according to a prescribed 

cooling schedule.  The process described above is performed iteratively until either the data 

misfit function or the number of iterations meets a previously established criterion.  According to 
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this iterative procedure, the final solution remains conditioned by the starting realization of 

model parameters.  Therefore, various seeds are necessary to evaluate the variability 

(uncertainty) of the final solution.  Such a strategy provides a natural way to assess non-

uniqueness and hence to quantitatively appraise the inversion results in the presence of noisy and 

sparsely sampled pre-stack seismic data. 

As emphasized above, the proposed inversion algorithm makes use of a prescribed 

semivariogram function as a way to enforce a measure of smoothness on the estimated model 

parameters.  Parenthetically, Tarantola (1987) demonstrates that when an exponential covariance 

operator (i.e., an exponential semivariogram) is used as an integral kernel (C ) to produce a 

smooth version of a continuous function in the inversion [e.g., to produce a smooth version, 

smoothm , of the original continuous model, m , via the equation ( ) ( ) ( )∫= dxxmyxCymsmooth , ] this 

operation is equivalent to enforcing a model norm written as the weighted sum of the 2l -norm of 

the function and the 2l -norm of its first derivative.  In similar fashion, the Kriging operation 

used in the proposed inversion algorithm to estimate elastic parameters at time samples between 

hard points implicitly enforces a mixed quadratic model norm in the inversion.  The exact 

representation of such a mixed quadratic norm depends on the specific choice of semivariogram 

model and semivariogram parameters. 

3.A.5.8 Validation and Testing of the Inversion Algorithm 

Numerical experiments of global inversion were performed using different noisy 

synthetic data sets that included only PP seismic reflection amplitudes.  All the examples assume 

input data in the form of NMO corrected pre-stack seismic gathers.  These numerical 

experiments are reported in three separate sections.  The first section (examples 3.A.5.1 through 

3.A.5.4) considers a sensitivity analysis to evaluate the influence of the most important inversion 
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parameters.  Results from this analysis are implemented in subsequent exercises and serve as 

reference for inversion results obtained with the proposed inversion algorithm in the second 

section (examples 3.A.5.5 through 3.A.5.7).  In the final section (example 3.A.5.8), the proposed 

inversion algorithm is used to assess the sensitivity of pre-stack seismic data to resolve a 1D 

distribution of elastic parameters constructed from well-log data acquired in the deepwater Gulf 

of Mexico. 

3.A.5.8.1 Analysis of Inversion Parameters 

3.A.5.8.1.1 Description of the Synthetic Data Set 

Figure 3.A.5.3 shows a 1D synthetic subsurface model consisting of two sand bodies 

embedded in a background shale layer.  The upper sand body is water-filled whereas the lower 

one is saturated with oil.  Panels (a) through (d) in this figure show the corresponding well logs 

of bulk density, compressional-wave velocity, shear-wave velocity, and lithology.  Panel (e) 

shows the input pre-stack seismic data simulated for a single source-receiver gather corrected for 

normal moveout.  The simulated pre-stack seismic data were also contaminated with 5%, zero-

mean Gaussian random noise.  A zero-phase Ricker wavelet centered at 35 Hz was assumed in 

the simulation of the pre-stack seismic data.  Simulation of seismic data was performed assuming 

10 source-receiver offsets with uniform receiver spacing equal to 300m and a constant time 

sampling rate of 2ms in the interval from 0 to 1.4 seconds.  The number and spacing of receivers 

were selected to insure sufficient variability in the seismic amplitudes across the pre-stack 

seismic gather.  In this particular case, the maximum offset-to-depth ratio is approximately equal 

to 2.  An appropriate maximum offset-to-depth ratio is critical here to secure measurable 

sensitivity of the seismic data to elastic parameters, especially in the estimation of shear-wave 

velocity and bulk density (Castagna and Backus, 1993).  The discretization of elastic parameters 

was performed directly from the well logs shown in Figure 2.  This discretization consisted of 50 
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layers of an average travel time “thickness” of 28ms for each layer and spanning the same time 

interval as the pre-stack seismic data (i.e., from 0 to 1.4 seconds). 

3.A.5.8.1.2 Example No. 3.A.5.1: Efficiency of the Annealing Technique 

In this example, inversion was performed using various annealing techniques 

(Metropolis, Heat bath, and VFSA) to yield estimates of compressional- and shear-wave velocity 

and bulk density.  The inversions were implemented under the same operating assumptions and 

the corresponding computer time was clocked to assess relative computer efficiency.  Figure 

3.A.5.4 describes the CPU time associated with each technique in relation to the CPU time 

entailed by VFSA.  Exercises considered in this Section consistently indicated that VFSA 

remained the most efficient SA algorithm for global inversion.  Similar results have been 

reported in the open technical literature (e.g., Ingber, 1993; Sen and Stoffa, 1995; Chunduru et 

al., 1997).  Rothman (1986) suggested that for problems involving a very large number of 

parameters Heat bath SA could be more efficient than Metropolis SA. 

3.A.5.8.1.3 Example No. 3.A.5.2: Choice of Objective Function 

A similar inversion exercise was performed to appraise the sensitivity of the estimated 

elastic parameters to the choice of data misfit function.  Selecting an appropriate data misfit 

function is critical to the inversion because some functions are not sensitive to absolute 

differences in seismic amplitudes.  Figure 3.A.5.5 shows the original pre-stack seismic data set 

(Panel a) and the seismic residuals derived from the inversion with the use of the 1l  (Panel b), 

2l  (Panel c), geometric ( gl , Panel d), and harmonic ( hl , Panel e) data misfit functions 

described by equations (3.A.5.2), (3.A.5.3), (3.A.5.4), and (3.A.5.5), respectively.  In this 

example, all inversions reached the same number of iterations in the minimization.  The 

harmonic misfit function is sensitive to the absolute seismic amplitude differences and hence 

produces superior results in terms of data residuals, total misfit, and computational performance.  
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Such a data misfit function is used as the default option in the remaining examples considered in 

this Section. 

3.A.5.8.1.4 Example No. 3.A.5.3: Sampling Techniques in Model Space 

Various approaches were considered in this Section to draw an initial model and to 

constrain subsequent model changes in the search for the minimum of the objective function.  

These approaches are of significance to enforce apriori model information and to optimize 

computer efficiency.  For simplicity, but without sacrifice of generality, the example described in 

this section makes use of only the first term of equation (3.A.5.12). 

Figure 3.A.5.6 shows inversion results obtained when assuming various types of apriori 

information about the 1D distribution of elastic parameters and when using various types of 

sampling strategies.  All inversion exercises achieved the same similarity in data space (i.e., 

small pre-stack seismic data misfit).  Panels (a) and (b) in Figure 3.A.5.6 show the uniform and 

Gaussian PDFs of compressional-wave velocity, shear-wave velocity, and bulk density used to 

stochastically draw the initial model entered to the inversion.  Apriori information about the 

model assumes that the latter exhibits no specific trend with respect to seismic time (or depth).  

Therefore, the same PDF is used for all layers.  Panels (c) and (d) show cross-plots and 

correlation coefficients ( 2r  is used as a scale-independent measure of similarity of two discrete 

functions, see 3.A.7.5.D. Appendix D) between the actual and inverted elastic parameters 

estimated using uniform and Gaussian PDFs, respectively.  In an ideal case, all data in the cross-

plots should fall along a straight line of unit slope.  For the case of scant prior information about 

the unknown model, no reasonable assumption can be made about the 1D variations of the elastic 

properties and hence a uniform PDF remains the most appropriate choice (Panel a) to sample 

model parameters.  In the latter case, the two sets of actual and inverted elastic parameters do not 

correlate very well as indicated by the relatively low correlation coefficients shown in Panel (c) 
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( 2
pvr  = -0.54, 2

svr  = 0.42, and 2
b

rρ  = 0.20) and the 1D distribution of elastic parameters shown in 

Panel (e).  Usage of apriori model information in the form of a Gaussian PDF (Panel b) yields 

1D distributions of elastic parameters closer to the actual ones, as indicated by the corresponding 

correlation coefficients shown in Panel (d) ( 2
pvr  = -0.11, 2

svr  = 0.51, and 2
b

rρ  = 0.67) and the actual 

and inverted 1D distributions of elastic parameters shown in Panel (f).  In this particular case, the 

enforced Gaussian PDF was adapted from sample histograms of the well logs shown in Figure 

3.A.5.3. 

Figure 3.A.5.7 shows inversion results obtained when apriori model information includes 

(a) knowledge that the model exhibits a specific vertical trend, (b) knowledge of lithology (i.e., 

sand or shale), and (c) ranges of variation about the vertical trend independently for each of the 

three elastic parameters.  In all cases, the inversions entailed the same similarity in data space 

enforced in previous examples.  Panel (a) in Figure 3.A.5.7 shows the vertical trends and lower, 

mean, and upper bounds for the 1D distribution of unknown elastic parameters.  Gaussian PDFs 

may also be enforced for each layer to constrain the variability of the unknown elastic 

parameters.  Panel (b) shows the corresponding 1D distribution of actual and inverted elastic 

parameters.  Open circles designate the inverted elastic parameters in this panel.  The evolution 

of the negative value of the data misfit function as a function of iteration number is also shown in 

panel (c).  Panel (d) shows a cross-plot between the actual and inverted elastic parameters.  The 

latter results entail better correlation coefficients ( 2
pvr  = 0.35, 2

svr  = 0.85, and 2
b

rρ  = 0.72) than 

those obtained for the examples described in Figure 3.A.5.6.  Subsequent inversion exercises 

described in this Section employ the same model sampling strategy assumed to obtain the results 

shown in Figure 3.A.5.7. 
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3.A.5.8.1.5 Example No. 3.A.5.4: Smoothness Criterion 

The inverted elastic parameters can sometimes exhibit low correlation coefficients when 

compared to actual parameters even though these parameters entail a high degree of similarity in 

data space.  Such a situation can also occur in cases where the unknown models are constrained 

by apriori information such as vertical trends, lithology, and PDFs for each layer (see Figure 

3.A.5.7).  This common situation arises because of the non-uniqueness implicit in the nonlinear 

relationship between the data and the model, especially in the presence of noisy and sparse 

measurements.  Common practice shows that a more general objective function such as that 

shown in equation (3.A.5.12) can be used to address non-uniqueness of the inversion by biasing 

the search of the unknown model solution toward a specific subset in model space. 

Figure 3.A.5.8 shows results obtained for different types and degrees of smoothness 

enforced by the inversion algorithm.  All inversion results described in this figure entailed the 

same similarity in data space.  The second (model flatness) and third terms (model roughness) of 

equation (3.A.5.12) were the two types of smoothness criteria used to obtain the results shown in 

Figure 3.A.5.8.  The degree of smoothness was controlled by different values of the user-defined 

parameters β  and γ  described in equation (3.A.5.12).  Panels (a) through (d) in Figure 3.A.5.8 

show cross-plots of actual and inverted elastic properties when 1, 5, 10, and 20% of model 

flatness was enforced in the inversion.  Correlation coefficients between actual and inverted 

elastic parameters in general increase as the enforced degree of model flatness increases.  For 

instance, for a model flatness of 1%, the correlation coefficients are 2
pvr  = 0.39, 2

svr  = 0.85, and 

2
b

rρ  = 0.76, and for a model flatness of 10% the correlation coefficients are 2
pvr  = 0.51, 2

svr  = 0.90, 

and 2
b

rρ  = 0.76.  Panels (e) and (f) in Figure 3.A.5.8 also show cross-plots of actual and inverted 

elastic parameters when both model flatness and model roughness are included in the inversion.  
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To obtain the results shown in Figure 3.A.5.8, model flatness was kept constant at 20% and 

model roughness was assumed equal to 10 and 20% in the inversion algorithm.  Correlation 

coefficients between actual and inverted elastic parameters increase as the model roughness 

increases for a given value of model flatness.  For the case of 20% model flatness and 10% 

model roughness, the correlation coefficients are 2
pvr  = 0.69, 2

svr  = 0.91, and 2
b

rρ  = 0.84, whereas 

for the case of 20% model flatness and 20% model roughness the correlation coefficients are 2
pvr  

= 0.76, 2
svr  = 0.96, and 2

b
rρ  = 0.87.  Correlations substantially improve when both model flatness 

and model roughness are included in the objective function described by equation (3.A.5.12). 

Next, the 1l -norm was used to calculate the fourth additive term of the objective function 

shown in equation (3.A.5.12).  This was the type of smoothness criterion used to obtain the 

results shown in Figure 3.A.5.9.  The degree of smoothness was controlled with different values 

of the user-defined parameter χ .  Panels (a) and (b) in Figure 3.A.5.9 show the actual and 

inverted 1D distributions of elastic parameters when 5% and 10% of 1l -norm model smoothness 

is enforced in the inversion algorithm, respectively.  For the case of 5% of model smoothness 

(Panel c), the correlation coefficients are 2
pvr  = 0.44, 2

svr  = 0.86, and 2
b

rρ  = 0.73, whereas for the 

case of 10% of model smoothness (Panel b), the correlation coefficients are 2
pvr  = 0.42, 2

svr  = 

0.89, and 2
b

rρ  = 0.82.  Results improve when the 1l -norm smoothness criterion is enforced 

compared to results shown in Figure 3.A.5.7.  However, as shown in Figure 3.A.5.8, more 

accurate results were obtained when using 2l -norm measures of smoothness. 

The above exercises of the enforcement of smoothness in the inversion are presented here 

for reference purposes given that such measures of smoothness are commonly used in seismic 

inversion.  As it is shown below, the proposed inversion algorithm described in this Section 
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provides an altogether different way to enforce smoothness in the unknown 1D distributions of 

elastic parameters. 

3.A.5.8.2 Evaluation of the Proposed Inversion Algorithm 

3.A.5.8.2.1 Example No. 3.A.5.5: Single Model Realization 

Figure 3.A.5.10 shows results in data and model space obtained with the proposed 

inversion algorithm.  Panel (a) in this figure shows the measured and inverted pre-stack seismic 

data as well as the seismic data residuals.  Panels (b) shows the actual and inverted 1D 

distributions of elastic parameters and panel (c) shows that higher correlation coefficients ( 2
pvr  = 

0.86, 2
svr  = 0.98, and 2

b
rρ  = 0.95) are obtained between actual and inverted values of elastic 

parameters when compared to previous inversion exercises.  The number of hard points used by 

the inversion algorithm corresponds to 10% of the total number of time samples.  A zero-nugget, 

spherical semivariogram of range and normalized sill equal to 0.60 s and 1, respectively, was 

used to krig (interpolate) elastic parameters between hard points.  All inversion results described 

in this figure entailed the same similarity in data space and made use of the harmonic data misfit 

function (equation 3.A.5.5).  Smoothness was implicitly enforced through the time-sampling 

strategy used by the proposed inversion algorithm. 

3.A.5.8.2.2 Example No. 3.A.5.6: Effect of Semivariogram Range and Number of Hard Points 

Table 3.A.5.1 and 3.A.5.2 summarize the results obtained when different vertical 

correlation ranges and number of hard points were used in the inversion algorithm, respectively.  

All inversion results described in these tables entailed the same similarity in data space and made 

use of the harmonic data misfit function.  The correlation coefficients shown in Table 3.A.5.1 

between the actual and inverted bulk density and shear-wave velocity are approximately the 

same for all vertical correlation ranges under study.  For the case of compressional-wave 
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velocity, however, the correlation coefficient reaches a peak at a semivariogram range of 

approximately 0.70s.  As emphasized earlier, the Kriging of elastic parameters is by default 

performed using a spherical semivariogram model with a correlation range equal to 0.60s.  Such 

a range was calculated experimentally from the compressional-wave velocity log.  In the most 

general case, each elastic parameter and lithology could be associated with a specific 

semivariogram model.  Table 3.A.5.1 also shows the normalized computer CPU time required to 

estimate each inversion result.  This CPU time slightly increases as the correlation range 

increases.  Table 3.A.5.2 summarizes similar experimental results obtained when using different 

numbers of hard points.  Neither the correlation coefficients between the actual and inverted 

elastic parameters nor the computer CPU times exhibit significant differences for the numbers of 

hard points considered in the experiments. 

3.A.5.8.2.3 Example No. 3.A.5.7: Assessment of Uncertainty 

Figure 3.A.5.11 describes results from the evaluation of uncertainty of the inverted 1D 

distributions of elastic parameters.  To construct the results shown in this figure, twenty two 

independent estimations were performed with the proposed inversion algorithm.  Each of the 

inversions was initialized with an independent starting model but the same number of fixed 

points.  The inversion results described in this figure entailed the same similarity in data space.  

Subsequently, histograms for each set of parameters were sampled at a particular time and used 

as indicators of variability.  These histograms are shown in color-coded format in Figure 

3.A.5.11.  Clearly, compressional-wave velocity exhibits the largest variability among the three 

elastic parameters.  This behavior is mainly due to the large value-range constraints enforced by 

the inversion algorithm for this elastic parameter, to the small contrast in velocity between the 

oil-saturated sand and background shale, and to the effect of a non-optimal seismic signal-to-

noise ratio.  In general, the inverted distributions of elastic parameters remain consistent with the 
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actual distributions (identified with the red lines in Figure 3.A.5.11).  The overall computer 

efficiency of the proposed algorithm surpasses the efficiency of alternative inversions techniques 

described in this study, especially when more smoothness terms are used in the general objective 

function. 

3.A.5.8.3 Feasibility Analysis for the Inversion of Field Data 

3.A.5.8.3.1 Description of the Gulf-of-Mexico Data Set 

The 1D model under consideration was constructed from well-log data acquired in the 

deepwater Gulf of Mexico.  Figure 3.A.5.12 shows the corresponding well logs along the depth 

interval from 8000 ft (2438.4 m) to 13200 ft (4023.4 m).  A close-up view of the same logs is 

also shown in the interval of interest from 11600 ft (3535.7 m) to 13200 ft (4023.4 m).  The well-

log data were converted from depth to normal seismic travel time using the compressional-wave 

velocity log.  Subsequently, the logs were sampled at a constant rate of 2ms to construct the 

discretized version of elastic parameters.  A zero-phase Ricker wavelet centered at 35 Hz was 

used for the simulation of the 1D pre-stack seismic data in the interval from 2.4 to 3.7 seconds.  

The assumed source-receiver pre-stack gather consists of 10 traces, corresponding to the same 

number of receivers spaced at 800m intervals.  The maximum offset-to-depth ratio for the 

simulations is approximately equal to 2.  Figure 3.A.5.13 shows the simulated pre-stack seismic 

traces contaminated with 5%, zero-mean Gaussian random noise.  Noisy pre-stack and NMO 

corrected seismic data input to the proposed inversion algorithm comprised only the zone of 

interest, from 3.3 to 3.7 seconds.  This same time interval comprised the discretized elastic 

parameters, hence amounting to a total of 200 equal travel-time layers considered for inversion.  

The experimental spherical semivariogram used in the inversion algorithm was inferred from the 

well-log data and exhibited a correlation range of 0.04 s and zero-nugget.  The sill was assumed 

to be equal to the variance of the data. 
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3.A.5.8.3.2 Example No. 3.A.5.8: Assessment of Uncertainty 

Figure 3.A.5.14 graphically describes the results obtained from the evaluation of 

uncertainty for the Gulf-of-Mexico 1D subsurface model using the proposed inversion algorithm.  

Twenty-two independent inversions were performed to estimate the 1D distribution of elastic 

parameters.  All inversion results described in this figure entailed the same similarity in data 

space.  Inversion results are displayed in the form of color-coded normalized histograms as a 

function of seismic travel time.  Each histogram was constructed at a particular time from 

samples of elastic parameters yielded by the twenty-two independent estimations.  As indicated 

by Figure 3.A.5.14, shear-wave velocity and bulk density exhibit the most variability with 

respect to the actual well-log parameters (identified with solid red lines in each panel).  In 

general, the inverted 1D distributions of elastic parameters are in qualitative agreement with the 

well-log distributions of the same parameters.  The variability (uncertainty) of the inverted 

results considerably increases across thin layers. 

3.A.5.9 Summary and Conclusions 

Various simulated annealing algorithms, objective functions, sampling strategies, and 

smoothing criteria were explored to perform 1D global inversion of pre-stack seismic data.  Both 

the selection of a specific random-walk search and the construction of the objective function 

significantly constrained the efficiency of the inversion and the accuracy of the results.  

Sampling strategies allow one to include apriori information in the inversion, including an 

additive smoothness term that helps to constrain the range of possible solutions in model space.  

This Section introduced a new global inversion algorithm based on simulated annealing that 

enforced sampling and smoothness strategies widely used in the field of geostatistics.  The 

overall computer efficiency of the proposed algorithm for similar inverted results is superior to 

alternative inversion techniques evaluated in this study, especially when alternative approaches 
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makes use of smoothing terms in the objective functions.  Moreover, the new inversion algorithm 

is capable of rendering estimates of uncertainty in an efficient manner.  The flexibility of the 

proposed algorithm makes it possible to estimate petrophysical properties such as porosity and 

water saturation that are either deterministically or stochastically related to the elastic 

parameters. 

The next Section shows the development of a new stochastic inversion algorithm to 

estimate petrophysical properties in one step and elastic properties as by-products from pre-stack 

seismic data and well logs. 

Table 3.A.5.1: Summary of the relationship between spatial correlation length (range), 
correlation coefficient (r2), and CPU time when performing the proposed 
inversion algorithm on the synthetic pre-stack data set described in 
Figure 3.A.5.3. 

Range, 
seconds 

2
pvr  2

svr  2
b

rρ  Relative 
CPU time 

0.10 0.057 0.974 0.976 0.878 
0.20 0.078 0.974 0.956 0.899 
0.50 0.763 0.964 0.951 0.878 
0.70 0.814 0.9464 0.944 0.906 
0.90 0.594 0.971 0.962 0.846 
1.10 0.556 0.957 0.949 1.000 

 

Table 3.A.5.2: Summary of the relationship between number of hard points, correlation 
coefficient (r2), and CPU time when performing the proposed inversion 
algorithm on the synthetic pre-stack data set described in Figure 3.A.5.3. 

Number of 
Hard Points 

2
pvr  2

svr  2
b

rρ  Relative 
CPU time 

2 0.846 0.995 0.973 1.000 
5 0.890 0.981 0.976 0.912 
9 0.846 0.958 0.953 0.906 
11 0.795 0.996 0.982 0.820 
15 0.894 0.995 0.940 0.832 
17 0.824 0.914 0.945 0.952 
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Figure 3.A.5.1: Generalized flow diagram for simulated annealing (after Ingber, 1989). 
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Figure 3.A.5.2: Generalized flow diagram of the proposed pre-stack inversion algorithm developed in this Section. 
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Figure 3.A.5.3: Graphical description of the one-dimensional synthetic subsurface model used for the analysis of 

pre-stack seismic inversion.  Panels (a) through (d) show the bulk density, compressional-wave 

velocity, shear-wave velocity, and lithology-type well logs, respectively, and panel (e) shows the 

noisy (5%, zero-mean Gaussian random noise) pre-stack seismic data associated with this model 

(maximum offset-to-depth ratio approximately equal to two).  Offset receivers are assumed 

uniformly spaced at 300m intervals.  Simulation of the pre-stack seismic data was performed with 

a 35 Hz Ricker wavelet.  The simulated pre-stack seismic data were further corrected for normal 

moveout. 
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Figure 3.A.5.4: Measured CPU times relative to very fast simulated annealing (VFSA) for three types of random-

search methods used to approach the same pre-stack seismic inversion problem. 
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Figure 3.A.5.5: Comparison in data space of the performance of the inversion algorithm for different types of data 

misfit functions after the same number of iterations of the VFSA algorithm.  (a) Measured pre-

stack seismic data, and data residuals yielded by the inversion using several data misfit functions, 

namely: (b) 1l -norm, (c) 2l -norm, (d) geometric norm, gl , and (e) harmonic norm, hl .  The 

various misfit functions are described by equations (3.A.5.2) through (3.A.5.5), respectively. 
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Figure 3.A.5.6: Effect of the model sampling technique on the inverted one-dimensional distribution of elastic 

parameters for the case of no vertical trend imposed apriori on the elastic parameters.  Panels (a) 

and (b) show the uniform and Gaussian probability density functions enforced by the inversion to 

estimate the elastic parameters shown in panels (c and e) and (d and f), respectively.  In panels (c) 

and (d), r2 is the correlation coefficient and in panels (e) and (f), the inverted distributions of 

elastic parameters are identified with open circles. 
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Figure 3.A.5.7: Effect of the model sampling technique on the inverted one-dimensional distribution of elastic 

parameters for the case of a vertical trend imposed apriori on the elastic parameters.  Panel (a) 

shows the vertical trend, minimum, mean, and maximum apriori values of the elastic parameters 

and the corresponding Gaussian probability density functions enforced by the inversion to 

estimate the elastic parameters shown in panels (b).  The evolution of the negative value of the 

data misfit function as a function of iteration number is shown in panel (c), whereas panel (d) 

shows the correlation coefficients (r2) between the actual and inverted elastic parameters.  In panel 

(b), the inverted distributions of elastic parameters are identified with open circles. 
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Figure 3.A.5.8: Cross-plots of actual and inverted elastic parameters obtained using various types of smoothness 

criteria and the same measure of similarity in data space.  Panels (a) through (d) show results 

obtained when enforcing a model flatness criterion of 1, 5, 10, and 20%, respectively.  Panels (e) 

and (f) show results obtained when enforcing simultaneously model flatness and model roughness 

criteria of 20% and 10%, and 20% and 20%, respectively.  In all of the panels, r2 is the correlation 

coefficient. 
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Figure 3.A.5.9: Profiles and cross-plots of actual and inverted elastic parameters obtained using an 1l -norm 

metric to enforce model flatness, i.e., by making use of the fourth additive term of the objective 

function (equation 3.A.5.12).  Panels (a and c) and (b and d) show results obtained when enforcing 

a model flatness criterion of 5 and 10%, respectively.  In panels (a) and (b), the inverted 

distributions of elastic parameters are identified with open circles, and in panels (c) and (d), r2 is 

the correlation coefficient. 
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Figure 3.A.5.10: Summary of the results obtained with the proposed inversion algorithm: Panels (a) and (b) show 

inversion results in data space and model space, respectively, and panel (c) shows a cross-plot 

between actual and inverted elastic parameters together with their associated correlation 

coefficients (r2).  In panel (b), the inverted distributions of elastic parameters are identified with 

open circles. 
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Figure 3.A.5.11: Evaluation of the uncertainty of the one-dimensional distributions of elastic parameters yielded by 

the proposed inversion algorithm: Panels (a), (b), and (c) show color-coded normalized histograms 

for bulk density, compressional-, and shear-wave velocities, respectively, calculated from 22 

independent realizations of inverted elastic parameters.  All of the realizations entail the same 

similarity in data space.  The red line identifies the actual distribution of elastic parameters. 
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H

W

H = Hydrocarbon zones
W = Water zones  

Figure 3.A.5.12: Well log description of the one-dimensional subsurface model from the deepwater Gulf of Mexico 

used for the assessment of the resolution and uncertainty of pre-stack seismic data.  Panel (a) 

shows the complete logged interval, from 8000 ft (2438.4 m) to 13200 ft (4023.4 m), and panel (b) 

shows the zone of interest, from 11600 ft (3535.7 m) to 13200 ft (4023.4 m).  Hydrocarbon and 

water zones are shown on the logs for reference purposes. 
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Figure 3.A.5.13: Pre-stack seismic traces simulated numerically for the one-dimensional distributions of elastic 

parameters constructed with the well logs shown in Figure 3.A.5.12.  Offset receivers are assumed 

uniformly spaced at 800m intervals.  Simulation of the pre-stack seismic data was performed with 

a 35 Hz Ricker wavelet.  The simulated pre-stack seismic data shown above were further corrected 

for normal moveout and contaminated with 5%, zero-mean Gaussian noise (maximum offset-to-

depth ratio approximately equal to two).  Inversion was performed using data within the time 

interval from 3.3 to 3.7 seconds. 
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Figure 3.A.5.14: Evaluation of resolution and uncertainty of pre-stack seismic data for the subsurface model in the 

deepwater Gulf of Mexico.  Elastic parameters estimated with the proposed inversion algorithm: 

Panels (a), (b), and (c) show color-coded normalized histograms for bulk density, compressional-, 

and shear-wave velocities, respectively, calculated from 22 independent realizations of inverted 

elastic parameters.  All of the realizations entailed the same similarity in data space.  The red line 

identifies the actual well-log data. 
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3.A.6:  JOINT STOCHASTIC INVERSION OF PRE-STACK SEISMIC DATA AND WELL LOGS 

This Section introduces a novel quantitative approach to make use of the full gather of 

3D pre-stack seismic data in the construction of reservoir simulation models and to assess their 

impact on the forecast of hydrocarbon production.  The problem is first formulated, then the 

subsurface model is constructed and a description is provided of the simulation of petrophysical, 

elastic, and seismic parameters.  Subsequently, the novel algorithm is described at length and 

different numerical experiments are performed and analyzed to validate the proposed joint 

stochastic inversion algorithm and to assess the value of 3D pre-seismic data in static reservoir 

evaluation.  Finally, a simple example is constructed to illustrate the reduction of uncertainty in 

the prediction of dynamic behavior as a consequence of using the full gather of 3D pre-stack 

seismic data in the construction of the static reservoir model. 

3.A.6.1 Introduction 

Integrated reservoir characterization makes use of various types of measurements to 

construct spatial distributions of petrophysical and fluid parameters.  One of the benefits of data 

integration these measurements is the reduction of uncertainty and hence improved asset 

recovery, surveillance, and management.  This Section describes a novel strategy for the static 

characterization of hydrocarbon reservoirs based on the extensive use of 3D pre-stack seismic 

data, well logs, and geological information.  Stochastic simulation is used to extrapolate 

petrophysical variables laterally away from wells subject to honoring the 3D pre-stack seismic 

measurements.  The simulation is performed using a geostatistical procedure that yields high-

resolution estimates of inter-well petrophysical and elastic parameters.  Numerical studies are 

carried out in two and three dimensions to evaluate the estimation algorithm as well as to assess 

different strategies for the inference of petrophysical properties related to elastic parameters.  
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The estimation algorithm is CPU intensive and is based on global inversion.  Examples of 

application show that the joint inversion algorithm lends itself to accurate estimation of 

petrophysical properties, such as porosity, that honor the normal-moveout corrected pre-stack 

seismic data, the well logs, and the prescribed global histograms.  Sensitivity analysis and cross-

validation exercises are performed to assess the influence of semivariograms parameters and of a 

particular well in the estimation of inter-well petrophysical properties.  Depending on the number 

of available wells and on the distance between them, the stochastic inversion algorithm can 

produce estimates of inter-well petrophysical properties with a vertical resolution intermediate 

between that of seismic data and well logs.  In addition, models generated with this inversion 

scheme yield more accurate predictions of reservoir dynamic behavior when compared to 

predictions performed with standard geostatistical techniques. 

3.A.6.2 Background and Formulation 

Reservoir management requires geological and petrophysical models amenable to 

numerical simulation of multiphase fluid flow.  These models are used to match production 

history data, if available, and to evaluate potential production strategies in light of time-

dependent economic value of assets.  One of the objectives of reservoir characterization is to 

construct cellular (discrete) spatial distributions of properties, including measurable 

petrophysical or geological parameters (e.g., lithology, porosity, permeability, permeability 

anisotropy, shale content, and fluid saturations) from different types of measurements such as 

seismic data (e.g., travel times, waveform and amplitudes), well logs, and ancillary information 

(e.g., core samples, and sequence stratigraphy).  The central objective of this Section is to 

describe a novel algorithm to construct spatial distributions of inter-well petrophysical properties 
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that make optimal use of the high vertical resolution of well logs and of the dense lateral 

sampling of 3D pre-stack seismic measurements. 

Statistical modeling techniques, such as Kriging and Gaussian simulation, are widely 

used for data interpolation and extrapolation (Isaaks and Srivastava, 1989).  The same techniques 

are at the heart of methods used to simulate reservoir properties that honor well-log data and a-

priori measures of spatial variability (Chilès and Delfiner, 1999).  Seismic measurements are 

often sensitive to the entire reservoir and hence provide a means to fill the spatial gap between 

sparse well locations.  Amplitude variations of 3D seismic data have been traditionally used to 

delineate flow-units and, in general, to infer geometrical properties of reservoirs (Brown, 1999; 

Hilterman, 1999).  Some of these approaches make use of seismic attributes to guide, correlate, 

or constrain the estimation of inter-well geometrical, lithological, and petrophysical properties.  

Applications and limitations of seismic-guided hydrocarbon reservoir analysis can be found in 

the technical literature (Maureau and Van Wijhe, 1979; Doyen, 1988; Kalkomey, 1996; 

Chawathe et al., 1997; Balch et al., 1999).  The quantitative use of seismic amplitude variations 

in space and seismic time (or depth) offers a powerful tool to guide the simulation of inter-well 

reservoir properties.  This approach is referred to in the literature as geostatistical seismic 

inversion (Bortoli et al., 1993; Haas, 1993; Haas and Dubrule, 1994) and makes use of post-stack 

seismic data to constrain the geostatistical simulation of inter-well reservoir properties.  

Improvements and applications of this approach can be found in Debeye et al. (1996), Pendrel 

and van Riel (1997), Torres-Verdín et al. (1999), and Grijalba et al. (2000). 

The inversion algorithm described in this Section is stochastic in nature, makes use of the 

full gather of 3D normal-moveout corrected pre-stack seismic data, and assumes the existence of 

quantifiable relationships between petrophysical and elastic parameters.  Well-log data are 
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necessary to determine whether the latter relationships can be assumed of a deterministic (e.g., 

linear) or stochastic nature (e.g., joint probability distribution function).  Spatial distributions of 

reservoir properties between existing wells are obtained with the joint stochastic inversion of 3D 

pre-stack seismic data and well logs.  The inversion is performed using a global optimization 

technique.  In so doing, simulations of inter-well properties are generated and subjected to an 

acceptance test that guaranties a reduction in the global misfit between the measured pre-stack 

seismic data and their numerical simulation.  To the best of our knowledge, no such algorithm 

has been reported in the open technical literature.  The inversion algorithm is benchmarked using 

a spatially complex synthetic reservoir model in which all elastic and petrophysical properties 

are known precisely.  Tests of performance are carried out assuming 2D cross-sections and 3D 

volumes.  Measurements input to the algorithm consist of normal-moveout corrected pre-stack 

seismic traces and well logs.  In addition, prescribed semivariograms, histograms, and joint PDFs 

between elastic and petrophysical parameters are input data that condition the inversion.  Inter-

well distributions of elastic and petrophysical parameters obtained with the proposed algorithm 

are compared to those of a reference model as well as to those obtained with standard 

geostatistical techniques that do not make use of seismic data. 

3.A.6.3 Construction of the Synthetic Geological Model 

Figure 3.A.6.1 is a 3D view of the synthetic subsurface model constructed to perform the 

numerical experiments described in this Section.  This model was constructed to reproduce some 

of the characteristics of a fluvial depositional environment.  Dimensions and geometry were 

designed to assess seismic resolution in the presence of wavelet tuning.  It consists of two sand 

bodies embedded in a background shale.  The upper sand is water filled whereas the lower sand 

is saturated with oil.  Spatial discretization of the model for the calculation of elastic and 
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petrophysical properties was performed on a regular grid that included approximately 30 millions 

cells.  Pre-stack seismic measurements consist of 200 by 200 common-mid-point (CMP) gathers 

uniformly separated by a distance of 23 m.  Individual traces span the time interval from 0 to 1.5 

seconds and are sampled at a rate of 2ms (see Figure 3.A.6.1). 

3.A.6.3.1 Description of Petrophysical and Elastic Properties 

Petrophysical properties such as porosity were populated into the reservoir using 

stochastic algorithms with a prescribed degree of spatial correlation (Chilès and Delfiner, 1999).  

Initial fluid distributions in the oil saturated sand were calculated by means of correlations (Tiab 

and Donalson, 1996).  Calculation of elastic properties from petrophysical properties was 

performed using a rock physics model (Duffy and Mindlin, 1957) that included the effect of 

mechanical compaction.  This 3D subsurface model is hereafter termed the reference model, that 

is, the actual spatial distribution of petrophysical and elastic properties.  Table 3.A.6.1 

summarizes the geometrical dimensions, average elastic properties, and semivariogram 

parameters associated with the construction of the hypothetical subsurface model. 

3.A.6.3.2 Numerical Simulation of Pre-Stack Seismic Data 

Numerical simulation of pre-stack seismic data was performed using the reflectivity 

method (Fuchs and Muller, 1971; Kennett, 1983).  This method generally computes the full-

wave response of a stack of horizontal layers including all converted waves and propagation 

modes.  More specifically, a simplified version of the reflectivity method was used to efficiently 

compute synthetic seismograms for P waves (primaries only) in offset-time domain devoid of 

transmission losses.  A zero-phase Ricker wavelet (central frequency of 35 Hz) was used for both 

simulation and inversion of pre-stack seismic data.  The time sampling interval was 2ms and 

offset gathers were corrected for normal moveout.  Moreover, 10%, zero-mean, random 
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Gaussian noise was added to the pre-stack seismic data in an effort to replicate practical levels of 

acquisition and processing errors.  A total of ten pre-stack seismic offsets per CMP gather were 

considered in this study and the spacing between receivers was assumed uniform and equal to 

300 m.  The number and spacing of receivers were selected to insure sufficient variability in the 

seismic amplitudes across the pre-stack seismic gather.  In this particular case, the maximum 

offset-to-depth ratio is approximately equal to 2.  Table 3.A.6.2 summarizes the geometrical 

dimensions and seismic parameters associated with the hypothetical subsurface model.  Sub-

volumes, cross-sections, and well logs (see Table 3.A.6.1) are extracted from this reference 

model to perform the numerical experiments described below. 

3.A.6.4 Geostatistical Modeling 

Geostatistical estimation techniques are commonly used in the construction of 3D spatial 

distributions of reservoir properties.  Kriging is a weighted linear interpolation method where the 

weights are governed by the distance(s) between the interpolation point and the hard point(s) and 

by the assumed semivariogram.  This type of linear interpolation can also include the effect of 

trends imposed by secondary variables (i.e., cokriging) as well as additional constraints to bias 

the weights (Chilès and Delfiner, 1999).  Kriging is often used to generate models that honor 

well log data and yield a smooth spatial distribution of properties, thereby dismissing local detail 

in place of a good average.  Figure 3.A.6.2 is a graphical representation of the process of Kriging 

adapted from Grijalba et al. (2000) and Jensen et al. (2000).  If each hard point in the 

interpolation process is associated with a local PDF, then the outcome of Kriging is unique and it 

provides an interpolated local PDF.  In turn, the local (collocated) PDF can be transformed into a 

cumulative distribution function (CDF) from which a random Monte Carlo simulation can be 

performed of the corresponding variable.  Such an estimation technique is referred to as 
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geostatistical simulation and is used in this Section to generate initial distributions of reservoir 

properties for the proposed inversion algorithm.  The same technique is used for comparison 

purposes.  Geostatistical estimation techniques assume that the interpolated variable is the 

realization of a second-order stationary process (Chilès and Delfiner, 1999).  Generation of 

multiple realizations allows one to assess uncertainty of the interpolated spatial distribution of 

properties and hence to assess their effect on predictions of dynamic reservoir behavior as a 

result of multiphase fluid flow. 

3.A.6.5 Pre-Stack Seismic Inversion 

Estimation of elastic parameters such as compressional-wave acoustic impedance (PAI) 

and shear-wave acoustic impedance (SAI), or compressional-wave velocity ( pv ), shear-wave 

velocity ( sv ), and bulk density ( bρ ) of rock formations can be performed via inversion of pre-

stack seismic data.  These elastic parameters are often related with petrophysical properties 

through an empirical statistical correlation.  A significant amount of work by academia and 

industry is currently underway to estimate quantitative indicators of fluid and lithology from 3D 

pre-stack seismic data (Lortzer and Berkhout, 1992; Mukerji et al., 2001; Roy et al., 2002).  The 

inversion algorithm described in this Section yields direct estimates of petrophysical properties 

and of elastic parameters as by-products.  Moreover, these estimates honor multiple-offsets of 

pre-stack seismic data, well logs, and prescribed global histograms. 

3.A.6.6 Novel Joint Stochastic Inversion Algorithm 

3.A.6.6.1 Description of the Algorithm 

Figure 3.A.6.3 shows a generalized flow diagram of the proposed joint stochastic 

inversion algorithm.  The estimation of inter-well petrophysical parameters (and elastic 

parameters as by-products) from pre-stack seismic data, well logs, and geological information 
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(e.g., lithology indicator, horizons), is cast into a global inversion problem.  Various factors that 

control the inversion, including type of optimization technique, selection of objective function, 

selection of an initial model, sampling strategy, and spatial smoothness, among others, contribute 

to the spatial resolution and uncertainty of the results as well as to the efficiency of the computer 

algorithm.  Section 3.A.5 carried out a detailed assessment of 1D stochastic inversion of pre-

stack seismic data to quantify the influence of all of the above-mentioned inversion factors in the 

estimation of elastic parameters.  Based on those results, the pre-stack stochastic inversion 

algorithm described in this Section makes use of very fast simulated annealing (VFSA) as a 

global inversion technique (Ingber 1989; 1993).  This implementation of VFSA also makes use 

of the acceptance/rejection criterion introduced by Metropolis et al. (1953).  Numerical 

simulation of pre-stack seismic data is performed using the reflectivity method.  In addition, the 

inversion algorithm enforces a harmonic objective function, initial models constrained by well-

log data, a sampling strategy from local PDFs, and honors a prescribed global property 

histogram. 

Initial models of inter-well property distributions obtained with geostatistical simulation 

are updated with sequential iterations of VFSA.  The geostatistical simulation grid is constructed 

to laterally coincide with the seismic grid but can be adjusted to consider only a subset of the 

CMP gathers.  For convenience but without sacrifice of generality, the vertical axis of the 

geostatistical simulation grid is measured in seismic vertical travel time.  This choice also makes 

it possible to have seismic horizons provide a geological framework for the simulations.  The 

vertical sampling interval can be adjusted to reflect the desired degree of vertical resolution of 

the geostatistical simulations (intermediate between the resolution of seismic data and well logs).  

A default choice for vertical sampling interval is that of seismic data.  Well logs input to the 
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geostatistical simulation procedure are previously low-pass filtered (to prevent aliasing effects) 

and resampled to the desired vertical sampling interval. 

In each of the VFSA iterations, all locations of the simulation grid are visited once by a 

random walk that includes lateral location and time.  This random walk designates the point to be 

considered for analysis (see Figure 3.A.6.3).  The convergence criterion enforced by the 

inversion is adjusted by the user in the form of a target value for the objective function or else by 

a maximum count for the number of VFSA iterations.  Due to the stochastic nature of the 

algorithm, various initial models are generated with geostatistical simulation to compute multiple 

inter-well property distributions that honor the well-log data, the specified global property 

histograms, and the pre-stack seismic data within the prescribed tolerance criterion. The 

statistical properties of the set of inverted distributions of inter-well properties provide a measure 

of uncertainty. 

3.A.6.6.2 Data Misfit Function 

The developments considered in this Section make use of a pre-stack data misfit (or 

similarity) function in the frequency domain.  This seismic data misfit function is adapted from 

the work of Sen and Stoffa (1995), and is given by 
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1/ 2
*

1
( , ) ( , )

Nf
est est

ij ij k ij k
k

C S x f S x f
=

 
=  

 
∑ .     (3.A.6.4) 

In the above equations, ijx  is source-receiver distance, kf  is frequency, NCMP is number 

of CMP gathers, Noff is number of source-receiver offsets per CMP gather, α is an offset weight 

factor, Nf is the number of frequencies in each trace for a given offset, obsS  and estS  identify the 

measured and numerically simulated pre-stack seismic data, respectively, and the superscript (*) 

is used to designate the complex conjugate operator. 

3.A.6.6.3 Estimation of Local PDFs and Sampling Strategy 

When the purpose of the inversion is to estimate elastic parameters only (e.g., PAI, SAI, 

and bulk density), the initial models of these parameters are drawn from local PDFs, one PDF 

per elastic parameter, that are calculated at each point using an ordinary Kriging estimator on the 

well log data (see Figure 3.A.6.2).  Similarly, if the objective of the inversion is to estimate a 

petrophysical property (and elastic parameters as by-products), the initial model of such a 

property is drawn from local PDFs that are kriged from petrophysical parameters derived from 

well-log data.  Perturbations of properties are performed directly in the petrophysical domain 

through a random walk in space and time.  Because the pre-stack stochastic inversion algorithm 

operates on elastic parameters, in the most general case a joint PDF is used to enforce a statistical 

link between the petrophysical and elastic properties.  Figure 3.A.6.4 illustrates an example of a 

joint PDF between petrophysical and elastic properties when the correlation coefficient between 

them is equal to -0.6.  Figure 3.A.6.4 also shows a top view and a cross-section of the same joint 

PDF. 
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3.A.6.6.4 Honoring Global Histograms and Well-Log Data 

In order to honor user-defined global property histograms, a transformation that preserves 

the rank of the data is used when performing the inversion.  In this transformation, the value 

associated with the q -quantile of the CDF to be transformed is made equal to the corresponding 

value of the q -quantile of the user-specified CDF.  Additionally, the inversion algorithm regards 

well-log data as hard points in model space.  The two sets of constraints are enforced on 

intermediate inversion results yielded by each of the VFSA iterations and after all locations in 

the model (time and space) have been visited by the random walk (see Figure 3.A.6.3). 

3.A.6.6.5 Non-Uniqueness and Assessment of Uncertainty 

The non-uniqueness of the inverse problem relates to the space of solutions (e.g., spatial 

distributions of reservoir properties) that equally honor the well-log and the pre-stack seismic 

data.  Non-uniqueness is reduced by incorporating additional a-priori information to the 

estimation problem.  That is, a variety of constraints (e.g., well logs, histograms) are 

incorporated to limit the number of plausible solutions to the inverse problem.  In addition to the 

above approach, the inversion algorithm described in this Section allows one to generate multiple 

equiprobable inversions to quantify the uncertainty of the inverted parameters. 

3.A.6.7 Validation and Testing of the Proposed Algorithm 

Various numerical experiments were performed using the 2D section and the 3D volume 

described below to validate the proposed joint stochastic inversion algorithm.  First, sensitivity 

analyses were carried out to assess the information content of pre-stack seismic data and spatial 

resolution of the stochastic inversion when operating in elastic-parameter domain (i.e., inversion 

results are elastic parameters).  Next, a sensitivity analysis of factors affecting the inversion was 

performed when the proposed inversion algorithm operated in porosity domain (i.e., inversion 



DE-FC26-00BC15305 

-146- 

result is porosity and elastic parameters are obtained as by-products).  Finally, examples of the 

estimation of porosity distributions are described for the synthetic 2D and 3D subsurface models. 

3.A.6.7.1 Description of a Cross-Section Model 

Figure 3.A.6.5 shows a 2D view of the simulated pre-stack seismic data across the center 

(Seismic Line 100) of the 3D subsurface reference model described above.  Panel (a) in the same 

Figure 3.A.6. shows both the well locations and the first (nearest) offset seismic trace, and panel 

(b) shows the last (farthest) offset seismic trace.  The cross-section consists of 71 CMP gathers 

(ten offsets per CMP gather) covering the seismic travel time interval from 0.72s to 1.42s.  Two 

hypothetical wells are located along this cross-section (see Table 3.A.6.1 for a description of 

well locations).  Figure 3.A.6.6 shows the histograms and CDFs of elastic parameters and 

porosity that were sampled from the assumed well-log data resampled at 2ms intervals.  Figure 

3.A.6.7 shows cross-plots of the elastic parameters and porosity.  Such histograms and cross-

plots are used to impose a global constraint on the inversion results and to generate the joint 

PDFs used by the inversion algorithm, respectively.  Unless otherwise specified, all of the 2D 

numerical experiments reported in this Section were performed using the cross section and 

histograms described above, and made use of the semivariogram parameters described in Table 

3.A.6.1.  For convenience, most of the inverted results are reported only in the two-way time 

window from 1.02 to 1.42s.  This time interval completely includes the oil-saturated sand. 

3.A.6.7.2 Information Content of Pre-Stack Seismic Data 

Figure 3.A.6.8 shows cross-sections along Seismic Line 100 (cross-section model 

described above) of numerically simulated seismic amplitude variations with source-receiver 

offset.  In principle, pre-stack seismic data embody considerably more sensitivity than post-stack 

seismic data to estimate petrophysical parameters from seismic amplitudes.  This is due to fact 
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that pre-stack seismic amplitudes are sensitive to PAI, SAI, and bulk density, whereas post-stack 

seismic data are only sensitive to PAI.  It is expected, of course, that such an enhanced sensitivity 

would translate into better resolving and appraisal properties to infer distributions of 

petrophysical parameters.  The plots shown in Figure 3.A.6.8 clearly indicate a measurable 

variation of seismic amplitude with an increase in source-receiver offset.  Post-stack seismic 

data, on the other hand, are obtained with the addition (or stacking) of these offsets, thereby 

improving signal-to-noise ratio but significantly reducing the number of degrees of freedom in 

the information content of SAI and bulk density.  Likewise, stacking implicitly does away with 

the low-frequency components of PAI and hence one can only work in the seismic travel time 

domain (the depth reference is irremediably lost). 

3.A.6.7.3 Spatial Resolution of Post-Stack Seismic Inversion 

Post-stack seismic data are often inverted to obtain acoustic impedances in seismic travel-

time domain.  Figure 3.A.6.9 shows cross sections along Seismic Line 100 of the post-stack 

inversion results.  Panel (a) shows the average value of inverted AI for ten independent 

inversions and panel (b) shows the collocated standard deviation of the inverted AI for these ten 

inversions.  Global correlation coefficients ( 2r  is used as a scale-independent measure of 

similarity between two variables, see 3.A.7.5.D. Appendix D) were calculated between inverted 

and actual values of PAI ( 2
PAIr  = 0.970).  The standard deviation of these inversions varies 

anywhere from 0 to 0.40.  Inverted PAIs are subsequently compared to pre-stack inversion 

results. 

3.A.6.7.4 Spatial Resolution of Pre-Stack Seismic Inversion 

A number of experiments were performed on the cross-section model described above to 

evaluate the resolution of pre-stack stochastic inversion when estimating of PAI, SAI, and bulk 
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density for 10 independent inversions.  All independent realizations yielded by the inversion 

entailed the same global pre-stack seismic data misfit, honored the well-log data (two wells), and 

honored the prescribed global property histograms.  Figure 3.A.6.10 shows a plot of the average 

similarity between the measured and inverted pre-stack seismic data as a function of CMP 

location computed at the first and final iterations of the inversions, respectively.  As emphasized 

earlier, each CMP consists of ten source-receiver offsets.  The plot shown in Figure 3.A.6.10 

indicates that the measured pre-stack seismic data have been properly honored at the well 

locations. 

Figures 3.A.6.11 and 3.A.6.12 show cross-sections along Seismic Line 100 of the 

inverted elastic parameters and of their corresponding collocated standard deviation.  Figure 

3.A.6.11 shows the average value of inverted PAI, SAI, and bulk density for ten independent 

inversions, and Figure 3.A.6.12 shows the collocated standard deviation of the inverted elastic 

parameters calculated from those ten inversions.  The cross-sections shown in Figure 3.A.6.11 

identify the background shale and the oil saturated sand.  Global correlation coefficients were 

calculated between inverted and actual values of elastic parameters ( 2
PAIr  = 0.964, 2

SAIr  = 0.991, 

and 2
b

rρ  = 0.984, respectively).  All of the inverted elastic parameters exhibited high global 

correlation coefficients.  Further analysis of these inversion results showed that the estimated 

elastic parameters within the sand exhibited more variability than the estimated elastic 

parameters within the shales (see Figure 3.A.6.12).  The estimated PAI within the oil-saturated 

sand exhibited the most variability as per standard deviation calculations, whereas bulk density 

exhibited the lowest variability.  Also notice that PAIs from post-stack seismic inversion exhibit 

a global correlation with the actual PAIs than the PAIs from pre-stack seismic inversion.  Also 
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the PAIs inverted from post-stack seismic data exhibit a smaller range of variability (standard 

deviation of ten inversions) than the PAIs obtained from the inversion of pre-stack seismic data. 

Varela et al. (2003) performed similar inversion experiments in velocity domain and 

reported a low correlation coefficient for the inverted compressional-wave velocity.  This low 

value was due to (a) the large boundary constraints used in the inversion, (b) small contrast in 

velocity between the oil saturated sand and background shale, and (c) the effect of a suboptimal 

seismic signal-to-noise ratio.  More than likely, the same factors are the likely responsible for the 

high variability of the inverted PAI obtained in this study.  Results obtained in impedance 

domain using the 2D section described above show that the global correlation coefficients 

between inverted and actual values of PAI, SAI, and bulk density are slightly better than those 

reported by Varela et al. (2003) in velocity domain for compressional- and shear-wave velocity 

and bulk density.  Additionally, short offsets are rendered more appropriate to accurately 

estimate PAI but not compressional-wave velocity.  In general, reliable estimates of PAI would 

be obtained for short seismic offsets whereas long seismic offsets would render reliable estimates 

of SAI and bulk density.  Simultaneous use of short and long seismic offsets also contributes to a 

more reliable estimation of the low-frequency components of PAI, SAI, and bulk density. 

3.A.6.7.5 Cross-Validation 

Experiments were performed on the cross-section model described above to evaluate the 

effect of the number of wells on the inverted spatial distributions of porosity (and elastic 

parameters as by-products).  The influence of the number of wells in the inversion is important 

because the initial models entered to the inversion are drawn from local PDFs which are in turn 

sampled from well logs.  Cases considered here include one well, two wells, and three wells.  

Ten independent inversions were performed for each of the cases described above.  All of the 
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inverted realizations entailed the same global pre-stack seismic data misfit, honored the well-log 

data, and honored the prescribed global property histograms. 

Table 3.A.6.3 summarizes results obtained with the inversion algorithm operating in 

porosity domain.  This table describes global correlation coefficients between actual porosity and 

average values of inverted porosity, and between actual elastic parameters and average values of 

inverted elastic parameters.  Average inverted values were calculated from the ten independent 

inversions; their corresponding global correlations are high, exhibit small differences among 

cases, and slightly increase as the number of wells increases.  For instance, global correlation 

coefficients for porosity are 2rφ  = 0.956, 2rφ  = 0.960, and 2rφ  = 0.963 for one, two, and three 

wells, respectively.  For a given case, individual results for each independent inversion exhibit 

more spatial variability and a lower global correlation coefficient than for the model averaged 

from the ten inversions.  Table 3.A.6.3 also describes the range of variability (standard deviation) 

of the inversions for each case.  The variability of the inverted distributions decreases slightly as 

the number of wells increases. 

Figures 3.A.6.13 and 3.A.6.14 show cross-sections of the inverted porosity and of the 

collocated standard deviations, respectively, for inversion exercises performed with the cases 

described in Table 3.A.6.3.  The cross-sections shown in Figure 3.A.6.13 correspond to the 

average value of inverted porosity when honoring hard data from one well, two wells, and three 

wells, respectively.  Figure 3.A.6.14 shows cross-sections of the collocated standard deviation 

for the same cases.  These latter cross-sections emphasize the fact that even though global 

correlation coefficients for inverted properties are high (as indicated by Table 3.A.6.3), the 

inverted distributions of porosity (average of ten independent inversions) constrained by the 

larger number of wells exhibit the most spatial variability. 
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Figure 3.A.6.15 shows a plot of the similarity between the actual and inverted 

distributions porosity as a function of CMP location computed at the first and final VFSA 

iterations of the inversions, respectively, for the case of two wells.  This plot indicates that 

porosity has been properly honored at the well locations and emphasizes the fact that the 

inversion of pre-stack seismic data has improved the estimation of porosity away from well 

locations.  Another important technical issue to consider is the rate of convergence of the 

inversion algorithm.  Figure 3.A.6.16 shows plots of the evolution of the data misfit function 

with iteration number for each case under study.  The same plot describes the relative 

contribution of the number of wells to the construction of the initial model input to the inversion.  

This result clearly indicates that the larger the number of wells used to construct the local field of 

PDFs, the higher the similarity (the lower the misfit) between the measured and simulated pre-

stack seismic data. 

3.A.6.7.6 Effect of Semivariogram Range 

Estimation and construction of horizontal semivariograms (x- and y-direction) is difficult 

because there are only a few hard points (i.e., wells) available (Pizarro and Lake, 1997; Isaaks 

and Srivastava, 1989).  Table 3.A.6.4 summarizes results obtained from the stochastic inversion 

of porosity as a function of the semivariogram range ( λ ).  As emphasized earlier, the 

semivariogram range conditions the interpolation of the initial spatial distribution of local PDFs 

from well-log data.  Initial models are sampled point-by-point (space-time) from such PDFs.  

Numerical experiments were performed on the 2D model described earlier using two wells (see 

Figure 3.A.6.5).  The original semivariogram used to construct the synthetic model exhibits a 

spatial correlation range equal to Tλ .  This range was assumed to be equal to the range described 

in Table 3.A.6.1.  Cases studied include: Tλ λ  equal to 0.5, 1.0, and 2.0.  For the vertical 
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semivariograms, wells provide sufficient spatial sampling to calculate the corresponding 

parameters.  The global variance for porosity was set equal to that of values calculated from the 

sampled well-log data.  Ten independent inversions were performed for each of the cases 

described above.  Inversion results obtained for all independent realizations entailed the same 

global pre-stack data misfit, honored the well-log data, and honored the prescribed global 

property histograms. 

In these exercises, porosity is the target petrophysical property while elastic parameters 

are obtained as by-products of the inversion.  Results described in Table 3.A.6.4 indicate that 

global correlation coefficients between actual porosity and average values of inverted porosity, 

and between actual elastic parameters and average values of inverted elastic parameters are 

relatively high and only slightly different among themselves.  Average inverted values were 

calculated from the ten independent inversions.  Individual inversions for a given case exhibit 

more spatial variability and a lower global correlation coefficient than for the corresponding 

spatial distributions averaged from the ten independent inversions.  Table 3.A.6.4 also shows the 

range of variability (standard deviation) of the ten independent inversions for each case.  The 

latter results entail almost the same variability as the cases described above and clearly indicate 

the positive contribution of pre-stack seismic data to the extrapolation of petrophysical variables 

away from wells. 

3.A.6.7.7 Description of a 3D Volume Model 

Figure 3.A.6.17 is a 3D visual rendering of the pre-stack seismic data numerically 

simulated in the neighborhood of the oil-saturated reservoir sand.  The same Figure 3.A.6. shows 

the geometry of the sand and the location of five hypothetical wells (see Table 3.A.6.1 for a 

description of well locations).  Data gathered from these wells is used by the inversion algorithm 
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to constrain the estimation of inter-well petrophysical and elastic properties.  The corresponding 

seismic volume consists of 81 by 81 CMP gathers covering the seismic travel time interval from 

1.10 to 1.42 seconds.  Due to computer memory limitations, only five offsets (No. 1, 3 5, 7, and 

9) per CMP gather were used in the inversion.  All of the 3D numerical experiments reported in 

this Section were performed using the synthetic 3D model described in Figure 3.A.6.17 and 

made use of the semivariogram parameters described in Table 3.A.6.1. 

3.A.6.7.8 Estimation of Porosity 

A number of experiments were performed on the 3D model described in Figure 3.A.6.17 

to assess the performance of the pre-stack stochastic inversion algorithm in the estimation of 

porosity (and PAI, SAI, and bulk density as by-products). As described earlier, initial model 

parameters are generated with standard geostatistical simulation while final inverted models 

honor the full gather of pre-stack seismic data, well logs, and prescribed histograms. 

3.A.6.7.9 Consistency in Data Space for Pre-Stack Seismic Data 

An assessment of the performance of the inversion was carried out in data space. Figure 

3.A.6.18 is a map of the average similarity between the measured and inverted pre-stack seismic 

data for each CMP gather computed at the first (Panel a) and final (Panel b) VFSA iterations of 

the inversion, respectively, when performing the inversion in porosity domain. The average 

similarity of seismic data was calculated CMP by CMP and included five offsets per CMP. Maps 

in Figure 3.A.6.18 indicate that initial models of elastic parameters poorly honor the pre-stack 

seismic data (overall average correlation of 0.338) whereas final models of elastic parameters 

properly honor the pre-stack seismic data (overall average correlation of 0.952). 



DE-FC26-00BC15305 

-154- 

3.A.6.7.10 Consistency in Model Space for Elastic Parameters 

An assessment of the inversion was performed in model space for PAI, SAI, and bulk 

density. The inversion is performed to estimate porosity and elastic parameters are obtained as 

by-products. Figure 3.A.6.19 is a map of average similarity between the actual and estimated 

PAI (Panel a), SAI (panel b), and bulk density (Panel c) at the final iteration of the inversion. 

The average similarity for each elastic parameter was calculated trace by trace. Maps in Figure 

3.A.6.19 indicate that estimated values of elastic parameters have been properly honored by the 

inversion. Average correlations of 0.892, 0.963, and 0.940 were calculated for PAI, SAI, and 

bulk density, respectively. 

3.A.6.7.11 Consistency in Model Space for Porosity 

An assessment of the inversion was also performed in model space for porosity. Figure 

3.A.6.20 is a map of average similarity between the actual and estimated distributions of porosity 

computed at the first (Panel a) and final (Panel b) VFSA iterations of the inversion, respectively, 

when performing the inversion in porosity domain. The average similarity of porosity was 

calculated trace by trace. Maps in Figure 3.A.6.20 indicate that initial porosity distributions 

exhibit an overall average correlation of 0.521 whereas the inverted porosity distributions exhibit 

an overall average correlation of 0.903. 

3.A.6.8 Dynamic Reservoir Characterization 

Dynamic reservoir behavior is a complex process as it is governed not only by the spatial 

distribution of rock properties (e.g., porosity, permeability, permeability anisotropy) but also by 

fluid properties, rock-fluid interactions, and production strategies.  The analysis presented in this 

section makes use of a porosity model designated as the reference case (case T), porosity models 

obtained with standard geostatistics (case G), and porosity models obtained with the proposed 
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inversion algorithm (case I).  Knowledge is assumed of fluid and rock-fluid interaction 

properties, production strategy, and porosity-permeability transformations.  The objective is to 

assess the impact of the underlying porosity model on the forecast of hydrocarbon production 

when all the remaining reservoir and fluid variables are assumed to be known in a precise 

manner. 

3.A.6.8.1 Reservoir Simulation Model 

The cross section model described in Figure 3.A.6.5 was used to numerically simulate a 

water-oil displacement with one injector and one producer well.  The reference case (case T), the 

models generated with standard geostatistical techniques which do not make use of seismic data 

(case G), and the models generated by the inversion algorithm which makes use of pre-stack 

seismic data (case I) were subject to the same enhanced recovery process over a period of 2557 

days.  In order to focus only on the effect of model construction on dynamic behavior the same 

fluid and rock properties, and production constraints were assumed for all cases considered in 

this section.  The only properties that changed from model to model were porosity and porosity-

derived permeability.  Based on standard practice, the permeability field was constructed using a 

simple porosity-permeability transformation (i.e., ( )log 12 0.5k φ= − ).  Table 3.A.6.5 

summarizes the specific fluid, rock, and production constraints enforced by the numerical 

simulation of the waterflood process. 

3.A.6.8.2 Evaluation of Dynamic Reservoir Behavior 

This section considers the evaluation of the effect of the spatial distributions of porosity 

on the time records of fluid production.  The evaluation is used for the appraisal of production 

reservoir uncertainty.  An error assessment over time (or global uncertainty, U) of a dynamic 

variable was calculated as the 2l -norm between the time records of the fluid production 
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associated with the reference case (case T) and those associated with each realization in a given 

case (case G and case I).  This appraisal was performed using equation (3.A.4.1) in Section 

3.A.4.  Individual errors were normalized against the overall maximum error and then box plots 

were constructed to appraise the results. 

Figures 3.A.6.21, 3.A.6.22, and 3.A.6.23 show box plots of the global uncertainty for oil 

recovery, average water saturation, and average reservoir pressure, respectively.  From these 

figures it is clear that the magnitude of the prediction error for case G (no use of seismic data) is 

larger than the magnitude of the prediction error for case I (use of the full gather of pre-stack 

seismic data) for all the time records considered in this study.  The same plots also suggest a 

bigger variability for case G than for case I.  Results shown in Figures 3.A.6.21 through 3.A.6.23 

represent global reservoir responses and clearly indicate that more accurate forecasts of dynamic 

reservoir behavior are calculated from reservoir models generated with the proposed inversion 

algorithm. 

3.A.6.9 Summary and Conclusions 

The inversion algorithm described in this Section estimates spatial distributions of inter-

well elastic parameters with a vertical resolution intermediate between that of seismic data and 

well logs. Likewise, estimation of inter-well petrophysical parameters (e.g. porosity) can be 

performed whenever a high degree of statistical correlation exists between elastic and 

petrophysical parameters. The inversion algorithm effectively extrapolates elastic parameters 

away from existing wells by honoring existing pre-stack 3D seismic data and global property 

histograms. This extrapolation procedure can be considered an extension of geostatistical 

inversion of post-stack seismic data in that geostatistical estimation concepts are used to honor 

well-log data and to enforce a prescribed degree of spatial correlation for the interpolated 
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parameters through the use of semivariograms. However, usage of pre-stack seismic data makes 

it necessary to adopt specialized data misfit norms in the inversion that can balance and properly 

synthesize the information content available from CMP gathers. Estimation of spatial 

distributions of three elastic parameters (PAI, SAI, and bulk density) also makes the inversion 

much more non-unique and unstable than the estimation of one single elastic parameter (PAI) 

from post-stack seismic data. Consequently, provisions are necessary to quantify the degree of 

uncertainty of the inverted property distributions. All of this makes the inversion extremely CPU 

intensive and hence limits its applicability to field data sets.  For instance, joint inversions 

performed on the 2D subsurface model take approximately twelve hours on a Pentium III 

processor with 2GHz of physical memory.  Parallelization of the inversion algorithm is a natural 

future step to increase computer efficiency. A significant task remains to advance an additional 

proof of concept with field data. 

Sensitivity analysis showed that an increase in the number of wells used to construct the 

model entered to the inversion caused the initial data misfit to decrease (the data similarity to 

increase) and the spatial variability of the inverted property distributions to increase. It was also 

found that knowledge of semivariogram model and associated parameters is important to 

generate the initial property distribution entered to the inversion. However, for the synthetic 

examples considered in this Section, the use of pre-stack seismic measurements substantially 

diminished the sensitivity of the inversion to the choice of semivariogram parameters and hence 

reliably guided the estimation of inter-well elastic and petrophysical parameters. 

Additional applications of the inversion algorithm described in this Section include the 

estimation of inter-well lithology groups (or facies) and of their corresponding petrophysical 

properties (e.g. facies-dependent porosity). 
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As emphasized in this Section, reliable extrapolation and interpolation of property 

distributions can only be performed with sufficient inter-well spacing and with a sufficient 

degree of statistical dependence among well-log measurements acquired from different wells. 

Optimally, well locations should be within the range of semivariograms to allow the estimation 

of inter-well property distributions with a vertical resolution higher than that of pre-stack seismic 

data. However, numerical experiments performed with synthetic models indicate that single-well 

extrapolation is also possible provided that the distance of the extrapolation is within the 

semivariogram range. In the latter case, the inversion algorithm described in this Section could 

be used to assess lateral extent and continuity of petrophysical units penetrated by the well. 

 

Table 3.A.6.1:  Summary of the geometrical and measurement properties used in the 
construction of the subsurface model considered in this Section. 

Characteristic Value 

Overall average 
compressional-wave 

velocity 
2.18 km/s 

Overall average shear-
wave velocity 0.54 km/s 

Overall average bulk 
density 2.65 g/cm3 

Porosity sand, φ( σφ , ) N(0.22, 0.06) 
Porosity shale, φ( σφ , ) N(0.09, 0.015) 

Semivariograms used for 
the population of porosity: 
Spherical (sill, zyx λλλ ,, ) 

sand: 
S(1, 915 m, 610 m, 30 m)  

shale: 
S(1, 1220 m, 825 m, 60 m) 

Cell location of wells in 2D 
section 

Well No.  1 (94, 1) 
Well No.  2 (120, 1) 

Cell location of wells in 3D 
volume 

Well No.  1 (87, 113) 
Well No.  2 (113, 113) 
Well No.  3 (87, 87) 
Well No.  4 (113, 87) 
Well No.  5 (100, 100) 
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Table 3.A.6.2: Description of the properties used to generate 3D pre-stack surface 
seismic data for the subsurface model described in Table 3.A.6.1. 

Property Value 

Seismic grid 200 inlines 
200 crosslines 

Separation between lines 23 m 
Separation between offsets 300 m 

Number of offsets per 
Common-mid-point (CMP) 10 

Seismic time range 0 – 1.5 s 
Time sampling interval 2 ms 

Seismic wavelet 35 Hz zero-phase Ricker 

Table 3.A.6.3: Global correlation coefficients (r2) between actual and average values of 
inverted properties (compressional acoustic impedance, PAI, shear 
acoustic impedance, SAI, bulk density, and porosity), and range of the 
standard deviation (σ ) calculated from ten independent inversions as a 
function of the number of wells.  Well-log data were used to constrain the 
inversion and to construct the initial spatial distribution of local PDFs. 

 

PAI, 
[km/s*g/cm3] 

SAI, 
[km/s*g/cm3] 

Bulk density, 
[g/cm3] 

Porosity, 
[fraction] Case 

(No. of 
Wells) 2r  

Range 
of σ  

2r  
Range 
of σ  

2r  
Range 
of σ  

2r  
Range 
of σ  

One well 0.960 0-0.50 0.986 0-0.27 0.983 0-0.17 0.956 0.043 
Two wells 0.967 0-0.47 0.988 0-0.24 0.985 0-0.14 0.960 0.041 

Three 
wells 0.969 0-0.40 0.989 0-0.20 0.987 0-0.14 0.963 0.037 
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Table 3.A.6.4: Global correlation coefficients (r2) between actual and average values of 
inverted properties (compressional acoustic impedance, PAI, shear 
acoustic impedance, SAI, bulk density, and porosity), and range of 
standard deviation (σ ) calculated from ten independent inversions as a 
function of various semivariogram ranges.  The semivariogram ranges 
are used to construct the initial spatial distribution of local PDFs;  Tλ  
designates the original range. 

PAI, 
[km/s*g/cm3] 

SAI, 
[km/s*g/cm3] 

Bulk density, 
[g/cm3] 

Porosity, 
[fraction] 

Case  
(range of 

spatial 
correlation) 

2r  
Range 
of σ  

2r  
Range 
of σ  

2r  
Range 
of σ  

2r  
Range 
of σ  

Tλ λ  = 0.5 0.967 0-0.47 0.988 0-0.22 0.985 0-0.14 0.959 0.037 

Tλ λ  = 1.0 0.967 0-0.47 0.988 0-0.24 0.985 0-0.14 0.960 0.041 

Tλ λ  = 2.0 0.967 0-0.41 0.988 0-0.22 0.985 0-0.13 0.960 0.034 
 

 

Table 3.A.6.5: Summary of fluid and petrophysical properties assumed in the 
construction of the numerical reservoir model considered in this Section. 

Properties Values and 
units 

water density 1.0 g/cm3 
oil density 0.85 g/cm3 

water viscosity 1.0 mPa-s 
oil viscosity 5.0 mPa-s 

water compressibility 4.6x10-4 MPa-1 

Fluid 

oil compressibility 2.9x10-3 MPa-1 
average Swi 0.24 
average Sor 0.27 
formation 

compressibility 2.5x10-4 MPa-1 

water endpoint 0.3 
oil endpoint 0.9 

z- to x-permeability 
ratio 0.1 

Reservoir 

depth to top of sand 1219 m 
injection pressure 13.8 MPa 

bottom-hole pressure 2.8 MPa Simulation 
production perforations entire sand 

interval 
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Figure 3.A.6.1: Graphical description of the synthetic 3D subsurface model used to validate the joint stochastic 

inversion algorithm developed in this Section.  The top sand is water saturated and the bottom 

sand is saturated with oil.  Refer to Tables 3.A.6.1 and 3.A.6.2 for a description of the associated 

elastic properties and seismic measurements, respectively. 
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Figure 3.A.6.2: Schematic representation of the estimation of interwell local probability density functions (PDF) 

from welllog data [after Grijalba et al. (2000) and Jensen et al. (2000)]. 
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Figure 3.A.6.3: Generalized flow diagram of the proposed joint stochastic inversion algorithm developed in this 

Section. 
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Figure 3.A.6.4: Example of a joint probability density function (PDF).  Panel (a) shows a theoretical joint 

probability density function between elastic and petrophysical parameters when the correlation 

coefficient between them is equal to -0.6.  Panel (b) is a top view of the joint PDF and panel (c) 

shows the PDF of the petrophysical property for a conditional value of elastic property. 
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Figure 3.A.6.5: Cross-section along the center (Seismic Line 100) of the 3D subsurface model shown in Figure 

3.A.6.1 used to perform the validation of the joint stochastic inversion algorithm.  Panels (a) and 

(b) show the first (nearest) and last (farthest) traces of pre-stack seismic gathers, respectively.  

Common-mid-point (CMP) gathers are separated by a distance of 23m.  Data are sampled in 

vertical travel time domain at a constant rate of 2ms.  Locations of two hypothetical wells are also 

displayed in this figure. 
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Figure 3.A.6.6: Histograms and cumulative distribution functions (CDF) of the elastic parameters (compressional-

wave acoustic impedance, PAI, shear-wave acoustic impedance, SAI, and bulk density) and 

porosity sampled from the two hypothetical wells shown in Figure 3.A.6.5. 
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Figure 3.A.6.7: Cross-plots describing the lithology-dependent relationship between elastic parameters 

(compressional-wave acoustic impedance, PAI, shear-wave acoustic impedance, SAI, and bulk 

density) and porosity. 
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Figure 3.A.6.8: Cross-sections along Seismic Line 100 of seismic amplitude variations with source-receiver offset.  

Offset No.  1 is the nearest and offset No.  10 is the farthest from the source.  The separation 

between offsets is 300 m. 



DE-FC26-00BC15305 

-168- 

Tw
o-

w
ay

 ti
m

e,
 s

r2 = 0.970

CDP No.65 135

1.02

1.42

km
/s*

g/
cm

3

4.0

6.0

CDP No.65 135

1.02

1.42

km
/s*

g/
cm

3

0.00

0.40

Tw
o-

w
ay

 ti
m

e,
 s

(a)

Average value of inverted PAI from 10 realizations

(b)

Standard deviation of inverted PAI from 10 realizations

CMP No.

CMP No.

 
Figure 3.A.6.9: Results obtained from the inversion of post-stack seismic data.  Panel (a) shows a cross-section of 

the average value of inverted acoustic impedance (PAI) for ten independent inversions.  Panel (b) 

shows cross-sections of the corresponding collocated standard deviation of the inverted acoustic 

impedance calculated from ten independent inversions.  The global correlation coefficient (r2) is 

calculated between the average model of inverted acoustic impedance and the actual model of 

acoustic impedance. 
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Figure 3.A.6.10: Plots of the average similarity between measured and simulated pre-stack seismic data as a 

function of common-mid-point (CMP) location calculated at the first and final iterations of the 

inversion.  Average similarity is computed for each pre-stack gather in the time interval from 1.02 

to 1.42s.  Equation 3.A.6.1 quantifies the similarity of pre-stack seismic data used to construct 

these plots. 
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Figure 3.A.6.11: Results obtained with the proposed stochastic inversion algorithm operating in elastic-parameter 

domain.  Cross-sections of the average value of inverted compressional-wave impedance (PAI), 

shear-wave impedance (SAI), and bulk density, respectively, calculated from ten independent 

inversions.  Global correlation coefficients (r2) are calculated between the average models of 

inverted elastic parameters and the actual models of elastic parameters. 
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Figure 3.A.6.12: Results obtained with the proposed stochastic inversion algorithm operating in elastic-parameter 

domain.  Cross-sections of the collocated standard deviation of inverted compressional-wave 

impedance (PAI), shear-wave impedance (SAI), and bulk density, respectively, calculated from 

ten independent inversions. 
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Figure 3.A.6.13: Cross-validation results.  Cross-sections of the average value of inverted porosity calculated from 

ten independent inversions for the cases of one, two, and three wells, respectively, used to 

constrain the inversion algorithm.  Global correlation coefficients (r2) are calculated between the 

average model of inverted porosity and the actual porosity model. 
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Figure 3.A.6.14: Cross-validation results.  Cross-sections of the collocated standard deviation of inverted porosity 

calculated from ten independent inversions for the cases of one, two, and three wells, respectively, 

used to constrain the inversion algorithm. 
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Figure 3.A.6.15: Consistency in model space.  Plot of the average similarity between actual and inverted porosity as 

a function of common-mid-point (CMP) location calculated at the first and final iterations of the 

inversion.  Average similarity is computed for each pre-stack gather in the time interval from 1.02 

to 1.42s. 
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Figure 3.A.6.16: Negative value of data misfit or similarity function (see Equation 3.A.6.1) as a function of both 

iteration number and number of wells used to constrain the stochastic inversion. 
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Figure 3.A.6.17: Three-dimensional volume in the neighborhood of the oil saturated sand extracted from the 3D 

subsurface model shown in Figure 3.A.6.1 and used to perform the validation of the stochastic 

inversion algorithm.  Crosslines and inlines are separated by a distance of 23 m.  Data are sampled 

in seismic travel time at a constant rate of 2ms.  Locations of five hypothetical wells are also 

displayed in this figure. 
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Figure 3.A.6.18: Consistency in data space.  Average similarity between measured and simulated pre-stack seismic 

data calculated at the first (Panel a) and final (Panel b) iterations of the inversion, respectively.  

Average similarity is computed for each pre-stack gather in the time interval from 1.10 to 1.42s.  

One common-mid-point (CMP) gather consist of five offsets. 
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Figure 3.A.6.19: Consistency in model space for elastic parameters.  Average similarity between actual and 

inverted PAI (Panel a), SAI (Panel b), and bulk density (Panel c) at the final iteration of the 

inversion.  Average similarity is computed for each elastic parameter trace in the time interval 

from 1.10 to 1.42s. 
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Figure 3.A.6.20: Consistency in model space for porosity.  Average similarity between actual and inverted porosity 

at the first (Panel a) and final (Panel b) iterations of the inversion, respectively.  Average similarity 

is computed for each vertical column of porosity in the time interval from 1.10 to 1.42s. 
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Figure 3.A.6.21 Box plot representation of the global least-squares misfit (U) calculated for the porosity 

distributions rendered by standard geostatistics (case G) and the proposed inversion algorithm 

(case I).  The global misfit or uncertainty is computed with the formula 

( ) ( ) ( )[ ]∫
=

=

−=
ttt

t
caseTcaseX

t

dttdtd
t

tU
0

21
, where d(t) is cumulative oil recovery and tt is total time 

of simulation. 
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Figure 3.A.6.22 Box plot representation of the global least-squares misfit (U) calculated for the porosity 

distributions rendered by standard geostatistics (case G) and the proposed inversion algorithm 

(case I).  The global misfit or uncertainty is computed with the formula 

( ) ( ) ( )[ ]∫
=

=

−=
ttt

t
caseTcaseX

t

dttdtd
t

tU
0

21
, where d(t) is average water saturation and tt is total time 

of simulation. 
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Figure 3.A.6.23 Box plot representation of the global least-squares misfit (U) calculated for the porosity 

distributions rendered by standard geostatistics (case G) and the proposed inversion algorithm 

(case I).  The global misfit or uncertainty is computed with the formula 

( ) ( ) ( )[ ]∫
=

=

−=
ttt

t
caseTcaseX

t

dttdtd
t

tU
0

21
, where d(t) is average reservoir pressure and tt is total 

time of simulation. 
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3.A.6.10  Nomenclature 

1D = One-dimension 
2D = Two-dimensions 
3D = Three-dimensions 
4D = Four-dimensions 

a, b = Vertical slowness [t/L] 
AI = Acoustic impedance [mL/L3/t] 

AVO = Amplitude versus offset 
c = Fluid compressibility [L2/mL/t2] 
C = Kernel function 

CDP = Common-depth-point 
CMP = Common-mid-point 

d = Depth [L] or data function 
E = Young’s modulus [mL/t2/L2] or Energy function 
F = Flatness 
f = Frequency [1/t] 

Hz = Hertz [1/t] 
k = Permeability [L2] 
K = Bulk modulus [mL/t2/L2] 
L = Length [L] 
m = Mass [m] or model function 
m = Model parameter vector 
n = Annealing time or iteration number 
N = Normal statistical distribution or number of 

NMO = Normal moveout 
p = Pressure or stress [mL/t2/L2] 
P = Compressional wave 

PAI = P-acoustic impedance [mL/L3/t] 
PDF = Probability density function 

PP = Incident P-wave and reflected P-wave 
q = Temperature decay rate 
r = Reflection coefficient function 
R = Roughness 
s = Seismogram function 
S = Saturation, fraction, seismic data, or shear wave 

SAI = S-acoustic impedance [mL/L3/t] 
t = Time [t] or two-way seismic travel time 

T = Temperature parameter 
u = Displacement vector 
U = Global least-squares misfit 
v = Velocity [L/t] 
V = Volume [L3] 
w = Wavelet function 

W = Weighting matrix 
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3.A.7:  SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

3.A.7.1 Summary 

The central objective of this project was to develop a novel, efficient, accurate, and 

robust algorithm to quantitatively integrate 3D pre-stack seismic data, well logs, and geological 

information in the construction of hydrocarbon reservoir models.  This novel algorithm was 

based on global inversion techniques and stochastic simulation.  Emphasis was placed on the use 

of the full gather of 3D pre-stack seismic amplitude data.  The algorithms developed in this 

project are intended to efficiently combine (a) the dense lateral coverage and amplitude 

variations of pre-stack seismic measurements and (b) the high vertical resolution of well-log 

data. 

Sensitivity analyses based on global inversion were performed to quantify the benefits, 

limitations, and operating conditions under which the use of 3D seismic data (i.e., post-stack and 

pseudo-angle stack seismic data) positively contributed to reducing uncertainty in both the 

estimation of reservoir properties and the forecast of hydrocarbon production.  Examples of such 

an analysis included reservoir monitoring, that is, the quantitative use of time-lapse 3D seismic 

data to detect changes in elastic and petrophysical properties caused by dynamic reservoir 

behavior.  Additional examples included reservoir modeling, that is, the quantitative use of pre-

production 3D seismic data to construct reservoir simulation models and to appraise their static 

and dynamic behavior.  These studies also emphasized the enhanced sensitivity to the spatial 

distribution of petrophysical properties available in pre-stack seismic data (i.e., pseudo-angle 

stacks) over that of post-stack seismic data. 

Based on the latter results, an evaluation was performed of different factors that 

conditioned the estimation of elastic parameters via global inversion of pre-stack seismic data.  



DE-FC26-00BC15305 

-184- 

Such factors included: the global optimization technique, the objective function, the sampling 

strategy, and measures of smoothness.  Making use of the most efficient and robust methods and 

parameters, a novel stochastic inversion algorithm was developed based on simulated annealing 

and geostatistical estimation concepts.  This algorithm was designed to estimate elastic 

parameters and their associated uncertainty in the presence of noisy and sparse seismic 

measurements. 

Finally, using the above results, a stochastic inversion algorithm was developed for the 

estimation of inter-well petrophysical properties (and elastic parameters as by-products) that 

honored the full gather of pre-stack seismic data, well logs, property histograms, and geological 

information.  A stochastic simulation procedure was used to extrapolate petrophysical variables 

laterally away from wells subject to honoring the existing 3D pre-stack seismic data in a direct 

and accurate manner.  Joint PDFs were constructed to establish a non-deterministic (statistical) 

link between petrophysical and elastic parameters.  A global inversion technique was used to 

update the initial reservoir model of petrophysical variables (generated with stochastic 

simulations) in response to a discrepancy between measured and synthetic 3D pre-stack seismic 

data.  Such a strategy naturally lent itself to an efficient computer algorithm to assess uncertainty 

of the constructed reservoir models.  Validation and testing of the inversion algorithm was 

performed on realistic 2D and 3D synthetic subsurface models to estimate elastic parameters and 

porosity.  Limitations of the quantitative use of seismic data arise in cases of low-porosity 

formations, low fluid density contrast, and lack of correlation between petrophysical and elastic 

parameters.  Static and dynamic comparisons were performed against models generated with 

standard geostatistical techniques where was found that reservoirs models constructed with the 

use of seismic data provided closer results to those of the reference case.  This exercise also 
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included the assessment of the uncertainty of the estimated inter-well distribution of elastic and 

petrophysical parameters in the presence of noisy measurements. 

3.A.7.2 Conclusions 

The following is a list of the conclusions that stem from the research work accomplished 

by this project: 

Quantitative use of 3D seismic data improved the detection of spatial variations of 

petrophysical properties as a result of dynamic reservoir behavior.  It also improved the 

construction of static models and the forecast of dynamic behavior.  In reservoir monitoring, 

inversion of time-lapse seismic data shows that even in a worst-case scenario, such as a 

waterflood oil-displacement process (small density contrast between water and oil), the fluid 

front, elastic properties, and petrophysical properties could be inferred from seismic amplitude 

variations.  Estimations performed with pre-stack seismic data (i.e., pseudo-angle stacks) 

provided more accurate and reliable spatial distributions of elastic and petrophysical parameters 

than those performed with post-stack seismic data.  In the construction of reservoir models, it 

was found that property distributions that made quantitative use of seismic data in their 

construction exhibited better similarity in model (e.g., porosity) and data (e.g., seismic data, fluid 

production data) spaces compared to reservoir models constructed without making use of seismic 

data (e.g., standard geostatistical models).  Similarly, dynamic evaluation of models constructed 

with the quantitative use of 3D seismic data entailed a reduction in the total uncertainty of 

production forecast with respect to models constructed using only well-log data. 

However, it was also found that practical limitations exist to the quantitative use of 

seismic data in reservoir characterization.  Both acquisition technology and underlying seismic 

wavelet limit the seismic vertical resolution to approximately 5-25 m.  Lateral resolution depends 
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mainly on bin spacing and Fresnel zonation; it often varies between 20 and 100 m.  Direct 

estimation of petrophysical properties from seismic measurements is condition by the statistical 

degree of correlation between elastic and petrophysical parameter and by their geometrical 

support (length of resolution and depth of penetration).  Low signal-to-noise ratios, processing 

errors, and lack of correlation between petrophysical and elastic parameters can significantly 

impair the quantitative use of seismic measurements for any of the algorithmic developments 

outlined in this project.  Moreover, low porosity and highly laminated formations can cause the 

seismic data to lose sensitivity to fluid boundaries, especially if the density contrast between 

fluids is small. 

Despite the above limitations, sensitivity studies, cross-validation, and testing of the 

algorithms developed in this project show that, under practical assumptions, the quantitative use 

of seismic data, especially the full pre-stack gather, allows the construction of more accurate 

reservoir models than traditional approaches (e.g., standard geostatistical techniques) that do not 

make explicit use of seismic measurements.  The vertical resolution of petrophysical and elastic 

parameters rendered by the joint stochastic inversion of 3D pre-stack seismic data and well logs 

are intermediate between that of the seismic and well-log data.  Additionally, the stochastic 

formulation used in the construction of the inversion algorithms provides a natural way to assess 

uncertainty in the estimated petrophysical and elastic properties and, subsequently, on the 

corresponding forecast of hydrocarbon production. 

3.A.7.3 Recommendations for Further Research 

The development of the algorithms proposed in this project is based on various operating 

assumptions, including second-order stationarity and ergodicity of the unknown spatial 

distributions, and clearly good measurement quality (high signal-to-noise ratios).  Moreover, the 
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algorithms assume a high degree of statistical correlation between petrophysical and elastic 

parameters, and local (trace-by-trace) 1D model of elastic parameters. 

Dynamic reservoir behavior is complex because it depends not only on the accurate 

description of rock properties and of their lateral continuity but also on accurate description of 

fluid and rock-fluid properties.  Some of these properties will not have a direct relationship with 

elastic parameters and therefore cannot be inferred from seismic measurements.  Use of dynamic 

data, such as time records of fluid production and well-test measurements, in conjunction with 

the algorithms developed in this project can provide a way to estimate such flow parameters, 

including permeability, permeability anisotropy, relative permeability, and capillary pressure. 

An extended application of the latter recommendation involves the use of time-lapse pre-

stack seismic data, not only to condition initial reservoir models (as outlined in this project) but 

also to estimate dynamic reservoir changes as a result of hydrocarbon production.  The 

sensitivity of time-lapse seismic data to dynamic reservoir changes can also condition estimates 

of absolute permeability and permeability anisotropy. 

The assumption of a locally 1D medium of elastic parameters in the numerical simulation 

of the pre-stack seismic data should be generalized.  This will take into account more realistic 

wave propagation phenomena in complex 2D and 3D media.  Such an approach should also 

allow for the simulation of laterally varying spatial distributions of elastic parameters within the 

length of a single common-mid-point gather and, therefore, will more faithfully reproduce actual 

wave propagation phenomena. 

Computer implementation of the proposed algorithms was designed as efficiently as 

possible.  However, the implemented global optimization techniques remain CPU intensive.  
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Computer parallelization, when appropriate, is an option to improve efficiency of global 

inversion techniques. 

Finally, it is strongly suggested that the novel inversion algorithms proposed and 

developed in this project be applied to a field data set to further evaluate the feasibility and 

practical limitations of sparse, noisy, and imperfect seismic and well-log measurements.  

3.A.7.5.A  Appendix A:  Rock Physics Models 

3.A.7.5.A.1 Empirical Models 

Most empirical models are based on experimental data and provide a direct calculation of 

pv  and/or sv  from knowledge of several rock parameters.  The literature provides ample 

references for a large number of such experimental models.  This appendix concentrates on the 

relationships introduced by Hamilton (1979) and Castagna et al. (1985). 

3.A.7.5.A.1.1 Hamilton’s (1979) Model 

The main objective of Hamilton’s work was to establish a generalized relationship 

between pv , sv , p sv v , and Poisson’s ratio as a function of depth and for different classes of 

terrigenous sediments and sands.  The main results of his work are relationships among the 

elastic variables as a function of depth for each one of the major rock types.  Equations 

(3.A.7.5.A.1), (3.A.7.5.A.2), and (3.A.7.5.A.3), for instance, describe the compressional- and 

shear-wave velocities of terrigenous sediments (e.g., silt-clays, turbidites, shales).  These 

equations were calculated using rock samples collected from different parts of the world: 

32 257.0741.0304.1511.1 dddv p +−+= ,    (3.A.7.5.A.1) 

where pv  is given in [km/s] and d  is given in [km], 
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







<<+
<<+
<<+

=
15012058.0322
1203628.1237
36065.4116

dd
dd
dd

vs ,    (3.A.7.5.A.2) 

where sv  is given in [m/s] and d  is given in [m].  Hamilton (1979) also obtained relationships 

between compressional- and shear-wave velocities. These relationships are given by 













>−

<<+−

<<−

<<−

=

150.2962.078.0

150.2650.147.0136.1991.0

650.1555.1485.1137.1

555.1512.1757.5884.3

2

pp

ppp

pp

pp

s

vv

vvv

vv

vv

v ,    (3.A.7.5.A.3) 

where pv  and sv  are given in [km/s]. 

Equations (3.A.7.5.A.4) and (3.A.7.5.A.5) describe the compressional- and shear-wave 

velocity functions applicable to sands.  The associated functional relationships with depth are 

given by 

015.01806dv p = ,    (3.A.7.5.A.4) 

and 

28.0128dvs = ,    (3.A.7.5.A.5) 

where pv  and sv  are given in [m/s] and d  is given in [m]. 

3.A.7.5.A.1.2. Castagna et al.’s (1985) Model 

Castagna et al. (1985) report relationships between compressional- and shear-wave 

velocities applicable to siliciclastic rocks.  Measurements performed on a variety of water-

saturated mudrocks suggest that pv  and sv  are controlled mainly by mineralogy.  Making use of 

in-situ sonic and seismic data, the authors find the following relationship between pv  and sv : 
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36.116.1 += sp vv ,    (3.A.7.5.A.6) 

where velocities are given in [km/s]. 

For sandstones, conventional log analysis was carried out on rocks sampled from the Frio 

Formation, to determine porosity (φ ) and clay content ( clV ) from gamma ray, neutron, and 

density logs.  The resulting relationships for this formation are as follows: 

clp Vv 21.242.981.5 −−= φ ,    (3.A.7.5.A.7) 

and 

cls Vv 04.207.789.3 −−= φ     (3.A.7.5.A.8) 

 
where velocities are given in [km/s], and φ  and clV  are given as dimensionless fractions.  The 

correlation coefficient reported was 0.96 for both expressions.  These results are similar to those 

reported by Tosaya and Nur (1982).  It is possible to determine the values of pv  and sv  from a 

zero porosity clay ( 1=clV ) and clean sand ( 0=clV ) at a given value of porosity.  It is also 

possible to establish sp vv  relations manipulating equations (3.A.7.5.A.7) and (3.A.7.5.A.8).  

These relationships show that as porosity and clay volume increase, the sp vv also increases.  

Similar results were also found by Han et al. (1986). 

3.A.7.5.A.2 Theoretical Models 

Different theories have been put forth to describe the mechanical behavior of isotropic 

and homogenous rocks.  In general terms, these theories fall in two categories: the first category 

considers pore geometry while the second one is based on global properties.  The models 
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considered in this appendix fall into the second category since they provide more practical results 

(Castagna and Backus, 1993). 
3.A.7.5.A.2.1 Biot and Gassmann 

Gassmann’s theory rests on the assumption that relative motion between the fluid and the 

rock’s skeleton has no influence on seismic wave propagation in fluid saturated rocks 

(Gassmann, 1951).  This assumption is strictly valid at only low frequencies.  Relative motion 

between the fluid and the rocks’ skeleton causes energy losses because of the viscosity of the 

fluid.  Biot-Gassmann’s theory does not provide a way to evaluate the attenuation effect as a 

result of the relative motion between the fluid and the rock’s skeleton (White, 1983).  However, 

Biot’s theory does cover the complete frequency range (Biot, 1956).  Geertsma (1961) also 

developed equations valid for the complete frequency range based on Biot’s (1956) work.  

Geertsma’s results are summarized by the equations 
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
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42  (3.A.7.5.A.9) 

and 

2 b
s

f
b

v µ
φρ

ρ
κ

 
 
 =  

  −    

,  (3.A.7.5.A.10) 

where pv  is compressional-wave velocity, sv  is shear-wave velocity, bK  is bulk modulus, bµ  is 

bulk shear (rigidity) modulus, sK  is rock’s dry bulk modulus, fK  is fluid modulus, bρ  is bulk 

density, φ  is porosity, and κ is the mass coupling factor which varies from one (no fluid-solid 
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coupling) to infinity (perfect fluid-solid coupling).  For the case of perfect coupling, these 

equations reduce to the zero-frequency case and the velocities become frequency independent. 

3.A.7.5.A.2.2 Duffy and Mindlin 

Duffy and Mindlin (1957) derived elastic constants assuming a face-centered cubic array 

of identical spheres.  The main results of this model are summarized by the equations 

b
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21
3
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,  (3.A.7.5.A.11) 

and 

b
s

CC
v

ρ2
12112 +

= ,  (3.A.7.5.A.12) 

where the subscripted C  variables are given by 

( )

1
32

11 22

34 3
2 8 1

eE pC η
η η

 −  =  − −  

,  (3.A.7.5.A.13) 

and 

( ) ( )

1
32

12 22

3
2 2 8 1

eE pC η
η η

 
 =  − −   .  (3.A.7.5.A.14) 

Equations (3.A.7.5.A.15), (3.A.7.5.A.16), and (3.A.7.5.A.17) below summarize the basic 

definitions of the mechanical parameters used in the Duffy and Mindlin model.  Poisson’s 

ratio,η , can be written as 
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( )bb

bb

K
K

µ
µ

η
+

−
=

32
23

,  (3.A.7.5.A.15) 

where bK  is the bulk modulus, and bµ  is the shear (rigidity) modulus.  The Young’s modulus, 

E , is given by 

( )bb

bb

K
K

E
µ

µ
+

=
3
9

,  (3.A.7.5.A.16) 

with 
e overburden porep p p= − ,  (3.A.7.5.A.17) 

where p  is pressure, and the subscript ‘e’ stands for effective.   

3.A.7.5.B.  Appendix B:  Additional Relationships for Elastic Properties 

The bulk density ( bρ ) becomes a simple linear weighted average of the pure component 

density ( iρ ) with weights given by the volume fraction of each component ( iα ), namely, 

∑
=

=
N

i
iib

1

ραρ ,    (3.A.7.5.B.1) 

where i  designates the component index and N  is the total number of components. In the case 

of a system with two lithologies (i.e., sand and shale) and two fluids (i.e., oil and water), 

equation (3.A.7.5.B.1) becomes 

( ) ( ) ( )1 1b sh sh sh ss w w w oV V S Sρ ρ φ ρ φ ρ φ ρ = + − − + + −  ,    (3.A.7.5.B.2) 

where φ  is porosity, shV  is shale volume, wS  is water saturation, and ρ  is density. Subscripts 

“sh”, “ss”, “w”, and “o” stand for shale, sand, water and oil, respectively. 
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The bulk modulus ( bk ) is defined with an empirical relation among the rock’s dry bulk 

modulus ( sk ), and porosity (φ ), given by Geertsma and Smit (1961), namely, 

( )φ501
1

+
=

s

b

K
K

.    (3.A.7.5.B.3) 

Hamilton (1971; 1982) also established empirical relationships between matrix bulk 

modulus, rock’s dry bulk modulus, and porosity. A simple formula applicable to clastic 

sediments is given by 
φ25.410−=

s

b

K
K

.    (3.A.7.5.B.4) 

If porep∆ is the change in pore pressure, then the change in water volume is given by 

wporew KpVS /∆− , where wK  is water bulk modulus (inverse of water compressibility), and the 

change in oil volume is given by oporeo KpVS /∆− . The total change in volume is the sum of the 

partial volume changes and is equal to fpore KpV /∆− . Consequently, the fluid bulk modulus 

( fK ) is the harmonic average of each of the elemental component values weighted by their 

respective volume fraction, i.e., 

( )∑
=

=
N

i if

i

f K
S

K 1

1 ,    (3.A.7.5.B.5) 

or 

o

o

w

w

f K
S

K
S

K
+=

1 .    (3.A.7.5.B.6) 

where iS  is the saturation of the i -th fluid and N  is the total number of fluid components. 
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A central assumption made when estimating elastic parameters of rocks is that the 

interstitial fluid does not interact with the matrix. This assumption causes the shear modulus 

( bµ ) of the fluid-saturated rock to be equivalent to that of the dry rock ( sµ ), i.e., 

sb µµ = .    (3.A.7.5.B.7)
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3.A.7.5.C.  Appendix C:  Seismic Wave Propagation Fundamentals for Simulating Pre-Stack 

Seismograms 

3.A.7.5.C.1 Preliminaries 

Synthetic seismograms in laterally homogeneous (1D) elastic earth models are generally 

computed by reflectivity method.  The method is described in detail in the text book by Kennett 

(1983).  Here the wave equations and plane wave reflection coefficients that are fundamental to 

the development of a reflectivity type algorithm are summarized.  Among the theories and 

methods available to describe the wave propagation and synthesis of seismograms, the 

reflectivity method belongs to the category of wavenumber decomposition (Fuchs and Muller, 

1971; Kennett, 1983).  The name comes from the fact that the function that is integrated is the 

wavenumber-dependent reflection coefficients, or reflectivity coefficients, of a layered medium. 

The wave equation presented in Section 3.A.2 assumes a homogenous, isotropic, and 

elastic medium.  When modeling the subsurface as a stack of horizontally homogenous layers, 

inside each layer the equation of motion takes a relatively simple form. It is only necessary to 

match boundary conditions at the vertical interfaces between layers. Neither body forces due to 

gravity nor seismic sources are included in equation (3.A.2.2) introduced in Section 3.A.2. It is 

assumed that gravity determines (via self-compression) the constant values of the elastic 

parameters and that seismic sources are included through known contributions to displacement 

vector, u . 

For the case of reflection and transmission of plane waves at a planar interface, using 

Cartesian coordinates ( zyx ,, ), the interfaces are by convenience located at constant values of z  

and are assumed independent of the y  coordinate. The relationship between the derivative of the 

displacement (u ) and potentials ( Φ  and Ψ ) is given by 

zx Ψ−Φ=xu  , xz Ψ+Φ=zu .    (3.A.7.5.C.1) 
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Wave equations for the scalar potentials Φ  and Ψ  are provided by equations (3.A.2.3b) 

and (3.A.2.4b) in Section 3.A.2, respectively, and yu is given by, 



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

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


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


=∇ 2
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2

tb

b y
y

u
u

µ
ρ

.    (3.A.7.5.C.2) 

Here, 22222 yx ∂∂+∂∂=∇  is the Laplace operator in two dimensions. Equations 

(3.A.2.3b), (3.A.2.3b), and (3.A.7.5.C.2) imply decoupled propagation of compressional- and 

shear-waves within the layers (P- and S-waves, respectively). 

The boundary conditions require continuity of the stress (traction) and displacement 

vectors across material interfaces in solid media. At a free surface, the stress components vanish, 

and the displacements are unspecified. The stress components, normal ( zzp ) and tangential 

( zyzx pp , ) stresses, are given by 

( ) ( )zz,uu µλ 2+⋅∇=zzp , ( )zx,xz, uu += µzxp , ( )zy,uµ=zyp .    (3.A.7.5.C.3) 

By making use of equation (3.A.7.5.C.1), the first three boundary conditions require continuity 

of the following quantities 

( )xzzztt
pv

Ψ+Φ+Φ µλ 22 , 2

12 2xz zz tt
sv

µ
 

Φ − Ψ + Ψ 
 

, ( )µ y,zu ,    (3.A.7.5.C.4) 

at all interfaces. On internal material interfaces, it is required that displacement be continuous, 

that is, 

x zΦ − Ψ , z xΦ + Ψ , yu     (C.5) 

The continuity of the quantities in equations (3.A.7.5.C.4) and (3.A.7.5.C.5) at interfaces 

implies that there is interaction between the P-waves derived from Φ  and the S-waves derived 
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from Ψ (also called SV). S-waves represented by yu  (also called SH) are polarized horizontally 

and propagate independently. 

3.A.7.5.C.2 Reflection and Transmissions at a Planar Interface 

First consider the case of one planar interface located at 0z = , with homogenous elastic 

properties above (identified with the subscript 1) and below (identified with the subscript 2). The 

coefficients of transmission and reflection of plane harmonic waves at this interface are essential 

for the treatment of a layered medium. Two cases are important to study: downgoing incident 

waves (propagation takes place in the upper medium) and upgoing incident waves (propagation 

takes place in the lower medium). 

For the first case (downgoing incidence wave), if the incident wave is a P wave, the 

corresponding secondary waves originating at the interface are P and SV. The following 

equations describe the corresponding displacement potential in each medium: 

( )

( )

1

1

1

,

j t kx l z

j t kx l zd
pp

e incident P wave

R e reflected P wave

ω

ω

− −

− +

Φ =

+
  (3.A.7.5.C.6a) 

( )'
2

1
j t kx l zd

psR e reflected SV waveω − −
Ψ = ,  (3.A.7.5.C.6b) 

( )2
2

j t kx l zd
ppT e transmitted P waveω − −Φ = ,  (3.A.7.5.C.6c) 

and 

( )'
2

1
j t kx l zd

psT e transmitted SV waveω − −
Ψ = ,  (3.A.7.5.C.6d) 

where j  is the 1− , ω  is angular frequency, t  is time, k  is horizontal wavenumber, l  and 'l  

are the vertical wave numbers for P and S waves, respectively, the superscript d  designates 

downgoing incident wave, and R  and T are reflection and transmission coefficients, 
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respectively. The incident P wave is assumed to exhibit a unity potential amplitude. Therefore, 

the amplitudes of the secondary displacements are identical to the reflection and transmission 

coefficients. The expressions in equation (3.A.7.5.C.6) describe plane-waves and satisfy 

equations (3.A.2.3b), (3.A.2.4b), and (3.A.7.5.C.2). 

In equation (3.A.7.5.C.2), all waves travel with the same horizontal wavenumber ( k ) and 

fulfill Snell’s law. The relation between k  and the angle of incidence, θ , is given by 

1

sin
p

k
v
ω θ= .    (3.A.7.5.C.7) 

On the other hand, the vertical wavenumbers 1,2l  and '
1,2l  are given by 

1/ 2
2

2
1,2 2

1,2p

l k
v
ω 

= −  
 

,  (3.A.7.5.C.8a) 

and 

1/ 2
2

' 2
1,2 2

1,2s

l k
v
ω 

= −  
 

,  (3.A.7.5.C.8b) 

respectively. Boundary conditions at 0z = , for the horizontal displacement xu , for instance, are 

given by 1, 1, 2, 2,x z x zΦ − Ψ = Φ − Ψ . Thus, using matrix notation, the reflection and transmission 

coefficients (Aki and Richards, 2002) are given by 

Ax b= ,  (3.A.7.5.C.9a) 

where 
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' '
1 2

1 2
2 2 ' 2 2 '

1 1 1 1 2 2 2 2
2 2 2 2

1 1 1 1 2 2 2 2

2 2 2 2
2 2 2 2

k l k l
l k l k
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k kl k kl

kl k kl k
ρ ω µ µ µ ρ ω µ

µ ρ ω µ µ µ ρ ω

 − − −
 

− =  − − − −
  − − 

,  (3.A.7.5.C.9b) 
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 
 
 =  
  
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,  (3.A.7.5.C.9c) 

and 

2 2
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1 1
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b
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kl
µ ρ ω

µ

 
 
 =
 −
 
 

.  (3.A.7.5.C.9d) 

If the wavenumber is replaced by slowness, s , given by  

horizontal slowness:  
1

sin

p

ks
v

θ
ω

= = ,  (3.A.7.5.C.10a) 

and  

vertical slowness:  
( )

( )

1/ 21,2 2 2
1,2 1,2

'
1/ 21,2 2 2

1,2 1,2 ,

p

s

l
a v s

l
b v s

ω

ω

−

−

= = −

= = −

  (3.A.7.5.C.10b) 

then, matrix A  and vector b  can be rewritten as 

1 2

1 2
2 2

1 1 1 1 2 2 2 2
2 2

1 1 1 1 2 2 2 2

2 2 2 2
2 2 2 2

s b s b
a s a s

A
s sb s sb

sa s sa s
ρ µ µ µ ρ µ

µ ρ µ µ µ ρ

− − − 
 − =
 − − − −
 

− − 

,  (3.A.7.5.C.10a) 
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and 

1
2

1 1

1 1

2
2

s
a

b
s

sa
µ ρ

µ

 
 
 =
 −
 
 

,            (3.A.7.5.C.10b) 

respectively. The solution to this linear system of equations is given by 

2 1

1 2

d d
d
pp d d

D DR
D D

−
=

+
,  (3.A.7.5.C.11a) 

( )( ) ( )2 2 21
1 2 2 1 2 2

1 2

2d
ps d d

saR cs cs c cs a b
D D

ρ ρ ρ ρ = − − + + + − +
,   (3.A.7.5.C.11b) 

( ) ( )2 21 1
2 1 1 2

1 2

2d
pp d d

aT cs b cs b
D D

ρ ρ ρ = + − − +
,  (3.A.7.5.C.11c) 

and 

21 1
1 2 2 1

1 2

2d
ps d d

saT cs ca b
D D

ρ ρ ρ = − − + + +
,  (3.A.7.5.C.11d) 

with  

( ) ( )2 22 2 2
1 1 2 1 2 2 1 2 2 1
dD cs s cs a b a bρ ρ ρ ρ ρ= − + + − +    ,  (3.A.7.5.C.11e) 

( )22 2 2
2 1 2 1 2 2 1 1 1 2 1 2
dD c s a a b b cs a b a bρ ρ ρ= + + + , (3.A.7.5.C.11f) 

and 

( ) 2
1 2 1,2 1,2 1,22 , sc vµ µ µ ρ= − = .  (3.A.7.5.C.11g) 
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The coefficients in equation (3.A.7.5.C.11) are functions of the velocities and densities of 

the two media, and of the slowness or angle of incidence. 

Following a similar derivation for the second case (upgoing incidence wave), the solution 

(reflection and transmission coefficients) to corresponding system of equations is given by 

2 1

1 2

u u
u
pp u u

D DR
D D

−
=

+
,  (3.A.7.5.C.12a) 

( )( ) ( )2 2 22
1 2 1 2 1 1

1 2

2u
ps u u

saR cs cs c cs a b
D D

ρ ρ ρ ρ = − + − + + +
,  (3.A.7.5.C.12b) 

( ) ( )2 22 2
2 1 1 2

1 2

2u
pp u u

aT cs b cs b
D D

ρ ρ ρ = + − − +
, (3.A.7.5.C.12c) 

and 
22 2

1 2 1 2
1 2

2u
ps u u

saT cs ca b
D D

ρ ρ ρ = − − + + + , (3.A.7.5.C.12d) 

with  

( ) ( )2 22 2 2
1 1 2 2 1 1 1 2 1 2
uD cs s cs a b a bρ ρ ρ ρ ρ= − + + + + ,            (3.A.7.5.C.12e) 

and 

( )22 2 2
2 1 2 1 2 1 2 2 1 2 2 1
uD c s a a b b cs a b a bρ ρ ρ= + − + . (3.A.7.5.C.12f) 
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3.A.7.5.D.  Appendix D:  Functions of Random Variables 

3.A.7.5.D.1 Random Variables and Probability Distribution Function 

Possible outcomes of a random process can be quantified numerically through the values 

of a random variable (e.g., YX , ).  Then, the specific value (e.g., yx, ) or range of values taken 

by a random variable represent different realizations or events.  A random variable may be 

discrete or continuous depending on the sample space (Johnson and Leone, 1977). 

The function that measures the probability associated with all possible values taken by a 

random variable is a probability distribution, or probability density function (PDF).  If Xf is the 

PDF of X  then the probability ( P ) of X  in the interval [ ],a b  is given by 

( ) ( )
b

Xa
P a X b f x dx≤ ≤ = ∫ .    (3.A.7.5.D.1) 

It follows that the corresponding cumulative distribution function (CDF) is given by 

( ) ( ) ( )
x

X XF x P X x f dψ ψ
−∞

= ≤ = ∫ .    (3.A.7.5.D.2) 

3.A.7.5.D.2 Descriptors of Random Variables 

The mean, average, or expected value, ( )XE , of a random variable X  with PDF Xf  is a 

measure of central behavior, and is defined as 

( ) ( )∫
∞

∞−
== dxxxfXE XXµ .    (3.A.7.5.D.3) 

Another important quantity is the measure of dispersion or variability with respect to a 

central value.  Such a quantity is the variance, ( )XVar , or 2
Xσ , and is given by 

( ) ( ) ( )∫
∞

∞−
−== dxxfxXVar XXX

22 µσ .    (3.A.7.5.D.4) 
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3.A.7.5.D.3 Normal Distribution 

The normal or Gaussian distribution is widely used in practical applications.  For a 

random variable X , the normal PDF is given by 

( )
2

1 1exp
22

X
X

XX

xf x xµ
σσ π

  − = − − ∞ < < ∞ 
   

,    (3.A.7.5.D.5) 

where Xµ  and Xσ  are the mean and standard deviation of the distribution, respectively.  A 

short-hand notation for this distribution is ( )XXN σµ , . 

3.A.7.5.D.4 Joint and Conditional Probability Distributions 

Given two random variables X and Y , the probabilities for all possible couples of ( x , 

y ) can be described with a joint distribution function given by 

( ) ( ) ( ), ,, , ,
x y

X Y X YF x y P X x Y y f u v dv du
−∞ −∞

= ≤ ≤ = ∫ ∫ .    (3.A.7.5.D.6) 

This joint distribution function must satisfy the following conditions: 

i) ( ),lim , 0X Yx
F x y

→−∞
= , ( ),lim , 0X Yy

F x y
→−∞

= , ( ) ( ),lim ,X Y Yx
F x y F y

→∞
= , and 

( ) ( ),lim ,X Y Xy
F x y F x

→∞
= ; 

ii) ( )yxF YX ,,  is nonnegative, and a nondecreasing function of x  and y ; 

iii) ( ) ,0,lim ,,
=

−∞→
yxF YXyx

 and ( ),,
lim , 1X Yx y

F x y
→∞

= . 

If ( )xXP =  depends on the occurrence of Y  or vice versa, there is a conditional 

distribution function of X given Y , written as 

( ) ( )
( )yf

yxf
yxf

Y

YX
YX

,
| ,

| = .    (3.A.7.5.D.7) 

In general, 

( ) ( ) ( )yfyxfyxf YYXYX |, |, = ,    (3.A.7.5.D.8) 
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or 

( ) ( ) ( )xfxyfyxf XXYYX |, |, = .    (3.A.7.5.D.9) 

However, if X and Y  are statistically independent, ( ) ( )xfyxf XYX =||  and 

( ) ( )yfxyf YXY =|| , whereupon 

( ) ( ) ( )yfxfyxf YXYX =,, .  (3.A.7.5.D.10) 

The associated marginal distribution functions become 

( ) ( ) ( ) ( )dyyxfdyyfyxfxf YXYYXX ∫∫
∞

∞−

∞

∞−
== ,| ,| ,  (3.A.7.5.D.10) 

and 

( ) ( ) ( ) ( )dxyxfdxxfxyfyf YXXXYY ∫∫
∞

∞−

∞

∞−
== ,| ,| .  (3.A.7.5.D.11) 

Given two random variables X  and Y that are normally distributed, their joint 

probability density function given by 

( )

( )

, 2

2 2

2

1,
2 1

1exp 2 ,
2 1

X Y

X Y

X X Y Y

X X Y Y

f x y

x x y y

πσ σ ρ

µ µ µ µρ
σ σ σ σρ

= ×
−

        − − − −  − − +       
 −          

  (3.A.7.5.D.12) 

or 

( )

( )( )

2

,

2

2 2

1 1, exp
22

1 1exp ,
22 1 1

X
X Y

XX

Y Y X X

Y Y

xf x y

y x

µ
σπσ

µ ρ σ σ µ

πσ ρ σ ρ

  − = − × 
   

  − − −  −
  − −  

  (3.A.7.5.D.13) 
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where ;x y−∞ < < ∞ − ∞ < < ∞ , and ρ  is a correlation coefficient yet to be defined (see section 

3.A.7.5.D.6). 

3.A.7.5.D.5 Covariance and Semivariogram 

The joint second moment of two random variables, X  and Y , is defined by the 

expression 

( ) ( )∫ ∫
∞

∞−

∞

∞
= dydxyxfxyXYE YX ,, .  (3.A.7.5.D.14) 

If X  and Y  are statistically independent, then  

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞
= dydxyfxfxyXYE YX ,  (3.A.7.5.D.15) 

or 

( ) ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞
== YEXEdyyfydxxfxXYE YX .  (3.A.7.5.D.16) 

The joint second moment of  X  and Y about the their means, Xµ  and Yµ , is the 

covariance of X  and Y , and is given by 

( ) ( )( )[ ] ( ) ( ) ( )YEXEXYEYXEYXCov XX −=−−= µµ, .  (3.A.7.5.D.17) 

The function ( )YXCov ,  is a measure of the degree of linear co-dependence between the 

variables X and Y .  If X  and Y  are statistically independent, then it follows that 

( ) 0, =YXCov . 

If a spatial random variable, X , is available at different spatial locations ( ,i j ), the 

autocovariance of the data iX  and jX  can be written in terms of the covariance and the distance 

between the spatial locations ( h ), that is 
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( ) ( )( ) ( )( ),i j i i j jCov X X E X E X X E X = − −  .  (3.A.7.5.D.18) 

A more general formulation can be written as 

( ) [ ] ( ) 2
i h i iCov h E X X E X+  = −   .  (3.A.7.5.D.19) 

In spatial data analysis, the semivariogram or variogram is an alternative to the 

autocovariance function (Chilès and Delfiner, 1999) described above.  Such semivariogram is 

normally used to model spatial variability and is related to the covariance through the expression, 

( ) ( ) ( )0h Cov Cov hγ = − ,  (3.A.7.5.D.20) 

where ( )0Cov  is the variance of the variable X . 

3.A.7.5.D.6 Correlation Coefficient 

The statistical correlation between two random variables X and Y is measured by the 

correlation coefficient, ρ , defined as 

( ) ( )( )[ ]
YX

YX

YX

YXEYXCov
σσ

µµ
σσ

ρ
−−

==
, .  (3.A.7.5.D.21) 

Moreover, the range of normalized covariance is 11 ≤≤− ρ .  When 1±=ρ , X and 

Y are linearly related, whereas when 0=ρ , there is no linear relationship between X and Y .  

For convenience, the correlation coefficient is represented in this project as 2r . 

3.A.7.5.D.7 Kriging Estimator 

Kriging is a deterministic interpolation method that provides a unique solution and that 

does not attempt to represent actual variability of the interpolated variable (Isaaks and 

Srivastava, 1989).  Thus, the smoothing property of kriging dismisses local detail in place of a 
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good average.  Below, a brief description is presented of the properties of this interpolation 

technique. 

First let us suppose that the values of property X  are known at N  different locations 

(e.g., locations along wells) and that an estimate of this property is desired at a location, k .  A 

way to perform an interpolation of X  at k  is by making use of weighted linear average of the 

known values of X , i.e., 

∑
=

=
N

i
iik XX

1

ˆ λ ,  (3.A.7.5.D.22) 

where the real-valued λ coefficients are the only unknowns weights yet to be determined.  By 

defining the simulation error as the difference between the estimated and true values one obtains 

i

N

i
ikkk XXXX ∑

=

−=−=
1

ˆ λε .  (3.A.7.5.D.23) 

One way to calculate the λ coefficients is to minimize the variance between the 

interpolated and true values of X .  This is equivalent to minimizing the expected value, (E{.}), 

of the square of the prediction error, i.e., 

{ }




















−= ∑

=

2

1

2
N

i
iik XXEE λε .  (3.A.7.5.D.24) 

The stationary points of the squared error above are determined by taking the partial 

derivatives of the mean square error with respect to each of the weights, λ, and by setting them to 

zero, i.e., 

NrforXXXE
N

i

i
ri

N

i
iik ....120

11

=
























−= ∑∑

==

δλ ,  (3.A.7.5.D.25) 
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where i
rδ =1 if i r=  and 0 otherwise.  By defining ∑

=

=
N

i

i
rir XX

1
δ , the following equation 

is obtained 

{ } NrforXXEXXE
N

i
riirk ....1

1

=








= ∑
=

λ .  (3.A.7.5.D.26) 

By making use of the general definition of covariance (equation 3.A.7.5.D.17), between 

two variables, equation (3.A.7.5.D.26) can be rewritten as 

1
( , ) ( , ) 1.....

N

i XX XX
i

Cov i r Cov k r for r Nλ
=

= =∑ .  (3.A.7.5.D.27) 

The λ parameters can be readily obtained by solving the linear system of equations 

(3.A.7.5.D.24).  This in turn yields a value for the property X  at a given location within the 

interpolation space.   

When there is a secondary variable that is spatially related to the primary variable, the 

information of the secondary variable can be used to get better estimates of the primary variable.  

Cokriging can exploit this characteristic via the expression 

j

M

j
ji

N

i
ik YXX ∑∑

==

+=
11

βλ ,  (3.A.7.5.D.28) 

where the second variable Y  designates the additive component contribution to the primary 

variable X , and the weights β  are to be determined by a minimization process similar to that 

described earlier in connection with the λ  coefficients. 
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3.A.7.5.E.  Appendix E:  Fluid Flow in Porous Media 

Modeling fluid-flow in a permeable medium requires mass conservation equations, 

constitutive equations, and fluid and rock property relations (Bear, 1972; Lake 1989). In a 

multi-component system, the mass conservation equation for component i  is given by 

( ) ( ) viii
ii qv

t
S

−=⋅∇+
∂

∂ vv
ρ

φρ
,    (3.A.7.5.E.1) 

where i  is the component (water or oil), iρ is the fluid density, iS  is fluid saturation, ivv  is 

the superficial velocity of phase i , φ  is porosity, and vq  is a source or sink term, and t  is 

time. For the fluid-flow considered here, there is mutual immiscibility between both of the 

fluid components (water and oil) meaning that phases and components are the same. 

The constitutive equation is Darcy’s law for phase i  (oil and water), given by 

( )ri
i i i

i

kv k p zζ
µ

− ⋅ ∇ − ∇
vr v vv ,     (3.A.7.5.E.2) 

where p  is pressure, z  is vertical location, k
vv

 is the absolute permeability tensor (here 

assumed diagonal) of the permeable medium, rk  is the relative permeability function, µ  is 

viscosity, and ζ  is the specific weight of the fluid. 

A fluid property relationship is given by the compressibility equation. Accordingly, it 

is assumed that fluid ( ic ) and pore ( fc ) compressibilities, 

T

i

i
i p

c
∂
∂

=
ρ

ρ
1 , 

and 
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T
f p

c
∂
∂

=
φ

φ
1 ,    (3.A.7.5.E.4) 

respectively, are constant over the pressure range of interest. 

Capillary pressure ( cp ) and fluid saturations are governed by 

( ) wowc ppSp −= ,    (3.A.7.5.E.5) 

and 
1=+ wo SS ,    (3.A.7.5.E.6) 

respectively.  Relative permeabilities are necessary to evaluate the fluid-flow performance of 

multi-phase systems.  A deterministic power law was adopted to describe the dependence of 

relative permeability on water saturation.  This power-law relationship was constructed in the 

following manner.  First define the reduced water saturation as 

wior

wiw
w SS

SS
S

−−
−

=
1

* .    (3.A.7.5.E.7) 

The relative permeability functions are then given by 

( ) n
w

o
rwwrw SkSk ** = ,    (3.A.7.5.E.8) 

and 

( ) m
w

o
rowro SkSk )1( ** −= ,    (3.A.7.5.E.9) 

where, o
rwk  and o

rok  are the endpoint values of the water-oil relative permeabilities, and n  and 

m  are the water and oil saturation exponents, respectively. 
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3.B.  INSTITUTE FOR GEOPHYSICS 

3.B.1.  FULL WAVEFORM SEISMIC INVERSION USING A DISTRIBUTED SYSTEM OF COMPUTERS 

3.B.1.1.  Introduction 

The aim of seismic waveform inversion is to estimate elastic properties of earth’s 

subsurface layers from recordings of seismic waveform data.  This is usually accomplished 

by using constrained optimization often based on very simplistic assumptions.  Full 

waveform inversion uses a more accurate wave propagation model but is extremely difficult 

to use for routine analysis and interpretation.  This is because computational difficulties arise 

due to (1) strong nonlinearity of the inverse problem, (2) extreme ill-posedness and (3) large 

dimensions of data and model spaces.  We show that some of these difficulties can be 

overcome by using (1) an improved forward problem solver and efficient technique to 

generate sensitivity matrix, (2) an iteration adaptive regularized truncated Gauss-Newton 

technique, (3) an efficient technique for matrix-matrix and matrix-vector multiplication and 

(4) a parallel programming implementation with a distributed system of processors.  We use 

message-passing interface (MPI) in the parallel programming environment.  The details of 

the optimization algorithm are outlined in Roy (2002), Sen and Roy (2003) and Roy et al. 

(2003).  We will briefly summarize the algorithm below following which we will describe 

the parallelization aspect in detail. 

3.B.1.2.  Algorithm of regularized Gauss-Newton 

The regularized Gauss-Newton as implemented here, differs from the ordinary Gauss-

Newton by the way in which the Gauss-Newton update is selected.  It is also shown in Roy 

(2002) that such an update ensures robust descent.  We compute regularized Gauss-Newton 

update corresponding to each a posteriori regularization parameter α by minimizing 
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Tikhonov’s functional KT , using nonlinear conjugate gradient (NLCG) method.  We prefer 

NLCG because of its intrinsic property of providing stable and robust computational regime 

and minimum storage requirements.  In the box below we describe our algorithm with a 

pseudo code. 

Let 0m be the starting model describing the distribution of elastic parameters in a layered 

model, at the outset of the Gauss-Newton optimization, τ is the pre-assigned threshold limit 

for the error functional kE (it measures the misfit between observed and synthetic data) to 

attain at its minimum and η is the noise estimate in the data. 

Set maximum iteration counter (ITMAX); 0new =m m ; compute ( )newF m ; G and kE   

 For 0,1,2,k = K  
 If either kE τ>  or ITMAXk <   
  Set old new=m m   
  Minimize kT%  (Eq. 14) through NLCG, which gives α∆m  
  Update new old

α= + ∆m m m   
 Else if kE τ>  and ITMAXk ≥ ; Retry with new starting model 
  Compute a posteriori α using Eqs. (17) and (18) 
 Else  “Print new solution upon convergence ‘ 
 End If 
 End Loop 
 

3.B.1.3.  Computational Issues 

While developing an inversion algorithm, the computational efficiency and 

robustness of the algorithm are of primary concern.  Since in a model-based inversion 

scheme, the forward problem solver gets executed repeatedly, efficiency of forward 

computation plays a major role in computational efficiency of the algorithm.  Our data and 

model spaces are very large; hence dimension of the sensitivity matrix is also very large.  For 

example, if in an ensemble of seismic traces there are 40 seismic traces, each with 512 



DE-FC26-00BC15305 

-214- 

samples, the dimension of the data vector is 40×512 (20480).  Again if the layered earth 

model consists of 512 layers then the dimension of the model vector is 3×512 (1536).  We 

therefore immediately realize that major computational time in Gauss-Newton optimization 

will be consumed by matrix-matrix and matrix-vector multiplications.  

3.B.1.3.1.  Matrix multiplication—fast implementation  

Matrix-matrix multiplication is an essential computational step in realizing Gauss-

Newton optimization.  In a standard sequential algorithm the time complexity of multipli-

cation of transpose of the sensitivity matrix G of order ( )N M×  with itself is 2( )O MN .  If we 

assume that G is a square matrix of order N, then a sequential algorithm can achieve the best 

possible order of time complexity 2.3755( )O N .  We, however, desire a more substantial 

reduction in complexity order, which is only possible if the matrix is considerably sparse.  In 

our application, we identify that the G matrix is indeed sparse (Fig. 1).  Note that a change in 

the parameters of one layer affects the response of all the layers below it.  In other words, the 

shallowest layer affects contributions of all the layers and the deepest layer only affects the 

contribution by itself.  Thus for each seismogram (p trace), we compute delay times for the 

layer in consideration and that of the deepest layer to compute a time window that is used to 

define a band in the G matrix for use in TG G evaluation.  We also include the width of the 

source wavelet in defining the band.  Note that the computation of the bandwidth is based on 

‘P-wave primaries only’ model.  A tolerance in it (~25 samples) in either end works well in 

general.  This reduces computation cost in sequential algorithm for matrix-matrix multipli-

cation significantly (Fig. 2) resulting in an increase in computation speed by a factor of 

seven.  However, on a distributed memory parallel computer (DMPC) architecture with P 
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processors, a fully scalable parallel algorithm for matrix-matrix multiplication would 

take ( )O N Pα  time, where N is the order of the matrices and 2 3α< ≤ .  
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Figure 3.B.1. Plots of differential seismograms with respect to P-wave velocity (top row), S-wave velocity 

(middle row) and density (bottom row) of different layers of an earth model for three different 

values of ray-parameters (0.0, 0.1 and 0.2 sec/km at the left, middle and right column 

respectively): Each differential seismogram is a vector of Frechet derivatives with respect to 

model parameters.  It is obvious that for p=0, the seismograms are not sensitive to changes in 

the shear wave velocity. 

3.B.1.3.2.  Truncated Regularized Gauss-Newton  

We used a truncated regularized Gauss-Newton (TRGN), a variant of RGN, to 

improve the computation efficiency of the inversion algorithm.  At the onset of RGN while 
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the starting model is far from the optimal one, a precise estimate of RGN update does not 

make much difference in the updated model (Nash, 2000).  On the other hand, a precise 

estimate of the RGN update will be necessary as the updated model approaches the optimal 

one.  Thus, the wasteful computation for a precise estimate of the model update can be 

avoided if any early termination in the inner loop of RGN is invoked adaptively.  Dembo and 

Steihaug (1983) originally proposed such strategy of early termination in a large-scale 

unconstrained optimization problem through a truncated Newton (TN) algorithm.  However, 

invoking early termination not only lowers the computational burden but also offers an 

additional regularization in the computation.  

3.B.1.3.3.  Parallel computation 

Easy availability of low cost high performance computational facilities, demand of 

intrinsically high computational cost due to the presence of strong nonlinearity in a full 

waveform pre-stack inversion and large dimension of the computational regime (large data 

and model spaces) are some of the motivating factors for parallelization of the inversion 

algorithm.  As our interest lies with resource utilization and portability of the software in 

different platforms, we design our algorithm using message-passing interface (MPI) on 

distributed memory parallel computer (DMPC) with a homogeneous cluster of PCs that are 

connected with a high speed network.  A DMPC consists of finite number of processors each 

with its own local memory.  These processors (if identical) form a homogeneous cluster and 

communicate with each other via MPI using high-speed network.  The computations and 

communications in DMPC are globally synchronized into either computation or communica-

tion step.  In any of the steps, a processor either remains in operation or stays idle.  Hence, a 

busy processor in a computation step generally performs arithmetic or logical operation and 
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elapses a constant amount of time.  On the other hand, in a communication step, the 

processors send and receive messages via network and build a one-to-one communication.  

Note that each processor can receive at most one message in a communication step and 

elapse time of communication for each processor is assumed to be constant.  Hence, the time 

complexity of a parallel computation on a DMPC is the sum of number of computation steps 

and communication steps.  To reduce the wait time in communication mode, the imple-

mentation of fast electronic network is important.  In our present numerical experiment, we 

use 32 PCs aided with AMD Athlon processors, 1GB RAM connected in a Linux cluster 

interconnected with high speed Myrinet.  

3.B.1.4.  Algorithmic structure 

For a nonlinear optimization problem, Schnabel (1995) identified three stages of 

parallelization; they include (1) parallelization of function and/or the derivative evaluation in 

the algorithm; (2) parallelization of linear algebra kernels; and (3) modifications of the basic 

algorithms, which increase the degree of intrinsic parallelism.  While a coarse-grained paral-

lelism can be invoked to the stages (1) and (3) of parallelization, fine-grained parallelism 

often becomes necessary in stage (2) of parallelization. 

In many occasions, with a single level parallelism, a coarse-grained parallelism is 

favored over fine-grained parallelism.  The reasons for such preference are (1) availability of 

concurrency at high-level language representation, and (2) superiority of concurrency 

achieved over fine-grained parallelism in a distributed system.  Note that in a fine-grained 

parallelism, concurrency is available at low-level language representation.  In our parallel 

implementation of the inversion algorithm, we have primarily adopted a single level coarse-

grained parallelism.  Within the DMPC architecture while evaluating a numerical method, a 
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coarse-grained parallelization requires very little inter-processor communication and there-

fore loss of parallel efficiency due to communication delay as the number of processor 

increases (assuming that there are enough separable computations to utilize the additional 

processors) is insignificant.  Fine-grained parallelism, on the other hand, involves much more 

communication among processors and care must be taken to avoid the case of inefficient 

machine utilization in which the communication demand among processors outperform the 

amount of actual computational work to be performed.  We will discard fine-grained paral-

lelization in the present context as we primarily focus on single level coarse-grained 

parallelization of the algorithm.  We adopt here a master-slave paradigm using the MPI 

standard (Snir et al. 1996).  Such paradigm increases granularity as desired.  Figure 2 is the 

schematic plot of the algorithmic architecture that we have implemented in our application.  

 

Figure 3.B.2.  Schematic plot of algorithmic structure.  The data are distributed from master node to several 

nodes (slave).  Note that algorithm uses single program multiple data (XPMD) type parallel 
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computation.  Ei, Si, Gi correspond to the partial values of error function, sensitivity matrix 

and GTG computed at processor i.  The totals Ei, Si, Gi are computed using a global 2 sum. 

Depending on the numerical method being designed, the first step of parallel algorithm is the 

module specification in which a method is decomposed into appropriate sub-methods with 

necessary specification of data dependency of entire data structure.  All such sub-methods are 

recognized as modules.  Once, the module is specified, the next step is to design schedule for 

the execution of each independent module.  As in DMPC architecture, the communication 

between each processor is one-to-one and is of constant time, the design of the schedule 

becomes rather simple.  The remaining last step is load balancing at each node, which is 

primarily a data distribution strategy. 

Figure 3.B.3 (a) Plot of synthetically generated τ-p seismograms with 5% random noise derived from a true 

earth Model presented in the adjacent panel.  The source wavelet used is Ricker wavelet with 

35 Hz peak frequency.  (b) Plot of P-, S-velocities and density with two-way time.  Note that 

the layer thickness is expressed in terms of two-way travel time by P-wave in a medium. 

3.B.1.4.1.  Load balancing strategy  

Load balancing is the method of dividing the amount of work to two or more 

processors so that an optimal amount of work gets done in the same amount of time with a 
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minimal wait-time for each processor.  Load balancing can be implemented with hardware, 

software, or a combination of both.  A successful load balancing improves the scalability of 

the parallel program.  A pure exploitation of parallelism does not lead to scalable parallel 

programs if the number of concurrent modules is not equal to the number of processors.  

Note that in our application (Figure 3.B.3) of inversion of plane wave seismograms, 

computations of plane wave seismograms are independent of each other.  

Thus we distribute the tasks of generation of plane wave seismograms and their 

sensitivity matrices to different processors.  If there are N seismograms to be modeled and 

the number of available processors is P, each processor is assigned N/P seismograms.  If N is 

an integral multiple of P, we have perfectly balanced distribution of tasks.  Otherwise, the 

tasks are so distributed that difference in load distribution between the different processors is 

minimal.  Note that with a single program multiple data (SPMD) programming paradigm, 

such a strategy has the advantage of providing high scalability.  Once the synthetic seismo-

grams and the sensitivity matrices are computed, they are transferred to the master node 

where model updates are computed using the Newton update formula. 

3.B.1.5.  Performance analysis of algorithm  

We have implemented the parallelized version of the full waveform inversion 

algorithm for 2-D seismic data in pre-stack domain.  The 2-D seismic data are represented by 

groups of seismic traces, where each group corresponds to a surface nodal point (also called 

common mid-point or CMP gather) of the 2-D grid.  In order to realize inversion of entire 2-

D seismic data (also known as 2-D seismic line), we invert seismic data corresponding to 

each surface nodal point.  Thus, our parallelized version of inversion algorithm in any 

computation cycle handles groups of seismic traces belonging to a CMP.  Note that we have 
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used (τ-p) transformed seismic data in our algorithm.  We invoked master-slave paradigm 

where in master node we first divide the group (domain) into subgroups (sub domain) such 

that size of the sub groups remains the same, i.e., in each sub group we assign certain number 

of seismic traces.  Efforts are made to distribute the traces equally, if possible.  Otherwise the 

differences are kept to a minimum.  Each sub group is then allocated with the processing 

elements (PE) as slaves.  Each PE reads the earth model and computes synthetic response and 

the sensitivity matrix corresponding to the designated observed seismic traces.  Once 

computation is completed, all results are summed in the designated node (usually master 

node), where optimization code runs.  Efficient summation is achieved using a power of 2 

global sum method (Sen et al., 1999).  We use our algorithm on both the test case and real 

data set.  The run of the algorithm on the test case is important, as it allows the study of the 

applicability of the method to real world situation and performance analysis of the algorithm.  

In our performance analysis test for parallel algorithm, the dimension of both data and model 

spaces play a major role in computational demand.  Hence, we will focus mainly how 

parallel algorithm affects on data and model space dimensions and the number of PE used in 

the computation.  In our test case, we use two sets of (τ-p) seismic gather with 30 and 60 

traced within a ray-parameter range of 0-0.3sec/km.  Each trace contains 512 data samples 

with a sampling interval of 4ms.  The earth model is made up of three profiles corresponding 

to P- and S-velocity and density of the medium.  The number of data points and the sampling 

interval of those profiles are 453 and 4 ms respectively.  This means that the earth model is 

assumed to be a pack of 453 layers whose thickness in terms of two-way time is 4 ms.  Note 

that the two-way normal reflection time is computed by dividing the thickness with half the 

P-wave velocity of the layer.  The synthetic data used in the performance analysis are shown 
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in Fig. 3.B.5(a); the earth model parameters used in the computation of test seismograms are 

shown in Fig 3.B.5(b).  We use the compute time for single iteration on the synthetic data set 

for a detailed performance analysis described below. 

3.B.1.5.1.  Elapsed time vs. number of processors 

In Figures 3.A.4(a) and 3.A.4(b) we plot elapsed time vs. number of processors and 

inverse of the number of processors respectively using 30 and 60 traces.  Figure 3B.4(a) 

clearly demonstrates that with the increase of processors in the system elapsed time continues 

to fall.  However, the rate of decrease slows down for the increase of processors from 10 to 

20 in both the synthetic data examples.  Figure 3.B.4(b) also depicts almost linear trend, 

which immediately indicates that the sequential components of the algorithm remains nearly 

constant with the processors. 

 
Figure 3.B.4. (a) The plot of the elapsed time versus the number of processors.  Elapsed time decreases with 

the addition of the processor. 
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Figure 3.B.4 (b) Plot of the elapsed time versus the inverse of the number of processors: the plot is almost 

linear, indicating that the sequential components of the algorithm are nearly constant.  Similar 

trends are observed for the two datasets containing 30 and 60 traces. 

3.B.1.5.2.  Speedup, overhead, efficiency, performance measure and efficacy on 

homogeneous clusters  

The speedup is the measure of acceleration for a parallel algorithm running on dis-

tributed processors with respect to the best sequential algorithm running on a sequential 

computer.  Hence, with a parallel architecture if T(P) is the time taken by P processors in 

executing a parallel algorithm and T(1) is the time taken by best sequential algorithm on a 

single processor then the speedup due to P processors can be written as  

(1)( )
( )

TS P
T P

= . (3.B.1) 

In an alternative definition due to Amdahl (1987), if a parallel algorithm A is such that part of 

it, say α fraction (known as Amdahl fraction), is not parallelizable, then the speedup ( )S P  is 

given by  

( )
1 ( 1)

PS P
P α

=
+ −

. (3.B.2) 
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The above equation suggests that the speedup can attain the maximum value 1 α  no matter 

how many processors are used for parallel computation.  Hence, if 5% of the algorithm is not 

parallelizable, then the maximum possible speedup is 20.  In a most ideal situation, when 

0,α ≈  the curve of speedup versus number of processors follows a linear trend else it 

deviates to a sub-linear trend and may saturate normally.  The above definition of speedup 

thus provides the basis for selecting an optimal number of processors for parallel algorithm.  

Interestingly, with a given problem size, the efficiency (which is a measure of average 

fraction of time that each processor effectively use while running a parallel algorithm) 

decreases with the number of processors.  Note that as the number of processors increases 

inter-processor communication cost, idle time due to synchronization etc increase; this is 

expressed in terms of a metric called overhead which is defined as 

( ) (1)Ov PT P T= − . (3.B.3) 

Therefore, there exists a functional relationship between efficiency and overhead and is 

expressed as  

(1)

(1) 1( )
( ) 1 Ov

T

TE P
PT P

= =
+ . (3.B.4) 

Thus, while overhead increases the efficiency of the parallel architecture decreases.  

However, substantial reduction of overhead can be achieved by increasing the granularity, 

which is measure of amount of computational work done before processors have to 

communicate.  Figures. 3.B.5(a), 3.B5(b), and 3.B.5(c) are the plots of speedup, overhead 

and efficiency versus number of processors for the two sets of synthetic data.  The speedup 

curve demonstrates a near linear trend, which indicates a good scalability of the algorithm 
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and suggests that only a small fraction of code used is not parallelizable.  We have found that 

only about 2% of our code is not parallelizable.  A full-scale parallelization of an algorithm 

for a highly nonlinear inverse problem is difficult to achieve unless the algorithm is 

intrinsically decomposable.  Nevertheless, in most practical situations full scale decom-

position and parallelization of an algorithm is not advisable as overhead grows considerably 

with the addition of the processor.  We observe (Fig. 3.B.5(b)) that the overhead is minimal 

using five processors and it increases with the increase of number of processor.  However, if 

the problem size increases on a fixed number of processors, efficiency increases.  We may 

keep the efficiency fixed and increase the problem size and number of processors, as 

overhead increases slower than the problem size.  This indicates good scalability of our 

algorithm. 

We have applied the inversion algorithm to both synthetic and field seismic data.  

Inversion results for the synthetic example shown in Figure 3.B.3 are presented in Figures 

3.B.6(a) and 3.B.6(b).  Note that data-fit is excellent; so is the model recovery.  Convergence  
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(a) 

(b) 

(c) 
Figure 3.B.5 (a) Plot of speedup versus the number of processors: speedup curve nearly follows a linear trend 

indicating good scalability.  (b) Plot of overhead versus the number of processors, and (c) plot 

of efficiency versus the number of processors.  Similar trends are observed for the two 

datasets. 

was reached in 50 iterations.  The results obtained are in good agreement with the true model. 
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(a) 

(b) 

Figure 3.B.6 (a) Plot of data fir presented in three panels; the left panel is observed data, the middle panel id 

the best fit data and the right panel is the data residual.  (b) Plots of true (solid line), initial 

guess (dashed line), and the inverted model (dotted line) 
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3.B.2.  DIRECT ESTIMATION OF PETROPHYSICAL PARAMETERS VIA FULL WAVEFORM INVERSION 

OF PRE-STACK SEISMIC DATA 

3.B.2.1.  Introduction 

A detailed study of static and dynamic behavior of a producing hydrocarbon reservoir 

is essential for the production planning of a reservoir.  Interestingly, the characterization of a 

reservoir can primarily be realized through an estimate of spatio-temporal variability of 

petrophysical properties, such as porosity, fluid saturation, permeability, pore pressure etc., 

in the precinct of a given geological model for the reservoir.  With the aid of modern wireline 

measurements augmented by core analysis, it is possible to estimate the one- dimensional 

variability of the petrophysical parameter in the close vicinity of a well fairly precisely.  

However, the approach is insufficient to account for lateral heterogeneity of the petrophysical 

properties of the reservoir.  It is widely acknowledged that it is impossible to delineate a 

subsurface map of both vertical and lateral variation of petrophysical parameters using a 

limited number of wells and well logs unless supplemented by some other methods, such as 

geostatistical estimates, inversion of seismic data, etc.  Geostatistical methods used to esti-

mate lateral heterogeneity of petrophysical parameters of a reservoir could be useful if the 

number of wells with necessary well logs is considerably large.  On the other hand, a surface 

seismic method provides more detail lateral coverage, although vertical resolution is limited 

to the seismic scale.  Thus, reflection seismic data can be even more useful if estimates of the 

petrophysical parameters can be made directly from seismic data. 

The effect of variation of the petrophysical properties such as porosity, fluid 

saturation, and lithology on the elastic moduli of the rocks and hence on the seismic velocity 

field has been a much studied subject.  However, little has been reported so far on the 

estimation of petrophysical properties of the medium directly from measured seismic wave 
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field.  The objective of this paper is to study the feasibility of determining petrophysical 

parameters directly from full waveform inversion of pre-stack seismic data.  At the outset, we 

give a brief background of theoretical studies in the determination of relationship between 

petrophysical and the elastic parameters of the rocks. 

3.B.2.2.  Relation between rock physics and petrophysical properties  

The seminal works in establishing a relationship between elastic moduli and 

petrophysical parameters are due to Biot (1941, 1956) and Gassmann (1951) while studying 

the propagation of seismic waves through a pack of elastic spheres saturated with fluid.  Biot-

Gassmann theory allows the estimation of the bulk and shear moduli of a fluid-saturated rock 

formation via the equation 

( )
( )

2

*
1

,
1

d

m

f d

m m

K
f K

d K K
K K

K
K K

φ φ

−
= +

+ − −
 (3.B.1) 

where, φ  is total porosity and
*,K ,fK  ,mK  dK  are the bulk modulii of the rock saturated 

with fluid, the fluid, the mineral grains and the rock skeleton or the frame, respectively, and  

*
dG G= , (3.B.2) 

where, dG  is the shear modulus of the frame. 

It is assumed that fluid saturation plays an insignificant role in the variation of the 

shear modulus.  Note that the frame moduli dK  and dG  are not the moduli due to dry rock; 

instead those are moduli of irreducible water-saturated rock.  The above equation is based on 

the assumptions that the frequency of the seismic wave is low enough (theoretically zero) so 

that the studied rock can be considered macroscopically homogeneous, porosity and 
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permeability are high enough, rock-fluid system is closed, and that fluids present in the rock 

should not interact with the rock matrix and must have negligible viscosity.  The conditions 

described above are too stringent and hence are rarely met in most practical situations.  The 

above equations work satisfactorily for unconsolidated water saturated sands (Wang, 2000).  

Thus, if all five input parameters are known then elastic moduli of a rock saturated with a 

fluid or a mixture of fluids can be obtained.  However, precise estimates of all these input 

variables are difficult to obtain, as strong variability exists due to lithology, clay content, 

pore structure, pore aspect ratio, type of fluid content, etc.  These input parameters are either 

measured in the laboratory or in situ using well logs.  One of the most common log-derived 

parameters is porosity using either nuclear or acoustic logs.  The bulk modulus of the fluid 

mixture can be calculated using Wood’s equation (Wood, 1941) as  

1 gw o

f w o g

SS S
K K K K

= + +   , (3.B.3) 

where, ,w oK K  and gK  are bulk moduli of water, oil and gas, respectively, ,w oS S  and gS are 

the water, oil and gas saturations respectively.  For any two phase fluid  

11 w w

f w hc

S S
K K K

−
= +     . (3.B.4) 

Equation (4) can be simplified to  

(1 )
w hc

f
hc w w w

K KK
K S K S

=
+ −

      . (3.B.5) 

If the laboratory measured data for bulk moduli of the individual fluid are available 

and if the water saturation of the rock is obtained from well logs and the well-established 

empirical formula, then bulk modulus of the rock saturated with a mixture of fluids such as 
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water-gas or water-oil can be obtained.  Note that there is a strong dependency of fK  on the 

estimation of the water saturation.  Mineral constituents of a rock also have a strong effect on 

the rock’s elastic moduli.  Elastic moduli of mineral grains mK  and mG  can be obtained using 

the Voigt-Reuss-Hill (VRH) average method (Hamilton, 1971) if the rock type and its 

mineral contents are known.  If M is the effective grain modulus which can be either mK  or 

mG  then M can be written in terms of Hill average (Hill, 1952) as 

0.5*( ),v rM M M= +  (3.B.6) 

where vM , rM are the Voigt (1928) and Reuss (1929) averages, respectively, given by  

1

n

v i i
i

M c M
=

= ∑  , (3.B.7) 

and  

1

n
i

r
i i

cM
M=

= ∑   , (3.B.8) 

where, ic  and iM  are the volume fraction and modulus of the i -th component, respectively.  

Note that although precise measurements of large number of mineral species are available, an 

accurate estimate of the volume fraction of the mineral grains present in the rock is not 

always possible especially from log measurements.  For example, in a clastic sediment 

deposit, if the rocks are made up of only two species of mineral grains such as pure sand and 

clay (only with one variety of clay such as illite or kaolinite) then effective elastic grain 

moduli of the rock formation can be obtained using the above equations provided the volume 

fraction for each mineral present in the rock is known.  It is possible to make an estimate of 

shale volume from natural gamma ray logs.  However, Xu and White (1995) showed that 
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VRH estimate is insufficient for sand clay mixture as it does not account for the aspect ratio 

of the pore space associated with clay and sand respectively.  Moreover, log analysis of 

natural gamma ray logs gives shale volume not the clay content.  Xu and White (1995) 

suggested the following time average equations to determine P- and S- wave velocities P
mV  

and S
mV of the mineral for a rock composed of a shale-sand mixture   

* *11 sh sh
P P P

m s sh

v v
V V V

−
= +     , (3.B.9) 

and 
* *11 sh sh

S S S
m s sh

v v
V V V

−
= +         , (3.B.10) 

where,  
*

1
sh

sh
vv

φ
=

−
       , (3.B.11) 

φ  is the effective porosity estimated from logs and shv  is the percent volume of the shale in 

the rock.  The bulk density of the rock can also be written as 

* *(1 )m sh s sh shV Vρ ρ ρ= − +      . (3.B.12) 

According to Gassmann (1951), the bulk modulus of the frame is related to the porosity of 

the rock through Biot’s coefficient, β  (Biot, 1941), which is defined as the ratio of change in 

fluid volume to the change in formation volume.  The relation is given by 

(1 )d mK K β= −    . (3.B.13) 
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Lee (2002) proposed the following empirical relation to compute Biot’s coefficient and 

showed that β  asymptotically approaches the value of one with an increase in the rock’s 

porosity: 

( )
( )
1 2

2
1 21 exp /

A A
Aβ

φ τ τ
−

= +
 + + 

  , (3.B.14) 

where, 1 183.05186,A = −  2 0.99494,A =  1 0.56468τ =  and 2 0.10817τ = . 

Using equations 3.B.1 and 3.B.12 we obtain  

* (1 )
( )

f
m

f

m

K
K K K

K

β
β

φ β φ
= − +

+ −
    . (3.B.15) 

Equation 3.B.14 can be rewritten as  

* 2(1 )mK K β β ξ= − +          , (3.B.16) 

where, ξ  is a modulus that measures the  variation in hydraulic pressure needed to force an 

amount water into the formation without any change in the formation volume and is related 

to the Biot’s coefficient β through the equation  

( )1

m fK K
β φ φ

ξ
−

= +        . (3.B.17) 

Therefore, the porosity φ  and the water saturation wS  play the most important role in 

determining the bulk modulus of a fluid-saturated rock.  Contrary to Gassmann’s (1951) as-

sumption, Lee (2002) showed that the shear modulus also exhibits a dependence on the 

rock’s water saturation, wS , and proposed the following formula for the shear modulus of a 

fluid-saturated rock: 
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2 2 2
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(1 )(1 ) (1 )
4 1 (1 ) 3

m m m

m m
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K G

β φ β ξ φ
φ

− − + −
=

 + − − 
     . (3.B.18) 

The Effective formation bulk density for the fluid saturated rock can thus be written as 

(1 ) m fρ φ ρ φ ρ∗ = − +    , (3.B.19) 

where, 

(1 )f w w w hcS Sρ ρ ρ= + − , (3.B.20) 

where, wρ  and hcρ  are the densities of water and hydrocarbon, respectively.  Once K ∗ , G∗  

and ρ∗  are known the velocities of P- and S- waves can be determined from the well-known 

formulas 

4
3

P
K GV

ρ

∗ ∗

∗

+
=           , (3.B.21) 

and   

S
GV
ρ

∗

∗=          . (3.B.22) 

 

3.B.2.3.  Sensitivity of P- and S-wave velocities to porosity and saturation 

In the preceding section, we established the relationships between seismic velocities 

and bulk density with the rock’s porosity and fluid saturation.  In the following, we study the 

variation of seismic velocity field with fractional changes in porosity and saturation.  In other 

words, we determine the sensitivities of both P- and S-wave velocities to a variation of 

porosity and saturation.  For sensitivity calculations, we make use of the following equations  
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and 

1
2 2

s s

w s w w

V VG
S V S S

ρ
ρ ρ

∗ ∗

∗ ∗
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= −
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        . (3.B.26) 

The necessary formulas calculating Fréchet derivative of K ∗ , G∗  and ρ∗  with respect to φ  

and wS  are presented in Appendix-I.  In the following we present a numerical experiment to 

study the effect of sensitivities on various lithological factors.  We consider a model of sand 

with and without any clay content and saturated with either water or water and gas.  In 

Figures 3.B.7 and 3.B.8 we present sensitivity curves with respect to porosity for fixed values 

of water saturation and clay content.  
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Figure 3.B.7. Plot of sensitivities for both P- (solid line) and S-wave (broken line) velocities with respect to 

porosity versus porosity for different values of saturation and clay content.  Curves presented 

in the upper panel are for clean sand saturated with water or water and gas while curves in the 

lower panel are fordirty sand contaminated with 15% clay content Sensitivities for both P- 

and S-wave vary strongly with porosity for any value of saturation. 

Note that in Figure 3.B.7 the sensitivities for both P- and S-wave velocities with 

respect to porosity vary strongly with porosity irrespective of the saturation or the litho-

logical factor, such as clay content.  Interestingly, a sharp variation of sensitivity of S-

velocity with an increase in porosity is noticeable in both the upper and lower panels of the 

sensitivity plot.  Such behavior is contrary to the general view that presence of gas affects 

little the S-velocity.  On the other hand, in Figure 3.B.8 it is clear that for wide range of 

values of water saturation the variation of sensitivities both for P- and S-wave velocities 

remain constant with an increase in saturation except near the vicinity of high saturation 

values where there is an extremely sharp change in sensitivity values for both P- and S-wave 

velocities with the presence of gas.  
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Figure 3.B.8. Plot of sensitivities for both P- (solid line) and S-wave (broken line) velocities with respect to 

saturation versus saturation for different value of porosity and clay content.  Curves presented 

in the upper panel are for clean sand saturated with water or water and gas while curves in 

lower panel are for dirty sand contaminated with 15% clay.  Both P- and S- velocity remain 

flat for most of the saturation value except near to the higher end of saturation, where it shows 

a vary strong variation. 

Figures 3.B.9(a) and 3.B.9(b) show plots of P- and S-wave velocities as functions of porosity 

for different values of saturation over a clean sand model.  With a given saturation value, 

both P- and S-velocity curves decrease with an increase in porosity.  Interestingly, presence 

of gas causes a higher rate of change for both P- and S-velocities.  Note that further increase 

in gas volume has little effect on the change of velocity with porosity.  In Figure 3.B.9(c) we  
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Figure 3.B.9 (a) Plot of P- velocities and (b) plot of S- velocities with respect to porosity for different values 

of saturation.  The continuous line corresponds to 100% water saturation, the line with open 

circle corresponds to 90% saturation, and the line with filled circles corresponds to 60% 

saturation.  Model considered is clean sand saturated either with water or water and gas.  

Panel (c) is the VP/VS ratio versus porosity, which continues to increase nonlinearly with 

porosity and the nature of curves remains the same irrespective of saturation. 

plot Vp/Vs ratio with respect to porosity.  Note that Vp/Vs ratio continues to increase non-

linearly with porosity irrespective of saturation.  To develop a comprehensive idea about the 

characteristics of both P- and S-wave velocities with porosity and saturation we present color 

filled contour maps in Figures 3.B.10(a) and 3.B.10(b). 
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Figure 3.B.10 (a) Contour maps of P- velocity and (b) contour maps of S- velocity as functions of porosity and 

saturation. 

The above contours maps show either low slope or else remain constant for a wide range of 

saturation values.  This immediately suggests that the resolving limit of saturation from 

waveform inversion will also be very small.  

3.B.2.4.  Determination of petrophysical parameters and  

seismic velocities from well logs 

In our study, we consider a set of well-log measurements acquired in the deepwater 

Gulf of Mexico.  We make use of nuclear logs (both neutron and bulk density) and acoustic 

logs to determine the effective porosity of the rock formations while we use deep resistivity 

and porosity logs to determine water saturation using the Simandoux model.  We also use the 

natural gamma log to estimate the percent volume of shale.  In Figure 3.B.11, we present 

wireline-log derived porosity, saturation and percent clay content of the geological section.  

The log indicates presence of shale, sand sequence, and possibility of having shaly-sand or 

sandy shale formations.  In our analysis, we consider the following log as the reference for 

true effective porosity and saturation of the area.  In Figure 3.B.12, we present P-, S-

velocities and density obtained from sonic and density logs and the corresponding values 
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calculated using petrophysical formulas as discussed in the preceding section.  Note that the 

predicted values of P-, S-velocities, and bulk density are in good agreement with the log-

measured values. 

 
Figure 3.B.11 Plots of wireline-log-derived porosity (blue line), water saturation (orange line) and percent 

clay volume (green line) with depth  
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Figure 3.B.12. Plots of log-measured (magenta line) and predicted (blue line) values of P-, S-velocities and 

bulk density with depth. 

In our numerical experiment, we consider those predicted values of velocities and density to 

be the true representations of the subsurface.  We then convert these logs (Figure 3.B.12) 

from depth to seismic time the computation of the synthetic seismic wave field.  Time 

converted profiles of P-, S-velocities and density are shown in Figure 3.B.13. 
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Figure 3.B.13. Plot of predicted values of P-, S-velocities and bulk density with two-way vertical travel time 

in (ms). 

3.B.2.5.  Waveform inversion in the determination of petrophysical parameters  

At the outset of our numerical experiment with waveform inversion, we generate 

seismic gathers in the τ-p domain using the velocity and density profiles shown in Figure 

3.B.13.  To obtain a realistic τ-p seismic section we embed the above profiles by adding 

water and thick shale layers at the top, mimicking a marine geometry.  We then generate a 

synthetic τ-p seismic section with a 4 ms sampling interval using a 40Hz Ricker wavelet.  

The synthetically generated τ-p seismic section is shown in Figure 3.B.14. 
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Figure 3.B.14. Synthetically generated τ-p seismic section using the time converted velocities and the density 

profile shown in Figure 3.B.7. 

It is well recognized that, because the seismic signal is band limited, the vertical resolution of 

the seismic derived model is limited within the seismic scale.  However, we consider a full-

scale over-parameterized model in which each layer has a thickness equal to 4 ms two-way 

time.  We then invert the τ-p seismic section using an adaptively regularized, truncated 

Gauss-Newton inversion algorithm (Sen and Roy, 2003; Roy et al., 2003) assuming a 

constant half-space value of porosity and saturation as the a priori petrophysical model.  For 

comparison with the true value of porosity and saturation, we first make a depth to time 

conversion of porosity and saturation logs and then resample them to 4 ms as a coarse 

representation.  We present our inverted results as logs with 4 ms sampling interval in Figure 

3.B.15.  Note that the estimated porosity is in good agreement with the true value.  However, 
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the algorithm fails to retrieve the true saturation values.  This is expected based on our study 

of sensitivities reported in the previous section.  Figure 3.B.16 indicates a very good data-fit. 

 
Figure 3.B.15. Plot of inverted porosity profile (magenta line) overlaid on true profile (blue line).  

 
Figure 3.B.16.  Plot of τ-p seismic section after inversion (left panel) and the original one (right panel) 
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3.B.2.6.  Conclusions 

We studied the feasibility of using full waveform inversion of pre-stack seismic data 

in the direct estimation of petrophysical parameters such as porosity and saturation.  In 

determining the relationship between elastic moduli with porosity and saturation we use 

Lee’s (2002) extension of the Biot-Gassmann model.  With the sensitivity study we observe 

that the sensitivity of porosity to the seismic velocities (both P- and S) is considerable while 

that of the saturation is insignificant.  This reflects in our inversion results.  While it is 

possible to make a robust estimate of the porosity even with a flat prior, the algorithm fails to 

make any appropriate estimate of the saturation despite an excellent data fit.  

3.B.3.7.  Appendix I 

Using equations (3.B.15) and (3.B.16), we can write  
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Taking partial derivatives with respect to φ  and wS in (3.B.27) and using (3.B.28) we obtain 
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where, by taking the partial derivative with respect to φ  in equation (3.B.13),  

( )
( ){ }
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  , (3.B.31) 

and by taking the derivative with respect to wS  in equation (3.B.28), 

( ) 2
( )'( ) hc w w hc

w

hc w w w

K K K KF S
K K S K

−
= −

 − + 
   . (3.B.32) 

Again in equation (3.B.17) for the sake of simplicity we express *G  as  

*
*

*
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=   , (3.B.33) 

where,  
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and 
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3d m mG K G φ = + − −     . (3.B.35) 

Now, from (3.B.7)  
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where the derivative index, x, can be either φ  or wS .  We may then write 
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Again, from 3.B.18 and 3.B.19 we get  
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4.  CONCLUSIONS 

During the three-year period of this project, we investigated some of the fundamental 

issues related to estimating reservoir parameters from seismic, well log and fluid flow data. 

In all of our investigations, the primary goal was to obtain reasonably accurate estimates of 

these parameters with minimal computation effort.  In addition we also investigated the 

effects of different data to the resolution of reservoir models estimates.  We developed a full 

waveform inversion algorithm that is applied in the plane wave domain.  The algorithm is 

based on a conjugate gradient algorithm in which the regularization weight is estimated 

automatically in each iteration.  We implemented our full waveform inversion algorithm (that 

includes all internal multiples and converted waves) on a cluster of personal computers.  We 

found that our algorithm is highly scalable and shows almost a linear speedup up to 16 nodes 

on a cluster.  Thus we were able to develop a very efficient and accurate algorithm for full 

waveform inversion that can be used routinely for seismic data analysis.  Application to an 

OBC dataset from the Gulf of Thailand revealed several gas zones. 

Most seismic inversion algorithms provide with maps of elastic properties which are 

then mapped to petrophysical parameters using simple empirical formulas.  To address this 

we developed a rigorous waveform inversion algorithm that directly provides flow 

parameters.  We employed a modified Biot-Gassmann equation that was validated with a 

suite of well logs from the Gulf of Mexico.  Analytic formulae were developed for comput-

ing sensitivity of seismograms to porosity and saturation.  We found that the porosity is very 

well determined but the seismic data are insensitive to the changes in saturation. 

We developed novel approaches to joint inversion of seismic and well log data and 

demonstrated that incorporating prior information from well logs can enhance the resolution 
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of seismic waveform inversion significantly.  We built upon the development carried out in 

the first two years to develop methodologies for the integration of 3D seismic data, pre-stack 

and post-stack, with time records of fluid production measurements.  Efficient imple-

mentation of joint inversion of seismic and fluid flow data depend on the efficient forward 

modeling of seismic and fluid flow, realistic mapping of petrophysical parameters to elastic 

parameters, and efficient algorithms for inversion.  All these aspects were tested rigorously 

during this year.  Finally we developed a novel, efficient algorithm to estimate spatial 

distributions of porosity and permeability by jointly inverting 3D pre-stack seismic data and 

time records of fluid production measurements.  This algorithm was successfully tested on 

synthetic data contaminated with random noise.  It was also found that fluid production 

measurements acquired in production wells often don’t have the degrees of freedom 

necessary to accurately estimate permeability distributions in the inter-well region.  

However, the use of pre-stack seismic data helps improve the resolution of porosity maps in 

the inter-well regions. 

 



DE-FC26-00BC15305 

-251- 

5.  REFERENCES 

Aki, K., and Richards, P.G. (2002).  Quantitative Seismology: University Science Books. 

Al-Najjar, N.F., Brevik, I., Psaila, D.E., and Doyen, P.M. (1999).  4D seismic modelling of 
the Statfjord field: Initial results: SPE 56730 presented at the Annual Technical 
Conference and Exhibition held in Houston, Texas, October 3-6. 

Balch, R.S., Stubbs, B.S., Weiss, W.W., and Wo, S. (1999).  Using artificial intelligence to 
correlate multiple seismic attributes to reservoir properties: SPE 56733 presented at 
the Annual Technical Conference and Exhibition, Houston, Texas, October 3-6. 

Bassiouni, Z. (1994).  Theory, measurement, and interpretation of well logs: SPE Textbook 
Series Vol. 4. 

Bear, J. (1972).  Dynamics of fluids in porous media: Dover Publications. 

Ben-Menahem, A., and Singh, S.J. (1999).  Seismic waves and sources: Dover Publications. 

Berryman, J.G., Berge, P., and Bonner, B.P. (2000).  Transformation of seismic velocity data 
to extract porosity and saturation values for rocks: J. Acoust. Soc. Am., Vol. 107, No. 
6, 3018-3027. 

Biot, M.A. (1956).  The theory of propagation of elastic waves in fluid-saturated solids, I 
lower frequency range, II higher frequency range: J. Acoust. Soc. Am., Vol 28, No. 2, 
pp. 168-191. 

Bortoli, L.J.F., Alabert, F., Haas, A., and Journel, A.G. (1993).  Constraining stochastic 
images to seismic data: In Geostatistics Tróia 1992, A. Soares, ed. Kluwer, Dorrecht, 
Netherlands, Vol. 1, pp. 325-337. 

Bourgoyne, A.T., Millheim, K.K., Chenevert, M.E., and Young, F.S. (1991).  Applied 
drilling engineering: SPE Textbook Series Vol 2. 

Brown, A.R. (1999).  Interpretation of three-dimensional seismic data: AAPG Memoir Series 
Vol. 42. 

Bu, T., and Damsleth, E. (1995).  Errors and uncertainties in reservoir performance 
predictions: SPE 30604 presented at the Annual Technical Conference and 
Exhibition, Dallas, Texas, October 22-25. 

Burden, R.L., and Faires, J.D. (1993).  Numerical Analysis: PWS Publishing Co. 

Castagna, J.P., Batzle, M.L., and Eastwood, R.L. (1985).  Relationship between 
compressional wave and shear wave velocities in clastic silicate rocks: Geophysics, 
Vol. 50, No. 4, pp. 571-581. 



DE-FC26-00BC15305 

-252- 

Castagna, J.P., and Backus, M.M. (1993).  Offset-dependent reflectivity: Theory and practice 
of AVO analysis: Society of Exploration Geophysics. 

Castagna, J.P., Swan, H.W., and Foster, D.J. (1998).  Framework for AVO gradient and 
intercept interpretation: Geophysics, Vol. 63, No. 3, pp. 948-956. 

Castagna, J.P. (2001).  Recent advances in seismic lithology analysis: Geophysics, Vol. 66, 
No. 1, pp. 42-46. 

Chawathe, A., Ouenes, A., and Weiss, W.W. (1997).  Interwell property mapping using 
crosswell seismic attributes: SPE 38747 presented at the Annual Technical 
Conference and Exhibition, San Antonio, Texas, October 5-8. 

Chilès, J.P., and Delfiner, P. (1999).  Geostatistics: John Wiley and Sons. 

Christie, M.A. (1996).  Upscaling for reservoir simulation: SPE 37324, Distinguished Author 
Series Article. 

Christie, M.A., and Blunt, M.J. (2001).  Tenth SPE comparative solution project: A 
comparison of upscaling techniques: SPE 66599 presented at the SPE Reservoir 
Simulation Symposium held in Houston, Texas, February 11-14. 

Chunduru, R.K., Sen, M.K., and Stoffa, P.L. (1997).  Hybrid optimization methods for 
geophysical inversion: Geophysics, Vol. 62, No. 4, pp. 1196-1207. 

Cominelli, A., Seymour, R., Stradiotti, A., and Waggoner, J. (2002).  Integrating time-lapse 
data in the history match of a gas-condensate reservoir: EAGE 64 Annual Conference 
and Exhibition, Florence, Italy, May 27–30. 

Debeye, H., Sabbah, E., and van der Made, P.M. (1996).  Stochastic inversion: SEG 66 
Annual International Meeting held in Denver, Colorado, November 10-15. 

Descalzi, C., Rognoni, A., and Cigni, M. (1988).  Synergetic log and core data treatment 
through cluster analysis: A methodology to improve reservoir description: SPE 17637 
presented at the International Meeting on Petroleum Engineering held in Tianjin 
China, November 1-4. 

Dorn, G.A. (1998).  Modern 3D seismic interpretation: The Leading Edge, Vol. 17, No. 9, 
pp. 1262-1269. 

Doyen, P.M. (1988).  Porosity from seismic data: A geostatistical approach: Geophysics, 
Vol. 53, No. 10, pp. 1263-1275. 

Duffy, J., and Mindlin, R.D. (1957).  Stress-strain relations and vibrations of a granular 
medium: J. Appl. Mech. Vol. 24, pp. 585-593. 

Elmore, W.C., and Heald, M.A. (1969).  Physics of waves: Dover Publications. 



DE-FC26-00BC15305 

-253- 

Fuchs, K., and Muller, G. (1971).  Computation of synthetic seismograms with the 
reflectivity method and comparison with observations: Geophys. J. R. Astr. Soc., Vol. 
23, No. 23, pp. 417-433. 

Gassmann, F. (1951).  Elastic waves through a packing of spheres: Geophysics, Vol. 16, No. 
4, pp. 673-685. 

Geertsma, J. (1961).  Velocity-log interpretation: The effect of rock bulk compressibility: 
Soc. Pet. Eng., Vol. 1, pp. 235-248. 

Geertsma, J., and Smit, D.C. (1961).  Some aspects of elastic wave propagation in fluid-
saturated porous solids: Geophysics, Vol. 26, No. 2, pp. 169-181. 

Geman, S., and Geman, D. (1984).  Stochastic relaxation, Gibbs distributions, and the 
Bayesian restoration of images: IEEE Trans., Vol. PAMI-6, No. 6, pp. 721-741. 

Grijalba-Cuenca, A., Torres-Verdín, C., and Debeye, H.W. (2000).  Geostatistical inversion 
of 3D seismic data to extrapolate wireline petrophysical variables laterally away from 
the well: SPE 63283 presented at the Annual Technical Conference and Exhibition, 
Dallas, Texas, October 1-4. 

Haas, A. (1993).  Simulation de reservoirs pétroliers par inversion géostatistique: Cahiers de 
Géostatistique, Fasc. 3, Ecole des Mines de Paris, 87-99. 

Haas, A., and Dubrule, O. (1994).  Geostatistical inversion: a sequential method for 
stochastic reservoir modeling constrained by seismic data: First Break, Vol.12, 
No.11, pp. 561-569. 

Hamilton, E.L. (1971).  Elastic properties of marine sediments: J. Geophys. Res., Vol. 76, 
No. 2, pp. 579-604. 

Hamilton, E.L. (1979).  Vp/Vs and Poisson’s ratios in marine sediments and rocks: J. Acoust. 
Soc. Am., Vol. 66, No. 4, pp. 1093-1101. 

Hamilton, E.L., Bachman, R.T., Berger, W.H., Johnson, T.C., and Mayer, L.A. (1982).  
Acoustic and related properties of calcareous deep-sea sediments: J. Sed. Pet., Vol. 
52, No. 3, pp. 733-753. 

Han, D., Nur, A., and Morgan, D. (1986).  Effect of porosity and clay content on wave 
velocities in sandstones: Geophysics, Vol. 51, No. 11, pp. 2093-2107. 

Hilterman, J.F. (1999).  Seismic amplitude interpretation: Society of Exploration 
Geophysicists. 

Hornarpour, M., Koederitz, L.F., and Harvey, A.H. (1982).  Empirical equations for 
estimating two-phase relative permeability in consolidated rocks: Journal of 
Petroleum Technology, Vol. 34, pp. 2905-2908. 



DE-FC26-00BC15305 

-254- 

Ingber, L. (1989).  Very fast simulated re-annealing: Math. Comput. Modelling, Vol. 12, No. 
8, pp. 967-973. 

Ingber, L. (1993).  Simulated annealing: practice versus theory: Math. Comput. Modelling, 
Vol. 18, No.11, pp. 29-57. 

Isaaks, E.H., and Srivastava, R.M. (1989).  Applied geostatistics: Oxford University Press. 

Jensen, J.L., Lake, L.W., Corbett, P.W.M., and Goggin, D.J. (2000).  Statistics for petroleum 
engineers and geoscientists: Elsevier Science Publishing Co. 

Johnson, N.L., and Leone, F.C. (1977).  Statistics and experimental design in engineering 
and the physical sciences: John Wiley and Sons. 

Johnson, W.W. (1994).  Permeability determination from well logs and core data: SPE 27647 
presented at the Permian Basin Oil and Gas Recovery Conference held in Midland, 
Texas, March 16-18. 

Johnston, D.H., Eastwood, J.E., Shyeh, J.J., Vauthrin, R., Khan, M., and Stanley, L.R. 
(2000).  Using legacy seismic data in an integrated time-lapse study: Lena field, Gulf 
of Mexico: The Leading Edge, Vol. 20, No. 3, pp. 294-302. 

Journel, A.G., and Huijbregts, C.J. (1978).  Geostatistical reservoir characterization 
constrained by 3D seismic data: Annual International Meeting of the European 
Association of Exploration Geophysicists. 

Journel, A.G., and Huijbregts, C.J. (1978).  Mining Geostatistics: Academic Press. 

Kalkomey, C.T. (1996).  Use of seismic attributes as predictors of reservoir properties: 
Potential risks: SEG 66 Annual International Meeting held in Denver, Colorado, 
November 10-15. 

Kennett, B.L.N. (1983).  Seismic wave propagation in stratified media: Cambridge 
University Press. 

Kirkpatrick, S., Elatt, C.D., and Vecchi, M.P. (1983).  Optimization by simulated annealing: 
Science, Vol. 220, No.4598, pp. 671-680. 

Kumar, A., Farmer, C.L., Jerauld, G.R., and Li, D. (1997).  Efficient upscaling from cores to 
simulation models: SPE 38744 presented at the SPE Annual Technical Conference 
and Exhibition held in San Antonio, Texas, October 5-8. 

Lake, L.W. (1989).  Enhanced Oil Recovery: Prentice Hall. 

Landro, M. (2001).  Discrimination between pressure and fluid saturation changes from time-
lapse seismic data: Geophysics, Vol. 66, No. 3, pp. 836-844. 

Liner, C.L. (1999).  Elements of 3D seismology: PennWell Publishing. 



DE-FC26-00BC15305 

-255- 

Lortzer, G.J.M., and Berkhout, A.J. (1992).  An integrated approach to lithologic inversion, 
Part I: Theory: Geophysics, Vol. 57, No. 2, pp. 233-244. 

Lumley, D.E. (2001).  Time-lapse seismic reservoir monitoring: Geophysics, Vol. 66, No. 1, 
pp. 50-53. 

Maureau, G.T.F.R., and van Wijhe, D.H. (1979).  The prediction of porosity in the Permian 
(Zechstein 2) carbonate of eastern Netherlands using seismic data: Geophysics, Vol. 
44, No. 9, pp. 1502-1517. 

Mavko, G., Dvorkin, J., and Mukerji, T. (1998).  The rock physics handbook: Tools for 
seismic analysis in porous media: Cambridge University Press. 

Menke, W. (1989).  Geophysical data analysis: Discrete inverse theory: International 
Geophysics Series, Vol. 45, Academic Press. 

Merkel, R.H., Barree, R.D., and Towle, G. (2001).  Seismic response of Gulf of Mexico 
reservoir rocks with variations in pressure and water saturation: The Leading Edge, 
Vol. 20, No. 3, pp. 290-299. 

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953).  
Equation of state calculations by fast computing machines: J. Chem. Phys., Vol. 21, 
No. 6, pp. 1087-1092. 

Mukerji, T., Jørstad, A., Avseth, P., Mavko, G., and Granli, J.R. (2001).  Mapping lithofacies 
and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and 
statistical rock physics: Geophysics, Vol. 66, No. 4, pp. 988-1001. 

Oldenburg, D.W., Scheuer, T., and Levy, S. (1983).  Recovery of the acoustic impedance 
from reflection seismograms: Geophysics, Vol. 48, No. 10, pp. 1318-1337. 

Pan, G.S., Phinney, R.A., and Odom, R.I. (1988).  Full-waveform inversion of plane-wave 
seismograms in stratified acoustic media: Theory and feasibility: Geophysics, Vol. 
53, No. 1, pp. 21-31. 

Pan, G.S., Young, C.Y., and Castagna, J.P. (1994).  An integrated target-oriented pre-stack 
elastic waveform inversion: Sensitivity, calibration, and application: Geophysics, Vol. 
59, No. 9, 1392-1404. 

Pendrel, J.V., and van Riel, P. (1997).  Estimating porosity from 3D seismic inversion and 
3D geostatistics: SEG 67 Annual International Meeting held in Dallas, Texas, 
November 2-7. 

Pizarro, J.O., and Lake, L.W. (1997).  A simple method to estimate inter-well 
autocorrelation: paper presented at the 1997 Fourth International Reservoir 
Characterization Technical Conference, Houston, Texas. 



DE-FC26-00BC15305 

-256- 

Rothman, D.H. (1986).  Automatic estimation of large residual statics corrections: 
Geophysics, Vol. 51, No. 2, pp. 332-346. 

Roy, I.G., Sen, M.K., Torres-Verdín, C., and Varela, O.J. (2002).  Pre-stack inversion of a 
Gulf of Thailand OBC data set: SEG 72 Annual International Meeting held in Salt 
Lake City, Utah, October 6-11. 

Rutherford, S.R., and Williams, R.H. (1989).  Amplitude versus offset in gas sands: 
Geophysics, Vol. 54, No. 6, pp. 680-688. 

Salamon, P., Sibani, P., and Frost, R. (2002).  Facts, conjectures, and improvements for 
simulated annealing: Society for Industrial and Applied Mathematics. 

Sams, M.S., Atkins, D., Said, N., Parwito, E., and van Riel, P. (1999).  Stochastic inversion 
for high resolution reservoir characterisation in the Central Sumatra Basin: SPE 
57260 presented at the Asia Pacific Improved Oil Recovery Conference held in Kuala 
Lumpur, Malaysia, October 25-26. 

Sen, M.K., and Stoffa, P.L. (1991).  Nonlinear one-dimensional seismic waveform inversion 
using simulated annealing: Geophysics, Vol. 56, No. 10, pp. 1624-1638. 

Sen, M.K., and Stoffa, P.L. (1995).  Global optimization methods in geophysical inversion: 
Elsevier Science Publishing Co. 

Sheriff, R.E. (1984).  Encyclopedic dictionary of exploration geophysics: Society of 
Exploration Geophysicists. 

Simmons, J.L., and Backus, M.M. (1996).  Waveform-based AVO inversion and AVO 
prediction-error: Geophysics, Vol. 61, No. 6; pp. 1575–1588. 

Stoffa, P.L., and Sen, M.K. (1991).  Nonlinear multiparameter optimization using genetic 
algorithms: Inversion of plane-wave seismograms: Geophysics, Vol. 56, No. 11, pp. 
1794-1810. 

Tarantola, A. (1986).  A strategy for nonlinear elastic inversion of seismic reflection data: 
Geophysics, Vol. 51, No. 10; pp. 1893-1903. 

Tarantola, A. (1987).  Inverse problem theory: Methods for data fitting and model parameter 
estimation: Elsevier Science Publishing Co. 

Tiab, D., and Donaldson, E.C. (1996).  Petrophysics: Theory and practice of measuring 
reservoir rock and fluid transport properties: Gulf Publishing Co. 

Torres-Verdín, C., Victoria, M., Merletti, G., and Pendrel, J.V. (1999).  Trace-based and 
geostatistical inversion of 3-D seismic data for thin-sand delineation: An application 
to San Jorge Basin, Argentina: The Leading Edge, Vol. 18, No. 9, pp. 1070-1076. 



DE-FC26-00BC15305 

-257- 

Torres-Verdín, C., Grijalba-Cuenca, A., and Debeye, H. (2000) A comparison between 
geostatistical inversion and conventional geostatistical simulation practices for 
reservoir delineation: AAPG Hedberg Research Conference on Applied Reservoir 
Characterization Using Geostatistics, The Woodlands, Texas, December 3-6. 

Tosaya, M.N., and Nur, A. (1982).  Effects of diagenesis and clays on compressional 
velocities in rocks: Geophysics, Res. Lett., 9, pp. 5-8. 

Varela, O.J., Torres-Verdín, C., Sen, M.K., and Roy, I.G. (2002).  Assessing dynamic 
reservoir behavior with time-lapse pre-stack seismic data: a sensitivity study based on 
inversion: EAGE 64 Annual Conference and Exhibition, Florence, Italy, May 27–30. 

Varela, O.J., Torres-Verdín, C., Sen, M.K. (2003).  Joint stochastic inversion of pre-stack 
seismic data and well logs for high-resolution reservoir delineation and improved 
production forecast: SEG 73 Annual International Meeting held in Dallas, Texas, 
October 26-31. 

Victoria, M., Merletti, G., Grijalba-Cuenca, A., and Torres-Verdín, C. (2001).  Lateral and 
vertical discrimination of thin-bed fluvial reservoirs: Geostatistical inversion of a 3D 
data set: SPE 69485 presented at the Latin American and Caribbean Petroleum 
Engineering Conference, Buenos Aires, Argentina, March 25-28. 

Wang, Y. (1999).  Approximations to the Zoeppritz equations and their use in AVO analysis: 
Geophysics, Vol. 64, No. 6, pp. 1920-1927. 

White, J.E. (1983).  Underground sound: Application of seismic waves: Elsevier Science 
Publishing Co. 

Wyllie, M.R.J., Gregory, A.R., and Gardner, G.H.F. (1958).  An experimental investigation 
of factors affecting elastic wave velocities in porous media: Geophysics, Vol. 23, No. 
3, pp. 459-493. 

Xia, G., Sen, M.K., and Stoffa, P.L. (1998).  1D elastic waveform inversion: A divide-and-
conquer approach: Geophysics, Vol. 63, No. 5, pp. 1670-1684. 

Yilmaz, O. (2000).  Seismic data analysis: Processing, inversion, and interpretation of 
seismic data: Society of Exploration Geophysicists.  

 

 



DE-FC26-00BC15305 

-258- 

6.  APPENDICES 

6.A.  MANUSCRIPTS SUBMITTED FOR PUBLICATION IN REFEREED TECHNICAL JOURNAL 

Varela, O. J., Torres-Verdín, C., Sen, M. K., and Roy, I. G., 2003, Using time-lapse 3D 
seismic data to detect dynamic reservoir behavior due to water-oil displacement: a 
numerical study based on inversion, submitted for publication, Geophysics. 

Varela, O. J., Torres-Verdín, C., and Sen, M. K., 2003, Enforcing smoothness and assessing 
uncertainty in nonlinear one-dimensional pre-stack seismic inversion: submitted for 
publication, Geophysical Prospecting. 

Varela, O. J., Torres-Verdín, C., and Sen, M. K., 2003, Joint stochastic inversion of pre-stack 
seismic data and well logs for high-resolution reservoir delineation: submitted for 
publication, Geophysics. 

Wu, J., Torres-Verdín, C., Varela, O. J., and Sen, M. K., 2004, Joint inversion of pre-stack 
3D seismic data and time records of fluid production measurements, a numerical 
feasibility study: submitted for publication, Geophysics. 

Roy, I. G., Sen, M.K., and Torres-Verdin, C., 2004, Seismic waveform inversion on a cluster 
of personal computer, Concurrency and Computation, in press. 

Roy, I. G., Sen, M. K., Torres-Verdín, C., and Varela, O. J., 2002, Pre-stack inversion of a 
Gulf-of-Thailand OBC data set: in press, Geophysics. 

Sen, M.K., and Roy, I.G., 2003.  Two Problems in pre-stack inversion: computation of 
differential seismograms and iteration adaptive regularization, Geophysics, 68(6), 
2026-2039. 

6.B. EXPANDED REFERENCED CONFERENCE ABSTRACTS 

Varela, O. J., Torres-Verdín, C., and Sen, M. K., 2003, Joint stochastic inversion of pre-stack 
seismic data and well logs for high-resolution reservoir delineation and improved 
production forecast (Expanded Abstract): Society of Exploration Geophysicists 
(SEG) 73th Ann. Internat. Mtg., Dallas, TX, October 26-31. 

Varela, O. J., Torres-Verdín, C., and Sen, M. K., 2003, Enforcing smoothness and assessing 
uncertainty in one-dimensional pre-stack seismic inversion (Expanded Abstract): 
European Association of Geoscientists and Engineers (EAGE) 65th Ann. 
Conference and Exhibition, Stavanger, Norway, June 2-6. 

Varela, O. J., Torres-Verdín, Sen, M. K., and Roy, I. G., 2002, Assessing dynamic reservoir 
behavior with time-lapse pre-stack seismic data: a sensitivity study based on 
inversion (Expanded Abstract): European Association of Geoscientists and 
Engineers (EAGE) 64th Ann. Conference and Exhibition, Florence, Italy, May 27-
30. 



DE-FC26-00BC15305 

-259- 

Varela, O. J., Torres-Verdín, and Lake, L. 2002, A numerical simulation and sensitivity study 
to assess the value of 3D seismic data in reducing uncertainty in reservioir 
production forcasts (Expanded Abstract):  Society of Petroleum Engineers (SPE) 
2002 Annual International Meeting, San Antonio, TX, September 29-October 2. 

Gambus, M., Torres-Verdín, C., and Schile, C. A., 2002, High-resolution geostatistical 
inversion of a seismic data set acquired in a Gulf of Mexico gas reservoir (Expanded 
Abstract): Society of Exploration Geophysicists (SEG) 72th Ann. Internat. Mtg., 
Salt Lake City, Utah, October 6-11. 

Roy, I. G., Sen, M. K., Torres-Verdín, C., and Varela, O. J., 2002, Pre-stack inversion of a 
Gulf of Thailand OBC data set (Expanded Abstract): Society of Exploration 
Geophysicists (SEG) 72th Ann. Internat. Mtg., Salt Lake City, Utah, October 6-11. 

Torres-Verdín, C., Wu, Z., Varela, O. J., Sen, M. K., and Roy, I. G., 2002, Joint inversion of 
reservoir production measurements and 3D pre-stack seismic data: proof of concept 
(Expanded Abstract): Society of Exploration Geophysicists (SEG) 72th Ann. 
Internat. Mtg., Salt Lake City, Utah, October 6-11. 

Varela, O. J., and Torres-Verdín, C., 2004, Pre-stack seismic data reduces uncertainty in the 
appraisal of dynamic reservoir behavior (Expanded Abstract): Society of 
Exploration Geophysicists (SEG) 74th Ann. Internat. Mtg., Denver, CO, October 
10-15. 

 


