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EXECUTIVE SUMMARY

Fractures and faults are brittle structural heterogeneities that can act both as conduits and
barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and
faults greatly complicates the challenges faced by geoscientists working on important problems:
from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant
fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO,
produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-
94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed
geological mapping, laboratory experiments, and physical process modeling, on which to build
our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow
properties of fractures and faults in sandstone reservoirs. The material in this final technical
report focuses on the period of the investigation from July 1, 2001 to October 31, 2004.

The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural
laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at
scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers
and reservoirs. The suite of structures there has been documented and studied in detail using a
combination of low-altitude aerial photography, outcrop-scale mapping and advanced
computational analysis. In addition, chemical alteration patterns indicative of multiple paleo
fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire
region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant
patterns of chemical alteration from which the Valley of Fire derives its name.

We have successfully integrated detailed field and petrographic observation and analysis,
process-based mechanical modeling, and numerical simulation of fluid flow to study a typical
sandstone aquifer/reservoir at a variety of scales. We have produced many tools and insights
which can be applied to active subsurface flow systems and practical problems of pressing global
importance.

DOE, BES, and Chemical Sciences, Geosciences, and Biosciences Division
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INTRODUCTION AND BACKGROUND

In 1994, we proposed to work on fracture localization and its impact on fluid flow in faulted
and folded structures located in the Moab Valley of Arches National Park (Utah), the Kaibab
Monocline (Utah) and the Valley of Fire State Park (Nevada). That proposal led to the DOE
Basic Energy Sciences project entitled Development of Fracture Networks and Clusters: Their
Role in Channelized Flow in Reservoirs and Aquifers (DE-FG03-94ER14462). This project has
been renewed twice—in 1997 and 2001—under the title of Structural Heterogeneities and Paleo
Fluid Flow in an Analog Sandstone Reservoir, which has focused specifically on the Jurassic
Aztec Sandstone exposed in the Valley of Fire as an exhumed paleo reservoir/aquifer. The
material in this report is primarily from the last period of the investigation (2001-2004).

Geologic and Structural Setting

Regional Geology

The Valley of Fire State Park is located about 60 miles northeast of Las Vegas, west of the
Overton Arm of Lake Mead and northeast of the Muddy Mountains in southeastern Nevada
(Figure 1 inset). It is within the Basin and Range tectonic province just west of the Colorado
Plateau. This area was first studied by Longwell (1920, 1946, 1960, 1962, 1963) and later by
Bohannon (1977, 1983) and Carpenter and Carpenter (1994). The Aztec Sandstone, which makes
up the bulk of the exposures in the Park where it is up to 1.4 km thick, is a Jurassic age sub-
arkosic quartz arenite and represents the youngest pre-orogenic rock unit. It overlies the Triassic
Moenave and Chinle formations and, within the Park, is itself overlain by syntectonic Cretaceous
detrital rocks of the Willow Tank formation and Baseline Sandstone and Tertiary units.

The major structural features in the area include the Muddy Mountains to the south and the
Northern Muddy Mountains to the west (Figure 1), where the Aztec Sandstone is overthrust by
Paleozoic rocks of mostly carbonate lithology. This fault is known as the Muddy Mountain
thrust and corresponds to late Mesozoic contractional deformation associated with the Sevier
Orogeny (Armstong, 1968). The Valley of Fire region is separated from the Muddy Mountains
by a northwest-trending fault system known as the Arrowhead Fault, which has a complicated
kinematic history. Within the Park, the Aztec Sandstone is thrust over the synorogenic Willow
Tank and Baseline Sandstones. Later in Tertiary time (starting from mid-Miocene) the region
was subjected to widespread Basin and Range extensional and strike slip deformation
(Bohannon, 1983; Anderson and Barnhard, 1993a,b).

This progression of geotectonic processes has manifest itself in the varied and complex suite
of structural elements now exposed in the Valley of Fire (Figure 2), as well as in the extensive
and colorful hydro-chemical alteration from whence the area derives its name.

DOE, BES, and Chemical Sciences, Geosciences, and Biosciences Division
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Figure 1. Location and generalized map of Cenozoic faults in the Valley of Fire region of southern Nevada. Heavy lines
are faults. Arrows indicate predominant sense of slip for strike-slip faults. Ball and tick marks indicate hanging wall of
predominat dip-slip faults. LMFS = Lake Mead Fault System, LVVSZ = Las Vegas Valley Shear Zone, BDM = Beaver Dam
Mountains, FM = Frenchman Mountain, GB = Gold Butte, MoB = Mormon sub-basin, MsB = Mesquite sub-basin, MM =
Muddy Mountains, MRM = Mormon Mountains, SM = Spring Mountains, SR = Sheep Range, TSH = Tule Spring Hills, VM
=Virgin Mountains, WR = Weiser Ridge. Base-image is a mosaic of 1:250,000 USGS DEMs. Faults from Stewart and
Carlson (1978), Bohannon (1983b), Bohannon (1992), Anderson and Barnhard (1993), Axen (1993), Campagna and Aydin
(1994), and Beard (1996).
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Figure 2. Summary of geologic and tectonics events for the Aztec sandstone in the vicinity of the Valley of Fire,
southern Nevada. References are as follows: 1Poole (1964); 2Marzolf (1983); 3Fleck (1970); 4Brock and Engelder (1977);
5Armstrong (1968); 6Bohannon (1983a); 7Carpenter and Carpenter (1994); 8Zoback et al. (1981); 9Bohannon (1984);
10Beard (1996); 11Campagna and Aydin (1994); 12references in Duebendorfer et al. (1998); 13Langenheim et al. (2001)
and referenced therein; 14Taylor (1999); 15Flodin (1999); 16Hill (1989); 17Sternlof (2001); 18Myers (1999).
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Principal Structural Elements of the Aztec Sandstone
During the course of our work in the Valley of Fire, we have documented the following

fundamental structural elements in the Aztec Sandstone as listed below in chronological order of
formation:

Deformation bands—Dboth shear and compaction dominated,;

Joints and sheared joints; and

Joint-based fault zones.
Field examples of each of these types of structures are pictured in Figure 3.

Deformation bands: Deformation bands are thin, tabular structures millimeters to centimeters
thick and meters to hundreds of meters in extent. Commonly found in porous sandstone such as
the Aztec, they accommodate compaction and/or shearing via granular rearrangement and
cataclasis with related pore volume reduction Unlike other types of brittle fractures such as
joints, deformation bands exhibit a continuous distribution of displacement discontinuity rather
than discrete surfaces (fracture walls). Shear bands display a dominance of shear displacement
and related comminution, and tend to occur in closely spaced sets of mm-thick bands often
associated with the adjacent development of a discrete slip surface. Pure compaction bands are
characterized by negligible primary shear and limited comminution, and tend to occur as more
widely spaced sets of cm-thick bands not immediately associated with adjacent slip surfaces or
other faults.

Though sparse in the lower Aztec, the upper Aztec contains extensive, generally
anastamosing arrays of thick compaction bands exhibiting a dominant, though variable NNW
trend and steep ENE dip (Figure 3a). These thick compaction bands comprise the oldest
structural fabric in the Aztec and may be genetically related to regional tectonic compression
associated with Sevier overthrusting. Low-angle, often bedding-parallel shear bands, which
exhibit a consistent top-to-the-east offset of the older compaction bands, are also common
(Figure 3a). Shear bands that cut across bedding also occur, both individually and in lattice-like
zones reminiscent of Riedel shear (Figure 3b). In all cases where timing relations are evident,
shear banding is seen to postdate compaction banding. Both the density of deformation banding
and the relative abundance of shear bands increase toward the top of the Aztec in proximity to
the Willow Tank Thrust.

Joints: Opening-mode fractures, or joints, are also abundant in the Aztec Sandstone (Figure
3c) and exhibit at least four different characteristic geometric and geomorphic patterns in
outcrop. Based on abundant cross-cutting relationships, all jointing appears to postdate
deformation banding, and many joints are directly related to fault zone evolution. We interpret
those widely distributed joints not directly related to faulting as being associated with the
regional effects of Cenozoic Basin-and-Range extension. In certain locations, these tectonic

DOE, BES, and Chemical Sciences, Geosciences, and Biosciences Division
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Figure 3. Principal structural elements of the Aztec Sandstone in the Valley of Fire: (a) sub-parallel array of thick, steeply

dipping compaction bands (note bedding parallel shear); (b) zone of dense deformation banding suggestive of Riedel
shearing; (c) typical tectonic joint set; (d) joint set associated with diagenetic alteration indicative of fluid flow (note sheared

joint); (e) geomorphic expression of strike-slip fault trace; (f) cross section of a mature, joint-based strike-slip fault.
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joints have accommodated subsequent shearing, as indicated by offset markers (Figure 3d), and
may have been exploited during fault zone formation (see section immediately below). A final
stage of jointing appears to postdate all other deformation in the area and may well be related to
unloading during uplift and erosion.

Faults: Joint-based faulting as a prominent deformation mechanism in sandstone was first
identified by work conducted under this DOE-supported research program. An important
component of our work in the Valley of Fire has centered on recognizing and describing this
hierarchical process of fault evolution, which begins with the shearing of pre-existing joints to
form tail cracks, and leads progressively to interconnected zones of fragmentation and the
eventual formation of a through-going seam of fault rock (Figure 3e). The Aztec Sandstone in
the Valley of Fire is dissected by a dense, hierarchical network of sub-vertical, left- and right-
lateral strike-slip faults (with minor normal slip component) formed in this way.

SUMMARY RESULTS FROM THE GRANT PERIOD

Over the period of the current grant, we have pursued an integrated research program to
study structural heterogeneities—deformation bands (Sternlof et al., 2003b), joints, sheared
joints and faults (Flodin, 2003)—within the eolian Aztec sandstone at the Valley of Fire, NV.
The purpose has been to understand how these structural fabrics affect groundwater and
hydrocarbon flow, and to develop conceptual and mechanical models for how the structures
evolve. Our efforts have been focused on three distinct, but complementary sub-projects: (1)
Chemical characterization of colored alteration bands and their interpretation as evidence for
paleo fluid flow; (2) Fault zone permeability upscaling based on field data and fluid-flow
modeling, and the representation of fault permeability in reservoir simulation; and (3)
Mechanical characterization of compaction bands in sandstone and their aggregate influence on
bulk permeability. Results from these three sub-projects are summarized below.

1. Chemical characterization of colored alteration bands and paleo fluid flow

This sub-project focused on a sequence of diagenetic alteration zones with distinct colors in
the Aztec Sandstone and assessed the effect of structural heterogeneities on paleo-fluid flow.
Each alteration color corresponds to specific types of Fe oxides and hydroxides, predominantly
hematite and goethite (Figure 5) and provides a record of paleo-fluid flow across the sandstone.
We mapped the distribution of these alteration zones and their cross-cutting relations with Basin
and Range style high-angle faults and with the most frontal thrust-sheet of the Cretaceous Sevier
orogenic belt. The high-angle faults mechanically offset some of the alteration layers whereas
other layers are deflected in the vicinity of the faults and clearly postdate some or all of the fault
slip.

DOE, BES, and Chemical Sciences, Geosciences, and Biosciences Division



Figure 4. Eastward view of the Aztec Sandstone in the Valley of Fire State Park, NV from near the Rainbow Vista overlook.
The sharp contact between the brick red lower Aztec and bleached middle Aztec, which is not strictly stratigraphic,
meanders across the foreground and off to the upper right of the photo. Red-stained uppermost Aztec is just visible to the
upper left of the photo, approximately 2 km from the lower contact along a trend roughly parallel to the NNE regional
stratigraphic dip of ~30 degrees.The crest of the Virgin Mountains of southwestern Utah, just visible in the background, is
approximately 20 miles distant.




(a) 1. Late Jurassic 2. Late Cretaceous 3. Tertiary

syndepositional reducing basinal fluids mixing of meteoric water with
reddening associated with thrusting basinal fluids during faulting
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Figure 5. (a) Alteration history of the Aztec Sandstone From Late Jurrassicc through Late Cretaceous and to mid-
Tertiary. (b) Photomicrograph of the hematite grain coats that result in the bright red color of the sandstone in outcrop.
(c) Asymmetric staining adjacent to deformation bands consistent with their effect as baffles to fluid flow.

(d) Interaction between a fault and alteration bands as indicated by deflection of one of the alteration bands thereby
becoming subparallel to the fault in its proximity.
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Based on these and other cross-cutting relations, we have reconstructed the fluid flow and
alteration history of the sandstone formation (Figure 5a) (Eichhubl et al., 2004). The alteration
history starts with the syndepositional formation of hematite grain coats that stain the formation
uniformly red. A first bleaching and Fe remobilization stage was associated with Late
Cretaceous Sevier thrusting. Characteristic of this alteration is the effect of deformation bands on
the distribution of remobilized Fe oxides consistent with their effect of flow baffles (Figure 5c).
A second flow and alteration event is concurrent with Miocene Basin and Range faulting. Figure
5d shows an example of one of the alteration bands turning in the proximity of a fault. The
alteration front clearly “saw” this fault. The cataclastic core of these faults has a measured core
plug permeability 2 to 3 orders of magnitude lower than the surrounding host sandstone
suggesting that the deflection of these bands is due to the disturbance in the fluid flow field.
Faults composed of sheared joints in sandstone are found to be preferred conduits for flow
parallel to, and barriers to fluid flow across, the fault. The deflection of chemical alteration bands
formed by the precipitation of iron oxides (predominantly hematite) parallel to the fault likely
resulted from a reduction in fluid flow velocity across the fault. The position and thickness of
these alteration bands is controlled by precipitation and reduction kinetics and thus sensitive to
local variations in flow velocity.

This study also illustrated that structures can impart significant hydraulic heterogeneity in
otherwise fairly homogeneous sandstone aquifers. In addition, we have been able to document a
prolonged history of tectonically controlled fluid flow in this sequence. The effect of structural
discontinuities such as deformation bands and joints (Figure 6a and b, respectively) on fluid flow
can be assessed qualitatively based on the distribution of chemical alteration along these
structures. Iron oxides such as hematite and goethite are particularly well suited for such an
assessment because their distribution is easily observed in the field. Iron oxides are precipitated
from oxidizing (meteoric) waters and dissolved in reducing waters (e.g. formation fluids that are
or have been in contact with hydrocarbons).

2. Characterizing fault zone permeability and representing it in reservoir flow
modeling

We have mapped and analyzed how the pattern of strike-slip faults composed of left and
right lateral faults with a consistent intersection angle developed in the Valley of Fire (Figure 6)
(Flodin and Aydin, 2004). As shown in the conceptual model (Figure 7), the process is
hierarchical and results in the first order left lateral faults bounding second order nested right
lateral faults which, in turn, bound the third order left lateral faults, and so on. Fault segments
and their distribution within a shear zone play a crucial role in this hierarchical process. The
most critical mechanical process is splay fracturing (Figure 7b) which can be analyzed by
mechanical models including the principal stress directions .The range of median splay fracture
angles under the conditions simulated in the model study is 22 to 50 degrees.

DOE, BES, and Chemical Sciences, Geosciences, and Biosciences Division
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Figure 6. Map (Flodin and Aydin 2004) showing two sets of Tertiary Basin and Range faults with
systematic trends: One set slightly east of north (blue) which is predominantly left lateral, and

another west of north (red) which is right lateral. The first order left lateral faults bound the second
order right lateral faults, which in turn bound the third order left-lateral faults. Note that other faults in
different orientations also exist (black). Numbers for lateral slip magnitudes. Areas of detail shown in
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Fire.,Nevada. (a) Preexisting joints prior to, or at the earliest phase of, faulting (1). (2)-(5)
Progressive stages of splay fracturing and sequential shearing of splay fractures that evolve
into sets of left- and right-lateral faults of various generations. (b) Detailed map of the area
boxed in Figure 6 showing the relationship between the segmentation of the first order left
lateral faults (solid blue) and the distribution of the second order right lateral faults (red).
From Flodin and Aydin 2004.



Final Report for Award No. DE-FG03-94ER14462 8

We have refined (Flodin et al., 2004) the fluid flow properties of faults formed by shearing of
joint zones that we had described in earlier years. The results show that the cross fault
permeability is one to three orders of magnitude lower, and breakthrough pressures are one to
two orders of magnitude higher than the median host rock permeability and capillary pressure,
respectively (Figure 8). Calculated maximum sealable hydrocarbon column heights, using
standard fluid properties, range between 10-69 m of gas, and 17-120 m of oil. These data suggest
that faults formed by shearing of joints in high permeability sandstone systems will act as
barriers to fluid flow during production and might be capable of sealing small to moderate
hydrocarbon columns on an exploration time-scale, assuming adequate continuity of the fault
rock over large areas of the fault.

By analyzing faults with different slip magnitudes, we have been able to produce a
relationship between up-scaled fault permeability and fault slip or shear strain (see
permeability/slip transform plot in Figure 8) and produce a variable permeability model for the
faults studied (Figure 9a and b) (Flodin et al., 2001). We have compared three simulation
scenarios with that used in standard oil-field practice in which faults are represented as tunable,
single-permeability features. In the simplest model scenario, we find no significant difference in
flow response between the two methodologies. The more complex cases, however, displayed
significant differences with regard to breakthrough time and liquid production rates (Figure 9c
and d). These differences are attributed to the representation of faults with variable slip and the
corresponding variable fault -normal and -parallel permeability.

Due to computational limitations, earlier work (Stanford Rock Fracture Project Workshop
Volume, 1999) had used a multi-step approach to solve for block-equivalent permeability.
Consequently we calculated the permeability of the domain of interest through a series of
coarsening grids. Using a new numerical code, we have been able to solve for the bulk
permeability in one step, thereby improving the accuracy and efficiency of the calculations
(Jourde et al, 2002).

In an effort to further refine fault zone upscaling practices, we investigated the impact of
several different local boundary conditions on the calculated equivalent permeability (Flodin et
al., 2004). Pressure — no flow (Figure 10), periodic, and mirror-periodic boundary specifications
were considered. The resulting coarse scale permeability tensors are shown to be highly
dependent on the local boundary conditions used in the models. We have determined that the use
of periodic boundary conditions is inappropriate for modeling rock with fractures that are
continuous over length scales greater than the domain of interest. In cases with through-going
high permeability features, such as slip surfaces, the use of pressure-no flow boundary
conditions retains fracture-flow continuity and better reflects the field observation. Periodic
boundary conditions, by contrast, are more suitable for systems lacking through-going high
permeability features. This sensitivity to boundary conditions calls into question the robustness
of the equivalent permeability for the general case and suggests that dominant through-going

DOE, BES, and Chemical Sciences, Geosciences, and Biosciences Division
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features would best be modeled explicitly. Furthermore, due to the very small thickness and high
permeability of some through-going structural features (for example, slip surfaces), globally
upscaled models are inadequate for the modeling of transport. To address these issues, a “partial
upscaling” method that entails removing the through-going high-permeability features, such as
slip surfaces, from the fine model, upscaling to a coarse grid, and then reintroducing the high-
permeability features back into the coarsened model, is adopted. This procedure is shown to
provide coarsened models that give accurate predictions for both flow and transport.

3. Mechanical characterization of compaction bands and their effect on bulk
permeability

This research sub-project has been motivated by the results of studies which demonstrate the
potential for low-permeability deformation bands (DBs) to impede fluid flow through otherwise
highly transmissive sandstone (Jourde et al., 2002; Taylor and Pollard, 2000; Myers and Aydin,
2004;). We have developed a methodology for calculating effective permeability tensors for two-
dimensional networks of DBs using established numerical techniques (Sternlof et al., 2004). The
method, derived from homogenization theory, can produce effective permeability values for any
DB pattern, and provides a quantitative framework with which to upscale these results from
spatially limited data for repetitive patterns. We have applied the method to each of three
characteristic outcrop-scale DB patterns exposed in the Aztec Sandstone at the Valley of Fire—
parallel, cross-hatch and anastomosing. Our work indicates that these systematic band patterns
can reduce effective permeability by as much as two orders of magnitude, while inducing similar
magnitudes of permeability anisotropy (Figure 11). The impact of DB arrays on intrinsic
sandstone permeability thus rival those attributed to depositional features (e.g. bedding and shale
streaks) and commonly accounted for in reservoir/aquifer flow simulations.

The potentially profound impact of DB arrays on bulk sandstone permeability led us
naturally to three fundamental research questions: (1) Do DB arrays in fact influence
permeability on the reservoir/aquifer production scale; (2) By what mechanism(s) and under
what geologic conditions do they form; and (3) Can we learn to forecast their presence and
geometry in the subsurface based on limited data? To address these questions, we have been
pursuing three complementary research initiatives: field and petrographic characterization;
elasticity-based, computer-aided numerical simulation; and laboratory experimentation.

Our field work indicates that thick (~1 cm +), high-angle-to-bedding compaction bands
(CBs)—which exhibit limited primary shearing—constitute the volumetrically dominant DB
type present throughout the bleached portion of the middle to upper Aztec. These occur in two
distinct orientation sets—NNW trending, steeply E dipping and SSW trending, steeply W
dipping—that are generally at high angle to each other (80° to 90°) and interact to form the three
characteristic outcrop patterns which together comprise the oldest structural fabric present. The
density, distribution and continuity of these CB patterns strongly suggest an ability to influence
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permeability and flow at production scales (Figure 12). A third group of DBs, which tend to be
bedding parallel and often exhibit mm to cm shear offsets, overprint the CBs.

Petrographic analysis reveals that the CBs accommodate porosity loss compaction via
granular rearrangement with limited comminution. The total volume loss due to compaction
across a band is about 10% (from ~25% to ~15% porosity), equivalent to about 1 mm of closing
mode displacement per cm of CB thickness. Subsequent preferential accumulation of clays has
led to residual CB porosities of <10% (Figure 13), greatly enhancing their ability to impede fluid
flow. We have collected 20 tip-to-tip thickness profiles of CBs ranging in trace length up to 62
m. Interpreting thickness as a direct proxy for closing mode displacement reveals a marked
correspondence between CBs and idealized elastic anticracks (Figure 14). We now advocate a
conceptual and mechanical model of CBs as modified anticracks, which initiate, propagate and
interact to form systematic patterns in pre-lithified sand subjected to regional tectonic
compression (Sternlof and Pollard, in preparation).

Currently, we have developed a numerical boundary element computer code based on
elasticity theory and using MATLAB® to simulate CB propagation and pattern development.
This tool will enable us to test and refine the modified anticrack model by comparing simulated
patterns derived with realistic material parameters and remote boundary loads to natural patterns
observed in outcrop. Preliminary efforts already have yielded some promising results, although
much work remains to be done given the computational complexity of the task. Ultimately,
computer-aided numerical simulation will greatly enhance our ability to interpret the
paleotectonic significance of a given CB pattern and, conversely, to forecast the presence and
geometry of subsurface CB arrays based on knowledge of key material parameters and geologic
loading histories.

We also have embarked on a program of laboratory experimentation in collaboration with
Drs. William Olsson and David Holcomb at Sandia National Laboratory, Dr. Bezalel Haimson at
the University of Wisconsin, and Dr. David Lockner at the U.S. Geological Survey in Menlo
Park, CA. Although experimental research into compaction localization in sandstones has
blossomed over the past several years (e.g. Haimson and Kovacich, 2003; Haimson, 2001; Wong
et al., 2001; Olsson and Holcomb, 2000; Olsson, 1999) we recognized that compaction features
commonly being produced in the lab bear little resemblance to natural CBs at the Valley of Fire.
We believe this shortcoming to be primarily a consequence of experimental design—well-
cemented, strong sandstones subjected to mid-crustal confining pressures of 100 to 300 MPa
without benefit of a starter flaw to initiate failure away from the steel endcap/specimen interface.
Using our starter-flaw idea, Drs. Teng-fong Wong and Veronika Vajdova at SUNY Stony Brook
have succeeded in producing discrete compaction features in circumferentially notched
specimens of Bentheim Sandstone (Vajdova et al., 2003), albeit at more than 250 MPa confining
pressure.
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Figure 12. Low-altitude aerial photo of an area of
exceptional Aztec outcrop exposure in the Valley
of Fire State Park. This reservoir production-scale
17-acre parcel exhibits extensive arrays of
deformation bands (predominantly compaction)
with a dominant NNW trend and steep E dip.
High-resolution drum scanning of the negative
has yielded remarkably detailed digital images
with a true outcrop pixel dimension of 1.35 cm
(0.53 in). Individual, cm-thick bands can easily be
recognized and mapped on the image (inset
enlargement).
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Meanwhile with our collaborators at Sandia, Wisconsin and Menlo Park, we have attempted
a number of both standard and true triaxial compression experiments on weakly cemented Aztec
specimens (<3 MPa unconfined uniaxial compressive strength) using various starter flaw
configurations and relatively modest confining pressures. Although these ‘proof-of-concept’
experiments have as yet failed to produce CB-like compaction localization (Figure 15), we
remain convinced that the problem lies with our experimental design rather than the modified
anticrack model itself, which is firmly rooted in field observation. In particular, we suspect that
even the modern Aztec has become too well lithified to allow compaction band failure to occur,
and so we currently are designing new experiments that will test unconsolidated sand specimens
with built-in central flaws subjected to low, near-surface confining pressures.

Broader Implications of the Results

Fractures and faults exert critical impacts on fluid flow in rocks, with relevance to many
problems including aquifer and reservoir management, safe repository site characterization, and
CO; sequestration as part of the solution to this pressing environmental problem. The research
reported here contributes to a sound, process-based understanding of the formation of fractures
and faults in sandstone, and of their physical and chemical impacts on fluid flow.
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