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ABSTRACT

Green’s-function techniques are used to calculate electron cyclotron current drive
(ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully
relativistic electron dynamics is employed in the theoretical formulation. The high-
velocity collision model is used to model Coulomb collisions and a simplified quasi-
linear rf diffusion operator describes wave-particle interactions. The approximate p
analytic solutions which are benchmarked with a widely used ECCD model, facilitate %;
time-dependent simulations of tokamak operational scenarios using the non-inductive

current drive of electron cyclotron waves.
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l. INTRODUCTION

Electron cyclotron current drive (ECCD) is the generation of electrical currents in
plasmas by the application of electromagnetic waves at frequencies near the electron
cyclotron frequency or its low harmonics. Seminal discussions of the physics of ECCD
were first made by Ohkawa! and Fisch and Boozer?. Subsequent theoretical
investigations3-12 of ECCD were mostly specific to tokamak geometry and elaborated on
the reduction of the current drive efficiency which originates from the trapped electron
effect, the so-called Ohkawa effect. The effects of relativistic mass shift on carrier
dynamics and the cyclotron resonance condition were also shown theoretically to be
important in determining the ECCD efficiency and profile!3-14. In tokamaks ECCD can
sustain plasma current noninductively in order to reduce the dependence on the ohmic
heating coil. More significantly, recent research has shown that optimization of the
current profile can bring benefits in plasma stability and confinement!? to the extent that
economically attractive steady-state operation of tokamak reactors appears to be possible.
ECCD is a strong candidate for current profile control because it can be highly localized
near the cyclotron resonance in the plasma. This property also makes ECCD useful for
stabilizing various magnetohydrodynamic (MHD) instabilities, particularly the

neoclassical tearing modes!®.17, which may limit the achievable plasma pressure.

Quantitative measurements of the properties of ECCD have been made in the
DIII-D tokamak!819, These experiments cover a broad range of plasma and wave
parameters predicted to be important in influencing the current drive efficiency, like
density n,, temperature T, normalized minor radius p, poloidal angle (referring to the
location of the current drive on a flux surface), and parallel index of refraction nj.
Reference 18 shows that over the entire parameter range tested agreement between the
experimental measurement of ECCD and the results of Fokker-Planck calculations of the
CQL3D code?0 is within experimental uncertainty. This appears to validate the basic
ingredients in the physical mechanism of ECCD: the Fisch-Boozer current drive

mechanism2, the Ohkawa effect!, and the relativistic effects!3:14,
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Although the Fokker-Planck calculations are comprehensive for modeling ECCD,
they are time consuming and not convenient for comprehensive modeling of tokamak
systems, particularly for time-dependent modeling of operational scenarios. For this
purpose, it is desirable to have a simple and relatively accurate method for calculating
ECCD efficiency. In the widely used ray tracing code TORAY-GAZ21-24, a simplified
model developed by Cohen!! is used to evaluate ECCD. This model is based on the
Green’s function formulation of rf current drive efficiency25263. A semi-relativistic
response function is used to calculate the current drive. The slowing-down part of the
high-velocity collision operator is approximated by an expansion in T/mu2, where u is
the momentum per unit mass, in order to make the response function for current drive
separable in energy and pitch angle. The magnetic well is approximated as a square well
in order to obtain an analytic solution. The momentum dependence of the response
function thus obtained is judiciously modified, based on Fisch’s relativistic theory!3 for

straight-field-line magnetic geometry, to account for relativistic effects.

In the present work fully relativistic electron dynamics are used, starting with
Fisch’s high-velocity collision model!3. An approximation based on the Legendre
expansion of the pitch angle € = v, /v is made to the slowing-down part of the collision
operator to make the response function separable in energy w and the pitch angle variable
A = ww, where u is the magnetic moment, and w is the particle energy. The resulting
mathematical problem may be solved analytically. The solution is shown to be exact in
the Lorentz gas limit (Z_g >>1) for general tokamak equilibria, and it recovers Fisch’s

current drive result!3 in the limit of large aspect ratio.

The discussion starts with a brief review in Section II of the Green’s function
formulation for rf current drive in general tokamak geometry. We follow the work by
Antonsen and Chu26. Their formulation is applicable to all collisionality regimes. A
natural local dimensionless current drive efficiency appropriate to general tokamak
geometry is introduced. Then it is expressed in terms of the integrals involving the
rf-induced flux in velocity space and the response function introduced in the Green’s
function formulation. In Section III the bounce-averaged equation for the response
function in the low collisionality regime is derived. (The low collisionality regime is most

relevant for ECCD in present-day and future devices.) In Section IV the relativistic
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high-velocity collision model!3 is used and the corresponding bounce-averaged equation
is solved approximately to obtain a semi-analytic response function for the driven current
in general tokamak geometry. In Section V the theoretical formulation is applied to
calculate the ECCD efficiency. The results are compared systematically to those obtained
using Cohen’s modelll. A few practical cases using the DIII-D geometry are also
presented in which the full ray-tracing is applied. Finally, a summary of the paper is
given in Sec. VL. In Appendix A, we present an interpolation formula for the angular part
of the response function, which simplifies the numerical evaluation of ECCD efficiency.
In Appendix B, we consider the relation between the local dimensionless current drive
efficiency defined in this paper and the current drive figure of merit used by

experimentalists!8.19.28,
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Il. GREEN'S-FUNCTION FORMULATION FOR
RF CURRENT DRIVE IN TOROIDAL GEOMETRY

By using the Green's-function formulation to evaluate current drive efficiency, we
are assuming that the electron distribution function is close enough to the Maxwellian
distribution, i.e., f = fy;, for the Coulomb collision operator to be linearized, and that the
rf power density is not too high such that interaction between the waves and electrons can
be described by S (fM), where S, denotes the rf-induced quasi-linear diffusion
operator in velocity space. Ignoring the small cross-field drifts and finite banana width,

the perturbed distribution function f; satisfies the linearized Fokker-Planck equation2”:
b Vf, - CL £, = St ) (1
1o Vi = Ceh =Sie\m) >

where Cf denotes the linearized Coulomb collision operator and f; is considered as a
function of particle energy w, magnetic moment u, and a poloidal angular variable Gp, at
a given flux surface, which could be labeled by the poloidal flux function v . Within the
small gyro-radius expansion scheme which we adopt here, the rf driven current is parallel

to the local magnetic field, i.e., jrf = jné/B = ﬁ'II;, with

Ji=—efdl fiv (2)

where dI" is the volume element in velocity space. By integrating both sides of Eq. (1)
and using the assumption of axisymmetry, it is straightforward to show that j has a

poloidal angular dependence of

ji=LB=y()B | 3)
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where y(1) is a function of v only. Hence, j,/B is independent of the poloidal angle Gp

and can be written as

él:%'f)z:_e fdrfl% . 4)

Here the notation (...) denotes the flux-surface average,
_ P
(y=— (5)

where dép is the line element along the poloidal circumference and Bp the poloidal

magnetic field.

To evaluate j;/B, it is most convenient to use the Green’s-function techniques.

Consider the response function for the driven current y , which satisfies the equation:

e X = ; (6)
)

0+ . .. .. 25 -1£
where C," is the adjoint collision operator; C, % = fy; C. (XfM) and

(rarycte)- (fdr(cf"’f)g) . %

Note that in the equation for the response function (Eq. (6)) we use a different

normalization constant from that of Antonsen and ChuZ20,

6 GENERAL ATOMICS REPORT A24257




ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY
IN GENERAL TOKAMAK GEOMETRY Y.R. Lin-Liu, et al.

Making use of Eqgs. (1)-(7), we express j”/B in terms of x and S, (fM),
I _ dr VB
A

= —e{pdr (v V- cl*)) (8)

- -e(fdrx("n’; Vh - Cffl))

= “e(ferSrf (fM))
According to Eq. (1), the absorbed rf power density in the linear regime can be
written as
0= (deWSrf (fM)) ; ©)

where w is the particle energy.

Motivated by the introduction of a new dimensionless current drive figure of merit

C by experimentalists?8:18, we define the corresponding local current drive efficiency as

2;*

e3 (Jn)
;7 20 (10)

where ¢ is the permittivity of free space, n, and T, are, respectively, the local electron

density and temperature. Using the fact that (j“) = (j”/B)(B) and Eqgs. (8)-(9), we write
t* as

(11)

S < B >< (a8t ()
Bmax [ (f

T ol salA))

max

where {nA is the Coulomb logarithm, B, . is the maximum of B on the flux surface,
and the dimensionless response function is defined as x = VeO(Bmax/Ve)X with
Voo = (e4ne€n/\)/(4ns szv;) and v, = ‘/(ZTe/m). Note that the formulation presented
here is applicable for an arbitrary collisionality regime and in general tokamak geometry.

With Eq. (11), the problem of evaluating the current drive efficiency is reduced to
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performing integrals involving the wave-induced flux, Srf(fM), and the response
function x . Note that there is no dependence on S, (fM) in . Once determined, it can
be used to calculate T* for any given S (fM)- That is one of the advantages of the

Green’s-function formulation.
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lll. THE BOUNCE-AVERAGED RESPONSE FUNCTION

To obtain the response function 7, we are required to solve Eq. (6). As it stands,
the numerical problem involved is three-dimensional; at a given flux surface, y is a
function of particle energy w, magnetic moment u, and poloidal angle Gp. To simplify
the numerical problem involved, the assumption is often invoked that the effective
collisional frequency is much smaller than the bounce frequency such that the trapped
electrons are allowed to complete the banana orbits at all energies. This low-collisionality
assumption is justified for reactor-grade tokamak plasmas in which the electron
temperature is sufficiently high or the velocity of the resonant electrons is much larger
than the thermal velocity, so that the influence of collisionality on the current drive
efficiency can be neglected. As for the parameter regimes of the present-day experiments,
it is generally believed that collisionality corrections on the current drive efficiency
would be only significant in the case of strong trappingZ®. Nonetheless, there is no

systematic quantitative study of the effects.

In the low-collisionality regime (the “banana” limit), we consider the ratio of the
effective collision frequency to the bounce frequency to be a small parameter,
(veo/zz)/mb << 1, where ¢ is the inverse aspect ratio. Assume that x has an expansion in
this small parameter, i.e., X =%y +X; +-..- According to Eq. (6), the leading order
response function , satisfies v||5-Vx0 =0. The equation for y, yields the solubility
condition,

- ff‘-lfcf Y0 = fcw—B-z— (12)

WOy
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where df = (B/Bp )a’ép. Note that the right-hand side of Eq. (12) is zero for trapped
electrons. This implies that , =0 for trapped electrons. For passing electrons, Eq. (12)

can be written as

1 /B o+
=G o =-sgnlv,) . (13)
V<|El > 0 ( ll)

by using the definition of E=v;/v and the definition of the flux-surface average
(Eq. (5)). In the following, we will limit our discussions to the banana regime, and in

referring to , the subscript O will be suppressed. m
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IV. RESPONSE FUNCTION IN FISCH'S RELATIVISTIC
HIGH-VELOCITY COLLISION MODEL

In this section, we consider Fisch's relativistic high-velocity model!3 and solve the
corresponding bounce-averaged equation for the response function , [Eq. (13)]. We will
make an approximation on the slowing-down part of the collision operator by keeping
only the first term of its Legendre expansion in the pitch angle variable & 1230, Using this
approximation, we obtain an analytic solution for  separable in energy and pitch-angle

variables in the banana regime.

We use relativistic dynamics to describe the motion of electrons. Let # denote the
momentum per unit mass, i.e., ¥ = pfm=1yv with y = ‘/1 + (u/c)2 . The kinetic energy of
a relativistic electron is given by w = (y - l)mc2 and the magnetic moment is
U= mui/ 2B. The collision operator in Fisch's relativistic high-velocity model can be

written as
1
Cof =[vei(w) +vp()JLf + =LA (w)f (14)
u“ du

Here L is the pitch-angle scattering operator,

9
og

L=l—6-(1—52)

2 9% (15)

The velocity dependent pitch-angle scattering rates due to electron-ion and electron-

electron collisions are

3
U
Vei(u)= ZeffVeOY( e) d (16)

u
and

Lle 3
vD(u)=veov(—l;—) , (17)
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where u, = v, = ‘/27;/m. The last term on the right-hand side of Eq. (14) represents the

slowing-down effects due to electron-electron collisions and

2
D (1) = V gty 2(@) . (18)

U

The corresponding adjoint collision operator is

+ )
f g=[vei(u)+vD(u)]Lg—Ks(u)g-bzg . (19)

C

Note that by setting y —1 in Egs. (14)-(19) one recovers the standard

non-relativistic high-velocity collision model.

To make progress in obtaining an analytic solution for Eq. (13), we approximate the
slowing-down part of the collision operator by keeping only the 1st term of its Legendre

expansion in &:

Cff =[Vei(u)+ VD(”)]Lf +Eﬁlfiuz)‘s(u)fm(u’gp)pg(g)

e u au
, (20
1 0
~[vae) +vp )] L7 + 7£u2ks(u)f(l)(u,9p)pl(§)
where p,(x) is the Legendre polynomial of order ¢ and
20411
- s

To facilitate calculations in the banana regime, we define a new pitch-angle

variable A,
)\' = MBmax — Bmax ui (22)
mu2/2 B ;2_ ’

which is also a constant of motion. At a given poloidal angle, passing electrons have

values of A in the range of O<A<1, and for trapped electrons 1<A<B_ . [B.

12 GENERAL ATOMICS REPORT A24257
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Considering u and A as the two independent variables, the velocity-space volume

element is transformed to

dI1 = Bmax T

B Sgﬂ%‘lu)E

12
and |§|= (1 - )\B/Bmax)l , which is considered a function of A and 6p. We write the

A uzdu , (23)

bounce averaged pitch-angle scattering operator using

B 1 0 0
; <EI;EL>= 2Ll 9

™~

Substituting Eq. (19) into Eq. (13), using the approximation specified in
Egs. (20)—(21), and rewriting the equation for 7 , we obtain

- d
(Vei +VD)LX —sgn(u”))\s(u)g;K(u) = —sgn(u”)-\iy‘i)-u—:l(; , (25)
with
3 32 1 ’ Y 1t
K(u)= 5 Ez— fd)\. [0’ X(u,)\. ;O )] , (26)
max / O

and o' = sgn(uﬁ) for passing electrons; % = O for trapped electrons. It follows that % is
proportional to sgn(u“) for passing electrons, and the fact that Ly is the only term in
Eq. (25) having an explicit dependence on A suggests x be separable in variables u and

A . We write the solution of Eq. (25) as

X = sgn(u”)F(u)H(k) , (27)

where the function H(A) satisfies the equation

LH\) = -1 , (28)
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for 0 <A <1 and vanishes for A > 1. Eq. (28) and the regular boundary condition at

A = 0 uniquely specify the function H(\):

e(l—x)} an’
R (EvTN L

H(\) = (29)

where 0O(x) is the Heaviside step function such that 6(x)=0forx <0 and
0(x) =1 for x > 0. Substituting Eqgs. (27)-(29) into Eq. (25) and Eq. (26), we find

K(u)= f.Fu) , (30)
29 Zaptly o [ 1 (1w 31)
7814 fc U fcué Y Uy ’

with

3/ B% \! 3/ B2 \! M
=2 DH(N) = = : 32
Je =3 < ;max >{) (*) 4<B§13X >£ ((1 ~\B/B_.. )1/2> (32)

The quantity f.(f,=1-f.) is the well-known effective circulating (trapped)
particle fraction in the neoclassical transport theory31:32, The equation for F (Eq. (31)) is
readily solved with the boundary condition F(0)= 0. The solution is

m):_lz_(v_ﬂ)ﬁ’zjdu'(y_;)‘*(w-l)@’z

fcue y-1 0 Y v +1
. (33)
4
_1lfu }dxx‘3+3 1 1+"1+(u/c)
A 372 3
e 1+ (uxfc) 1+ 1 +(ux/c)
where

Several Remarks on the results obtained so far are in order. We note that the

(dimensionless) response function  given in Egs. (27), (29), and (33) is an approximate
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solution for the relativistic high-velocity collision model. For any tokamak equilibrium it
is exact in the Lorentz-gas limit (Z, >> 1), in which the pitch-angle scattering process
dominates. We can recover Fisch’s results!3 by considering the limit of large aspect ratio:

e— 0, B/B

nax —> 1, and f, — 1. Finally, by considering the non-relativistic limit and

letting ¢ — o in Eq. (33), we find

1 4
Flu)= —————-——[—”—) . (34)

Zosr +1+ 4fc U

This result, which was first obtained by Taguchil?, indicates that besides the
relativistic effects the trapping effects can also alter the canonical Z, dependence
(1/(Zeff +5)) of the current drive efficiency in the standard high-velocity collision

model.
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V. ECCD EFFICIENCY

The theoretical formulation of rf current drive discussed thus far is not specific to
any particular wave provided the wave does not significantly alter the electron
distribution. In this section, we specialize to the case of ECCD. Following Cohen!!, we
will use a simplified quasi-linear diffusion operator for EC waves. The wave-induced
flux Srf(fM) and the response function obtained in Sec. IV are used in Eq. (11) for
calculating the ECCD efficiency.

The simplified quasi-linear diffusion operator for EC waves is
. - \x o, |~
S +(£) = 8(% - 3 )JADS| @ — kyv,, - 5N (35)

Here X denotes the spatial location of wave deposition. The differential operator

A in velocity space is given as

~ k
A=i+_”_i , (36)

where ® and k; are, respectively, the frequency and the parallel wave number of the EC
wave; w and p, are regarded as the two independent velocity-space variables. The local
cyclotron frequency at X, is denoted by w_ = eBf/m and { is the cyclotron harmonic
number. D, is the quasi-linear diffusion coefficient. We will consider the small

gyro-radius limit (k | p << 1) as has been done in Ref. 11 and approximate Dy, by

= 20-2
072 20, vz

where E_ is the right-hand polarized wave electric field and k| is the perpendicular

wave number.
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Substituting Eqgs. (35)-(36) into Eq. (11) and performing an integration by part in

velocity space as well as the flux-surface average, we obtain

2 w ~ .
4 < B > e ® G38)

Jar Doé(‘” —kvy ‘é&)fm
)
In the process of obtaining Eq. (38), we have also used the fact that Aw=1,

iV exp(—w/Te), and /~\fM = - fm /T, - To evaluate mug;\f(, we express A in terms of

partial derivatives with respect to # and A . Thus,

2 . 2
2%z Uy d ~ Bmax e (Y”{] nllu) J -
A=y =y Qi 2 | 0 | —
e AX =Y u 6ux B W \u C GKX
5 5 , (39)
u, dF B wuo (yw, mu\ dH
=son - 2 g 4o max Ilc(_l_____l_ F&L
s (%'){Y u du B W \u <¢) an

B u*
where A = 2L and B is the magnitude of the local magnetic field at Xg - Now
u
consider the integration over the velocity-space variables. Note that the volume element
in velocity space can be written as dI =2mu du duy, = 2nc2ydydbq| and
8w — kyvy = £ fv ) = v8(yo - kyuy - £w, ). Substituting Eq. (37) into Eq. (38) and

performing the integration over u;, we find

¢ =

4 | B \midray(u,)" fiAi
7 (40)

" nA [y (ul)zsz

max

Note that in Eq. (40) u, and y are related by the cyclotron resonance condition,

Yo = kuy — w, =0. Hence, both 1, and u, are considered as functions of v :

.4 -
14“=Y(D wc=c(Y }’] , @1

ki

2
2 2( 2 2 21 2 Y—)
& e iag -l |
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where y = lo_[/w and n = kcfo, the parallel index of refraction. The integrations in
Eq. (40) are supposed to be taken from y =1 to . Owing to the cyclotron resonance
condition, they could be restricted to the range from y .. to y . . The values of y ..
and vy, are determined with given n and y by setting the left-hand-side of Eq. (42) to

Ze1o0.

2
Yz_l_(u) -0 . (43)
iy

Using Egs. (39)—(43) and the functions F(u) and H(A) obtained in the last section,
we can calculate the current drive efficiency C* as defined in Eq. (11). The efficiency ?;*
determined here is a function of parallel index of refraction nj, cyclotron harmonic
number £, ratio of the cyclotron frequency to the wave frequency (or y = {w_Jw), local
electron temperature T, effective ion charge Z, as well as the MHD equilibrium
properties of the flux surface. The equilibrium information needed are the poloidal
angular dependencies of the magnetic field B(Gp), the poloidal magnetic field BP(GP),
and dfp/dep. Owing to the assumption of small gyro-radius and the simplified quasi-
linear operator used here, there is no explicit dependence of C* on the polarization state
of the EC wave. We note in passing that an interpolation formula which simplifies

evaluation of H(A) for general tokamak geometry is presented in Appendix A.

The dimensionless current drive efficiency of Eq. (10) can be compared with
experimentally measurable quantities by setting Q =P/V and | = (j”)A , where V and A
are, respectively, the volume and the cross sectional area between flux surfaces where the
absorption takes place, P is the total power absorbed, and I is the total driven toroidal
current. Using the approximate relation between V and A (V = 2JtRpA, where Rp is the
major radius of the plasma), one can see C* defined in Eq. (10) is directly related to the

dimensionless efficiency used by experimentalists!8,19.28:

n R
e P (44)
T, P

T
i
S S

They differ only by geometric factors. In Appendix B, we derive the relevant

geometric factors.

GENERAL ATOMICS PROJECT A24257 19




ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY
Y.R. Lin-Liu, et al. IN GENERAL TOKAMAK GEOMETRY

The theoretical formulation developed so far for calculating the ECCD efficiency is
not specialized to any specific flux surface geometry. In order to benchmark our results
with Cohen’s square-well model!l, we adopt the simple circular model equilibrium with
toroidal field B =By/(1+ ecosep) and poloidal field Bp = Bpo/(l + scosep), where € is
the inverse aspect ratio of the flux surface of interest, B, and BpO are two constants. For
this model equilibrium, both C* and C are functions of the electron temperature T,, the
parallel wave number ny, the effective ionic charge Z ¢, the parameter y = lw_[w, the
inverse aspect ratio ¢, and the poloidal angle Bp where the absorption takes place. The
function C =§(Te, 0y, Zegps Y5 €, Bp) can be plotted as a function of y with the other
arguments held fixed, as shown in some example cases in Fig. 1. The realized efficiency
depends on the value of y at which the power is absorbed, and this determination requires
tracing of rays from the antenna along with calculation of the power absorbed along the
ray. Figure 1 also shows the dimensionless efficiency calculated using the model
developed in Ref. 11. For the parameter ranges examined, the relatively small differences

between the models shown in Fig. 1 are typical.
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Fig. 1. Dimensionless efficiency T defined in Eq. 44, as a function
of y=/lw/J/w, evaluated for n_ =2x 10" m?3, T, =2keV,
R=176m, € =0.2 (corresponding to normalized minor radius of
0.5), and 7 =1.6, for (a) 8 =165 degrees (near high-field side of
the flux surface), (b) 6, =90 degrees, and (c) 6, =15 degrees. In
each case the efficiency is plotted for the specified values of n,.
The solid lines represent the results from Eqs. (40-43) and the
dotted lines illustrate the results from the model described in Ref.
11 for comparison.
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VI. SUMMARY

This paper describes the formulation and development of the most complete linear
electron cyclotron current drive model for tokamaks. A previously developed modelll,
which has been extensively used in transport modeling and comparison with experiments,
uses a weakly relativistic expansion of the Coulomb collision operator. The magnetic
geometry is also simplified by use of a square-well model to obtain an analytic solution.
While the model has had good success in validation against experiments, the accuracy of
the approximations has never been checked against more complete models. In the present
work, fully relativistic electron dynamics are used. Recognizing the similarity between
this problem and neoclassical transport, an approximation based on Legendre expansion
commonly used in the latter is adopted to again arrive at an analytic solution, crucial in
terms of speed and accuracy for coupling the current drive model to ray-tracing for
time-dependent transport simulations. The analytic solution is shown to be exact in the
Lorentz gas limit for general tokamak equilibrium geometry. In comparing with the
Cohen model, relatively small differences between the two models have been found in

the cases run so far.

Finally, it should be mentioned that the linear ECCD model predicts accurately the
scaling of the current drive efficiency for all the relevant plasma parameters. However, it
does not account for the presence of an Ohmic electric field and the synergistic
contribution of the electric field to ECCD. This effect is most important in present-day
experiments in which the current drive has not reached steady-state condition. This
physics has been modeled satisfactorily by quasilinear Fokker-Planck codes. For future
long-pulse or steady-state tokamaks, the linear ECCD model as described in this paper is

expected to provide an accurate model both qualitatively and quantitatively.
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APPENDIX A: AN INTERPOLATION FORMULA FOR H(A)

In this Appendix, we consider an interpolation formula, which simplifies evaluation
of the function H(A) defined in Eq. (29) of the main text,

_1)! '
H(x)=6(}‘ 1)f dh A1

2 a{-am)?)

where h = B/B_,, . Let’s write
(1= M) = (1= 2qn) - 2 (- ()2
[, _Hn-e)]”
= (1=-2m) " |1 - =) (A.2)
= (1- M) %
In terms of the new variable s = AM1- (1)) /(1 - A(R)), g is given as
112
h- ()
= A

Note that for A=0, s=0 and A =1, s=1. Also, 0<h<1. Hence, both g and (g) can

be expressed as a power series of s for s <1,

( )=1—S(h—_(—h—)‘)'—}-s2 <(h_(h>)2>+
) T8 Ty
(7))

--S-s W+

(A4)

GENERAL ATOMICS PROJECT A24257 A-1




ELECTRON CYCLOTRON CURRENT DRIVE EFEICIENCY
Y.R. Lin-Liu, et al. IN GENERAL TOKAMAK GEOMETRY

To carry out the higher order terms in s for evaluating {(g) may not be particularly

fruitful. Here we propose an interpolation formula,
112
(g) = [1+ s2(02(1 -s2)+c4s2)] . (A.5)

Here the coefficient ¢, is determined by Eq. (A.4) in the limit of s<<1 and the

coefficient ¢, adjusted to give the exact value at the limit s = 1. This leads to

(%))

SR ~o

(1-ny2)°

AN A (A7)

4T

Three flux-surface averaged quantities are needed for the interpolation formula. They are
(1), (1), and ((1- m)*).

Expressing A in terms of s and after some straightforward algebra, we find that for
A<,

1 1 1
d 2 (1" (h))llz [1+ s2(02(1 —-32)+c452)]ll2

: (A.8)

1 dz
T

(A.9)

For the model circular equilibrium we have considered in the main text, i.e.,

B, Bp x1/1+¢ cosE)p and dép x a’Gp, the flux-surface average of a quantity is given by

(A(Bp)>=-:;7£d8p(l +scos6p)A(6p) . (A.10)
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The three flux-surface averaged quantities required in the interpolation formula can

be explicitly expressed in terms of €:

()=1-¢ (A1)
2

(h2)=M172— , (A.12)
(1-¢7)

((1—h)1/2>=1;[(1+e)sin“ %+ he(l+¢) (A.13)

With Eqgs. (A.11)-(A.13), the coefficients ¢, and ¢4 can also be expressed as explicit
functions of ¢. In the limit of ¢ =0, ¢, — ~1/8 and ¢, — 8/n% - 1. By comparison
with the numerical results obtained from the exact formulas, we found that the

interpolation formulas are quite accurate for the model equilibrium with 0 < € < 0.9.
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APPENDIX B: GEOMETRIC FACTORS RELATING T AND ¢

In this Appendix, we derive the geometric factors relating 2;* defined in Eq. (10)
and T introduced in Eq. (44) of the main text.

In general tokamak geometry, the magnetic field is given by
B=Bg+VoxVy (B.1)

where ¢ is the toroidal angle and 1 is the poloidal flux function. The volume element V

between the flux surfaces labeled by ¢ and ¢ + dy can be written as

-
V)

V = fdl 2R

dr
2:rcf—p)d1p . (B.2)
BP

The cross sectional area A between the two flux surfaces is

dy dy <1>fdf,,
A=fdl ¢ —¥—=
f P vy - PRB (R B,

ap . (B.3)

In writing out Eq. (B.3), we have used the definition of a flux-surface average given in
Eq. (5) of the main text. Using the facts that the driven current density is parallel to the
local magnetic field, i.e., } = j“é/B, and j[B is a function of v only, we write the

driven toroidal current I between the two flux surfaces as

gg< >y )dw . (B.4)
I=<—%—>((B)<%>)_l(j“)A , (B.5)

-1
V=2n<%> A . (B.6)

Ji
B

dw

. dl

—fdl dy =

pRB

Hence,
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By substituting Eqgs. (B.5)-(B.6) and the definition of absorbed power density Q = P/V
into Eq. (44) of the main text, we find

R B
_ P[0 \*
C‘<B><R>C | B

The geometric factors involved pertain to the flux surface of interest. In the limit of large

aspect ratio (¢ =~ 0), T = C*.
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