
Nuclear Magnetic Resonance Studies of Quadrupolar Nuclei
and Dipolar Field Effects

by

Jeffry Todd Urban

B.S., B.S. (Carnegie Mellon University) 1997

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemistry

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alexander Pines, Chair

Professor Robert A. Harris
Professor Dmitry Budker

Fall 2004



The dissertation of Jeffry Todd Urban is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2004



Nuclear Magnetic Resonance Studies of Quadrupolar Nuclei

and Dipolar Field Effects

Copyright 2004

by

Jeffry Todd Urban



1

Abstract

Nuclear Magnetic Resonance Studies of Quadrupolar Nuclei

and Dipolar Field Effects

by

Jeffry Todd Urban

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Alexander Pines, Chair

Experimental and theoretical research conducted in two areas in the field of nuclear

magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-

mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei

and its application to the determination of molecular structure; and (2) applications of the

long-range nuclear dipolar field to novel NMR detection methodologies.

The dissertation is organized into six chapters. The first two chapters and associ-

ated appendices are intended to be pedagogical and include an introduction to the quantum

mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum

mechanics.

The third chapter describes investigations of the solid-state multiple-quantum

magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nu-
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clei. This work reports the use of rotary resonance-matched radiofrequency irradiation for

sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited

certain selective line narrowing effects which were investigated theoretically.

The fourth chapter extends the discussion of multiple quantum spectroscopy of

quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution

of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy.

The fifth chapter continues to extend the principles of multiple quantum NMR

spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear

quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These

analogies are made through the Hamiltonian and density operator formalism of angular

momentum dynamics in the presence of electric and magnetic fields.

The sixth chapter investigates the use of the macroscopic nuclear dipolar field to

encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor

nucleus. This technique could potentially serve as an encoding module for the recently devel-

oped NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129

gas as a sensor is discussed. This work also reports the use of an optical atomic magnetome-

ter to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as

a detection module for NMR remote detection experiments.

Professor Alexander Pines
Dissertation Committee Chair
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Chapter 1

Introduction to the quantum

theory of pulsed NMR

1.1 Overview

Pulsed nuclear magnetic resonance (NMR) spectroscopy is one of the best coher-

ent quantum-mechanical control techniques in existence. NMR spectroscopists have the

ability to use radiofrequency pulses to manipulate nuclear spins into very specific quantum-

mechanical states in such a way that the measured spin dynamics return a wealth of infor-

mation about chemical structure, molecular motion, the distribution of spin density, etc.

This places NMR spectroscopy among the foremost of techniques for chemical structure de-

termination, medical imaging, and for many other applications. This utility is not so much

wrought by the spectroscopist as it is given freely by nature itself: not only are atomic nuclei

quite literally “right in the middle of things” when it comes to probing molecular structure
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and dynamics, but they are weakly coupled to their environment and are subject to only a

few well-understood molecular interactions. This allows much room for the spectroscopist

to choreograph the spin evolution and to be well-situated to observe what the spins have to

say about nature. The common motivation of the work presented in this dissertation was

to gain a better understanding of nuclear spin dynamics: how to control them and how to

learn from them.

In order to aid others with this understanding, I have tried to include more peda-

gogical information than is usual in a dissertation. After all, usually no one except for new

lab members ever read dissertations. The approach I have taken is from the perspective of

a theoretical, quantum-mechanical description of NMR. The Dirac notation is used exclu-

sively; the novice reader is referred to the introductory text by Chester [1] for perhaps the

best description of this formalism. For an introduction to NMR, three books will probably

be the most useful. Goldman’s little book [2] is perhaps the best introduction for the stu-

dent who wants to learn to do quantum mechanical calculations in NMR. Levitt’s book [3]

is probably the most complete introductory text, and the most physical. The book by Ca-

vanagh et al. [4] take a strong middle ground; it is not very deep, but very practical for both

experimentalists and theorists. These three books will provide the student with insight, un-

derstanding, and pragmatism, respectively. Slichter’s book [5] has continually pleasantly

surprised me with the buried tidbits I have found from time to time. As far as understand-

ing the fundamental interactions of NMR and their Hamiltonians goes, Abragam’s treatise

[6] is still the bible even after so many years. Likewise, the text by Ernst et al. [7] contains

anything anyone ever wanted to know about solution-state NMR and multidimensional or
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Fourier spectroscopy. These two books are advanced; to me, Slichter has a similar style to

Abragam and Cavanagh et al. have a similar style to Ernst, but their books are easier for the

beginning student to learn from. The mysteries of solid-state NMR may be unlocked with

Mehring’s book [8], which is still a classic. The solid-state NMR book by Schmidt-Rohr

and Spiess [9] is more modern and contains much useful information and clever techniques.

Duer’s book [10] has the most comprehensive review of modern solid-state techniques and

is very accessible.

Armed with these references and hopefully with this dissertation, the student of

NMR should be well-prepared for his or her initiation into the world of spin.

1.2 Magnetic structure of the nucleus

An atomic nucleus consists of A nucleons: Z protons of electric charge +|e| and

A−Z uncharged neutrons bound together by the strong nuclear force. The simplest nucleus

consists of just a single proton, whereas the most complex nuclei contain more than two

hundred nucleons. The atoms themselves are characterized by an atomic number equal to

Z, where Z = 1 corresponds to hydrogen, Z = 7 to nitrogen, Z = 54 to xenon, etc. Different

atomic isotopes are characterized by differing mass (nucleon) numbers A for a given Z. The

nuclear mass actually plays little role in determining the atomic electronic structure, due

to the large disparity between nuclear and electron masses (mp = 938.272 MeV/c2 ≈ mn,

me = 0.511 MeV/c2). Since chemical properties are dominated by the molecular electronic

structure, substitutions among isotopes of the same atomic element usually result in only

minor modifications to chemical structure and reactivity. However, the difference between
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two isotopes of the same element can be enormous from the perspective of the internal

structure of the nucleus, and in NMR studies the differences between isotopes can be as

great as the differences between elements themselves. For example, the 99% naturally

abundant carbon-12 isotope is not observable by the NMR technique, so carbon NMR

spectroscopy is performed on the stable carbon-13 isotope (1% natural abundance), often

using samples that have been isotopically enriched.

The nuclear structure is in general quite complicated, and the problem involves

multiple nucleons strongly interacting with each other in a potential that has no well-defined

center [11, 12]. The strength of the nuclear forces may be appreciated from a simple quantum

“particle-in-a-box” model of the static nucleus, which gives an estimate for the spacing

of nuclear energy levels1 on the order of h2

8MNL
2 =

π2(~c)2
2(MNc

2)L2
≈ (10)(200)2

(2)(20 · 1000)(50) =

0.2 MeV. (The mass of a light nucleus has been taken to be MN ' 20mp, with nuclear

dimensions of several fm translating into a cross section on the order of L2 ∼ 50 fm2,

and ~c ∼ 200 MeV · fm, mpc
2 ∼ 1000 MeV, and π2 ∼ 10.) Nuclear level spacings are

indeed found to be in the keV to MeV range, which is much larger than the thermal energy

kBT ∼ 1/40 eV available at room temperature, virtually guaranteeing that only the nuclear

ground state is populated under normal laboratory conditions. This fact, and the fact that

conventional nuclear magnetic resonance experiments involve excitation energies far lower

than those of nuclear transitions ensure that only the nuclear ground state properties are

of concern in an NMR experiment (see also §3.5 of Ref. [2]).2 There turn out to be only

1The crudeness of this estimate is apparent upon consideration of the fact that the three-dimensional
particle-in-a-box energy levels diverge quadratically in the quantum numbers, instead of converging to a
finite value as must be the case for the discrete spectrum of a bound system that can dissociate.

2Pure radiofrequency NMR excitation energies are in the µeV range at best and optical techniques involve
excitations in the eV range. That is not to say, however, that nuclear energies are never involved in NMR
experiments. There exist techniques such as β-NMR [13, §2.8] that involve the magnetic resonance of ground
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three quantities characterizing the nuclear ground state that are of relevance to the NMR

spectroscopist: the total angular momentum, the magnetic dipole moment, and the electric

quadrupole moment.

The Hamiltonian operator of the nucleus is considered to be symmetric under

rotations and external fields are typically not large enough to break this symmetry; conse-

quently, the nucleus has eigenstates of well-defined total angular momentum that may be

labeled as |α; I,mI〉 [14, §3.4]. Here I is the quantum number for the total angular momen-

tum and mI is the magnetic quantum number for the component of this angular momentum

along some space-fixed quantization axis; I and mI are good quantum numbers for the sys-

tem. The quantized angular momentum I is a non-negative integer or half-integer, and mI

takes on integrally spaced values from −I to +I. The symbol α represents the quantum

numbers for the rest of the degrees of freedom that characterize the state aside from angular

momentum. From here on it will be assumed that |α; I,mI〉 represents a sublevel of the

nuclear ground state. The quantity I is often (rather casually) referred to as the nuclear

“spin”. The nuclear angular momentum operator may be written as

Î = L̂+ Ŝ =
A∑

k=1

l̂k +
A∑

k=1

ŝk, (1.1)

where L̂ and Ŝ are the operators for the total orbital and total intrinsic spin angular

momentum of the nucleus, respectively, and l̂k and ŝk are the orbital and intrinsic spin

angular momentum operators of the kth nucleon. Protons and neutrons are both sk = 1
2

particles. Note that L and S are not necessarily good quantum numbers for the nucleus.3

states of nuclei undergoing radioactive decay.
3For instance, if the nuclear potential is non-central (due to the so-called tensor force [15, §14.5]), it does
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The measured NMR signal is proportional to the bulk ensemble nuclear magne-

tization of the sample, which in the simplest case is in turn proportional to the magnetic

dipole moment of the ground state.4 The magnitude of this moment is defined quantum-

mechanically as the maximum projection of the magnetic dipole moment on the quantization

axis z: µ = 〈α; I,mI = +I|µ̂z|α; I,mI = +I〉. The magnetic dipole moment operator is

µ̂ =
A∑

k=1

µ̂l
k
+

A∑

k=1

µ̂s
k
=

A∑

k=1

glµN l̂k/~ +
A∑

k=1

gsµN ŝk/~, (1.2)

where µ̂l
k
and µ̂s

k
are respectively the orbital and intrinsic spin angular momentum operators

for the kth nucleon, µN =
|e|~
2mp

is the nuclear magneton, the orbital nucleon g-factors are

gl = +1 for the proton and gl = 0 for the neutron, and the spin nucleon g-factors are

gs = +5.5857 for the proton and gs = −3.8261 for the neutron. A semiclassical model of a

structureless particle orbiting with quantized angular momentum of ~ predicts a g-factor of

±1 for particles with charge ±|e|, and a g-factor of 0 for neutral particles (since only charged

particles produce a magnetic moment upon circulation). This is consistent with the orbital

g-factors above, but the nature of the spin g-factors is more complicated. The Dirac point

electron has a spin g-factor of −2 (with small corrections from quantum electrodynamics),

and the unusual numeric values for the nucleon spin g-factors (particularly the nonzero

result for the neutron) are indicative of the internal (quark) structure of the nucleon.

The expressions in Eqs. 1.1 and 1.2 are similar, but not so similar that the relation

not commute with L̂
2
and L is no longer a good quantum number. Also note that the tensor potential, though

non-central, still must be rotationally invariant [16, §II.5.B]. Another example of when L is not conserved
is the case of a non-spherical nuclear potential [14, §5.3], which is mentioned below in the discussion of the
nuclear electric quadrupole moment.

4It is also proportional to the nuclear polarization, since an ensemble of unpolarized nuclear moments
will lead to no net magnetization of the sample.
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between the total nuclear angular momentum and the nuclear magnetic moment is clear.

However, a simple relationship can be established between the matrix elements of Î and µ̂

within the manifold of angular momentum substates {|α; I,mI〉} using a powerful theorem

called the Wigner-Eckart theorem. This theorem states:

〈α′; j′,m′|T̂k,q|α; j,m〉 = 〈j′,m′; k, q|j,m〉〈α′; j′ ‖ T̂k ‖ α; j〉, (1.3)

where the operator T̂k,q is the rank-k, order-q component of the spherical tensor operator T̂ ,

the amplitude 〈j′,m′; k, q|j,m〉 is known as a Clebsch-Gordan coefficient, and the quantity

〈α′; j′ ‖ T̂k ‖ α; j〉 is known as the reduced matrix element of T̂k. The reader is referred to

Appendix A for a detailed discussion of spherical tensor operators and the interpretation

of the Wigner-Eckart theorem. The principal result of the theorem is that the geometrical

dependence and dynamical dependence of the matrix element are separated into the Clebsch-

Gordan coefficient and the reduced matrix element, respectively. The term “geometrical”

refers to the angular distribution and “dynamical” refers to the other degrees of freedom,

the dependence on which must in general be found by a detailed solution of the structure.

A corollary of this theorem states that any two vector operators are proportional to each

other within a particular manifold of angular momentum states, where the proportionality

constant is determined from the reduced matrix elements. Therefore it can be concluded

that within the {|α; I,mI〉} manifold the two vector operators5 µ̂ and Î are proportional to

5Actually, from the perspective of certain symmetries µ̂ and Î are known as pseudovector operators, but
the Wigner-Eckart theorem does not distinguish between vectors and pseudovectors.
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each other:

µ̂ = γÎ, (1.4)

where γ is a proportionality constant called the gyromagnetic ratio, which aptly enough is

the ratio of the magnetic moment (which describes a magnetic property) to the angular

momentum (which describes the gyroscopic motion). Since the value of the gyromagnetic

ratio depends on the reduced matrix elements, it can be determined from first principles

only by directly solving the nuclear structure. It also can be measured experimentally. The

gyromagnetic ratio can be either positive or negative, corresponding to a nuclear magnetic

moment that is either parallel or antiparallel to the angular momentum, respectively. Eq.

1.4 also implies that nuclei with ground state angular momenta I = 0 possess no magnetic

dipole moment,6 and thus are NMR-inactive.

The magnetic dipole moment is just one of many possible static “multipole mo-

ments” that can characterize an electric or magnetic distribution [17]. There are in general

an infinite number of possible electric and magnetic moments Ek andMk that can be char-

acterized by their spherical tensor rank k [18, 19, 20]: the values k = 0, 1, 2, 3, 4 correspond

to monopole, dipole, quadrupole, octupole, and hexadecapole moments, respectively. Using

this notation the magnetic dipole moment is theM1 moment. It is straightforward to imag-

ine how a collection of magnetic dipoles can lead to a detectable magnetic field. However,

it is also necessary to consider how the strength or dynamics of the nuclear magnetization

may depend on other nuclear multipole moments. The (spherical) components of these mo-

6This also follows from the fact that the matrix elements 〈α; I = 0,mI |µ̂1,q|α; I = 0,mI〉 are proportional
to the Clebsch-Gordan coefficient 〈0,mI ; 1, q|0,mI〉, which is zero.
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ments are expectation values of the form 〈α; I,mI = I|T̂k,q|α; I,mI = I〉, where T̂k,q is an

operator that characterizes the particular multipole component. The nuclear Hamiltonian

to a very good approximation obeys certain symmetries such as parity (spatial inversion)

and time-reversal invariance, which restrict the type of nuclear multipole moments that may

be observed. Parity invariance alone results in nuclear eigenstates that are characterized

by well-defined parity (i.e., the eigenstates either are invariant or acquire a sign inversion

upon the spatial coordinate inversion r → −r). A consequence of this symmetry is that all

odd-rank (k = 1, 3, 5 . . .) electric multipoles [14, §3.5],[21, §3-3] and all even rank magnetic

multipoles (k = 0, 2, 4, . . .) are zero in the nuclear system.7 Small exceptions to this rule

may be possible due to symmetry violations, e.g., parity violation due to the weak nuclear

forces. It also should be noted that these selection rules hold for the diagonal multipole ma-

trix elements (i.e., the static multipole moments), not for the off-diagonal matrix elements

(which correspond to nuclear multipole transitions).

Upon making a survey of the magnetic multipole moments, one finds that the mag-

netic monopole momentM0 is forbidden (indeed, a magnetic monopole has never been found

in nature); the dipole moment M1 has already been considered; the magnetic quadrupole

momentM2 is forbidden; and the octupole momentM3 [22, 23, 24] and higher moments are

small and difficult to observe. Upon considering the electric multipole moments, one finds

that the electric monopole moment E0 is allowed (it is proportional to the total nuclear

7The parity operator P̂ is unitary such that P̂ †P̂ = 1̂, and the multipole operators transform in a
definite way under the parity operation such that P̂ T̂

(E)
k,q P̂

† = (−1)kT̂ (E)k,q for electric multipoles and

P̂ T̂
(M)
k,q P̂ † = (−1)k+1T̂ (M)k,q for magnetic multipoles. The eigenstates |α; I,mI〉 (assumed to be non-

degenerate except for the mI degeneracy) have well-defined parity such that P̂ |α; I,mI〉 = (±1)|α; I,mI〉.
Therefore 〈α; I,mI |T̂ (E)k,q |α; I,mI〉 = 〈α; I,mI |P̂ †P̂ T̂

(E)
k,q P̂

†P̂ |α; I,mI〉 = (−1)k〈α; I,mI |T̂ (E)k,q |α; I,mI〉 and
〈α; I,mI |T̂ (M)k,q |α; I,mI〉 = (−1)k+1〈α; I,mI |T̂ (M)k,q |α; I,mI〉, from which the aforementioned selection rules
may be deduced.
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charge) but causes a uniform shift in energy of the {|α; I,mI〉} manifold and thus may be

neglected;8 the electric dipole moment E1 is forbidden; the electric quadrupole moment

E2 is allowed and will be discussed below; the octupole moment E3 is forbidden; and the

hexadecapole moment E4 [24, 25, 26, 27] and higher moments are small and difficult to

observe.

The electric quadrupole moment of the nucleus can play a large role in the NMR

studies of nuclei that have non-zero quadrupolar couplings to their local chemical environ-

ments. Non-spherical nuclei generally possess an electric quadrupole moment, corresponding

to a component of the electric charge distribution that can be described by the second-rank

spherical harmonics. In the field of nuclear physics it is customary to speak of the “intrinsic”

quadrupole moment of the nucleus referred to a nucleus-fixed coordinate system and the

“spectroscopic” quadrupole moment referred to a space-fixed coordinate system. Most nu-

clei are non-spherical and possess an intrinsic electric quadrupole moment.9 However, a non-

spherical nucleus can undergo rotational motion (which is not apparent in the nucleus-fixed

frame), and the spectroscopic quadrupole moment measured in NMR studies is actually the

rotationally-averaged intrinsic quadrupole moment viewed from a space-fixed frame. This

averaging can change the magnitude and even the sign of the observed quadrupole moment

relative to the intrinsic quadrupole moment [14, §5.2], and in the case of I = 0 and I = 1/2

8A uniform shift of the energy levels of a system can be shown to have no effect on their populations or
on the system dynamics.

9Nuclei whose nucleon number A is near one of the nuclear “magic numbers” are typically the most
spherical. In addition to simple considerations of the static proton distribution, there are many internal
motions that can give rise to a non-spherical charge distribution. For instance, the orbit of a single neutron
(which, being uncharged, cannot directly create an electric quadrupole moment) around a spherical nuclear
core can perturb the core into a quadrupolar charge distribution [15, §18.1]. One must also consider the col-
lective motion of the nucleons in order to describe the large quadrupole moments of “permanently deformed”
nuclei.[14, §5.2],[15, §18],[21, §9] (Although these nuclear potentials are treated as being non-spherical, ro-
tational invariance is not violated because the deformation is an artifact of generating an effective potential
from the mean field of the collective rotating nucleons [21, §10.6].)
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nuclear states, the quadrupole moment is completely averaged to zero [15, §18.2],[21, §3-3]

and is not observable by NMR. This is consistent with the Wigner-Eckart theorem, which

predicts that the quadrupole moment 〈α; I,mI = I|T̂Q2,0|α; I,mI = I〉 is zero unless I ≥ 1

(recall that mI is the component of angular momentum along a space-fixed axis).10

There is an analogous expression to Eq. 1.4 that relates the electric quadrupole

moment operator components to functions of the angular momentum operator components,

which will be developed in §1.3.7. The important point to remember is that the Wigner-

Eckart theorem can be used to relate the nuclear multipole moments to the nuclear angular

momentum operator, and through this formalism the nuclear dynamics due to the interac-

tion of the multipole moments with external fields can be related to the angular momentum

dynamics.11 It is for this reason that the quantum theory of angular momentum plays such

a large role in the modern theory of nuclear magnetic resonance, which in a sense is the

study of the interactions of atomic nuclei with external magnetic and electric fields created

by the local chemical environment.

1.3 The Hamiltonians of NMR

The Hamiltonian operator is the quantum-mechanical operator for the energy of

the system; i.e., 〈Ĥ〉 is the expectation value of the energy. As will be seen in §2, the

Hamiltonian plays a very important role in quantum mechanics: it is the generator of time

10Similar symmetry arguments can be extended to higher multipole moments, e.g., I ≥ 2 is required to
support a spectroscopic nuclear hexadecapole moment.
11For instance, it might not be immediately clear how the interaction of a nucleus with an electric field

can affect the magnetic resonance. However, the coupling of the nuclear electric quadrupole moment with an
external electric field gradient affects the angular momentum dynamics, which in turn guides the dynamics
of the magnetic moment vector (cf. Eq. 1.4). Thus the effect of the electric quadrupole coupling ultimately
may be observed in the dynamics of the nuclear magnetization vector.
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evolution [28, §8],[29, §4]. If the Hamiltonian operator for a particular system is known

the quantum-mechanical time evolution of that system is completely specified. The pulsed

Fourier-transform NMR technique makes direct or indirect measurements of the nuclear

angular momentum dynamics using transient detection of the bulk nuclear magnetization.

These dynamics are due to quantum beat effects when the angular momentum is prepared

in quantum-mechanical superposition of energy eigenstates; i.e., the frequencies contained

in the spectrum of the evolution are the transition frequencies between pairs of energy

eigenstates. The Hamiltonians of NMR are few and well-understood and generally involve

the interaction of the nuclear angular momentum with external or local magnetic or electric

fields. The local fields are produced by atomic charges and currents and are characteristic of

the microscopic chemical environment of the nucleus. If these fields are static they contain

information about the local molecular structure; if they are rendered time dependent by

molecular motion, they contain information about the molecular dynamics.12 The Hamilto-

nian formalism is the means by which information about molecular structure and dynamics

can be extracted and interpreted from the NMR measurement of nuclear spin evolution.

The treatise of Abragam [6] provides probably the most complete description of

the physical and mathematical origin of the Hamiltonians that arise in NMR studies. A

more accessible but still detailed treatment is included in the text by Slichter [5]. Levitt’s

book [3] also contains a thorough and extremely physical description of these Hamiltonians

that is accessible to novices yet useful to advanced spectroscopists. Smith et al. [30] have

published a good pedagogical review of the Hamiltonians of NMR. These Hamiltonians will

12The terms “static” and “time dependent” are relative terms that mean “slow” and “fast” compared to
the characteristic timescale of the nuclear spin evolution. This timescale is on the order of the reciprocal
energy of the NMR interaction as measured in frequency units.
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be described below; the treatment will be non-relativistic and all magnetic and electric fields

will be treated classically (i.e., without second quantization).

1.3.1 Zeeman Hamiltonian

The most fundamental NMR interaction is the Zeeman effect, which is the coupling

of the nuclear magnetic moment to a magnetic field. Not only are most of the local NMR

Hamiltonians interpretable as the interaction of the nuclear spin with a local magnetic field,

the NMR experiment itself is conducted in a large, experimentally applied magnetic field

which can be on the order of tens of Tesla in modern superconducting magnets. The fact

that these experiments are conducted at high magnetic field is what puts the ‘magnetic’

in ‘Nuclear Magnetic Resonance.’ The use of high field techniques provide many advan-

tages, as will be discussed in various parts of this dissertation: sensitivity is increased due

to larger nuclear thermal polarizations and increased Larmor frequencies for inductive de-

tection; magnetic field-induced chemical shifts are increased, leading to increased spectral

resolution; the Zeeman splitting of nuclear magnetic sublevels provides a means of coher-

ently manipulating the nuclear magnetization using resonant radiofrequency pulses; the

truncation of internal spin interactions by the externally-imposed Zeeman interaction leads

to simplified selection rules for NMR transitions and simplified spectra; this truncation cre-

ates an effective cylindrical symmetry of the system about the magnetic field axis which

allows the experimentalist to apply coherence pathway selection techniques that result in

further spectral simplification.

The quantummechanics text by Landau and Lifshitz contains a good non-relativistic

derivation of the Zeeman Hamiltonian (in atoms) from a “first principles” description uti-
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lizing the magnetic vector potential [31, §112]. A slightly different approach will be taken

here. The classical energy of a magnetic dipole µ in a magnetic field B is [17, §5.7]:

EZ = −µ ·B. (1.5)

Eq. 1.5 indicates that the energy of the dipole is low when it is oriented parallel to the

magnetic field and is high when it is oriented antiparallel to the magnetic field; the Zeeman

energy is linear in the strength of the field. The promotion of the classical dipole moment

vector µ to a quantum-mechanical vector operator for the magnetic moment of the nucleus

µ̂ yields the correct form of the Zeeman Hamiltonian operator:

ĤZ = −µ̂ ·B. (1.6)

Eq. 1.6 can be rewritten in terms of the nuclear angular momentum operator Î using Eq.

1.4:

ĤZ/~ = −γÎ ·B, (1.7)

where γ is the nuclear gyromagnetic ratio. For the sake of correctness Eq. 1.4 expressed the

angular momentum operator in its correct units, but Eq. 1.7 and every subsequent equation

in this dissertation makes all factors of ~ explicit by using dimensionless angular momentum

operators. Eq. 1.7 has treated the nucleus (or rather, the nuclear ground state) as if it had

no internal structure, which is a good approximation since the coupling of the nucleons to

the magnetic field is very much weaker than the couplings (spin–spin or otherwise) between
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nucleons.13

NMR studies are usually carried out in the presence of a large magnetic field which

can be on the order of ∼10 Tesla in a superconducting magnet. By convention this magnetic

field is taken to be in the +z-direction,

B0 = B0z̃. (1.8)

The Zeeman Hamiltonian in the presence of this field becomes

ĤZ/~ = −γB0Îz = −ω0Îz, (1.9)

where the Larmorfrequency is defined to be

ω0 = γB0. (1.10)

Various authors define the Larmor frequency in different ways, i.e., ω0 = γB0, ω0 = −γB0,

or ω0 = |γB0|. In certain situations the sign of the Larmor frequency becomes very impor-

tant and care should be taken to treat the signs in a consistent manner [3, 33, 34].

Nuclear Larmor frequencies are typically on the order of |ω0|/2π ∼ 101–102 MHz;

commercial magnets are available which produce H-1 Larmor frequencies of 900 MHz.14

The Zeeman interaction at these field strengths completely dominates any other interaction

experiences by the nuclear spins. For this reason Eq. 1.9 is often referred to as the Zeeman

13See Refs. [31, §112] and [32, §3.3] for discussions of further effects of very strong magnetic fields on
atomic electrons, which experience much weaker forces than the intranuclear forces.
14NMR spectroscopists often refer to their magnets in terms of the H-1 Larmor frequencies they produce.
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Hamiltonian even if local molecular magnetic fields or other small applied fields are present;

this Hamiltonian is often designated Ĥ0. NMR calculations are almost exclusively performed

in the Zeeman eigenbasis, i.e., the states {|I,mI〉}, where mI is the magnetic quantum

number for the projection of angular momentum along the magnetic field axis, z. Often

NMR spectroscopists use terms like “z-field,” “z-rotation,” “z-filter,” etc.; here “z” always

refers to the direction of B0. Likewise, the designations “longitudinal” and “transverse” are

always taken to mean “parallel to B0” or “perpendicular to B0,” respectively.

The eigenvalues of the Zeeman Hamiltonian are calculated according to ĤZ |I,m〉 =

E0|I,mI〉:

E0/~ = −mIω0. (1.11)

The energies of the magnetic sublevels {|I,mI〉} (which are degenerate in zero magnetic

field) split linearly in B0. The sublevel energies are also proportional to the magnetic

quantum number. When µ̂ is parallel to Î (i.e, γ > 0) the states in which mI (the angular

momentum projection along B0) is positive have magnetic moments that are aligned with

components in the direction of B0 and have negative energies. The mI < 0 states for

γ > 0 correspond to magnetic moments aligned against B0 and have positive energies. The

ordering of the magnetic suvblevels is reversed when γ < 0. These results reproduce those

of the classical equation (Eq. 1.5) when µ is replaced by one of its quantized values. Note

that two levels that differ by |∆mI | = 1 differ in energy by ~|ω0|. The selection rule for

NMR excitation and detection is |∆mI | = 1 (see §1.6 and §1.7); the Larmor frequency |ω0|

corresponds both to the excitation resonance frequency and to the absolute frequency of
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spin precession in the magnetic field.

1.3.2 Basic form of the solid state Hamiltonian

Solid state NMR is the most general case of NMR from the perspective of Hamil-

tonian dynamics because some of the local Hamiltonians average to zero due to molecular

motion in isotropic fluids that is fast on the NMR timescale. The local Hamiltonians con-

sidered in this work are the chemical shielding, dipole–dipole coupling, electric quadrupolar

coupling, and J-coupling (also known as the indirect or scalar coupling) Hamiltonians.

These Hamiltonians are parameterized by values that depend on molecular structure; this

is what makes NMR useful for structure determination. There exist some other interactions

such as the spin-rotation coupling; i.e., the coupling of the nuclear spin to the magnetic field

created by electric currents generated by molecular rotation. The spin-rotation interaction

is generally not active in the solid state and is typically averaged away in fluids but can enter

as a relaxation term, e.g., it plays a role in the nuclear spin relaxation of condensed-phase

Xe-129, as is mentioned briefly in §6.4.1.

All the common NMR Hamiltonians can be written as a contraction of a second-

rank Cartesian tensor A containing lattice degrees of freedom with a second-rank Cartesian

tensor T̂ containing nuclear spin operators (see Appendix A):

Ĥξ = T̂
ξ
: Aξ = T̂ ξjiA

ξ
ij , (1.12)

where e.g. Aij labels the (ith, jth) Cartesian component of the tensor (i, j ∈ {x, y, z}). The

transpose notation used in Appendix A is suppressed here for convenience. The symbol ξ
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labels the interaction, i.e., chemical shielding, quadrupolar coupling, etc. According to Eq.

A.19 this equation can be written in terms of spherical tensor components:

Ĥξ =
2∑

k=0

k∑

q=−k
(−1)qAξk,qT̂

ξ
k,−q, (1.13)

where e.g. Aξk,q represents order-q component of the rank-k spherical tensor Aξk. Eq. A.11

indicates that the Aξ0 spherical tensor is proportional to the trace (isotropic component)

of Aξ; the anisotropic part of Aξ is described by the spherical tensors Aξ1 and Aξ2, which

correspond to the antisymmetric (Aξji = −Aξij) and symmetric (Aξji = Aξij) components

of Aξ, respectively. The antisymmetric component (if nonzero) usually does not make a

significant contribution to the NMR spectra—i.e., in the case of the chemical shielding [8,

§2.2],[35]—although there are some experiments in which the effects of these terms may be

observed (see Refs. [35, 36, 37] and references therein).

1.3.3 High field truncation of Hamiltonians

The laboratory-frame solid-state Hamiltonian in a high-field NMR experiment is

Ĥ = ĤZ +
∑

ξ

Ĥξ. (1.14)

The Zeeman Hamiltonian could be due to one spin or to a sum of spins. Typically in NMR

experiments the magnitude of the Zeeman Hamiltonian is much larger than the Hamilto-

nians of any of the internal interactions, ‖ĤZ‖À‖Ĥξ‖. It is then appropriate to treat the

internal Hamiltonians as perturbations on the Zeeman Hamiltonian. It would be simple to
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use static perturbation theory to calculate the shifts of the Zeeman energy levels due to the

local interaction. However, in pulsed FT (time domain) NMR—as opposed to continuous

wave NMR—it is important to be able to calculate the dynamics and it is more useful to

calculate the perturbation in terms of effective Hamiltonian operators. In this formalism

the Zeeman interaction is said to “truncate” the local Hamiltonians, such that only part

of them are effective at inducing spin dynamics in the presence of the dominant Zeeman

interaction. The effective is called the secular Hamiltonian of the interaction. The Zeeman

interaction is usually so large that first-order perturbation theory is sufficient; however,

some local interactions such as the electric quadrupolar coupling are large enough that

higher-order perturbation theory is necessary. In general, the truncated Hamiltonians will

be of the form

Ĥξ ≈ Ĥ(1)
ξ + Ĥ

(2)
ξ . (1.15)

The perturbation treatment can be implemented in several ways. It will be assumed for now

that the Zeeman Hamiltonian applies to a single spin or to a set of equivalent spins (i.e., with

the same Larmor frequency). The case in which the spins have different Larmor frequencies

can cause some complications, such as the truncation of the dipole–dipole coupling and J-

coupling Hamiltonians in heteronuclear systems. The results of this type of truncation will

be discussed further in the discussion of the dipole–dipole coupling in §1.3.5; an instructive

example of truncation via a static perturbation theory treatment is included in Ref. [2,

§5.2.3].

Consider the case of a single spin I where ĤZ/~ = −ω0Îz and |m〉 ≡ |I,mI〉 are
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the eigenstates of ĤZ , i.e., the unperturbed states. Since these states are non-degenerate

in the presence of the magnetic field, the first-order truncated Hamiltonian of the local

interaction will simply be diagonal: with its matrix elements being the first-order static

perturbation theory corrections to the unperturbed energies:

Ĥ
(1)
ξ =

∑

m

|m〉Hξ
mm〈m|, (1.16)

where Hξ
mm = 〈m|Ĥξ|m〉 = E

(1)
m is the first-order static perturbation theory energy cor-

rection for the unperturbed state |m〉. Note that [Ĥ
(1)
ξ , ĤZ ] = 0. This is a fine matrix

representation of Ĥξ, but there is a cleaner way to get an operator representation, involving

a transformation into the interaction frame of the Zeeman interaction and application of

average Hamiltonian theory (AHT, see §2.4).

The expanded form of the laboratory frame Hamiltonian (Eq. 1.14) for a single

spin I and a single interaction may be found using Eqs. 1.9 and 1.13:

Ĥ = −~ω0Îz +
2∑

k=0

k∑

q=−k
(−1)qAξ2,qT̂

ξ
2,−q. (1.17)

The transformed Hamiltonian in the interaction frame of ĤZ is given by Eqs. 2.40 and 2.41

using the unitary transformation operator V̂Z(t) = e−iĤZ t/~ = eiω0tÎz :

ˆ̃
H(t) = e−iω0tÎz

[ 2∑

k=0

k∑

q=−k
(−1)qA2,qT̂2,−q

]
e+iω0tÎz

=
2∑

k=0

k∑

q=−k
(−1)qAξ2,qT̂

ξ
2,−qe

iqω0t, (1.18)
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where Eq. B.15 has been used. This is one reason why the spherical tensor formalism is

so useful: the interaction frame transformation operator V̂Z(t) is just operator R̂z(−ω0t)

for a rotation about the z-axis through a time dependent angle −ω0t, and spherical tensors

have simple transformation properties under rotations, particularly under z-rotations. The

Zeeman Hamiltonian has been removed in Eq. 1.18 by the interaction frame transformation.

Once the large Hamiltononian has been removed it is appropriate to apply time dependent

perturbation theory in the interaction frame. The interaction frame of the Zeeman Hamil-

tonian is defined by a cycle time |ω0|; according to §2.4 a lowest-order average Hamiltonian

can be computed as the time integral of Eq. 1.18 from 0 to τ = |ω0|−1,

ˆ̃
H
(1)

ξ =

∫ τ

0
dt′ ˆ̃H(t′) =

2∑

k=0

Aξk,0T̂
ξ
k,0. (1.19)

The effect of the interaction frame transformation is to go into a frame that co-rotates with

the Larmor precession; in this frame the terms of the local Hamiltonian are either static

or oscillate at ω0 or 2ω0. These oscillations are very fast compared to the characteristic

rate at which the spins evolve under the local Hamiltonian, i.e., |ω0| À‖ Ĥξ/~ ‖, so these

terms average to zero on the long term. The AHT treatment actually just assumes they

average to zero over one Larmor period, although there are some perils to this assumption

because AHT is a stroboscopic theory and the spins are not actually observed once per

Larmor period. At any rate, the terms in Ĥξ that survive are the ones that remained time

independent in the interaction frame, i.e., the T̂k,0 terms that commute with ĤZ .

The fact that the secular part of Ĥξ is the part that commutes with ĤZ ∝ Îz has

a physical interpretation. As has been demonstrated, if [Ĥ
(1)
ξ , ĤZ ] = 0 then [Ĥ

(1)
ξ , Îz] = 0



1.3. THE HAMILTONIANS OF NMR 22

and Ĥ
(1)
ξ is invariant under z-rotations. That means that Ĥ

(1)
ξ is symmetric in the spin

space about the z-axis. The effect of the large Zeeman interaction is to impose a cylin-

drical symmetry about B0 onto the spin system. Note that in this case Ĥ
(1)
ξ is the same

in both the laboratory and interaction frames. It is therefore suitable for use in rotating

frame calculations. An important result of the Zeeman truncation is the introduction of a

(spatial) orientational dependence of the energy eigenvalues. Eq. 1.13 is valid in any coor-

dinate system; the zero-field local Hamiltonians are scalar operators and their eigenvalues

are independent of any choice of coordinates (although in general the eigenvectors are not).

Once the magnetic field truncates the interaction, however, the isotropy of space is broken

and the energies of the system now depend on the molecular orientation with respect to B0.

In a solid powder which contains a random distribution of molecular orientations there is

also a distribution of resonance frequencies due to the local interactions. These anisotropic

interactions lead to the so-called “powder broadening” of solid-state NMR spectra. The

powder-broadened lineshapes contain useful chemical information but their widths are on

the order of ∼‖Ĥξ‖ /~ is also on the order of the dispersion of resonances due to that inter-

action; therefore it will be difficult to resolve the solid-state NMR spectrum of a compound

whose nuclei occupy multiple chemically- or magnetically-distinguishable sites because the

resonances will overlap. Techniques such as magic angle sample spinning have been devel-

oped in order to reduce the solid-state linewidths. The powder broadening is not observed

in fluids because of motional averaging of the the anisotropic Hamiltonians.

The next step is to calculate the higher order perturbation terms of the local Hamil-

tonian, which are sometimes necessary to consider. The higher-order perturbation treatment
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has more subtleties to it. Some of the techniques are reviewed in Refs. [38, 39, 40]; a few of

the difficulties are summarized here. It is not immediately clear to what order the pertur-

bation expansion in Eq. 1.15 can be carried out such that the terms are still secular (i.e.,

such that they commute with ĤZ) because the full Ĥξ itself does not in general commute

with ĤZ .
15 The average Hamiltonian calculation of the second-order truncated quadrupo-

lar Hamiltonian results in certain non-secular terms as well as secular terms [38, 42]. In

general one must also consider the fact that the Zeeman eigenstates must receive corrections

in higher-order perturbation treatments. It is appropriate to apply a tilting matrix trans-

formation to include these effects [38, 39, 40, 43]. A standard procedure [10, §4],[44] used

to develop the second-order secular Hamiltonian Ĥ
(2)
ξ is to generate the diagonal matrix

according to the usual second-order energy corrections in the static perturbation theory [45,

§5.1] in the manner of Eq. 1.16. The result is

Ĥ(2) =
∑

m,n6=m

|m〉〈m|Ĥξ|n〉〈n|Ĥξ|m〉〈m|
~ω0(m− n)

. (1.20)

Note that if more than one local interaction is involved, there can exist interference terms

between Ĥξ and Ĥξ′ in the second-order secular Hamiltonian. These cross-correlation effects

will not be considered here, although they are discussed further in §1.5 and §4.

Eq. 1.20 can be rewritten with the aid of Eq. 1.13:

Ĥ(2) =
2∑

k,k′=0

k,k′∑

q=−k,q′=−k′

∑

m,n6=m

(−1)q+q′Ak,qAk′,q′ |m〉〈m|T̂ ξk,−q|n〉〈n|T̂
ξ
k′,−q′ |m〉〈m|

~ω0(m− n)
. (1.21)

15Some authors use a somewhat different definition of “secular”, see Ref. [41, §4.3.3].
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This expression can be simplified considerably upon considering the form of the Zeeman-

basis matrix elements of the T̂k,q operators. In the case of a Hamiltonian Ĥξ that contains

purely rank k = 2 components, the second-order secular Hamiltonian can be written as [44]:

Ĥ
(2)
k=2 =

∑

m

∑

p6=0

Aξ2,−pA
ξ
2,p|m〉〈m|T̂

ξ
2,pT̂

ξ
2,−p|m〉〈m|

~ω0p

=
∑

p>0

Aξ2,−pA
ξ
2,p[T̂

ξ
2,−p, T̂

ξ
2,p]

~ω0p
. (1.22)

Note that the second-order secular Hamiltonians go like ∼ ω2ξ/ω0, where ‖Ĥξ ‖ ∼ ~ωξ.16

These terms therefore become less important as the magnetic field increases, as is expected.

It is important to note than in general the only NMR interaction that is large enough such

that it has a non-negligible effect on the observed spectrum (i.e., it causes shifts that are

larger than the linewidths) is the electric quadrupolar coupling. Second-order perturbation

theory is however important in the theory of spin relaxation (see §1.5).

1.3.4 Chemical shielding Hamiltonian

An excellent description of the theory of the chemical shielding in diamagnetic

molecules is given in §4 of the book by Slichter [5]. See also the discussion given by Abragam

[6, §VI.II.B] and Refs. [35, 46]. A magnetic field (call it B0 = B0z̃) applied to an atom is

capable of inducing currents of the atomic electrons. These currents are partly due to the

quantum-mechanical analog of the classical diamagnetic current [47, §6.1.3] and partly due

to mixing the atomic ground state with excited states that have orbital angular momentum.

16Another potential problem with the average Hamiltonian treatment is that the factor of ω−1
0 comes in

as the reciprocal of the cycle time tc, where tc > 0. The static perturbation theory correctly treats ω0 as a
signed quantity.
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The induced currents will usually circulate in a sense such that the magnetic field they create

at the center of the atom opposes the direction of B0. Therefore the effective magnetic field

at the position of the nucleus is less than B0 and the nuclei are said to be “shielded” from

the effects of B0 by the electrons. This effect is called the chemical shielding; it is the only

one of the NMR interactions discussed here that disappears in the absence of an external

magnetic field. Note that sometimes a “deshielding” convention is often assumed; in that

case the effect is known instead as the chemical shift.

If the induced electron currents create a field Bσ
ind(0) at the position of the nucleus

the total Zeeman interaction can be written as

Ĥtot
Z = −µ̂ · [B0 +Bσ

ind(0)]

(1.23)

The induced field Bσ
ind is found experimentally to be linear in B0, although its direction

can vary depending on the relative orientations of the molecule and B0. Therefore one can

write a very general expression,

Bσ
ind(0) = −σB0, (1.24)

where the second-rank tensor σ is known as the chemical shielding tensor and provides the

mapping between B0 and vectB
σ
ind(0). The negative sign is introduced so that σ has mostly

positive components when it acts to shield the nucleus. The chemical shielding tensor is

the quantity of interest in NMR because it contains information about the local chemical
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structure, i.e., how the electrons in different chemical environments respond to magnetic

fields. For example, a particular type of atom located in a particular functional group

usually is associated with a characteristic chemical shielding, which is used ubiquitously

for molecular structural determination by NMR. NMR shielding tensors are usually on the

order of ‖ σ ‖∼ 10−4–10−5, i.e., the induced magnetic field at the nucleus is on the order of

∼ 10–100 parts per million (ppm) of B0. The magnitude of the shielding depends on how

easily the electron currents are induced; an atom such as hydrogen does not have a very

polarizable electron cloud and its shielding ranges over about 10 ppm in different chemical

environments, whereas xenon has a chemical shielding range of up to thousands of ppm.

In superconducting high field magnets the absolute value of the resonance shifts due to

chemical shielding from the Larmor frequency of a bare nucleus are usually on the order of

kHz to tens of kHz.

The total Zeeman Hamiltonian may be written in terms of the chemical shielding

as

Ĥtot
Z = −~γÎ · (1− σ) ·B0. (1.25)

It is customary to write this as

Ĥtot
Z = ĤZ + Ĥσ, (1.26)

where ĤZ is the usual Zeeman Hamiltonian due to B0 in the absence of chemical shielding;
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Ĥσ is known as the chemical shielding Hamiltonian:

Ĥσ/~ = γÎ · σ ·B0, (1.27)

which in terms of laboratory-frame coordinates {x, y, z} is

Ĥσ/~ = γB0(σxz Îx + σyz Îy + σzz Îz), (1.28)

the secular part of which is

Ĥ(1)
σ /~ = σzzω0Îz, (1.29)

where ω0 = γB0. The tensor component σzz in the laboratory frame can be related to

the principal axis system (PAS) components of σ via a rotation of the coordinate system.

It is also customary to make a second-rank Cartesian tensor T = B0Î and work in terms

of a spherical tensor representation using Eq. 1.13 (see Appendix A). Then the secular

approximation can be applied as described in §1.3.3. Since T is created from only one

vector that contains spin operators, the spherical components of the rank-2 tensor T are

more conveniently written in terms of rank-1 spin operators (see Appendix A of [8]). The

spatial tensors remain of rank k = 0, 1, 2. The k = 1 antisymmetric components of σ

typically do not give a secular contribution to the spectrum (see §1.3.2), but the k = 0

isotropic and k = 2 symmetric anisotropic components do contribute. The secular chemical
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shielding Hamiltonian may be written as [10, §1.4.1]

Ĥ(1)
σ = (ωisoσ + ωanisoσ )Îz, (1.30)

where the isotropic component of the characteristic chemical shielding frequency is

ωisoσ = σisoω0 (1.31)

and the anisotropic shielding frequency written in terms of the polar angles (θ, φ) that relate

the Z-axis in the PAS of σ to the laboratory frame z-axis is

ωisoσ =
1

2
∆σω0[3 cos

2 θ − 1 + ησ sin
2 θ cos 2φ]. (1.32)

The isotropic chemical shielding written in terms of its PAS components {X,Y, Z} is

σiso =
1

3
Tr[σ] =

1

3
(σXX + σY Y + σZZ), (1.33)

and the chemical shielding anisotropy is referenced to σiso:

∆σ = σZZ − σiso. (1.34)

The chemical shielding asymmetry parameter is

ησ = (σXX − σY Y )/σZZ . (1.35)
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It vanishes when σ is symmetric about some axis.

1.3.5 Dipolar coupling Hamiltonian

The magnetic field at a point r due to a classical magnetic dipole µ
2
located at

the origin is [17, §5.6]:

B2(r) =
µ0
4π

[3r̃(r̃ · µ
2
)− µ

2

r3
+

8π

3
µ
2
δ3(r)

]
, (1.36)

where r ≡ |r| is the magnitude of r, r̃ ≡ r/r is a unit vector in the direction of r, δ3 is the

three-dimensional Dirac delta function, and µ0 is the magnetic permeability of free space.

A diagram of two interacting magnetic dipoles is shown in Fig. ??. The classical energy of

r

β

z

r

β

z

Figure 1.1: Schematic of two magnetic dipoles interacting via their magnetic fields.
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a magnetic dipole µ
1
in the field of µ

2
is:

ED = −µ
1
·B2(r)

= −µ0
4π

[3(µ
1
· r̃)(r̃ · µ

2
)− µ

1
· µ
2

r3
+

8π

3
(µ
1
· µ
2
)δ3(r)

]
. (1.37)

This expression is symmetric upon exchange of µ
1
and µ

2
, and could just as well have been

written as ED = −µ
2
·B1(r), the energy of µ

2
in the dipole field of µ

1
. The δ-function term17

becomes important if there is spatial overlap between the two dipoles, such as between a

nucleus and an atomic s-state electron, known as the Fermi contact contribution to the

hyperfine interaction.18 However, in the context of the internuclear dipole-dipole coupling,

this term may be neglected because atomic nuclei do not overlap with each other to any

appreciable extent under normal laboratory conditions.

Eq. 1.37 can be written in a compact Cartesian tensor notation as (see Appendix

A):

ED = −µ
1
·A

D
· µ
2
= −T

D
: A

D
, (1.38)

where A
D

=
µ0
4πr3

[3rr/r2 − 1] and T
D

= µ2 µ1. The δ-function contact term has been

neglected. The tensor T
D

contains the information about the orientation of the dipole

vectors and the traceless tensor A
D

contains the information about the spatial arrangement

of the dipoles relative to each other. The spherical tensor formalism is useful for determining

17This expression uses the Ampère model of a classical magnetic dipole rather than the Gilbert model to
calculate the delta-function term [47, §6.1.2], which is consistent with hyperfine splitting measurements [48].
18The nucleus-conduction electron contact term in metals leads to a large nuclear resonance shift called

the Knight shift [5, §4.7].



1.3. THE HAMILTONIANS OF NMR 31

the secular contribution to the homonuclear dipolar Hamiltonian.

A rigorous quantum-mechanical derivation of the magnetic dipole-dipole coupling

Hamiltonian without the contact term yields:

ĤD = −µ0
4π

1

r3
[3(µ̂

1
· r̃)(r̃ · µ̂

2
)− µ̂

1
· µ̂
2
]

= ~ω12D [3(Î1 · r̃)(r̃ · Î2)− Î1 · Î2], (1.39)

where ω12D = −µ04πγ1γ2~r
−3. Eq. 1.39 has the same form as Eq. 1.37 except the clas-

sical dipole moments µ
1
and µ

2
have been promoted to quantum-mechanical operators

µ̂
1
= γ1~Î1 and µ̂

2
= γ2~Î2. The angular momentum operators have been taken to be

dimensionless. In the case of two nuclear magnetic moments, r is the internuclear vector

and r is the average internuclear distance. The dipolar coupling ω12D is bilinear in the gy-

romagnetic ratios and goes as the inverse cube of the average internuclear (interatomic)

distance. Upon choosing the quantization axis z to be along the internuclear vector r, Eq.

1.39 takes the simple form ĤD/~ = ω12D [3Îz1Îz2− Î1 · Î2]. This is easily diagonalized to give

the eigenvalues ~ω12D /2, ~ω12D /2, 0, and −~ω12D , which are independent of the direction of the

internuclear vector (although interestingly, the eigenvectors are not). The single-quantum

transitions are observed at the frequencies ±3
2 |ω

12
D |, corresponding to two lines split by

3|ω12D |. This is the zero-field NMR spectrum of a pair of dipole-coupled spins.

Most NMR studies are conducted at high magnetic fields where ‖ ĤZ ‖À‖ ĤD ‖.

The quantization axis z is normally taken to be along the direction of the external magnetic

field B0. The chemically-shielded Zeeman Hamiltonian is Ĥ0/~ = −ω01 Îz1 − ω02 Îz2, where

ω01 = γ1B0(1 − σzz1 ) and ω02 = γ2B0(1 − σzz2 ), and the shielding tensor components are
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on the order of ppm to hundreds of ppm (see §1.3.4). The secular approximation (a first-

order perturbation theory treatment) keeps only the part of ĤD that commutes with Ĥ0.

There are two relevant limits: the weak coupling limit |∆| À |ω12D | where dipolar coupling

is much less than the Larmor/chemical shift frequency difference ∆ = ω01 − ω02, and the

strong coupling limit |∆| ¿ |ω12D | where the dipolar coupling is much greater than the

Larmor/chemical shift frequency difference. At high magnetic fields, on the order of Tesla,

virtually all heteronuclear spin pairs are in the weak coupling limit because ∆ ≈ γ1B0−γ2B0

corresponds to a Larmor frequency difference on the order of MHz, whereas |ω12D |/2π is

typically on the order of 10 kHz or less. Homonuclear spin pairs have γ1 = γ2 = γ, so

∆ = γB0σ
zz
1 − γB0σzz2 is just the chemical shift difference, which can be smaller or larger

than the dipolar coupling depending on the system. From this perspective, a heteronuclear

system looks like a homonuclear system with an extremely large chemical shift difference.

The secular dipolar Hamiltonian in the strong-coupling limit (also called the high-

field homonuclear dipolar Hamiltonian) is:

Ĥsec,s.c.
D /~ = ω12D

(3 cos2 β − 1

2

)
[3Îz1Îz2 − Î1 · Î2]

= ω12D
(3 cos2 β − 1

2

)
[2Îz1Îz2 −

1

2
(Î+1Î−2 + Î−1Î+2)], (1.40)

where β is the angle between the internuclear vector and the z-axis and Î±j = Îxj±iÎyj . The

orientation dependent term has a second-rank Legendre polynomial dependence: (3 cos2 β−

1)/2 = P2(cosβ). In the weak-coupling limit the secular dipolar Hamiltonian (also called
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the high-field heteronuclear dipolar Hamiltonian) becomes:

Ĥsec,w.c.
D /~ = ω12D

(3 cos2 β − 1

2

)
[2Îz1Îz2], (1.41)

which is the same as the weak-coupling Hamiltonian except the “flip-flop” terms Î±1Î∓2 have

been lost. These terms do not commute with Ĥ0 when |∆| À |ω12D |. If the system consists

of two z-quantized spin-1/2 nuclei in a Zeeman eigenstate, a term like Î+1Î−2 the state of

spin 1 from down to up and the state of spin 2 from up to down. These two processes cost

opposite amounts of energy if the spins are nearly chemically equivalent (strong coupling

limit), so the net Zeeman energy of the system is conserved. However, if these two spins

are strongly inequivalent due to the addition of the Zeeman field (weak coupling limit),

flipping spin 1 in one direction costs a very different amount of energy than flipping spin

2 in the opposite direction, and the Zeeman energy is not conserved. Making the secular

approximation in the presence of a dominant Zeeman interaction amounts to keeping only

the terms in the dipolar Hamiltonian that conserve the Zeeman energy (i.e., commute with

Ĥ0), which in the weak coupling limit are only the Îz1Îz2 terms. Note that in the strong

coupling limit ω01 ≈ ω02, the Zeeman Hamiltonian is nearly proportional to the z-component

of total angular momentum ÎZ = Îz1 + Îz2, so that [Ĥsec,s.c.
D , Ĥ0] ≈ [Ĥsec,s.c.

D ,−~ω0ÎZ ] = 0

implies that the secular dipolar coupling nearly conserves this component of total angular

momentum. However, the individual angular momentum components Îz1 and Îz2 are not

conserved. The weak coupling limit of the secular approximation keeps only the part of the

dipolar Hamiltonian that conserves the individual z-components of angular momentum Îz1

and Îz2; therefore, the z-component ÎZ of total angular momentum is also conserved.
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There is another way of looking at the difference between the weak coupling and

strong coupling secular dipolar Hamiltonians. If one goes into the interaction frame of ĤZ ,

this is equivalent to going into a doubly-rotating frame that goes around at frequency ω01

for spin 1 and frequency ω02 for spin 2. Any rapidly-oscillating terms in this frame are

considered to time-average to zero and are therefore negligible; the remaining terms are the

secular terms. From a classical perspective, the “secular” part of the dipolar magnetic field

in Eq. 1.36 in the strong coupling limit is (neglecting the contact term):

Bsec,s.c.
2 (r) =

µ0
4π

1

r3
(3 cos2 β − 1

2

)
[3µ2z z̃ − µ2], (1.42)

where µ2z = µ
2
·z̃ and β = cos−1(r̃·z̃) is the angle between r and z̃. The secular Hamiltonian

in Eq. 1.40 is recovered when the magnetic moments in the expression for the classical secular

dipolar energy −µ
1
·Bsec,s.c.

2 (r) are quantized. It is important to note that Bsec,s.c.
2 (r) in no

way represents the real magnetic field distribution due to µ
2
; rather, it is the part of the

dipolar field of µ
2
that affects the dynamics of µ

1
in the presence of a large external field

B0. The effective field B
sec,s.c.
2 contains transverse terms because when the nuclei are nearly

chemically equivalent, a magnetic moment µ
2
precessing about B0 at the Larmor frequency

ω02 creates a B
sec,s.c.
2 field with transverse components rotating at the same frequency, which

are nearly static in the frame of the magnetic moment µ
1
precessing about B0 at the

frequency ω01. These transverse magnetic field components can cause a change in µ1z through

nutation, which is consistent with the quantum-mechanical result that the individual z-

components of angular momentum are not conserved when the spins are equivalent. If the

nuclei are strongly chemically inequivalent, ω01 and ω02 are no longer nearly the same. The
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transverse components of Bsec
2 then no longer oscillate at nearly the precession frequency of

µ
1
, and thus are ineffective at changing µ

1
. The effective dipolar field in the weak coupling

limit is reached upon dropping the transverse components of µ
2
from the strong-coupling

expression:

Bsec,w.c.
2 (r) =

µ0
4π

1

r3
(3 cos2 β − 1

2

)
[2µ2z]z̃, (1.43)

which is entirely longitudinal and conserves µ1z.

The strong-coupling (homonuclear) secular dipolar Hamiltonian leads to single-

quantum peaks at ω01 ± 3
2 |ω

12
D |P2(cosβ) and ω02 ± 3

2 |ω
12
D |P2(cosβ), which correspond to a

pair of doublets of splitting 3|ω12D |P2(cosβ) centered on the chemical shift frequencies ω01

and ω02. The dipolar splitting depends on only one physical parameter (ω12D ) and one angle

(β) because the dipolar spatial tensor A
D

is axially symmetric and traceless. The weak

coupling (heteronuclear or other large chemical shift difference) secular dipolar Hamilto-

nian leads to doublets of splitting 2|ω12D |P2(cosβ) centered on ω01 and ω02. Typically only

one spin or the other is observed at one time in heteronuclear systems at high field. The

solid-state spectra have sharp doublets only in the case of a single crystal where a single

angle β is represented. In a polycrystalline powder the crystallite orientations are randomly

distributed, causing a distribution of splitting frequencies in the bulk signal and a broad-

ening of the dipolar doublets. The powder-broadened doublet distribution is called a Pake

pattern, and its shape can be calculated analytically [6, §VII.I.A(a)],[9, §E]. The total sec-

ular dipolar Hamiltonian for a collection of homonuclear spins is the sum of the individual
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pairwise dipolar Hamiltonians:

Ĥsec
D =

∑

j>k

Ĥsec jk
D = ~

∑

j>k

ωjkD P2(cosβjk)[2Îzj Îzk −
1

2
(Î+j Î−k + Î−j Î+k)], (1.44)

where ωjkD = −µ04πγ
2~r−3jk , rjk is the internuclear vector between spins j and k, and βjk

is the angle between rjk and the z-axis. The dipolar spectrum has never been calculated

analytically because [Ĥ ij
D , Ĥ

jk
D ] 6= 0 due to the flip-flop terms in the homonuclear secular

dipolar Hamiltonian, and the first truly successful approximation of the dipolar linewidth

in the many-body system was by Van Vleck moment expansion method [6, §IV.II],[5, §3.3].

The flip-flop terms also lead to apparently irreversible “spin-diffusion” effects in which e.g.

magnetization created on one nucleus propagates throughout the dipole-coupled network.

The effects of the dipolar Hamiltonian in fluids (gases and liquids) are much differ-

ent than in the solid state. The intramolecular dipole-dipole Hamiltonian averages to zero

in isotropic solution under rapid molecular reorientation due to the fact that the trace (i.e.,

the isotropic portion) of the spatial tensor A
D

is zero. (Note that A
D

is not traceless if the

contact term is included.) The intermolecular dipole-dipole Hamiltonian is also averaged to

zero on a microscopic length scale due to molecular diffusion. Therefore no dipolar splittings

are observed in isotropic solution, although the dipolar couplings can enter in higher-order

perturbation theory as a relaxation mechanism that causes line broadening, see §1.5. The

dipolar couplings also cause relaxation in solids. If the solution is not isotropic, e.g. an ori-

ented liquid-crystalline medium, the dipolar couplings are not averaged to zero. However,

fast molecular reorientation is still present, so the spectra present sharp doublets with some

orientationally-averaged splitting ω12D P2(cosβ). The orientational average P2(cosβ) is not
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zero if the averaging is anisotropic. Effective non-axially symmetric dipolar couplings in

the molecule-fixed frame have been reported in some biaxial liquid crystalline phases due

to motionally-averaged restricted rotations (librations) [49, 50, 51].

As is discussed in more detail in §6, the intramolecular dipolar couplings are not

completely averaged away by molecular diffusion over a macroscopic length scale, since the

internuclear vector r changes very little on the timescale of 1/ω12D . Most of these dipolar

couplings are quite small due to the r−3 dependence of ω12D , but they are not negligible due

to the enormous number of them, on the order of N 2/2 for N ≈ 1020 spins in a macroscopic

sample. These effects of these distant dipoles can be described by a classical mean field

approach, in which a given dipole precesses in the average magnetic field created by the

rest of the dipoles. Semiclassical and other partially quantum-mechanical methods have

also been developed to treat the coherent effects of long-range dipolar couplings.19

1.3.6 J-coupling Hamiltonian

There exists another coupling between nuclear spins called the J-coupling. This

coupling arises from the mutual dipole–dipole coupling of two nuclear spins I2 and I2 to

an electron. A simple model of the J-coupling is included in §7.7 of Ref. [32]. Since the

nucleus–nucleus coupling is mediated by electrons, it is also sometimes called the indirect

nuclear spin coupling. When the coupling Hamiltonian is averaged over electronic degrees

19The speed at which the oscillation of one dipole can be communicated to the other is limited by the finite
speed of light, so distant dipole moments cannot feel changes in each other’s orientation instantaneously.
One may therefore wonder whether such time retardation effects can appreciably alter the dynamics of a pair
of dipole-coupled nuclei separated by macroscopic distances. The authors of Ref. [52] have argued that such
effects between a pair of oscillating dipoles actually decrease as the separation increases and are completely
negligible in internuclear or any other physical systems. They did not consider collective effects in a system
of many dipoles.
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of freedom, an interaction Hamiltonian can be written purely in terms of nuclear spin

operators:

ĤJ/~ = Î1 · J · Î2. (1.45)

Like the dipolar coupling tensor A
D
, the J-coupling tensor J is axially symmetric. Unlike

A
D
, however, J is not traceless. The J-coupling Hamiltonian can be written as

ĤJ/~ = Ĥ iso
J + Ĥaniso

J , (1.46)

where

Ĥ iso
J /~ = ωJ(Î1 · Î2) (1.47)

is isotropic both in real space and in the combined spin space of I1 and I2. The Ĥ
aniso
J term

is anisotropic, i.e., its value depends on the orientation of the molecule. The J-coupling

constant is usually written in terms of frequency:

J = ωJ/2π. (1.48)

The J-coupling constants tend to be on the order of Hz to hundreds of Hz. An important

property of the J-coupling is that it is a through-bond interaction rather than a through-

space interaction like the dipole–dipole coupling; i.e., the nuclei need to belong to two

atoms that are connected through a covalently-bonded network. Therefore the J-couplings
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contain useful information about the connectivities between atoms. The J-coupling constant

is often written as nJXY , where n is the number of covalent bonds that separate nuclei X

and Y . The anisotropic J-coupling is averaged away in fluids due to molecular motion; in

solids, the J-coupling is not usually very important because the residual powder linewidths

in solids are often comparable to or larger than the J-couplings, even under magic angle

spinning conditions. Therefore the J-coupling Hamiltonian in NMR is usually taken to

be the secular part of Ĥ iso
J . All of Ĥ iso

J is secular in the strong-coupling (homonuclear)

limit when |ωJ | À |ω10 − ω20| (see §1.3.5). The interaction becomes truncated in the weak

coupling limit |ωJ | ¿ |ω10 − ω20|, which is always in effect at high field if the two spins are

heteronuclear species. The secular approximation in a J-coupled system is described in

terms of static perturbation theory in §5.2.3 of Ref. [2]. The secular strong- and weak-J-

coupling Hamiltonians are respectively (neglecting the anisotropic terms):

Ĥsec,s.c.
J /~ = ωJ(Î1 · Î2) (1.49)

Ĥsec,w.c.
J /~ = ωJ Îz1Îz2. (1.50)

1.3.7 Quadrupolar Hamiltonian

The standard references for the theory of quadrupolar interactions are the mono-

graphs by Abragam [6, §VI.I], Das and Hahn [53], and Cohen and Reif [54]. Quadrupolar

NMR has also been reviewed, e.g., Refs. [55], [56], and [44]. As was discussed in §1.2,

spin I > 1/2 nuclei in general have a non-spherical electric charge distribution and possess

electric quadrupole moments that can couple to local electric field gradients. The nuclear
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charge distributions probed in NMR are averaged over the rotational motion of the nucleus

and it is the rotationally-averaged “spectroscopic” quadrupole moment that is considered

here. Fig. 1.2 illustrates how certain non-spherical charge distributions can lead to an elec-

tric quadrupole moment. The electric field gradients that the nucleus interacts with are

typically due to external sources, e.g., the charges of nearby atoms. Note that in ionic

crystals external electric field gradients can distort the electron cloud of the atom bear-

ing the quadrupolar nucleus which in turn generates an electric field gradient of its own

at the position of the nucleus; this is called the Sternheimer antishielding [6, §VI.I.B],[54,

§12],[57, 58]. Fig. 1.3 illustrates an external charge distribution that can create an electric

field gradient at the position of the nucleus. These figures are only two-dimensional and

the actual problem must be considered in three dimensions.
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Figure 1.2: Schematic of a non-spherical nuclear charge distribution leading to an electric
quadrupole moment.
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Figure 1.3: Schematic of an external charge distribution leading to an electric field gradient
at the position of the nucleus.
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The classical quadrupolar energy is [17, §4.2]:

EQ = −1

6
Q : ∇E(0), (1.51)

where Q is the electric quadrupole moment tensor and ∇E(0) is the electric field gradient

(EFG) tensor evaluated at the position of the nucleus. The EFG tensor can be written

in terms of a new tensor V involving the electric potential instead of the electric field; its

Cartesian components are

Vij = −[∇E(0)]ij =
∂2V

∂qi∂qj
(0). (1.52)

The electric potential V (r) is defined via E(r) = −∇V (r) and qi, qj ∈ {x, y, z}. If the

classical electric quadrupole moment tensor is promoted to a quantum operator, Q → Q̂,

the quadrupolar Hamiltonian may be written in the form

ĤQ = AQ : T̂
Q
=

2∑

q=−2
(−1)qAQ2,qT̂

Q
2,−q, (1.53)

where AQ ∝ V and T̂
Q ∝ Q̂. The neglect of the k = 1 and k = 0 spherical tensor terms in

Eq. 1.53 as compared to Eq. 1.13 is justified as follows. The spatial tensor AQ is symmetric

(AQij = AQij) because of the equality of mixed partial derivatives, i.e., ∂2V
∂qi∂qj

= ∂2V
∂qj∂qi

in Eq.

1.52. Therefore according to Eq. A.11 the rank-1 spherical tensor AQ1 is zero. Also note that

the isotropic component of the spatial tensor is AQ0 ∝ Tr[V ] = ∂2V
∂x2

(0)+∂
2V
∂y2

(0)+∂
2V
∂z2

(0) =

∇2V (0). The Poisson equation of electrostatics states that ∇2V (r) = ρ(r)/ε0, where ρ(r)
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is the electric charge density at r and ε0 is the permittivity of free space. Since the charge

distribution that generates the EFG typically comes from sources such as atoms that are

external to the nucleus, ρ(r) = 0, and therefore AQ0 = 0. Note that even if ρ(0) 6= 0,

e.g., due to distortion of the s-electron distribution of the atom containing the quadrupolar

nucleus, the AQ0,0 term multiples the tensor component T̂Q0,0, which by the Wigner-Eckart

theorem (see §A.3) is proportional to 1̂. This results in a uniform shift of the energies of

the magnetic sublevels and does not affect the angular momentum dynamics.

It will be convenient to absorb the factor of 1
6 into the tensors and to move any

units involving the electric quadrupole moment into the spatial tensor AQ so that T̂
Q

is dimensionless. The tensor T̂
Q

can be written in terms of nuclear angular momentum

operators via the Wigner-Eckart theorem (see §A.3). Eq. 1.53 can be written in the principal

axis system (PAS) of the EFG tensor (labeled {X,Y, Z}) in a particularly simple form:

ĤQ =
hCQ

4[3I2 − I(I + 1)]

{
[3Î2Z − I(I + 1)1̂]− ηQ

2
(Î2X − Î2Y )

}
. (1.54)

According to a relatively standard definition the nuclear quadrupolar coupling constant is

CQ = e2qQ/h, (1.55)

where e equals the electron charge and the principal component of the EFG tensor is

eq = VZZ =
∂2V

∂Z2
(0) = −∂EZ

∂Z
(0), (1.56)
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and the nuclear electric quadrupole moment is

eQ = 〈I,mI = I|Q̂ZZ |I,mI = I〉. (1.57)

The quadrupolar coupling constant CQ can be positive or negative depending on the relative

signs of the nuclear quadrupole moment and the local electric field gradients, although only

experimentally-determined |CQ| values are tabulated in the NMR literature because the

sign of the quadrupolar coupling is not trivial to determine, at least by NMR methods (see

pp. 261–262 of Ref. [6].20 Typical values of |CQ| in solids are on the order of ∼ 100 kHz to

∼ 1 MHz. The EFG asymmetry parameter is defined as

ηQ = (VXX − VY Y )/VZZ (1.58)

for |VZZ | ≥ |VXX | ≥ |VY Y |; the case ηQ corresponds to axial symmetry of the EFG about

Z. The spherical tensors have been normalized such that

T̂2,0 = [3Î2Z − I(I + 1)1̂]

T̂2,+2 + T̂2,−2 =

√
3

2
Î2+ +

√
3

2
Î2− =

√
6(Î2X − Î2Y ). (1.59)

Note that AQ0,0 and AQ1,q are zero, and in the EFG PAS, AQ PAS2,±1 = 0.

In NMR experiments it is more useful to express the quadrupolar Hamiltonian in

laboratory frame coordinates {x, y, z} so that the spin tensors are quantized along z, the

magnetic field axis. The expression for ĤQ in the laboratory frame is quite complicated

20The sign of CQ can be determined by other techniques, e.g., Mössbauer spectroscopy.
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(see Eq. 4.7 of Ref. [10]). Eq. 1.19 can be used to write the first-order secular contribution

of ĤQ as

Ĥ
(1)
Q = ALAB2,0 T̂LAB2,0

= ~ω1Q(CQ, ηQ;α, β, γ)[3Î2z − I(I + 1)1̂], (1.60)

where ω1Q(CQ, ηQ;α, β, γ) is the characteristic first-order quadrupolar frequency is written

in terms of the Euler rotation angles that relate the EFG PAS to the laboratory frame. If

instead the polar angles (θ, φ) that relate Z to z, this frequency equals (see Eqs. 4.7, 4.11

of Ref. [10])

ω1Q =
1

2
ωQ

[
ηQ cos 2φ(cos2 θ − 1)− 1

2
(3 cos2 θ − 1)

]
, (1.61)

where

ωQ =
2πCQ

2I(2I − 1)
. (1.62)

Note that Ĥ1
Q is an odd function of Îz. Therefore 〈+|m||Ĥ1

Q| + |m|〉 = 〈−|m||Ĥ1
Q| − |m|〉

and the evolution of “symmetric” Zeeman coherences | ∓ |m|〉〈±|m|| is invariant to Ĥ1
Q.

Since quadrupolar couplings are so large, the effects of the second-order pertur-

bation terms on the NMR spectrum cannot in general be neglected. The second order

secular quadrupolar Hamiltonian can be written with the aid of Eq. 1.22. The products

of spatial tensors, AQ LAB2,−p AQ LAB2,p , may be combined using Eq. A.17 to form higher ten-
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sors AQ LABk,q . According to the rules of angular momentum addition, q = −p + p = 0 and

k = |2− 2|, . . . , |2 + 2| = 0, . . . , 4 in integer steps. The higher tensors with odd k are zero.

This can be appreciated via a simple parity argument: since PAl,mP
−1 = (−1)lAl,m, where

P is the parity inversion operator, each of the AQ LAB2,p terms is even under parity and there-

fore so is their product, which implies the product tensors have even k. Interestingly, the

second-order secular quadrupolar Hamiltonian contains a spatially-isotropic (k = 0) com-

ponent; this presents itself in NMR spectra in much the same way as a chemical shift. Note

however that the spin operator dependence is different from that of a chemical shift, except

in the case of I+1 where Î3z = Îz. In that case the isotropic part of the second-order secular

quadrupolar Hamiltonian is just proportional to the chemical shielding Hamiltonian. The

two effects could however be distinguished by conducting experiments at different magnetic

fields because they depend on B0 differently.

The second-order secular quadrupolar Hamiltonian is (see Eqs. 4.8, 4.12 of Ref.

[10])

Ĥ
(2)
Q /~ = ω2Q0 Îz[I(I + 1)1̂− 3Î2z ] + ω2Q2 Îz[8I(I + 1)1̂− 12Î2z − 31̂]

+ω2Q4 [18I(I + 1)1̂− 34Î2z − 51̂], (1.63)
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where the rank-k second-order characteristic quadrupolar frequencies ω2Qk are

ω2Q0 =
1

80π2
ω2Q
ω0

(3 + η2Q)

ω2Q2 = − 1

448π2
ω2Q
ω0

[
(ηQ − 3)(3 cos2 θ − 1) + 6ηQ sin2 θ cos 2φ

]

ω2Q4 = − 1

128π2
ω2Q
ω0

[ 1

140
(18 + η2Q)(35 cos

4 θ − 30 cos2 θ + 3) +

+
3

7
ηQ sin2 θ(7 cos2 θ − 1) cos 2φ+

1

4
η2Q sin4 θ cos 4φ

]
. (1.64)

Note that Ĥ
(2)
Q is an odd function of Îz.

21 This allows the evolution of symmetric Zeeman

coherences |∓|m|〉〈±|m|| under Ĥ(2)
Q to be “reversed” in a coherence transfer experiment by

appropriately choosing the signs of the coherences. This leads to the possibility of removing

parts of the Ĥ
(2)
Q evolution using a coherence transfer echo, which is a principle that the

MQMAS experiment in half integer quadrupolar spins relies on (see §3).

Second-order cross-correlation effects can also be important when at least one

of the interactions is large, such as a quadrupolar coupling. Quadrupolar–chemical shift

anisotropy and quadrupolar–dipolar cross-correlation relaxation effects in solution are con-

sidered in §1.5 and §4. Cross-correlated interactions are the source of the small apparent

magnetic field dependence of the quadrupolar splitting that has been observed in gaseous

Xe-129 [59, 60].

It is rarely necessary to consider perturbation terms beyond second order. How-

ever, there are compounds that possess nuclear quadrupolar couplings that are large enough

21One might object that this is unphysical since ĤQ and hence its unitary-truncated form Ĥ
(2)
Q must be

invariant (even) under time reversal, but Î and hence Îz is an odd function under time reversal (T ÎzT
−1 →

−Îz). However, one must also consider the time reversal properties of the ω2Qk terms. Electric fields and
charge densities are even under time reversal and therefore so is ω0; note, however that ω0 contains a
“hidden” factor of the magnetic field B0. Magnetic fields are odd under time reversal; therefore, Ĥ

(2)
Q as a

whole is even under time reversal, as is expected.
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that higher-order perturbation corrections are necessary even at fairly high values of B0.

Third-order quadrupolar effects have been observed experimentally [61] and also consid-

ered theoretically [39, 40, 61, 44]. Bain has made an exact calculation in Liouville space of

the simultaneous effects of the Zeeman and quadrupolar interactions [62]. Grandinetti has

considered the effects of large quadrupolar couplings on phase cycling [63].

1.3.8 Radiofrequency Hamiltonian

NMR is, as its name suggests, a resonant technique. The adjacent magnetic sub-

levels of a spin I are split in the presence of a magnetic field B0 by ~ω0, where ω0 is the

Larmor frequency. An oscillating magnetic field tuned near the resonance frequency ω0

can drive transitions between adjacent sublevels. This section considers this process from

a Hamiltonian perspective. The magnetic field will be treated classically; the reader is re-

ferred elsewhere for quantized field descriptions of magnetic resonance [64],[65, §4],[66],[67,

§2], which are generally not necessary to describe most NMR phenomena.

An NMR probe is operated by passing an oscillating current through a coil which

in turn generates an oscillating magnetic field. Typical nuclear Larmor frequencies in su-

perconducting magnets are on the order of 102 MHz, which is in the radio frequency region

of the electromagnetic spectrum. NMR excitation has therefore been considered to be a

radiofrequency (rf) irradiation of the nuclei. Note, however, that this technique does not

subject the spins to what are commonly understood to be radio waves. Radio waves are

a type of electromagnetic radiation, which is a “far field” effect, i.e., they are experienced

at distances from the oscillating source that are large compared to the oscillation wave-

length [17, §9]. A current oscillating at ωr = 300 MHz corresponds to radio waves with a
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wavelength of 1 m; however, the rf coil and the sample and the distance between the two

are all typically on the order of 1 cm. The magnetic field is experienced by the spins on

a sub-wavelength scale and therefore NMR irradiation can actually be considered to be a

“near field” effect [68].

Assume that the rf coil creates a homogeneous magnetic field oscillating at fre-

quency ωr with phase φ that is linearly polarized along the x-axis in the laboratory frame:

Brf (t) = 2B1 cos(ωrt+ φ)x̃. (1.65)

The factor of 2 is introduced for later convenience. This linearly polarized field can be

decomposed into two counter-rotating circularly-polarized fields:

Brf (t) = B+rf (t) +B−rf (t)

= B1[cos(ωrt+ φ)x̃+ sin(ωrt+ φ)ỹ] +B1[cos(ωrt+ φ)x̃− sin(ωrt+ φ)ỹ].(1.66)

The laboratory-frame radiofrequency Hamiltonian for a spin I is just the Zeeman Hamilto-

nian for the spin in the presence of Brf (t):

Ĥrf (t)/~ = −γÎ ·Brf (t) = −2ω1 cos(ωrt+ φ)Îx

= −ω1[cos(ωrt+ φ)Îx + sin(ωrt+ φ)Îy]− ω1[cos(ωrt+ φ)Îx − sin(ωrt+ φ)Îy],

(1.67)

where ω1 = γB1. The effects of the rf Hamiltonian on nuclei is considered further in §1.6.
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1.3.9 Motional averaging of Hamiltonians in fluids

The basic solid-state NMR Hamiltonian is given by Eqs. 1.13 and 1.14:

Ĥ = ĤZ +
∑

ξ

Ĥξ

= ĤZ +
∑

ξ

2∑

k=0

k∑

q=−k
(−1)qAξk,qT̂

ξ
k,−q, (1.68)

where ĤZ is the dominant Zeeman Hamiltonian and the Ĥξ are the Hamiltonians of local

interactions. There are two relevant timescales for quantum-mechanical evolution under

this Hamiltonian: the Zeeman timescale ~/ ‖ĤZ ‖∼ ω−10 and the set of timescales of the

local interactions ~/ ‖ĤZ‖∼ ω−1ξ . The timescale of Zeeman evolution (Larmor precession)

in a high-field NMR experiment is very much faster than the timescale of any of the local

interactions; in §1.3.3 it was seen that this resulting in a secular averaging (truncation)

in spin space in the Zeeman interaction frame. Now consider what happens when time

dependence is added to the spatial part of the Hamiltonian. The once the spatial spatial

tensors are referenced to some coordinate system, they can be written as (courtesy of the

Wigner-Eckart theorem, see §A.3):

Âξk,q ∝ Yk,q(θ, φ), (1.69)

where Yk,q(θ, φ) is a spherical Harmonic function. The polar angles (θ, φ) could for example

describe the orientation of an internuclear vector relative to space-fixed (laboratory frame)

coordinates in the case of a dipole–dipole coupling Hamiltonian, or the orientation of the
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principal axis of a local molecular electric field gradient relative to space-fixed coordinates

in the case of a quadrupolar coupling. As opposed to the situation in solids, in which the

molecules are rigidly locked into one orientation, fluids are characterized by random molec-

ular motion including tumbling and diffusion. The Âξk,q are fixed to the molecular frame

(neglecting internal molecular motion); i.e., the principal axis of one tensor might be along

the axis of a particular chemical bond, and as the molecule rotates so does the bond. This

causes a stochastic reorientation of the spatial tensor components that can be characterized

by introducing a time dependence into the polar angles that parameterize them, θ → θ(t)

and φ → φ(t). If the fluid is isotropic θ(t) and φ(t) will sample all possible orientations

isotropically. If the timescale of molecular reorientation is much faster than any of the NMR

timescales including the Zeeman timescale—e.g., molecular tumbling can be on the order of

picoseconds for small molecules—it is appropriate to replace the spatial tensors with their

time-averaged values. This is equivalent to replacing Ak,q with its isotropic orientational

average. The spherical harmonic functions are orientationally-averaged according to

〈Yk,q〉O =
1∫
dΩ

[ ∫
dΩ Yk,q(θ, φ)

]
, (1.70)

where dΩ = sin θdθdφ is the differential area element. Note that this can be written as

〈Yk,q〉O =
1√
4π

∫
dΩ Yk,q(θ, φ) Y

∗
0,0(θ, φ), (1.71)
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where Y ∗0,0(θ, φ) = Y0,0(θ, φ) =
√

1
4π . The orthogonality relation for spherical harmonic

functions is

∫
dΩ Yl,m(θ, φ) Y

∗
l′,m′(θ, φ) = δl,l′δm,m′ . (1.72)

Therefore it can be seen that 〈Yk,q〉O = 0 unless k = 0, q = 0; i.e., unless it is an average

of the isotropic component, 〈A0,0〉O = A0,0 =
√

1
4π . Therefore fast isotropic reorientation

in fluids is said to average away all tensor interactions; i.e., all non-isotropic components of

the local Hamiltonians are averaged to zero. This is not necessarily the case in an oriented

(anisotropic) fluid medium because some orientations of the molecule are preferred over

others and the isotropic orientational average must be replaced with a probability-weighted

orientational average.

The only local interactions that have a spatially isotropic component are the chem-

ical shielding and J-coupling interactions. Solution-state NMR spectroscopy largely consists

of the measurement of chemical shifts and J-splittings. The quadrupolar coupling interac-

tion is averaged away, as is the dipole–dipole coupling (at least over microscopic distances,

see §6). On the other hand the anisotropic broadening found in powdered solids is averaged

away in solution so the spectral lines are very sharp.

Note that when the molecular motion is on a timescale comparable to or slower

than the Zeeman timescale, it is more appropriate to apply the Zeeman secular averaging

to the local interactions before the motional averaging. This can lead to small second-order

frequency shifts. For example, as was seen in §1.3.7 the second-order secular quadrupolar

Hamiltonian contains an isotropic component which will not be averaged away by isotropic
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molecular reorientation. These so-called dynamic frequency shifts in solution-state NMR

are considered from the perspective of the semiclassical relaxation theory in §1.5.4.

1.4 Density operator theory and propagation

1.4.1 Introduction to the density operator

The following discussion of the density operator and its application to quantum

mechanics and statistical mechanics draws heavily from the works of Blum [69], Farrar and

Harriman [70], Fano [71], Giulini et al. [72], and Tolman [73, §IX].

It is well-known that if an isolated quantum system is known to be prepared in

some state |ψ〉, then that state vector contains all the information necessary to specify

the probabilistic results of all measurements of the internal configuration of the system.

However, usually only a finite number of degrees of freedom of a system are known to the

experimenter, and even the best-isolated systems exhibit some coupling to their surround-

ings. Therefore, sometimes only incomplete knowledge of the quantum system is available;

i.e., it may not be certain that the system exists in some state |ψ〉, but there may be some

statistical knowledge that the system is likely to exist in state |ψi〉 with probability Pi, with

multiple {|ψi〉} possible. Alternatively, in an ensemble picture one might think of a fraction

Pi of the ensemble existing purely in state |ψi〉.

It is necessary to develop a quantum-mechanical formalism that can accommodate

the statistical ensemble picture. This is usually accomplished by introducing a statistical

density operator. It should be clear that if the state |ψ〉 contains all the internal information

of the system, then the projection operator |ψ〉〈ψ| contains no more and no less information
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than does |ψ〉 itself. If the system is known (by experimental control or due to natural law)

to exist in some set of states {|ψi〉} with probabilities {Pi}, then a density operator may be

defined

ρ̂ =
∑

i

Pi|ψi〉〈ψi|, (1.73)

where ρ̂ is a probability-weighted linear combination of projection operators. There is no

requirement that the {|ψi〉} be orthogonal or normalized; however, if they are, then the

following relation is satisfied:

Tr[ρ̂] =
∑

i

Pi = 1, (1.74)

where the sum of all probabilities must equal unity. Additionally, ρ̂ is Hermitian, such that

ρ̂† = ρ̂. (1.75)

The general form of Eq. 1.73 specifies a mixed state, since the system is not known to be

specified by any one state |ψi〉. However, if one Pi equals unity and the rest equal zero,

then ρ̂ = |ψi〉〈ψi| specifies a system in a pure state (i.e., the state |ψi〉). The {Pi} may

be interpreted in an ensemble picture as being the populations of the states {|ψi〉} of the

system. It can be shown that ρ̂2 = ρ̂ for a pure state and ρ̂2 6= ρ̂ for a mixed state. It also

can be shown that Tr[ρ̂2] ≥ 0 for any ρ̂.

The density operator can always be expanded in some complete set of orthonormal

basis states {|n〉}, e.g. by expanding |ψi〉 =
∑

n c
(i)
n |n〉, where c(i)n = 〈n|ψi〉. In this case Eq.



1.4. DENSITY OPERATOR THEORY AND PROPAGATION 54

1.73 becomes

ρ̂ =
∑

m,n

∑

i

Pi c
(i)∗
m c(i)n |m〉〈n|, (1.76)

allowing the density operator can be written in terms of its matrix elements ρmn = 〈m|ρ̂|n〉 =
∑

i Pi c
(i)∗
m c

(i)
n . It is evident that the only way to get a nonzero off-diagonal matrix element

ρmn (m 6= n) is if more than one of the coefficients {c(i)n } describing at least one of the

|ψi〉 are non-zero; i.e., if |ψi〉 is in a coherent superposition of the states basis {|n〉}. For

this reason the off-diagonal matrix elements of ρ̂ are called quantum coherences: they in-

dicate coherent superpositions in a given basis within the system. The diagonal elements

of the density operator are ρnn =
∑

i Pi |c
(i)
n |2 =

∑
i Pi P

(i)
n , where P

(i)
n = |〈n|ψi〉|2 is the

probability of finding the system in state |n〉 if it is prepared in the pure state |ψi〉. The

Pi are “statistical probabilities” and the P
(i)
n are “quantum probabilities.” It follows that

ρnn corresponds to the probability of finding the system in state |n〉 if it is prepared in the

mixed state described by Eq. 1.73. It should be stressed that coherences are in the eye of

the beholder in the sense that a system may have coherences in one set of basis states but

not in another; likewise, the populations must reflect the choice of basis as well.22 A mixed

state is said to be at least partially coherent if the density operator has coherences in some

basis. A density operator is said to be completely incoherent if it has no coherences in any

22This may be exemplified by considering a two-state system spanned by the basis vectors |1〉 and |2〉. If
the system is prepared in the pure state |1〉, then ρ̂ = |1〉〈1| =

(
1 0
0 0

)
in the basis of |1〉 and |2〉. However, in the

basis of |±〉 = 1√
2
(|1〉±|2〉), the density operator becomes ρ̂ = 1

2
(|+〉〈+|+ |+〉〈−|+ |−〉〈+|+ |−〉〈−|) = 1

2

(
1 1
1 1

)
.

In the former case the system has populations P1 = 1 and P2 = 0 and no coherences; in the latter case,

the system has populations P± = 1
2 and non-zero coherences between |+〉 and |−〉. Note that this density

operator is different from ρ̂ = 1
2
(|+〉〈+|+ |−〉〈−|) = 1

2

(
1 0
0 1

)
, which corresponds to an incoherent superposition

of |+〉 and |−〉; in fact, it represents the completely incoherent/mixed state because ρ̂ = 1
2

(
1 0
0 1

)
in any basis.
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basis, in which case it is always diagonal with every Pi being equal (i.e., it is proportional

to the identity operator).

The density operator can be used to predict the results of experimental measure-

ments. A measurement result corresponds to the expectation value of an observable opera-

tor, which in the case of a system in the pure state |ψi〉 is 〈Â〉 = 〈ψi|Â|ψi〉 = Tr[|ψi〉〈ψi| Â].

If the system exists in a mixed state, then

〈Â〉 =
∑

i

Pi {Tr[|ψi〉〈ψi| Â]}

= Tr[ρ̂ Â], (1.77)

which must be generalized to 〈Â〉 = Tr[ρ̂ Â]/Tr[ρ̂] if ρ̂ is not normalized. If the den-

sity operator and observable operator are expanded directly into some basis, then 〈Â〉 =
∑

m,n ρmnAnm, where ρmn = 〈m|ρ̂|n〉 and Anm = 〈n|Â|m〉.

The density operator also may evolve in time under a system Hamiltonian. If the

system obeys purely quantum-mechanical (unitary) time evolution, then |ψ(t)〉 = Û(t; t0)|ψ(t0)〉

in the case of a pure state, where Û(t; t0) is the unitary time-development operator that

propagates the state vector from time t0 to time t. This may be generalized to find the

time evolution of the density operator (§2.1.2):

ρ̂(t) = Û(t; t0) ρ̂(t0) Û
−1(t; t0). (1.78)

The time development operator may be found by solving the Schrödinger Equation (§2).
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The density operator satisfies von Neumann’s quantum Liouville equation of motion:

i~
∂ρ̂(t)

∂t
= [Ĥ(t), ρ̂(t)], (1.79)

where Ĥ(t) is the (possibly time-dependent) Hamiltonian of the system. The density oper-

ator does not evolve in time if it commutes with the Hamiltonian operator. The equation

of motion for the expectation value of an observable is:

i~
∂<Â>(t)

∂t
= − < [Ĥ(t), Â]>, (1.80)

where <Â>(t) = Tr[ρ̂(t) Â].

1.4.2 Open quantum systems and reduced density operators

This preceding discussion has not considered the origin of mixed states or the in-

teraction of a quantum system with its environment, and these topics will be considered

here. A quantum system that is completely isolated from any other system is considered to

be closed. Consider a closed quantum system C whose degrees of freedom can be divided

into two parts: a subsystem of interest S, and the environment E, such that C = S⊗E. The

division between system and environment is somewhat arbitrary, but often a system of in-

terest can be singled out as a particular set of degrees of freedom upon which measurements

are made, e.g. NMR measurements are made within the set of angular momentum eigen-

states of the nuclear ground state. Presumably, even a very large closed quantum system

can be described by a pure state vector, although this hypothesis cannot really be tested



1.4. DENSITY OPERATOR THEORY AND PROPAGATION 57

experimentally since every system interacts with an environment (including the observer)

to some degree. Suppose C is prepared in some state |Ψ〉. This state can be expanded in

sets of basis states within the S and E subspaces:

|ΨC〉 =
∑

m∈S

∑

n∈E
cmn|ψSmφEn 〉, (1.81)

where |ψSmφEn 〉 ≡ |ψSm〉 ⊗ |φEn 〉, cmn = 〈ψSmφEn |ΨC〉, and the {|ψSm〉} and {|φEn 〉} are complete

sets of orthonormal basis vectors within the S and E subspaces of C, respectively. It should

be noted that if all the expansion coefficients were uncorrelated between S and E such

that cmn = cmcn, then one could write |Ψ〉 = |ψS〉 ⊗ |φE〉, where |ψS〉 = ∑
m cm|ψSm〉 and

|ψE〉 = ∑
n cn|φEn 〉. However, in general this is not the case, and the state of the system

|Ψ〉 cannot be factored into a direct product of states in the S and E subspaces. States

that cannot be factored in this manner are considered to be entangled in the product basis

because quantum correlations exist between the S and E subspaces.

The density operator of the full system C is:

ρ̂(C) = |ΨC〉〈ΨC | =
∑

m,m′

∑

n,n′

cmnc
∗
m′n′ |ψSmφEn 〉〈ψSm′φEn′ |, (1.82)

and in general ρ̂(C) is correlated—i.e., ρ̂(C) cannot be factored into a direct product of

operators in the S and E subspaces alone—unless all of the cmn are uncorrelated.23 An

expectation value in the combined system C can be calculated in the usual way as 〈Â(C)〉 =

〈ΨC |Â(C)|ΨC〉 = Tr[ρ̂(C)Â(C)], where Â(C) is the observable that is measured. However, it

23Hereafter the parentheses will be used to denote an operator in the combined space C, e.g. to distinguish
Â(S) = ÂS ⊗ 1̂E from ÂS .



1.4. DENSITY OPERATOR THEORY AND PROPAGATION 58

may be desirable to consider the results of a measurement just on the system S, with an

observable of the form:

Â(S) = ÂS ⊗ 1̂E =
∑

m,m′

∑

n,n′

ASmm′δn,n′ |ψSmφEn 〉〈ψSm′φEn′ |, (1.83)

where ÂS =
∑

m,m′ ASmm′ |ψSm〉〈ψSm′ | is in the subspace S and 1̂E =
∑

n |φEn 〉〈φEn |. A mea-

surement of Â(S) returns information about the system S while leaving the environment E

undisturbed.24 The expectation value of the measurement is:

〈Â(S)〉 = Tr[ρ̂(C)Â(S)]

=
∑

m,m′

∑

n

cmnc
∗
m′nA

S
m′m, (1.84)

where the relation 〈ψSmφEn |Â(S)|ψSm′φEn′〉 = 〈ψSm|ÂS |ψSm′〉〈φEn |φEn′〉 = ASmm′δn,n′ has been used.

It is convenient to introduce the reduced density operator of the system S:

ρ̂S = TrE [ ˆρ(C)] =
∑

m,m′

∑

n

cmnc
∗
m′n|ψSm〉〈ψSm′ |, (1.85)

where TrE [· · · ] indicates a partial trace over the environmental states:

TrE [ρ̂(C)] =
∑

n

〈φEn |ρ̂(C)|φEn 〉, (1.86)

24See Ref. [72, §A3.2] for a discussion of observations of open systems that are correlated with unobserved
environments.
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where from Eq. 1.82 it can be seen that

〈φEn |ρ̂(C)|φEn 〉 =
∑

m,m′

∑

n′,n′′

cmn′c
∗
m′n′′ |ψSm〉〈φEn |φ′En 〉〈ψSm′ |〈φEn′ |φEn′〉

=
∑

m,m′

∑

n′,n′′

cmn′c
∗
m′n′′δn,n′δn′′,n|ψSm〉〈ψSm′ |

=
∑

m,m′

cmnc
∗
m′n|ψSm〉〈ψSm′ |.

Using these definitions the expectation value 〈Â(S)〉 given in Eq. 1.84 can be calculated

completely within the S subspace as:

〈ÂS〉 ≡ 〈Â(S)〉 = Tr[ρ̂SÂS ]

=
∑

m,m′

ρSmm′ASm′m, (1.87)

where ρSmm′ = 〈ψSm|ρ̂S |ψSm′〉 =
∑

n cmnc
∗
m′n, A

S
mm′ = 〈ψSm|ÂS |ψSm′〉, and

Tr[· · · ] =∑m〈ψSm| · · · |ψSm〉 is the trace within the S subspace. A reduced density operator

for the environment can also be defined as ρ̂E = TrS [ρ̂(C)], with matrix elements ρEnn′ =

〈φEn |ρ̂E |φEn′〉 =
∑

m cmnc
∗
mn′ .

25 Note that in general the density operator in the combined

space does not factor into a direct product of operators in the subspaces: i.e., ρ̂(C) 6= ρ̂′S⊗ρ̂′E ,

where ρ̂′S = ρ̂S/
√
Tr[ρ̂(C)] and ρ̂

′
E = ρ̂E/

√
Tr[ρ̂(C)]; the matrix elements are ρCm,n;m′,n′ =

cmnc
∗
m′n′ , whereas (ρ̂

′
S ⊗ ρ̂′E)m,n;m′,n′ = {

∑
m′′
∑

n′′ cmn′′c
∗
m′n′′cm′′nc

∗
m′′n′}/{

∑
m

∑
n |cmn|2}.

The equality ρ̂(C) = ρ̂′S ⊗ ρ̂′E can be proven in the special case of uncorrelated coefficients

cmn = cmcn by using the normalization condition 〈ΨC |ΨC〉 = Tr[ρ̂(C)] =
∑

m

∑
n |cmn|2 =

∑
m′′ |cm′′ |2∑n′′ |cn′′ |2 to remove the sums over m′′ and n′′.

25Incidentally, the trace in the complete space C is TrC [· · · ] = TrE{TrS [· · · ]} = TrS{TrE [· · · ]}; i.e., the
partial traces can be taken in any order.
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The system S represents an open quantum system in the sense that it is not iso-

lated from its environment (of course, E is also an open system because it is not isolated

from S, but here it is assumed that measurements are performed on S but not on E). The

important point to note is that even if the combined system C is described by a pure state

(i.e., ρ̂2(C) = ρ̂(C) for ρ̂(C) = |ΨC〉〈ΨC |), the reduced density operator of S does not in gen-

eral represent a pure state: ρ̂2S 6= ρ̂S , since 〈ψSm|ρ̂2S |ψSm′〉 =
∑

m′′
∑

n,n′ cmnc
∗
m′′ncm′′n′c

∗
m′n′ ,

but 〈ψSm|ρ̂S |ψSm′〉 =
∑

n cmnc
∗
m′n. An exception would be the case in which C is in some

unentangled pure state |ΨC〉 = |ψS〉 ⊗ |φE〉, in which case ρ̂S = |ψS〉〈ψS | represents a pure

state in the S subspace. Mixed state distributions of a subsystem can arise even from a pure

state of the complete system, under the conditions that only the subsystem is observed and

that there are quantum correlations between this subsystem and its surroundings. It should

be noted that some information about the combined system has been lost upon tracing out

the dependence of one subsystem or the other; i.e., knowing both ρ̂S and ρ̂E is not sufficient

to specify ρ̂(C) completely unless one of ρ̂S or ρ̂E represents a pure state [72, §A3], as the

relation ρ̂(C) 6= ρ̂′S ⊗ ρ̂′E indicates.

One final topic of consideration is of the time evolution of open quantum systems.

A truly closed quantum system should have a time-independent Hamiltonian operator,

since the Hamiltonian is the operator for the energy of the system, which is conserved.

However, energy may be exchanged between an open subsystem and its environment, leading

to coupling Hamiltonians that are effectively time dependent from the perspective of the

system. A classic example is the semiclassical radiation-matter theory, in which the effects

of the quantized radiation field are approximated by potentially time-dependent classical
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electromagnetic fields.

Consider a time-independent Hamiltonian of the complete system C of the form:

Ĥ(C) = Ĥ(S) + Ĥ(E) + V̂(S,E), (1.88)

where Ĥ(S) = ĤS ⊗ 1̂E contains only operators within the system subspace S, Ĥ(E) =

1̂S ⊗ ĤE contains only operators within E, and V̂(S,E) contains operators in the combined

space that couple S and E and is not necessarily factorable as V̂(S,E) = V̂S ⊗ V̂E . Using

Eqs. 1.79 and 1.85, the equation of motion for the reduced density operator of the system

becomes:

i~
∂ρ̂S(t)

∂t
= TrE{[Ĥ(C), ρ̂(C)(t)]}

= [ĤS , ρ̂S(t)] + TrE{[Ĥ(E) + V̂(S,E), ρ̂(C)(t)]}

= [ĤS , ρ̂S(t)] +
∑

m,m′

∑

n,n′

{HE
nn′ρ

C
mn′;m′n(t)− ρCmn;mn′(t)HE

n′n}|ψSm〉〈ψSm′ |

+
∑

m,m′,m′′

∑

n,n′

{V S,E
mn;m′′n′ρ

C
m′′n′;m′n(t)− ρCmn;m′′n′(t)V

S,E
m′′n′;m′n}|ψSm〉〈ψSm′ |

(1.89)

where ρ̂S = TrE [ρ̂(C)], H
E
nn′ = 〈φEn |ĤE |φEn′〉, ρCmn;m′n′(t) = 〈ψSmφEn |ρ̂(C)(t)|ψSm′φEn′〉, and

V S,E
mn;m′n′ = 〈ψSmφEn |V̂(S,E)|ψSm′φEn′〉. Note that i~∂ρ̂S(t)

∂t
6= [Ĥeff

S , ρ̂S(t)] in general due to the

effects of correlations with and couplings to the E subspace, where Ĥeff
S is some effective

Hamiltonian in the S subspace. However, if ρ̂(C)(t0) = ρ̂′S(t0)⊗ρ̂′E(t0) and V̂(E,S) = V̂ ′S⊗V̂ ′E ,

then i~∂ρ̂S(t)
∂t

= [ĤS + aV̂S , ρ̂S(t)] holds, where a = Tr[ρ̂E(t)V̂E ]/(Tr[ρ̂(C)]Tr[V̂(S,E)]).
26

26As usual, ρ̂′S = ρ̂S/
√
Tr[ρ̂(C)], ρ̂

′
E = ρ̂E/

√
Tr[ρ̂(C)], V̂

′
S = V̂S/

√
Tr[V̂(S,E)], and V̂

′
E = V̂E/

√
Tr[V̂(S,E)],
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The TrE{[Ĥ(E) + V̂(S,E), ρ̂(C)(t)]} term contains environmental variables, and it is diffi-

cult to isolate a ρ̂S(t) term to form a proper differential equation. This term can lead to

irreversible, non-unitary dynamics within the subsystem S; this apparent “non-quantum

mechanical” relaxation behavior arises due to the over-simplifying neglect of the full details

of the interaction of the system with its environment. Eq. 1.89 can be used as the starting

point of a quantum-mechanical theory of relaxation. The usual procedure includes: trans-

forming into the interaction frame of Ĥ(S)+Ĥ(E) if these Hamiltonians are much larger than

the coupling term V̂(S,E), making a perturbative approximation to the integrated reduced

Liouville equation of motion in order to write Eq. 1.89 in terms of ρ̂(C)(t0) instead of ρ̂(C)(t),

and applying some thermodynamic arguments if E represents a constant-temperature reser-

voir [6, §VIII.II.D],[69, §8.1]. A projection operator approach is described in Ref. [72, §7.3].

It is also very common to begin with a semiclassical approximation to the equation of motion

of the reduced density operator, as will be discussed in §1.5.

1.4.3 Ensemble-averaged density operators and thermal equilibrium

Often a system can be divided into a set of identical constituent subsystems. NMR

measurements are always on a macroscopic sample, and involve observations of not just one

spin, but a collection of ∼ 1020 spins. A fundamental procedure encountered in statistical

mechanics is the reduction of detailed information about the many-particle ensemble to

only a few averaged, statistically-distributed variables that describe the macroscopic sys-

tem.27 Consider an open system S that is weakly coupled to an environment E that has

where ρ̂S = TrE [ρ̂(C)], ρ̂E = TrS [ρ̂(C)], V̂S = TrE [V̂(S,E)], and V̂E = TrS [V̂(S,E)]. Note that Tr[ρ̂(C)(t)]
must be independent of time in a closed system obeying unitary time evolution.
27The term “ensemble” in statistical mechanics can refer not only to many real identical subsystems, but

also to a set of fictitious identical systems whose internal configurations vary according to thermodynamic
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many degrees of freedom, i.e, enough to form a quasi-continuum. The system S could for

example be a system of nuclear spins for which all the environmental degrees of freedom

such as molecular vibrational and rotational degrees of freedom, electron spins, etc., have

been traced out. General statistical-mechanical principles [73, 74] indicate that the system

will eventually establish a thermal equilibrium at some temperature T , in which case the

ensemble-averaged reduced density operator has the form

ρ̂
S
eq = Q−1S e−βĤ

S
, (1.90)

where the overline indicates the ensemble averaging, ĤS is the effective Hamiltonian oper-

ating only on system degrees of freedom, β = (kBT )
−1, and

QS = Tr[e−βĤ
S
]. (1.91)

Note that ρ̂
S
eq is diagonal in the eigenbasis of ĤS , i.e., [ρ̂

S
eq, Ĥ

S ] = 0. This makes sense; the

fact that the equilibrium density operator commutes with the Hamiltonian means that it

does not evolve in time (see §2), which is expected because the ensemble-averaged state of

the system at equilibrium should be static. The fact that ρ̂
S
eq is diagonal in the eigenbasis

of ĤS means that there are no ensemble-averaged coherences in this basis. Note that on a

microscopic level when all of the degrees of freedom are considered there may be internal

dynamics, i.e., evolving coherences, etc., but from the standpoint of ensemble averaging

these coherences must average away. In the rest of this work, the overline ensemble average

law.
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notation will be dropped. NMR is inherently an ensemble technique due to the macroscopic

number of spins involves; the ensemble averaging is implicit in all calculations. The “system”

label S will also be dropped; unless states otherwise the system is the collection of nuclear

spins under study.

Eqs. 1.90 and Eq. 1.91 give the usual result for the thermal equilibrium population

of some energy eigenstate |m〉 with energy Em:

P (Em) = 〈m|ρ̂eq|m〉 = Q−1e−βEm , (1.92)

where the canonical partition function is

Q =
∑

m

e−βEm . (1.93)

Thermal polarization of an I = 1/2 nucleus in a high magnetic field

Consider the laboratory-frame thermal equilibrium density operator of a molecule

containing a single spin labeled j:

ρ̂eqj = Q−1j e−βĤj , (1.94)

where the canonical partition function is Qj = Tr[e−βĤj ] and β = (kBT )
−1. In a high-

field NMR experiment the Hamiltonian is dominated by the Zeeman interaction, Ĥj ' Ĥj
Z ,
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where Ĥj
Z = −~ωj0Îzj , ω

j
0 = γjB0, and B0 = B0z̃. In this case:

ρ̂eqj = exp(+β~ωj0Îzj)/Tr[exp(+β~ωj0Îzj)]. (1.95)

The partition function can be evaluated exactly by taking the trace in the eigenbasis |mj〉 ≡

|Ij ,mj
I〉 of Îzj :

Qj = Tr[exp(+β~ωj0Îzj)]

=

+Ij∑

mj=−Ij
〈mj | exp(+β~ωj0Îzj)|mj〉 =

+Ij∑

mj=−Ij
exp(+β~ωj0〈mj |Îzj |mj〉)

=

+Ij∑

mj=−Ij
exp(+β~ωj0mj), (1.96)

where the expectation values can be taken inside the exponential function only because

they are eigenstates of the argument of the exponential. The partition function reduces in

the case of an Ij = 1/2 nucleus to:

Qj = exp[+β~ωj0(−
1

2
)] + exp[+β~ωj0(+

1

2
)] = 2 cosh(β~ωj0/2). (1.97)
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Likewise, the operator term can be simplified using the relation Îzj = 1̂j/4 for a spin-1/2

nucleus:

exp(+β~ωj0Îzj) =
∞∑

n=0

1

n!
(β~ωj0)

nÎnzj

= [1̂j +
1

2!
(β~ωj0)

2(1̂j/4) +
1

4!
(β~ωj0)

4(1̂j/16) + · · · ]

+[Îzj +
1

3!
(β~ωj0)

3(Îjz/4) +
1

5!
(β~ωj0)

5(Îzj/16) + · · · ]

= [1̂j +
1

2!
(β~ωj0/2)

2 +
1

4!
(β~ωj0/2)

4 + · · · ]1̂j

+2[Îzj +
1

3!
(β~ωj0/2)

3 +
1

5!
(β~ωj0/2)

5 + · · · ]Îzj

= cosh(β~ωj0/2)1̂j + 2 sinh(β~ωj0/2)Îzj . (1.98)

Eq. 1.98 holds only for a spin-1/2 nucleus; higher spin nuclei do not satisfy the relation

Î2zj = 1̂j/4, and in general the thermal equilibrium density operator includes polarization

terms that are not proportional to longitudinal magnetization Îzj . Eqs. 1.97 and 1.98 can be

combined to give the high-field thermal equilibrium density operator for a spin-1/2 nucleus:

ρ̂eqj =
1

2
1̂j + tanh(β~ωj0/2)Îzj . (1.99)

This equation can be used to calculate the expectation value of the magnetic moment of

spin Ij at thermal equilibrium:

〈µ̂
j
〉eq = Tr[ρ̂eqj µ̂j ] = Tr{[1

2
1̂j + tanh(β~ωj0/2)Îzj ](γj~Îj)}

=
1

2
γj~ tanh(β~ωj0/2)z̃, (1.100)
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where the relation Tr[Î2z ] =
1
2 for an Ij = 1/2 nucleus has been used. As expected, the

nucleus is polarized parallel to the B0 field. Note that Eq. 1.100 can be written:

〈µ̂
j
〉eq = P j+〈µ̂+j 〉+ P j−〈µ̂−j 〉, (1.101)

where P j± = Q−1j exp[−βEj
±] are the fractional Boltzmann populations of the eigenstates

|m = ±12〉 with eigenenergies Ej
± = ±|m|~ωj0; the 〈µ̂±j 〉 = ±|m|γj~z̃ are the average magnetic

moments in the | ± |m|〉 spin-up or spin-down states. The statistical interpretation of

the density operator method is clear: the average magnetic moment 〈µ̂
j
〉eq is just the

population/probability-weighted sum of the magnetic moments in the two states.

The equilibrium bulk magnetization density of N identical I = 1/2 spins is:

M eq =
1

V

N∑

j=1

〈µ̂
j
〉eq =

Nγ~
2V

tanh(β~ω0/2)z̃, (1.102)

where the net thermal spin polarization of I = 1/2 nuclei is:

ζ = tanh(β~ω0/2). (1.103)

The thermal polarization goes as ζ → 1 at very low temperatures when T → 0 and β → +∞;

the polarization goes as ζ → 0 at very high temperatures when T → +∞ and β → 0. The

net polarization goes like the γ-weighted population difference γ(P+−P−) because the mag-

netic moments of the up and down states oppose each other. At infinite temperature the

populations equalize, the magnetic moments randomize, and the net polarization vanishes;

at zero temperature only the low-energy state is populated, all the magnetic moments are
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aligned, and the net polarization is 100%. Protons at room temperature in a 700 MHz mag-

net (γH1/2π = 42.577 MHz/T, B0 = 16.45 T) have a thermal polarization of ζ = 5.6×10−5.

Even spins with high gyromagnetic ratios at high magnetic fields have very small thermal

polarizations at room temperature; it is advantageous to work at cryogenic temperatures if

the sample supports it (e.g., liquids will freeze) or, if possible, to use alternative polarization

methods. The vast majority of NMR experiments are performed using thermal polarization,

which is part of the reason why high-field magnets are employed. Note that in the case that

some possibly non-equilibrium polarization ζ is created, the bulk magnetization density of

a sample of N identical spin-1/2 nuclei is just the generalization of Eq. 1.102:

M eq =
Nζγ~
2V

z̃, (1.104)

where ζ is on the interval [−1, 1].

The high-temperature approximation

It is possible to make power series expansions of the exponential functions in the

single-molecule density operator Eq. 1.94:

ρ̂eqj = {Tr[
∞∑

n=0

1

n!
(−βĤj)

n]}−1[
∞∑

n=0

1

n!
(−βĤj)

n]. (1.105)
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When the argument of the exponential is small such that β ‖ Ĥj ‖¿ 1 (i.e., ‖ Ĥj ‖¿ kBT ),

it is safe to make a low-order truncation of Eq. 1.105:

ρ̂eqj ' {Tr[1̂j ]}−1[1̂j − βĤj ]

= (2Ij + 1)−1[1̂j − βĤj ]. (1.106)

This approximation is called the high temperature approximation; it is valid when the ther-

mal energy is large compared to the energy level spacings in the quantum system. When

the Zeeman interaction dominates (as it does in almost all high-field NMR experiments),

Ĥj ' ĤZj = −~ωj0Îzj and:

ρ̂eqj ' (2Ij + 1)−1[1̂j + β~ωj0Îzj ]. (1.107)

The spin-1/2 equilibrium density operator in Eq. 1.99 equals Eq. 1.107 in the high temper-

ature limit where tanh(β~ωj0/2) ' β~ωj0/2. The magnitude of the temperature expansion

parameter may be estimated as:

β ‖Ĥj ‖ = β
√
Tr[Ĥ†ZjĤZj ] = β~|ωj0|Tr[Î2zj ]

=
~|ωj0|
3kBT

Ij(Ij + 1)(2Ij + 1), (1.108)

which equals
~|ωj0|
2kBT

when Ij = 1/2. The high-temperature approximation is therefore valid

for a spin-1/2 nucleus when |ωj0|/2π ¿ 2kBT/h. The thermal energy is kBT/h = 6.2× 106

MHz at room temperature (T = 298 K). Typical Larmor frequencies in a high field magnet



1.4. DENSITY OPERATOR THEORY AND PROPAGATION 70

are on the order of |ωj0|/2π ∼ 102 MHz, so the high temperature approximation is certainly

adequate.

The question arises as to how the high temperature approximation should be

applied in a system of many spins (perhaps even a macroscopic number of them). This

problem has been considered in detail by Jeener et al. [75] and Warren et al. [76, 77]. The

N -spin equilibrium density operator is assumed to be of the form:

ρ̂(N)eq = Q−1e−βĤ , (1.109)

where Q = Tr[exp(−βĤ)]. At this stage, the N spins could be considered to be on the

same molecule or on different molecules. Consider a case in which the spins do not interact,

i.e., the Hamiltonian is a simple sum of single-spin Hamiltonians:

Ĥ =
N∑

j=1

Ĥj . (1.110)

This equation could also hold approximately if the couplings between spins are small com-

pared to the single-spin terms. If Eq. 1.110 is satisfied, then the exponential function in

Eq. 1.109 factors into a product of single-spin terms, and the equilibrium density operator

exhibits no correlations between spins:

ρ̂(N)eq =
[ N∏

j=1

exp(−βĤj)
]
/
{
Tr
[ N∏

j=1

exp(−βĤj)
]}

=
N∏

j=1

ρ̂eqj , (1.111)
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where ρ̂eqj is defined by Eq. 1.94, and the trace of a product of single-spin terms equals

the product of the single-spin traces. It is understood that
∏N
j=1 ρ̂

eq
j = ρ̂eq1 ⊗ ρ̂

eq
2 · · · ⊗ ρ̂

eq
N .

Applying the single-spin high-temperature approximation of Eq. 1.107 to Eq. 1.111 yields:

ρ̂(N)eq '
N∏

j=1

{[1̂j − βĤj ]/Tr[1̂j ]},

= (2I + 1)−N
{
1̂ + (−β)

N∑

j

Ĥj + (−β)2
N∑

j<k

ĤjĤk + (−β)3
N∑

j<k<l

ĤjĤkĤl + . . .
}
,

(1.112)

where it has been assumed for the sake of simplicity that all the spins have the same angular

momentum I, and that the high-temperature condition β ‖ Ĥj ‖¿ 1 is satisfied for each spin

j. The nth-order sum in Eq. 1.112 contains only terms that are products of n single-spin

operators. If all the spins have Hamiltonians of about the same magnitude ‖ Ĥs ‖, the nth

sum in Eq. 1.112 has a prefactor that goes like [β ‖ Ĥs ‖]n. These prefactors are very small

since β ‖ Ĥs ‖¿ 1, and it is tempting to apply a further truncation and keep terms only

linear in β, as was done in the single-spin high temperature approximation. However, there

are
(
N
n

)
= N !/[n!(N − n)!] terms in the nth sum. This number can be astronomical if

N ≈ 1020 represents the number of molecules in a macroscopic sample, and it is not clear

that the nth sum is actually small. Suppose, however, that N ≈ 102 represents the number

of spins in a molecule and β ‖ Ĥs ‖≈ 10−4 for the Zeeman energy of room-temperature

protons in a strong magnetic field. The quadratic and higher terms in β are negligible in

this case, since there are simply not enough terms in the sums to overcome the smallness

of β ‖ Ĥs ‖.28 It is generally safe to assume that the series can be truncated after the term

28For example, if N = 100, the n = 10th sum has ∼ 1013 terms, but the prefactor is on the order of
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linear in β when considering an intramolecular spin system, but the higher-order terms

may play a role when considering a system containing a macroscopic number of spins. Note

that if a high spin polarization (|ζ| → 1) is created either at cryogenic temperatures or by

non-thermal means (e.g., by spin-exchange optical pumping of a noble gas or by dynamic

nuclear polarization), the high temperature approximation is not valid and the full density

operator including multi-spin terms must be retained.

There is another compelling reason to keep only the terms linear in β in Eq. 1.112:

they contain multi-spin terms that do not correspond to observable magnetization, since

the magnetization observable is a sum of single-spin operators. This is easily appreciated

by calculating the magnetization of a generic n-spin density operator term B̂n:

Mn ∝ Tr[µ̂B̂n] = Tr
{ n∑

j=1

γj~Îj
n∏

k′=1

B̂n
k′

}

∝
n∑

j

{
Trj [µ̂jB̂j ]

n∏

k′ 6=j
Trk′ [B̂k′ ]

}
, (1.113)

where the factorization of partial traces has been used.29 The primed notation indicates

that the index k′ need not be taken sequentially from 1 to n, just as long as n terms

are taken in the product. The k′th partial trace is Trk′ [B̂k′ ] = 0 if B̂n is truly an n-spin

operator, since the trace is non-zero only if B̂k′ contains the identity operator, in which case

B̂n would contain product terms with less than n spins. The only operators that contribute

to observable signal are single-spin terms, which have one non-zero component of Îj on

∼ (10−4)10 = 10−40.
29Note that to be strictly correct, B̂n written in the N -spin space also contains N−n identity operators in

the product; these operators contribute to the total trace only as an overall non-zero multiplicative factor.
The operator µ̂ contains N − n identity operators in the sum, but these would only contribute to a trace

with the operator 1̂ =
∏N
k=1 1̂k.
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spin j and identity operator contributions from the rest of the spins. An n-spin term of

ρ̂Neq remains an n-spin term under any quantum-mechanical evolution if the spins are truly

non-interacting, so these terms would never be observable in an NMR experiment if spin

couplings were absent.30 In that case it would be safe to truncate Eq. 1.112 to terms that

are at most linear in β:

ρ̂(N)eq ' Q−1{1̂− β
N∑

j=1

Ĥj}. (1.114)

Eq. 1.114 can be obtained by expanding Eq. 1.109 as ρ̂
(N)
eq ' Q−1[1̂ − βĤ] if Ĥ is given

by Eq. 1.110. Eq. 1.114 is sometimes called the “strong” high-temperature approximation

for a many-spin system, whereas Eq. 1.112 is the “weak” high-temperature approximation.

The strong high temperature approximation clearly yields a more simple equation, and is

adequate when the system contains less than a macroscopic number of spins. The weak

high-temperature approximation may be necessary if the system is macroscopic (i.e., bulk

matter) and if there exist intermolecular spin couplings (i.e., dipolar couplings) that can

convert the multi-spin terms into observable single-spin terms. Eq. 1.112 was predicated on

the assumption that the spins were uncoupled, but it is still valid if the couplings contribute

little to the total polarization (e.g., when the dipolar couplings are very small compared to

the Zeeman interaction). The intermolecular dipolar couplings are the source of the distant

dipolar field in bulk matter (see §6). The dipolar spin dynamics in the solid state are

dominated by couplings between nearby spins (recall the dipolar coupling strength falls off as

r−3) which overwhelm the macroscopic contribution of distant spins in the multi-spin terms

30Note that different spins are not coupled to each other by rf fields.
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of Eq. 1.112. The strong high-temperature approximation therefore adequately describes

solid-state systems (unless the polarization is very high |ζ| → 1). The intramolecular dipolar

couplings between nearby spins are averaged away in an isotropic fluid due to molecular

tumbling; the nearby intermolecular couplings can be neglected because they are so few

(much less than a macroscopic amount) and act coherently for only short time before they

are altered by diffusion. The number of distant couplings, however, is astronomical; even

though each coupling acts coherently for only a short time, their sheer numbers make a non-

negligible contribution to the spin dynamics. A complete description of the system requires

keeping the multi-spin terms in the weak high-temperature approximation or simply using

the full N -spin equilibrium density operator Eq. 1.109. As will be seen in §6, distant dipolar

field effects can be significant in some solution-state NMR experiments.

When the spin system consists of N spins that are dominated by the Zeeman

Hamiltonian ĤZ = −∑N
j=1 ~ωj0Îzj , Eq. 1.109 becomes:

ρ̂(N)eq = Q−1 exp
[
+ β~

N∑

j=1

ωj0Îzj
]
, (1.115)

where Q = Tr{exp[+β~
∑N

j=1 ω
j
0Îzj ]}. The strong high-temperature approximation to the

equilibrium density operator is:

ρ̂(N)eq = {Tr[1̂]}−1
{
1̂ + β~

N∑

j=1

ωj0Îzj
}
, (1.116)

where 1̂ =
∏N
j=1 1̂j . The net thermal equilibrium magnetization density is the average of

the total dipole moment µ̂(N) =
∑N

j=1 µ̂j per unit volume. In the high-temperature limit
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this becomes:

M eq =
1

V
〈µ̂(N)〉 = 1

V
Tr
{
µ̂(N)ρ̂(N)eq

}

' 1

V
Tr
{[ N∑

j=1

γj~Îj
][
{Tr[1̂]}−1

(
1̂ + β~

N∑

k=1

ωj0Îzk
)]}

=
1

V

N∑

j=1

{
γj~2ωj0 Trj [Î

2
zj ]/(2Ij + 1)

}
z̃, (1.117)

where the full trace of Î2zj has been factored according to Tr[Î2zj ] = Trj [Î
2
zj ]{

∏N
k 6=j Trk[1̂k]} =

Trj [Î
2
zj ] · Tr[1̂]/(2Ij + 1). The strong high temperature approximation is sufficient because

the additional multi-spin terms in the weak approximation do not contribute to net magne-

tization, as has been discussed previously. The trace of Î2zj can be evaluated in the eigenbasis

{|mj〉} of Îzj as:

Tr[Î2z ] =

+Ij∑

mj=−Ij
〈mj |Î2zj |mj〉 =

+Ij∑

mj=−Ij
m2
j =

1

3
Ij(Ij + 1)(2Ij + 1). (1.118)

If all the spins belong to the same species such that Ij = I, γj = γ, and ωj0 = γB0 the

magnetization density is:

M eq '
Nγ2~2I(I + 1)

3V kBT
B0. (1.119)

Eq. 1.119 is the Curie law for the net equilibrium spin magnetization density in the high

temperature limit, and is equal to N times the single-spin magnetization density. Eq. 1.119

can also be derived slightly more simply using the single-spin reduced density operator [5,

§5.4]. Note thatM eq is parallel to the Zeeman field, quadratic in γ, proportional to B0, and
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inversely proportional to temperature. This is obviously only an approximation, because

Meq →∞ as B0∞ or T → 0. The thermal equilibrium magnetization density can be solved

exactly for a collection of N spin-1/2 nuclei using Eqs. 1.99 and 1.111:

ρ̂(N)eq = 2−N
N∏

j=1

(1̂j + 2ζj Îzj), (1.120)

where ζj = tanh(β~ωj0/2) and ω
j
0 = γjB0. If all the spins are of the same species,

M eq =
1

V
Tr
{
µ̂(N)ρ̂(N)eq

}
=
Nγ~
2V

tanh(β~ω0/2)z̃, (1.121)

which reproduces Eq. 1.102. Eq. 1.121 reduces to Eq. 1.119 for I = 1/2 in the high tem-

perature limit where tanh(β~ω0/2) ≈ β~ω0/2.

1.5 Relaxation of nuclear magnetization

1.5.1 Introduction to relaxation

It was established in the last section (§5.2.1) that an ensemble of nuclear spins I

in an external magnetic field thermally equilibrates with a nuclear magnetization aligned

parallel to the external field axis (i.e., the z-axis). If the external Zeeman Hamiltonian

dominates all of the internal spin Hamiltonians, then within the high-temperature approx-

imation the only non-zero terms in the thermal equilibrium single-spin difference density

operator will be proportional to Îz. In other words, an ensemble of spin-1/2 nuclei in an

arbitrary state of polarization left to thermally equilibrate will reach a state in which the

transverse magnetization components (proportional to Îx and Îy in the density operator)
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are zero and the longitudinal magnetization component has some value corresponding to

the equilibrium Curie polarization (Eq. 1.119) In I > 1/2 systems, all the tensor compo-

nents of the difference density operator will equilibrate to zero in the high-temperature

approximation except for the T̂1,0 ∝ Îz component. The process of thermal equilibration—

specifically, the disappearance of transverse magnetization components and reestablishment

of equilibrium longitudinal magnetization—is called relaxation of the spin system.

In order to understand how relaxation phenomena manifest themselves in NMR

experiments, one must understand the nature of the relaxation processes. A completely iso-

lated quantum system (in which energy is conserved) is characterized by a time-independent

Hamiltonian Ĥ in an operator space that includes all the quantum degrees of freedom of

the system. The time evolution of the system from times t0 to t is described simply by the

time development operator Û(t; t0) = exp[−iĤ(t − t0)/~]. The time evolution is unitary

and the dynamics are coherent. However, consider the re-equilibration that takes places

when an initially unpolarized (ρ̂ = 0) spin system is suddenly placed in a magnetic field

directed along the z-axis. The system equilibrates from ρ̂(t0) = 0 to ρ̂(t) ∝ Îz as the spins

polarize. The evolution of the spin system in this case is obviously not unitary, since uni-

tary operations preserve the norm of the density operator, and the creation of longitudinal

magnetization from zero magnetization does not preserve 〈〈ρ(t)|ρ(t0)〉〉. In fact, the energy

of the spin system is not even conserved as the spins polarize, since an ensemble of spins

aligned parallel to a magnetic field has a lower energy than a depolarized (randomly polar-

ized) ensemble. The energy non-conservation and non-unitary time evolution suggest that

something is missing from the quantum description. What have been left out are the other
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degrees of freedom that affect the time evolution besides the spin degrees of freedom. The

spin system is not isolated, and it interacts with its environment, referred to as the lattice

(a term that originated from solid-state studies). For example, the nuclear spins may couple

to electron spins, to the vibrational, rotational, or translational degrees of freedom of the

molecules in which they are contained, or even to other nuclear spins (recall that many

of the degrees of freedom of the spin ensemble are lost upon going from a many-spin to a

single-spin density operator). These other degrees of freedom have been averaged over in

the single-spin density operator treatment, but their effects on the spin system appear in

the form of random perturbations that cause incoherent, non-unitary dynamics that drive

the system to equilibrium. In fact, the idea of a small system with a manageable number

of degrees of freedom in thermal contact with a bath or reservoir containing an enormous

number of degrees of freedom is central to the theories of equilibrium statistical mechanics

and thermodynamics.31

It is possible to develop rate equations that describe the transfer of populations

between the Zeeman eigenstates during relaxation processes. These equations can be used

to describe longitudinal relaxation, since it is the longitudinal components of the density

operator (i.e., those that commute with the Zeeman Hamiltonian) that are needed to de-

scribe the populations of the Zeeman eigenstates. These rate equations, when applied to a

two-spin system are called the Solomon equations, although they can be generalized to in-

clude N spins. However, in order to predict the functional forms or numerical values of the

rate constants that arise in these equations, a microscopic theory of relaxation is required.

31In fact, the ideas of thermal equilibrium, temperature, and the Boltzmann law can be derived almost
from this concept alone; see the notes by Feynman [74, §1.1].
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Furthermore, a set of equations that describe only movements of populations (longitudinal

relaxation) incompletely determine the relaxation properties of the system, since the decay

of the coherences (transverse relaxation) has been neglected. The full set of relaxation

equations that include all components of the density operator is called the master equation,

which is often written in matrix form and also requires a microscopic relaxation theory in

order to determine the matrix elements.

There are several theoretical approaches that are commonly employed to describe

relaxation behavior. The following discussion will be restricted to a consideration of relax-

ation processes in molecules in liquid phases. The text by Abragam has an authoritative

treatment of some semiclassical and quantum relaxation theories [6, §VIII], and there is

another seminal work by Redfield [78]. Slichter’s book also contains a similar approach [5,

§5.11, 5.12]. The text by Cavanagh et al. has an accessible pedagogical survey of standard

liquid-state relaxation theory [4, §5], and the text by Goldman contains a concise, physical

treatment of the same [2, §9]. Goldman has also presented a modern view of spin-lattice

relaxation [79]. Murali and Krishnan have published a tutorial on liquid-state relaxation

[80]. Luginbühl and Wüthrich wrote a review of semiclassical relaxation theory as applied

to biological macromolecules [81], and Dayie et al. have published a review of the same

topic [82].

1.5.2 Semiclassical relaxation theory

Consider the semiclassical model of nuclear spin relaxation, in which the spin sys-

tem is treated quantum-mechanically and the lattice is treated classically by tracing out the

environmental degrees of freedom. The classical lattice variables may become time depen-
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dent due to molecular reorientation and diffusion, yielding a laboratory-frame Hamiltonian

of the form:

Ĥ(t) = Ĥ0 + Ĥ1(t), (1.122)

where Ĥ0 is the deterministic Hamiltonian that leads to coherent dynamics and Ĥ1(t) is the

stochastic Hamiltonian that leads to incoherent relaxation. The Hamiltonian Ĥ0 is time-

independent and contains the Zeeman Hamiltonian, which at high magnetic fields dominates

all other spin interactions; Ĥ0 can also include smaller time-independent Hamiltonians such

as the isotropic chemical shielding and J-coupling interactions. The interactions included in

Ĥ1 are assumed to be anisotropic terms rendered time dependent by random molecular mo-

tions and are typically much smaller than the Zeeman interaction; their random fluctuating

nature causes Ĥ1(t) to have a time average of zero.32

The most common approach to the semiclassical relaxation theory begins by treat-

ing Ĥ1(t) as a time-dependent perturbation to the primary Hamiltonian Ĥ0, and then de-

velops equations of motion for the density operator (the master equation) valid to second

order in the perturbation theory. This is the Bloch, Wangsness, and Redfield relaxation

theory [78, 83]. The following discussion most closely parallels that of Cavanagh et al. [4]

or Ernst et al. [7, §2.3.1]. Upon transforming into the interaction frame of the dominant

Hamiltonian Ĥ0 (see §1.3.3) and applying time-dependent perturbation theory, the follow-

ing equation of motion for the spin density operator is reached, which is good to second

32If the molecules of interest are aligned in an oriented medium, then the residual anisotropic interactions
that remain after motional averaging may also be included in Ĥ0, such that Ĥ1(t) still time-averages to zero.
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order in the perturbation theory:

dˆ̃ρ(t)

dt
' − 1

~2

∫ ∞

0
dτ [

ˆ̃
H1(t), [

ˆ̃
H1(t− τ), ˆ̃ρ(t)− ˆ̃ρeq], (1.123)

where the tilde represents an operator transformed into the interaction frame, and the

overbar designates an ensemble average (it is understood that the reduced density operator

is already an ensemble-averaged quantity, so the presence of the overbar is implicit). Some

assumptions have been made in the derivation of this equation [6, 2], including: t À τc,

τc ¿ [||Ĥ1/~||2]−1/2, ˆ̃
H1(t)ˆ̃ρ(0) =

ˆ̃
H1(t) ˆ̃ρ(0), and Ĥ1(t) = 0.33,34 Here, τc is a correlation

time characteristic of the stochastic Hamiltonian Ĥ1(t). The equilibrium density operator

ρ̂eq = e−βĤ0/Tr[e−βĤ0 ] equals ˆ̃ρeq, since [ρ̂eq, Ĥ0] = 0. The equilibrium density operator

does not enter naturally into the semiclassical theory (which predicts ρ̂(t → ∞) = 0 =

ρ̂eq(β = 0), which is the infinite temperature result), so ρ̂eq has been added to Eq. 1.123

after the fact to ensure proper results at finite temperatures.

The stochastic Hamiltonian Ĥ1(t) is usually written in terms of spherical tensors

as:35

Ĥ1(t) =
∑

ξ

Ĥξ
1(t) =

∑

ξ

2∑

k=1

k∑

q=−k
Aξk,q(t)T̂

ξ
k,q, (1.124)

where the Ak,q are spatial tensors, the T̂k,q are spin tensor operators, and ξ labels the

33It is also required that τc is much shorter than any of the reciprocal relaxation rates of the system.
34The condition Ĥ1(t) = 0 follows from the fact that Ĥ1(t) has a zero time average, if the system is

stationary and ergodic and thus obeys the ergodic hypothesis.
35One finds no k = 0 components here because the A0,0 spatial tensors are isotropic and are time-

independent under modulation by random molecular tumbling, and hence have been included in Ĥ0. Also,
for convenience the Ak,q have been redefined such that the sign of q has been switched (using the fact that
A∗
k,q = Ak,−q), and the factor of (−1)q has been absorbed.
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different types of anisotropic interactions (e.g., chemical shielding anisotropy, dipolar or

quadrupolar coupling, etc.).36 The spherical tensor formalism is employed for the conve-

nience of expressing the Hamiltonian and for the ease of performing calculations using the

transformation properties of the spatial tensors. However, since the perturbation calculation

is performed in the interaction frame of Ĥ0, in this case it is more convenient to expand the

spin tensor operators in a set of orthogonal basis operators K̂k,q;p (with K̂†k,q;p = K̂k,−q;p)

that satisfy certain commutation relations with Ĥ0:

T̂k,q =
∑

p

K̂k,q;p =
∑

p

cq;pĥp, (1.125)

where [Ĥ0/~, ĥp] = ωpĥp, such that |hp〉〉 and ωp are eigenfunctions and the correspond-

ing eigenfrequencies of the commutation superoperator of Ĥ0, and c∗q;p = c−q;p.37 This

commutation relation also implies:

e+iĤ0t/~ ĥp e
−iĤ0t/~ = e+iωpt ĥp. (1.126)

Upon substituting Eq. 1.124 with Eq. 1.125 into Eq. 1.123 and using Eq. 1.126 to

36The label ξ can also denote the same interaction on two different atoms, e.g. the chemical shielding
anisotropies of two neighboring carbon atoms would be labeled with different ξ.
37An example of this type of decomposition is found in the treatment of a heteronuclear two-spin system

with Ĥ0/~ = ωI0 Îz + ωS0 Ŝz, where T̂2,0 = 1√
6
(3ÎzŜz − Î · Ŝ) is split into K̂2,0;0 = K̂†

2,0;0 = 1√
6
2ÎzŜz,

K̂2,+0;1 = − 1√
6
Î+Ŝ−, and K̂2,−0;1 = K̂†

2,+0;1 = − 1√
6
Î−Ŝ+, with ωp=0 = 0 and ωp=1 = ωI0 − ωS0 . (Note that

ωI0 and ω
S
0 are signed quantities.) In the case of identical homonuclear spins, Ĥ0 has degenerate eigenvalues,

and care must be taken in defining the operator basis set within the degenerate subspace.
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aid in the interaction frame transformation, the following equation can be reached:

dˆ̃ρ(t)

dt
= − 1

~2
∑

ξ,ξ′

∑

k,k′

∑

q,q′

∑

p,p′

ei(−ωp′+ωp)t[K̂ξ′

k′,q′;p′ , [K̂
ξ
k,q;p,

ˆ̃ρ(t)− ρ̂eq]]

×
∫ ∞

0
dτ e−iωpτ Aξ

′

k′,q′(t)A
ξ
k,q(t− τ). (1.127)

It is usually assumed that the fluctuations of the spatial tensors Ak′,q′(t) and Ak,q(t) are

uncorrelated unless k = k′ and q = −q′,38 and therefore the argument of the integral in Eq.

1.127 vanishes unless this condition is fulfilled. This allows the sums over (k, k′) and (q, q′)

to be reduced to sums over one variable each. Next, the secular approximation is applied,

in which any terms ei(−ωp′+ωp)t that oscillate rapidly compared to the relaxation timescale

are considered to be ineffective in driving the time evolution of ˆ̃ρ(t). This is physically

justified because the reciprocal frequencies ω−1p are typically of the order of reciprocal Lar-

mor frequencies (nanoseconds to microseconds at high field), whereas relaxation times are

usually of the order of milliseconds to seconds or longer. Therefore, only the secular terms

survive, i.e., the terms in Eq. 1.127 that acquire no time dependence from the interaction

frame transformation. These terms have −ωp′ + ωp = 0 (or at least −ωp′ + ωp is much less

than the reciprocal relaxation times), implying p = p′ and removing another sum:

dˆ̃ρ(t)

dt
' −1

~
∑

ξ,ξ′

∑

k,q,p

[K̂ξ′

k,−q;p, [K̂
ξ
k,q;p,

ˆ̃ρ(t)− ρ̂eq]] jξ,ξ
′

q (ωp), (1.128)

where jξ,ξ
′

q (ω) = ~−1
∫∞
0 dτ e−iωτAξ

′

k,−q(t)A
ξ
k,q(t− τ) is the power spectral density function.

38Note that Aξ
′
k,q(t) and Aξk,−q(t) are related through Aξk,q(t) = Aξ∗k,−q(t) if ξ = ξ′, and that the product

Aξ
′
k,q(t)A

ξ
k,−q(t) contains an isotropic component.
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Upon transforming back into the laboratory frame, the following relaxation master equation

is obtained:

dρ̂(t)

dt
= − i

~
[Ĥ0, ρ̂(t)]−

1

~
∑

ξ,ξ′

∑

k,q,p

jξ,ξ
′

q (ωp) [K̂
ξ′

k,−q;p, [K̂
ξ
k,q;p, ρ̂(t)− ρ̂eq]]. (1.129)

This equation is conveniently written in Liouville space as:

d|ρ(t)〉〉
dt

= − i
~
ˆ̂
H0|ρ(t)〉〉 −

1

~
ˆ̂
Γ(|ρ(t)〉〉 − |ρeq〉〉), (1.130)

where
ˆ̂
H0 ← [Ĥ0, ] is the commutation superoperator of Ĥ0, the relaxation superoperator

is
ˆ̂
Γ ← ∑

ξ,ξ′
∑

k,q,p j
ξ,ξ′
q (ωp) [K̂

ξ′

k,−q;p, [K̂
ξ
k,q;p, ]], and ρ̂(t) → |ρ(t)〉〉, ρ̂eq → |ρeq〉〉. It is

customary to separate jξ,ξ
′

q (ω) into its real and imaginary parts:

jξ,ξ
′

q (ω) = Jξ,ξ
′

q (ω)− iLξ,ξ′q (ω),

Jξ,ξ
′

q (ω) =
1

~

∫ ∞

0
dτ cos(ωτ)Aξ

′

k,−q(t)A
ξ
k,q(t− τ),

Lξ,ξ
′

q (ω) =
1

~

∫ ∞

0
dτ sin(ωτ)Aξ

′

k,−q(t)A
ξ
k,q(t− τ). (1.131)

The contribution from the imaginary part of the spectral density causes small second-order

frequency shifts (called dynamic shifts) and is usually neglected in the relaxation equation

by including it with the deterministic Ĥ0 term:

d|ρ(t)〉〉
dt

= − i
~
ˆ̂
H ′0|ρ(t)〉〉 −

ˆ̂
R(|ρ(t)〉〉 − |ρeq〉〉), (1.132)

where
ˆ̂
H ′0/~ =

ˆ̂
H0/~ − ˆ̂

L,
ˆ̂
Γ/~ =

ˆ̂
R − i ˆ̂L, ˆ̂

R ← ∑
ξ,ξ′
∑

k,q,p J
ξ,ξ′
q (ωp) [K̂

ξ′

k,−q;p, [K̂
ξ
k,q;p, ]],
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and
ˆ̂
L ← ∑

ξ,ξ′
∑

k,q,p L
ξ,ξ′
q (ωp) [K̂

ξ′

k,−q;p, [K̂
ξ
k,q;p, ]]. That the imaginary part of

ˆ̂
Γ leads to

frequency shifts can be appreciated by examination of the form of the differential equation

in Eq. 1.132, which indicates that imaginary terms on the right-hand-side of the equation

lead to oscillatory motion of |ρ(t)〉〉, while real terms lead to damped motion.

If the density operator is written in terms of some set of orthonormal basis oper-

ators {B̂s} such that ρ̂(t) =
∑

s bs(t)B̂s with bs(t) = 〈〈Bs|ρ(t)〉〉 = Tr{B̂†s ρ̂(t)}, then Eq.

1.132 written in terms of matrix elements is:

dbr(t)

dt
=
∑

s

{−iΩ′rsbs(t)−Rrs(bs(t)− beqs )}, (1.133)

where Ω′rs = 〈〈Br|
ˆ̂
H ′0/~|Bs〉〉 = Tr{B̂†r [Ĥ ′0/~, B̂s]} and Rrs = 〈〈Br|

ˆ̂
R|Bs〉〉. Eq. 1.133 specifies

a set of coupled differential equations for the time evolution of the operator components

of ρ̂, where the existence of the component |Bs〉〉 in the density operator is considered to

affect the relaxation of the |Br〉〉 component if Rrs 6= 0. When r = s, the relaxation process

is called auto-relaxation of the density operator components, whereas when r 6= s, the

relaxation process is called cross-relaxation between the density operator components.39

An often convenient choice of basis operators is the normalized version of the set of {K̂k,q;p}

operators employed in Eq. 1.125. Another possible choice is the set of operators B̂s =

B̂n′,n = |n′〉〈n| that represent transitions |n〉 → |n′〉 between the eigenstates {|n〉} of Ĥ0; the

resulting matrix elements Rm′m,n′n (specifying the so-called “Redfield relaxation matrix”)

give the rates of cross-relaxation between different transitions. Since [Ĥ0/~, |n′〉〈n|] = (ωn′−
39Since the Îx/y/z and Ŝx/y/z operators can serve as a subset of the basis operators necessary for the

two-spin system, relaxation induced in one spin by another is considered to be a cross-relaxation process.
However, the term “cross-relaxation” properly refers to all the possible relaxation processes that occur
between density operator elements, not just between two spins.
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ωn)|n′〉〈n|, the single-transition operators |n′〉〈n| can also be grouped by their coherence

order p indexed by the Zeeman transition frequency ωp = ωn′−ωn ≡ ωn′n, if Ĥ0 is dominated

by the Zeeman interaction. A consequence of the secular approximation is that the density

operator components |m′〉〈m| and |n′〉〈n| do not cross-relax with each other if p 6= p′,

leading to a block-diagonalization of the relaxation matrix
ˆ̂
R into subspaces of a given p.40

Furthermore, if none of the transitions of the system within the subspace of a given p are

degenerate to within about a linewidth (i.e., |Ω′ss| À Rrs, r = m′m, s = n′n, m 6= m′, n 6=

n′), then the Rr 6=s matrix elements can be neglected and none of the r 6= s operators within

the p-subspace appreciably cross-relax with each other.41 However, the matrix elements

that represent populations (i.e., the n = n′ elements in the Ĥ0 eigenbasis) do cross-relax

with each other because Ωss = ωn′n = 0 if n = n′, and thus both the diagonal and off-

diagonal matrix elements of (−i ˆ̂H ′0/~ −
ˆ̂
R) are of the same order of magnitude within the

population subspace. Under these conditions the effective relaxation matrix
ˆ̂
R has the

so-called “Redfield-kite” structure in the single-transition basis.

Under these assumptions, the differential equations in Eq. 1.133 become completely

decoupled for single-transition operators that do not commute with Ĥ0; i.e., there is no cross-

relaxation in the transverse relaxation of individual spectral transitions, and transverse

relaxation is also independent of longitudinal relaxation. The solution to Eq. 1.133 for

transverse relaxation then becomes:

br(t) = b(0)e−iΩ
′
rrte−Rrrt. (1.134)

40This is true when the relaxation matrix is written in any operator basis {B̂s} for which [Ĥ0/~, B̂s] =
ωpB̂s.
41Note that in the single-transition basis, Ωrs = Ωm′m,n′n = 0 if r 6= s (i.e., if m′ 6= n′ or m 6= n).
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The differential equations for longitudinal relaxation (involving the redistribution of pop-

ulations in the Ĥ0 eigenbasis) remain coupled, so their solution is more complicated and

cross-relaxation is possible in principle.

1.5.3 Relaxation selection rules and spectral densities

It is clear from Eq. 1.133 that a component |Bs〉〉 of the density operator does

not contribute to the relaxation of |Br〉〉 if Rrs = 〈〈Br| ˆ̂R|Bs〉〉 vanishes. This constitutes a

“selection rule” for relaxation. The amplitude 〈〈Br| ˆ̂R|Bs〉〉 = obviously vanishes identically

if
ˆ̂
R|Bs〉〉 = 0 or 〈〈Br| ˆ̂R = 0. It can be seen from these relations and from the definition

of
ˆ̂
R following Eq. 1.132 that an individual term K̂ξ

k,q;p in the stochastic Hamiltonian Ĥ1

will contribute to the cross-relaxation of the B̂r element of the density operator due to

the B̂s element when [K̂ξ
k,q;p, B̂s] = 0 or [K̂ξ′

k,−q;p, B̂
†
r ] = 0.42 We consider the components

of Ĥ1 that commute with Ĥ0, which in general will be the Hermitian K̂k,0;0 terms with

ωp=0 = 0 if Ĥ0 is dominated by the Zeeman interaction. If B̂r is Hermitian and also

commutes with Ĥ0, then it can be shown that [K̂k,0;0, B̂r] = 0 if Ĥ0 has a non-degenerate

eigenvalue spectrum (e.g., the system does not contain chemically identical spins).43 The

terms B̂r for which [B̂r, Ĥ0] generally represent populations in the eigenbasis of Ĥ0. The

commuting K̂k,0;0 terms are sometimes called the secular terms in Ĥ1, because they remain

invariant (time independent) upon a transformation into the interaction frame of Ĥ0 and

42Note that the Hilbert-space representation of 〈〈Br| ˆ̂R|Bs〉〉 can be manipulated using the identity
Tr{Â[B̂, [Ĉ, D̂]]} = Tr{D̂[Ĉ, [B̂, Â]]}.
43This follows from the fact that if [Â, B̂] = 0 and [Â, Ĉ] = 0, then [B̂, Ĉ] = 0 if all the operators are

Hermitian and Â has only non-degenerate eigenvalues. This result can be appreciated from the facts that:
all Hermitian matrices can be diagonalized; if Â has a non-degenerate spectrum, then it is diagonal in one
unique eigenbasis; if B̂ and Ĉ both commute with Â then they can both be diagonalized in the eigenbasis
of Â; and two diagonal matrices commute.
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thus are retained in the first-order perturbation theory secular approximation. We arrive

at an important result: that the secular terms in Ĥ1 do not contribute to the relaxation

of populations, i.e., to longitudinal relaxation. The contribution of the secular terms is

also called adiabatic relaxation, and so longitudinal relaxation is adiabatic-free. Since the

secular terms in Ĥ1 commute with Ĥ0, they have ωp=0 = 0 and thus adiabatic transverse

relaxation processes contribute a zero-frequency J ξ,ξ
′

0 (0) spectral density. The physical

picture commonly associated with adiabatic relaxation is that the secular terms contribute

to a randomly-fluctuating z-component of the local magnetic field at the nucleus, causing a

random modulation of the Zeeman energy levels and hence of the Larmor frequency. This

random modulation contributes to irreversible dephasing (relaxation) of the bulk transverse

magnetization as different spins get out of phase with each other while precessing at different

Larmor frequencies.

The non-secular terms in Ĥ1 are those that do not commute with Ĥ0 and thus

become time-dependent in the interaction frame and can be neglected to first order in the

perturbation theory via the secular approximation. (Note that some of these terms can

be retained in the second -order secular approximation, as witnessed in Eq. 1.128.) These

non-adiabatic terms can contribute to both transverse and longitudinal relaxation.44 The

physical picture usually ascribed to this type of relaxation is that the terms in Ĥ1 that do

not commute with Ĥ0 can perturbatively connect the eigenstates of Ĥ0, and thus induce

random transitions between the Zeeman levels. These transitions can change populations

(longitudinal relaxation), and can contribute to transverse relaxation by inducing an uncer-

44Note that the non-adiabatic terms can sometimes contribute a zero or near-zero frequency spectral
density, e.g. in the two-spin I-S system the K̂2,±0;1 = − 1√

6
Î±Ŝ∓ have ωp=1 = ωI0 − ωS0 , which can be near

zero if the spins have nearly the same Larmor frequencies. Zero-frequency spectral density contributions
alone do not define an adiabatic relaxation mechanism.
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tainty in the energy of the Ĥ0 eigenstates with a corresponding natural lifetime broadening

[84, C. KIII ],[85, C. DXIII ].
45

Aside from consideration of the relaxation “selection rules”, it is also apparent

from the definition of
ˆ̂
R following Eq. 1.132 that the spectral density J ξ,ξ

′
q (ω) evaluated

at the frequency ωp must be non-negligible for the terms K̂ξ′

k,−q;p and K̂ξ
k,q;p in Ĥ1 to in-

duce efficient relaxation. Furthermore, the definition of J ξ,ξ
′

q (ω) in Eq. 1.135 indicates that

the spectral density vanishes if the fluctuations of Aξ
′

k,−q and Aξk,q are uncorrelated (i.e.,

Aξ
′

k,−q(t)A
ξ
k,q(t− τ) = 0). Spectral densities with ξ = ξ′ govern auto-correlated relaxation,

whereas spectral densities with ξ 6= ξ′ govern cross-correlated relaxation. For example,

fluctuations of the quadrupolar interaction and the chemical shielding anisotropy of a nu-

cleus may be cross-correlated during molecular tumbling if these anisotropic interactions

share a definite spatial relationship to each other in the local coordinate system (e.g., in a

coordinate system fixed to a bond vector).

The analytic evaluation of the spectral densities may be simplified if certain as-

sumptions about the molecular motion apply. The simplest case is that of autocorrelated

relaxation of a rigid spherical molecule undergoing global rotational Brownian motion (i.e.,

with no local intramolecular motions) in isotropic solution, for which:

Jξ,ξq (ω) = (−1)qJξ,ξ(ω) = (−1)q|Aξk,q|2
τc

1 + ω2τ2c
, (1.135)

where τc is the correlation time for global rotational motion.46 In a single spin system

45Note that the secular perturbations that commute with Ĥ0 may modulate the value of the energies of
the Ĥ0 eigenstates, but they do not add an uncertainty in the determination of these energies.
46In the case of cross-correlated spectral densities with axially symmetric interaction Hamiltonians, this

equation must be multiplied by a factor proportional to P2(cos θξ′ξ), where P2(x) is the second-rank Legendre
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with Ĥ0/~ = ω0Îz the interaction-frame modulation frequencies are ωp = pω0, where ω0 is

the Larmor frequency of spin I; therefore the spectral densities J ξ,ξ(ωp) have the limiting

behavior of Jξ,ξ(ωp) → Jξ,ξ(0) = |Aξk,q|2τc when ω0τc ¿ 1 and Jξ,ξ(ωp) → |Aξk,q|2τc/(p2ω20)

when ω0τc À 1. The former regime is called the extreme narrowing regime, where the

motional timescale is much faster than the reciprocal Larmor frequency; for the purposes of

this work the latter regime is called the slow tumbling regime, where the motional timescale

is much slower than the reciprocal Larmor frequency. However, one must note that the

second-order perturbative approximation implicit in Eq. 1.123 may begin to break down as

ω0τc ≥ 1.47 Some of the relevant single-spin autocorrelation spectral densities are plotted

in Fig. 1.4 as a function of τc. Note that J ξ,ξ(ω0) and J
ξ,ξ(2ω0) have maxima in the vicinity

of τc ∼ ω−10 , whereas Jξ,ξ(0) increases linearly in τc.

Longitudinal and transverse terms in the density operator are usually found to

decay as simple exponential functions in the extreme narrowing limit, with decay time

constants of T1 and T2, respectively. The observed NMR linewidth is of the order of

T−12 . Outside of the extreme narrowing regime, multiexponential relaxation is possible

in quadrupolar spins or in groups of equivalent spins-1/2. It may be seen readily that since

transverse relaxation is affected by adiabatic relaxation processes with zero-frequency J(0)

spectral densities, the linear dependence of J(0) on τc indicates that the T
−1
2 transverse re-

laxation rate is ever-increasing as the rotational tumbling slows. Longitudinal relaxation is

adiabatic-free, and the T−11 relaxation rate has a maximum near τc ∼ ω−10 . This is where the

polynomial and θξ′ξ is the fixed angle between the principal axes of interaction ξ′ and interaction ξ in the

rigid molecule. The amplitude factor must also be modified to Aξ′
k,−qA

ξ
k,q.

47The Redfield equations may still be valid when the condition ω0τc < 1 is not violated too strongly, if the
motional averaging of the anisotropic interactions is sufficiently rapid compared to ||Ĥ1||−1; see, e.g. Refs.
[86, 87].
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Figure 1.4: Autocorrelation spectral density functions J ξ,ξ(0), Jξ,ξ(ω0), and Jξ,ξ(2ω0) for
rigid spherical molecules tumbling in isotropic solution. The spectral densities are plotted

in units of |Aξk,q|2/ω0 as a function of the dimensionless parameter ω0τc.

non-adiabatic spectral densities have their maxima; the population redistribution between

the Zeeman eigenstates is caused by transitions that are efficiently driven by fluctuations

in the local transverse magnetic field that are resonant at the Larmor frequency.

1.5.4 Dynamic frequency shifts and multiexponential relaxation under

violation of extreme narrowing conditions

Qualitative differences in the relaxation dynamics may begin to emerge in the

“slow-tumbling” regime where |ω0|τc ≥ 1. This can be understood by first realizing that
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there are at least three timescales involved in the relaxation problem: the timescale of the

Zeeman interaction ||Ĥ0||−1 ∼ |ω0|−1, the timescale of the anisotropic interactions ||Ĥ1||−1

(i.e., on the order of the reciprocal of the dipolar couplings, quadrupolar coupling, etc.), and

the timescale of the stochastic modulation of the anisotropic interactions τc. The Redfield

relaxation theory attempts to include the effects of these different timescales all at once in a

second-order perturbative approximation. However, consider the first-order approximation

of a system in the case when the three timescales are distinct. The proper procedure by

which to approximate the dynamics of a system when multiple timescales are involved is to

perform averaging with respect to the fastest timescale first, then the next fastest, etc. In

the extreme narrowing regime (|ω0|τc ¿ 1) the fastest timescale is the motional timescale

characterized by τc, and the next fastest is the Zeeman timescale |ω0|−1. In this limit

it is proper to perform motional averaging first (see §1.3.9), causing all the anisotropic

interactions to disappear to first order in the perturbation theory (only to reappear as

relaxation terms in the higher-order treatment). A second averaging (also to first order)

via the Zeeman interaction can then be applied to the motionally-averaged Hamiltonian.

In the slow-tumbling regime where extreme-narrowing conditions are violated, the fastest

timescale is the Zeeman timescale |ω0|−1, and the next fastest is the motional timescale τc.

Under these conditions the Zeeman truncation of the full Hamiltonian should be applied

first, and the motional averaging applied second.

That changing the order of the Zeeman truncation and motional averaging may

lead to different dynamical results can be appreciated by a simple example due to Redfield

[78]. Consider a single spin subjected to a magnetic field B(t) = B0 + B1(t), where B0
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is the dominant static magnetic field and B1(t) is a small, randomly reorienting magnetic

field of constant magnitude B1, which could in principle be the local field due to modulated

anisotropic interactions. Here B1(t) is presumed to be slowly varying with time constant τc,

and it is assumed that |ω0|−1 ¿ τc ¿ |ω1|−1, where ω0 = γB0 and ω1 = γB1. Since B1(t)

is slowly varying, the variation of B(t) over some time ∆t ∼ |ω0|−1 is small, and during this

interval the spin precesses in an average field of magnitude B ′ =
√
B20 +B21 .

48 Therefore

on average the spin will precess at the Larmor frequency |ω′0| = γB′ = |ω0|
√

1 + (ω1/ω0)2

of the average magnetic field. However, if the variation of B1(t) is rapid such that τc ¿

|ω0|−1 ¿ |ω1|−1, then during the interval ∆t the stochastic field B1(t) has undergone many

fluctuations and averages to zero, so that the spin effectively precesses solely in the field

B0 at frequency ω0 = γB0. The difference in precession frequencies between |ω0| in the

extreme narrowing regime and |ω′0| in the slow tumbling regime is of the order of ω21/|ω0|

and corresponds to the dynamic frequency shift mentioned in §1.5.2.

The existence of the dynamic frequency shift can also be intuited from second-

order quantum-mechanical static perturbation theory if the roles of these varied dynamical

timescales are taken into account. For example, the Zeeman-truncated solid-state quadrupo-

lar Hamiltonian (discussed in §1.3.7) contains a second-order isotropic component, i.e., a

component that does not depend on molecular orientation. If the molecular reorientation

processes are very slow, say in the limit that the solid has become a glassy fluid, one expects

that that motional averaging will not completely average away the quadrupolar isotropic fre-

48The average value of |B′(t)| = |B0 + B1(t)| is determined from the isotropic orientational average

〈|B′|〉 = {
∫
dΩ |B′|}/

∫
dΩ = 1

4π

∫
dΩ
√
B20 +B21 + 2B0B1 cos θ '

√
B20 +B21 if B0 À B1, where θ = θ(t)

is the instantaneous angle at time t between B0 and B1(t), and dΩ = dφ dθ sin θ is the differential surface
element on the unit sphere.
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quency shift. This is the slow tumbling limit τc À |ω0|−1 in which the Zeeman truncation of

the quadrupolar Hamiltonian must be performed before the motional averaging. In the op-

posite (extreme narrowing) limit τc ¿ |ω0|−1, the motional averaging is the fastest timescale

and must be applied first. In this case, the full quadrupolar Hamiltonian—which contains

only tensor spatial components—is completely averaged away by fast isotropic molecular

reorientation, and there is no quadrupolar coupling interaction remaining to which to apply

the Zeeman truncation, so the quadrupolar isotropic shift disappears. It follows that in the

intermediate regime, the solid-state quadrupolar isotropic shift must be gradually quenched

by increasingly fast molecular motion as τc decreases [87]. The dynamic frequency shift

arises in the second-order semiclassical relaxation theory from the imaginary component

ˆ̂
L of the relaxation superoperator, with the magnitude of the shift given by the imaginary

part of the spectral densities Lξ
′,ξ
q (ω). In light of the previous discussion, it is not surprising

that the second-order dynamic shift predicted from the relaxation theory asymptotically

attains the value of the second-order solid-state isotropic shift in the slow-tumbling regime

where τc À |ω0|−1 [88, 89]. Dynamic frequency shifts are not limited to autocorrelated

interactions. Cross-correlated interactions (e.g., the quadrupolar-chemical shift anisotropy

cross correlation) can also lead to dynamic shifts in the slow tumbling regime [90, 91],

which asymptotically approach the isotropic shifts of the second-order solid-state interfer-

ence terms. It should be noted that dynamic frequency shifts are usually smaller than

linewidths and are therefore rarely observed, except in the slow tumbling regime for tran-

sitions for which there is no line broadening through adiabatic relaxation [92, 93].

Certain spin systems with sufficient degrees of freedom exhibit multiexponen-
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tial relaxation behavior when extreme narrowing conditions are violated. This behavior

has been predicted and observed in groups of equivalent spins [94, 95, 96, 97, 98] and in

quadrupolar nuclei [99, 100, 101]. Again, this behavior can be intuited from physical ar-

guments. For instance, in the slow tumbling regime where it is appropriate to perform

the Zeeman truncation before the motional averaging, one can imagine that although the

first-order truncated quadrupolar Hamiltonian eventually time-averages to zero (causing

no frequency shift), it still dominates the relaxation dynamics. It has been noted (see

§1.3.7) that “symmetric” transitions |I,+|mI |〉 ←→ |I,−|mI |〉 in a quadrupolar spin I are

invariant to the effects of the quadrupolar interaction to first order in the perturbation

theory. Consequently the three single-quantum transitions that correspond to observable

transverse magnetization in the I = 3/2 system should not relax equivalently, because

the symmetric |mI = +1
2〉 ←→ |mI = −12〉 transition is unaffected by the first-order

quadrupolar Hamiltonian and therefore should relax more slowly than the “asymmetric”

|mI = +3
2〉 ←→ |mI = +1

2〉 and |mI = −12〉 ←→ |mI = −32〉 transitions. Equivalently, one

can observe that there is no adiabatic contribution to quadrupolar relaxation of the symmet-

ric transitions in the second-order semiclassical relaxation theory [102, 103] (some violations

of this rule are discussed in Ref. [87]), and recall from the example of Fig. 1.4 that the adi-

abatic (zero-frequency) contribution to the relaxation rate dominates in the slow tumbling

regime. The difference in relaxation rates between the symmetric and asymmetric single-

quantum transitions in the slow-tumbling limit leads to biexponential transverse relaxation

behavior in the I = 3/2 system and a corresponding natural lineshape that is the sum of

two Lorentzians of different widths. Similar arguments indicate that the two asymmetric
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single-quantum transitions in the I = 1 system relax equivalently under the quadrupolar

interaction, but in the slow tumbling regime the symmetric |mI = +1〉 ←→ |mI = −1〉

double-quantum transition relaxes more slowly than the single-quantum transitions.

A final point to consider is that the existence of dynamic frequency shifts and

multiexponential relaxation processes allows for spin dynamics to occur that would other-

wise be forbidden in isotropic solution. For instance, the dynamic frequency shift embodied

in the superoperator
ˆ̂
L corresponds to an effective correction to the coherent Hamiltonian

ˆ̂
H0 that may be non-negligible in the slow-tumbling regime, although the time evolution

under this correction may not be significantly faster than the relaxation of the system [92].

Also, multiexponential relaxation effects have already been successfully exploited to cause

interconversions between density operator elements that would otherwise be forbidden in

isotropic solution in the extreme narrowing regime [97, 98, 100, 101, 104].49

1.6 NMR excitation and spin manipulation

This section considers the actual process of magnetic resonance during rf irradia-

tion. A simple treatment also can be found in §4.4.2 of Ref. [41]. Consider the laboratory-

49This can be understood from a simple example. Consider an I = 3/2 spin in isotropic solution pre-

pared in a state of x-magnetization, with a difference density operator ρ̂ = cI Îx = cI
2

(
0√
3

√
3
0

0
0

2
0

0
2

0
0

0√
3

√
3
0

)
in

the Zeeman eigenbasis. The relaxation in the inner {|mI = ±1/2〉} manifold is slow because these co-
herences commute with the first-order quadrupolar Hamiltonian. If the fast quadrupolar relaxation de-
phased the other coherences to a fraction A of their initial value and the central transition coherences
relaxed to a fraction B of their initial value (A < B), then the difference density operator would be ρ̂ =

AcI2

(
0√
3

√
3
0

0
0

0
0

0
0

0
0

0√
3

√
3
0

)
+B cI2

(
0
0

0
0

0
0

2
0

0
2

0
0

0
0

0
0

)
= cI [(

3
5
A+ 2

5
B)Îx+

√
6
5
(A−B)T̂3,0;x], where T̂3,0;x = − 1√

2
(T̂3,+1−T̂3,−1)

and T̂3,±1 = ∓ 14
√

1
15
[5(Î2z Î± + Î±Î

2
z )− {2I(I + 1) + 1}Î±]. Therefore the biexponential relaxation of trans-

verse magnetization Îx in the I = 3/2 system also creates rank-3 single quantum coherences T̂3,±1, which
can be converted into double- and triple-quantum coherences T̂3,±2 and T̂3,±2 or octupolar order T̂3,0 via a
radiofrequency pulse. If the relaxation was monoexponential (A = B), only x-magnetization Îx would be
present during relaxation.
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frame Hamiltonian of a spin-I nucleus in the presence of a large magnetic field B0 = B0z̃

and an rf field Brf (t) = 2B1 cos(ωrt) (see Eqs. 1.9 and 1.67:

Ĥ(t) = ĤZ + Ĥrf (t)

= −~ω0Îz − 2~ω1 cos(ωrt+ φ)Îx. (1.136)

Here ω1 = γB1 and the Larmor frequency ω0 may be modified to include the chemical

shielding (e.g., ω0 = γ(1−σiso)B0 in isotropic solution), if desired. The rf carrier frequency

ωr is assumed to be non-negative. Note that Ĥ(t) in Eq. 1.136 does not commute with

itself at different times. As discussed in §2, this implies that the time evolution under

this Hamiltonian cannot be solved exactly; an approximation is necessary. When the rf

irradiation is nearly resonant, ωr ≈ |ω0|, the time evolution is best approximated in the

rotating frame, i.e., the frame rotating at angular frequency ωr about the z-axis. Eq. 1.136

can be rewritten in terms of circularly-polarized rf components (see Eq. 1.67):

Ĥ(t) = −~ω0Îz − ~ω1[cos(ωrt+ φ)Îx + sin(ωrt+ φ)Îy]

−~ω1[cos(ωrt+ φ)Îx − sin(ωrt+ φ)Îy]

= −~ω0Îz − ~ω1[e−i(ωrt+φ)Îz Îxe+i(ωrt+φ)Îz ]− ~ω1[e+i(ωrt+φ)Îz Îxe−i(ωrt+φ)Îz ].

(1.137)

The magnetic field vector of one rf component goes around nearly at the angular frequency

of the Larmor precession ω0; the other component rotates in the opposite sense as the spin

precession. The time development operator is best approximated in the frame that rotates
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nearly with the Larmor precession, which is defined by the unitary transformation (see

§2.3.3):

V̂rot(t) = exp(+iωrtÎz). (1.138)

Note that when ωr = ω0, the operator V̂rot(t) reduces to a transformation into the interaction

frame of the Zeeman Hamiltonian, V̂Z(t) = e−iĤZ t/~. The effective Hamiltonian in the

rotating frame is (see §2.3.1):

Ĥrot(t) = V̂ −1rot (t)Ĥ(t)V̂rot(t)− i~V̂ −1rot (t)
∂V̂rot(t)

∂t

= −~(ω0 − ωr)Îz − ~ω1[e−i(2ωrt+φ)Îz Îxe+i(2ωrt+φ)Îz ]− ~ω1[e+iφÎz Îxe−iφÎz ]

= −~(ω0 − ωr)Îz − ~ω1[Îx cosφ− Îy sinφ]

−~ω1[cos(2ωrt+ φ)Îx + sin(2ωrt+ φ)Îy]. (1.139)

Note that this equation was derived assuming ω0 ' γB0 > 0; if ω0 < 0 the other circularly

rotating component of the rf magnetic field is nearly resonant with the spin precession.

Also note that the Zeeman interaction term has been almost completely removed in the

rotating frame, leaving only a resonance offset term −~(ω0 − ωr)Îz. The laboratory frame

Hamiltonian describes dynamics on two very different timescales, |ω0|−1 and |ω1|−1, but the

rotating frame Hamiltonian describes dynamics only on the order of |ω1|−1. It is then easy

to apply time-dependent perturbation theory. The first two terms in the last line of Eq.

1.139 are time independent and the last term oscillates at 2ωr. First-order time-dependent

perturbation theory (the secular approximation) dictates that this rapidly oscillating term
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can be time-averaged to zero and neglected when the oscillation frequency 2ωr is much

greater than the frequency |ω1| that characterizes the dynamical evolution in the rotating

frame. Therefore one half of the effectiveness of the linearly-polarized rf magnetic field is

lost because it does not rotate in the same sense as the spin precession. Since ωr ≈ |ω0|,

one can say that this counter-rotating term can be neglected when the Larmor frequency of

the spins due to B0 is much greater than than the Larmor frequency of the spins due to B1

(also known as the rf nutation frequency), i.e., when |ω0| À |ω1|. Since |ω0|/2π is typically

on the order of 102 MHz in high-field NMR experiments and |ω1|/2π is at most on the order

of 102 kHz in high-power solid state probes, this is usually a good approximation. The

effects of the non-secular counter-rotating term can appear in a higher-order perturbation

theory treatment, where they are known as Bloch-Siegert shifts of the resonance [105],[41,

§H],[41, §4.4.2]. Note that all of the rf field instead of half of it could be used to drive the

spins if a crossed coil pair was employed such that a nearly-resonant circularly polarized rf

field could be produced that rotated in the same sense as the spin precession. Also note

that the rotating frame Hamiltonian (Eq. 1.139) would be completely time independent in

that case; this is an interesting example of a system in which the time evolution cannot be

solved exactly in the laboratory frame because the Hamiltonian is not homogeneous (see

§2.1.1) but can be solved exactly in the rotating frame.

According to the arguments above, the rotating frame Hamiltonian during rf irra-

diation is approximately

Ĥrot/~ ≈ −(ω0 − ωr)Îz − ~ω1[Îx cosφ− Îy sinφ]. (1.140)
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This corresponds to the Zeeman Hamiltonian of a spin I in the presence of an effective

static magnetic field

Beff = B1 cosφx̃−B1 sinφỹ + (B0 − ωr/γ)z̃. (1.141)

The phase φ of the rf field determines the direction of the transverse component of the

effective field and the carrier frequency ωr of the field enters such that the Larmor frequency

of the effective longitudinal field is equal to the detuning from resonance (ω0−ωr). Note that

the transverse component of the rotating frame rf Hamiltonian is often written ~ω1[Îx cosφ+

Îy sinφ] such that φ = 0 corresponds to a +x pulse and φ = π/2 corresponds to a +y pulse;

here strict attention is paid to the sign conventions. In the absence of that attention one

often finds expressions for the rotating frame rf Hamiltonian such as the following (for the

φ = 0 case):

Ĥrf/~ = δÎz + ω1Îx, (1.142)

where δ is the detuning of the rf carrier from resonance. This sort of expression is usually

acceptable but one must remember that there are certain circumstances in which the signs

of the frequencies and phases matter and should be made explicit [3, 33, 34]. Consider the

action of an x-pulse in the rotating frame according to Eq. 1.142. If the spins are initially

magnetized in the +z direction—e.g., corresponding to thermal equilibrium in the high
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temperature limit (§1.4.3)—the difference density operator is

ρ̂(0) ∝ Îz. (1.143)

The time evolution in the rotating frame under +x-irradiation is

ρ̂(t) = e−iĤrf t/~ρ̂(0)e+iĤrf t/~ = e−iω1tÎx ρ̂(0)e+iω1tÎx = Îz cos(ω1t)− Îy sin(ω1t), (1.144)

which corresponds to pure precession (rotation) about the +x-field in the y–z plane. His-

torically this motion is called “rf nutation” because of its appearance when added to the

fast precession about z the Larmor frequency ω0 in the laboratory frame. The quantity ω1

is called the rf nutation frequency. If the spins are irradiated for some time τ which is the

length of the rf pulse, one finds that the spins are tipped through the angle

θnut = ω1τ. (1.145)

A pulse whose strength and duration is chosen such that ω1τ = π/2 is called a 90◦ pulse;

in this case the initial z-magnetization is rotated entirely into the transverse plane. A 90◦

pulse maximizes the NMR signal, which is proportional to the transverse magnetization.

In practice the experimentalist calibrates the rf pulse by varying τ at a fixed rf power until

the signal maximum is observed [4, §3.4.1],[106]. The presence of a resonance offset can

adversely affect the ability to apply pulses because less of the magnetization is nutated

into the transverse plane when the effective magnetic field in the rotating frame contains a

z-component. When |δ| À |ω1| the effective field is almost entirely along the z-axis, which
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obviously does not do much to rotate z-magnetization into the transverse plane. The case

when |ω1| is much larger than the resonance offset or the size of any of the internal NMR

Hamiltonians (measured in frequency units) is called a “hard” rf pulse and corresponds to

a pure rotation of the nuclear polarization.

One may conclude from this analysis that nearly-resonant harmonic rf irradiation

can be used to rotate nuclear magnetization about an axis in the transverse plane that is

determined by the phase of the pulse. If the spins are initially magnetized along the z-axis,

this corresponds to the excitation of single-quantum coherences in the Zeeman basis from

populations. This can be appreciated by observing the fact that the operator Îx (or Îy)

in the rf Hamiltonian connects states |I,m〉 to states |I,m± 1〉. For this reason the NMR

excitation selection rule is said to be ∆m = ±1 (the reasoning for this would of course be

different in a quantized field picture). The selection rule is the same for NMR detection, but

for a slightly different reason (see §1.7). An rf pulse in the absence of any other interactions

can change the coherence order of the nuclear polarization, but according to arguments

in Appendix B it cannot change the spherical tensor rank of the polarization. This is a

consequence of the fact that the effective rf Hamiltonian (Eq. 1.140) causes a rotation of

the polarization about an effective magnetic field; rotations conserve tensor rank. However,

a combination of rf irradiation in the presence of certain other interactions such as an

electric quadrupolar coupling can change tensor rank. These results are in contrast to the

result of NMR free precession in the absence of a magnetic field; the evolution of the spins

under the Zeeman-truncated secular internal Hamiltonians conserves coherence order q, a

result that is exploited in coherence pathway selection techniques.
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As an interesting aside, it has been shown by Feynman, Vernon, and Hellwarth

[107] that the quantum-mechanical dynamics of any two-level system can be interpreted

geometrically as the evolution of the angular momentum of a fictitious spin-1/2 particle in a

magnetic field. This is a result of the fact that a two-level Hamiltonian can be decomposed

in terms of spherical tensor operators of up to rank k = 1 (giving it the matrix form

of a Zeeman Hamiltonian ∝ Î · B = ÎxBx + ÎyBy + ÎzBz) and likewise for the density

operator (giving it the matrix form of the components of angular momentum/magnetization

∝ Î · ζ̃ = ζxÎx + ζy Îy + ζz Îz).

A final point to note is that NMR excitation is coherent : the rf magnetic field

is uniform on an atomic scale and each spin in the ensemble experiences approximately

the same rf field at the same time. The spins therefore nutate in phase with each other,

so in the absence of any local interactions and relaxation effects the net polarization of

the ensemble is preserved under the action of the rf field. This is why ensemble-averaged

coherence can exist in the sample after irradiation. If the excitation field was incoherent—

i.e., each spin may be excited into a coherence but the phases of the coherences are randomly

distributed from spin to spin—then no ensemble-averaged coherence would persist. The

fact that NMR spectroscopy is coherent makes the quantum-mechanical description of the

dynamics useful. It is interesting to note that population inversions (i.e., an inversion of the

magnetization) could not be achieved if the NMR excitation was incoherent (the best case

in a two-level system would be to equalize the populations in the absence of spontaneous

emission), whereas it is quite simple to achieve complete population inversions in NMR

using 180◦ pulses.
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1.7 NMR detection

Those who are versed in optical spectroscopic techniques might assume that the

detection of the NMR signal takes place via the measurement of the radiative emission of

the excited spins. In pulsed Fourier-transform NMR the signal is actually measured while

the rf field is off, so stimulated emission is ruled out as a source of signal in this type

of NMR experiment. Likewise, spontaneous emission of the nuclear spins is a completely

negligible process [68]. The conventional method of NMR detection considered here involves

the detection of nuclear magnetization via the current it induces in a coil. In pulsed Fourier

transform NMR spectroscopy this signal is measured in the time domain. Although NMR

detection can be considered at least formally in a field-quantized picture, it is best thought of

simply as a near-field inductive coupling of the oscillating bulk magnetic field of the nuclear

spins to the rf detection coil [68]. Typically NMR experiments use the same coil both for

applying pulses and for detection, although some techniques such as NMR remote detection

(see §6) separate the encoding of spins from their detection. The coil axis is transverse to

B0; this allows both for the application of transverse rf pulses for spin excitation but also

detection of the rotating transverse nuclear magnetization. The book by Fukushima and

Roeder [108] is an excellent resource on NMR hardware and its role in the NMR experiment;

see also §3 of the book by Cavanagh et al. [4].

Faraday’s law of magnetic induction states that the electromotive force (emf)

induced in a loop of wire by a time-varying magnetic field B(t) is

E = −dΦ(t)
dt

, (1.146)
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where the magnetic flux through the loop is

Φ(t) =

∫
B(t) · da, (1.147)

where the integral is taken over the area of the loop and da is the differential area element

directed normal to the plane of the loop. Eq. 1.148 is a consequence of the Maxwell equation

∇× E = −∂B
∂t
, (1.148)

which states that a time-varying magnetic field can create an electric field; in the case of

the current loop this means that a changing magnetic field along the loop axis induces an

azimuthal electric field that drives an electric current through the loop. The details of NMR

coil design are outside the scope of this discussion; however, all such coils operate on this

principle of Faraday induction.

As is discussed in more detail in §6.2.1, a polarized ensemble of nuclear dipoles

creates a macroscopic magnetization which in turn generates a magnetic field. This mag-

netization is proportional to the average nuclear angular momentum; if a component of

this angular momentum is transverse to the applied field B0, then it rotates in the trans-

verse plane due to Larmor precession about B0 and evolves in the presence of the secular

contributions of whatever local molecular fields are present. The Larmor precession and

spin evolution under local Hamiltonians is therefore encoded in the time-dependence of the

transverse magnetic field created by the spins. The rotating magnetic field induces a time-

dependent flux through the coil. The NMR signal is simply due to the current induced in
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the detection coil.

NMR spectrometers typically implement what is known as quadrature detection,

in which the NMR signal is measured against two reference channels: one oscillating in-

phase with the rf carrier and one oscillating π/2 out-of-phase with the carrier. As was seen

in §1.6, a phase shift of the carrier by φ corresponds to a rotation by φ about z in the

rotating frame. Therefore quadrature detection allows for the simultaneous measurement

of the rotating-frame magnetization componentsMx andMy. By convention the circularly-

polarized complex transverse magnetization component M+ = Mx + iMy is measured;

M− = Mx − iMy could be measured equally well. Since the magnetization is proportional

to the average of the angular momentum, M ∝ 〈Î〉, this implies that the detection operator

Ôq.d. = Î+ (1.149)

is appropriate for quadrature-detected signals. One may object that this operator is not

Hermitian and that all quantum-mechanical observables must be Hermitian and possess

real eigenvalue spectra. In particular, a measurement of Î+ = Îx + iÎy corresponds to a

simultaneous measurement of the x- and y-components of angular momentum, which is also

forbidden because [Îx, Îy] 6= 0. The resolution of this seeming paradox comes from issues

explored in §1.4.2 (see also [2, §4.2]); namely, the operator Î is actually a reduced single-

spin operator produced by tracing over the rest of a macroscopic collection of other spins.

It should never be forgotten NMR spectroscopy as it is described here is a bulk ensemble

technique. Although it is not permissible to know different components of quantized angular

momentum simultaneously, in the classical limit it is certainly permissible to specify different
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components of macroscopic magnetization at the same time.

Since the macroscopic magnetic field of the spins is proportional to their magneti-

zation (see §6.2.1), the arguments cited above can be used to show that the complex current

induced in the detection coil is

I(t) ∝ ∂

∂t
M+(t) ∝

∂

∂t
Tr[Î+ρ̂(t)]. (1.150)

The laboratory-frame circular magnetization component is of the form M+(t) = M0e
−iω′0t

for a single resonance with no relaxation, where the term ω′0 = (1−σiso)ω0 has included the

isotropic chemical shielding as an explicit reminder of the chemical information contained

in the signal. In practice, ω′0 ≈ ω0, and

I(t) ∝ −iω0M0e
−iω′0t = −iω0M+(t). (1.151)

For this reason the NMR signal is often written as being proportional to the transverse

magnetization itself (instead of to its time derivative).

Eq. 1.151 can be used to make some statements about the sensitivity of NMR

Faraday detection. The Larmor frequency is ω0 = γB0; the magnetization contains one

factor of γ because it is proportional to the magnetic moment of the nucleus and another

factor of ω0 if the magnetization is due to thermal equilibrium spin polarization in the field

B0 (see Eq. 1.119). Therefore under conventional conditions the magnitude of the NMR
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signal is

S ∝ γ3B20 . (1.152)

This demonstrates the desirability of working at high magnetic fields, particularly if low-γ

nuclei are to be detected. In practice rf coils tend to lose some of their efficiency when

operated at high frequencies and the actual signal goes something like ω
3/2
0 instead of ω20

[108, §VI.A.4]. Some factors affecting the sensitivity of NMR Faraday detection (including

the effects of noise) are discussed in Refs. [109],[7, §4.3],[4, §3.3.3]. Note that one factor of

B0 (and one of γ) can be removed from Eq. 1.152 if the nuclei can be polarized by some

means other than thermal equilibration at high field, e.g., spin-exchange optical pumping

(see §6.4.1), etc. The second factor of B0 (and another of γ) can be removed if an alternative

detection technique is used whose sensitivity is proportional to the magnetization of mag-

netic flux itself rather than to the time derivative of the flux; examples of such techniques

are atomic magnetometry [110], SQUID flux magnetometry [111], and spin-exchange optical

detection [112]. Therefore the use of a large magnetic field can be avoided in certain NMR

experiments, although having a large field is beneficial for other reasons, such as when the

chemical shift (∝B0) is of interest.

The discussion thus far has glossed over an important issue, which is how the case

of a nuclear magnetization density that depends on position should be treated properly. It

may not be clear at first what the effect on the signal will be of a magnetization vector that

varies in strength and direction over a sample, with some parts of the sample obviously being

closer to the coil than others, etc. The solution is actually quite simple, because there is a
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symmetry between the case of spins generating a magnetic field that induces a current in the

coil and the case of a current in the coil being used to generate a magnetic field experienced

by the spins. This is called the principle of reciprocity in NMR [109],[113],[114]. If B1(r) is

the magnetic field generated by an rf coil as a function of position and M(r) is the nuclear

magnetization density of the spins, the emf in the coil can be written

E = − ∂

∂t

∫

V
d3r M(r) ·B1(r), (1.153)

where V is the volume containing the sample. This emf is the same no matter whether it

is due to the action of the spins on the coil or vice versa. NMR rf coils are usually built

such that the rf field is as homogeneous as possible across the sample so that the spins are

excited uniformly. Taking the rf field to be homogeneous and directed along the coil axis x

such that B1(r) = B1x̃ in V , one finds

E = −B1
∂

∂t

∫

V
d3r Mx(r). (1.154)

Therefore the NMR signal is proportional to the time derivative of the integral of the

magnetization over the sample volume. Quadrature detection allows the simultaneous mea-

surement of Mx(r, t) and My(r, t) in the rotating frame.

In practice the NMR signal is not digitized at radio frequencies but is down-mixed

with the rf carrier to form an audiofrequency signal. Consider the following problem. The

ensemble-averaged nuclear angular momentum component 〈Î+〉(t) in the laboratory frame
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can be written in terms of rotating frame operators using Eq. 2.38:

〈Î+〉(t) = Tr[ρ̂rot(t) Îrot+ ]. (1.155)

The rotating frame transformation is defined according to Eq. 1.138: Ôrot = V̂ −1rot ÔV̂rot,

where V̂rot = eiωrtÎz . The operator Î+ is a rank k = 1, order q = +1 spherical tensor

operator (see Appendix A) and transforms under rotations about the z-axis in a simple way

(Eq. B.15): Îrot+ = V̂ −1rot ÔV̂rot = e−iωrtÎ+. Therefore,

〈Î+〉(t) = e−iωrt Tr[ρ̂rot(t) Î+]. (1.156)

The rf down-mixing in the in-phase and quadrature channels is achieved by electronically

multiplying the sinusoidally-oscillating induced signal by the phase-shifted sinusoidal refer-

ence signals oscillating at ωr. This results in oscillations at the sum and the difference of

the signal frequency and the carrier frequency ωr; the sum oscillations are near 2ω0 and are

too fast to digitize, whereas the difference oscillations are typically in the audiofrequency

range. The effect of the mixing is to multiply the quadrature-detected signal by eiωrt. Since

M+(t) ∝ 〈Î+〉(t), one can use Eqs. 1.151 and 1.156 to write the digitized quadrature-detected

NMR signal as

S+(t) ∝ Tr[ρ̂rot(t) Î+]. (1.157)

This is an important result: the time-domain signal observed by the experimentalist is

effectively a measurement of the rotating frame dynamics because the rf carrier down-
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mixing “cancels” the time dependence acquired by transforming from the rotating frame

back into the laboratory frame. This is one reason why NMR spectroscopists always think in

terms of the rotating frame: they are used to seeing the measured rotating frame dynamics

with their own eyes. The recorded signal, called the free induction decay (FID), oscillates

at the evolution frequencies of the spins under their own local Hamiltonians (i.e., chemical

shielding, quadrupolar, etc.). These measured frequencies can be shifted by an arbitrary

amount by changing the rf carrier frequency (i.e., changing the resonance detuning δ), so

it is usually not the absolute frequency of a resonance that matters but rather the relative

frequency compared to the resonance of a reference compound or to other peaks in the

spectrum. One interesting feature of NMR spectrometers is that the phase of the receiver

can often be shifted—usually φr = 0◦, 90◦, 180◦, or 270◦—which corresponds to multiplying

S+(t) by eiφr . This results in multiplying the observed signal by 1, i, −1, or −i, which is

useful for NMR coherence pathway selection by phase cycling schemes.

Note that the operator Î+ in Eq. 1.157 connects states |I,m〉 to states |I,m+ 1〉.

In general the detection operator Î+ selects out Î− = Î†+ terms from the density operator,

i.e., the −1-quantum coherences. The fact that NMR measures transverse magnetization,

M± (or Î± in the quantum picture), is the reason why the NMR selection rule is ∆m =

±1 for detection (the interpretation of this selection rule will be different in a quantized

field picture). As an interesting example, consider x-magnetization (e.g., prepared from

equilibrium z-magnetization by a 90◦-y pulse) that precesses with a rotating-frame difference

density operator equal to

ρ̂(t) = Îx cos(δt) + Îy sin(δt). (1.158)
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Say that quadrature detection is not employed and x-magnetization is detected. In that

case the signal is

Sx(t) ∝ Tr[ρ̂(t) Îx] = Tr[Î2x] cos(δt)

=
[ ∑

m,m′

|〈I,m′|Îx|I,m〉|2
]
cos(δt). (1.159)

The intensity of the NMR line will therefore be proportional to the incoherent sum of

probabilities |〈I,m′|Îx|I,m〉|2. This is the same result as the standard Fermi Golden Rule

description of transition probabilities, in this case the single-quantum transitions |I,m〉 →

|I,m′ = m ± 1〉. The Fermi Golden Rule result is applicable to continuous-wave NMR

in which the resonant transition between Zeeman eigenstates occurs in the presence of a

perturbing rf term Ĥrf ∝ Îx. This is an interesting result, but really only says that the

time domain/pulsed NMR technique has the same selection rules as the continuous wave

technique.

A final topic to consider is how one goes from the time domain signal S+(t) to the

NMR spectrum. This is performed using a Fourier transform (FT) with respect to the time

variable t. As an example, consider the time-domain NMR signal due to a spin undergoing

free precession in the presence of some resonance offset Hamiltonian Ĥ/~ = ω′Îz and in the

absence of relaxation:

S+(t) = S0e
iω′t. (1.160)
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The NMR spectrum is given by the Fourier transform of the signal:

S(ω) = F{S+(t)} =
∫ ∞

−∞
dte−iωtS+(t)

= 2πS0δ(ω − ω′), (1.161)

which corresponds to a sharp line at frequency ω = ω′. This satisfies the expectation

of a Fourier transform pair: since the signal extends indefinitely in the time domain, it

is infinitely sharp in the frequency domain. If S+(t) is modified to include the effects of

transverse relaxation for t > 0,

S+(t) = S0e
iω′te−t/T2 , (1.162)

the spectrum is [4, §3.3.1]:

S(ω) = A(ω) + iD(ω), (1.163)

where the absorptive and dispersive lineshape factors are (respectively):

A(ω) =
T−12

T−22 + (ω′ − ω)2
(1.164)

D(ω) =
(ω′ − ω)

T−22 + (ω′ − ω)2
. (1.165)

The time domain signal decays exponentially with a characteristic time constant T2; its

spectrum has a Lorentzian profile with a full width at half maximum 2T−12 . The quantity

Re[S(ω)] shows a pure absorption-mode lineshape, which is desirable in terms of resolution
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because its wings decay to zero more rapidly than those of a dispersive line. It is possible for

the instrumentation to introduce phase factors into the experiment such that S ′(t) = eiφS(t)

(where φ is not known ahead of time); this makes the real and imaginary parts of the

spectrum into mixtures of absorptive and dispersive components. The quantity Re[S(ω)]

can be made purely absorptive by multiplying the signal by making a “zero-order” phase

correction (i.e., multiplying by e−iφ) [4, §3.3.2.3]. Another interesting case is when the FID

is delayed by a time τ , e.g. during a spin echo experiment, such that the signal becomes

S′(t) = S(t− τ). There is a Fourier transform identity [4, §3.3]:

F{S(t− τ)} = e−iωτF{S(t)} = e−iωτS(ω), (1.166)

which indicates that an extra time-dependent phase is acquired which can be removed by

making a “first-order” phase correction.

In practice the time domain signal is sampled discretely and a discrete Fourier

transform is performed. If the sampling time (called the “dwell time”) is dt, the spectral

width is sw = 1/dt. Frequencies in the signal of up to ±sw/2 from zero are observable; this

is a result of the Nyquist sampling theorem [4, §3.2]. Higher frequencies get aliased back

into the spectral window if they are not first filtered out.

1.8 Fundamentals of two-dimensional NMR

The basic goal of NMR is to measure the nuclear spin dynamics as a function

of time in order to gain information about their environment. The two dimensional (2D)

NMR technique provides a means of mapping out spin evolution indirectly in a time di-
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mension that is additional to the time dimension that corresponds to direct measurement

of the spins. The two-dimensional technique was first proposed by Jeener and developed

by Ernst’s group [115, 116]. The authoritative reference on this topic is Ernst’s text [7],

but the books by Cavanagh et al. [4] and Goldman [2] also explain these techniques well

and perhaps more simply. The usual goal of 2D NMR is to correlate the time evolution in

the indirect dimension with the time evolution in the direct dimension to form a so-called

NMR interferogram. Sometimes the elucidation of these correlations yields more informa-

tion than does determining the time evolution in either dimension alone. Sometimes these

correlations can be used to disperse the resonances of a crowded spectrum into another

dimension. The use of an indirect measurement technique is also what allows multiple

quantum spectroscopy experiments to be conducted, since multiple quantum coherences do

not lead to bulk magnetization therefore are not directly observable by NMR techniques.

The principles of multidimensional and multiple quantum NMR has been reviewed by Pines

et al. [117, §2]. Two dimensional spectroscopy can even be used to correlate spin evolution

under the action of two different Hamiltonians.

A diagram of a generic two dimensional NMR experiment is presented in Fig.

1.5. The preparation interval is used to perturb the spins from their equilibrium state and

manipulate them into a state that will have time evolution of interest. For example, in mul-

tiple quantum spectroscopy the preparation step could consist of an rf pulse or sequence

of pulses that is used to excite multiple quantum coherences from initial z-magnetization.

The nuclei are then allowed to evolve for a time t1, which is the indirect time parameter.

Radiofrequency pulses and other manipulations of the sample can be applied during this
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time to modify the Hamiltonian, if desired. The optional mixing period is used to convert

undetectable coherences into observable transverse magnetization for detection or to other-

wise aid in selecting which coherences in the indirect dimension will be correlated with the

detected coherences. The detection interval is used to measure the evolution of the spins as

a function of the direct time, t2. The state of the nuclei at the beginning of the detection

interval depends on their evolution during t1. This is a completely general technique; for

example, coherences of spin I could be prepared and transferred during the mixing period

to coherences of spin S for detection, without ever having to detect spin I directly.

Prepare

t1

MixEvolve Detect

t2

Prepare

t1

MixEvolve Detect

t2

Figure 1.5: Schematic diagram of a two dimensional NMR experiment.

The key to the two dimensional technique is to perform a series of experiments

while incrementing the value of t1 in order to mimic a discretely sampled transient ac-

quisition such as the ones that occur during the detection interval t2 at the end of each

experiment. Whereas the signal in the direct dimension t2 = ndt2 may be discretely sam-

pled in N2 points in increments of dt2, the time evolution in the indirect dimension is

followed by performing N1 transient experiments, each using an indirect evolution time

of t1 = mdt1. In this manner a two-dimensional (N1 × N2) interferogram S(t1, t2) can

be built. Note that two-dimensional experiments are inherently much longer than one-

dimensional experiments; whereas a one-dimensional FID with N2 points can be acquired

in 1s, a N1 ×N2-dimensional data set takes N1 times as long to acquire (i.e., ∼N1 s). The

experiment will take even longer (∼pN1) if a p-step phase cycle is employed per transient
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acquisition. The two-dimensional NMR technique is easily extended to higher dimensions

but the experiment takes even longer, e.g., a three dimensional experiment would require

N1 ×N3 transient acquisitions to map out the time evolution in the indirect dimensions t1

and t3, respectively. For this reason, several approaches have been developed to perform

fast multidimensional NMR spectroscopy, some of which have been reviewed in Ref. [118].

It is a useful exercise to examine mathematically how the 2D NMR signal arises.

This discussion largely follows that of Ernst et al. [7, §6.2], except the effects of relaxation

will be neglected. Define V̂p, Û1(t1), V̂m, and Û2(t2) to be the time development operators

for the preparation, indirect evolution, mixing, and (direct) detection intervals, respectively.

All time evolution will be calculated in the rotating frame. The total time development

operator for the experiment is

Û(t1, t2) = Û2(t2)V̂mÛ1(t1)V̂p. (1.167)

Usually V̂p and V̂m involve rf pulses or pulse sequences and can have complicated forms.

The time development operators during the evolution periods will be assumed to be of the

form

Û1(t1) = e−iĤ1t1/~, (1.168)

Û2(t2) = e−iĤ2t2/~, (1.169)

i.e., they will be considered to be the evolution operators under the effective time-independent

Hamiltonians Ĥ1 and Ĥ2, respectively. These could, for example, be secular spin Hamil-
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tonians, but also could be average Hamiltonians over the intervals t1 or t2 while the spins

were subjected to sample spinning or to rf pulse sequences. It will be convenient to work

in the eigenbases of Ĥ1 and Ĥ2:

Ĥ1|t〉 = ~ω(1)t (1.170)

Ĥ2|r〉 = ~ω(2)r . (1.171)

The two Hamiltonians need not share the same eigenbases, but in practice they often do, e.g.,

the Zeeman eigenbasis. The coherences |t〉〈u| and |r〉〈s| evolve under these Hamiltonians in

the indirect and direct dimensions (respectively) as

Û1(t1)|t〉〈u|Û−11 (t1) = e−iĤ1t1/~|t〉〈u|e+iĤ1t1/~ = e−iω
(1)
tu t1 (1.172)

Û2(t2)|r〉〈s|Û−12 (t2) = e−iĤ2t2/~|t〉〈u|e+iĤ2t2/~ = e−iω
(2)
rs t2 , (1.173)

where the quantum beat frequencies are ω
(1)
tu = ω

(1)
t −ω

(1)
u and ω

(2)
rs = ω

(2)
r −ω(2)s , respectively.

According to Eqs. 1.157 and 1.167 the two-dimensional interferogram is

S(t1, t2) ∝ Tr[Ô+ Û(t1, t2)ρ̂(0)Û
−1(t1, t2)]

= Tr[Ô+ Û2(t2)V̂mÛ1(t1)V̂p ρ̂(0) V̂ −1p Û−11 (t1)V̂
−1
m Û−12 (t2)] (1.174)

= 〈〈O†+|
ˆ̂
U2(t2)

ˆ̂
Vm

ˆ̂
U1(t1)

ˆ̂
Vp|ρ(0)〉〉, (1.175)

where Ô+ is a generalized detection operator; usually it is the sum Ô+ =
∑

j Î
j
+ over the

observed spins Ij . The last line of Eq. 1.175 has been written in terms of operators on the
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Liouville space, which is a convenient formalism for these types of calculation. The density

operator after preparation of the system via V̂p but before the indirect time evolution has

occurred may be expanded in the eigenbasis of Ĥ1:

ρ̂p(t1 = 0) = V̂p ρ̂(0) V̂
−1
p =

∑

t,u

ρtup |t〉〈u| (1.176)

|ρp(t1 = 0)〉〉 =
ˆ̂
Vp|ρ(0)〉〉 =

∑

t,u

ρtup |tu〉〉, (1.177)

where ρtup = 〈t|V̂pρ̂p(0)V̂ −1p |u〉 = 〈〈tu| ˆ̂Vm|ρ(0)〉〉. The matrix elements of the indirect-

dimension time evolution operator are (see Eq. 1.172): 〈t|Û1(t1)ρ̂p(t1 = 0)Û−11 (t1)|u〉 =

〈〈tu| ˆ̂U1(t1)|ρp(t1 = 0)〉〉 = e−iω
1
tutρtup . Therefore:

S(t1, t2) = Tr[Ô+ Û2(t2)V̂mÛ1(t1) ρ̂p(0) Û−11 (t1)V̂
−1
m Û−12 (t2)]

=
∑

t,u

ρtup e
−iω(1)tu t1 Tr[Ô+ Û2(t2)V̂m|t〉〈u|V̂ −1m Û−12 (t2)] (1.178)

= 〈〈O†+|
ˆ̂
U2(t2)

ˆ̂
Vm

ˆ̂
U1(t1)|ρp(0)〉〉 =

∑

t,u

ρtup 〈〈O†+|
ˆ̂
U2(t2)

ˆ̂
Vm|tu〉〉. (1.179)

Now insert factors of the identity operator 1̂ =
∑

r |r〉〈r| between Û2(t2) and V̂m and

1̂ =
∑

s |s〉〈s| between V̂ −1m and Û−12 (t2) (or insert 1̂ =
∑

r,s |rs〉〉〈〈rs| between
ˆ̂
U2(t2) and

ˆ̂
Vm). The interferogram becomes:

S(t1, t2) =
∑

r,s

∑

t,u

Osr+ V rs,tu
m ρtup e

−iω(1)tu t1e−iω
(2)
rs t2 , (1.180)

where the matrix elements of the mixing superoperator are V rs,tu
m = V rt

m (V −1m )us = V rt
m (V su

m )∗

= 〈〈rs| ˆ̂Vm|tu〉〉 and the matrix elements of the detection operator matrix areOsr+ = 〈s|Ô+|r〉 =
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Tr[Ô+ |r〉〈s|] = 〈〈O†+|rs〉〉. Eq. 1.180 may be written as

S(t1, t2) =
∑

r,s

∑

t,u

Zrs,tue−iω
(1)
tu t1e−iω

(2)
rs t2 , (1.181)

Eq. 1.181 describes the correlation between the evolution of Ĥ1-eigenbasis coherences |t〉〈u|

(or |tu〉〉) (initially prepared with amplitudes ρtup ) and the evolution of Ĥ2-eigenbasis co-

herences |r〉〈s| (or |rs〉〉). The |t〉〈u| → |r〉〈s| coherence transfer occurs with the complex

probability amplitude Zrs,tu = 〈〈O†+|rs〉〉〈〈rs|
ˆ̂
Vm|tu〉〉〈〈tu|ρp(t1 = 0)〉〉 = Osr+ V rs,tu

m ρtup . The

two-dimensional Fourier transform of the complex interferogram with respect to t1 and t2

yields the 2D spectrum:

S(ω1, ω2) = F{S(t1, t2)} =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 e

−iω1t1e−iω2t2S(t1, t2)

= 4π2
∑

r,s

∑

t,u

Zrs,tuδ(ω1 + ω
(1)
tu )δ(ω2 + ω(2)rs ), (1.182)

which contains peaks at the frequency pairs (ω1 = −ω(1)tu , ω2 = −ω(2)rs ) if Zrs,tu 6= 0. The

frequencies ω
(1)
tu and ω

(2)
rs contain the information about the dynamics during t1 and t2

respectively, and the amplitudes Zrs,tu 6= 0 contain the information about the nature of

their correlation (including the selection rules for coherence transfer). Note that it is not

necessary to mix S(t1, t2) with the carrier frequency ωr twice for detection (see §1.7). The

dynamics during the indirect time evolution are automatically tracked in the rotating frame

(i.e., only one rotating frame transformation is needed to go between Eq. 1.167 and the

laboratory-frame time development operator).
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Chapter 2

Time dependent theory for NMR

2.1 Schrödinger time evolution

Consider a quantum-mechanical system that is described by a state vector |ψ(t)〉

and a Hamiltonian operator Ĥ(t). The time evolution of the state vector is dictated by the

time-dependent Schrödinger equation:

i~
∂|ψ(t)〉
∂t

= Ĥ(t)|ψ(t)〉. (2.1)

This partial differential equation is first-order in the time t, and so its solution |ψ(t)〉 may

be specified in terms of only one boundary condition: the initial condition |ψ(t0)〉. (Usually

we will take t0 = 0.) Given an initial state of the system |ψ(t0)〉, the state |ψ(t)〉 of the

system at any arbitrary time t may be found by solving the Schrödinger equation using the

particular Hamiltonian that specifies the dynamics of the system.

The expectation value of an operator Â that corresponds to an observable quantity
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may be calculated as < Â > (t) = 〈ψ(t)|Â|ψ(t)〉. Here the state vectors |ψ(t)〉 have time

dependence, whereas the operators Â typically do not (excepting e.g. Ĥ(t)). This is called

the Schrödinger representation of time-dependent quantum mechanics.

2.1.1 The time evolution operator

Quantum-mechanical states may be described as vectors on a Hilbert linear vector

space. When an operator acts on a vector within that space, the result is another vector

within the space. One might ask what sort of operator, when acting on |ψ(t0)〉, returns

|ψ(t)〉. If such an operator can be found, it will contain a complete prescription for how

the system’s state vector evolves in time from t0 to t. One might anticipate that this “time

evolution operator” or “time propagator” will be a function of the Hamiltonian Ĥ(t), since

it is known from the Schrödinger equation that the Hamiltonian dictates the time evolution.

The propagator is defined by the expression

|ψ(t)〉 = Û(t; t0)|ψ(t0)〉 (2.2)

Sometimes hereafter the initial time index will be suppressed, such that Û(t) ≡ Û(t; t0 = 0).

The time propagator is unitary (Û † = Û−1), such that Û †Û = Û−1Û = 1̂, and Û Û † =

Û Û−1 = 1̂. It must be a unitary operator for physical reasons: unitary operators preserve

the norm of the state vectors on which they act, which is necessary to conserve probability
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within the system. That is, from Eq. 2.2 we have

〈ψ(t)| = (|ψ(t)〉)† = (Û(t; t0)|ψ(t0)〉)† = 〈ψ(t0)|Û †(t; t0) = 〈ψ(t0)|Û−1(t; t0)

=⇒ 〈ψ(t)|ψ(t)〉 = 〈ψ(t0)|Û−1(t; t0)Û(t; t0)|ψ(t0)〉 = 〈ψ(t0)|1̂|ψ(t0)〉 = 〈ψ(t0)|ψ(t0)〉.

The total probability of finding the system in the state |ψ(t)〉 at time t is P (t) = |〈ψ(t)|ψ(t)〉|2.

Assuming P (t0) = |〈ψ(t0)|ψ(t0)〉|2, we find from above that P (t) = P (t0) = 1, and proba-

bility is conserved in time.

Eq. 2.1 may be rewritten as:

i~
∂

∂t
[Û(t; t0)|ψ(t0)〉] = Ĥ(t)Û(t; t0)|ψ(t0)〉.

Since |ψ(t0)〉 is time-independent it may be factored out to yield:

i~
∂Û(t; t0)

∂t
= Ĥ(t)Û(t; t0). (2.3)

Solving Eq. 2.3 for Û(t; t0) is equivalent to solving the Schrödinger equation for |ψ(t)〉. Here

the initial condition is Û(t0; t0) = 1̂, since

|ψ(t = t0)〉 = Û(t = t0; t0)|ψ(t0)〉 =⇒ |ψ(t0)〉 = 1̂|ψ(t0)〉.
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Û(t; t0) in the case of a time-independent Hamiltonian

When Ĥ(t) = Ĥ (i.e., the Hamiltonian has no explicit time dependence), Eq. 2.3

may be integrated directly to yield:

Û(t; t0) = e−iĤ(t−t0)/~. (2.4)

This is verified easily by substituting Eq. 2.4 back into Eq. 2.3 and differentiating. The

initial condition Û(t0; t0) = 1̂ also is satisfied: Û(t0; t0) = exp[−iĤ · 0/~] = exp(0̂) = 1̂.

Eq. 2.4 is an exact solution for Û(t; t0) if Ĥ is time-independent. When the Hamiltonian is

time-dependent, Û(t; t0) 6= e−iĤ(t)(t−t0)/~.

Û(t; t0) in the case of an inhomogeneous time-dependent Hamiltonian

Portis [119] introduced the concept of “homogeneous” and “inhomogeneous” inter-

actions into the field of magnetic resonance while attempting to describe the sources of ho-

mogeneous and inhomogeneous line broadening in electron spin resonance experiments. Fol-

lowing the convention of Maricq and Waugh [42], a time-dependent Hamiltonian Ĥ(t) is con-

sidered inhomogeneous if it commutes with itself at different times; i.e., if [Ĥ(t), Ĥ(t′)] = 0

for all t, t′. The Hamiltonian Ĥ(t) is homogeneous if in general [Ĥ(t), Ĥ(t′)] 6= 0. It must

be noted that these definitions are not completely in accord with Portis’ original conception

of homogeneous and inhomogeneous interactions [42, 120].

Consider the case of an inhomogeneous Hamiltonian Ĥ(t). A piecewise approx-

imation to the Hamiltonian may be created in which Ĥ(t) is divided up into N regions

of (possibly unequal) lengths ∆tn ≡ tn − tn−1 over which Ĥ(t) is approximately time-
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independent:

Ĥ(t) '
N∑

n=1

Ĥntn, (2.5)

where Ĥn = 1
2{Ĥ(tn) + Ĥ(tn−1)} on the interval (tn, tn−1) and = 0 otherwise. (We have

tn = n∆t + t0 in the special case of equal time intervals, with ∆tn = (t − t0)/N ≡ ∆t.)

The Ĥn should be approximately time independent if the ∆tn are small enough such that

‖Ĥ(t)‖ ¿ h/∆tn for all ∆tn, where here ‖Ĥ(t)‖ is some measure of the highest frequency

contained in Ĥ(t). The time evolution operator now follows from the expression:

Û(t; t0)|ψ(t0)〉 = ÛN (tN ; tN−1)ÛN−1(tN−1; tN−2) · · · Û2(t2; t1)Û1(t1; t0)|ψ(t0)〉

≡ {
N∏

n=1

Ûn(∆tn)}|ψ(t0)〉 ' {
N∏

n=1

e−iĤn∆tn/~}|ψ(t0)〉

=⇒ Û(t; t0) '
N∏

n=1

e−iĤn∆tn/~, (2.6)

where the last approximation follows from Eqs. 2.4 and 2.5. There exists an identity for

the exponential function of operators:

eÂeB̂ = e(Â+B̂) = eB̂eÂ iff [Â, B̂] = 0. (2.7)

In other words, this standard identity for exponentials holds only if the arguments of the

exponentials commute with each other (i.e., they are “c-numbers”). It does not hold if they

do not commute (i.e., they are “q-numbers”). If Ĥ(t) is inhomogeneous, then all the Ĥn

for different times commute with each other: [Ĥn, Ĥn′ ] = 0. Then Eq. 2.7 may be used to
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exponentiate the piecewise Hamiltonians in Eq. 2.6:

Û(t; t0) ' exp{− i
~

N∑

n=1

Ĥn∆tn}

In the continuum limit as N →∞ and ∆tn → 0, the approximation becomes exact and the

sum goes to an integral, and:

Û(t; t0) = exp{− i
~

∫ t

t0

dt
′
Ĥ(t

′
)} ≡ e−i Φ̂(t), (2.8)

where the matrix elements of Φ̂(t) = ~−1
∫ t
t0
dt

′
Ĥ(t

′
) are called “dynamic phases.” Eq. 2.8

is an exact solution for Û(t; t0) if Ĥ(t) is inhomogeneous. We note that Eq. 2.8 reduces to

Eq. 2.4 in the case of a time-independent Ĥ(t) = Ĥ, which of course commutes with itself

at different times. Thus we find that in the cases of time-independent and inhomogeneous

time-dependent Hamiltonians, Û(t; t0) may be calculated easily by exponentiating the time

integral of the Hamiltonian. Eq. 2.8 does not hold in the case of a homogeneous time-

dependent Hamiltonian.

Û(t; t0) in the case of a homogeneous time-dependent Hamiltonian

It first is worthwhile to examine the conditions under which a particular Hamilto-

nian Ĥ(t) is homogeneous (i.e., [Ĥ(t), Ĥ(t
′
)] 6= 0). Consider a Hamiltonian of the general

form

Ĥ(t) = a(t)Â+ b(t)B̂.
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Therefore:

[Ĥ(t), Ĥ(t
′
)] = {a(t)b(t′)− b(t)a(t′)}[Â, B̂].

It follows that [Ĥ(t), Ĥ(t
′
)] 6= 0 for all t and t

′
if [Â, B̂] 6= 0 and if a(t) and b(t) are not

proportional to each other by a time-independent constant; otherwise Ĥ(t) is inhomoge-

neous.1 Increasingly complicated homogeneous Hamiltonians may be constructed by adding

more mutually non-commuting terms in which the time coefficients are not proportional

to each other. A simple example of a homogeneous Hamiltonian is the laboratory-frame

Hamiltonian of a single spin that precesses due to the combination of an external magnetic

field along the z-axis and a sinusoidally-modulated radiofrequency field along the x-axis:

Ĥ(t)/~ = −ω0Îz − 2ω1Îx cos(ωrt).

The expansion in Eq. 2.6 is of the form Û(t; t0) =
∏N
n=1 Ûn, where Ûn ≡ Û(tn; tn−1)

' exp(−iĤn∆t/~), and tn > tn−1. It follows from Eqs. 2.6 and 2.7 that the ordering of

the Ûn in the product does not matter for an inhomogeneous Hamiltonian, in which all

the Ĥn commute with each other. However, if the Hamiltonian is homogeneous (such that

[Ĥn, Ĥn′ ] 6= 0 for n 6= n′), then Eq. 2.7 does not hold. Therefore, the N propagators

Ûn cannot simply be exponentiated, and their ordering in the product must be such that

propagators acting earlier in time are further to the right. That is, the time-ordering of the

Ûn as written in the first line of Eq. 2.6 must be maintained.

1An interesting NMR example of a case in which the proportionality of a(t) and b(t) matters is the
quadrupolar-driven recoupling of the dipolar interaction in homonuclear spin systems under magic-angle
spinning conditions [121]. The recoupling effect relies on a non-commutivity of the high-field dipolar and
quadrupolar Hamiltonians, whose spatial terms become time-dependent due to sample rotation. If the
principal axes of the quadrupolar and dipolar interactions are colinear, the time-dependent spatial terms
become proportional to each other, the Hamiltonian becomes inhomogeneous, and the recoupling effect
vanishes.
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The formal solution for Û(t; t0) in the case of a homogeneous Hamiltonian Ĥ(t) is

written as:

Û(t; t0) = T{exp[− i
~

∫ t

t0

dt
′
Ĥ(t

′
)]}, (2.9)

where T is the time-ordering operator that ensures that the operators in the expansion of

Û(t) are properly ordered in time. Here the time-ordering operator is defined in a somewhat

different manner than that originally due to Dyson [122]:

T{Ĥ(t)Ĥ(t
′
)} =





Ĥ(t)Ĥ(t
′
), t ≥ t′ ;

Ĥ(t
′
)Ĥ(t), t < t

′
.

(2.10)

We note that Û−1(t; t0) = Û †(t; t0) = T−{exp[+ i
~
∫ t
t0
dt

′
Ĥ(t

′
)]}, where T− reverse time-

orders the operator product, and we have used the fact that Ĥ†(t) = Ĥ(t).

There are few physical cases for which Eq. 2.9 can be evaluated analytically; typ-

ically it is evaluated approximately using a technique such as average Hamiltonian theory.

We observe that the time-ordering does not matter in the case of an inhomogeneous Hamil-

tonian, so that Eq. 2.9 reduces to Eq. 2.8.

We reiterate that once a solution for the time development operator Û(t; t0) has

been found, the time evolution of the system is known. Such a solution may be found

numerically by a piecewise approximation to the Hamiltonian (as in Eq. 2.6), and in prac-

tice one need not proceed further. Other formalisms (e.g., frame transformations, average

Hamiltonian theory, Floquet theory, etc.), some of which will be described later, are not

necessary to solve the time evolution; rather, they are useful for developing insight into how
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to manipulate quantum systems through the experimental application of time-dependent

perturbations.

2.1.2 The density operator

A detailed description of the density operator is given in §1.4. The description

that follows is meant to be self-contained. Typically, the states of the quantum systems

studied in NMR problems are known only statistically. A single state vector generally is no

longer sufficient to describe the system completely, and it is necessary to specify the system

by the density operator ρ̂(t) instead of a single state vector |ψ(t)〉.

We define the density operator for a system in a pure state |ψ(t)〉 as the outer

product of |ψ(t)〉 with itself: ρ̂(t) ≡ |ψ(t)〉〈ψ(t)|. The generalization to a mixed statistical

ensemble of discrete quantum states is:

ρ̂(t) ≡
∑

i

Pi|ψi(t)〉〈ψi(t)|, (2.11)

where the Pi are the probabilities of finding the system in the state |ψi(t)〉 (i.e., the fractional

populations of the states |ψi(t)〉). The Pi are considered to be time independent during

coherent (unitary) time evolution. Substituting Eq. 2.2 into Eq. 2.11 gives:

ρ̂(t) ≡
∑

i

Pi|ψi(t)〉〈ψi(t)|

=
∑

i

Pi Û(t; t0)|ψi(t0)〉〈ψi(t0)|Û−1(t; t0) = Û(t; t0)
{∑

i

Pi|ψi(t0)〉〈ψi(t0)|
}
Û−1(t; t0)

= Û(t; t0)ρ̂(t0)Û
−1(t; t0), (2.12)
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where ρ̂(t0) ≡
∑

i Pi|ψi(t0)〉〈ψi(t0)|. Eq. 2.12 is the prescription for how the density operator

evolves in time, just as Eq. 2.2 is the prescription for how state vectors evolve in time.

We now consider the equation of motion for the density operator:

∂ρ̂(t)

∂t
=

∂

∂t

[∑

i

Pi|ψi(t)〉〈ψi(t)|
]

=
∑

i

Pi

[∂|ψi(t)〉
∂t

〈ψi(t)|+ |ψi(t)〉
∂〈ψi(t)|
∂t

]
.

Eq. 2.1 yields
∂|ψ(t)〉
∂t

= 1
i~Ĥ(t)|ψ(t)〉 and ∂〈ψ(t)|

∂t
= − 1

i~〈ψ(t)|Ĥ
†(t) (where Ĥ†(t) = Ĥ(t)

because the Hamiltonian is Hermitian), so that:

∂ρ̂(t)

∂t
=

∑

i

Pi

[ 1
i~
Ĥ(t)|ψi(t)〉〈ψi(t)| −

1

i~
|ψi(t)〉〈ψi(t)|Ĥ(t)

]

=
1

i~
{Ĥ(t)

[∑

i

Pi|ψi(t)〉〈ψi(t)|
]
−
[∑

i

Pi|ψi(t)〉〈ψi(t)|
]
Ĥ(t)}

=
1

i~
{Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)} = 1

i~
[Ĥ(t), ρ̂(t)]

=⇒ i~
∂ρ̂(t)

∂t
= [Ĥ(t), ρ̂(t)]. (2.13)

Eq. 2.13 is the von Neumann quantum Liouville equation of motion for the density operator.

It carries the same physical content as the Schrödinger equation, but is generalized to the

case of mixed statistical ensembles of quantum states. Eq. 2.13 may be solved for ρ̂(t) with

the initial condition ρ̂(t0). In the case of a time-independent Hamiltonian Ĥ(t) = Ĥ the
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Liouville equation can be solved iteratively to give a power series in time:

ρ̂(t) = ρ̂(t0) + (
−i
~
)(t− t0)[Ĥ, ρ̂(t0)] +

1

2!
(
−i
~
)2(t− t0)2[Ĥ, [Ĥ, ρ̂(t0)]]

+
1

3!
(
−i
~
)3(t− t0)3[Ĥ, [Ĥ, [Ĥ, ρ̂(t0)]]] + . . . , (2.14)

where the O(tn) term involves n commutators of the initial density operator with the

Hamiltonian.

Finally, we consider how to use the density operator to calculate the time evolution

of an observable Â. We make use of the completeness relation 1̂ =
∑

n |n〉〈n| in some

orthonormal basis {|n〉}:

<Â>(t) =
∑

i

Pi〈ψi(t)|Â|ψi(t)〉 =
∑

i

Pi〈ψi(t)|Â 1̂|ψi(t)〉 =
∑

i

Pi〈ψi(t)|Â
(∑

n

|n〉〈n|
)
|ψi(t)〉

=
∑

i

Pi
∑

n

〈ψi(t)|Â|n〉〈n|ψi(t)〉 =
∑

i

Pi
∑

n

〈n|ψi(t)〉〈ψi(t)|Â|n〉

=
∑

n

〈n|
(∑

i

Pi|ψi(t)〉〈ψi(t)|
)
Â|n〉 =

∑

n

〈n|ρ̂(t) Â|n〉

=⇒ <Â>(t) = Tr{ρ̂(t) Â} = Tr{Â ρ̂(t)}, (2.15)

since Tr(ÂB̂) = Tr(B̂Â). The trace is invariant under a change of basis, so the choice of

an arbitrary basis set {|n〉} is justified.

Using Eqs. 2.13 and 2.15 it can be shown that:

i~
∂<Â>(t)

∂t
= − < [Ĥ(t), Â]>, (2.16)

where < · · ·>≡ Tr{ρ̂(t) · · · }. This has a very similar form to Eq. 2.13, except for a sign
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difference.

2.2 Magnus expansion approximation for Û(t; t0)

It is easy to evaluate the propagator in the cases of time-independent and inhomo-

geneous time-dependent Hamiltonians, which additionally are special cases of Eq. 2.9 for

a homogeneous time-dependent Hamiltonian. Therefore, the following discussion focuses

strategies to approximate Û(t; t0) in the case of a homogeneous Hamiltonian.

Before discussing the Magnus expansion, we first consider making a series expan-

sion of the exponential in Eq. 2.9:

Û(t; t0) = T
{
exp[− i

~

∫ t

t0

dt
′
Ĥ(t

′
)]
}

= T
{
1̂ +

[(−i
~

)∫ t

t0

dt
′
Ĥ(t

′
)
]
+

1

2!

[(−i
~

)∫ t

t0

dt
′
Ĥ(t

′
)
]2

+ . . .
}

= T
{
1̂ +

[(−i
~

)∫ t

t0

dt
′
Ĥ(t

′
)
]
+
[ 1
2!

(−i
~

)2 ∫ t

t0

dt
′′
∫ t

t0

dt
′
Ĥ(t

′′
)Ĥ(t

′
)
]
+ . . .

}
(2.17)

and truncating the higher-order terms (neglecting for now consideration of the convergence

of the series). This expansion (along with an interaction representation transformation,

which will be discussed later) is a cornerstone of time-dependent perturbation theory, as is

discussed in Appendix C. However, it is not often used in time-dependent NMR theory, and

other methods of approximating the time development operator (i.e., the Magnus expansion)

will be discussed below.
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Incidentally, Eq. 2.17 is equivalent to the Dyson series [122, 45]:

Û(t; t0) = 1̂ +
[(−i

~

)∫ t

t0

dt
′
Ĥ(t

′
)
]
+
[(−i

~

)2 ∫ t

t0

dt
′′
∫ t′′

t0

dt
′
Ĥ(t

′′
)Ĥ(t

′
)
]
+ . . . , (2.18)

where the nth term in the series is larger by a factor of n! than the nth term in Eq. 2.17,

because the domain of integration is proportionally smaller. (The domain of integration also

ensures proper ordering of the time variables.) This series comes easily from the iterative

solution of the integral equation form of Eq. 2.3: Û(t; t0) = 1̂ + (− i~)
∫ t
t0
dt

′
Ĥ(t

′
)Û(t

′
; t0),

for Û(t0; t0) = 1̂. Appendix C describes how the standard equations of time-dependent

perturbation theory may be obtained directly from this expansion. It is important to note

that in general neither Eq. 2.17 nor Eq. 2.18 is unitary if the series is truncated.

It is easy to calculate and apply the time evolution operator in the case of a time-

independent Hamiltonian Ĥ (Eq. 2.4); we therefore ask if it is possible to write an arbitrary

Û(t; t0) (as in Eq. 2.9) in the form:

Û(t; t0) = exp{−iĤ(t− t0)/~} (2.19)

where Ĥ is an effective average time-independent “Hamiltonian” that describes the time

evolution on the interval [t0, t]. Later we will discuss when this ansatz for the propagator

is appropriate. We now seek a series expansion of Ĥ:

Ĥ = λĤ
(1)

+ λ2Ĥ
(2)

+ λ3Ĥ
(3)

+ λ4Ĥ
(4)

+ . . . , (2.20)

where λ is a parameter introduced to keep track of the order of the expansion (λ = 1
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is assumed in the end). We wish to find the expansion for Ĥ such that all the terms are

Hermitian, so a truncation of the series still will leave an approximate expression for Ĥ that

is Hermitian. Since eiÂ is unitary if Â is Hermitian, then the approximate expression for

Û(t; t0) that is reached by substituting a truncated Eq. 2.20 into Eq. 2.19 will be guaranteed

to be unitary. It is not immediately clear that Eq. 2.20 will converge and that the Ĥ
(n)

decrease in size with increasing n; later rough expressions for the relative sizes of the Ĥ
(n)

will be derived. Eq. 2.20 is called the “Magnus expansion” of the average Hamiltonian Ĥ. (It

should be noted that the more recent literature uses the convention that the Magnus series

begins with a first-order term as in Eq. 2.20, while the older literature uses the convention

that the series begins with a zeroth-order term.)

The discussion now closely follows Appendix B of Haeberlen [123]. (An alternative

reference is the description of the Magnus expansion by Pechukas and Light [124].) Eq. 2.19

is expanded as (for simplicity we choose t0 = 0):

Û(t) = exp(−iĤt/~)

= 1̂ +
(−it

~
)
Ĥ +

1

2!

(−it
~
)2
(Ĥ)2 +

1

3!

(−it
~

)3(Ĥ
)3

+ . . . .

For simplicity the initial condition t0 = 0 has been chosen. Inserting the Magnus expansion
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for Ĥ (Eq. 2.20) into this expression yields (up to O(λ4)):

Û(t)= 1̂ +
(−it

~
){
λĤ

(1)
+ λ2Ĥ

(2)
+ λ3Ĥ

(3)
+ λ4Ĥ

(4)
+ . . .

}

+
1

2!

(−it
~
)2{

λ2(Ĥ
(0)

)2 + λ3Ĥ
(1)
Ĥ
(2)

+ λ3Ĥ
(2)
Ĥ
(1)

+λ4(Ĥ
(2)

)2 + λ4Ĥ
(1)
Ĥ
(3)

+ λ4Ĥ
(3)
Ĥ
(1)

+ . . .
}

+
1

3!

(−it
~
)3{

λ3(Ĥ
(1)

)3 + λ4(Ĥ
(1)

)2Ĥ
(2)

+ λ4Ĥ
(1)
Ĥ
(2)
Ĥ
(1)

+ λ4Ĥ
(2)

(Ĥ
(1)

)2 + . . .
}

+
1

4!

(−it
~
)4{

λ4(Ĥ
(1)

)4 + . . .
}

+ . . . ,

where the expressions in braces come from direct expansions of (Ĥ)n. The terms may be

regrouped by their order of the expansion parameter λ:

Û(t) = 1̂

+λ
{(−it

~
)
Ĥ
(1)}

+λ2
{(−it

~
)
Ĥ
(2)

+
1

2!
(− it

~
)2(Ĥ

(1)
)2
}

+λ3
{(−it

~
)
Ĥ
(3)

+
1

2!
(− it

~
)2[Ĥ

(1)
Ĥ
(2)

+ Ĥ
(2)
Ĥ
(1)

] +
1

3!
(− it

~
)3(Ĥ

(1)
)3
}

+λ4
{(−it

~
)
Ĥ
(4)

+
1

2!
(− it

~
)2[Ĥ

(1)
Ĥ
(3)

+ Ĥ
(3)
Ĥ
(1)

]

+
1

3!
(− it

~
)3[(Ĥ

(1)
)2Ĥ

(2)
+ Ĥ

(2)
(Ĥ

(1)
)2 + Ĥ

(1)
Ĥ
(2)
Ĥ
(1)

] +
1

4!
(
−it
~

)4(Ĥ
(1)

)4
}

+ . . . . (2.21)

The Magnus series expansion (Eq. 2.21) of the ansatz for the propagator (Eq. 2.19) now must

be equated with a series expansion of the formal expression for the propagator (Eq. 2.9).
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This is done following the method of Haeberlen [123], which is lengthy but pedagogically

useful. Reconsider the (properly time-ordered!) discrete approximation to Û(t) in Eq. 2.6

in the case of a homogeneous Hamiltonian (i.e., [Ĥn, Ĥn′ ] 6= 0 for some or all n 6= n′). We

expand:

exp(−iλĤn∆tn/~) = 1̂ + λ
(−i∆tn

~
)
Ĥn + λ2

1

2!

(−i∆tn
~

)2
(Ĥn)

2 + λ3
1

3!

(−i∆tn
~

)3
(Ĥn)

3 + . . . ,

where again the parameter λ has been inserted to keep track of orders of the expansion.

Then the propagator from Eq. 2.6 becomes:

Û(t) = e−iĤN∆tN/~e−iĤN−1∆tN−1/~ . . . e−iĤ2∆t2/~e−iĤ1∆t1/~

= [1̂ + λ(−i/~)ĤN∆tN + (λ2/2!)(−i/~)2(ĤN∆tN )
2 + (λ3/3!)(−i/~)3(ĤN∆tN )

3 + . . .]

×[1̂ + λ(−i/~)(ĤN−1∆tN−1) + (λ2/2!)(−i/~)2(ĤN−1∆tN−1)
2

+(λ3/3!)(−i/~)3(ĤN−1∆tN−1)
3 + . . .]

...

×[1̂ + λ(−i/~)Ĥ2∆t2 + (λ2/2!)(−i/~)2(Ĥ2∆t2)2 + (λ3/3!)(−i/~)3(Ĥ2∆t2)3 + . . .]

×[1̂ + λ(−i/~)Ĥ1∆t1 + (λ2/2!)(−i/~)2(Ĥ1∆t1)2 + (λ3/3!)(−i/~)3(Ĥ1∆t1)3 + . . .].
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Expanding the product and regrouping by orders of λ (up to O(λ3)) gives:

Û(t) = 1̂

+λ
(−i

~
){
Ĥ1∆t1 + Ĥ2∆t2 + . . .+ ĤN−1∆tN−1 + ĤN∆tN

}

+λ2
1

2!

(−i
~
)2{[(Ĥ1∆t1)2 + (Ĥ2∆t2)

2 + . . .+ (ĤN−1∆tN−1)
2 + (ĤN∆tN )

2]

+2!·[Ĥ2Ĥ1∆t2∆t1 + Ĥ3Ĥ1∆t3∆t1 + Ĥ4Ĥ1∆t4∆t1 + . . .

+Ĥ3Ĥ2∆t3∆t2 + . . .+ ĤNĤN−1∆tN∆tN−1]
}

+λ3
1

3!

(−i
~
)3{

(Ĥ1∆t1)
3 + . . .+ (3!/2!)·[Ĥ2(Ĥ1)2∆t2(∆t1)2 + (Ĥ2)

2Ĥ1(∆t1)
2∆t2 + . . .]

+3!·[Ĥ3Ĥ2Ĥ1∆t3∆t2∆t1 + . . .]
}

+ . . . (2.22)

Factorial functions have been factored out in front of each term of O(λn) to emphasize

the similarity between these terms and those in the expansion of an exponential function,

as will be seen below. Note that the expressions in braces are time-ordered, since Eq.

2.6 is time-ordered. These expressions can be written more compactly by using the time-

ordering operator. The time-ordered propagator of Eq. 2.9, when expressed in the piecewise
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approximation of Eqs. 2.6 and 2.22, becomes:

Û(t) = 1̂

+λ
(−i

~
){
Ĥ1∆t1 + Ĥ2∆t2 + . . .+ ĤN−1∆tN−1 + ĤN∆tN

}

+λ2
1

2!

(−i
~
)2
T
{
[Ĥ1∆t1 + Ĥ2∆t2 + . . .+ ĤN−1∆tN−1 + ĤN∆tN ]

2}

+λ3
1

3!

(−i
~
)3
T{[Ĥ1∆t1 + Ĥ2∆t2 + . . .+ ĤN−1∆tN−1 + ĤN∆tN ]

3}

+ . . . (2.23)

=⇒ Û(t) = T
{
1̂ + λ

(−i
~
)
[
N∑

i=1

Ĥi∆ti] + λ2
1

2!

(−i
~
)2
[
N∑

i=1

Ĥi∆ti]
2

+λ3
1

3!

(−i
~
)3
[
N∑

i=1

Ĥi∆ti]
3 + . . .

}
.

In the continuum limit as N → ∞, we have
∑

i Ĥi∆ti →
∫ t
0 dt

′
Ĥ(t

′
). Thus Eq. 2.23

is the discrete approximation to the exponential expansion of the propagator in Eq. 2.17.

Therefore, the second way to reach Eq. 2.23 is simply to expand directly the exponential in

Û(t) = T{exp[−λ i~
∫ t
t0
dt

′
Ĥ(t

′
)]} in the manner of Eq. 2.17.

The propagator expansion in Eq. 2.23 may be equated with the expansion of the

Magnus series propagator ansatz of Eq. 2.21 in order to find expressions for the terms in
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the Magnus series. Equating terms of like order λ:

1̂ = 1̂

λ
{(−it

~
)
Ĥ
(1)}

= λ
(−i

~
)
T
{ N∑

i=1

Ĥi∆ti
}

λ2
{(−it

~
)
Ĥ
(2)

+
1

2!

(−it
~
)2
(Ĥ

(1)
)2
}
= λ2

1

2!

(−i
~
)2
T
{
[
N∑

i=1

Ĥi∆ti]
2
}

λ3
{(−it

~
)
Ĥ
(3)

+
1

2!

(−it
~
)2
[Ĥ

(1)
Ĥ
(2)

+ Ĥ
(2)
Ĥ
(1)

] +
1

3!

(−it
~
)3
(Ĥ

(1)
)3
}

= λ3
1

3!

(−i
~
)3T

{
[
N∑

i=1

Ĥi∆ti]
3
}

... (2.24)

We find that

Ĥ
(1)

=
1

t
T{

N∑

i=1

Ĥi∆ti]} =
1

t

N∑

i=1

Ĥi∆ti. (2.25)

Upon substituting this result into the O(λ2) equation in Eq. 2.24 and solving for Ĥ
(2)

, we
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have2:

Ĥ
(2)

= −(i/~)
2t

(
T
{
[
N∑

i=1

Ĥi∆ti]
2}− [T{

N∑

i=1

Ĥi∆ti
}
]2
)

= −(i/~)
2t

(
[T
{∑

i,j

ĤiĤj∆ti∆tj
}
]− [

∑

i,j

ĤiĤj∆ti∆tj ]
)

= −(i/~)
2t

(
[
∑

i

(Ĥi∆ti)
2 + 2

∑

i>j

ĤiĤj∆ti∆tj ]

−[
∑

i

(Ĥi∆ti)
2 +

∑

i>j

ĤiĤj∆ti∆tj +
∑

i<j

ĤiĤj∆ti∆tj ]
)

= −(i/~)
2t

(∑

i>j

ĤiĤj∆ti∆tj −
∑

i<j

ĤiĤj∆ti∆tj

)

= −(i/~)
2t

(∑

i>j

ĤiĤj∆ti∆tj −
∑

i>j

ĤjĤi∆tj∆ti

)

= −(i/~)
2t

(∑

i>j

(ĤiĤj − ĤjĤi)∆ti∆tj

)

=⇒ Ĥ
(2)

= −(i/~)
2t

( N∑

i>j

[Ĥi, Ĥj ]∆ti∆tj

)
. (2.26)

Similar discrete approximations to the higher Ĥ
(n)

may be developed by extending Eq.

2.24. It can be seen that the terms tĤ
(1)

and tĤ
(2)

are indeed of first and second order in

the smallness parameter λ (or alternatively, in the ∆tn), and therefore it does appear that

2As an aside, it has been noted by Haeberlen [123] that for a Hamiltonian that is piecewise constant
over only two finite time intervals ∆t1 and ∆t2, the expansion of Eq. 2.6 given by Eqs. 2.25, 2.26 and their
higher-order analogs may be used to derive a version of the Baker-Campbell-Hausdorff relation:

Â ≡ Ĥ2∆t2/~, B̂ ≡ Ĥ1∆t1/~;

Û(t) = Û2(∆t2)Û1(∆t1) = e−iĤ2∆t2/~ e−iĤ1∆t1/~ ≡ e−iÂ e−iB̂

= exp{− it
~
(Ĥ
(1)

+ Ĥ
(2)

+ Ĥ
(3)

+ . . . )}

= exp{− it
~
[
1

t
(Ĥ1∆t1 + Ĥ2∆t2) −

i

2t~
(Ĥ2∆t2Ĥ1∆t1 − Ĥ1∆t1Ĥ2∆t2) + Ĥ

(3)

+ . . . ]}

=⇒ e−iÂ e−iB̂ = exp{ (−i)(Â+ B̂) +
(−i)2
2

([Â, B̂]) +
(−i)3
12

([Â, [Â, B̂] + [[Â, B̂], B̂]) + . . . }
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successive terms in the Magnus series should decrease in size. This of course depends on

the length of time t over which the series is calculated. More details on the convergence of

the Magnus series will be given later.

We now take the continuum limits of Eqs. 2.25 and 2.26, and also give the result

for the third-order term:

Ĥ
(1)

=
1

t

∫ t

0
dt

′
Ĥ(t

′
) (2.27)

Ĥ
(2)

= −(i/~)
2t

∫ t

0
dt

′′
∫ t

′′

0
dt

′
[Ĥ(t

′′
), Ĥ(t

′
)] (2.28)

Ĥ
(3)

= −(1/~2)
6t

∫ t

0
dt

′′′
∫ t

′′′

0
dt

′′
∫ t

′′

0
dt

′ {
[Ĥ(t

′′′
), [Ĥ(t

′′
), Ĥ(t

′
)]] + [[Ĥ(t

′′′
), Ĥ(t

′′
)], Ĥ(t

′
)]
}
,

(2.29)

where the domain of integration of the multiple integrals ensures that 0 ≤ t
′ ≤ t

′′ ≤ t
′′′ ≤

· · · ≤ t for each value of the integrand, so that proper time-ordering of the Hamiltonian

operators is enforced. Note that Eq. 2.27 is just the time average of the Hamiltonian Ĥ(t
′
)

on the interval [0, t]; Eqs. 2.28, 2.29 are higher-order corrections to the first-order average

Hamiltonian. Furthermore, if Ĥ(t) is inhomogeneous, then all the commutators in the Ĥ
(n)

are zero, and Ĥ = Ĥ
(1)

. We observe that Ĥ
(1)
t/~ equals the dynamic phase operator Φ̂(t)

in Eq. 2.8, so that Eq. 2.19 reduces to Eq. 2.8 in the case of an inhomogeneous Hamiltonian.

The expressions Eqs. 2.27–2.29 for the Magnus series (upon setting λ = 1 in Eq.

2.20) are the key results used in average Hamiltonian theory to calculate effective propa-

gators over a given time interval. It is seldom necessary in most practical applications to

extend the series to the third-order term or beyond.
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Validity of the Magnus expansion

It is pertinent to ask under which conditions is a Magnus expansion of the propa-

gator valid. We consider the time evolution of a quantum system from t = 0 to some time

t = tc. A necessary condition for the Magnus expansion treatment to be acceptable is that

the Magnus series (Eq. 2.20) must converge on the interval [0, tc]. We examine some of the

conditions of convergence.

Ignoring for the moment the time dependence of the Hamiltonian, we estimate

‖Ĥ(t)‖∼ ~ωH . We define ωc ≡ 2π/tc. It follows from Eq. 2.27 that Ĥ
(1)

= 1
tc

∫ tc
0 dt

′
Ĥ(t

′
) ∼

1
tc
(~ωH)tc = ~ωH , where one power of tc has come in from the integration from t = 0 to

tc. We estimate [Ĥ(t
′′
), Ĥ(t

′
)] ∼ (~ωH)2, so that Ĥ

(2)
∼ ~−1

tc
(~ωH)2(tc)(tc) = ~(ωH)2(tc).

Continuing this reasoning:

‖Ĥ ‖= ‖Ĥ
(1)

+ Ĥ
(2)

+ Ĥ
(3)

+ . . .‖ ∼ ~ωH
[
1 + (ωHtc) + (ωHtc)

2 + . . .
]
,

This crude treatment suggests that successive terms of the Magnus series decrease by a factor

of ωHtc = 2π(ωH/ωc). The approximate series given above certainly diverges if ωHtc ≥ 1, so

that tc < ω−1H is a rough criterion for the convergence of the Magnus series. In the context

of average Hamiltonian theory (to be discussed later), tc is chosen to be the “cycle time”:

i.e., the period of the time evolution if the system is periodic. Therefore, in this case our

convergence criterion on the interval [0, tc] may be interpreted as indicating that the cycle

time tc should be greater than the reciprocal “size” of the Hamiltonian ω−1H (as measured
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in reciprocal angular frequency units). Maricq [125] notes that a better condition for the

convergence of the Magnus series up to some time tc is:
1
2π

∫ tc
0 dt

′ |ωi(t
′
)− ωj(t

′
) |< 1 for

all pairs of time-dependent instantaneous eigenvalues ~ωi(t) of Ĥ(t).

We now ask how many terms in the Magnus series are necessary to describe accu-

rately the time evolution of the system. Of course, this depends on the accuracy needed for

a particular calculation. We might estimate that the system evolves under Ĥ
(n)

at frequen-

cies on the order of ωn ∼ ‖ Ĥ
(n)
‖ /~. (Here we have used the supremum norm definition

of the magnitude of an operator, in which ‖ Â ‖ is equal to the largest eigenvalue of Â.)

Therefore, we estimate that Ĥ
(n)

starts to contribute significantly to the time evolution

when the system oscillates one or more times under Ĥ
(n)

: i.e., when h/ ‖ Ĥ
(n)
‖ ≤ tc. In

practice, it may be best just to calculate explicitly the first few Ĥ
(n)

and see how large they

are; after all, certain Ĥ
(n)

may even vanish for a particular choice of Ĥ(t) and tc.

As a final note, we consider the conditions under which Eq. 2.19 for the average

Hamiltonian expression for the propagator is valid. Maricq [126] has observed that in

the case of a non-commuting (homogeneous) Ĥ(t), the expectation that there is a simple

exponential solution for the propagator is too rigid, and therefore there may be cases in

which the average Hamiltonian solution Ĥ(t) does not exist. If we specialize to the case of a

periodic Hamiltonian (Ĥ(t+ntc) = Ĥ(t), where n is an integer), then the Floquet theorem

[126, 127] states that the propagator for even a homogeneous Hamiltonian may be written
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of the form

Û(t) = F̂ (t) exp(−iĤt/~) (2.30)

=⇒ Û(tc) = F̂ (tc) exp(−iĤtc/~)

= exp(−iĤtc/~), (2.31)

where F̂ (t) is periodic with period tc (subject to the initial condition Û(0) = 1̂ =⇒ F̂ (0) =

F̂ (tc) = 1̂), and Ĥ is Hermitian. Eq. 2.31 is equivalent to Eq. 2.19 when the system is

observed only at t = 0 and t = tc, but Eq. 2.30 is valid for all times. The generalization of

Eq. 2.31 to the case of “stroboscopic observation”—i.e., when the system is observed only

at t = ntc (n integral)—forms the foundation of average Hamiltonian theory in NMR.

2.3 Frames and representations

We begin with a very brief review of our development of the formalism of time-

dependent quantum mechanics. A state vector |ψ(t)〉 obeying the Schrödinger Equation

(Eq. 2.1) i~ ∂
∂t
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 evolves as |ψ(t)〉 = Û(t; t0)|ψ(t0)〉 (Eq. 2.2), where in

general Û(t; t0) = T{exp[− i~
∫ t
t0
dt

′
Ĥ(t

′
)]} (Eq. 2.9). The density operator of the system

evolves as ρ̂(t) = Û(t; t0) ρ̂(0) Û
−1(t; t0) (Eq. 2.12). The expectation value of an observable

Â evolves as <Â>(t) = Tr{ρ̂(t)Â} (Eq. 2.15).
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2.3.1 Changes of frame

We now consider the equation of motion for a state vector subjected to a unitary

rotation in the Hilbert space ÛR.
3 This transformation is sometimes called a change of

frame. The rotation may be in general time-dependent, such that ÛR = ÛR(t), but here we

suppress the time t in the notation. We define:

ÛR|φR(t)〉 ≡ |ψ(t)〉, (2.32)

where |ψ(t)〉 obeys Eq. 2.1, and |φR(t)〉 ≡ Û−1R |ψ(t)〉.4 The equation of motion for |φR(t)〉

directly follows from Eqs. 2.1 and 2.32:

i~
∂|ψ(t)〉
∂t

= Ĥ(t)|ψ(t)〉

=⇒ i~
∂

∂t
(ÛR|φR(t)〉) = Ĥ(t)(ÛR|φR(t)〉)

=⇒ i~
(∂ÛR
∂t
|φR(t)〉+ ÛR

∂|φR(t)〉
∂t

)
= Ĥ(t)ÛR|φR(t)〉

=⇒ i~
(
Û−1R

∂ÛR
∂t
|φR(t)〉+ Û−1R ÛR

∂|φR(t)〉
∂t

)
= Û−1R Ĥ(t) ÛR|φR(t)〉.

(2.33)

Now, Û−1R ÛR = 1̂. Upon rearranging:

i~
∂|φR(t)〉

∂t
=

ˆ̃
H(t)|φR(t)〉; (2.34)

ˆ̃
H(t) ≡ Û−1R Ĥ(t) ÛR − i~ Û−1R

∂ÛR
∂t

(2.35)

3ÛR is not to be confused with the time development operator.
4We just as well could have chosen the convention |φR(t)〉 ≡ ÛR|ψ(t)〉; in that case ÛR and Û−1

R would
have to be transposed in the following equations.
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We see that the rotated state |φR(t)〉 obeys a Schrödinger-type equation with an effective

Hamiltonian
ˆ̃
H(t) as defined in Eq. 2.35. This effective Hamiltonian is not just Ĥ(t) rotated

by ÛR, except in the case of a time-independent ÛR (i.e., one for which ∂ÛR
∂t

= 0). Since

the rotated states obey an effective Schrödinger equation, their time evolution already has

been solved:

|φR(t)〉 =
ˆ̃
U(t)|φR(t0)〉

=⇒ ρ̂R(t) =
ˆ̃
U(t) ρ̂R(t0)

ˆ̃
U
−1
(t); (2.36)

ˆ̃
U(t; t0) = T{exp[− i

~

∫ t

t0

dt
′ ˆ̃
H(t

′
)]}. (2.37)

It follows from Eq. 2.32 that ρ̂(t) = ÛR ρ̂R(t) Û
−1
R . This implies that ρ̂(t0) = ρ̂R(t0) if

ÛR(t = t0; t0) = 1̂ (as is often chosen to be the case), but this equation does not hold

for a time-independent ÛR 6= 1̂. It should be stressed that the propagator
ˆ̃
U(t) in the

transformed frame is not simply Û(t) rotated by ÛR; rather, it is an effective propagator in

the new frame calculated from a new “effective” Hamiltonian.

Upon using Eq. 2.15 the expectation value of an observable can be calculated in

the transformed frame:

<Â>(t) = Tr{(ÛR ρ̂R(t) Û−1R ) Â}

= Tr{ρ̂R(t) ÂR}, (2.38)

where ρ̂R(t) = Û−1R ρ̂(t) ÛR, and ÂR = Û−1R Â ÛR.

What is the advantage of performing a frame transformation on the system? The
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time evolution of the system in the transformed frame is governed by the effective Hamil-

tonian
ˆ̃
H(t) of Eq. 2.35. Sometimes the time evolution under the effective Hamiltonian

may be solved more simply than under the Hamiltonian Ĥ(t). In fact, for some Ĥ(t),

the effective Hamiltonian may be rendered time-independent through a suitable choice of

frame. This is the case for the homogeneous Hamiltonian in the problem of Rabi oscillations:

Ĥ(t)/~ = −ω0Îz−ω1[Îx cos(ωrt)− Îy sin(ωrt)], where ÛR = exp(+iωrtÎz). There is another

justification for frame transformations that is more prevalent in NMR theory. We note that

in Eq. 2.35 the Û−1R Ĥ(t) ÛR term has the same magnitude as Ĥ(t), since ÛR is a unitary ro-

tation of Ĥ(t) (and therefore preserves its norm). (Here we have used the trace norm defini-

tion of the magnitude of an operator: ‖ Â‖=
√∑

i,j |Aij |2/
√∑

i,j |1ij |2 =
√

[Tr(Â† Â)]/D,

where 1̂ is the identity operator and D is the dimensionality of the Hilbert space.) However,

with a proper choice of ÛR, the (− i~ Û−1R
∂ÛR
∂t

) term may be subtractive, and thus may be

used to shrink the magnitude of
ˆ̃
H(t). This is very useful if

ˆ̃
U(t) is to be approximated by

a Magnus expansion, because when Ĥ(t) is smaller the Magnus series may converge when

it otherwise might not (or at least converge much more quickly). Therefore a low-order

truncation of the series may be better justified.

2.3.2 The interaction representation

Consider a particular unitary transformation that takes a system described by

the Schrödinger equations of motion (Eqs. 2.1, 2.3, 2.12, etc.) into a new frame called

the interaction representation. The transformation that will be examined first is slightly

different from the one found in textbook descriptions of the interaction representation,

although it is consistent with the usage in the NMR literature.
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We begin with a time-dependent, possibly homogeneous Hamiltonian that may be

divided into the sum of two pieces:

Ĥ(t) = Ĥ0(t) + Ĥ1(t). (2.39)

We apply the frame transformation

ÛI(t) = T{exp[− i
~

∫ t

t0

dt
′
Ĥ0(t

′
)]}. (2.40)

The operator ÛI(t) has the same form as a time development operator for a Hamiltonian

Ĥ0(t). Since Eq. 2.9 is the formal solution to Eq. 2.3, it follows that
∂ÛI(t)
∂t

= 1
i~Ĥ0(t)ÛI(t).

Substituting into Eq. 2.35 for
ˆ̃
H(t)5:

ˆ̃
H(t) = Û−1I (t) Ĥ(t) ÛI(t) − i~ Û−1I (t)

∂ÛI(t)

∂t

= Û−1I (t) [Ĥ0(t) + Ĥ1(t)] ÛI(t) − i~ Û−1I (t) [
1

i~
Ĥ0(t) ÛI(t)]

= Û−1I (t) Ĥ0(t) ÛI(t) + Û−1I (t) Ĥ1(t) ÛI(t) − Û−1I (t) Ĥ0(t) ÛI(t)

=⇒ ˆ̃
H(t) = Û−1I (t) Ĥ1(t) ÛI(t) ≡ ˆ̃

HI(t). (2.41)

Haeberlen and Waugh [128] have demonstrated that the Schrödinger representa-

tion time development operator Û(t; t0) (Eq. 2.9) may be written in terms of the interaction

5One occasionally finds that in the NMR literature, interaction representation transformations along the

lines of Eq. 2.41 are misstated as
ˆ̃
H(t) = Û−1

I (t) Ĥ(t) ÛI(t) instead of Û−1
I (t) Ĥ1(t) ÛI(t), although the end

result of the transformation typically is correct.



2.3. FRAMES AND REPRESENTATIONS 149

representation time development operator
ˆ̃
U(t; t0) = T{exp[− i~

∫ t
t0
dt

′ ˆ̃
H(t

′
)]} (Eq. 2.37)6:

Û(t; t0) = ÛI(t)
ˆ̃
U(t; t0). (2.42)

This result may also be obtained using an operator calculus due to Feynman [129]. When

Ĥ0(t) is time-independent, then Ĥ(t) = Ĥ0 + Ĥ1(t), and ÛI(t) = exp(−iĤ0t/~). This is

the “textbook” [45] Hamiltonian for the interaction representation, also called the interac-

tion picture or Dirac picture of time-dependent quantum mechanics. There is a difference

between the interaction representation and the previously discussed Schrödinger represen-

tation. State vectors (and hence density operators ρ̂(t)) in the Schrödinger representation

have time dependence, whereas operators corresponding to observables (Â) do not. The

state vectors (and density operators ρ̂I(t) ≡ Û−1I (t) ρ̂(t) ÛI(t)) and observable operators

(ÂI(t) ≡ Û−1I (t) Â ÛI(t)) both have time dependence in the interaction representation.

In the interaction picture, the time evolution of ρ̂I(t) is determined only by the effective

Hamiltonian
ˆ̃
HI(t), and the time evolution of ÂI(t) is determined by only Ĥ0.

There is another representation that is commonly used in quantum mechanics

6The proof is as follows. It utilizes Eqs. 2.3, 2.9, and 2.39–2.42:

i~∂Û(t; t0)
∂t

= i~ ∂
∂t

[ÛI(t)
ˆ̃
U(t; t0)] = i~ [

∂ÛI(t)

∂t
ˆ̃
U(t; t0) + ÛI(t)

∂
ˆ̃
U(t; t0)

∂t
]

= i~ [{ 1
i~
Ĥ0(t) ÛI(t)} ˆ̃U(t; t0) + ÛI(t) {

1

i~
ˆ̃
H(t)

ˆ̃
U(t; t0)}]

= Ĥ0(t) ÛI(t)
ˆ̃
U(t; t0) + ÛI(t) [Û

−1
I (t) Ĥ1(t) ÛI(t)]

ˆ̃
U(t; t0)

= Ĥ0(t) ÛI(t)
ˆ̃
U(t; t0) + 1̂ Ĥ1(t) ÛI(t)

ˆ̃
U(t; t0)

= [Ĥ0(t) + Ĥ1(t)] ÛI(t)
ˆ̃
U(t; t0)

=⇒ i~∂Û(t; t0)
∂t

= Ĥ(t) Û(t; t0).

The last line is the correct differential equation for Û(t; t0) (Eq. 2.3), so Eq. 2.42 must be a correct form for
the time development operator.
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called the Heisenberg representation. This representation is defined by the transformation

ÛH = T{exp[− i~
∫ t
t0
dt

′
Ĥ(t

′
)]}, which reduces to ÛH = exp[−iĤ(t− t0)/~] in the case of a

time-independent Ĥ(t) = Ĥ. Under this transformation the Heisenberg picture state vec-

tors/density operators are time-independent, whereas the operators ÂH(t) ≡ Û−1H (t)ÂÛH(t)

that correspond to observables carry the full time dependence of the system.

The interaction representation transformation will the be most useful in the case

of a homogeneous Hamiltonian Ĥ(t) (i.e., one for which the propagator cannot be calculated

simply in the Schrödinger representation), when additionally ‖ Ĥ0(t)‖ À ‖ Ĥ1(t)‖. In this

case the Schrödinger representation Hamiltonian has a magnitude ‖ Ĥ(t) ‖ ∼ ‖ Ĥ0(t) ‖,

whereas the interaction representation effective Hamiltonian has a magnitude ‖ ˆ̃
H(t) ‖ =

‖ ˆ̃
H1(t) ‖ = ‖ Ĥ1(t) ‖. (The trace norm definition of the magnitude of an operator has

been used, which is invariant under unitary transformations.) Therefore, the interaction

representation effective Hamiltonian is much smaller in magnitude than the Schrödinger

representation Hamiltonian, and the propagator may be better approximated by a low-order

truncation of the Magnus series. It usually will be a good strategy to go into the interaction

representation of the largest piece of a homogeneous Hamiltonian, whenever the magnitude

of that interaction is much larger than any of the other interactions in the Hamiltonian.

Incidentally, another requirement for the utility of an interaction frame transformation

is that ÛI(t) must be able to be evaluated analytically (i.e., Ĥ0(t) is inhomogeneous).

It obviously complicates matters to transform into a frame for which the transformation

operator must be approximated.
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2.3.3 Common frame transformations in NMR

Rotating frame

The most common frame transformation encountered in magnetic resonance theory

is the rotating frame transformation. It is suitably applied to the Hamiltonian of magnetic

moments (labeled I) in the presence of a large static magnetic field along the z-axis (Ĥ0/~ =

−ω0Îz), under the influence of either a rotating (Ĥ1(t)/~ = −ω1[Îx cos(ωrt) − Îy sin(ωrt)])

or oscillating (Ĥ1(t)/~ = −2ω1Îx cos(ωrt)) transverse radiofrequency (rf) field. These ex-

pressions define the laboratory frame Hamiltonian Ĥ(t) = Ĥ0 + Ĥ1(t). The rotating frame

transformation for this Hamiltonian is ÛR(t) = exp(+iωrtÎz). It is called a rotating frame

transformation because exp(−iαÎz) is the operator for rotations of the system by an angle

α about the z-axis, so that here ÛR(t) rotates the system at a constant angular velocity

−ωr by the time-dependent angle α(t) = −ωrt. Spins tilted off the z-axis precess under Ĥ0

at the velocity −ω0, and when at resonance (ωr = ω0), the frame rotates about the z-axis at

the same rate as the spin precession. The rotating frame transformation effectively shrinks

the Zeeman interaction Ĥ0/~ from −ω0Îz to −(ω0−ωr)Îz; it renders ˆ̃
H(t) time-independent

in the case of the rotating rf field, and allows the use of the Magnus expansion to calculate

a simple effective propagator in the case of the oscillating rf field.

Tilted frame

A tilted frame transformation is defined by the time-independent rotation ÛT =

exp(−iαÎ · ñ), where Î = Îxĩ+ Îy j̃ + Îzk̃. (Here ñ, ĩ, j̃, k̃ are unit vectors in real space, not

quantum mechanical operators on a Hilbert space.) This transformation rotates (“tilts”)
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the system by an angle α about the axis defined by ñ. An example of a tilted frame trans-

formation is one that is applied commonly to rotating frame effective Hamiltonians of the

form Ĥ = −∆ω Îz − ω1Îx. Such a Hamiltonian describes spins under the influence of an

effective magnetic field in the z-direction with a magnitude proportional to ∆ω and an effec-

tive magnetic field in the x-direction with a magnitude proportional to ω1. These effective

fields may be summed as vectors to give an effective field B̂e of magnitude proportional to

ωe =
√

(∆ω)2 + ω21 in the ñ direction, where ñ is in the x–z plane and makes an angle α

with the z-axis (α ≡ tan−1(ω1/∆ω)). The operation ÛT = exp(−iαÎy) then rotates B̂e into

the direction of the z-axis, so that
ˆ̃
H = Û−1T Ĥ ÛT = −ωeÎz.

If one wishes to apply both the rotating and tilted frame transformations at once

(the so-called “tilted rotating frame” transformation) [130], this may be accomplished by

using ÛRT (t) = ÛR(t)ÛT = exp(+iωrtÎz) exp(−iαÎy). This sort of formalism may be used to

describe Lee-Goldburg decoupling of the homonuclear dipolar interaction [128, 131]. Waugh

et al. [132] have used a similar transformation to simplify the dipole-coupled Hamiltonian

in studies of heteronuclear two-spin (double resonance) cross-relaxation. The operators

ÛR(t) and ÛT do not commute with each other (since [Îz, Îx] 6= 0), so their ordering in

the product is important (i.e., ÛR(t) ÛT 6= ÛT ÛR(t)). Here
ˆ̃
H(t) = Û−1RT (t) Ĥ(t) ÛRT (t) =

Û−1T Û−1R (t) Ĥ(t) ÛR(t) ÛT , so that first the rotating frame transformation is applied to the

Hamiltonian, and next the tilted frame transformation is applied.7 One might also imagine

“rotating tilted frame” transformations, in which a tilting transformation is applied to some

Hamiltonian before a rotating transformation.

7Waugh’s equations are different because he chooses the convention
ˆ̃
H(t) = ÛTR(t) Ĥ(t) Û−1

TR(t), with

ÛTR = ÛT ÛR(t).
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Toggling frame

The toggling frame is used to calculate average Hamiltonians for pulse sequences

[7, 123]. We consider an effective Hamiltonian in the rotating frame Ĥ(t) = Ĥ0 + Ĥ1(t).

Here Ĥ0 is the time-independent rotating frame effective Hamiltonian for the spin system

in the absence of the rf field (i.e., it is the rotating frame internal Hamiltonian). The Ĥ1(t)

term is the time-dependent rotating frame effective Hamiltonian for a series of rf pulses

in the plane transverse to the external magnetic field (which lies along the z-axis). The

pulses may be considered to be negligibly short in the limit that the magnitude of the rf

Hamiltonian far exceeds that of the internal Hamiltonian of the spins, so that the spins

nutate under the rf field much more quickly than they evolve due to interactions with their

local environments. This is the limit of “delta-function pulses.”8 For example, Ĥ = ~ω1Îx

is taken to be the rotating frame rf Hamiltonian for a pulse that nutates the spins about the

x-axis, where ω1tp = α for spins that are rotated through an angle α in a time tp. When the

limit of delta-function pulses (tp → 0) is taken, the Hamiltonian for an “αx” pulse applied

at time t = ti is Ĥi(t) = ~αÎxδ(t− ti). Therefore Ĥ1(t) = ~
∑p

i=1 αiÎφiδ(t− ti), where e.g.,

φi = 0 for an x-pulse and φi = π/2 for a y-pulse. The Hamiltonian Ĥ(t) then appears to

consist of a sequence of rf pulses spaced at intervals t = ti (during which evolution under

Ĥ0 is neglected), separated by “windows” of free precession of the spins.

We now go into the interaction representation of the Hamiltonian Ĥ1(t) of the

rf pulses, where as usual the interaction transformation looks like the time propagator for

the interaction Ĥ1(t): ÛI(t) ≡ Û1(t) = T{exp[− i~
∫ t
t0
dt

′
Ĥ1(t

′
)]}. This is the “toggling

8Any rf pulse that is strong/short enough so that internal evolution/relaxation can be ignored during
the pulse is usually referred to as a “hard” pulse, but it is often computationally convenient to assume that
these pulses also have negligible duration (the “delta-function pulse” limit).
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frame” transformation of the rotating frame Hamiltonian, as will be seen below. It is

especially appropriate to go into the interaction representation of the Hamiltonian of the

pulses, because we are in the limit that the magnitude of the rf Hamiltonian is much larger

than that of the internal spin Hamiltonian.9

The propagator for a single pulse Pi(αi φi) is

ÛPi(t; t0) = T{exp[− i
~

∫ t

t0

dt
′
Ĥi(t

′
)]}

= T{exp[− i
~

∫ t

t0

dt
′
~αiÎφiδ(t

′ − ti)]}

= T{exp[−iαiÎφi
∫ t

t0

dt
′
δ(t

′ − ti)]}

=⇒ ÛPi(t ≥ ti; t0) = exp(−iαiÎφi);

ÛPi(t < ti; t0) = 1̂,

since
∫ t
t0
dt

′
δ(t

′ − ti) = 1, if t0 ≤ ti ≤ t (and = 0 otherwise). The toggling frame trans-

formation operator Û1(t) is found most easily by discretizing the propagator for Ĥ1(t) in

the manner of Eq. 2.6. Note that Ûn(∆tn) = 1̂ unless the interval ∆tn contains a pulse

Pi(αi φi), in which case Ûn(∆tn) = exp(−iαiÎφi). Therefore

Û1(t) = T{
N∏

i=1

ÛPi(ti)} = e−iαN ÎφN · · · e−iα2Îφ2e−iα1Îφ1 (ti ≤ t < tN ) (2.43)

It can be seen that Û1(t) is a product of the first N pulse propagators ÛPi(ti) up until time

t; pulse propagators for pulses that occur after time t are excluded. It follows (in analogy

9Note that in the prior discussion of the interaction representation a transformation is made into the
frame of Ĥ0(t) (Eq. 2.40), but this tends to be practical in the case when Ĥ0(t), not Ĥ1(t) is the larger
interaction.
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to Eq. 2.41) that
ˆ̃
H(t) = Û−11 (t) Ĥ0 Û1(t), where Û−11 (t) = T−{exp[+ i

~
∫ t
0 dt

′
Ĥ1(t

′
)]}.

Therefore, for p pulses in the sequence:

ˆ̃
H(t0 ≤ t < t1) ≡ ˆ̃

H0 = 1̂

ˆ̃
H(t1 ≤ t < t2) ≡ ˆ̃

H1 = e+iα1Îφ1 Ĥ0 e
−iα1Îφ1

ˆ̃
H(t2 ≤ t < t3) ≡ ˆ̃

H2 = e+iα1Îφ1e+iα2Îφ2 Ĥ0 e
−iα2Îφ2e−iα1Îφ1

...

ˆ̃
H(t ≥ tp) ≡ ˆ̃

Hp = e+iα1Îφ1e+iα2Îφ2 · · · e+iαpÎφp Ĥ0 e−iαpÎφp · · · e−iα2Îφ2e−iα1Îφ1 (2.44)

Note that the pulse propagators are applied to Ĥ0 in “reverse order,” with ÛPp acting on

Ĥ0 first in the expression for
ˆ̃
Hp, and ÛP1 acting on Ĥ0 last.

We finally see why Û1(t) is called the toggling frame transformation. As t exceeds

each ti and pulse Pi(αi φi) is applied, the toggling frame Hamiltonian
ˆ̃
H(t) is transformed by

the application of the pulse propagator ÛPi to Ĥ0. When ÛPi = exp(−iαiÎφi) in the case of

delta-function pulses, these transformations look like rotations by an angle αi about the axis

defined by φ̃
i
. Therefore each pulse effectively “toggles” the rotating frame Hamiltonian into

a rotated set of coordinates. When the pulses are not infinitesimally short delta-function

pulses, the “toggling” is continuous over the duration of the pulse, and the finite lengths of

the pulses must be included in the expression for Û1(t).
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2.4 Average Hamiltonian theory

The techniques of average Hamiltonian theory (AHT) have become entrenched in

the field of solid-state NMR largely due to the work of Waugh’s group [123, 128, 8]. The

“essential” references for this subject are Haeberlen and Waugh’s classic treatment [128]

and Haeberlen’s excellent and thorough monograph [123]. The basic idea of AHT is to

find approximately the time evolution of the system over a short time tc using a Magnus

expansion approach (usually after first transforming the Hamiltonian into an appropriate

interaction representation), and then extend the evolution to long times ntc for periodic

interaction frame effective Hamiltonians
ˆ̃
H(t+ ntc) =

ˆ̃
H(t).

We consider the interaction representation transformations specified by Eqs. 2.39–

2.41, where in practice ‖Ĥ0(t)‖À‖Ĥ1(t)‖ for Ĥ(t) = Ĥ0(t)+Ĥ1(t).
10 For simplicity we take

t0 = 0. The interaction representation transformation then will be the time development

operator for Ĥ0(t):

ÛI(t) = T{exp[− i
~

∫ t

0
dt

′
Ĥ0(t

′
)]}.

We assume that Ĥ(t) is periodic, so that Ĥ0(t) may be periodic with period th and Ĥ1(t)

is time-independent, or vice-versa, or both Ĥ0(t) and Ĥ1(t) are periodic with period th, or

both are time-independent:

Ĥ(t+Nth) = Ĥ(t), (2.45)

10Often AHT is applied in the toggling frame of a series of rf pulses rather than in the interaction frame
of the dominant Hamiltonian [123, 128].
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where N is an integer. We consider the special case where additionally ÛI(t) is periodic

with period tc:

ÛI(t+Ntc) = ÛI(t), (2.46)

where tc is an integer multiple of th.
11 Haeberlen and Waugh [123, 128] call a ÛI(t) operator

with this property “cyclic,” and note that in some cases ÛI(t) may be cyclic over a time ts

that is an integer submultiple of the period tc.
12 It immediately follows from Eq. 2.46 with

t = 0 and the initial condition ÛI(t = 0) = 1̂ that:

ÛI(Ntc) = 1̂. (2.47)

In other words, ÛI has no effect on the time evolution for times t = Ntc.

Next one must consider the time evolution in the interaction frame. Eq. 2.42

states that the time development operator is Û(t; t0) = ÛI(t)
ˆ̃
U(t; 0), where

ˆ̃
U(t; 0) =

T{exp[− i~
∫ t
0 dt

′ ˆ̃
H(t

′
)]} is the time development operator in the interaction frame, and

ˆ̃
H(t) = Û−1I (t) Ĥ1(t) ÛI(t). The interaction frame effective Hamiltonian

ˆ̃
H(t) may have

explicit time dependence due to the time dependence of Ĥ1(t), plus additional time de-

pendence due to the time-dependent interaction frame transformation ÛI(t). If Ĥ1(t) is

11The relation between th and tc can be demonstrated for the contrived example of a periodic Hamiltonian

of the form Ĥ0(t) =
∑

n6=0 Ĥ
(n)
0 exp(inωht) with [Ĥ

(n)
0 , Ĥ

(n′)
0 ] = 0 for all n, n′, where ωh = 2π/th. In this

case ÛI(t) = Πn6=0 exp{−Ĥ(n)0 [exp(inωht)−1]/(n~ωh)}, which is periodic with some period tc = mth, where

m is an integer. If Ĥ0 is time-independent (i.e., it has no well-defined period), then ÛI(t) = e−iĤ0t/~ still
may be periodic if the eigenfrequencies Ĥ0/~ are all rational multiples of some base frequency.
12In general the periodicity of the Hamiltonian does not guarantee the periodicity of ÛI(t), as Haeberlen

notes [123] for the case of a toggling frame transformation for a pulse sequence made up of equal, periodically-
spaced pulses with flip angles equal to an irrational fraction of 2π. In that case the (rf) Hamiltonian is
periodic, but the system is not cyclic because no amount of pulses will rotate the system through exactly
the angle 2π.
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periodic with period th and ÛI(t) is cyclic with period tc = mth, it is reasonable to expect

that
ˆ̃
H(t) also is periodic with period th. For simplicity’s sake, we take tc = th, so that

ˆ̃
H(t+Ntc) =

ˆ̃
H(t). (2.48)

This relation certainly holds if Ĥ1 is time-independent and ÛI(t) is cyclic with period tc.

From Eq. 2.48 it follows that

ˆ̃
U(Ntc) = [

ˆ̃
U(tc)]

N , (2.49)

because all the
ˆ̃
U(tc) time development operators over the N intervals are equal. It follows

from Eqs. 2.49, 2.47, and 2.42 that the time development operator in the untransformed

frame is:

Û(Ntc) = [
ˆ̃
U(tc)]

N . (2.50)

If the interaction frame effective Hamiltonian
ˆ̃
H(t) is homogeneous the time evolution must

be approximated, e.g. by the Magnus expansion (Eq. 2.19):

ˆ̃
U(Ntc) ' exp[−iĤ(Ntc)/~], (2.51)

where the “average Hamiltonian” Ĥ has been calculated on the interval [0, tc] and truncated

at an appropriate level of the Magnus expansion; i.e., the lowest order approximation from

Eq. 2.27 is Ĥ ' Ĥ
(1)

= 1
tc

∫ tc
0 dt

′ ˆ̃
H(t

′
). Note that in this example, the Magnus expansion
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is being used to approximate the interaction frame time evolution, using the appropriate

effective Hamiltonian. Eq. 2.50 indicates that

Û(Ntc) ' [exp(−iĤtc/~)]N . (2.52)

Eq. 2.52 is the fundamental result of average Hamiltonian theory. It states that if a system

has a cycle time tc and an average Hamiltonian for the system calculated via the Magnus

expansion converges on the interval [0, tc], then the calculation of the time evolution can be

extended to long times t = Ntc without worries about convergence. (Recall that ‖ ˆ̃
H(t) ‖

t ≤ 1 is a rough criterion for convergence of the Magnus series on the interval [0,t], so there

is a limit to how far the calculation of an average Hamiltonian can be extended in time.)

However, it is crucial to note that AHT is a stroboscopic theory, i.e., it is only valid when the

system is observed stroboscopically at discrete times tN = Ntc. Refs. [38, 39, 40] mention

some of the perils that await if calculations are performed without heed of the stroboscopic

condition.13 Ref. [41, §4.3] discusses the potential problem with AHT if the Hamiltonian

that dictates the time evolution (i.e., either Ĥ(t) or
ˆ̃
H(t) if an interaction representation

transformation is made) contains a time-independent piece.

13Ref. [133, §1.3.1] notes that the stroboscopic observations are not necessary if the observable commutes
with ÛI(t):

<Â>(t) = Tr[Â ˆρ(t)] = Tr[Â Û(t) ˆρ(0)Û†(t)] = Tr[Â {ÛI(t) ˆ̃U(t) ˆρ(0)
ˆ̃
U
†
(t)Û†(t)}]

= Tr[{Û†(t)ÂÛI(t)} ˆ̃U(t) ˆρ(0)
ˆ̃
U
†
(t)] = Tr[Â { ˆ̃U(t) ˆρ(0)

ˆ̃
U
†
(t)}],

where operators have been permuted through the trace and [ÛI(t), Â] = 0 guarantees that Â is invariant to
transformation by ÛI(t). Thus the condition of Eq. 2.47 is not necessary. However, the cyclic nature of the
system is still used via Eq. 2.49 to extend the results of the Magnus expansion to long times.
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Chapter 3

Mixed-coherence I = 5/2 MQMAS

experiments with low-amplitude

RF pulses

3.1 Introduction

Most elements in the periodic table have nuclei with non-zero ground state mag-

netic moments have an angular momentum quantum number greater than 1/2 and therefore

possess an electric quadrupole moment. In particular, most of the NMR-active nuclei ob-

served in materials studies (e.g., most metal atoms) are half-integer quadrupolar spins. The

study of the structure of materials requires the ability to perform solid state experiments.

Solid-state NMR is a useful technique for any type of sample that is not soluble or has

solid-state properties that are interesting, or when extra structural information that cannot
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be obtained in the liquid state is desired.

The most challenging type of sample in high-field solid-state NMR studies is the

polycrystalline powder or amorphous solid, which contains a random distribution of local

molecular orientations. The application of a large magnetic field to the sample is de-

sirable to increase chemical shift resolution of the NMR spectra and enhance sensitivity

through an increased thermal polarization of the sample and higher Larmor frequency of

the inductively-detected nuclear magnetization. However, the application of a magnetic

field breaks the isotropy of space and makes the nuclear resonance frequencies dependent

on the molecular orientation with respect to the magnetic field. This is manifested in the

orientation-dependent (anisotropic) Zeeman-truncated internal nuclear Hamiltonians, such

as the magnetic dipole–dipole, chemical shift anisotropy (CSA), and electric quadrupolar

interactions, which are motionally averaged away in liquids but retain valuable structural

information in the solid state. The trouble is that the orientation-dependent powder pattern

that contains the structural information is roughly as broad as the interaction that causes

it. Typical couplings between nuclear electric quadrupole moments to molecular electric

field gradients (EFGs) range from hundreds of kHz to tens of MHz. When this is compared

to a range of chemical shifts that may be only tens of kHz for a particular nucleus, it is

clear that the quadrupolar broadening in a polycrystalline powder completely precludes

the acquisition of chemical shift-resolved NMR spectra. Furthermore, the spreading of the

resonance over a broad spectral region presents further difficulties for the already sensitivity-

challenged NMR experiment, since the powder spectrum can be broadened almost into the

noise baseline.
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The most common method of reducing the anisotropic broadening in solids is

high-speed magic-angle sample spinning (MAS). This technique is capable of averaging

away interactions with second-rank spatial spherical tensor terms via spinning the sample

about an axis that makes the “magic angle” θm = tan−1(
√
2) with the external magnetic

field. Second-rank interactions include the dipole–dipole, CSA, and quadrupolar interac-

tions truncated to first order in the perturbation theory by the Zeeman interaction. MAS

techniques actually break the powder spectrum into a pattern of “spinning sidebands”

spaced at integer multiples of the spinning frequency; these sidebands can be removed by

discrete rotor-synchronized acquisition of the time domain signal, at the expense of limit-

ing the spectral width to twice the spinning frequency. The spectral resolution obtained

by MAS techniques is impressive, but the question of whether “high resolution” has been

achieved is a relative one, i.e., whether the linewidths are smaller than the typical spacings

between NMR lines.

Unfortunately, quadrupolar interactions are so large that the second-order pertur-

bation theory contribution cannot be ignored when trying to resolve small chemical shifts.

The second-order contribution goes as ∼ ω2Q/ω0 (where ωQ is the quadrupolar coupling

frequency and ω0 is the Larmor frequency), and can be of the order of hundreds of Hz to

hundreds of kHz in a typical high-field magnet, depending on the size of the quadrupolar

coupling, spin quantum number, and magnetic field strength. The use of high magnetic field

strengths can ameliorate, but not remove the second-order broadening. The second-order

contribution contains both rank-0 isotropic and rank-2 and rank-4 anisotropic spatial terms

(see §1.3.7). The rank-0 term adds an isotropic frequency shift of the NMR resonances that
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adds to the usual isotropic chemical shift. The rank-2 term can be removed by MAS, along

with the first-order quadrupolar, dipole–dipole, and CSA broadening. However, the rank-4

term is not averaged away by MAS, but only scaled down by a factor of P4(cos θm), where

P4(x) is the fourth-rank Legendre polynomial. This residual quadrupolar broadening even

under MAS conditions was formerly a major obstacle to the acquisition of high resolution

NMR spectra of quadrupolar nuclei until experiments were designed to overcome it. The

most widely-employed technique for half-integer quadrupolar nuclei is the two-dimensional

multiple-quantum magic-angle spinning (MQMAS) experiment, which employs a combina-

tion of MAS and multiple-quantum coherence evolutions, as will be described later.

The large quadrupolar coupling presents problems not only for spectral resolution.

Even high-power solid-state NMR probes are only capable of producing radiofrequency

magnetic fields that cause nutations on the order of 105 Hz. Therefore the rf field strength

is often much smaller than the quadrupolar coupling, which dominates the time evolution.

It then becomes difficult to control the dynamics of the nuclear polarization precisely using

rf fields, and the loss of sensitivity due to inefficient multiple quantum coherence conversion

pulses in the MQMAS experiment is a major problem that has stimulated the development

of many new pulse techniques (see §5.6.2). Most of these techniques use rf pulses that are

as strong as possible, and some incorporate adiabatic coherence transfers due to sample

rotation. The work described in this chapter is an investigation of the effects of very low-

amplitude rf pulses in I = 5/2 MQMAS experiments. These pulses can not only enhance

the sensitivity of the MQMAS experiment, but a new line-narrowing mechanism has also

been observed in certain systems.
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3.2 Removing the second-order quadrupolar broadening. The

MQMAS experiment.

Under fast magic-angle spinning conditions the dipole–dipole and CSA interac-

tions are assumed to be averaged away. However, since even high-speed MAS probes cannot

spin faster than a large quadrupolar coupling (i.e., MHz), if the acquisition is not rotor-

synchronized the signal intensity is spread out over a series of spinning sidebands that span

the powder spectrum. The Fourier-transform NMR experiment records the time evolution

of single-quantum coherences in the Zeeman basis that correspond to transverse magnetiza-

tion. Nuclei with half-integer spins possess symmetric single-quantum coherences |I,mI =

±12〉〈I,mI = ∓12 | of coherence order p = ±1 which correspond to the “central transition” of

the spectrum. The first-order quadrupolar Hamiltonian Ĥ
(1)
Q ∝ [3Î2z − I(I +1)1̂] is an even

function of Îz and does not shift the transition frequency of any symmetric transition be-

tween states of +|mI | and−|mI |, since 〈I,+|mI ||Ĥ(1)
Q |I,+|mI |〉−〈I,−|mI ||Ĥ(1)

Q |I,−|mI |〉 =

0 and therefore does not cause any time evolution of a symmetric coherence. Consequently,

the satellite transitions corresponding to non-symmetric single quantum coherences are

broadened by the first-order quadrupolar Hamiltonian, whereas the central transition is

not. Most quadrupolar NMR experiments therefore focus on the central transition of the

spectrum, which is subject to quadrupolar broadening only under the second order Hamil-

tonian Ĥ
(2)
Q . As will be seen, this broadening is not completely removed by MAS.

During sample spinning the evolution frequency of a symmetric p-quantum coher-

ence |I,mI = +p/2〉〈I,mI = −p/2| under a time-averaged single-crystallite rotating frame
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Hamiltonian that includes chemical shift and second-order quadrupolar effects is

ω(2)p = 〈I,+p
2
|[Ĥcs + Ĥ

(2)

Q ]/~|I,+p
2
〉 − 〈I,−p

2
|[Ĥcs + Ĥ

(2)

Q ]/~|I,−p
2
〉

= (δ + ωcs0 )p+ [ω2Q0 CI0 (p)P0(cos θ) + ω2Q2 CI2 (p)P2(cos θ) + ω2Q4 CI4 (p)P4(cos θ)],

(3.1)

where δ is the resonance offset frequency, ωcs0 is the isotropic chemical shift frequency,

the ω2Qk are rank-k spatial tensor contributions to the second-order quadrupolar frequency

shift, the CIk(p) are coefficients that depend on the spin degrees of freedom of the system

(including the spin quantum number I and the coherence order p), the Pk(x) are the rank-k

Legendre polynomials, and θ is the angle between the rotor (spinning) axis and the Zeeman

magnetic field.1 The ω2Qk arise from the spatially dependent terms of the Hamiltonian; the

rank-0 term ω2Q0 is isotropic and does not depend on crystallite orientation, whereas the ω2Q2

and ω2Q4 terms are anisotropic and depend on crystallite orientation. It is the anisotropic

terms that lead to the second-order quadrupolar broadening, and it is these terms which

must somehow be removed in order to narrow the central transition linewidth.

One strategy to eliminate both the second- and fourth-rank quadrupolar terms

is to rotate the sample about two axes θ1 and θ2 simultaneously such that P2(cos θ1) = 0

and P4(cos θ2) = 0 (the condition P2(cos θ2) = 0 and P4(cos θ1) = 0 also works). The first

angle θ1 is measured relative to the magnetic field axis, and the second angle θ2 is measured

relative to the first spinning axis. The first angle is the inverse cosine of the zero of the

1The rank-0 polynomial P0(x) always equals 1 regardless of its argument, so this term is actually in-
dependent of the angle of the spinning axis. It is included here for the sake of consistency, since sample
spinning generates a Pk(cos θ) dependence from rank-k spatial tensor terms. Strictly speaking, the isotropic
chemical shift term should also have a P0(cos θ) “dependence.”
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second-rank Legendre polynomial, which is the magic angle θ1 = θm = tan−1(
√
2) ' 54.74◦.

The second is the inverse cosine of the zero of the fourth-rank Legendre polynomial, θ2 '

30.56◦ or θ2 ' 70.12◦. This technique is called double rotation (DOR) [134]; it not only

averages away the second- and fourth-rank second-order quadrupolar broadening, but also

other second-rank anisotropic terms such as the dipole–dipole coupling and CSA. Another

technique that was developed to remove the second-order broadening is dynamic angle

spinning (DAS) [135, 136, 137]. The DAS principle involves switching the spinning axis

between two angles θ1 and θ2 (called a DAS angle pair) during the indirect dimension delay

in a two-dimensional experiment such that the anisotropic quadrupolar (and also CSA and

dipole–dipole) evolution is refocused in a type of generalized spin echo. The echo is induced

entirely by spatial manipulation of the sample.

The DAS and DOR techniques both require the use of special NMR probes. In

particular, DOR involves a “rotor inside a rotor” design, in which the speed of the outer

rotor is limited for mechanical reasons. This can make spectral interpretation difficult

due to the presence of many closely-spaced spinning sidebands. However, DOR has the

advantage of being a one dimensional experiment, so it is fast. The DAS experiment is

two dimensional and takes longer, but the 2D anisotropic-isotropic correlation spectra can

be useful. However, the DAS technique requires the magnetization to be stored along the

Zeeman field axis for > 10 ms while the rotor switches positions in order to avoid dephasing,

and significant magnetization could be lost during the storage time if longitudinal relaxation

is fast (as is often the case for quadrupolar nuclei).

Both the DAS and DOR techniques use manipulations of two spatial degrees of
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freedom to remove the two independent anisotropic second-order quadrupolar terms simul-

taneously. Frydman and coworkers have introduced an experiment called multiple-quantum

magic-angle spinning (MQMAS) that employs a spin manipulation to refocus the fourth-

rank second-order quadrupolar broadening in combination with spinning solely at the magic

angle to remove all second-rank anisotropic broadening. Unlike DAS and DOR which use

only |p| = 1 single-quantum coherences, MQMAS also uses |p| > 1 multiple-quantum co-

herences. This technique has the advantage that it can be implemented in a standard

solid-state MAS probe. Other characteristics of the experiment are described below.

3.2.1 Conventional MQMAS

This section describes the original MQMAS experiment due to Frydman et al. that

uses a multiple-quantum evolution time in conjunction with a single-quantum evolution

time to refocus the fourth-rank second order quadrupolar broadening [138, 139]. Some of

the developments in this field have been reviewed by Goldbourt and Madhu [140]. Like

DAS, MQMAS is a two-dimensional experiment that correlates the quadrupolar-broadened

(anisotropic) MAS spectrum in the direct dimension with the narrow isotropic spectrum in

the indirect dimension.

The MQMAS experiment is performed entirely at the magic angle, so consider Eq.

3.1 when evaluated at θ = θm:

ω(2)p = (δ + ωcs0 )p+ [ω2Q0 CI0 (p) + ω2Q4 CI4 (p)P4(cos θm)]. (3.2)

The magic angle spinning has removed the second-rank quadrupolar broadening ω2Q2 since



3.2. REMOVING THE SECOND-ORDER QUADRUPOLAR
BROADENING. THE MQMAS EXPERIMENT. 168

P2(cos θm) = 0. This equation holds for any symmetric p-quantum coherence. Imagine

performing a two dimensional NMR experiment in which a symmetric p1-quantum coherence

is created and evolves during the indirect dimension time interval t1 before it is converted

to symmetric p2-quantum coherence during the direct dimension time interval t2. The only

symmetric coherence that is directly observable by quadrature detection is the p2 = −1

central transition coherence, and phase cycling can be used to select the proper 0→ p1 → −1

coherence pathway. The NMR signal is proportional to:

S(t1, t2) ∝ exp[−iω(2)p1 t1] exp[−iω
(2)
p2 t2]. (3.3)

The phase acquired by anisotropic quadrupolar evolution in the indirect dimension is

φ2Q1 = ω2Q4 CI4 (p1)P4(cos θm)t1, whereas the phase acquired by anisotropic quadrupolar

evolution in the direct dimension is φ2Q2 = ω2Q4 CI4 (p2)P4(cos θm)t2, such that φ2Q2 /φ2Q1 =

[CI4 (p1)t1]/[C
I
4 (p2)t2]. In other words, these two phases are proportional to each other by

a factor that does not contain any orientation dependence. They only depend on the spin

quantum number, coherence order, and evolution time. The coherence order of the system

and evolution time are under experimental control. Therefore the use of symmetric coher-

ences not only rids the spectrum of any first order quadrupolar broadening, but also can be

used to refocus the rank-4 quadrupolar broadening when φ1 + φ2 = 0 by choosing t2 = kt1,

where k = −CI4 (p1)/CI4 (p2).2 The constant k must be positive, which means CI
4 (p1) and

CI4 (p2) must have opposite signs; another way of saying this is that the coherences p1 and

p2 must evolve in opposite directions under the fourth-rank quadrupolar terms in order for

2The use of the symbol k is common in the literature and should not be confused with the spherical
tensor rank k used elsewhere in this treatment.
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this evolution to be refocused. At the point of the refocusing the signal is:

S(t1, t2 = kt1) ∝ exp[−i(ω̃cs0 + ω̃2Q0 )t1], (3.4)

where the scaled isotropic chemical shift/resonance offset and scaled isotropic second-order

quadrupolar shift are ω̃cs0 = (δ + ωcs0 )(p1 + kp2) and ω̃2Q0 = ω2Q0 (CI0 (p1) + kCI0 (p2)). This

amounts to a spin echo of the fourth-rank quadrupolar broadening that forms at a time

t2 = kt1. The C
I
k(p) coefficients are given by Eq. 1.63:

CI0 (p) = p[I(I + 1)− 3

4
p2]

CI2 (p) = p[8I(I + 1)− 4p2 − 3]

CI4 (p) = p[18I(I + 1)− 17

2
p2 − 5]. (3.5)

These coefficients are odd functions of the coherence order p, reflecting the fact that the

second-order quadrupolar Hamiltonian Ĥ
(2)
Q is an odd function of the spin operator Îz (see

§1.3.7). Therefore it is always possible to ensure that the constant k is positive by choosing

the appropriate sign of the coherence order p1 (the coherence order p2 = −1 is fixed).3

Consider a spin I = 5/2 nucleus. Aside from the p = ±1 symmetric central transi-

tion single-quantum coherences | 52 ,±12〉〈52 ,∓12 |, this system also supports symmetric p = ±3

triple-quantum coherences | 52 ,±32〉〈52 ,∓32 | and symmetric p = ±5 quintuple-quantum co-

herences |52 ,±52〉〈52 ,∓52 |. The conventional MQMAS experiment that uses p1 = −5 and

3Note that both the second- and fourth-rank second-order quadrupolar anisotropies can be refocused
simultaneously by a simple π-pulse induced spin echo, which selects the p1 = +1 to p2 = −1 coherence
pathway. Unfortunately, this type of spin echo inverts all coherences p and thus also refocuses the isotropic
chemical shift and isotropic quadrupolar shift, so the information about the sample of interest is lost, and
all resonances would occur at zero frequency in the indirect dimension.
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p2 = −1 quantum coherences to form the MQMAS echo is known as the 5Q1QMAS or

simply 5QMAS experiment. In this case k = −CI
4 (−5)/CI4 (−1) = 25/12 ' 2.083. Another

possibility is the 3QMAS experiment with p1 = +3 and p2 = −1, with k = 19/12 ' 1.583.

The choice of 5QMAS versus 3QMAS experiment depends mainly on two factors: which

experiment is more sensitive, and which offers higher spectral resolution in the indirect

dimension. In general, the creation of high coherence orders p is less efficient than the

creation of low coherence orders, so one expects the 5QMAS experiment to be less sensi-

tive. However, in the ratio of the scaled chemical shift in the MQMAS experiment to the

chemical shift that one would observe under evolution as only −1-quantum coherence is

κcs = (p1ω
cs
0 + kp2ω

cs
0 )/(p2ω

cs
0 + kp2ω

cs
0 ) = −(p11 − k)/(1 + k). The 5QMAS experiment

therefore gives a chemical shift resolution enhancement of κcs = 2.297 in the indirect dimen-

sion over the chemical shift that is observed in the direct dimension, whereas the 3QMAS

experiment only offers a relative chemical shift resolution scaling of κcs = −0.548. In other

words, the 5QMAS experiment more than doubles the effective chemical shift resolution,

whereas the 3QMAS experiment cuts the chemical shift resolution nearly in half. Note

that the observed peak in the indirect dimension is at the sum of the isotropic chemical

and quadrupolar shift frequencies, where the isotropic quadrupolar shift scaling factor is

κ2Q = [CI0 (p1) + kCI0 (−1)]/[CI0 (−1) + kCI0 (−1)] = [CI0 (p1)/C
I
0 (−1) + k]/(1 + k). Therefore

any resolution enhancement or decrease would actually be the sum of two factors that can

possibly compete with each other depending on the signs of the κ factors. Also, any “reso-

lution enhancement” is predicated on the fact that the linewidth in the indirect dimension

does not increase by the same amount (or more) as the isotropic shift scaling. In principle,
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the use of the highest symmetric multiple quantum coherence available to the system (i.e.,

|p1| = 2I) offers the best chemical shift scaling factor. However, Ref. [141] (and references

therein) discusses some of the subtleties of achieving actual resolution enhancement in such

experiments.

Since the MQMAS echo forms at a time t2 = kt1 in the direct dimension, the echo

moves further and further into the acquisition window as t1 is incremented. The hallmark

of any coherence transfer echo experiment in which the echo travels in the acquisition win-

dow in proportion to t1 is a “shearing” effect in the two-dimensional Fourier-transformed

spectrum [7, §6.6.1], where the peaks do not fall along the diagonal in the 2D spectrum but

rather along a line of slope k (where the indirect F1 dimension is the vertical axis and the

direct F2 dimension is the horizontal axis). In this case the projection of the 2D Fourier-

transformed data set along the indirect frequency dimension F1 does not yield the desired

isotropic spectrum. This can be corrected by applying a mathematical shearing transfor-

mation to the data. It also can be corrected experimentally by ensuring that the echo does

not travel in the acquisition window from transient to transient. Brown et al. [142] have

introduced the “split-t1” MQMAS experiment, in which some of the single-quantum evolu-

tion is included in the indirect dimension so that the fourth-rank quadrupolar broadening

is refocused entirely during the t1 interval. Therefore the peak of the echo forms at the

beginning of t2 for every transient, and there is no shearing effect after Fourier transfor-

mation. Unfortunately, a time domain data set collected in this manner does not have a

pure absorptive-phase lineshape after the double Fourier transform. This problem can be

overcome by the States method, in which a t1-amplitude-modulated signal is collected by
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retaining both the echo (+p1) and anti-echo (−p1) coherence pathways to form a hypercom-

plex data set [143]. It is also possible to apply pulses such that the top of the echo forms at

a time τ into the acquisition window instead of at the beginning. If τ is long enough, the

entire spin echo can be moved into the acquisition window. The acquisition of the whole

echo allows pure absorption-mode lineshapes after the 2D Fourier transformation even if a

single 0→ p1 → −1 coherence pathway is collected [144, 145]. This “shifted echo” method

is advantageous when combined with the split-t1 technique [146, 147].

The sensitivity of the MQMAS experiment hinges on the efficiency of the pulses

that create multiple-quantum coherence p1 from longitudinal magnetization and convert

this MQC to single-quantum coherence p2 = −1 for detection. It is difficult to manipulate

the nuclear polarization with rf pulses that are weak compared to the quadrupolar interac-

tion. The simplest MQMAS experiment uses a single “hard” (high-amplitude) rf pulse for

multiple-quantum excitation, and another hard pulse for conversion [139, 144, 148].4 The

single-pulse multiple quantum excitation technique is based on old ideas by Vega and Pines

for double quantum excitation in I = 1 systems [149, 150] that were extended by Vega and

Naor to experiments on half-integer spin systems [151]; single-pulse excitation represents

an improvement over the two-pulse excitation sequence in the original MQMAS experiment

[138], which is more appropriate when the rf strength is stronger than the quadrupolar inter-

action. Some other techniques for inducing coherence transfer in half-integer quadrupolar

nuclei are discussed in §5.6.2.

Finally, it should be mentioned that most methods of creating or converting

4Conventional NMR terminology dictates that a “hard” pulse is one for which the rf amplitude dominates
any other internal interaction. Since this is almost never the case when a large quadrupolar coupling is
present, the term “hard” pulse is sometimes used in the quadrupolar NMR community to mean an rf pulse
that is as strong as possible, as opposed to a “soft” (low amplitude) selective or adiabatic pulse.
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multiple-quantum coherence also form undesired coherences that can lead to spectral arti-

facts, so these unwanted coherences need to be suppressed. Certainly, a density operator

that contains a +p1 coherence without a −p1 coherence is non-Hermitian, so some man-

ner of coherence pathway selection must be applied to suppress the −p1 multiple-quantum

coherence pathway in the final signal. This can be accomplished by standard Bodenhausen-

type phase cycling [152],[7, §6.3],[4, §4.3], and Levitt’s cogwheel phase cycling procedure

has also been applied to MQMAS experiment [153, 154], as have magic-angle pulsed field

gradient coherence pathway selection methods [155].

3.2.2 Mixed-coherence MQMAS

Jerschow has observed [156] that the split-t1 MQMAS experiment can be modified

such that the anisotropic quadrupolar broadening is refocused completely during t1 using

two symmetric multiple quantum coherences (MQCs) instead of one symmetric MQC and

one symmetric single-quantum coherence, and that better isotropic shift scaling factors can

be obtained this way. This is the mixed-multiple quantum MAS (MMQMAS) experiment.

It is applicable to nuclei with I > 3/2 that are capable of supporting at least two symmetric

multiple-quantum coherences p1 and p2, and in a sense the conventional split-t1 MQMAS

experiment is a special case of MMQMAS with |p2| = 1. The highest isotropic shift scaling

factors (and hence the best theoretical resolution enhancement) are obtained when the two

highest symmetric MQCs available to the system are used, e.g. p1 = +5 and p2 = +3 in

the I = 5/2 5Q3QMAS experiment, or p1 = +7 and p2 = +5 in the I = 7/2 7Q5QMAS

experiment. Jerschow et al. have also adopted the shifted echo approach for pure absorptive-

phase lineshapes.
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The basic I = 5/2 5Q3QMAS pulse sequence and coherence pathway diagram is

shown in Fig. 3.1. The +5QC is excited from longitudinal magnetization with a single pulse

and allowed to evolve for a time at1 before another pulse converts it to +3QC, which evolves

for a time bt1, where a+ b = 1. In terms of the previous notation one finds k = b/a, where

k = −CI4 (+5)/CI4 (+3) = 25/19, such that a = 19/44 and b = 25/44. At the end of the

t1 interval the fourth-rank, second-order quadrupolar broadening is refocused. The +3QC

could then be transferred directly to −1QC for detection during t2, but in the shifted echo

approach it is converted to +1QC instead and allowed to evolve for a time τ , during which

the coherence dephases. Then a central-transition selective π-pulse inverts the +1QC to

−1QC for quadrature detection in the interval t2, and the coherence rephases at a time

t2 = τ to form a spin echo.5 The delay τ is chosen to be long enough so that the entire echo

forms in the acquisition window. The proper coherence pathway is selected by phase cycling,

e.g. a 640-step phase cycle [156] calculated using the CCCP program [157],6 or a shorter

201-step cogwheel phase cycle [154]. Any such phase cycling procedure also lets through

non-symmetric coherences, which in principle could contribute to the final signal, but these

coherences are assumed to be dephased during t1 (or t2 in case of the single-quantum

coherences) by evolution under the large, anisotropic first-order quadrupolar coupling.

Although the mixed-MQMAS experiments potentially can yield higher-resolution

isotropic spectra in the indirect dimension than conventional MQMAS experiments, they

suffer from sensitivity problems since they involve an extra coherence conversion pulse,

5Conversion pulses that cause a small change in coherence order ∆p are usually more efficient, so if +3QC
is converted to +1QC with ∆p = −2 and then efficiently to −1QC with a selective pulse, better signal may
be obtained than if +3QC was converted to −1QC directly with ∆p = −4.

6This phase cycle may actually let through some other coherence pathways that were determined to have
small amplitudes.
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t2a t1 b t1 τ
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p = –1+1+3+50

Figure 3.1: Pulse sequence and coherence pathway diagram for the 5Q3QMAS experiment.
The fourth-rank second-order quadrupolar broadening is refocused after split evolution in
the indirect dimension during the intervals at1 and bt1 as +5-quantum and +3-quantum
coherence, respectively, where a = 19/44 and b = 25/44. The multiple-quantum coherence
is then converted to single-quantum coherence for detection, where a selective central tran-
sition inversion pulse causes a spin echo at a time τ in the direct dimension t2. The phases
of the multiple-quantum excitation, first and second conversion, and soft inversion rf pulses
and the receiver phase are φE , φC , φC′ , φI , and φR, respectively.

since at the end of t1 the multiple-quantum coherence is not directly observable and must be

converted to single-quantum coherence for detection. Therefore the MMQMAS experiments

are even more in need of efficient multiple-quantum excitation and conversion pulses than

are the conventional MQMAS experiments.

One other interesting property of the MMQMAS experiments is that can they ex-

tend the generality of MQMAS to integer spins. Conventional MQMAS cannot be applied to

integer spins because it involves a symmetric single-quantum (central transition) coherence,

which integer spins do not possess. However, the integer spins with I > 1 all have at least

two symmetric multiple quantum coherences that can be used to refocus the second-order

quadrupolar broadening, for instance the p1 = +6 coherence |3,+3〉〈3,−3| and the p2 = +4

coherence |3,+2〉〈3,−2|. The extension to integer spins is of limited utility; other than the

I = 3 B-10 nucleus that exists in 20% natural abundance, there are no common nuclides of
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I > 1 with significant natural abundance. The MMQMAS experiment is not applicable to

I = 1 nuclei since they possess only one symmetric coherence, the unique double-quantum

coherence. The second-order quadrupolar broadening is difficult to remove in I = 1 nuclei

using spin manipulations, because the spin operator Î3z is then proportional to Îz, so that

Ĥ
(2)
Q ∝ Îz (see §1.3.7). In this case the second-order quadrupolar Hamiltonian shares the

same spin operator dependence as the chemical shift Hamiltonian, so any attempt to refocus

the quadrupolar broadening using rf pulses also refocuses the chemical shift.

3.3 Rotary resonance phenomena

There has been much work dedicated toward improving the sensitivity of the MQ-

MAS experiment, most of which has focused on increasing the efficiencies of multiple-

quantum coherence conversion and excitation pulses under sample spinning conditions.

Some of these techniques are reviewed in §5.6.2. Most are applicable in the limit where

the rotationally-induced time dependent quadrupolar coupling can induce adiabatic coher-

ence transfers in the presence of an rf field. An adiabaticity parameter α = |ω21/(ωQωR)|

has been defined by A. Vega, where ω1 = γB1 is the rotating-frame rf field strength in

frequency units, ωQ is the quadrupolar coupling frequency, and ωR is the sample spinning

frequency [158]. The limit α À 1 characterizes the adiabatic passage regime and α ¿ 1

characterizes the sudden passage regime. The adiabatic transfers are effective when α is

well into the adiabatic regime, i.e., when the rf power is high and the sample spinning is

slow, and the quadrupolar coupling is not too large.

Some studies of quadrupolar spin dynamics in the presence of radiofrequency ir-
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radiation have been performed in the sudden passage regime, i.e., under fast spinning and

low rf power conditions [158, 159, 160]. Several workers noted that unusual spin dynamics

are observed at resonant conditions when the rf strength ω1 is appropriately matched to

the spinning speed ωR [159, 160], as is discussed further in §5.6.5. The “rotary resonance”

condition for a nucleus with half-integer angular momentum I is:

ω1 =
4N

2I + 1
ωR, (3.6)

where N is an integer. This condition reduces to ω1 = NωR for I = 3/2 and ω1 =
2
3NωR

for I = 5/2. The origin of these resonances is explored in §3.5.2. These resonant effects

remained largely a curiosity until Vosegaard et al. discovered that certain coherence transfers

could be induced under fast spinning and low rf power conditions when the rf amplitude was

matched to one of these resonances, and other coherence transfers were possible when the

rf amplitude was set in between the resonances. These effects formed the basis of the first

so-called “FASTER” (FAst Spinning gives Transfer Enhancement at Rotary resonance)

MQMAS experiment in I = 3/2 nuclei [161]. Unlike the adiabatic techniques, FASTER

MQMAS operates in the sudden passage regime and is easily applicable to nuclei with

relatively large quadrupolar coupling constants of several MHz (although there is eventually

a limit to how large the quadrupolar coupling can be). Walls [162] and Gan and Grandinetti

[163] have developed successful Floquet theories of these effects in I = 3/2 systems, and

Walls extended the theory to include I = 5/2 nuclei [164]. The work presented in this

chapter represents the first experimental investigation of rotary resonance effects in the

sudden passage regime in I = 5/2 nuclei [164, 165, 166]. It also represents the first extension
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of the FASTER technique to the mixed-MQMAS experiment, which is applicable only in

I > 3/2 systems.

3.4 Rotary resonance experiments in I = 5/2 systems

Although detailed investigations of the efficiencies of various multiple-quantum

excitation and conversion pulses as functions of pulse amplitude and length were conducted

in I = 5/2 3QMAS, 5QMAS, and 5Q3QMAS experiments [164, 165, 166], these results will

not be presented here. Rather, the results of these investigations will be used to show how

the sensitivity of the 5Q3QMAS experiment can be increased using low-amplitude pulses

matched at or away from rotary resonance conditions. Also, a new line narrowing effect in

the anisotropic dimension of the 5Q3QMAS experiment will be discussed.

3.4.1 Experimental procedure

The low-amplitude pulse experiments were performed on the I = 5/2 Al-27 nucleus

in a sample of aluminum acetylacetonate (Aldrich, 99%), Al(acac)3, where acac = [H3C-

(CO)-CH-(CO)-CH3]
−. This compound is reported to have one unique Al-27 site with a

quadrupolar coupling constant of CQ = 3.0 MHz and an electric field gradient asymmetry

parameter of ηQ = 0.15 [167]. The Al(acac)3 sample was ground with a mortar and pestle

to ensure homogeneity before being packed into a 3.2 mm outer diameter zirconia rotor.7

All experiments were performed on a Chemagnetics/Varian CMX Infinity 500 spectrometer

with a 3.2 mm Chemagnetics solid-state magic-angle spinning probe operated at ωR/2π =

20 kHz. The magnetic field strength was 11.7 Tesla, corresponding to an Al-27 Larmor

7It is important to choose a rotor material that gives no Al-27 background signal.
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frequency of 130.3 MHz. The rf pulse amplitudes were calibrated against a sample of 1 M

AlCl3 (aq) solution.8

The 5Q3QMAS pulse sequence was implemented as illustrated in Fig. 3.1. The rf

carrier frequency was set to the center of the central transition anisotropic powder pattern.

A 640-step phase cycle was used to select the proper coherence pathway [165]. The dwell

time was 40 µs in the indirect dimension t1 and 50µs (rotor-synchronized) in the direct

dimension t2, where there were 128 and 256 data points collected in t1 and t2, respectively.

The soft inversion pulse was experimentally optimized to be 12.5 µs long with an rf ampli-

tude of ω1/2π = 3.7 kHz. The echo delay was τ = 5 ms. Two types of multiple-quantum

excitation and conversion pulse were implemented. The “hard” pulse (HP) version used

an ω1/2π = 150 kHz amplitude pulse experimentally optimized to be 0.47 µs long. The

low-amplitude pulse (LAP) conditions were chosen from the optimal values found in exper-

imental investigations of low-amplitude pulses near rotary resonance conditions [165, 166].

For example, a 190 µs, 19 kHz rf pulse was used for +5QC excitation from longitudinal

magnetization, and a 95 µs, 6.5 kHz rf pulse was used for +5QC to +3QC conversion.

3.4.2 Sensitivity and line shape considerations in 5Q3QMAS NMR with

low-amplitude pulses

Theoretical investigations of low-amplitude rf pulses in I = 5/2 systems under fast

spinning conditions have indicated the following results, which were confirmed by experi-

ment [164]. At rotary resonance conditions ω1 = 2
3NωR symmetric triple-quantum coher-

8It is important to calibrate the rf pulses against a solution state sample in which the quadrupolar
coupling is motionally averaged away, in order to avoid quadrupolar-induced truncations of the rf field and
central transition-selective excitation (§5.6.2).
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ence is strongly mixed with symmetric single-quantum (central transition) coherence, in-

ducing efficient triple-quantum to single-quantum conversions. The conversion of quintuple-

quantum coherence to single-quantum coherence is also efficient at rotary resonance con-

ditions, mainly due to some transfer of quintuple to triple quantum coherence which is

then efficiently transferred to single-quantum coherence. Multiple quantum excitation from

longitudinal magnetization is minimal at rotary resonance conditions.

In between adjacent rotary resonance conditions ( 23(N − 1)ωR < ω1 <
2
3NωR)

multiple-quantum excitations are efficient, although there are efficiency minima roughly at

the halfway points between rotary resonances due to powder averaging effects. Quintuple-

quantum to triple-quantum conversion is efficient at roughly the halfway points between

rotary resonances; these coherences are also mixed at rotary resonance conditions but the

transfer is suppressed by the subsequent strong triple-quantum to single-quantum conver-

sion. In between rotary resonance conditions the triple-quantum to single-quantum conver-

sion efficiency is minimal.

The rotary resonance conditions in an I = 5/2 system spinning at ωR/2π = 20

kHz are ω1/2π = N × 13.33 kHz. The ω1/2π = 19 kHz experimental optimum amplitude

for the +5QC excitation pulse used in the 5Q3QMAS experiments is somewhat less than

halfway between the N = 1 and N = 2 rotary resonance conditions. The ω1/2π = 6.5

kHz experimental optimum amplitude for the +5QC to +3QC conversion pulse is close

to halfway between the “zeroth” resonance condition and the N = 1 resonance condition.

These results are consistent with the theoretical results outlined above. It should be noted

that an uncertainty in the low-power rf calibration was suspected after comparison of the
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experimental data with numerical simulations [166].

Using values consistent with Vega’s notation of ωQ/2π = 3CQ/[2I(2I − 1)] =

450 kHz, ωR/2π = 20 kHz and ω1/2π = 20 kHz, the adiabaticity parameter is α =

|ω21/(ωQωR)| = 0.044. This is less than Vega’s empirically-determined cutoff (in I = 3/2

systems) of α ' 0.4 for crossover between the sudden-passage and adiabatic regimes [158],

placing the system well inside the sudden-passage regime where rotary resonance effects are

prominent. The system is even farther inside the sudden passage regime when weaker rf

pulses are used. The ω1/2π = 150 kHz “hard” pulses are definitely outside of the sudden-

passage regime.

There are three important rf pulses in the 5Q3QMAS experiment that need to

be optimized: the +5QC excitation pulse, the +5QC to +3QC conversion pulse, and the

+3QC to +1QC conversion pulse. A series of 5Q3QMAS experiments were performed using

all possible combinations of hard pulses and optimized low-amplitude pulses. The standard

against which these experiments were compared was the version of the experiment that

used three hard pulses. The version that yielded the best sensitivity was the combination

of LAP +5QC excitation, LAP +5QC to +3QC conversion, and HP +3QC to +1QC

conversion. Fig. 3.2 shows a comparison of the 2D MQMAS spectrum for this experiment

with that of the all-hard pulse experiment. The signal-to-noise ratio of the peak in the

isotropic (indirect) dimension is a factor of two higher in the LAP-LAP-HP experiment

than in the HP-HP-HP experiment, demonstrating that significant sensitivity increases in

the MMQMAS experiment can be achieved using FASTER MQMAS-type techniques.

Closer inspection of Fig. 3.2 shows that there is a considerable narrowing of the
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Figure 3.2: Comparison of the 2D Al-27 NMR spectra of Al(acac)3 in the (a) hard pulse and
(b) low-amplitude pulse versions of the 5Q3QMAS experiment with spinning at 20 kHz. The
hard-pulse version used three ω1/2π = 150 kHz pulses for the multiple quantum excitations
and conversions. The low-amplitude version used optimized low-amplitude pulses for +5QC
excitation and +5QC to +3QC conversion, and a 150 kHz hard pulse for +3QC to +1QC
conversion. The direct (anisotropic) dimension is along the horizontal axis and the indirect
(isotropic) dimension is along the vertical axis. The isotropic projection has twice the signal-
to-noise ratio in the low-amplitude pulse experiment as in the all-hard pulse experiment.
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anisotropic spectrum in the direct dimension of the LAP version of the 5Q3QMAS experi-

ment versus the all-HP version, which shows the normal MAS spectrum in the anisotropic

dimension. In order to see this better, a one-dimensional data set was generated from the

LAP-LAP-HP and HP-HP-HP experiments by taking the first transient in t1 in which the

delays between the three multiple-quantum pulses are negligible. The Fourier-transformed

spectra are shown in Fig. 3.3. The narrowing of the LAP-LAP-HP anisotropic spectrum

does not appear to be due to the creation of an isotropic line as occurs in the indirect

dimension of an MQMAS experiment. Rather, it seems to be due to the suppression of a

certain frequency range in the normal MAS powder pattern. This suggests that the HP-

HP-HP combination uniformly affects all of the crystallites in the powder, whereas the

LAP-LAP-HP experiment selects out only certain crystallite orientations that correspond

to a particular region of the second-order quadrupolar-broadened spectrum. This line nar-

rowing effect was not observed in the conventional 5QMAS and 3QMAS experiments, and

Vosegaard et al. did not report a similar effect in their I = 3/2 experiments [161].9 Simula-

tions indicate that the orientation selection occurs in two bands of crystallite Euler angles

β = 35◦ to 62◦ and β = 118◦ to 145◦ [165, 166]. The simulations also indicate that the

orientation selection occurs primarily due to the low-amplitude +5QC excitation and +5QC

to +3QC conversion pulses, especially due to the excitation pulse.10 The orientation se-

lectivity seems breaks down for nuclei with large quadrupolar asymmetry parameters ηQ

(Al(acac)3 has a small ηQ = 0.15). The origin of the orientation-selective line narrowing

effects is explored in the next section.

9Note however that the line narrowing effect is sensitive to resonance offset effects [166] and therefore
might not be observed under the wrong experimental conditions.
10These simulations were of single-pulse excitations and transfers; the net effect of a series of pulses over
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(a)

(b)

1 kHz

Figure 3.3: Comparison of the Fourier transforms of the first transients of the (a) hard pulse
and (b) low-amplitude pulse versions of the 5Q3QMAS experiment on Al-27 in Al(acac)3
with spinning at 20 kHz. The anisotropic spectrum in the low-amplitude pulse version is
considerably narrowed over the spectrum in the all-hard pulse version, which exhibits the
normal quadrupolar-broadened MAS lineshape.

This line narrowing effect suggests a possible new experiment that could be of some

utility. As was done shown above, a one-dimensional NMR experiment can be designed such

that the I = 5/2 system goes through the 0→ +5→ +3→ +1→ −1 coherence pathway. If

the LAP-LAP-HP pulse scheme is implemented, the 1D anisotropic NMR spectrum should

be considerably narrowed for quadrupolar sites for which ηQ ' 0. If a sample has several

such sites whose quadrupolar-broadened resonances overlap in the MAS spectrum, this line

narrowing could allow these sites to be resolved without having to resort to a long two-

dimensional MQMAS experiment. Unfortunately, the quadrupolar parameters could not

be extracted from this spectrum without having a model of the narrowed lineshape. The

narrowed line also does not correspond to the isotropic line that is observed in the indirect

dimension of an MQMAS experiment, so the isotropic shifts also cannot be determined

directly from this one-dimensional experiment. However, one could imagine situations in

which it would be useful to screen a number of samples rapidly based on the qualitative

the course of the experiment may be different.
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distribution of resonances in their NMR spectrum, so quantitative spectral information

would be unnecessary. It should be noted that some signal intensity may be lost in the

multiple-pulse experiment relative to a standard single-pulse 1D MAS experiment. Also,

some form of coherence pathway selection still needs to be employed, requiring the averaging

of 640 transients using standard phase cycling (corresponding to a ∼ 5 minute experiment

if the recycle delay is 0.5 s), 201 transients using cogwheel phase cycling, or potentially

just one transient using pulsed field gradient selection. However, signal averaging can help

make up for losses of signal due to inefficiencies in the multiple-quantum pulses. One further

disadvantage of the 1D low-amplitude pulse experiment is that the observed signal intensity

is sensitive to resonance offset effects [165, 166], so this technique would not be quantitative

in the sense that the intensities of different resonances would not be in proportion to the

concentration of that nucleus in the sample.

3.5 Theoretical approach to rotary resonance line narrowing

in I = 5/2 systems

An understanding of the rotary resonance and line narrowing effects described

above can come only from a proper theory of the I = 5/2 spin dynamics in the sudden

passage regime. A complete Floquet theory of I = 5/2 spin dynamics under low-power rf

irradiation and magic-angle spinning conditions has been developed by Walls [133, 164]. The

Floquet theoretical approach involves transforming the time-dependent Hamiltonian into an

infinite-dimensional time-independent space and applying static perturbation theory. This

method is quite generally applicable, and can explain the spin dynamics at and in between
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rotary resonance conditions as a continuous function of time. However, the expressions that

result from the perturbation theory can be quite complicated, and it is somewhat difficult

to see how crystallite orientation enters into the expressions.

The favorite tool that NMR spectroscopists use to evaluate dynamics under peri-

odic Hamiltonians (as is the case of the quadrupolar Hamiltonian under magic angle spin-

ning) is average Hamiltonian theory (AHT), which is a Magnus expansion-based approach

(see §2). The AHT approach has several major drawbacks when applied to rotary resonance

problems. First of all, AHT is a stroboscopic theory, so it will be suitable to describe the

time evolution only at times equal to integer multiples of the rotor period τR. Second, as

will be seen, AHT will be able to provide insight as to how the rotary resonances arise,

but will be unable to explain the spin dynamics when the rf amplitude is not matched to

a resonance condition. Most disturbingly, when AHT is expressed in the interaction frame

of the quadrupolar coupling (which is the dominant interaction), the nth-order term in the

Magnus series goes as (ω1/ωR)
n, so the series may not even converge (or at least will con-

verge slowly) at low rf powers where the rf amplitude is comparable to or even smaller than

the spinning speed. However, the AHT results are rather simple to compute and to express,

so it would be worthwhile to see if AHT-type expressions can capture the essential features

of rotary resonance phenomena in I = 5/2 systems (the approach to I = 3/2 systems is

outlined in §5.6.5).

The basic rotating-frame Hamiltonian that will be considered here includes the

MAS-modulated first-order quadrupolar coupling plus a constant resonant radiofrequency
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radiation term:

ĤQ,rf (t) = Ĥ
(1)
Q (t) + Ĥrf . (3.7)

Second-order quadrupolar effects and chemical shifts or other resonance offset effects will

be neglected during the pulse, although they do play a role. It is convenient to write

the Hamiltonian in a in terms of fictitious Cartesian spin-1/2 single-transition operators

Îj−kx = 1
2(|j〉〈k| + |k〉〈j|), Î

j−k
y = − i

2(|j〉〈k| − |k〉〈j|), and Î
j−k
z = 1

2(|j〉〈j| − |k〉〈k|), where

|j〉, |k〉 ∈ {|I,mI〉} [168, 169]. These operators have many useful properties, including the

fact that any two fictitious spin-1/2 operators that do not share any indices commute with

each other. The I = 5/2 magnetic sublevels will be labeled |1〉 ≡ |I = 5
2 ,mI = +5

2〉,

|2〉 ≡ |I = 5
2 ,mI = +3

2〉, |3〉 ≡ |I = 5
2 ,mI = +1

2〉, |4〉 ≡ |I = 3
2 ,mI = −12〉, |5〉 ≡ |I =

5
2 ,mI = −32〉, and |6〉 ≡ |I = 5

2 ,mI = −52〉. As is usual, the quantization axis is parallel to

the Zeeman field. Using the fictitious spin-1/2 operators, the rotating-frame quadrupolar

and rf Hamiltonians become:

Ĥ
(1)
Q (t)/~ = ωQ(t)[3Î

2
z − I(I + 1)1̂]

= ωQ(t)[20Î
1−2
z + 16Î2−3z − 16Î4−5z − 20Î5−6z ] (3.8)

Ĥrf/~ = ω1Îx = (ĤCT
rf + Ĥ iST

rf + ĤoST
rf )/~

= 3ω1Î
3−4
x + 2

√
2ω1(Î

2−3
x + Î4−5x ) +

√
5ω1(Î

1−2
x + Î5−6x )], (3.9)

where the rf Hamiltonian has been divided into terms that, if isolated from each other, would

directly drive the central, inner satellite, or outer satellite single-quantum transitions. Here,
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the rf interaction is assumed to be of constant phase φ = 0 and amplitude ω1 = −γB1/2,

whereB1 is the rf magnetic field amplitude in the laboratory frame. The quadrupolar Hamil-

tonian is that of a single crystallite in the polycrystalline powder; powder-averaged results

can be obtained by averaging over random crystallite orientations. The time-dependent

quadrupolar frequency ωQ(t) depends on the quadrupolar parameters CQ and ηQ and on

the Euler angles α, β, and γ that relate the crystallite electric field gradient principal axis

system (EFG PAS) to the laboratory frame coordinate system. Under magic-angle spin-

ning conditions, ωQ(t) is harmonically modulated at the frequencies ωR and 2ωR, and has

a zero time average over one rotor period τR = 2π/ωR. The functional form of ωQ(t) will

be considered in more detail in §3.5.3.

3.5.1 Average Hamiltonian in the quadrupolar interaction frame

In most systems the quadrupolar coupling interaction is much larger than the rf

interaction, since the quadrupolar coupling could on the order of MHz and |ω1| can be up

to 200 kHz or so using solid-state spectrometers. Therefore, it makes sense to perform

any calculations in the interaction frame of the quadrupolar interaction, which is dominant

at least for the majority of crystallite orientations. The quadrupolar interaction frame is

defined by the transformation:

V̂Q(t) = T{exp[− i
~

∫ t

0
dt′ Ĥ(1)

Q (t′)]}

= exp[−iΦQ(t)(20Î1−2z + 16Î2−3z − 16Î4−5z − 20Î5−6z )], (3.10)
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where the quadrupolar dynamic phase is ΦQ(t) =
∫ t
0 dt

′ ωQ(t′). The commutation and

rotation properties of the fictitious spin-1/2 operators may be used to convert Eq. 3.7 into

the quadrupolar interaction frame:

ˆ̃
H
Q

Q,rf (t)/~ = V̂ −1Q (t)[Ĥrf/~]V̂Q(t)

= 3ω1Î
3−4
x + 2

√
2ω1

{
(Î2−3x + Î4−5x ) cos[6ΦQ(t)]− (Î2−3y − Î4−5y ) sin[6ΦQ(t)]

}

+
√
5ω1

{
(Î1−2x + Î5−6x ) cos[12ΦQ(t)]− (Î1−2y − Î5−6y ) sin[12ΦQ(t)]

}
.(3.11)

Since the quadrupolar frequency is periodic such that ωQ(t+NτR) = ωQ(t) (where N is an

integer), the dynamic phase ΦQ(t) and the trigonometric functions of ΦQ(t) also share the

same periodicity. In fact, the interaction frame Hamiltonian remains periodic with period

τR. The periodicity of the trigonometric functions allows for the following Fourier series

expansions of the complex exponential functions:

exp[+i6ΦQ(t)] =
+∞∑

n=−∞
Ane

inωRt

exp[−i6ΦQ(t)] =
+∞∑

n=−∞
A∗ne

−inωRt =
+∞∑

n=−∞
A∗−ne

inωRt

exp[+i12ΦQ(t)] =
+∞∑

n=−∞
Bne

inωRt

exp[−i12ΦQ(t)] =

+∞∑

n=−∞
B∗ne

−inωRt =
+∞∑

n=−∞
B∗−ne

inωRt, (3.12)

where the An and Bn are complex coefficients that bear the dependence on the quadrupolar

parameters and crystallite orientation. Using these definitions it is possible to rewrite Eq.
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3.11 in the form:

ˆ̃
H
Q

Q,rf (t) =
+∞∑

n=−∞

ˆ̃
H
Q

n e
inωRt, (3.13)

where the operators
ˆ̃
H
Q

n are non-Hermitian such that
ˆ̃
H
Q †
n =

ˆ̃
H
Q

−n. The n = 0 term

is
ˆ̃
H
Q

0 /~ = 3ω1Î
3−4
x + 2

√
2ω1A0(Î

2−3
x + Î4−5x ) +

√
5ω1B0(Î

1−2
x + Î5−6x ). For n 6= 0, these

operators are defined as:

ˆ̃
H
Q

n /~ =
√
2ω1[An(Î

2−3
+ + Î4−5− ) +A∗−n(Î

2−3
− + Î4−5+ )]

+

√
5

2
ω1[Bn(Î

1−2
+ + Î5−6− ) +B∗−n(Î

1−2
− + Î5−6+ )], (3.14)

=
√
2ω1

[
An
(
|T+〉〈C+|+ |T−〉〈C−|

)
+A∗−n

(
|C+〉〈T+|+ |C−〉〈T−|

)]

+

√
5

2
ω1
[
Bn
(
|Q+〉〈T+|+ |Q−〉〈T−|

)
+B∗−n

(
|T+〉〈Q+|+ |T−〉〈Q−|

)]
,

(3.15)

where the sine and cosine trigonometric functions have been written in terms of the complex

exponential functions, and Îj−k± = Îj−kx ± Îj−ky . The Hamiltonian operator components also

have been written in terms of the eigenstates of the first-order quadrupolar Hamiltonian

that also represent the symmetric single-, triple-, and quintuple-quantum coherences in

the Zeeman basis [158]: |C±〉 = 1√
2
(|52 ,+1

2〉 ± |52 ,−12〉), |T±〉 = 1√
2
(|52 ,+3

2〉 ± |52 ,−32〉),

and |Q±〉 = 1√
2
(|52 ,+5

2〉 ± |52 ,−52〉). This basis is convenient when considering transfers

between the symmetric coherences. Interestingly, the
ˆ̃
H
Q

n terms with n 6= 0 have the

same matrix representation in the Zeeman basis and in the quadrupolar eigenbasis. This

property holds for any operator M̂ that not only block-diagonalizes into separate +|mI |
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and −|mI | subspaces such that 〈I,+|mI ||M̂ |I,−|m′I |〉 = 0, but also has the symmetry

〈I,+|mI ||M̂ |I,+|m′I |〉 = 〈I,−|mI ||M̂ |I,−|m′I |〉.

The average Hamiltonian theory approach outlined in §2.4 results in an approx-

imate time-dependent Hamiltonian
ˆ̃
H
Q

Q,rf =
ˆ̃
H
Q (1)

Q,rf +
ˆ̃
H
Q (2)

Q,rf + . . ., where the lowest-order

term is just the time average of
ˆ̃
H
Q

Q,rf (t) over one period τR. This is equivalent to making

the secular approximation in the quadrupolar interaction frame. The lowest-order term is

therefore
ˆ̃
H
Q (1)

Q,rf = 1
τR

∫ τR
0 dt

ˆ̃
H
Q

Q,rf (t) =
ˆ̃
H
Q

0 , which in the Zeeman basis equals:

ˆ̃
H
Q (1)

Q,rf /~ = 3ω1Î
3−4
x + 2

√
2ω1A0(Î

2−3
x + Î4−5x ) +

√
5ω1B0(Î

1−2
x + Î5−6x )

= (ĤCT
rf +A0Ĥ

iST
rf +B0Ĥ

oST
rf )/~, (3.16)

where it can be seen that this average Hamiltonian looks like the rf Hamiltonian with the

inner and outer satellite transition terms scaled down by factors of A0 and B0, respec-

tively.11 It should be noted that if the sample is static such that ωQ(t) = ωQ, then the

average Hamiltonian in the quadrupolar interaction frame over the time τQ = 2π/ωQ equals

ĤCT
rf /~ = 3ω1Î

3−4
x , which causes a selective nutation of the central transition magnetization

at the frequency 3ω1. This (I + 1
2)ω1 selective nutation behavior of the central transition

is due to the truncation of the rf Hamiltonian by the quadrupolar interaction, as is de-

scribed in more detail in §5.6.2. Therefore it may be concluded that the modulation of the

quadrupolar coupling due to sample rotation partially recouples the part of the rf Hamil-

tonian that drives the satellite transitions, which is rendered ineffective in the presence of

a strong static quadrupolar coupling.

11Here and below the symbol B0 will refer to the Fourier coefficient, not the Zeeman magnetic field
strength.
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These points warrant further consideration. In the absence of a quadrupolar cou-

pling the only Hamiltonian that remains is the rf Hamiltonian (which is the Hamiltonian

in Eq. 3.16 with A0 = B0 = 1). This Hamiltonian causes a pure rotation of the nuclear

polarization about the x-axis, and so is incapable of intermixing density operator terms of

different spherical tensor rank, as discussed in Appendix B. Therefore an rf pulse in the

absence of any other interaction cannot create multiple quantum coherence from magneti-

zation, or convert between symmetric multiple quantum coherences. On the other hand, a

weak rf pulse in the presence of a static strong quadrupolar interaction only causes rotations

within the central transition subspace {| 52 ,±12〉} to lowest order in the perturbation theory,

so is ineffective at converting magnetization into multiple quantum coherences, especially

those with high coherence orders. However, in the case of a weak rf pulse in the presence

of a strong modulated quadrupolar coupling, the Hamiltonian in Eq. 3.16 contains partially

recoupled satellite transition terms and is no longer proportional to Îx and is not limited

to pure rotations of the spin system. Thus a weak rf pulse during sample spinning is able

to induce more complicated dynamics than a simple rotation of either the total magnetiza-

tion. This phenomenon is exploited not only in low-amplitude pulse experiments, but also

to perform adiabatic coherence transfers in high-rf power RIACT and FAM experiments.

The first-order average Hamiltonian Eq. 3.16 written in the symmetric coherence basis is:

ˆ̃
H
Q (1)

Q,rf /~ =
3

2
ω1

[
|C+〉〈C+| − |C−〉〈C−|

]

+
√
2ω1A0

[(
|T+〉〈C+|+ |C+〉〈T+|

)
+
(
|T−〉〈C−|+ |C−〉〈T−|

)]

+

√
5

2
ω1B0

[(
|Q+〉〈T+|+ |T+〉〈Q+|

)
+
(
|Q−〉〈T−|+ |T−〉〈Q−|

)]
,(3.17)
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where, as expected, it can be seen that the inner satellite transition terms couple the triple-

quantum |T±〉 states to the |C±〉 states and the outer satellite transition terms couple the

quintuple-quantum |Q±〉 states to the triple-quantum |T±〉 states.

It is of particular interest to have a theory that can explain the excitation of +5-

quantum coherence from z-magnetization or the conversion of +5QC to symmetric +3QC

during low-amplitude pulses, since these seem to be the orientation-selective transfers in

the 5Q3Q MMQMAS experiment, as was discussed in §3.4.2. Therefore, what needs to

be calculated is the development of +5-quantum coherence Q̂+ = |52 ,+5
2〉〈52 ,−52 | from an

initial density operator ρ̂(0) ∝ Îz, as well as the symmetric +3-quantum coherence T̂ s+ =

|52 ,+3
2〉〈52 ,−32 | from ρ̂(0) ∝ Q̂+. The time development operator in the rotating frame is:

Û(t) = V̂Q(t)
ˆ̃
U
Q

(t), (3.18)

where to first order in the AHT perturbation theory,

ˆ̃
U
Q

(t) ' exp[−i ˆ̃H
Q (1)

Q,rf t/~]. (3.19)

The time development of some normalized basis operator term B̂ in the density operator is
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given by:

B̂(t) = 〈〈B|ρ(t)〉〉 = Tr[B̂†ρ̂(t)] = Tr[B̂†Û(t)ρ̂(0)Û−1(t)]

= Tr[B̂†V̂Q(t)
ˆ̃
U
Q

(t)ρ̂(0)
ˆ̃
U
Q−1

(t)V̂ −1Q (t)]

= Tr[V̂ −1Q (t)B̂†V̂Q(t)
ˆ̃
U
Q

(t)ρ̂(0)
ˆ̃
U
Q−1

(t)]

= Tr[
ˆ̃
U
Q−1

(t)V̂ −1Q (t)B̂†V̂Q(t)
ˆ̃
U
Q

(t)ρ̂(0)], (3.20)

where the trace permutation property Tr[ÂB̂] = Tr[B̂Â] has been used. In a proper strobo-

scopic application of AHT the time dependence us evaluated only at integer multiples of the

period τR = NτR, in which case the quadrupolar interaction frame transformation operator

is V̂Q(NτR) = 1̂ and may be neglected. However, [V̂Q(t), Q̂+] = 0 and [V̂Q(t), T̂
s
+] = 0 since

the symmetric transition operators commute with the first-order quadrupolar Hamiltonian,

so V̂Q(t) can be neglected at any time, and B̂(t) = Tr[B̂† ˆ̃U
Q

(t)ρ̂(0)
ˆ̃
U
Q−1

(t)] for B̂ = Q̂+

or B̂ = T̂ s+. Rather than attempt an exact solution of ρ̂(t) using the average Hamiltonian

approximation, the approach used here will be to approximate the time evolution in a power

series in time according to Eq. 2.14, and then examine the leading short-time effects.

Starting from ρ̂(0) ∝ Îz, the first-order average Hamiltonian in Eq. 3.16 can create

the +5QC operator Q̂+ only in O(t7). Therefore, this level of theory is only marginally

sufficient to describe +5QC excitation from longitudinal magnetization. However, starting

from +5-quantum coherence ρ̂(0) ∝ Q̂+, symmetric +3QC is created in O(t2) with T̂ s+(t) ∼

B20ω
2
1t
2, where the Fourier coefficient B0 carries the crystallite orientation dependence that

would be necessary to explain any orientation-selective pulse effects.
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By way of comparison, the +1-quantum symmetric central transition coherence

Ĉs+ = |52 ,+1
2〉〈52 ,−12 | is excited from ρ̂(0) ∝ Îz in O(t1) as ∼ ω1t, and the first crystallite

orientation dependence occurs in O(t3) as ∼ (A20−8/9)ω31t
3. Symmetric +1QC is converted

from +5QC with ρ̂(0) ∝ Q̂+ in O(t4) as ∼ A20B
2
0ω

4
1t
4, and is converted from ρ̂(0) ∝ T̂ s+ in

O(t2) as ∼ A20ω
2
1t
2.12 These coherence transfers have not been observed to be orientation

selective.

It seems likely that a higher order of average Hamiltonian theory is necessary

to describe the desired coherence transfers; certainly it is necessary in the case of the

quintuple-quantum excitation from longitudinal magnetization. It has already been noted

that when a periodic Hamiltonian Ĥ(t+ τ) = Ĥ(t) is expanded in a Fourier series Ĥ(t) =

∑+∞
n=−∞ Ĥne

inωt as in Eq. 3.13, the first-order AHT term over the period τ = 2π/ω is

Ĥ
(1)

= Ĥ0. The second-order AHT term can be found by directly integration of Eq. 2.28

over the period τ ; it is:

Ĥ
(2)

= − 1

2~
∑

n6=0

1

nω

{
[Ĥ−n, Ĥn]− 2[H−n, Ĥ0]

}

= −1

~

+∞∑

n>0

1

nω

{
[Ĥ−n, Ĥn]− [(Ĥ−n − Ĥn), Ĥ0]

}

= Ĥ
(2)

sec + Ĥ
(2)

nonsec, (3.21)

where the second-order average Hamiltonian has been divided into its secular and nonsecular

contributions. Mehring has objected that the inclusion of the non-secular terms can lead to

12The operator Ĉs
+ represents +1QC; the −1QC operator Ĉs

− = | 5
2
,− 1

2
〉〈 5
2
,+ 1

2
| is created from +5QC

in O(t6) and from +3QC in O(t4), which suggests that the +5 → +1QC and +3 → +1QC conversions
followed by a quantitative selective inversion of the single-quantum coherence are more efficient than direct
+5→ −1QC and +3→ −1QC conversions.
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improper results, and has instead proposed the “secular averaging approach” [8, Appendix

G], [41, §4.3.3, §15.3].13 The first-order AHT and SAA Hamiltonians coincide, but the

second-order SAA Hamiltonian has the same form as a second-order AHT term calculated

with the time-independent portion Ĥ0 = Ĥ
(1)

of the Hamiltonian previously subtracted

out. The second-order secularly-averaged Hamiltonian is:

Ĥ
(2)

= − 1

2~
∑

n6=0

1

nω
[Ĥ−n, Ĥn] = −

1

~

+∞∑

n>0

1

nω
[Ĥ−n, Ĥn], (3.22)

which lacks the non-secular contribution of Eq. 3.21. The SAA also is not limited to only

stroboscopic observation.

The second-order SAA term for the rf Hamiltonian in the quadrupolar interaction

frame is:

ˆ̃
H
Q (2)

Q,rf /~ =
ω21
ωR

{
2α(2)(Î1−2z − Î5−6z ) + 2β(2)(Î2−3z − Î4−5z )

−
[
γ(2)(Î1−3+ + Î4−6− ) + γ(2) ∗(Î1−3− + Î4−6+ )

]}
(3.23)

=
ω21
ωR

{
α(2)

[(
|Q+〉〈Q+|+ |Q−〉〈Q−|

)
−
(
|T+〉〈T+|+ |T−〉〈T−|

)]

+β(2)
[(
|T+〉〈T+|+ |T−〉〈T−|

)
−
(
|C+〉〈C+|+ |C−〉〈C−|

)]

−
[
γ(2)

(
|Q+〉〈C+|+ |Q−〉〈C−|

)
+ γ(2) ∗

(
|C+〉〈Q+|+ |C−〉〈Q−|

)]}
,

(3.24)

13Ref. [8] correctly states the AHT result in Eq. 3.21 when the summation index runs over positive and
negative values, but Ref. [41] incorrectly states the result when the summation index is positive.
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where the Hamiltonian coefficients are given by:

α(2) = Θ(b+, b−) =
5

4

∑

n6=0

|Bn|2
n

=
5

4

+∞∑

n>0

1

n

(
|Bn|2 − |B−n|2

)

β(2) = Θ(a+, a−) = 2
∑

n6=0

|An|2
n

= 2

+∞∑

n>0

1

n

(
|An|2 − |A−n|2

)

γ(2) = Θ(a+, b+) =

√
5

8

∑

n6=0

1

n

(
AnB−n −BnA−n) =

√
5

2

+∞∑

n>0

1

n

(
AnB−n −BnA−n

)
,

(3.25)

where e.g., Θ(a+, a−) ≡ − i
2τR

∫ τR
0 dt′

∫ t
0 dt[a+(t

′)a−(t)−a−(t′)a+(t)], and the time-dependent

functions are written in terms of the quadrupolar dynamic phases as a±(t) = (exp[±i6ΦQ(t)]−

A0) and b±(t) = (exp[±i12ΦQ(t)] − B0).14 The Hamiltonian coefficients can be evaluated

either by a (probably numerical) two-dimensional time integral or by summing the infinite

series of Fourier coefficients. One method may be preferable over another depending on how

many crystallite orientations are used in the powder averaging and how quickly the series

of Fourier coefficients converges.

It can be seen that the +|mI | manifold is decoupled from the −|mI | manifold in

the SAA second-order Hamiltonian, since the
ˆ̃
H
Q

n6=0 Fourier terms are decoupled this way.

Additionally, the second-order Hamiltonian has the same matrix representation in both the

Zeeman and quadrupolar eigenbases. The second-order Hamiltonian introduces new terms

that can directly couple the quintuple-quantum states |Q±〉 to the single-quantum states

|C±〉. As expected, the ratio ‖ ˆ̃
H
Q (2)

Q,rf ‖ / ‖
ˆ̃
H
Q (1)

Q,rf ‖ is on the order of |ω1|/ωR, which
14The second-order AHT approach does not require the subtraction of the zero-frequency A0 and B0 terms

when evaluating the double time integral, but the non-secular contribution does contain additional terms
that couple the |T±〉 states to the |C±〉 states.
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means that the second-order term actually may not be smaller than the first-order term for

low rf-amplitude pulses.

The spin dynamics can now be calculated under the averaged Hamiltonian
ˆ̃
H
Q

Q,rf '
ˆ̃
H
Q (1)

Q,rf +
ˆ̃
H
Q (2)

Q,rf . Using Eqs. 3.17 and 3.24 with Eq. 3.20 yields the result that +5QC

excitation of Q̂+ from ρ̂(0) ∝ Îz now occurs in O(t3) as ∼ |γ(2)|2(ω51/ω2R)t3. The +5QC

to symmetric +3QC conversion again occurs in O(t2) as ∼ B20ω
2
1t
2, but also in O(t3)

as A0B0(γ
(2) − γ(2) ∗). The symmetric +1QC excitation from longitudinal magnetization

again shows up in O(t1) as ∼ ω1t, and in O(t3) as before, but now including a term

∼ (ω51/ω
2
R)|γ(2)|2. The +5QC to symmetric +1QC conversion now occurs in O(t2) as

∼ (ω41/ω
2
R)|γ(2)|2. The symmetric +3QC to symmetric +1QC conversion again shows up in

O(t2) as ∼ A20ω21t2, and also in O(t3) as ∼ |γ(2)|2(ω51/ω2R)t3.

It is clear that this approach even to second order does not yield results that

can differentiate between the orientation-selective pulses and the non-orientation-selective

pulses, plus there are serious flaws with the convergence of the perturbative approach at low

rf powers. Some insight may potentially be gained as to why certain crystallite orientations

are selected over others by examining the orientation-dependent Fourier coefficients, and

this will be done in §3.5.3. A further major objection to the average Hamiltonian (or

secular averaging) theory in the quadrupolar interaction frame is that it does not even seem

to explain why rotary resonances occur. This problem will be addressed in the next section.
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3.5.2 Average Hamiltonian in the quadrupolar/central transition RF in-

teraction frame

Walls has noted that since the first-order quadrupolar Hamiltonian commutes with

the central transition term of the radiofrequency Hamiltonian, the transformation into a

joint quadrupolar-central transition rf frame is simple to achieve. As will be seen, this trans-

formation induces an additional ω1-dependent time modulation to the Hamiltonian that can

interfere with the rotation-induced modulation, causing the rotary resonance effects. The

quadrupolar-CT rf transformation operator is:

V̂Q,CT (t) = T{exp[− i
~

∫ t

0
dt′ (Ĥ(1)

Q (t′) + ĤCT
rf )]}

= exp{−i[ΦQ(t)(20Î1−2z + 16Î2−3z − 16Î4−5z − 20Î5−6z ) + 3ω1tÎ
3−4
x ]}, (3.26)

where the quadrupolar dynamic phase is again ΦQ(t) =
∫ t
0 dt

′ ωQ(t′). The quadrupolar-rf

Hamiltonian in the new quadrupolar-CT rf interaction frame is [164]:

ˆ̃
H
Q,CT

Q,rf (t)/~ = V̂ −1Q,CT (t)[(Ĥ
iST
rf + ĤoST

rf )/~]V̂Q,CT (t) = e+i3ω1tÎ
3−4
x [

ˆ̃
H
Q

Q,rf (t)/~]e−i3ω1tÎ
3−4
x

= 2
√
2ω1

{[
(Î2−3x + Î4−5x ) cos(

3

2
ω1t) + (Î2−4y − Î3−5y ) sin(

3

2
ω1t)

]
cos[6ΦQ(t)]

−
[
(Î2−3y − Î4−5y ) cos(

3

2
ω1t)− (Î3−5x + Î2−4x ) sin(

3

2
ω1t)

]
sin[6ΦQ(t)]

}

+
√
5ω1

{
(Î1−2x + Î5−6x ) cos[12ΦQ(t)]− (Î1−2y − Î5−6y ) sin[12ΦQ(t)]

}
, (3.27)

where the central transition rf transformation causes an additional ω1-dependent modulation

of the inner satellite transition rf terms. This Hamiltonian may be written in the following



3.5. THEORETICAL APPROACH TO ROTARY RESONANCE LINE
NARROWING IN I = 5/2 SYSTEMS 200

form:

ˆ̃
H
Q,CT

Q,rf (t) =
+∞∑

n=−∞

∑

m=0,±1

ˆ̃
H
Q,CT

n,m einωRteim(3ω1/2)t, (3.28)

where the the Fourier expansions in Eq. 3.12 can be used to express the Hamiltonian

coefficients as:

ˆ̃
H
Q,CT

n,0 /~ =

√
5

2
ω1
[
Bn
(
|Q+〉〈T+|+ |Q−〉〈T−|

)
+B∗−n

(
|T+〉〈Q+|+ |T−〉〈Q−|

)]
(3.29)

ˆ̃
H
Q,CT

n,±1 /~ =
√
2ω1

[
An|T∓〉〈C∓|+A∗−n|C±〉〈T±|

]
(3.30)

Eq. 3.28 indicates a bimodal time dependence of the quadrupolar-CT rf interaction frame

Hamiltonian, i.e., there is evolution at the two fundamental frequencies ωR and 3ω1/2. In

comparison, the time dependence of the quadrupolar interaction frame Hamiltonian in Eq.

3.13 is unimodal with the fundamental frequency ωR. Time evolution at two fundamental

frequencies will in general cause destructive interferences in the Hamiltonian of Eq. 3.28,

since only the
ˆ̃
H
Q,CT

0,0 term is time-independent. However, when the rotary resonance con-

dition ω1 =
2
3NωR is satisfied, the Hamiltonian again has only one fundamental frequency

ωR, and different time-independent pieces for different resonance conditions N . The res-

onance conditions appear because of the dual modulation at ωR due to sample spinning

and at 2
3ω1 due to the interaction frame transformation. In general, rotary resonance phe-

nomena in a nucleus of half-integer spin I can be explained by going into a quadrupolar-

CT rf interaction frame, which causes modulation of the Hamiltonian at the frequency

ωm = 〈I,mI = ±12 |Ĥrf |I,mI = ∓12〉 = 1
2(I + 1

2)ω1 for Ĥrf = ω1Îx. Resonances occur
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when ωm = NωR, i.e., when ω1 = 4N
2I + 1ωR, at which point the interaction frame Hamil-

tonian contains an additional time-independent piece that dominates the spin dynamics in

a lowest-order perturbative treatment.

At the resonance condition ω1 =
2
3NωR, Eq. 3.28 can be rewritten without loss of

generality as:

ˆ̃
H
Q,CT

Q,rf (t) =
+∞∑

k=−∞

ˆ̃
H
Q,CT

k eikωRt, (3.31)

where

ˆ̃
H
Q,CT

k =
ˆ̃
H
Q,CT

k,0 +
ˆ̃
H
Q,CT

k−N,+1 +
ˆ̃
H
Q,CT

k+N,−1. (3.32)

The first-order AHT or SAA approximation to the effective interaction frame Hamiltonian

is:

ˆ̃
H
Q,CT (1)

Q,rf /~ = (
ˆ̃
H
Q,CT

0,0 +
ˆ̃
H
Q,CT

−N,+1 +
ˆ̃
H
Q,CT

+N,−1)/~

=
√
2ω1

[(
A+N |T+〉〈C+|+A∗+N |C+〉〈T+|

)
+
(
A−N |T−〉〈C−|+A∗−N |C−〉〈T−|

)]

+

√
5

2
ω1B0

[(
|Q+〉〈T+|+ |T+〉〈Q+|

)
+
(
|Q−〉〈T−|+ |T−〉〈Q−|

)]
.

(3.33)

Eq. 3.33 has the same form as the first-order Hamiltonian in Eq. 3.17 in the quadrupolar

interaction frame but without the central transition rf term, plus the symmetry between the

+|mI | and −|mI | manifolds is broken by the inner satellite transition terms through differ-
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ences in the coefficients A+N versus A−N . The condition N = 0 recovers the quadrupolar

interaction frame average Hamiltonian for n 6= 0, since in the ω1 = 2
3NωR = 0 limit the

transformations V̂Q(t) and V̂Q,CT (t) are identical.

The second-order SAA Hamiltonian is:

ˆ̃
H
(2)

Q,CT /~ =
ω21
ωR

{
α(2)

[(
|Q+〉〈Q+|+ |Q−〉〈Q−|

)
−
(
|T+〉〈T+|+ |T−〉〈T−|

)]

+
[(
β
(2)
+N |T+〉〈T+|+ β

(2)
−N |T−〉〈T−|

)
−
(
β
(2)
+N |C+〉〈C+|+ β

(2)
−N |C−〉〈C−|

)]

−
[(
γ
(2)
+N |Q+〉〈C+|+ γ

(2)
−N |Q−〉〈C−|

)
+
(
γ
(2) ∗
+N |C+〉〈Q+|+ γ

(2) ∗
−N |C−〉〈Q−|

)]}
,

(3.34)

where

α(2) = Θ(b+, b−) =
5

4

+∞∑

k>0

1

k

(
|Bk|2 − |B−k|2

)

β
(2)
±N = Θ(a±N+ , a±N− ) = 2

+∞∑

k>0

1

k

(
|Ak±N |2 − |A−k±N |2

)

γ
(2)
±N = Θ(a±N+ , b+) =

√
5

2

+∞∑

k>0

1

k

(
Ak±NB−k −BkA−k±N

)
,

(3.35)

where e.g., Θ(a+N+ , a+N− ) ≡ − i
2τR

∫ τR
0 dt′

∫ t
0 dt[a

+N
+ (t′)a+N− (t)−a+N− (t′)a+N+ (t)], with a+N± (t) =

(e−iNωRt exp[±i6ΦQ(t)] − A+N ), a−N± (t) = (e+iNωRt exp[±i6ΦQ(t)] − A−N ), and b±(t) =

(exp[±i12ΦQ(t)]−B0). Again, Eq. 3.34 reduces to the quadrupolar interaction frame result

Eq. 3.24 in the N = 0 limit where Ak±N = Ak. Both the first- and second-order average

Hamiltonians in the quadrupolar-CT rf interaction frame are decoupled into +|mI | and
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−|mI | manifolds, but the symmetry between these two manifolds is broken in the N 6= 0

limit at which rotary resonance conditions are satisfied. However, since the forms of the

average Hamiltonians in both interaction frames are the same within each +|mI | or −|mI |

subspace apart from some N -dependence in the coefficients, it is not expected that the use

of the quadrupolar-CT rf interaction frame will provide much more insight into the spin

dynamics beyond making the rotary resonance conditions clear. For instance, the calcula-

tions in both frames indicate that to first order the |Q±〉 states are coupled to the |T±〉

states and the |T±〉 states are coupled to the |C±〉 states, whereas to second order there

is an additional coupling between the |Q±〉 and |C±〉 states. This has been predicted by

the Floquet theory [164], which also suggests that the dominant +5QC to +1QC transfer

occurs indirectly by the mutual coupling of these states to the triple-quantum states in

the first-order approximation, rather than from the direct coupling of the quintuple- and

single-quantum coherences in the second-order approximation.

It should also be noted that since the AHT or SAA approach in the quadrupolar-

CT rf interaction frame is only valid exactly at rotary resonance conditions when the prob-

lem becomes unimodal, this calculations in this frame cannot be used to explain what hap-

pens when ω1 is not matched to a rotary resonance condition. Since it is the low-amplitude

+5QC excitation and +5QC → +3QC conversion pulses that are known to be orientation

selective, and these coherence transfers have been observed to have efficiency minima at

rotary resonance conditions (§3.4.2), it is expected that calculations in the quadrupolar-

central transition rf interaction frame will not be able to explain the orientation-selective

effects.
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3.5.3 Crystallite orientation dependence of the Hamiltonian

The discussion thus far has focused on the effective form of the Hamiltonian un-

der sample rotation and low amplitude rf irradiation, which is necessary to explain the

differences between coherence transfer mechanisms, e.g., +5QC excitation versus +5QC to

+3QC transfer versus +5QC to +1QC transfer. However, little has been said so far about

how the actual orientation dependence of these Hamiltonian terms can manifest itself. Par-

ticularly, at this point it is not yet understood why the pulses select only a particular band

of crystallite orientations, or why the effects seem to disappear at high values of the local

electric field gradient asymmetry parameter ηQ.

The qualitative account of how crystallite orientation affects the spin dynamics is

as follows. The breaking of the spatial isotropy of the nuclear system by a large magnetic

field means that in different crystallites the nuclei will feel different effective portions of the

local electric field gradient, depending on how these gradients are oriented with respect to

the magnetic field. In turn, this causes nuclei in different crystallites to experience different

electric quadrupolar couplings, which are modulated as sample rotation causes these crystal-

lites to change their orientation with respect to the magnetic field. During a radiofrequency

pulse the nuclear spins evolve under a combination of the quadrupolar coupling and the rf

field. The quadrupolar coupling dominates the rf interaction and renders certain portions

of the rf magnetic field ineffective at inducing spin dynamics, as can be seen by trans-

forming into the interaction frame of the quadrupolar Hamiltonian. Since the quadrupolar

coupling is orientation- and time-dependent, it imposes an orientation dependence on the

effective portion of the rf field, and this time-dependent orientation effect causes different
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spin dynamics in different nuclei. These effects are quantitatively manifested in the different

dependences of the central and inner and outer satellite transition terms of the radiofre-

quency Hamiltonian on the crystallite orientation-dependent quadrupolar dynamic phase.

Since the spin dynamics vary from crystallite to crystallite, a distribution of nuclear polariza-

tions is created across the sample during the pulse. Ultimately, these individual crystallite

polarizations can cause constructive or destructive interference in the NMR lineshape. The

details of the orientation dependence of the spin dynamics and the orientational average

of the resulting nuclear polarizations are what will explain the orientation-dependent pulse

effects.

The time dependent single-crystallite quadrupolar coupling during magic angle

sample spinning is15:

ωQ(t) ≡ ωQ(α, β, γ; t)

= ωQ[C1 cos(ωRt+ γ) + C2 cos(2ωRt+ 2γ)] + S1 sin(ωRt+ γ) + S2 sin(2ωRt+ 2γ),

(3.36)

15The normalization is such that A2,0 =
1
2
, A2,±2 = η/(2

√
6) in units of ωQ.
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where

ωQ = 2πCQ/[2I(2I − 1)]

C1 = −3

8
sin(2θm) sin(2β)[1−

ηQ
3

cos(2α)]

C2 =
3

8
sin2(θm){sin2(β) +

ηQ
3
[cos2(β) + 1] cos(2α)}

S1 = −ηQ
4

sin(2θm) sin(β) sin(2α)

S2 = −ηQ
4

sin2(θm) cos(β) sin(2α), (3.37)

where α, β, and γ are the Euler angles that relate the crystallite-fixed coordinate system

(assumed to coincide with the principal axis system of the local electric field gradient tensor

in a single-site system) to the rotor-fixed coordinate system.16 The quadrupolar coupling

constant is CQ = e2qQ/h, the EFG asymmetry parameter is ηQ, the rotation frequency is

ωR, and the magic angle is θm = tan−1(
√
2). Eq. 3.36 indicates that at the magic angle

the time-dependent quadrupolar coupling is periodic with period τR = 2π/ωR and has no

time-independent component, such that its time average over the interval [0, τR] is zero.

There are at least two interesting points to note about the orientation dependence

of the time-dependent quadrupolar coupling ωQ(t). First, the crystallite angle γ does not

affect the amplitudes of the sinusoidal modulations, only their phases. The amplitudes

depend only on the angles α and β. When ηQ = 0, the local electric field gradients are

cylindrically symmetric about the EFG principal axis and only the angle β between the

EFG principal axis and the rotor axis uniquely specifies the quadrupolar coupling strength.

16The symbols for these crystallite angles should not be confused with the second-order average Hamilto-
nian coefficients α(2), β(2) and γ(2) used in previous sections.
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The result is that the amplitude coefficients C1, C2, S1, and S2 lose their α-dependence,

and in fact the sine-modulation amplitudes S1 and S2 vanish entirely.

The α-dependence of the quadrupolar coupling amplitudes suggests a potential

mechanism of the breakdown of orientation selectivity in systems with highly asymmetric

electric field gradients ηQ → 1. Consider a system in which the nuclei in all the different

crystallites are uniformly polarized, e.g., every nucleus is initially magnetized along the

z-axis. If the nuclei experience a distribution of quadrupolar couplings from crystallite to

crystallite, they will evolve at different rates under the quadrupolar and rf interactions and

dephase. However, if the nuclei all experience approximately the same quadrupolar coupling

from crystallite to crystallite, then they will evolve in phase with each other. Assuming for

the sake of argument that the system evolves into an observable coherence, the bulk signal

is the sum of the signals of the individual crystallites. Every crystallite orientation makes

a slightly different frequency contribution to the observed lineshape, and crystallites with

nearly the same orientation contributing to nearly the same frequency component. It is pos-

sible that there is a range of crystallite angles β over which the quadrupolar coupling varies

slowly, such that the nuclei in these crystallites will evolve in phase and the spectral lines

of nearby frequencies will add together constructively. Conversely, dephasing among crys-

tallites will occur for ranges of angles for which there is a large distribution of quadrupolar

couplings, and neighboring spectral lines will add destructively and cause a suppression of

the NMR signal in these parts of the lineshape distribution. This may be the source of the

orientation-selective effects that have been observed near ηQ = 0. However, even if there

are regions of the angle β for which the quadrupolar coupling is relatively uniform, this uni-
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formity might be destroyed as different crystallites with the same angle β exhibit different

quadrupolar couplings due to the α-dependence. Therefore there could be no selection of

preferred regions of crystallite orientations in the NMR spectrum.

The preceding argument is qualitative at best, and gives no explanation why one

type of coherence transfer would exhibit orientation selection and another would not. Such

an explanation would require an understanding of the terms in the Hamiltonian that drive

these coherences and their orientation dependence. The average Hamiltonian-type ap-

proaches of §3.5.1 and §3.5.2 are insufficient to explain these effects. However, it is possible

to examine the problem more quantitatively to see how some of the Hamiltonian coefficients

that appeared in these treatments depend on the crystallite angles. Therefore, it may be

possible to gain more insight as to whether particular regions of crystallite orientations

have relatively constant quadrupolar couplings, why certain orientations are preferred, and

whether a dependence on ηQ and the crystallite angle α does indeed destroy the uniformity

of coupling strengths.

The time-dependent quadrupolar coupling enters into the time development oper-

ator through the dynamic phase ΦQ(t). An explicit expression for ΦQ(t) can be found by

direct integration of Eq. 3.36:

ΦQ(t) =

∫ t

0
dt′ ωQ(t

′)

=
ωQ
ωR

{
[S1 cos(γ) +

S2
2

cos(2γ)− C1 sin(γ)−
C2
2

sin(2γ)]

+C1 sin(ωRt+ γ) +
C2
2

sin(2ωRt+ 2γ)− S1 cos(ωRt+ γ)− S2
2

cos(2ωRt+ 2γ)
}
.

(3.38)
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The time development operator can be written such that it involves complex exponentials

of the dynamic phase:

exp[iλΦQ(t)] = CΦ exp[i
λωQC1
ωR

sin(ωRt+ γ)] exp[i
λωQC2
2ωR

sin(2ωRt+ 2γ)]

× exp[i
−λωQS1
ωR

cos(ωRt+ γ)] exp[i
−λωQS2
2ωR

cos(2ωRt+ 2γ)], (3.39)

where CΦ = exp{−iλωQωR [C1 sin(γ) +
1
2C2 sin(2γ) − S1 cos(γ) − 1

2S2 cos(2γ)]}. Eq. 3.12

indicates that λ = ±6 for inner satellite transition rf terms and λ = ±12 for outer satellite

transition rf terms. Eq. 3.39 can be expanded in a Fourier series using the Jacobi-Anger

relations [170, §2·22]:

eiz cos θ =

+∞∑

n=−∞
inJn(z)e

inθ (3.40)

eiz sin θ =
+∞∑

n=−∞
Jn(z)e

inθ, (3.41)

where Jn(z) is the Bessel function of the first kind of order n. The result is:

exp[iλΦQ(t)] = CΦ

+∞∑

p,q,r,s=−∞

{
Jp
(λωQC1

ωR

)
eip
(
ωRt+γ

)
· Jq
(λωQC2

2ωR

)
eiq(2ωRt+2γ)

×irJr
(−λωQS1

ωR

)
eir(ωRt+γ) · isJs

(−λωQS2
2ωR

)
eis(2ωRt+2γ)

}

= CΦ

+∞∑

p,q,r,s=−∞
i(r+s)ei[(p+2q+r+2s)γ]Jp

(λωQC1
ωR

)
Jq
(λωQC2

2ωR

)

×Jr
(−λωQS1

ωR

)
Js
(−λωQS2

2ωR

)
ei[(p+2q+r+2s)ωRt] (3.42)
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This expression may be equated with a generic unimodal Fourier expansion:

exp[iλΦQ(t)] =
+∞∑

n=−∞
Λne

inωRt, (3.43)

where comparison with Eq. 3.12 indicates that the Fourier coefficients are Λn = An for

λ = 6 and Λn = Bn for λ = 12. These coefficients become:

Λn = C ′Φ

+∞∑

q,r,s=−∞
i(r+s)Jn−2q−r−2s

(λωQC1
ωR

)
Jq
(λωQC2

2ωR

)
Jr
(−λωQS1

ωR

)
Js
(−λωQS2

2ωR

)
,

(3.44)

where n = p + 2q + r + 2s and C ′Φ = einγCΦ. This expression involves infinite sums over

three indices. One of the sums can be removed upon applying the the Graf generalization

of Neumann’s Bessel function addition theorem [170, §11·3]:

eiνψJν(χ) =
+∞∑

m=−∞
Jν+m(Z)Jm(z)e

imφ, (3.45)

where χ =
√
Z2 + z2 − 2Zz cosφ and ψ is defined by χ cosψ = Z − z cosφ and χ sinψ =

z sinφ. In the limit of real arguments Z = x and z = y and taking φ = π/2, one finds χ =

√
x2 + y2 and ψ = tan−1(y/x). This result along with the relations Jm(z) = (−1)mJ−m(x)

for integer m and (−1)m = e−imπ plus
∑+∞

m=−∞ am =
∑+∞

m=−∞ a−m and im = eimπ/2 can

be used to write a special case of the addition theorem:

+∞∑

m=−∞
imJν−m(x)Jm(y) = eiν tan

−1(y/x) Jν
(√

x2 + y2
)
=
( ζ
|ζ|
)ν
Jν(|ζ|), (3.46)
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where ζ = x + iy. The sum over the index r in Eq. 3.44 can be removed by applying Eq.

3.46 with m = r, ν = n− 2q − 2s, x = λωQC1/ωR, and y = −λωQS1/ωR:

Λn = C ′Φ

+∞∑

q,s=−∞
ise
−i(n−2q−2s) tan−1( S1

C1
)
Jn−2q−2s

(
|λωQ
ωR
|
√
C21 + S21

)
Jq
(λωQC2

2ωR

)
Js
(−λωQS2

2ωR

)
.

(3.47)

This expression allows the Fourier coefficients An and Bn in Eq. 3.12 to be calculated as

double infinite sums over a product of three Bessel functions weighted by an orientation-

dependent phase factor. However, when a large number of crystallite orientations must be

considered, the double infinite sum could be difficult to evaluate even if truncated. Also,

not much insight can be gained as to the orientation dependence of these coefficients, except

that the dependence enters through the Bessel functions; this dependence will be discussed

later.

A somewhat simpler expression can be developed in the case of axially symmetric

field gradients where ηQ = 0. In this case the coefficients of the time dependent quadrupolar

coupling in Eq. 3.37 become C01 = −38 sin(2θm) sin(2β), C02 = 3
8 sin

2(θm) sin
2(β), S01 = 0,

and S02 = 0. A procedure similar to the one outlined above yields:

Λ0n = e
−iλωQ

ωR
[C01 sin(γ)+

1
2
C02 sin(2γ)]einγ

+∞∑

m=−∞
Jn−2m

(λωQC01
ωR

)
Jm
(λωQC02

2ωR

)
, (3.48)

which involves only a single infinite sum with no orientation-dependent phase factors within
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the sum. The n = 0 special case can be written as:

Λ00 =e
−iλωQ

ωR
[C01 sin(γ)+

1
2
C02 sin(2γ)]

[
J0
(λωQC01

ωR

)
J0
(λωQC02

2ωR

)
+ 2

+∞∑

m>0

J4m
(λωQC01

ωR

)
J2m

(λωQC02
2ωR

)]
,

(3.49)

where the relation Jm(z) = (−1)mJ−m(z) has been used. This equation gives the ηQ = 0

limit of the A0 and B0 Fourier coefficients that show up in a first-order average Hamiltonian

treatment in the interaction frame.

Eq. 3.47 can be used to make plots of the orientation dependence of the Hamil-

tonian coefficients. First, some comments should be made as to the role of the crystallite

angle γ. As is apparent from Eq. 3.36, only the phase of the time-dependent quadrupolar

coupling depends on γ, such that the quadrupolar coupling of a crystallite with angle γ ar-

rives at the same point in its oscillation at a time γ/ωR later than a crystallite with γ = 0.

This leads to the so-called “carousel symmetry” of a rotating isotropic powder [171, 172].

The γ distribution typically contributes to the intensity of the spinning sidebands in MAS

experiments on powders but otherwise does not affect the powder lineshapes. However, in

these treatments it is usually assumed that the initial density operator does not depend on

crystallite orientation and the isotropy of the powder is not broken by the application of

an rf field. Once the first low-amplitude rf pulse is applied to the system these conditions

can break down, since the “soft” pulse will affect each crystallite differently according to its

orientation. The problem of γ-averaging is subtle and involves cancellation effects among
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crystallites [171]. For the sake of simplicity, it will be assumed that the γ-dependence does

not dominate the orientation-selective effects. If it did, the argument that the β-dependence

leads to the orientation selectivity would fail. It will be seen that the β-dependence of the

Hamiltonian coefficients does indeed match the observed orientation-selective effects, as has

been reproduced in simulations [165, 166]. Therefore γ will be set to zero in the orientation

plots that follow.

A truncated summation of Eq. 3.47 was used to calculate the zero-frequency

Fourier coefficients A0 (Fig. 3.4) and B0 (Fig. 3.5) of Eq. 3.12 as a function of the crystallite

angle β in the limit ηQ = 0 with CQ = 3.0 MHz and ωR/2π = 20 kHz. The calculation was

performed using 320 random crystallite angle pairs (α, β) generated by the REPULSION

sampling method [173]; the ηQ = 0 condition makes the coefficients dependent only on the

angle β. Both the coefficients (particularly A0) exhibit regions of relative uniformity in the

approximate ranges of β = 35◦ to 62◦ and β = 118◦ to 145◦. This is consistent with the nu-

merical simulation predictions of which crystallite angles are selected via the low-amplitude

pulses [165, 166]. The same calculation was performed for η = 1 for the coefficients A0 (Fig.

3.6) and B0 (Fig. 3.7). The ηQ 6= 0 condition introduces a dependence on the crystallite

angle α, so that for a given β the coefficients can take on several values depending on the

value of α. As can be seen, this destroys any uniformity of the Fourier coefficients as a

function of crystallite orientation. As a consequence, it is expected that the selection of any

set of nearby crystallite orientations by the rf pulse will be suppressed.

The (truncated) summations in Eq. 3.25 can be used to calculate the dependence

of some of the second-order Hamiltonian coefficients on crystallite orientation. Figs. 3.8,



3.5. THEORETICAL APPROACH TO ROTARY RESONANCE LINE
NARROWING IN I = 5/2 SYSTEMS 214

0 20 40 60 80 100 120 140 160 180
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

η
Q

 = 0

β (degrees)

A
0

Figure 3.4: Calculated zero-frequency quadrupolar dynamic phase Fourier coefficient A0
as a function of crystallite angle β for ηQ = 0. The quadrupolar coupling constant was
CQ = 3.0 MHz and the spinning frequency was ωR/2π = 20 kHz. The double sums in Eq.
3.47 were taken from −20 to +20. The calculation used 320 random crystallite angle pairs
(α, β) generated by REPULSION sampling; no γ-dependence was considered.

3.9, and 3.10 plot the absolute-squared coefficients |α(2)|2, |β(2)|2, |γ(2)|2, respectively, as

functions of the crystallite angle β for ηQ = 0. The other calculation parameters are the

same as before. It can be seen that the |α(2)|2 and |β(2)|2 functions do not seem to have

the same regions of relative uniformity as do the coefficients A0 and B0 that occur in the

first-order perturbation theory. The function |γ(2)|2 exhibits some of the same uniformity,

although its value is small in these regions. The parameter |γ(2)|2 enters into some of

the short-time dynamics during certain excitations and conversions of multiple quantum

coherences, as was noted in §3.5.1 and §3.5.2. However, the perturbation theory employed

in those sections is suspect.

Ultimately, the orientation dependence of the effective Hamiltonian in the average

Hamiltonian model arises from the properties of the Bessel functions. Bands of unifor-
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Figure 3.5: Calculated zero-frequency quadrupolar dynamic phase Fourier coefficient B0
as a function of crystallite angle β for ηQ = 0. The quadrupolar coupling constant was
CQ = 3.0 MHz and the spinning frequency was ωR/2π = 20 kHz. The double sums in Eq.
3.47 were taken from −20 to +20. The calculation used 320 random crystallite angle pairs
(α, β) generated by REPULSION sampling; no γ-dependence was considered.

mity can be seen in some of the individual Bessel functions, as demonstrated by Fig. 3.11,

which plots the function J0(16 sin(2β)) as a function of β, which approximates the func-

tion J0(6
ωQ
ωRC

0
1 ) under the conditions of the calculations above. As can be seen, dense

bands of crystallite orientations over which the Bessel function varies slowly are observed

from β = 35◦ to 62◦ and β = 118◦ to 145◦. There is some fortuity involved in the ratio

ωQ/ωR that is employed in these experiments: similar prominent bands in the plot of J0(x)

are not observed for values of the Bessel function argument that are much (e.g. ten times)

larger than 16 sin(2β), and the bands become less prominent as the Bessel function becomes

smoother for arguments that are much (e.g. ten to one hundred times) smaller. It is unclear

whether there exist more profound sources than the properties of Bessel functions17 for the

17Or rather, more profound than the properties of the functions that are approximated by Bessel functions.
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Figure 3.6: Calculated zero-frequency quadrupolar dynamic phase Fourier coefficient A0
as a function of crystallite angle β for ηQ = 1. The quadrupolar coupling constant was
CQ = 3.0 MHz and the spinning frequency was ωR/2π = 20 kHz. The double sums in Eq.
3.47 were taken from −20 to +20. The calculation used 320 random crystallite angle pairs
(α, β) generated by REPULSION sampling; no γ-dependence was considered.

selection of certain crystallite orientations by low-amplitude rf pulses in the quadrupolar

NMR of rotating solids.

3.6 Conclusions

In this work, the use of low-amplitude rf multiple-quantum excitation and con-

version pulses in fast-spinning I = 5/2 quintuple-quantum/triple-quantum mixed-multiple

quantum magic angle spinning studies was investigated both experimentally and theoreti-

cally. The low-amplitude pulses were optimized at or away from rotary resonance conditions

depending on the desired coherence transfer. The experiments demonstrated that the in-

corporation of low amplitude pulses into the 5Q3QMAS experiment can result in a factor
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Figure 3.7: Calculated zero-frequency quadrupolar dynamic phase Fourier coefficient B0
as a function of crystallite angle β for ηQ = 1. The quadrupolar coupling constant was
CQ = 3.0 MHz and the spinning frequency was ωR/2π = 20 kHz. The double sums in Eq.
3.47 were taken from −20 to +20. The calculation used 320 random crystallite angle pairs
(α, β) generated by REPULSION sampling; no γ-dependence was considered.

of two gain in signal-to-noise over the all-hard pulse experiment in the Al(acac)3 system

with moderate CQ = 3.0 MHz and low ηQ = 0.15.

The low-amplitude pulse version of the 5Q3QMAS experiment also exhibits un-

usually narrow lineshapes in the anisotropic dimension for low-ηQ systems. This phe-

nomenon has suggested a non-quantitative one-dimensional low-amplitude pulse experi-

ment for screening systems with multiple overlapping low-ηQ sites. The origin of the line-

narrowing effect was investigated theoretically using a second-order average Hamiltonian

theory/secular averaging approach. This approach was unable to explain why certain types

of low-amplitude pulses lead to line narrowing effects and other types of pulses do not.

Moderate success was achieved at explaining the line narrowing effect as being the result

of orientation-selective pulses. The effect seems to be due to the in-phase excitation of
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Figure 3.8: Calculated second-order average Hamiltonian coefficient |α(2)|2 as a function
of crystallite angle β for ηQ = 0. The quadrupolar coupling constant was CQ = 3.0 MHz
and the spinning frequency was ωR/2π = 20 kHz. The double sums in Eq. 3.47 were taken
from −20 to +20, and the coefficient sum in Eq. 3.25 was taken from n = −200 to 200.
The calculation used 320 random crystallite angle pairs (α, β) generated by REPULSION
sampling; no γ-dependence was considered.

a certain set of crystallite orientations by a radiofrequency field that is truncated by the

orientation- and time-dependent quadrupolar Hamiltonian under MAS conditions. Other

crystallite orientations do not contribute to the anisotropic spectrum because they are

excited out of phase with each other, leading to the mutual cancellation of neighboring

spectral components. The line-narrowing effect disappears in sites with highly-asymmetric

electric field gradients (high-ηQ), probably due to an additional orientational dependence

of the quadrupolar Hamiltonian that destroys the uniform excitation of certain crystallite

orientations.



3.6. CONCLUSIONS 219

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9
x 10

−6

|β
(2

) |2

β (degrees)

η
Q

 = 0

Figure 3.9: Calculated second-order average Hamiltonian coefficient |β(2)|2 as a function
of crystallite angle β for ηQ = 0. The quadrupolar coupling constant was CQ = 3.0 MHz
and the spinning frequency was ωR/2π = 20 kHz. The double sums in Eq. 3.47 were taken
from −20 to +20, and the coefficient sum in Eq. 3.25 was taken from n = −200 to 200.
The calculation used 320 random crystallite angle pairs (α, β) generated by REPULSION
sampling; no γ-dependence was considered.
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Figure 3.10: Calculated second-order average Hamiltonian coefficient |γ(2)|2 as a function
of crystallite angle β for ηQ = 0. The quadrupolar coupling constant was CQ = 3.0 MHz
and the spinning frequency was ωR/2π = 20 kHz. The double sums in Eq. 3.47 were taken
from −20 to +20, and the coefficient sum in Eq. 3.25 was taken from n = −200 to 200.
The calculation used 320 random crystallite angle pairs (α, β) generated by REPULSION
sampling; no γ-dependence was considered.
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Figure 3.11: Plot of J0(16 sin(2β)) versus β.
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Chapter 4

Feasibility of N-14 double quantum

line narrowing in solution

4.1 Introduction

Nitrogen is an extremely prevalent heteroatom in organic molecules and plays an

important role in the structure of biomolecules, where it is present in all nucleic acids and

amino acids. Proteins are sequences of amino acids joined by peptide bonds, and since

every peptide bond contains a nitrogen-bearing amide functional group, nitrogen atoms

trace out the entire protein backbone. NMR experiments that correlate nitrogen chemical

shifts with those of neighboring atoms are widely employed to assist in the elucidation of

protein structures.

The NMR-active N-14 isotope exists in 99.63% natural abundance, making it the

obvious choice for NMR spectroscopic studies. However, N-14 is a spin S = 1 nucleus,
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and therefore possesses an electric quadrupole moment. Nitrogen-14 quadrupolar coupling

constants can be large, ranging from ≥ 1 MHz in protonated amine groups in amino acids

[174] to as much as 3–4 MHz in amide groups in peptide bonds [175, 176]. Molecules in

solution are subject to rapid tumbling and other internal reorientational motions that cause

a stochastic modulation of the large quadrupolar coupling, inducing efficient (rapid) relax-

ation of the N-14 nuclear magnetization. Since the linewidth of a particular resonance is

inversely proportional to the transverse relaxation time, the fast quadrupolar relaxation

leads to very broad spectral lines. The large linewidths are problematic because of the

corresponding decrease in spectral resolution, and also because the area of the line is spread

out over a large frequency range, leading to a small maximum intensity and low signal-to-

noise ratio. The sensitivity problem is exacerbated if the nitrogen resonance is detected

directly, since N-14 has a relatively low gyromagnetic ratio of γ/2π = 3.078 MHz/T (com-

pared to 42.577 MHz/T for H-1). Furthermore, even if nitrogen coherence is transferred

(i.e., through a J-coupling) to protons for more sensitive detection, rapid quadrupolar re-

laxation may attenuate the coherence during the transfer step. For all these reasons, the

non-quadrupolar, spin-1/2 N-15 isotope (γ/2π = −4.317 MHz/T) is almost exclusively used

in protein NMR studies involving nitrogen. However, the N-15 isotope exists in only 0.37%

natural abundance, so the proteins typically are first artifically labeled (often uniformly)

with N-15. Isotopic N-15 labeling can be a tedious and costly, but necessary step when

performing nitrogen NMR studies of proteins.

Line broadening of all types is particularly problematic for large biomolecules such

as proteins, which are often massive enough so that their global rotational motion is in the
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slow tumbling regime and is dominated by adiabatic relaxation mechanisms (see §1.5). The

rotational correlation time of a spherical globular protein can be estimated from Stokes’

law [4, §1.4]:

τc =
4πηwr

3
H

3kBT
, (4.1)

where ηw is the viscosity of the solvent (i.e., water), rH is the effective hydrodynamic radius

of the protein (∝M 1/3 excluding the protein hydration shell, whereM is the protein mass),

kB is the Boltzmann constant, and T is the temperature. This model predicts a value near

the experimental value of τc = 4.1 ns for the small (8.6 kDa) protein ubiquitin in water at 25

◦C [177], which yields a value of ω0τc = 1.3 using a Larmor frequency of ω0/2π = 50.6 MHz

for N-14 at 16.45 T. This value is just within the slow tumbling regime where ω0τc > 1. It

can be seen from Eq. 4.1 that large (> 100 kDa) proteins have rotational correlation times

long enough to be well into the slow tumbling regime with ω0τc > 10 for N-14 at such high

magnetic field strengths.

The idea of performing nitrogen NMR in proteins using naturally-abundant N-14

is attractive, but to do so effectively would require a method that reduces the quadrupolar-

broadened linewidths dramatically. Furthermore, any such experiment that is to be ap-

plicable to large biomolecules must be valid in the slow-tumbling motional regime. As

was mentioned in §1.5.4, the double-quantum coherence in S = 1 systems is largely in-

variant to the adiabatic quadrupolar broadening mechanism that dominates the relaxation

of the single-quantum coherences in the slow tumbling regime. Consequently, the double-

quantum coherence relaxes more slowly and has sharper lines in this regime than do the
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single-quantum coherences. Therefore, it is worth investigating whether double-quantum

spectroscopy could make N-14 protein NMR experiments viable.1

4.2 Theory of N-14 linewidths in solution

4.2.1 N-14 double- and single-quantum linewidths and the comparison to

N-15 spectroscopy

The S = 1 N-14 spin system is characterized by nine independent density oper-

ator elements: three corresponding to populations, four corresponding to single-quantum

coherences (two +1-quantum and two −1-quantum), and two corresponding to +2- and

−2-quantum coherence. If the quantization axis is along z, then a p-quantum coherence2

evolves under the Hamiltonian Ĥ/~ = ωÎz at the frequency pω. If one considers two res-

onances with equal linewidths Γ (in frequency units) separated by a frequency difference

∆ω, then an effective resolution factor can be defined as R = ∆ω/Γ. Since the frequency

separation of a |p|-quantum coherence is |p| times that of a single quantum coherence, one

finds that if the linewidths of two pairs of coherences are equal such that Γ|p| = Γ|p′|, then

R|p|/R|p′| = |p|/|p′|.3 Thus, if the N-14 double quantum coherence relaxed at the same

rate as the single quantum coherences, then the double-quantum spectrum would have two

1A similar approach has been used to reduce amide proton linewidths by creating multiple-quantum
coherences in the two-spin N-15–H-1 J-coupled system [178].

2The density operator may be written in terms of single-transition basis operators |S,m′
S〉〈S,mS |, where

the coherence order is p = m′
S − mS . It is often more convenient to use a spherical tensor operator

basis {T̂k,p}, where the double-quantum coherences are represented by the T̂2,±2 elements, and observable
transverse magnetization corresponds to the T̂1,±1 elements. Populations (the diagonal elements of the
density operator) are not coherences but are considered to have p = 0.

3This assumes that the observed linewidths are actually the natural linewidths of the system, which is
typically the case for quadrupolar-broadened systems in a modern high-field NMR magnet. If the observed
linewidths are dominated by dephasing due to magnetic field inhomogeneity, then these linewidths also scale
with |p|, such that there is no inherent change in resolution based solely upon changing coherence order.
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times higher resolution than the single-quantum spectrum.

Of course, the N-14 double- and single-quantum coherences actually relax at differ-

ent rates. In the case of relaxation due to an axially symmetric (ηQ = 0) S = 1 quadrupolar

interaction modulated by rotational diffusion of a rigid spherical molecule in isotropic so-

lution, the transverse magnetization (the T̂1,±1 single-quantum coherences in the density

operator) relaxes according to [6, 4, 103]:

ΓQSQ = 1/TQ2 =
3

80
(2πCQ)

2

[
3τc +

5τc
1 + ω20τ

2
c

+
2τc

1 + 4ω20τ
2
c

]
, (4.2)

where CQ = e2qQ/h is the quadrupolar coupling constant, τc is the global rotational cor-

relation time of the molecule, and ω0 is the Larmor frequency. The three terms in brackets

correspond to J(0), J(ω0), and J(2ω0) reduced spectral densities, respectively.4 Under the

same conditions, the relaxation rate of the S = 1 T̂2,±2 double quantum coherences (DQCs)

is [103]:

ΓQDQ =
3

80
(2πCQ)

2

[
2τc

1 + ω20τ
2
c

+
4τc

1 + 4ω20τ
2
c

]
. (4.3)

The first and second term in brackets correspond to J(ω0) and J(2ω0) reduced spectral

densities, respectively, and there is no zero-frequency (adiabatic) relaxation component.

Eqs. 4.2 and 4.3 are plotted in Fig. 4.1 as a function of τc for N-14 with CQ = −3.2 MHz

[175] in a 16.45 T magnetic field (ωN140 /2π = 50.6 MHz). As can be seen, the difference

between the transverse relaxation rate and the adiabatic-free double-quantum relaxation

4More complicated expressions for the spectral densities in the cases of non-axially symmetric quadrupolar
couplings or non-spherical molecules may be found in Ref. [103].
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rate is quite significant in the slow tumbling (τc > |ω−10 |) regime, particularly for large

molecules with τc in the tens of nanoseconds range. Unfortunately, since the linewidths are

of the order of ΓQ (assuming that the quadrupolar relaxation dominates all other relaxation

mechanisms), the absolute magnitudes of these relaxation rates would seem to prohibit

high-resolution NMR experiments, for which linewidths in the low tens of Hz or better are

desirable.
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Figure 4.1: Calculated double-quantum and single-quantum N-14 quadrupolar relaxation
rates as a function of rotational correlation time τc for a rigid spherical molecule in isotropic
solution at 16.45 T. The quadrupolar parameters are CQ = −3.2 MHz and ηQ = 0, and the
Larmor frequency is ω0/2π = 50.6 MHz. The vertical dash-dot line marks the onset of the
slow tumbling regime at τc = |ω0|−1, and the vertical dotted line marks τc = 10|ω0|−1. Here
τc ranges from 5 ps to 500 ns, but the perturbative relaxation theory should be considered
suspect when τc is beyond about 100 ns.

As a demonstration of the size of quadrupolar coupling for which N-14 double-

quantum spectroscopy may be advantageous over conventional N-15 spectroscopy, Fig. 4.2
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plots the double-quantum quadrupolar relaxation rate for N-14 (Eq. 4.3) at 16.45 T scaled

down by a factor of two (to take into account the increased frequency spread between double-

quantum lines vs. single-quantum lines) for CQ = −3.2 MHz and CQ = 100 kHz, along with

the transverse relaxation rate of an N-15 nucleus relaxed by dipolar coupling to a nearby

(amide) proton at 1.02 Å and a typical amide [179, 180] nitrogen chemical shift anisotropy

(CSA) of −170 ppm. The dipolar and CSA relaxation rates were calculated according

to Ref. [4, §5.4]. Dipolar-CSA cross-correlated relaxation [91, 181] has been ignored. As

can be seen, double-quantum spectroscopy of N-14 is not competitive with conventional

N-15 spectroscopy even well into the slow tumbling limit in the case of typical CQ =

−3.2 MHz amide N-14 quadrupolar couplings. However, in the case of slowly-tumbling

molecules with N-14 sites for which CQ is up to several hundred kHz, double quantum

spectroscopy may be practical both relative to conventional N-15 spectroscopy and in terms

of absolute quadrupolar linewidth. It should be mentioned that the N-14 relaxation rates in

Fig. 4.2 do not include dipolar and CSA effects, which will begin to dominate quadrupolar

relaxation for small CQ sites in the same way as do the dipolar and CSA relaxation effects

in N-15.5 However, this is not necessarily a liability because the ability to decrease the

effects of quadrupolar relaxation to a point where N-14 linewidths are comparable to N-15

linewidths6 would be sufficient to justify the technique, since isotopic N-15 labeling would

5It would be interesting to investigate whether a technique analogous to the TROSY experiment of
Pervushin et al. [182] could reduce the CSA and dipolar contributions to N-14 double-quantum relaxation.

6The dipolar and CSA relaxation effects are of comparable magnitude for the N-14 double quantum
coherence and the N-15 single-quantum coherence (N-14 even has slightly smaller dipolar couplings and CSAs
than N-15 due to its lower gyromagnetic ratio). There also exist quadrupolar-dipolar and quadrupolar-CSA
cross-correlated relaxation effects that can be quite significant, particularly for large quadrupolar couplings.
However, like autocorrelated quadrupolar relaxation, these mechanisms make no adiabatic contribution
to the relaxation of double-quantum coherence (refer to the relaxation selection rules in §1.5.3), so their
contribution would be small in the slow tumbling regime, and is certainly smaller than the autocorrelated
quadrupolar relaxation contribution.
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Figure 4.2: Calculated double-quantum N-14 quadrupolar relaxation rates for a rigid spher-
ical molecule in isotropic solution for two different values of CQ as a function of rotational
correlation time τc, plus the calculated transverse relaxation rate of N-15 under CSA and
nitrogen-proton dipolar coupling. The relaxation rates were scaled by a factor of 1/|p|
(where p is the coherence order) in order to make a fair comparison of the resolution of
double-quantum spectra to that of single-quantum spectra. The magnetic field was taken
to be 16.45 T, corresponding to ωN140 /2π = 50.6 MHz and ωN150 /2π = −71.0 MHz. The
N-14 quadrupolar parameters are CQ = −3.2 MHz or CQ = 100 kHz, with ηQ = 0 in both
cases. The N-15–H-1 average bond length was taken to be rNH = 1.02 Å, and the N-15
CSA was taken to be ∆σ = −170 ppm with ηCSA = 0. Dipolar-CSA cross-correlations were
neglected. The dotted vertical line marks τc = 10|ωN140 |−1.

be unnecessary.

Modifications of the rigid-molecule model that include the effects of local internal

molecular motions alter the spectral densities J(ω) from the simple form given in Eq.

1.135 and plotted in Fig. 1.4, and hence the calculated relaxation rates will differ from

those plotted in Figs. 4.1 and 4.2 when internal motions are considered. A widely-used,

simple (two-parameter) model-free approach to the calculation of the spectral densities was
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introduced by Lipari and Szabo [183, 184].7 The ratio of the Lipari-Szabo spectral density

JL−S(ω) to the rigid-molecule spectral density Jrigid(ω) of Eq. 1.135 is given by:

JL−S(ω)
Jrigid(ω)

= S2 + (1− S2)
( τ
τc

)(1 + ω2τ2c
1 + ω2τ2

)
, (4.4)

where S is a generalized order parameter characterizing the amplitude of the internal motion

(0 ≤ S2 ≤ 1, S2 = 1 corresponds to rigid motion) and τ−1 = τ−1c + τ−1e , where τc is the

global rotational correlation time and τe is an effective correlation time characterizing the

internal motion. It can be seen that τ ' τe in the limit τe ¿ τc where the internal motion is

much faster than the global rotation. The effect of internal motion on the spectral density

functions in the slow tumbling regime is not straightforward, as illustrated in Fig. 4.3 for

the adiabatic J(0) and non-adiabatic J(2ω0) spectral densities as functions of τc with fixed

ω0/2π = 50.6 MHz, for S2 = 0.5 with τe = 250 ps and for S2 = 0.05 with τe = 25 ps.

The inclusion of internal motion effects may effectively increase or decrease the calculated

relaxation rates depending on the value of the motional parameters.

One final point that has not yet been addressed is the effect of fast N-14 quadrupo-

lar relaxation on the rate of relaxation of nearby coupled nuclei, i.e., H-1 and C-13. It is

important to consider the linewidths of these nuclei in order to assess how the presence

of N-14 will affect their spectral resolution. Protein NMR experiments involving nitrogen

typically correlate the nitrogen resonances with C-13 and/or H-1 resonances, often with

a transfer of nitrogen coherence to protons for sensitive detection. The N-14 quadrupo-

lar relaxation can have deleterious effects on the structure of the J-split multiplet of a

7Relaxation in the amide N-H system in proteins has been found to be better described by an approach
that includes parameters characterizing both fast and slow internal motional timescales, see Ref. [185].
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Figure 4.3: Ratio of the Lipari-Szabo spectral densities to the rigid-molecule spectral den-
sities as a function of global correlation time with ω0/2π = 50.6 MHz for two sets of values
of the Lipari-Szabo model-free parameters. The ratios JL−S(0)/Jrigid(0) (solid line) and
JL−S(2ω0)/Jrigid(2ω0) (dash-dot line) are plotted for S2 = 0.5 and τe = 250 ps, and for
S2 = 0.05 and τe = 25 ps (dashed and dotted lines, respectively). The two vertical dotted
lines mark τc = |ω0|−1 (left) and τc = 10|ω0|−1 (right).

coupled spin-1/2 nucleus [186, 187, 188] and on the spin-1/2 linewidths (to the extent of

collapse of the multiplet structure). In the solution state the relaxation effects are typi-

cally transmitted through the J-coupling, and are often referred to as “scalar relaxation of

the second kind” [6, §VIII.II.F(b)(3)],[4, §5.4.5]. Other effects can contribute in the slow

tumbling regime, particularly quadrupolar-dipolar cross-correlation [189]8, [190]. Fig. 4.4

plots the transverse relaxation rate of a proton J-coupled to an N-14 nucleus in a rigid

spherical molecule in isotropic solution (in the limit that the quadrupolar interaction dom-

8Ref. [189] contains some errors: on the first page, one of the spin operators should be corrected from
T−1
Q = +I−(2Iz + 1)/(I(2I − 1)) to T−1

Q = +(2Iz + 1)I−/(I(2I − 1)), and the ωτ 22 /(1 + ω2τ22 ) factor in Eq.

13 should be corrected to τ2/(1 + ω2τ22 ).
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inates all other interactions in the system) using Eqs. 19–21 of Ref. [189]. The proton was
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Figure 4.4: Calculated H-1 transverse relaxation rate in the presence of a scalar-coupled
N-14 nucleus in a rigid molecule in isotropic solution at 16.45 T as a function of correlation
time. The dashed line corresponds to relaxation under H-1 dipolar and chemical shift
anisotropy interactions, and the solid line additionally includes the N-14 quadrupolar effects.
The relevant Larmor frequencies are ωH10 /2π = 700. MHz and ωN140 /2π = 50.6 MHz. The
dipolar coupling was calculated using rNH = 1.02 Å and the H-1 chemical shift anisotropy
was ∆σ = 10 ppm with ηCSA = 0. The N-14 quadrupolar parameters are CQ = −3.2 MHz
and ηQ = 0. The nitrogen-proton J-coupling was taken to be |JN14−H1| = |γN14γN15JN15−H1| =
0.71 ·91 Hz = 65 Hz (the value of JN15−H1 was taken from Refs. [4, 191]). Cross-correlation
effects were included, and the nitrogen-proton dipolar axis was taken to be parallel to the N-
14 quadrupolar and H-1 CSA principal axes. The vertical dash-dot line marks τc = |ωH10 |−1,
and the vertical dotted lines mark τc = |ωN140 |−1 (left) and τc = 10|ωN140 |−1 (right).

considered to relax under dipolar and chemical shift anisotropy-induced relaxation as well

as quadrupolar-induced relaxation from the N-14 nucleus, and cross-correlation effects be-

tween all three interactions were included for the special case of coincident principal axis

systems. The quadrupolar and dipolar parameters were those of an amide N-14–H-1 pair,

and the proton CSA was taken to be ∆σ = 10 ppm [192]. The scalar coupling was taken
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to be |JN14−H1| = 65 Hz. As is apparent from Fig. 4.4, the rapid relaxation of the N-14

nucleus can increase the H-1 transverse relaxation rate quite significantly. It is tempting to

try to ameliorate this effect by applying an N-14 spin decoupling pulse sequence during the

H-1 evolution time, as has been done for the quadrupolar nucleus H-2 (S = 1) coupled to

C-13 (I = 1/2) [193]. However, the N-14 decoupling strength is required to be much greater

than the longitudinal relaxation rate of the quadrupolar nucleus, which in the case a rigid

molecule in isotropic solution is given by [6, 4, 103]9:

1/TQ1 =
3

80
(2πCQ)

2

[
2τc

1 + ω20τ
2
c

+
8τc

1 + 4ω20τ
2
c

]
, (4.5)

for S = 1 and ηQ = 0. Eq. 4.5 yields a value of 1/TN141 = 19 kHz for pure quadrupolar

relaxation of N-14 with CQ = −3.2 MHz and ηQ = 0 at 16.45 T with τc = 10|ωN140 |−1 = 31

ns. It would be difficult to apply N-14 decoupling at a high enough power to remove the

H-1 scalar relaxation effectively, even in a high-power solid-state NMR probe.

4.2.2 A comment on deuterium double-quantum spectroscopy

Nitrogen-14 is not the only S = 1 nucleus available for spectroscopic studies; often

NMR experiments are carried out in systems isotopically labeled with deuterium (H-2,

0.015% natural abundance). Deuterium labeling is favored because of the decreased effect

of dipolar relaxation to nearby heteronuclei; the dipolar relaxation rate goes as the square

of the size of the dipolar coupling, which in turn is bilinear in the gyromagnetic ratios of the

9Table 5.7 of Ref. [4] contains an error: the R1 = 3d00{J(ωI) + 2J(2ωI)} expression for longitudinal
quadrupolar relaxation should be corrected to read R1 = 3d00{J(ωI) + 4J(2ωI)}.
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two coupled spins.10 The gyromagnetic ratio of H-2 (γ/2π = 6.536 MHz/T) is 6.5 times less

than that of H-1. Scalar relaxation of a coupled I = 1/2 nucleus via the S-spin quadrupolar

coupling is much less pronounced for systems containing deuterium compared to those

containing N-14, because the deuterium quadrupolar coupling is much smaller (CQ ∼ 200–

220 kHz for protein backbone amide deuterons [195] and CQ ∼ 170 kHz in perdeuterated

saturated hydrocarbons [196]). The scalar relaxation rate of a spin-1/2 nucleus coupled to

a quadrupolar nucleus depends largely on the relaxation rates of the quadrupolar nucleus,

which in turn are quadratic in the quadrupolar coupling constant (Eqs. 4.2, 4.5).

In addition to deuteration for the purpose of reducing the linewidths of coupled

heteronuclei, it may be of interest to perform spectroscopy on the deuterium itself. In

this case, it is possible to revisit the problem of double-quantum line narrowing in S = 1

systems in the case of a smaller quadrupolar coupling than in amide nitrogens. The N-14

quadrupolar double-quantum relaxation rate for a small value of CQ was already compared

to the N-15 single-quantum relaxation rate in Fig. 4.2. However, it is useful to consider

the comparison of double- and single-quantum relaxation rates in a single S = 1 system

with small CQ, as was plotted in Fig. 4.1 for a large-CQ system. The double-quantum

and single-quantum quadrupolar plus dipole–dipole relaxation rates of a deuterium nucleus

dipole-coupled to a nearby C-13 nucleus at 16.45 T are plotted in Fig. 4.5. The rates have

not been scaled by a factor of 1/|p| to account for increased double-quantum chemical shift

10However, the gyromagnetic ratio enters additionally into the spectral density functions through their
Larmor frequency dependence, primarily outside of the extreme narrowing limit. It should also be noted
that the dipolar relaxation rate also has a dependence on the spin quantum numbers S and I; for instance,
the longitudinal dipolar relaxation of a proton coupled to an S = 1 N-14 nucleus is actually faster than
that of a proton coupled to an S = 1/2 N-15 nucleus in the extreme narrowing limit, despite N-14 having
a smaller gyromagnetic ratio [194]. The authors of Ref. [194] note that scalar longitudinal relaxation of
the proton via the N-14 quadrupolar coupling is negligible in the extreme narrowing limit, as predicted by
theory [6].
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Figure 4.5: Calculated double-quantum and single-quantum H-2 relaxation rates as a func-
tion of rotational correlation time τc for a rigid spherical molecule in isotropic solution at
16.45 T. The relaxation mechanisms include the H-2 quadrupolar interaction and dipole-
coupling to a nearby C-13 nucleus (rDC = 1.09 Å), with no cross-correlation effects. The
quadrupolar parameters are CQ = 200 kHz and ηQ = 0, and the relevant Larmor frequencies
are ωH20 /2π = 107.5 MHz and ωC130 /2π = 176.2 MHz. The vertical dash-dot line marks
τc = |ωH20 |−1, and the vertical dotted line marks τc = 10|ωH20 |−1. Here τc ranges from 10 ps
to 100 ns.

scaling. Deuterium CSA relaxation was not included (although it is not negligible), and the

H-2–C-13 J-coupling has been neglected. The effect of quadrupolar-dipolar cross-correlation

on the relaxation of the deuterium coherences was considered to be negligible. The H-2

quadrupolar parameters were taken to be CQ = 200 kHz with ηQ = 0. The deuterium-

carbon average bond length was taken to be rDC = 1.09 Å. As usual, the relaxation rates

were calculated under the assumption of a rigid spherical molecule in isotropic solution,

using Eqs. 4.2 and 4.3 for the quadrupolar relaxation. The H-2 double- and single-quantum

dipole–dipole relaxation rates were calculated according to Ref. [197].
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As can be seen from a comparison of Fig. 4.5 to Fig. 4.1, the possibility of a resolu-

tion enhancement via double-quantum deuterium NMR spectroscopy in the slow tumbling

regime is much more attractive in terms of the absolute linewidth values, as well as retain-

ing the usual double-quantum versus single-quantum line narrowing feature. (The factor of

two increase in the double-quantum chemical shift scaling should also be considered when

examining Figs. 4.1 and 4.5.) The effects of dipole–dipole relaxation on the deuterium

single-quantum relaxation rate are negligible compared to the quadrupolar relaxation ef-

fects, but in the case of the double-quantum coherence, far into the slow-tumbling regime

the adiabatic dipole–dipole contribution begins to dominate the adiabatic-free quadrupolar

contribution.

4.3 Production of N-14 double-quantum coherence (DQC)

in solution

There are really two questions in the problem of N-14 double-quantum spec-

troscopy: not only “is it useful?”, but also “can it be done?” The first question was

addressed in §4.2; the second question is not trivial, for we have already seen that fast re-

laxation due to an extremely large quadrupolar coupling can present formidable challenges.

This section explores a few potential methods by which S = 1 double quantum coherence

may be created in solution, some of which have been explored experimentally in this work

or elsewhere, some of which have not.
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4.3.1 DQC through the residual quadrupolar interaction in oriented me-

dia

Perhaps the most obvious way to create N-14 double-quantum coherence in solu-

tion is to perform the experiments on samples in anisotropic (oriented) media in which the

quadrupolar Hamiltonian is not motionally averaged to zero. The prototypical example is

that of a liquid crystalline medium which forms an ordered mesophase at the proper concen-

tration and temperature. In such a medium there is a preferred (space-fixed) direction for

molecular orientation, which is called the director axis. There are many cases in which the

liquid crystal is oriented in an external magnetic field; in such cases, the director is usually

parallel or perpendicular to the magnetic field. Not only do the liquid crystal molecules have

a preferred orientation, but solute molecules dissolved in the liquid crystalline solvent will

also tend to have a preferred orientation. From the perspective of NMR, anisotropic liquid

crystalline systems resemble conventional fluids in the sense that fast molecular diffusion

and tumbling motionally average the NMR interactions, but they resemble solids in the

sense that the anisotropic orientational averaging they impose does not remove the tensor

terms of the solid state Hamiltonians. Rather, when the weighted orientational average is

performed, the solid state Hamiltonians tend to be motionally averaged to some smaller,

non-zero value that depends on the degree of ordering of the system and the projection

of the interaction onto the director axis. However, unlike in a powdered solid where the

interaction strengths depend strongly on molecular orientation, all of the molecules in a

liquid crystal tend to have the same interaction strengths, with some small distribution due

to fluctuations in orientation about the director.
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Consider an S > 1/2 nucleus in an anisotropic medium. In general, this nucleus

will experience a motionally averaged first-order quadrupolar Hamiltonian

Ĥ ′Q/~ =
1

3
ω′Q[3Ŝ

2
z − S(S + 1)1̂], (4.6)

where the prime indicates a motionally-averaged quantity and the averaged quadrupolar

frequency ω′Q depends on the spin quantum number S, the CQ and ηQ quadrupolar param-

eters, and the degree of orientation of the molecule. For an S = 1 nucleus, the Ŝx term of

the density operator evolves under this Hamiltonian as [198]11:

Ŝx(t) = e−iĤ
′
Qt/~Ŝxe

+iĤ′
Qt/~ = Ŝx cosω

′
Qt+ i(T̂2,+1 + T̂2,−1) sinω

′
Qt, (4.7)

where T̂2,±1 = ∓1
2(ŜzŜ± + Ŝ±Ŝz). The quadrature-detected NMR signal is proportional to

Tr[Ŝx(t)Ŝ+] ∝ cosω′Qt, which corresponds to a doublet at ω = ±ω′Q centered on ω = 0 and

split by 2ω′Q. If a resonance offset is added to the Hamiltonian in Eq. 4.6, the doublet is

centered on the offset frequency.

It has long been known that the 90◦φ—τ—90◦φ two-pulse sequence can create

double-quantum coherence from equilibrium magnetization in S = 1 systems with weak

quadrupolar couplings [198, 199, 200].12 The conversion of magnetization to double-quantum

coherence is complete with the proper choice of the delay τ . This can be seen as follows.

The initial thermal equilibrium difference density operator for spin S is ρ̂(0) ∝ Ŝz, and

11In Eq. 3 of Ref. [198], Iy = 1√
2
[T11+T1−1] should be corrected to Iy = i√

2
[T11+T1−1].

12By “weak” it is meant that the quadrupolar coupling is small enough that quadrupolar evolution can be
neglected during a “hard” radiofrequency pulse; the motionally-averaged quadrupolar frequency ω′

Q in liquid
crystalline media will almost always be small enough to satisfy this condition, even in low-power liquid-state
NMR probes.
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a hard 90◦y pulse (where the y-direction corresponds to an rf phase of φ = π/2) con-

verts Ŝz to Ŝx. According to Eq. 4.7, the density operator at time τ is then ρ̂(τ) ∝

Ŝx cosω
′
Qτ + i(T̂2,+1 + T̂2,−1) sinω′Qτ , such that ρ̂(τ = π/(2ω′Q)) ∝ i(T̂2,+1 + T̂2,−1). A sec-

ond 90◦y pulse converts this to −i(T̂2,+2− T̂2,−2) [198], which in the spherical tensor operator

formalism corresponds to pure double-quantum coherence, where T̂2,±2 = 1
2 Ŝ

2
±.

Interestingly, the double-quantum coherence terms T̂2,±2 in the density operator

do not evolve under the first-order quadrupolar Hamiltonian in Eq. 4.6. This means that

the double quantum spectrum exhibits no quadrupolar splitting. This can be an advantage

when performing S = 1 NMR spectroscopy in oriented media because the quadrupolar-split

doublets of different sites may overlap in a conventional NMR spectrum, but all these dou-

blets are collapsed in the double-quantum spectrum so that only chemical shift information

is retained.

The problem of DQC excitation becomes more complicated in the presence of a

resonance offset δ. In such a case the full spin-S Hamiltonian is

Ĥ ′/~ = δŜz +
1

3
ω′Q[3Ŝ

2
z − S(S + 1)1̂], (4.8)

where the fact that the resonance offset Hamiltonian commutes with the quadrupolar Hamil-

tonian conveniently allows the time evolution under these two Hamiltonians to be calculated

separately (sequentially). Starting from equilibrium magnetization ρ̂(0) ∝ Ŝz, the density
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operator after a 90◦y—τ—90◦y excitation sequence is:

ρ̂(τ) ∝ −[cos δτ Ŝz − sin δτ Ŝy] cosω
′
Qτ

−[i cos δτ(T̂2,+2 − T̂2,−2) + sin δτ(T̂2,+1 − T̂2,−1)] sinω′Qτ. (4.9)

In the special case that τ = π/(2ω′Q) and δ = 0, Eq. 4.9 reduces to ρ̂(τ) ∝ −i(T̂2,+2− T̂2,−2),

as expected. If δ 6= 0, not only is the DQC attenuated by a factor of cos δτ , but the presence

other density operator terms can cause spectral artifacts if they end up as observable signal

at the end of a pulse sequence, if proper coherence pathway selection is not employed. The

resonance offset effects on DQC excitation can be removed if δτ = 2πn, where n is an

integer. Alternatively, one can choose τ = π/(2ω′Q) and δ = nπ/τ ; however, in general both

of these conditions cannot be satisfied for two different resonances (i.e., two quadrupolar

sites) at the same time. A better approach may to be modify the excitation sequence to

90◦φ—τ/2—180◦—τ/2—90◦φ, where the rf phase of the 180◦ pulse is arbitrary. This spin

echo sequence refocuses evolution under a resonance offset, but retains evolution under

the first-order quadrupolar Hamiltonian. Employing this excitation sequence gives a result

equivalent to setting δ = 0 in Eq. 4.9.

Since the observable in NMR is transverse magnetization (by convention Ŝ+ for

quadrature-detected spectra), double quantum coherence is not directly observable because

Tr[T̂2,±2Ŝ+] = 0. However, DQC can be observed indirectly in a two-dimensional NMR

experiment, after it is converted to observable (single-quantum) transverse magnetization.

This conversion can be accomplished by the reverse process of the double-quantum ex-

citation described above: DQC can be converted to (unobservable) T̂2,±1 single-quantum
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coherence with a 90◦ pulse, which then evolves into observable T̂1,±1 ∝ Ŝ± single-quantum

coherence (transverse magnetization) during evolution under Ĥ ′Q. Perhaps the simplest

double-quantum 2D pulse sequence is (see Fig. 4.6):

(90◦φ1—τ—90◦φ1)—t1—(90◦φ2)—t2—detect(φr), (4.10)

where φ1 and φ2 are radiofrequency pulse phases and φr is the receiver phase. The

90◦φ1—τ—90◦φ1 DQC excitation sequence can be replaced by 90◦φ1—τ/2—180◦—τ/2—90◦φ1

in order to make it robust against resonance offset effects. The optimal choice of τ for

DQC creation is τ = π/(2ω′Q) can be experimentally parameterized as τ = 1/(2∆), where

2π∆ = 2ω′Q is the doublet splitting in the directly-detected spectrum due to the residual

quadrupolar interaction. The DQC evolves during the indirect dimension time interval t1,

where it is converted by the final 90◦ pulse into a form that evolves into transverse mag-

netization that is measured as a function of the direct dimension time interval t2. Fourier

transformation with respect to both time dimensions yields the double-quantum spectrum

(a singlet at frequency 2δ) in the indirect dimension projection and the single-quantum

(conventional) spectrum (a doublet at δ ± ω′Q) in the direct dimension projection.

90oφ
1

t1 t2detect

90oφ
1

90oφ
2

τ

90oφ
1

t1 t2detect

90oφ
1

90oφ
2

τ

Figure 4.6: Pulse sequence for I = 1 double-quantum spectroscopy in the presence of a
weak quadrupolar coupling. A 180◦ pulse can be inserted in the middle of the two-pulse
excitation sequence to make the excitation robust against resonance offset effects.

Some experimental results on N-14 double-quantum spectroscopy of oriented phos-

pholipid bicelles in aqueous solution at 16.45 T are presented in §4.5.2.



4.3. PRODUCTION OF N-14 DOUBLE-QUANTUM COHERENCE (DQC)
IN SOLUTION 242

4.3.2 DQC through J-coupling to a spin-1/2 in isotropic solution

The discussion in §4.3.1 is applicable to oriented systems in which a residual

quadrupolar interaction exists. However, it is also useful to have a way to create dou-

ble quantum coherence in isotropic solution. A method of creating S = 1 DQC in isotropic

solution through the J-coupling to a neighboring spin-1/2 nucleus13 was invented more than

twenty years ago by Yen and Weitekamp [202], with an obvious potential application being

the creation of N-14 DQC in proteins through J-coupling to amide protons. Their pulse

sequence is shown in Fig. 4.7; this 2D experiment correlates the S = 1 double-quantum

spectrum in the indirect dimension with the I = 1/2 directly-detected spectrum. The basic

elements of this sequence are familiar: aside from the choice of pulse phases, the excitation

sequence resembles the INEPT heteronuclear polarization transfer sequence [203], and the

sequence as a whole resembles the HSQC heteronuclear correlation experiment [204] used

in protein NMR spectroscopy. However, the effect of this pulse sequence is very different

in the S = 1, I = 1/2 J-coupled system.14 As is shown in Ref. [202], under the J-coupled

heteronuclear Hamiltonian

Ĥ/~ = δI Îz + δSŜz + J ′ÎzŜz, (4.11)

13Ref. [201] describes a method capable of creating single-spin DQC in a weakly-coupled pair of spin-1
nuclei in isotropic solution.
14Ref. [205] describes a heteronuclear pulse sequence for use in anisotropic media that is structurally similar

to Yen and Weitekamp’s, but it includes a selective S-spin pulse for double-quantum excitation through the
residual quadrupolar interaction, and uses a different choice of pulse phases and delays.
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the (90◦x)I—τ/2—(180◦x)I , (180
◦
x)S—τ/2—(90◦x)I , (90

◦
x)S excitation sequence creates the den-

sity operator term

ρ̂I(τ) = {Îz[1 + Ŝ2y(cos J
′τ − 1)] + ÎxŜy sin J

′τ} (4.12)

from equilibrium I-spin magnetization (ρ̂I(0) = cI Îz). The 180◦ pulses in the center of

the evolution interval τ refocus any effects due to chemical shift evolution while retaining

evolution under the due to heteronuclear J-coupling. The ÎzŜ
2
y = −14 Îz[(Ŝ2++Ŝ2−)−(Ŝ+Ŝ−+

Ŝ−Ŝ+)] term contains spin-S double- and zero-quantum coherences. The − 14 Îz(Ŝ+Ŝ− +

Ŝ−Ŝ+) zero-quantum term is unwanted, as is the Îz z-magnetization term and the ÎxŜy

heteronuclear double- and zero-quantum term; the effects of these terms can be removed

from the final spectrum by proper coherence pathway selection. Furthermore, the ÎxŜy term

can be nulled by choosing τ = π/J ′ = 1/(2J) (where J ′ = 2πJ), which is also the condition

that maximizes the ÎzŜ
2
y term that contains the S = 1 DQC.

I

S

τ/2 τ/2 τ/2 τ/2

t
1

t
2I

S

τ/2 τ/2 τ/2 τ/2

t
1

t
2τ/2 τ/2 τ/2 τ/2

t
1

t
2

Figure 4.7: Pulse sequence for indirect detection of S = 1 double quantum coherence via
a J-coupled I = 1/2 partner. The thin blocks represent 90◦ pulses and the thick blocks
represent 180◦ pulses.

The spectra of systems in which the linewidths are not greater than the J-coupling

exhibit J-split multiplet structures. In a system of n equivalent spins I = 1/2 coupled to

an S = 1 nucleus, the I = 1/2 directly-detected (single-quantum) spectrum consists of

a 1 : 1 : 1 intensity-ratio triplet with splitting J . The multiplet structure of the S = 1
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double-quantum spectrum varies according to the number n of coupled spin partners. It

is important to note that the DQ multiplet structure differs in the Yen and Weitekamp

heteronuclear experiment from that which would be observed if DQC was created directly

by, say, a residual quadrupolar interaction; this is because the DQC in the heteronuclear

experiment has the form ÎzŜ
2
±, whereas in the single S = 1 system the DQC has the form Ŝ2±,

and these operators have different matrix elements. In the Yen and Weitekamp experiment,

the ÎzŜ
2
±-type DQ spectrum in the S−I system corresponds to a 1:1 intensity-ratio doublet

of splitting 2J ; in the SI2 system the DQ spectrum corresponds to a 1:0 :1 triplet of splitting

2J ; and in the SI4 system the DQ spectrum corresponds to a 1 : 1 : 0 : 1 : 1 intensity-ratio

quintet of splitting 2J [202]. In these three systems, the S = 1 directly-detected spectrum

corresponds to a 1 : 1, 1 : 2 : 1, or 1 : 4 : 6 : 4 : 1 intensity-ratio multiplet, respectively, of

splitting J .

The result of a nitrogen-proton DQ-SQ correlation experiment at 7.05 T is pre-

sented in §4.5.1 in the ammonium ion (+NH4) system, which is in the extreme narrowing

limit.

4.3.3 DQC through cross-correlation effects outside of the extreme nar-

rowing regime

As was discussed in §1.5.4, outside of the extreme narrowing regime it is some-

times possible to observe dynamic frequency shifts (DFSs) and multiexponential relaxation

behavior in certain spin systems. The dynamic frequency shifts are discussed first. These

shifts can be thought of as arising from coherent evolution due to incomplete motional

averaging of the cross (interference) terms in the second-order (Zeeman-truncated) solid-
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state Hamiltonian. The largest of these effects involve correlation with the quadrupolar

interaction, assuming the quadrupolar coupling is large; Wi et al. have considered in some

detail the cases of quadrupolar-CSA cross-correlation [37, 206] and quadrupolar-dipolar

cross-correlation [207, 208] in the solid state (particularly under magic-angle spinning con-

ditions). The motionally averaged solution-state Hamiltonians may be deduced from the

expressions for the dynamic frequency shifts in Refs. [88] and [89],15 and compared to the

expressions of Wi et al. The dynamic shift Hamiltonians in isotropic solution are given for

the cases of quadrupolar-quadrupolar autocorrelation on spin S, quadrupolar-CSA cross-

correlation on spin S, and quadrupolar-dipolar cross-correlation in the I − S heteronuclear

system, where the quadrupolar coupling is on spin S and the dipolar coupling is between

spins S and I:

Ĥ
(2)

QS ,QS
/~ =

3

20

ω2QS
ωS0
{LQS ,QS (ωS0 )[(4S(S + 1)− 1)Ŝz − 8Ŝ3z ]

−LQS ,QS (2ωS0 )[(2S(S + 1)− 1)Ŝz − 2Ŝ3z ]} (4.13)

Ĥ
(2)

QS ,CSAS
/~ = −1

5

ωQSωCSAS
ωS0

LQS ,CSAS (ω
S
0 )[3Ŝ

2
z − S(S + 1)1̂S ] (4.14)

Ĥ
(2)

QS ,DIS
/~ = −3

5

ωQSωDIS

ωS0
LQS ,DIS

(ωS0 )[3Ŝ
2
z − S(S + 1)1̂S ]Îz (4.15)

where ωQS = (2πCQS )/[2S(2S−1)], ωCSAS = ∆σSω
S
0 , ωDIS

= −µ04π
γIγS~
r3IS

, and ωS0 = γSB0.

Axial symmetry has been assumed for the quadrupolar and CSA interactions (ηQS = 0,

ηCSAS = 0). The dimensionless function Lξ,ξ′(ω) is related to the imaginary part of the

spectral density and reaches an asymptotic value as the rotational correlation time τc →∞,

15Refs. [88] and [89] incorrectly omit factors of ω2τ2 from the numerators of their definitions of L(ω), the
imaginary part of the spectral density function.
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which recovers the orientationally-averaged solid-state Hamiltonian. In the case of a rigid,

spherical molecule, Lξ,ξ′(ω) = P2(cos θξ,ξ′)[ω
2τ2c /(1+ω

2τ2c )], where P2(cos θ) =
1
2(3 cos

2 θ−

1) is the second-rank Legendre polynomial, and θξ,ξ′ is the angle between the principal

axes of interactions ξ and ξ′ (θξ,ξ = 0 for autocorrelated interactions). In the case of

an amide N-14 at B0 = 16.45 T with CQ = −3.2 MHz, rNH = 1.02 Å, and ∆σN14 =

−170 ppm, the relevant parameters are ωQN = 2π × −1.6 MHz, ωCSAN = 2π × −8.61

kHz, ωDNH
= 2π × −8.18 kHz, and ωN0 = 2π × 50.6 MHz. Thus in this type of system

the quadrupolar autocorrelated dynamic frequency shift can approach the 10 kHz range,

whereas the quadrupolar-CSA and quadrupolar-dipolar cross-correlated dynamic frequency

shifts are at most in the tens to hundreds of Hz range. It is interesting to note that

the asymptotic values of the quadrupolar autocorrelated and quadrupolar-dipolar cross-

correlated DFSs decrease like 1/B0 with increasing magnetic field strength, whereas the

quadrupolar-CSA cross-correlated DFS is independent of B0 (due to the fact that ωCSA ∝

B0).

The next question is whether any of these dynamic frequency shift Hamiltonians

can be used to create double-quantum coherence in the S = 1 system. It is well-known

that rotation due to a hard radiofrequency pulse can change only the coherence order of a

density operator term, not its tensor rank, and the creation of |q| > 1 multiple-quantum

coherence T̂k,q on spin S necessarily requires converting rank k = 1 magnetization to some

higher rank tensor term. The usual strategy in NMR for creating multiple-quantum coher-

ence in the spin-S system is to create transverse magnetization Ŝ± ∝ T̂1,±1 from equilibrium

magnetization via a hard rf pulse, which then evolves during free precession under an appro-
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priate Zeeman-truncated Hamiltonian into T̂k,±1 terms (conserving the coherence order),

which then may be converted to T̂k,q terms via a second pulse.16 It should be considered

whether the Hamiltonians in Eqs. 4.13, 4.14, and 4.15 are capable of creating higher-rank

spin-S tensor terms under free precession. In general, all of them can be used to cre-

ate spin-S multiple-quantum coherence given the appropriate pulse sequence; in fact, the

quadrupolar-CSA DFS Hamiltonian has the same spin-operator dependence as the first-

order quadrupolar Hamiltonian used in §4.3.1. However, in the special case of S = 1,

the autocorrelated quadrupolar DFS Hamiltonian in Eq. 4.13 is proportional to Ŝz, since

Ŝ3z = Ŝz for S = 1. Evolution under such a Hamiltonian corresponds to a z-rotation of

spin-S, which is not capable of changing the tensor rank of the density operator terms;

in fact, the system evolves under this Hamiltonian in the same way as it would under a

chemical shift.17 It is unfortunate that the autocorrelated quadrupolar DFS Hamiltonian

cannot be used in S = 1 systems, because it is relatively large and in general the larger

the Hamiltonian the better, in order to be able to create multiple-quantum coherence faster

than the relaxation processes can take effect. The remaining candidates appear to be the

quadrupolar-CSA and quadrupolar-dipolar DFS Hamiltonians, preferably well into the slow

tumbling regime where the DFSs are large.

The other possibility for DQC creation in the slow tumbling regime is to utilize

the quadrupolar-dominated multiexponential relaxation phenomena to create higher-rank

16As was seen in in §4.3.2, in a two-spin I − S system it is possible to create S-spin multiple quantum
coherence starting with I magnetization instead, but a Hamiltonian is still necessary which can create
higher-rank spin-S tensor terms in the density operator upon free precession.
17The fact that both the second-order quadrupolar Hamiltonian and the chemical shift Hamiltonian are

proportional to Ŝz is what makes using spin manipulations (i.e., rf pulses) to help to remove the anisotropic
second-order quadrupolar broadening in solids without removing the chemical shift seems to be an impossible
task. However, it is possible to implement DAS- and DOR-type spatial manipulations.
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density operator terms. However, magnetization in S = 1 systems is known to relax mo-

noexponentially even outside of the extreme narrowing regime [103], so the possibility of

DQC creation through this type of mechanism is precluded, at least for an isolated S = 1

system.

4.4 Quadrupolar relaxation concerns for DQC creation in

large-CQ systems

The discussion of §4.2 made it clear that the major obstacle to the successful im-

plementation of double-quantum line narrowing in amide N-14 systems is the absolute size

of the relaxation rates when the quadrupolar coupling is very large. The fast quadrupolar

relaxation is also the major obstacle to creating N-14 double quantum coherence, as will be

discussed below for the cases of DQC creation through the dynamic frequency shift Hamil-

tonians, J-coupling to neighboring nuclei, or residual quadrupolar interaction in anisotropic

solution.

The effects of relaxation on DQC creation through the cross-correlated dynamic

frequency shift terms of §4.3.3 will be considered first, in particular the example of the

quadrupolar-CSA cross-correlation. The motionally-averaged Hamiltonian that dictates the

cross-correlated dynamics is given in Eq. 4.14. This Hamiltonian has the same spin-operator

dependence as the first-order quadrupolar Hamiltonian in Eq. 4.6; therefore, DQC can be

created via the excitation pulse sequence in §4.3.1. As can be seen from Eq. 4.7 evolution

of transverse magnetization under this type of Hamiltonian creates T̂2,±1 density operator

terms that can be converted into DQC via rf pulses. A comparison of the Hamiltonians in
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Eqs. 4.6 and 4.14 indicates that the T̂2,±1 density operator terms will develop sinusoidally

under the quadrupolar-CSA DFS Hamiltonian with a frequency

ω
(2)
Q,CSA = −3

5
ωQωCSAP2(cos θQ,CSA)

ω0τ
2
c

1 + ω20τ
2
c

, (4.16)

where the usual conditions of a rigid spherical molecule in isotropic solution with axially-

symmetric quadrupolar and CSA interactions have been assumed. By comparison, the

relaxation rate of the T̂2,± density operator terms under the same conditions is given by

Eqs. 10, 35, and 63–65 of Ref. [103]:

Γ2,±1 = ΓQ2,±1 + ΓCSA2,±1 + ΓQ,CSA2,±1

' 3

80
(2πCQ)

2[3J(0) + J(ω0) + 2J(2ω0)] +
1

30
(∆σω0)

2[
8

3
J(0) + 10J(ω0)]

+
1

5
(2πCQ)(∆σω0)P2(cos θQ,CSA)J(0), (4.17)

where J(ω) = τc/(1 + ω2τ2c ) is related to the real part of the spectral density function,

and the quadrupolar-CSA cross-correlated relaxation term ΓQ,CSA2,±1 has been approximated

by its adiabatic component (which is expected to dominate in the slow tumbling regime).

Obviously, if the rate Γ2,±1 in Eq. 4.17 that the T̂2,±1 density operator terms exponentially

relax to zero is greater than the frequency |ω(2)Q,CSA| in Eq. 4.16 at which these terms develop

under the cross-correlated Hamiltonian, then trying to create DQC via this mechanism is

a losing battle. These two quantities are plotted in Fig. 4.8 for CQ = −3.2 MHz, ηQ = 0,

∆σ = −170 ppm, ηCSA = 0, θQ,CSA = 0, and ω0/2π = 50.6 MHz. The relaxation in

this case is dominated completely by the ΓQ2,±1 quadrupolar term, and as can be seen, the
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Figure 4.8: Calculated N-14 relaxation rate and quadrupolar-CSA dynamic frequency shift
evolution frequency of the T̂2,±1 density operator terms as a function of rotational correla-
tion time for a rigid spherical molecule in isotropic solution at 16.45 T. The quadrupolar
parameters are CQ = −3.2 MHz and ηQ = 0, and the CSA parameters are ∆σ = −170 ppm
and ηCSA = 0, with a Larmor frequency of ω0/2π = 50.6 MHz. The quadrupolar and CSA
interactions are assumed to be coaxial. The vertical dash-dot line marks τc = |ω0|−1, and
the vertical dotted line marks τc = 10|ω0|−1.

quadrupolar relaxation overwhelms the dynamic frequency shift for all values of τc, with

the smallest difference between the relaxation rate and the DFS occurring near ω0τc ∼ 1

[6, §X.III.B]. It is perhaps not unexpected that the quadrupolar relaxation dominates the

DFS, particularly in the slow tumbling regime where the relaxation is governed almost

solely by the adiabatic quadrupolar term which goes as C2Qτc, whereas the DFS goes as CQ

scaled down by a factor of ωCSA/ω0. There is a simple way to determine experimentally

for a given τc whether the quadrupolar-dominated relaxation of the T̂2,1 terms is faster

than their creation through the quadrupolar-CSA DFS. The R2,±1 quadrupolar relaxation
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rate coincides with the R1,±1 = 1/T2 transverse relaxation rate in the slow tumbling limit

(and is less than 1/T2 in the extreme narrowing limit) [103], and 1/T2 is of the order of

the linewidth in the directly-detected spectrum. The DFS-induced splitting of the directly-

detected spectrum as given by the Hamiltonian in Eq. 4.14 is ω
(2)
Q,CSA/π. Therefore, by

equating the Γ2,±1 relaxation rate with 1/T2 with the observed linewidth, one can estimate

that |ω(2)Q,CSA| is comparable to or greater than the Γ2,±1 relaxation rate if the doublet

splitting is large enough to be observed (i.e., if the splitting is at least of the order of

the linewidth). Similar arguments hold for assessing the size of the quadrupolar-dipolar

cross-correlated DFS in two-spin systems.

Next to be considered is the influence of spin relaxation on the creation of S = 1

DQC via J-coupling to an I = 1/2 neighbor, as was discussed in §4.3.2. A −90◦ rotation of

the I−S system about the x-axis after the DQC excitation described in Eq. 4.12 shows that

following the (90◦x)I—τ/2—(180◦x)I , (180
◦
x)S—τ/2 portion of the DQC excitation sequence

the spin-I density operator is ρ̂I(τ−) = {Îy[1+ Ŝ2z (cos J ′τ − 1)]− ÎxŜz sin J ′τ}. The density

operator term ÎyŜ
2
z equals 2

3 Îy −
i
6(Î+T̂

S
2,0 − Î−T̂S2,0), where T̂S2,0 = 3Ŝ2z − S(S + 1)1̂S . It is

the Î±T̂S2,0 terms that are converted into spin-S DQC via the final pair of heteronuclear 90◦x

pulses. Ref. [189] estimates the relaxation rate of the Î±T̂S2,0 terms to be:

ΓIzTS2,0
' 12 · 3

160
(2πCQ)

2 τc

1 + ωS 20 τ2c
, (4.18)

in the limit that quadrupolar interaction is much greater than the CSA, dipolar, and J-

coupling interactions. Following the argument made about the creation of DQC through

DFS evolution, the relaxation rate of the Î±T̂S2,0 density operator terms given by Eq. 4.18
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at 16.45 T is plotted in Fig. 4.9 for an amide N-14–H-1 pair along with the frequency

J ′ = 2πJ that characterizes the development of these terms. Eq. 4.18 contains no adiabatic
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Figure 4.9: Calculated quadrupolar relaxation rate of the Î±T̂S2,0 density operator terms in
the amide N-14–H-1 (I − S) system as a function of rotational correlation time for a rigid
spherical molecule in isotropic solution at 16.45 T, plus the N–H J-coupling frequency.
The quadrupolar parameters are CQ = −3.2 MHz and ηQ = 0, with Larmor frequency of
ω0/2π = 50.6 MHz. The N-14–H-1 J-coupling frequency is |J ′N14−H1| = 2π|JN14−H1| =
2π×65 Hz. The vertical dotted lines mark τc = |ωN140 |−1 (left) and τc = 10|ωN140 |−1 (right).

contribution in this approximation, so the relaxation rate decreases away from the ωN140 τc ∼

1 region, but with an amide N-14 CQ of more than 3 MHz, the difficulty of using the

nitrogen-proton J-coupling to create N-14 DQC for any reasonable value of τc is apparent.

Finally, the case of DQC excitation in anisotropic media is considered. Accord-

ing to Eq. 4.6, the Hamiltonian used for DQC creation in an oriented system is just the

orientationally-averaged first-order quadrupolar Hamiltonian, which has the form as the
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quadrupolar-CSA dynamic shift Hamiltonian in Eq. 4.14. Therefore, the effect of relaxation

on DQC excitation is much the same as in the dynamic frequency shift case.18 However,

the quadrupolar Hamiltonian in an anisotropic system can be quite large, depending on

the degree of alignment of the medium. The relevant quantities to be compared are the

quadrupolar evolution frequency ω′Q in Eq. 4.6 with the T̂2,±1 relaxation rate in Eq. 4.17,

assuming only quadrupolar and CSA relaxation. The quantity ω′Q can be determined from

the S = 1 doublet splitting ∆ = ω′Q/π. If the quadrupolar linewidths are small enough that

the doublet is resolved, it is likely that DQC excitation is possible. However, it should be

pointed out that in protein NMR spectroscopy the concentration of the protein is so low

(∼ 1 mM) and the gyromagnetic ratio of N-14 is so low that any practical experiment would

still require the N-14 DQC that develops in the indirect dimension of a 2D experiment to

be transferred to H-1 nuclei in the direct dimension for more sensitive detection [7, §8.5.1].

If that transfer is to be accomplished through the J-coupling, the same types of problems

arise as were discussed previously: e.g. the Î±T̂S2,0 density operator terms may relax be-

fore the transfer to spin-I transverse magnetization is complete. It is possible, however,

that the residual dipolar couplings in an aligned medium may be somewhat larger than the

J-couplings, so the transfer may be able to proceed slightly faster.

18Note that the relaxation rates in an oriented medium differ somewhat from the rates in isotropic solution.
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4.5 Experimental data

4.5.1 N-14 DQ–H-1 SQ correlation spectroscopy via the J-coupling

N-14 DQ NMR experiments were performed on Yen and Weitekamp’s [202] test

sample in order to test the pulse sequence in Fig. 4.7. The sample was 8 M aqueous

ammonium nitrate (NH4NO3(aq)) acidified to pH ∼ 1 with concentrated hydrochloric acid

to ensure that the +NH4 remained in its protonated form. There are two resonances in the

N-14 spectrum, one due to +NH4 and the other due to NO−3 ; only the +NH4 resonance was

studied here because the N-14–H-1 J-coupling was used. The experiments were performed

at 7.05 Tesla on a Varian Unity Inova spectrometer using a Varian 5-mm H–X broadband

solution-state NMR probe. The H-1 frequency was 299.78 MHz and the N-14 frequency was

21.65 MHz. The pulse sequence in Fig. 4.7 was modified to include pulsed field gradient

selection of the N-14 double quantum coherence. The experimental spectrum is shown in

Fig. 4.10. As expected, the N-14 DQ spectrum showed a 1:1 :0 :1 :1 intensity ratio J-split

quintet centered at twice the frequency of the directly-detected +NH4 N-14 resonance. The

J-splitting was ∼ 100 Hz. The H-1 directly-detected spectrum showed a 1 : 1 : 1 intensity

ratio J-split triplet. The N-14 line was on the order of Hz; the tetrahedral symmetry of the

+NH4 ion results in a small electric field gradient at the position of the nitrogen nucleus

and hence in a small quadrupolar coupling. The quadrupolar relaxation is therefore slow.

This system is expected to be well within the extreme narrowing regime: no line narrowing

in the double quantum was observed, and none was expected.

The N-14 DQ–H1 SQ correlation experiment was tried using other samples to

see how well the method could be extended to systems with faster quadrupolar relaxation
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Figure 4.10: N-14 double quantum spectrum of +NH4(aq) in ammonium nitrate detected at
7.05 T on H-1 through the J-coupling. The vertical axis is the direct (H-1 single quantum)
dimension and the horizontal axis is the indirect (N-14 double quantum) dimension. The
ppm scales on both axes are mislabeled; see below for the correct spectral widths in both
dimensions. The pulse sequence in Fig. 4.7 was used along with pulsed field gradient
coherence pathway selection. A z-gradient pulse of strength G = 0.42 G/cm was applied
for τG1 = 6.922 ms at the end of the t1 interval just before the simultaneous 90◦ pulses;
a z-gradient pulse of strength G = 0.42 G/cm was applied for τG2 = 1 ms just after the
simultaneous 90◦ pulses. The use of equally-strong gradient pulses with durations in the
ratio τG1/τG2 = 6.922 = γH1/(2γN14) ensured selection of the N-14 DQC in the indirect
dimension. A total of 8000 points were taken in the direct dimension with a spectral window
of 4000 Hz and an acquisition time of 1 s. A total of 2048 points were taken in the indirect
dimension with a spectral window of 8000 Hz; 8 acquisitions were taken per indirect point.
The H-1 90◦ pulse was 55 µs long and the N-14 90◦ pulse was 35 µs long. A recycle delay
of 1 s was used along with a 4 ms, 22 G/cm spoiler z-gradient pulse before the recycle
delay to dephase any remaining proton transverse magnetization before the start of the
next experiment.

rates. The only successful attempt was in neat formamide (HCONH2), which exhibited a

weak double quantum signal. The N-14 linewidth in this system was ∼ 250 Hz and no

J-structure was resolved, so it is expected that this system is near the limit of practicality

for this experiment. No line narrowing in the double quantum dimension was observed.

Formamide reorients in the extreme narrowing regime. The DQ–SQ correlation experiment

was also attempted in methyl formamide and in piperidine; no N-14 double quantum signal
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was observed in these experiments.

4.5.2 N-14 DQ–SQ correlation spectroscopy in oriented bicelles

Nitrogen-14 double-quantum spectroscopy was performed in a system of magnetically-

oriented phosphocholine lipid bicelles. Bicelles, short for “bilayered micelles”, are thought to

be discoidal bilayers that self-assemble in aqueous solution from mixtures of short- and long-

chain polar lipids at the proper temperature and concentration. The polar (hydrophilic)

head groups of the lipids orient toward the outside of the disc and the hydrophobic chains are

directed inward. Phospholipid bicelles have been well-characterized by NMR [209, 210, 211].

A magnetic field such as the one in an NMR magnet can be used to align the bicelles into

an oriented liquid crystalline phase. Under normal conditions the discs orient themselves

so that the normal vectors of their faces are perpendicular to the magnetic field.

The bicelles used in this work were a 25% (w/v) solution of dimyristoylphos-

phatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) lipids in D2O in a

concentration ratio of q = [DMPC]:[DHPC] = 2.75. The general structure of these lipids is:

[R–(C=O)–O–CH2]–[CH–O–(C=O)–R]CH2–[O–(PO−2 )–O]–(CH2)2–N
+–(CH3)3

The group –R is the long alkyl chain –(CH2)12–CH3 in the case of DMPC and is the short

alkyl chain –(CH2)4–CH3 in the case of DHPC. The long-chain lipids form the faces of the

bicelles and the short-chain lipids cap the edges. The size of the bicelle can be adjusted by

varying the concentration ratio of the two lipids.

The polar heads of the lipids are phosphocholine groups, which in turn contain an

ethyltrimethylammonium group. The nitrogen atom in this group is situated in a fairly sym-
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metric environment where the electric field gradients are relatively small; consequently the

quadrupolar coupling is not very large. The N-14 quadrupolar coupling constant has been

estimated in an NMR relaxation study to be ≈ 100 kHz in similar n-alkylmethylammonium

lipids [212]. This is of the same order of magnitude (perhaps somewhat smaller) than typical

quadrupolar coupling constants of H-2 nuclei; since deuterium double quantum spectroscopy

has been performed long ago, DQ spectroscopy in the N-14 bicellar system should have sim-

ilar success. Note that the bicelles are large, ≈ 40 nm in diameter and ≈ 4 nm thick, so

they should tumble with a global rotational correlation time that is outside of the extreme

narrowing regime. However, the bilayers are fluid and internal motion about the lipid axis

is also possible.

The DHPC:DMPC bicelles used in this study were reconstituted from a previ-

ous mixture that had been frozen for storage. The mixture was a 25% (w/v) 2.75:1

DMPC:DHPC solution in D2O. The reconstitution procedure is as follows. The sample

was mixed in a vortexer for 1 minute and then cooled in a liquid nitrogen/isopropanol bath

at −4 ◦C for 2–3 minutes. It was then heated in a water bath at 50 ◦C for 10 minutes,

followed by centrifugation for 5 minutes. This procedure was repeated three or more times.

The NMR experiments were conducted at 16.43 T on a Bruker Avance-700 spec-

trometer using a Bruker 5-mm H–X broadband solution-state NMR probe. The N-14 Lar-

mor frequency was 50.577 MHz. Fig. 4.11 shows the N-14 spectrum of DHPC:DMPC bicelles

aligned in a magnetic field of 16.43 T at 40 ◦C. The quadrupolar splitting of the D2O H-2

nuclei was measured to be 29 Hz; this served as an external measure of the alignment of

the medium. The N-14 spectrum exhibits two quadrupolar-split doublets centered on ap-
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proximately the same frequency. The inner doublet was split by ∆i = 1.625 kHz and the

outer doublet was split by ∆o ∼ 5.3 kHz. The full-width at half maximum of the compo-

nents of the inner doublet was 80 Hz. The inner doublet was chosen for further study via

Figure 4.11: N-14 spectrum of DHPC:DMPC bicelles aligned at B0 = 16.43 T at 40 ◦C.
The spectrum was the sum of 1024 scans. The spectral window was 20 kHz, the acquisition
time was 15 ms, and the recycle delay was 350 ms.

double-quantum spectroscopy using the pulse sequence in Fig. 4.6. The excitation time τ

was set to 1/(2∆i) = 307 µs. Coincidentally, this choice of τ almost nulls the DQ excitation

of the outer doublet (see Eq. 4.9). No 180◦ refocusing pulse was used in the center of the

excitation window; a 180◦ pulse at the rf power that was used would be 80 µs long, which is

a significant fraction of τ . The N-14 double-quantum–single quantum correlation spectrum

is shown in Fig. 4.12. Frequency discrimination was not employed in the indirect dimension

so the spectrum is mirrored across ω1 = 0. The experiment also generated phase-twist
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lineshapes rather than pure-absorptive mode lineshapes. As is expected the observed −2

kHz resonance offset in the double-quantum (indirect) dimension is twice the −1 kHz offset

in the single-quantum (direct) dimension. Only a single resonance is observed in the double

quantum dimension because the DQC is not split by the quadrupolar coupling. No line

narrowing was observed in the double quantum dimension. A DQ–SQ correlation of the

outer doublet is not observed. This may be the first I = 1 double quantum spectrum taken

in oriented bicelles.

4.6 Conclusions

The work reported here investigated the feasibility of obtaining higher-resolution

solution-state N-14 NMR spectra in large biomolecules via the use of double-quantum spec-

troscopy. The ability to perform N-14 spectroscopy would obviate the need for isotopic

labeling with the spin-1/2 N-15 nucleus. The spin S = 1 N-14 nucleus typically exhibits

extremely large linewidths due to the fast relaxation induced by its large quadrupolar cou-

pling (CQ ∼ 3 MHz for amide nitrogens). This broadening is even worse in slowly tumbling

molecules whose rotational correlation time is outside of the extreme narrowing limit. How-

ever, in this limit the linewidth of the I = 1 double quantum coherence (DQC) decreases

(although not indefinitely) as the rotational correlation time increases. The double-quantum

spectrum also exhibits a chemical shift resolution twice that of the normal single-quantum

if the linewidths are held constant. For these reasons the idea of N-14 double quantum

spectroscopy of biomolecules is appealing. The DQC is not directly observable so it is

necessary to conduct a multidimensional NMR experiment to measure it indirectly. This



4.6. CONCLUSIONS 260

Figure 4.12: N-14 double-quantum–single quantum correlation spectrum in DHPC:DMPC
bicelles aligned at B0 = 16.43 T at 40 ◦C. The vertical axis is the indirect (DQ) dimen-
sion and the horizontal axis is the direct (SQ) dimension. The spectrum was displayed in
absolute-value mode. The pulse sequence in Fig. 4.6 was used with τ = 307 µs and a 90◦

time of 40 µ s. The spectral window was 20 kHz in the direct dimension and 5 kHz in the
indirect dimension. A total of 128 points were taken in the indirect dimension with 1024
scans per indirect point. An 8-step phase cycle was employed to select the DQ spectrum
while being robust toward artifacts that may occur due to residual magnetization from the
previous transient acquisition [213]. A recycle delay of 300 ms was used.

would be a disadvantage compared to normal one-dimensional spectroscopy, but most NMR

experiments in biomolecules already use multidimensional spectroscopy to establish spin

correlations.

Theoretical calculations were performed to estimate the size of the double quantum
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line narrowing in the slow tumbling regime for S = 1 nuclei and also to estimate the relevant

relaxation rates. While the line narrowing effect can be substantial for very slowly tum-

bling molecules in a relative sense, in terms of absolute linewidth it is probably impossible

to achieve the degree of spectral resolution that is enjoyed in N-15 spectroscopy if nitrogen

sites with large N-14 quadrupolar couplings are considered. Furthermore, it seems unlikely

in a system with a large quadrupolar coupling that the double quantum coherence can be

created with any efficiency due to the competition of fast quadrupolar relaxation. Three

potential methods of creating DQC in the solution state were considered: DQC creation

via a reintroduced, motionally-averaged quadrupolar interaction in oriented media; DQC

creation via the J-coupling to a spin I = 1/2 partner; and DQC creation through coherent

second-order dynamic shift evolution in the slow tumbling dynamical regime. It was shown

that the rate of DQC production by the dynamic shift method will never compete favor-

ably with the quadrupolar relaxation. The J-coupling method is feasible only when the

quadrupolar relaxation rates do not exceed the value of the J-coupling, which will usually

not be the case due to the large size of N-14 quadrupolar couplings and the relatively small

size of J-couplings. The DQ spectroscopy in oriented media is more promising, particularly

if the molecular alignment is strong enough that a large motionally-averaged quadrupolar

interaction is re-introduced. It should also be noted that some of these techniques may be-

come useful in other S = 1 systems in the slow tumbling regime with smaller quadrupolar

couplings, e.g., deuterium-labeled proteins.

Some N-14 DQ spectroscopy experiments were performed using the well-established

J-coupling and reintroduced quadrupolar coupling methods. Proton-detected DQ spec-
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troscopy of N-14 in the ammonium ion in the extreme narrowing limit was successfully

performed but similar results were not achieved in systems with larger quadrupolar relax-

ation rates. Double quantum line narrowing is not expected in the extreme narrowing limit

and was not observed. Nitrogen-14 DQ spectroscopy was also successfully performed in

magnetically-aligned phospholipid bicelles. No DQ line narrowing was observed. This may

have been the first instance of double quantum NMR spectroscopy in aligned bicelles.
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Chapter 5

Analogies between NMR/NQR

and atomic/molecular optics

5.1 Introduction

The great utility and versatility of nuclear resonance experiments stems from the

ability of the experimenter to control the nuclear angular momentum dynamics through the

application of static and radiofrequency magnetic fields. Many of these experiments can

be performed in continuous wave (cw) mode, although pulsed Fourier transform techniques

allow the full power of NMR quantum control to be exploited. New pulse sequences are

usually designed with the following thoughts in mind: what types of quantum coherences

can be created in the system? What effective Hamiltonians would be necessary in order

to extract certain desired physical information from the spin system? How can the exper-

imentalist generate the necessary effective Hamiltonians? The NMR spectroscopists have
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developed some of the most sophisticated techniques of quantum control largely due to sev-

eral fortuitous conditions. First of all, the spin systems are simple, usually involving only a

few discrete states that are relatively weakly coupled to their environment, which results in

slow relaxation of the nuclear polarization. The experimenter often has the ability to apply

“hard” rf pulses to the system during which the dynamics under any internal Hamiltonians

can be neglected, allowing for the precise manipulation of the nuclear angular momenta.

Furthermore, experiments conducted at high magnetic fields allow for the possibility of

applying coherence pathway selection techniques that can simplify the observed spectra.

It is often the case in an atomic or molecular system1 that angular momentum is

a good (or approximately good) quantum number. This angular momentum could be the

total electronic angular momentum, or the total electronic plus nuclear angular momentum

if a strong hyperfine coupling is present. If one or two of these angular momentum states are

isolated, the situation in atomic and molecular optics (AMO) is quite analogous to NMR.

The field of AMO is quite broad, and only a small subset of those studies will be

considered here. It is not the goal of this work to explore some of the analogies between

ultrafast (coherent) laser spectroscopy and magnetic resonance, or mixed optical/magnetic

resonance techniques. Rather, the discussion will be limited to experiments that involve

the simple dynamics of quantized atomic or molecular angular momenta in (usually static)

electric and magnetic fields, which are not regularly considered from the perspective of

quantum control in the density operator formalism. There have been decades of work in

this field and the AMO physicists have strong insights into these systems that may be

1It may be assumed for the purposes of this chapter that the atomic/molecular systems are in the gas
phase.
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applied to the design or understanding of NMR experiments.

The goal of this chapter is simple: to make a mathematical analogy between several

basic NMR and AMO systems, particularly systems with more than two levels. This analogy

will be grounded in a density operator and Hamiltonian formalism for the angular momenta

and will involve a comparison of the methods of polarization of nuclear and atomic systems,

their respective dynamics in the presence of external or local electric and magnetic fields,

and the system observables. The emphasis here is not on the proposal of new experiments

but rather on a systematic exploration of the similarities between NMR and AMO angular

momentum dynamics and experiments. However, it is hoped that the analogies between

NMR and AMO will provide not only additional insight into these varied fields of study

but also stimulate new avenues of thought in experimental design.

The language used in optical and NMR spectroscopies somewhat differs, and the

NMR spectroscopist may find the optical spectroscopy books by the following authors to

be both penetrable and enlightening: Budker et al. [32], Auzinsh and Ferber [214], Suter

[215], Alexandrov et al. [216], Macomber [217], Sobelman [218], and Allen and Eberly [219].

5.2 Nuclear and atomic polarization

The first comparison to be made is between methods of polarization of nuclear

and atomic ensembles. Here, polarization refers to the deviation of the state of the system

from the state in which the projection of angular momentum along any direction is the

same; in a single-spin system this state is the completely depolarized state. We consider

an ensemble of angular momenta described by the quantum number J , which is assumed
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to be a good quantum number for the system. For example, J could describe a particu-

lar electronic or hyperfine state in an atom, or the angular momentum of a nuclear spin.

(Typically F is used to denote hyperfine states and I is used to represent nuclear angular

momenta, but the symbol J is used everywhere in this chapter to emphasize the generality of

angular momentum dynamics across systems.) This ensemble is completely specified quan-

tum mechanically by the density operator in the manifold of the 2J +1 magnetic sublevels

{|J,m = +J〉, . . . , |J,m = −J〉}, where m is the quantum number for the projection of the

angular momentum along the quantization axis. The density operator can be decomposed

in a basis of spherical tensor operators of rank k and order q (see Appendix A):

ρ̂(t) =
2J+1∑

k=0

+k∑

q=−k
ρk,q(t)T̂k,q, (5.1)

where where the operators T̂k,q are assumed to be orthonormal, that is, 〈〈Tk′,q′ |Tk,q〉〉 =

Tr[T̂ †k′,q′ T̂k,q] = δk,k′δq,q′ . The coefficients ρk,q(t) = 〈〈Tk,q|ρ(t)〉〉 = Tr[T̂ †k,qρ̂(t)] are called the

Fano statistical tensors [71] or polarization moments of the system [214]. It is sometimes

also convenient to choose a tensor basis in which symmetric and antisymmetric linear com-

binations of the T̂k,±q (q > 0) tensors are taken in order to form normalized Hermitian basis

operators [220]:

T̂k,q;φ =
1√
2
[cos(qφ)(T̂k,−q + (−1)qT̂k,+q) + i sin(qφ)(T̂k,−q − (−1)qT̂k,+q)], (5.2)

where φ is the usual polar angle measured from the x-axis, with the quantization axis taken

to be in the +z direction.
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If the ensemble is completely unpolarized, the density operator is just equal to the

identity operator, ρ̂ = 1̂ ∝ T̂0,0. However, if the system is polarized so that the probability of

finding the total angular momentum in a particular direction is not isotropic, then non-zero

polarization moments exist with rank k > 0. It is useful to group together these polarization

moments by rank: by one convention, the odd-rank moments correspond to orientation and

the even-rank moments correspond to alignment.2 If the density matrix in the {|J,m〉}

basis is diagonal (i.e., it contains only terms of the form T̂k,0), then alignment corresponds

to the case in which the populations of the |J,±m〉 states are equal (excluding the case

of complete depolarization), and orientation corresponds to cases in which the populations

of the |J,±m〉 states differ [216]. In the terminology of NMR, in which the quantization

axis is chosen to be along the external magnetic field, rank k = 1 orientation is called

magnetization (q = 0 for longitudinal magnetization, q = ±1 for transverse magnetization),

and k = 2, q = 0 alignment is called quadrupolar order.3

Several methods exist by which angular momentum polarization may be visual-

ized. The Wigner-Eckart theorem dictates that the maximum rank of polarization that

can be produced in a system of angular momentum J is kmax = 2J . A two-level J = 1/2

system thus can be described completely by the identity operator and the three rank k = 1

components of the density operator. Linear combinations of these three components can

be associated with the components of a vector in a three-dimensional space, enabling the

dynamics of the system to be interpreted geometrically as evolution of the polarization

2Another convention specifically designates k = 1 polarization to be orientation (for which it is possible
to define a preferred direction for the polarization) and k = 2 polarization to be alignment (for which only
a preferred axis can be defined).

3Strictly speaking, the spin magnetization is proportional to the polarization by the number of spins
and the average nuclear magnetic moment, but “magnetization” and “polarization” will be used somewhat
interchangeably here.
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vector on the so-called Bloch sphere. The magnetization (rank 1 orientation) of the system

is proportional to this vector, as follows from the Wigner-Eckart theorem. However, for

systems with J > 1/2, the density matrix has too many degrees of freedom to be described

by a simple three-dimensional vector, and different methods of visualization must be em-

ployed. One useful method utilizes plots of a three dimensional surface whose radius r from

the origin equals the probability of finding the maximum projection of angular momentum

m = J along the radial direction [221]:

r(θ, φ; t) = 〈J,m = J |R̂−1(φ, θ, 0) ρ̂(t) R̂(φ, θ, 0)|J,m = J〉, (5.3)

where R̂(φ, θ, 0) is the Euler angle-parameterized rotation operator that rotates the quanti-

zation axis into the radial direction, where θ and φ are the polar angles of the radial vector.

This approach is similar to one that has been employed to describe molecular polarization

[214, 222], and methods also have been developed to visualize the different tensor elements

of nuclear polarization in terms of the corresponding spherical harmonics [223].

5.2.1 Thermal equilibrium nuclear polarization

The overwhelmingly common method of polarization in NMR experiments is the

thermal equilibration of the spin system in the presence of a dominant magnetic field.

The density operator for a system at thermal equilibrium with its environment is given by

ρ̂eq = Q−1e−βĤ , where Q = Tr[e−βĤ ] is the canonical partition function and β = (kBT )
−1

(see §1.4.3). At high magnetic fields the Zeeman interaction typically dominates all other

spin interactions, so Ĥ ' ĤZ = −~ω0Ĵz, where ω0 = γB0 is the Larmor frequency of the
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spin J with gyromagnetic ratio γ in an external field B0. The quantization axis z is taken

to be along the magnetic field direction. Typically ~|ω0| ¿ kBT at temperatures above

∼ 10−3 K if B0 is on the order of Tesla, so in the high-temperature approximation, the

high-field equilibrium density operator becomes

ρ̂HTeq ' e−βĤZ/Tr[e−βĤZ ] '
(
1̂ +

~ω0
kBT

Ĵz
)
/Tr[1̂], (5.4)

which corresponds to rank-1 polarization in the z-direction, otherwise known as orienta-

tion, longitudinal magnetization, or Zeeman order (because the first non-trivial term is

proportional to the Zeeman Hamiltonian).

When the externally-applied magnetic field is very small, it is then possible that

the internal Hamiltonians may be the dominant interactions, which is often the case in the

solid state where large internal interactions are not motionally averaged away. Usually if the

nucleus possesses an electric quadrupole moment (J > 1/2), the quadrupolar interaction

dominates at low magnetic fields (‖ĤQ‖ À ‖ĤZ‖) and Ĥ ' ĤQ. Under these conditions it

is convenient to pick the quantization axis z not to be along the direction of the magnetic

field (if any is present) but to be along the principal axis of the local nuclear electric

field gradient tensor. In this case ĤQ =
hCQ

4I(2I − 1)
[(3Ĵ2z − Ĵ · Ĵ) + ηQ(Ĵ

2
x − Ĵ2y )], where

CQ is the quadrupolar coupling constant and ηQ is the electric field gradient asymmetry

parameter (see §1.3.7). Hereafter it will be assumed that the quadrupolar coupling is axially

symmetric (ηQ = 0). The high temperature approximation applies when hCQ ¿ kBT and

the equilibrium density operator of a quadrupolar nucleus at low magnetic fields can be
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approximated as:

ρ̂LF,Qeq ' e−βĤQ/Tr[e−βĤQ ] '
{
1̂− ~ωQ

kBT

1√
6
[3Ĵ2z − J(J + 1)1̂]

}
/Tr[1̂], (5.5)

where in this case, ωQ = 2π
√
6CQ/[4I(2I−1)] and ηQ = 0. The polarized part of ρ̂LF,Qeq cor-

responds to T̂2,0 alignment, also known as quadrupolar order (because the first non-trivial

term looks like the quadrupolar Hamiltonian ĤQ, or because the polarization moment is

of rank 2). This is the type of initial polarization found in low-field nuclear quadrupole

resonance (NQR) experiments in the solid state. Quadrupolar order (alignment) does not

correspond to magnetization (orientation), so the alignment must be converted to orienta-

tion in order to be detected as magnetization.

It should be noted that the density operators above were written with a single

nucleus in mind. However, in the case of a polycrystalline powder, individual crystallites

(and hence local electric field gradients) are oriented randomly. Therefore the direction

of the quadrupolar alignment axis will also be randomly distributed, and a macroscopic

collection of quadrupolar nuclei in a small magnetic field will have no net initial polarization

at thermal equilibrium. This is not the case at high magnetic fields if the Zeeman interaction

dominates all the local (orientation-dependent) interactions; even in a powder, nuclei in each

crystallite will be magnetized (oriented) equally along the external magnetic field axis.

A final point to mention is that some techniques exist in which nuclei are polarized

in a non-equilibrium state, such as spin-exchange optical pumping or dynamic nuclear polar-

ization. Most of these techniques are used to create enhanced magnetization (orientation),

and they will not be discussed here.
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5.2.2 Atomic polarization

There are many ways of polarizing atoms. The most classic example is perhaps

the Stern-Gerlach experiment (see §[45, §1.1]), in which an initially unpolarized beam of

electrically-neutral J = 1/2 atoms was separated into two beams of opposite spin polariza-

tion via passage through an inhomogeneous magnetic field. A more versatile method is to

use light-atom interactions, i.e., the dynamic preparation of atomic polarization via optical

pumping techniques [224]. A photon is a spin-1 particle and therefore can support polariza-

tion of up to rank κ = 2; therefore, a single photon interaction can transfer polarization of

rank κ = 0, 1, 2 to an atom. For example, circular light polarization can be used to define

a direction in space (i.e., with or against the light propagation axis depending on the sense

of the circular polarization) and therefore can prepare atoms in a state of polarization for

which a direction is defined, i.e., rank-1 orientation. Linearly polarized light only defines

a preferred axis in space (i.e., the light polarization axis) and therefore can prepare atoms

in a state of polarization in which only a preferred axis but not a direction is defined, i.e.,

rank-2 alignment. This is only a simplified picture of the light-atom dynamics. Note that

higher-rank polarization moments can be created via multiple photon-atom interactions.

This is generally considered to be in the realm of nonlinear optics.

5.3 Atoms and nuclei with J > 1/2 in electric and magnetic

fields

The dynamical evolution of a quantum system is defined by its Hamiltonian, and

the analogy between atomic systems and quadrupolar nuclei becomes clear through compar-
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ison of their respective Hamiltonians. It will be shown that the magnetic Zeeman interaction

has the same form in the nuclear and atomic cases, but that the quadratic Stark interaction

in atoms has the same form as the nuclear electric quadrupolar Hamiltonian in NQR (for

axially symmetric quadrupole couplings) and as the high-magnetic field NMR quadrupolar

Hamiltonian to first order in the perturbation theory in the rotating frame. More specifi-

cally, the NMR rotating frame dynamics of a quadrupolar nucleus during a resonant rf pulse

are analogous to those of an atomic state in crossed static electric and magnetic fields. The

dynamics during an NQR pulse for a nucleus with an axially-symmetric quadrupolar cou-

pling are analogous to those of an atom in an oscillating magnetic field that makes some

random angle with respect to a static electric field. Due to the experimental inability to

apply rf pulses that are stronger than the nuclear quadrupolar interaction, the analogies

will be complete only when the atomic Stark splittings are much larger than the Zeeman

splittings.

5.3.1 Atoms in crossed electric and magnetic fields

An atom in a state of total angular momentum J , when subjected to a uniform

electric field E along the z-axis and a uniform magnetic field B along the x-axis, has the

following Hamiltonian [31] due to the quadratic Stark and (linear) Zeeman effects:

Ĥ = ĤE + ĤB

= −1

2
E2[α01̂ +

2

3
α2E

2(3Ĵ2z − Ĵ · Ĵ)]− gJµBBĴx, (5.6)
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where the angular momentum operators have been taken to be dimensionless, α0 and α2 are

the isotropic (rank-0) and anisotropic (rank-2) components of the electronic polarizability

tensor, gJ is the g-factor of the state, and µB is the Bohr magneton. As is expected, the

Stark Hamiltonian is symmetric about the electric field axis, and the Zeeman Hamiltonian

is symmetric about the magnetic field axis. The quadratic Zeeman effect is assumed to be

negligible. It is permissible to drop the term in the Stark Hamiltonian proportional to the

identity operator, as this term causes only a constant shift of all the magnetic sublevels

and does not affect the dynamics.4 The remaining effect of the electric field is due to the

anisotropic polarizability of the atom, which is quadratic in the field strength. This effect

vanishes when J = 1/2 and causes a splitting of the magnetic sublevels when J > 1/2.

The usual Zeeman interaction is linear in the magnetic field strength. Upon dropping the

isotropic polarizability term the Hamiltonian becomes:

Ĥ = −~ωET̂2,0 − ~ωBĴx, (5.7)

where ωE ∝ α2E
2,5 and the Larmor frequency is ωB = gJµBB. The quantization axis has

been taken to be along the electric field axis z. It will be assumed that all atoms in the

sample feel identical fields and therefore undergo the same dynamics.

4Of course, the Stark shift of a level J relative to another level J ′ can be extremely important when
considering transitions between J and J ′.

5Some definitions of the Stark Hamiltonian take a J-dependent normalization factor outside of α2, or
include one in the definition of T̂2,0.
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5.3.2 Quadrupolar nuclei in low magnetic fields under radiofrequency

irradiation (NQR)

Typical NQR experiments are performed on either crystalline or polycrystalline

solids that contain quadrupolar nuclei of angular momentum J that are coupled to local

electric field gradients (EFGs) due to the atomic electrons and other neighboring charges.

The quadrupolar Hamiltonian is (see §1.3.7):

ĤQ =
2π~CQ

4J(2J − 1)
[(3Ĵ2z − Ĵ · Ĵ) + ηQ(Ĵ

2
x − Ĵ2y )]. (5.8)

Here CQ = eqeQ is the quadrupolar coupling constant, where eq is the largest component

of the EFG tensor in its principal axis system (PAS) and eQ is the electric quadrupole

moment of the nucleus. CQ can be positive or negative. The asymmetry parameter of the

electric field gradient is denoted ηQ, and the z-axis is taken to be along the principal axis of

the EFG tensor. The nuclear quadrupole moment vanishes for J = 1/2, so this discussion

applies to nuclei with J > 1/2. ĤQ can be written in the form

ĤQ =
+2∑

q=−2
(−1)qA2,qT̂2,−q, (5.9)

where the spatial tensors A2,q are decompositions of the EFG tensor in a spherical basis,

and the spin tensors T̂2,q are defined as usual.

In NQR studies on a single crystal, all the nuclear EFG tensors have the same

orientation in the laboratory frame, which can be can be experimentally controlled by

orienting the crystal. However, most NQR studies are performed on polycrystalline powders,
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which consist of many randomly oriented crystallites that possess different orientations of

their EFG tensor with respect to laboratory frame coordinates. NQR is often performed at

(or near) zero magnetic field, but a sizable magnetic field can be present during any required

radiofrequency (rf) irradiation, for example, during an rf excitation of the system. If the rf

magnetic field is linearly polarized along some axis in the laboratory frame, the rf field will

appear to be along a different, random direction in the nuclear EFG principal axis system

(PAS) due to the random orientation of the crystallite. Since the quadrupolar coupling

usually dominates the rf interaction or any other interaction in the solid, it is convenient to

perform calculations in the EFG PAS frame. It will be assumed that the nuclear site has

an axially symmetric EFG tensor (ηQ = 0), so that the quadrupolar Hamiltonian of a single

crystallite in the presence of linearly polarized rf irradiation B1(t) = B1 cosωrt becomes:

Ĥ(t) = ĤQ + Ĥrf (t)

= ~ωQT̂2,0 − ~ω1(axĴx + ayĴy + azĴz) cosωrt, (5.10)

where ω1 = γB1, ax,y,z = B1x,y,z/B1 are coefficients that give the components of B1 in the

EFG PAS, γ is the nuclear gyromagnetic ratio, and ωQ ∝ CQ. Due to the fact that the

coefficients ax,y,z differ for each crystallite orientation in the powder, the nuclear dynamics

within each crystallite will be different. Therefore, the total NQR signal must be averaged

over crystallite orientation. Note that this Hamiltonian would have the same form as Eq.

5.7 if the magnetic field were time-independent and happened to be oriented along the

x-direction in the EFG PAS.
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5.3.3 Quadrupolar nuclei in high magnetic fields under radiofrequency

irradiation (quadrupolar NMR)

This section considers a high field NMR experiment in which an rf pulse resonant

with the Larmor frequency and polarized along the laboratory-frame x-axis is applied to a

quadrupolar nucleus in a solid powder in the presence of a strong magnetic field B0 in the

+z-direction. The laboratory frame Hamiltonian for a single crystallite is:

ĤLAB(t) = ĤZ + ĤQ,LAB + Ĥrf (t)

= −~ω0Ĵz + R̂(α, β, γ)ĤQR̂
−1(α, β, γ)− 2~ω1Ĵx cos(ω0t), (5.11)

where ω0 = γB0 and 2ω1 = γB1 (the convention for including the factor of 2 in the rf

amplitude will be apparent shortly). ĤQ is the quadrupolar Hamiltonian (Eqs. 5.8, 5.9)

and R̂(α, β, γ) = RA(α, β, γ)R̂T (α, β, γ) is the rotation operator acting upon the spatial

and spin tensors in Eq. 5.9 that transforms the quadrupolar EFG PAS into the laboratory

frame axes according to the crystallite Euler angles (α,β,γ).

At high magnetic fields (|ω0| À |ω1|) it is customary to transform into a rotating

frame corresponding to the interaction representation defined by the dominant ĤZ term.

The effective Hamiltonian in the rotating frame is found by retaining only the time inde-

pendent part of the transformed Hamiltonian (this is called the rotating frame or secular
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approximation):

Ĥrot ' Ĥ
(1)
Q + Ĥrot

rf

= ~ωQT̂2,0 − ~ω1Ĵx, (5.12)

where the quantization axis has been taken to be along the magnetic field axis z. The

quadrupolar frequency ωQ = ωQ(α, β, γ;CQ, η) depends on the crystallite orientation (see

§1.3.7). This truncation of ĤQ is equivalent to applying static perturbation theory to

first order in ĤQ with respect to the dominant Hamiltonian ĤZ . The first-order result

is generally sufficient to describe the response of nuclear spin systems to rf pulses. The

first-order high field-truncated quadrupolar Hamiltonian is proportional to T̂2,0 even when

ηQ 6= 0, as opposed to the full zero-field (NQR) quadrupolar Hamiltonian. The effective

size of the rf field in the rotating frame is ~ω1, which is a factor of 2 smaller than that in the

laboratory frame (Eq. 5.11) due to the fact that the rotating frame approximation selects

only the circular component of the rf radiation that goes around in the same direction as

the spin Larmor precession about B0.

As in NQR, nuclei in crystallites with different orientations will evolve differently,

and the total signal must be averaged over all crystallite orientations. However, there may

be an even closer analogy between quadrupolar NMR and the atomic system in crossed E

and B fields described by Eq. 5.7 than is possible in the example of NMR of a random pow-

der. Consider the example of solution-phase NMR of molecules in liquid crystalline or other

oriented media. As can be seen from Eq. 5.9, ĤQ contains no isotropic (A0,0) component,

and in solution rapid isotropic molecular tumbling on a timescale faster than |ω0|−1 com-
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pletely averages away the anisotropic quadrupolar Hamiltonian. However, in an oriented

medium the molecular tumbling is not isotropic, and a component of the quadrupolar cou-

pling is retained, scaled down by a geometric factor due to anisotropic motional averaging

of the EFG tensor. In this case the characteristic quadrupolar frequency ωQ is orientation-

ally averaged and is generally the same for every nucleus in the sample, which obviates the

need for powder averaging and makes the nuclear evolution in the rotating frame under the

quadrupole coupling and rf field equivalent to the atomic evolution under crossed E and B

fields according to Eq. 5.7. Furthermore, the scaling of the quadrupolar coupling makes it

possible to apply rf fields that are stronger than the quadrupolar coupling (|ω1| > |ωQ|),

which is usually not possible in solid-state NMR, but by contrast it is possible in atomic

systems to cause Larmor splittings that are larger than the Stark splittings (|ωB| > |ωE |).

5.4 Observables in NMR/NQR and AMO

5.4.1 Observables in NMR and NQR

Both NMR and NQR experiments measure the evolution of the bulk nuclear mag-

netization. The magnetization is proportional to the net magnetic moment, which in turn

is proportional to the average nuclear angular momentum. In conventional NMR and NQR

detection schemes, oscillating nuclear magnetization creates a time-dependent magnetic flux

through a detection coil that induces a measurable current in the coil. A summary of con-

ventional NMR detection is given in §1.7. Assuming the coil axis is along the x-direction
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in the laboratory frame, the detection operator is:

ÔNMR/NQR ∝ Ĵx ∝ −
1√
2
(T̂1,+1 − T̂1,−1). (5.13)

In practice the detected signal is down-mixed with the rf carrier frequency, and the mix-

ing is often performed in quadrature (virtually always in the case of high-field NMR). In

high-field NMR experiments the rf coil axis is perpendicular to the dominant magnetic field

along z. Therefore only magnetization transverse to the Zeeman field is detected, and the

quadrature mixing/detection selects only one circularly-polarized component of transverse

magnetization. This corresponds to a detection observable of Ĵ+ ∝ −T̂1,+1 in the rotating

frame. The situation in NQR is more complicated because the natural coordinate system

(the local EFG PAS) does not possess a fixed geometry with respect to the coil axis. It

is also convenient to perform NQR calculations in the interaction frame of the dominant

quadrupolar Hamiltonian, which does not correspond to a simple rotating frame transfor-

mation. A comparison between NQR and NMR detection is made in Ref. [225].

The preceding discussion refers only to observables in NMR/NQR experiments

that are directly detectable by Faraday induction in a coil. It does not consider overtone

effects or the detection of magnetization by magnetometric techniques. However, it should

be noted that in many cases every density operator component can be addressed by den-

sity matrix tomographic techniques. Multidimensional NMR is an example of a technique

that can be used to record the evolution of quantities that are not directly observable;

the normally unobservable coherences are created and allowed to evolve in the indirect di-

mension or dimensions of the experiment before being converted to observable transverse
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magnetization for direct detection.

5.4.2 Observables in AMO

Unlike the case in NMR, a variety of polarization moments can be measured in

different optics experiments, including those of high spherical tensor rank (e.g. Ref. [226]).

The most straightforward way of determining the atomic or molecular polarization is by

measuring the properties of light that is passed through the optical medium. Following the

review by Budker et al. [110], the oscillating light field can be characterized by an electric

field amplitude E0, a frequency ω (with corresponding vacuum wave number k = ω/c, where

c is the speed of light), phase φ, a polarization angle ϕ, and a polarization ellipticity ε. It is

convenient to define a vector for the polarization of the optical medium P = Tr[ρ̂ d̂] that is

equal to the projection of the density operator ρ̂ onto the electric dipole operator d̂. This is

just another way of representing the components of the density operator. The polarization

of the medium has four independent components that can be measured by light, defined by:

P =
1

2
[(P1 − iP2)ei(ωt−kz) + (P1 + iP2)e

−i(ωt−kz)] x̃

+
1

2
[(P3 − iP4)ei(ωt−kz) + (P3 + iP4)e

−i(ωt−kz)] ỹ, (5.14)

where the z-axis is along the direction of light propagation. Alternatively, the four Stokes

parameters could be used to characterize the system. Since only these four polarization

components are detected, one might wonder how all the different possible multipole polar-

izations ρκ,q of the system can be measured. The presence of various multipole polarizations

can be inferred by examining the dynamics of the polarization components [224]. The same
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principle is true in NMR; although only transverse magnetization is detected, the dynamics

of this magnetization can be manipulated to express much information about the quantum

state of the system.

If the system is optically thin (i.e., one in which absorption is negligible and ϕ and

ε are small), the change in polarization rotation, absorption, light phase, and polarization

ellipticity per unit length can be written:

dϕ

dz
= −2πω

E0c
sec 2ε[cosϕ(P1 sin ε+ P4 cos ε) + sinϕ(−P2 cos ε+ P3 sin ε)]

dE0
dz

= −2πω

c
[sinϕ(−P1 sin ε+ P4 cos ε) + cosϕ(P2 cos ε+ P3 sin ε)]

dφ

dz
= −2πω

E0c
sec 2ε[cosϕ(P1 cos ε+ P4 sin ε) + sinϕ(−P2 sin ε+ P3 cos ε)]

dε

dz
=

2πω

E0c
[sinϕ(P1 cos ε+ P4 sin ε) + cosϕ(P2 sin ε− P3 cos ε)]. (5.15)

The presence of different polarization components leads to different optical effects. For

instance, consider a Faraday rotation experiment where the linear polarization of light is

rotated by an angle ϕ by an optical medium in the presence of a magnetic field parallel

to the light propagation. The ellipticity ε is zero for linearly polarized light and if the

rotation is small such that ϕ ¿ 1, Eq. 5.15 indicates that the rotation is ∆ϕ ∝ −P4. The

“observable operator” for optical rotation is written for the J = 0, J ′ = 1 system in §5.7.4.

These methods are general and a similar approach has been used in the same system to

write the observable operator for the fluorescence polarization degree, as measured in Hanle

effect experiments where a magnetic field is applied perpendicular to the direction of light

propagation [227, §2].
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5.5 Alignment-to-orientation conversion in J = 1 systems

The analogies between J > 1/2 NMR/NQR and AMO systems can be better illus-

trated by considering a few examples of how these systems evolve under different experimen-

tal conditions. Some analytic equations for the time evolution of the density operator will

be presented in spherical tensor notation for the case of continuous rf irradiation of J = 1

nuclei in high-field NMR, where the nucleus is polarized either in a state of longitudinal

magnetization or quadrupolar order. This case is analogous to that of a J = 1 atomic state

subjected to perpendicular static electric and magnetic fields or of a J = 1 nucleus subjected

to a magnetic field that is static in the laboratory frame and applied perpendicular to the

EFG PAS. Next, the production of observable signal from quadrupolar order in the J = 1

nuclear quadrupole resonance experiment will be explained as an alignment-to-orientation

conversion process, which is a phenomenon that is well-known in atomic physics studies.

The spherical tensor operator formalism will be used to develop an analytic expression for

the powder-averaged J = 1 NQR signal.

5.5.1 Case of angular momentum J = 1 in high-field NMR or in crossed

electric and magnetic fields in atoms

Consider the Hamiltonian in Eq. 5.12, which describes the NMR rotating frame

dynamics of a single quadrupolar nucleus during rf irradiation. The case of atoms in perpen-

dicular electric and magnetic fields can be obtained by substituting ωQ → −ωE , ω1 → ωB

(Eq. 5.7). Eq. 5.12 can be diagonalized exactly for the three-level J = 1 system to obtain
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the following eigenvalues and eigenvectors:

~ω01Q =
~ωQ√

6
,

~ω±1Q =
~
2

[
−ωQ√

6
±
√

3

2
ω2Q + 4ω21

]
, (5.16)

|ψ0〉 = − 1√
2
[|1,+1〉 − |1,−1〉],

|ψ±〉 =
√
n±[|1,+1〉 − α±|1, 0〉+ |1,−1〉], (5.17)

where α± =
√
2(ω±1Q−ω01Q)/ω1 and n± = (2+α2±)

−1. All spherical tensor operators in this

discussion will be assumed to be normalized, e.g. T̂2,0 =
√

1
6[3Ĵ

2
z − J(J + 1)1̂].

First consider a system prepared in a state of longitudinal magnetization, oriented

along the +z direction. So, ρ̂(0) = Ĵz, neglecting proportionality constants and the term

containing the identity operator. The results of the Hamiltonian diagonalization (Eqs. 5.16,

5.17) can be used to calculate the dynamics in the {|J,m〉} basis, leading to:

ρ̂(t) = e−it(ωQT̂2,0−ω1Ĵx)Ĵze
+it(ωQT̂2,0−ω1Ĵx)

= 2{n+ cos[(ω+1Q − ω01Q)t] + n− cos[(ω
−
1Q − ω01Q)t]}Ĵz

+2{α+n+ sin[(ω+1Q − ω01Q)t] + α−n− sin[(ω
−
1Q − ω01Q)t]}Ĵy

−2{α+n+ cos[(ω+1Q − ω01Q)t] + α−n− cos[(ω
−
1Q − ω01Q)t]}T̂2,1;0◦

+2
√
2{n+ sin[(ω+1Q − ω01Q)t] + n− sin[(ω

−
1Q − ω01Q)t]}T̂2,2;45◦ , (5.18)

where the normalized Hermitian spherical tensor operator combinations are defined accord-
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ing to Eq. 5.2. This exact diagonalization/spherical tensor operator approach has also been

applied to the problem of J = 3/2 nuclei under rf irradiation [228, 229]. As can be seen from

Eq. 5.18, initial longitudinal magnetization oscillates into transverse magnetization Ĵy and

into rank-2 single- and double-quantum coherences T̂2,1;0◦ and T̂2,2;45◦ at the quantum beat

frequencies ω±1Q−ω01Q. Note that conversions of polarization moment rank would be forbid-

den in the absence of the quadrupolar (or Stark) splitting because the interaction with the

magnetic field conserves rank (see §B), a phenomenon that is well-known in AMO studies

of the Hanle effect [227]. On the other hand, longitudinal magnetization would not evolve

under the first-order quadrupolar Hamiltonian Ĥ
(1)
Q ∝ T̂2,0 alone. Only the combination of

electric quadrupolar and magnetic interactions can convert longitudinal magnetization to

rank-2 polarization.

Similar results can be obtained in the case of a system initially aligned into a state

of quadrupolar order, where the difference density operator is ρ̂(0) = T̂2,0 (neglecting pro-

portionality constants). In this case the time evolution can be solved simply by resumming

the series in Eq. 2.14 after employing the relevant commutation relationships between the

spherical tensor operators [198]:

ρ̂(t) = e−it(ωQT̂2,0−ω1Ĵx)T̂2,0e
+it(ωQT̂2,0−ω1Ĵx)

= {1− 3ω21
ω2n

[1− cos(ωnt)]}T̂2,0 +
√
3ω1
ωn

sin(ωnt)T̂2,1;90◦

−
√
3ω21
ω2n

[1− cos(ωnt)]T̂2,2;0◦ −
3ωQω1
2ω2n

[1− cos(ωnt)]Ĵx, (5.19)

where ωn = ω+1Q − ω−1Q =
√
3
2ω

2
Q + 4ω21. The mutual influence of the quadrupolar Hamilto-

nian and the orthogonal magnetic field partially converts initial alignment into orientation
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along the magnetic field axis x.

5.5.2 Nuclear quadrupole resonance in J = 1 systems: alignment-to-

orientation conversion via rf pulses and free precession

The origin of the signal in the NQR experiment also can be understood as an

alignment-to-orientation conversion (AOC) process. AOC phenomena are well known among

atomic physicists in the context of atomic dynamics in electric and magnetic fields [230,

231, 222, 232, 233, 234]. Consider the case of a J = 1 quadrupolar nucleus in a single

crystallite at zero magnetic field, assuming zero EFG asymmetry (ηQ = 0). The axially

symmetric quadrupolar Hamiltonian ĤQ = ωQT̂2,0 has the same form as the high-field

NMR quadrupolar Hamiltonian (however, with a different definition of ωQ), and from Eq.

5.16 with ω1 = 0 the eigenvalues are determined to be ~ωQ/
√
6, ~ωQ/

√
6, and −2~ωQ/

√
6.

The double degeneracy means there is only one unique single-quantum transition frequency,

at 3|ωQ|/
√
6.

The evolution during a linearly-polarized radiofrequency pulse is given by Eq. 5.10,

where the quantization axis z is along the crystallite EFG PAS. The typical case in NQR

is |ωQ| À |ω1|, so it is appropriate to go into the interaction frame of the quadrupolar

Hamiltonian, defined by V̂Q(t) = exp(−iωQtT̂2,0) (see §2.3.2). The effective Hamiltonian in
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the interaction frame is:

ˆ̃
H(t)/~ = V̂ −1Q (t)[−ω1(axĴx + ayĴy + azĴz) cosωrt]V̂Q(t)

= −ω1 cos(ωrt)[(axĴx + ayĴy) cos(
3ωQt√

6
)

−
√
2(axT̂2,1;90◦ − ayT̂2,1;0◦) sin(

3ωQt√
6

) + azĴz]. (5.20)

If the rf frequency is set on-resonance to the transition frequency ωr = 3|ωQ|/
√
6, then Eq.

5.20 contains a time-independent piece:

ˆ̃
H/~ = −1

2
ω1(axĴx + ayĴy), (5.21)

where this approximate effective Hamiltonian holds for |ωQ| À |ω1|. This result corre-

sponds to the lowest-order Magnus expansion (average Hamiltonian) approximation (see

§2.4). Eq. 5.21 demonstrates that the resonant NQR pulse in the quadrupolar interaction

frame looks like the transverse component of a static B1 field scaled down by 1/2. Upon

transforming back out of the interaction frame, the time propagator during the pulse under

this approximate Hamiltonian is given by (see §2.4):

Ûpulse(t) ' exp[−iωQtT̂2,0] exp[+iω1t(axĴx + ayĴy)/2], (5.22)

where the rf pulse is assumed to be turned on at time t0 = 0. In this approximation,

the time evolution factors into an apparent precession about an effective field Beff
1 =

1
2B

eff
1 (axx̃+ayỹ), followed by evolution under the quadrupolar Hamiltonian, which can be
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added to any period of quadrupolar free precession after the pulse.6 Note that this result

is really only valid when the system is observed stroboscopically with the quadrupolar

quantum beat frequency. The effective field strength is Beff
1 = 1

2B1
√
a2x + a2y = B⊥1 /2,

where B⊥1 is the transverse component of B1. The cycle time of V̂Q(t) is tc = 2π
√
6/ωQ,

so an average Hamiltonian treatment may be used to extend the time evolution to pulses

of length t = ntc, where n is a positive integer and V̂Q(ntc) = 1̂. This approach to the

treatment of NQR pulses (and also the following approach to the calculation of the NQR

signal) may be compared to the approaches of Refs. [225, 235, 236, 237, 238, 239].

Two questions must be answered in order to understand the creation of NQR

signal: how is the initial quadrupolar order converted to observable magnetization, and

how does net polarization arise in a powder sample from an initial random distribution

of polarized nuclei? These questions can be answered by an examination of Eqs. 5.21 and

5.22. As was mentioned in §5.2.1, unlike the high-field NMR case in which each nucleus is

oriented along the external magnetic field axis, at zero field each nucleus is aligned along its

local EFG principal axis; this results in no net alignment (or any other polarization) in a

random powder. Eq. 5.21 demonstrates that the strong quadrupolar interaction truncates

a weak resonant rf magnetic field, such that half of the transverse component of the rf

field and all of the longitudinal component in the EFG PAS is ineffective at rotating the

nuclear polarization.7 The effective magnetic field rotates the polarization by an angle

proportional to B⊥1 , the magnitude of which depends on the angle between the magnetic

6The magnetic resonance term “free precession” is used here to mean any period of evolution in the
absence of a driving rf field, even though the dynamics under the quadrupolar Hamiltonian are more com-
plicated than simple precession.

7However, this is not the same as the NMR case in which the effective loss of one half the linearly-
polarized rf field corresponds to the selection of one circularly-polarized rf component. NQR excitation and
detection is linearly polarized, unlike NMR which has circularly-polarized excitation and detection [235].
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field and the EFG principal axis. If the nuclear polarization was rotated by the same angle in

every crystallite, the initial random polarization distribution would be rotated into another

random distribution. However, the fact that the nuclear polarization in each crystallite

is rotated by a different orientation-dependent angle during the pulse results in a partial

ordering of the random ensemble and a net nuclear alignment [240].

The rotation of the alignment serves another purpose other than producing a net

polarization in the sample. Every nucleus whose EFG principal axis is not parallel to the

rf magnetic field experiences a rotation of its alignment away from that equilibrium axis.

This rotation prepares each nucleus in a state of polarization that no longer commutes

with the quadrupolar Hamiltonian, so the polarization evolves due to the quadrupolar

interaction even after the rf field has been turned off. Put another way, the pulse causes a

rotation that converts initial T̂2,0 order into some linear combination of T̂2,q polarization. In

particular, the T̂2,±1 polarization will evolve into T̂1,±1 orientation, while the T̂2,0 and T̂2,±2

terms do not evolve under the quadrupolar Hamiltonian ĤQ = ~ωQT̂2,0. The conversion of

alignment into orientation corresponds to the creation of magnetization from quadrupolar

order; the net oscillating magnetization of the sample is what creates the detected NQR

signal. The oscillations occur at the quantum beat frequency 3|ωQ|/
√
6, which corresponds

to the energy difference between the |J = 1,m = ±1〉 states and the |J = 1,m = 0〉 state.

Therefore, a Fourier transform of this signal gives a line at the frequency of the quadrupolar

transition. The NQR alignment-to-orientation conversion process can be visualized easily

via the method described at the end of §5.2 [240].

It is instructive to calculate the NQR signal in a random powder using the methods
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described above. The signal due to a single crystallite can be calculated either in the

laboratory frame or in the EFG PAS:

Ŝ(t) = Tr[ρ̂LAB(t) ÔLAB]

= Tr[ρ̂PAS(t) ÔPAS ] = Tr[ÛPAS(t) ρ̂PAS(0) ÛPAS(t) ÔPAS ], (5.23)

where Ô is the observable, and Û(t) is the time development operator. Since the initial

density operator and the dynamics under an rf pulse are already known in the EFG PAS,

it is convenient to evaluate Eq. 5.23 in this frame. There is no natural direction in the

laboratory frame except along the rf magnetic field direction, so the z-axis will be defined

to be along B̂1. The z-axis is the rf coil axis, and the same coil is assumed to be used for

both excitation and detection. In this case, the observable in the laboratory frame ÔLAB

is proportional to Ĵz, which in the EFG PAS is already known to be

ÔPAS ∝ axĴx + ayĴy + azĴz. (5.24)

It will be convenient to define two spherical polar angles, α = tan−1(ay/ax) and β =

cos−1(az), which relate the EFG principal axis to the laboratory z-axis (i.e., the direction

of the B1 field), where ax = sinβ cosα, ay = sinβ sinα, and az = cosβ. Here β is the

angle between the laboratory and EFG PAS z-axes (i.e., the angle between B1 and the

EFG principal axis).
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The initial difference density operator is:

ρ̂PAS(0) ∝ T̂2,0, (5.25)

corresponding to thermal equilibrium quadrupolar order for an axially-symmetric EFG.

The dynamics will be calculated under the action of an rf pulse of duration τ

followed by evolution for time t under the quadrupolar Hamiltonian. Eq. 5.22 can be used

to approximate the time development operator for the rf pulse. The total time development

operator is:

ÛPAS(t) = e−iĤ
PAS
Q t/~ Ûpulse(τ)

' exp[−iωQtT̂2,0]{exp[−iωQτ T̂2,0] exp[+iω1τ(axĴx + ayĴy)/2]}

= exp[−iωQ(t+ τ)T̂2,0] exp[+iω1τ(axĴx + ayĴy)/2]

= ÛQÛr, (5.26)

where Ûr = exp[+iω1τ(axĴx + ayĴy)/2] = exp[+iω1τ(sinβ cosαĴx + sinβ sinαĴy)/2] corre-

sponds to a rotation about the static effective magnetic field Beff
1 , and ÛQ = exp[−iωQ(t+

τ)T̂2,0] corresponds to evolution under the quadrupolar Hamiltonian. One can write Ûr =

exp[−iαĴz] exp[+i(ω1τ sinβ/2)Ĵx] exp[+iαĴz] using the identity Ûf(Â)Û−1 = f(Û ÂÛ−1),
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and the application of the spherical tensor operator transformations of Ref. [198] yield:8

ρ̂r = Ûr[ρ̂
PAS(0)]Û−1r

=
1

4
[1 + 3 cos(ω1τ sinβ)]T̂2,0 +

√
3

2
sin(ω1τ sinβ)[T̂2,1;90◦ cosα− T̂2,1;0◦ sinα]

−
√
3

4
[1− cos(ω1τ sinβ)][T̂2,2;0◦ cos 2α+ T̂2,2;45◦ sin 2α], (5.27)

where the transformation under the first z-rotation is simple because it commutes with

ρ̂PAS(0) = T̂2,0; and,

ρ̂PAS(t) = ÛQρ̂rÛ
−1
Q

=
1

4
[1 + 3 cos(ω1τ sinβ)]T̂2,0

+

√
3

2
sin(ω1τ sinβ)

{
cosα

[
cos(

3ωQ√
6
(t+ τ))T̂2,1;90◦ −

1√
2
sin(

3ωQ√
6
(t+ τ))Ĵx

]

− sinα
[
cos(

3ωQ√
6
(t+ τ))T̂2,1;0◦ +

1√
2
sin(

3ωQ√
6
(t+ τ))Ĵy

]}

−
√
3

4
[1− cos(ω1τ sinβ)][T̂2,2;0◦ cos 2α+ T̂2,2;45◦ sin 2α], (5.28)

where only the T̂2,±1 operators are affected by ÛQ since [T̂2,0, T̂2,0] = 0 and [T̂2,0, T̂2,±2] = 0.9

The appearance of Ĵx and Ĵy orientation is due to the conversion of the rotated alignment

in Eq. 5.27 during evolution under the quadrupolar Hamiltonian. This magnetization has a

projection on the laboratory-frame z-axis (the coil detection axis), which may be calculated

8Also note that the identity exp[−iφĴz] T̂k,q exp[+iφĴz] = exp[−iqφ] T̂k,q leads to the relation
exp[−iφĴz][T̂k,q ± T̂k,−q] exp[+iφĴz] = cos(qφ)[T̂k,q ± T̂k,−q]− i sin(qφ)[T̂k,q ∓ T̂k,−q].

9Recall that the entire double-quantum line-narrowing premise of Chapter 4 relies on the fact that J = 1
double-quantum coherences T̂2,±2 commute with the first order quadrupolar Hamiltonian ∝ T̂2,0.
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using Eqs. 5.23 and 5.24 to yield the detected signal of a single crystallite:

S(t) ∝ Tr[ρ̂PAS(t) ÔPAS ]

= Tr[ρ̂PAS(t) (sinβ cosαĴx + sinβ sinαĴy + cosβĴz)]

= −
√

3

2
sin[ω1τ sin(β)] sin(β) sin[

3ωQ√
6
(t+ τ)], (5.29)

which is independent of the crystallite angle α. The net signal can be obtained by averaging

over crystallite orientations:

〈S(t)〉 =
1∫
dΩ

[ ∫
dΩ S(t)

]

= − 1

4π

∫ 2π

0
dα

∫ π

0
dβ sin(β)

{√3

2
sin[ω1τ sin(β)] sin(β) sin[

3ωQ√
6
(t+ τ)]

}

= −1

2

√
3

2
sin[

3ωQ√
6
(t+ τ)]

∫ π

0
dβ sin2(β) sin[ω1τ sin(β)]

= −π
2

√
3

2

[
H0(ω1τ)−

1

ω1τ
H1(ω1τ)

]
sin[

3ωQ√
6
(t+ τ)], (5.30)

where Hn(x) is the Struve function of order n [241, §12]. The integral over β was evaluated

using Mathematica r© [242]. As expected, the bulk NQR signal 〈S(t)〉 oscillates sinusoidally

at the sole (for ηQ = 0) NQR transition frequency ∆ω = 3ωQ/
√
6. The sine modula-

tion of the NQR signal is 90◦ out of phase with the cosine-modulated excitation field.

The pulse width/rf amplitude can be varied to optimize the NQR signal. The amplitude

〈S〉0 = π
2

√
3
2 [H0(x) − H1(x)/x] is plotted as a function of x = ω1τ in Fig. 5.1. The

result corresponds to damped oscillation, compared to sinusoidal oscillation as a function

of ω1τ sin(β) in the case of a single crystallite. This behavior is qualitatively consistent
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with that of a calculation done by Lee [225], but the numerical values differ. For instance,

Eq. 5.30 predicts a signal maximum at the tip angle ω1τ = 1.7729 = 101.6◦ and a signal

inversion at ω1τ = 5.2172 = 298.9◦, whereas Ref. [225] predicts 119◦ and 339◦, respectively.

The source of the discrepancy is unclear; the details of the numerical calculation in Ref.

[225] were not given. Note that the results that have been obtained here only hold for J = 1

nuclei with ηQ = 0 and |ωQ| À |ω1|.
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Figure 5.1: Plot of the function 〈S〉0 = π
2

√
3
2 [H0(ω1τ) −H1(ω1τ)/(ω1τ)] versus ω1τ , cor-

responding to the calculated powder-averaged J = 1 NQR signal as a function of rf pulse
length or amplitude.
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5.6 NMRmethods of manipulating polarization in quadrupo-

lar nuclei with magnetic fields

The high-field NMR of quadrupolar nuclei poses an interesting problem: how can

the nuclear polarization be manipulated efficiently when the experimenter is usually only

able to apply magnetic fields with strengths much smaller than the quadrupolar interac-

tion?10 As has already been mentioned, the high-field NMR case corresponds to the atomic

case in crossed electric and magnetic fields. Therefore, some of the techniques of high-field

quadrupolar NMR may be useful to atomic physicists working with crossed electric and

magnetic field geometries. The NMR techniques are probably most applicable to atomic

systems for which the Stark splitting exceeds the Zeeman splitting by no more than one

or possibly two orders of magnitude; this is because the NMR methods become inefficient

when the quadrupolar coupling exceeds the rf field strength by about that amount. Most

of these types of NMR techniques have been developed for systems of half-integer angular

momentum, since the vast majority of quadrupolar nuclei have half-integer spin in their

ground state.

The variables most typically under the NMR experimentalist’s control are the

amplitude, frequency, and phase of the radiofrequency radiation. The following discussion

will neglect the possibilities of phase and frequency modulation and will only consider the

amplitude modulation of the rf field. The size of the quadrupolar coupling is a physical

property of the material and is generally not under experimental control, since it is not

currently experimentally possible to apply electric field gradients to nuclei that exceed the

10The case of adiabatic demagnetization and remagnetization treated in the next section is one example
where the magnetic field splittings must at some point exceed the quadrupolar splitting.
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local field gradients on the atomic scale. However, it is possible to modulate local electric

field gradients by using an oscillating electric field to induce motion on the atomic level

[243]; this technique has been used to excite quadrupolar transitions [244, 245, 246] and

even to induce adiabatic demagnetization and remagnetization [247, 248], but these effects

will not be considered here.11 It is much more common to induce a harmonic modulation

of the quadrupolar coupling through sample spinning, usually about an axis that is at the

magic angle with respect to the polarization field.

The general form of the rotating frame Hamiltonian in the case of a modulated

quadrupolar coupling and rf pulse of varying amplitude when the second-order quadrupolar

and resonance offset terms can be neglected is:

Ĥ(t)/~ = ωQ(t)T̂2,0 − ω1(t)Ĵx, (5.31)

The magnetic field can be varied in a laboratory frame AMO experiment in exactly the same

way as in a rotating frame NMR experiment, but it remains to be seen how similar NMR

sample spinning is to the modulation of the Stark field in atomic and molecular systems.

The dynamic Stark effect and quadrupolar couplings in rotating solids

The theory of the quadratic Stark effect in a constant electric field has been long

known and, for instance, has been applied to explain the angular momentum dynamics in

hyperfine-coupled systems [249, 250]. This theory, which has been extended to the case of

oscillating electric fields in what is known as the AC or dynamic Stark effect, and was first

11It is also possible to achieve a similar effect via a ultrasonic (acoustic) excitation, see [6, §IX.IV.D] and
references therein.
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applied to describe the so-called light shifts due to the oscillating optical field in hyperfine-

coupled systems, particularly in the case of optical pumping experiments [251, 252, 253,

254, 255, 256]. The theory of light shifts in hyperfine-coupled systems is interesting in its

own right, as the effective Hamiltonian bears many resemblances to those of NMR systems

[254]. However, the situation to be considered here simply corresponds to the Hamiltonian

in Eq. 5.6 for the case of a time dependent electric field E(t), which, in the case of an optical

field, corresponds to the light shift induced by virtual transitions. Electric dipole transitions

between angular momentum manifolds will not be considered explicitly in this section (e.g.,

coherent excitation of the optical transition will be neglected). Rather, only the dynamics

of the manifold of a particular angular momentum J will be examined. Therefore, the scalar

polarizability term in the Stark Hamiltonian again will not be considered in the following

discussion.

The Stark splitting depends on the square of the absolute value of the electric

field |E(t)|2. In the case of a constant-magnitude linearly-polarized optical field E(t) =

E0 cos(ω0t)z̃ (where ω0 is the laser frequency), |E(t)|2 = |E0|2 cos2(ω0t). However, if the

laser frequency is much larger than the characteristic field-induced dynamical frequencies

of the system (i.e., |ω0| À |ωE |, |ωB|) and does not coincide with a resonance of the optical

medium, it is acceptable to replace the cos2(ω0t) term with 1/2, its time-averaged value

[257]. Therefore, the effective electric field again looks time independent. Note that the

situation is much more complicated if there is a modulation of E(t) that is fast enough such

that its frequency is comparable to an atomic linewidth or even to a transition frequency

[258, §10]. These effects will not be considered here, but it is important to remember the



5.6. NMR METHODS OF MANIPULATING POLARIZATION IN
QUADRUPOLAR NUCLEI WITH MAGNETIC FIELDS 297

complexity that arises near a resonance. For example, one can effectively modify the tensor

polarizability α2 (see Eq. 5.6) to be a function of the resonance detuning of the laser. The

sign of the quadratic Stark coupling can be inverted by sweeping the laser frequency through

the resonance by changing the sign of the effective polarizability, even though |E(0)|2 itself

does not change sign.

Consider the case where the optical field contains a slow, amplitude-modulated

component at a frequency ωR, perhaps as a result of a binary (on-off) modulation by an

optical chopper. If the modulation is approximated as sinusoidal, then E(t) = 1
2E0[1 +

cos(ωRt)] cos(ω0t), in which case |E(t)|2 ' 1
4 |E0|

2[3 + 4 cos(ωRt) + cos(2ωRt)], where the

relation cos2(ω0t) ' 1
2 has been used. Therefore, for simple sinusoidal amplitude modula-

tions, it would be reasonable to write the time-dependent tensor Stark splitting frequency

as:

ωE(t) = ωE

2∑

n=−2
cEn e

inωRt, (5.32)

where ωE = −12α2|E0|2. This Fourier expansion can be extended to include higher har-

monics of ωR if necessary. Since ωE(t) ∝ |E(t)|2, ωE(t) itself does not undergo any sign

inversions during its oscillation.

This result can be compared to the modulation of the first-order quadrupolar

Hamiltonian under sample spinning conditions at high magnetic fields. A rotation of a

typical crystallite in a solid sample at frequency ωR induces a modulation of the quadrupolar
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coupling via a modulation of the components of the rank-2 electric field gradient tensor:

ωQ(t) = ωQ

2∑

n=−2
cQn e

inωRt, (5.33)

where the coefficients cQn depend on the crystallite orientation. However, at the magic

angle ωQ(t) contains no zero-frequency component, and the quadrupolar Hamiltonian is

modulated only at ωR and 2ωR. Therefore the time average of ωQ(t) is zero over one rotor

period τR = 2π/ωR, ensuring that ωQ(t) undergoes at least two sign inversions over the

course of a rotor cycle. The timing of the zero-crossings depends on crystallite orientation

(i.e., the inversions are not synchronized among nuclei in different crystallites), and the

actual number of sign inversions can be two or four [42, 259]. As will be seen later, this

inversion of the quadrupolar splitting via magic-angle sample spinning can be exploited in

NMR experiments in ways important ways that can be emulated in AMO systems only by

sweeping the laser frequency through a resonance.

5.6.1 Efficient alignment-to-orientation conversion via adiabatic variation

of the magnetic field: ARRF and ADRF

It has long been known that in the solid state, a collection of nuclear spins that

is prepared in a state of Zeeman order (longitudinal magnetization, orientation) at thermal

equilibrium in the presence of a dominant magnetic field B0 can be demagnetized by de-

creasing B0 adiabatically (in the thermodynamic sense) to zero such that the polarization

is converted into local order [5, §6.4]. In the case of J > 1/2 nuclei the quadrupolar inter-

action dominates, and the Zeeman order is transformed into quadrupolar order along the
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local EFG principal axis as was discussed previously in the case of zero-field NQR. This

adiabatic demagnetization is an example of thermodynamic orientation-to-alignment con-

version in the laboratory frame, and it can be reversed by adiabatically converting alignment

back into orientation in a process called adiabatic (re)magnetization. However, in modern-

day NMR experiments involving superconducting magnets, it is generally not possible to

decrease and increase the Zeeman field to zero at will, much less adiabatically. Methods

that involve removing the sample from the field adiabatically or re-inserting it in a similar

manner would require sample manipulations that are experimentally difficult, to say the

least.

Not surprisingly, NMR spectroscopists have figured out how to apply rf magnetic

fields to perform these conversions quantum-mechanically while the B0 field remains con-

stant. The resulting techniques are called adiabatic demagnetization in the rotating frame

(ADRF) and adiabatic remagnetization in the rotating frame (ARRF). The ADRF tech-

nique was initially used to convert Zeeman order into dipolar order [260], where “dipolar

order” refers to polarization that commutes with the dipole-dipole coupling Hamiltonian.12

However, these methods also can be used to convert Zeeman order into quadrupolar or-

der and back again, and the theory of these conversions is well understood [264]. The

quadrupolar order is created along the spin quantization axis parallel to B0.

The ADRF technique is applied after the preparation of magnetization (orien-

tation) that is transverse to the laboratory-frame quantization axis z, e.g. ρ̂(0) ∝ Ĵx.
13

12Adiabatic techniques have also been used to create “J-order” in J-coupled systems in liquids [261, 262,
263].
13This could be accomplished in an NMR experiment by applying a “hard” 90◦ rf pulse along the y-axis

in the rotating frame to initial equilibrium z-magnetization; i.e., |ω1| À |ωQ| and ω1τp = π/2, where τp is
the pulse duration.



5.6. NMR METHODS OF MANIPULATING POLARIZATION IN
QUADRUPOLAR NUCLEI WITH MAGNETIC FIELDS 300

An initially large rf magnetic field is applied along the orientation axis to “spin lock” the

magnetization along the x-axis in the rotating frame, such that Ĥrot
rf (0) ' −~ω1(0)Ĵx,

with |ω1(0)| À |ωQ|. The quadrupolar splitting ωQ is constant during this experiment,

and the necessity of applying such a strong rf field (stronger than the quadrupolar inter-

action) would make this technique inefficient in systems with large quadrupolar couplings

but might find an ideal application in studying molecules in solution-state oriented media

in which the quadrupolar coupling is motionally averaged to a smaller value. In the limit

|ω1(0)| À |ωQ| the rotating-frame quantization axis is along x, and ADRF is induced by adi-

abatically decreasing the rf field until |ω1(τp)| ¿ |ωQ| and the rotating frame Hamiltonian

is Ĥrot
rf (τp) ' ~ωQT̂2,0, rotating the rotating-frame quantization axis to the z-direction and

creating quadrupolar order (alignment) ρ̂(τp) ∝ T̂2,0. Ref. [264] shows how the adiabatic

pulse shapes ω1(t) can be designed for J = 1 and J = 3/2 systems after a transformation

into a rotating-frame basis where the angular momentum is quantized along the x-axis.

This reduces the dynamics to that of an effective spin-1/2 (in the case of J = 1) or two

isolated spin-1/2 angular momenta (in the case of J = 3/2). ARRF can be accomplished

with an amplitude variation ω1(t) that is time-reversed from the ADRF case.

The authors of Ref. [264] note that in J = 1 and J = 3/2 systems ADRF creates

T̂2,0 alignment from Ĵx orientation in a process that saturates the unitary bound, i.e.,

it creates the maximal amount of T̂2,0 allowed by a unitary (e.g., quantum-mechanical)

evolution. It also creates T̂2,±2 double-quantum coherence in J = 1 systems and rank-3

single- and triple-quantum coherences T̂3,±1 and T̂3,±3 in J = 3/2 systems, while leaving

some residual transverse magnetization in both cases. The ARRF procedure also effects
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alignment-to-orientation conversion with a saturation of the unitary limit in both systems.

There exist other pulse sequences that also can convert between orientation and

alignment; in fact, §5.5.1 demonstrated how a single weak rf pulse can cause these inter-

conversions in J = 1 systems, although the efficiency was less than complete. Another

widely-used method is the Jeener-Broekaert (π/2)x—τ—(π/4)y two-pulse sequence (origi-

nally designed to convert Zeeman order into dipolar order) [265] and modifications thereof

[266, 267], which creates maximal alignment, T̂2,0, in J = 1 systems if τ = π/(2∆), where

∆ is the quadrupolar splitting frequency. In NMR experiments this condition on the pulse

delay τ may not be achievable if multiple nuclei with different quadrupolar couplings are

present (Ref. [267] attempts to remedy this), whereas the adiabatic methods are robust to

this problem as long as |ω1(0)| À |ωQ| and |ω1(τp)| ¿ |ωQ| for all values of ωQ. Also, the

Jeener-Broekaert method is not completely efficient for AOC in J = 3/2 systems [268, 269].

A limitation of both the adiabatic and Jeener-Broekaert methods is the need for rf pulses

that are much stronger than the quadrupolar interaction.

5.6.2 Dynamics of the central transition in static half-integer quadrupolar

nuclei in weak magnetic fields

The nuclei with half-integer angular momentum are of particular interest in NMR

because they comprise nearly all of the quadrupolar nuclei (the J = 1 nuclei H-2, Li-6,

and N-14 and the J = 3 nucleus B-10 are exceptions) and are amenable to the MQMAS

technique (see §3) for producing high-resolution spectra in the solid state. The directly

observable nuclear transitions are single-quantum, i.e. |m − m′| = 1, where m and m′

are the magnetic quantum numbers involved in the transition. As was discussed in §3,
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any coherence between |J,+|m|〉 and |J,−|m|〉 (i.e., involving the so-called “symmetric”

transitions) commutes with the first-order quadrupolar Hamiltonian Ĥ
(1)
Q ∝ T̂2,0, and thus

experiences no first-order quadrupolar broadening. Therefore, among the single-quantum

coherences the only ones that lead to narrow lines are the |J,m = ± 12〉〈J,m = ∓12 | “central

transition” coherences. The other “satellite transition” single quantum coherences are often

broadened too much to be observed (or at least too much to be useful) in a solid-state

experiment. Thus, the ability to manipulate the central transition coherence in half-integer

spin systems is of great interest to NMR spectroscopists.

It is instructive to consider the central transition dynamics in half-integer spins

under the conditions of a static quadrupolar coupling and constant rf irradiation. This

is the same situation as was described in §5.5.1 for J = 1 spins, except here only an

approximate solution will be attempted in the weak magnetic field limit |ω1| ¿ |ωQ|, which

is the most common case in the solid state. Consider an oriented J = 3/2 nucleus. The

first-order quadrupolar Hamiltonian in the rotating frame has the form Ĥ
(1)
Q = ~ωQT̂2,0, and

the |J = 3
2 ,m = ±32〉 states are degenerate eigenstates of Ĥ

(1)
Q with eigenvalues +~ωQ/2,

whereas the degenerate |J = 3
2 ,m = ±12〉 states have eigenvalues −~ωQ/2. The central

transition single-quantum coherence does not evolve under Ĥ
(1)
Q , whereas the two satellite

transition single-quantum coherences evolve at the quadrupolar splitting frequency ωQ.

Therefore, when the rf frequency is tuned to resonance, the NMR spectrum has two lines

with the central transition at zero frequency and the satellite transitions at frequency ωQ

(second-order quadrupolar and other offset effects have been neglected). If this is the

case, one would expect that a long, weak radiofrequency pulse that is resonant with the
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central transition would cause a frequency-selective excitation of only that transition and be

ineffective at exciting the satellite transitions. This selective excitation behavior of a weak

resonant rf field in half-integer spin systems will be considered from a more theoretical

standpoint below.

It is convenient to re-write the Hamiltonian and density operator in terms of

fictitious Cartesian spin-1/2 single-transition operators Ĵ j−kx = 1
2(|j〉〈k| + |k〉〈j|), Ĵ

j−k
y =

− i
2(|j〉〈k| − |k〉〈j|), and Ĵ

j−k
z = 1

2(|j〉〈j| − |k〉〈k|), where |j〉, |k〉 ∈ {|J,m〉} [168, 169]. If the

J = 3/2 magnetic sublevels are labeled |1〉 ≡ |J = 3
2 ,m = +3

2〉, |2〉 ≡ |J = 3
2 ,m = +1

2〉,

|3〉 ≡ |J = 3
2 ,m = −12〉, and |4〉 ≡ |J = 3

2 ,m = −32〉, the Hamiltonian in Eq. 5.12 can be

rewritten as:

Ĥrot/~ = ωQT̂2,0 − ω1Ĵx

= ωQ[Ĵ
1−2
z − Ĵ3−4z ]− ω1[2Ĵ2−3x +

√
3(Ĵ1−2x + Ĵ3−4x )]. (5.34)

In the limit |ωQ| À |ω1| it is convenient to transform into the interaction frame defined by

the quadrupolar Hamiltonian using the transformation

V̂Q(t) = e−iωQtT̂2,0 = exp[−iωQt(Ĵ1−2z − Ĵ3−4z )] = exp[−iωQtĴ1−2z ] exp[+iωQtĴ
3−4
z ], (5.35)

since fictitious spin-1/2 operators that do not share a state index exist in orthogonal

subspaces and therefore commute with each other. The transformed Hamiltonian in the
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quadrupolar interaction frame is:

ˆ̃
Hrot/~ = −2ω1Ĵ2−3x −

√
3ω1[(Ĵ

1−2
x + Ĵ3−4x ) cos(ωQt)− (Ĵ1−2y − Ĵ3−4y ) sin(ωQt)], (5.36)

The terms that rapidly oscillate at ωQ may be neglected in the secular approximation (i.e.,

in an average Hamiltonian treatment they average to zero over the period τQ = 2π/ωQ), so

the effective Hamiltonian in the interaction frame is:

ˆ̃
Hrot/~ ' −2ω1Ĵ2−3x , (5.37)

where the large quadrupolar Hamiltonian has effectively truncated the rf Hamiltonian to a

term that affects only the central transition |J,m = ± 12〉 states. After transforming back

out of the quadrupolar interaction frame, the effective time development operator in the

rotating frame is:

Ûrot(t) ' exp[−iωQt(Ĵ1−2z − Ĵ3−4z )] exp[+i2ω1tĴ
2−3
x ]. (5.38)

If the system is initially oriented along the z-axis, ρ̂(0) ∝ Ĵz = 3Ĵ1−4z + Ĵ2−3z , and the

density operator evolves under Ûrot(t) as:

ρ̂(t) = Ûrot(t) Ĵz Û
−1
rot (t) ' 3Ĵ1−4z + [Ĵ2−3z cos(2ω1t) + Ĵ2−3y sin(2ω1t)], (5.39)

where Ĵ1−4z commutes with both T̂2,0 and Ĵ
2−3
x , and Ĵ2−3y commutes with T̂2,0. The “triple-

quantum z magnetization”, 3Ĵ1−4z , is left invariant during the pulse. It is apparent that
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the quadrupolar-truncated rf field effectively nutates only the central transition fictitious

spin-1/2 angular momentum at a rate 2ω1, i.e., twice the rate ω1 at which the complete

orientation would nutate under the action of a rf field in the absence of a quadrupolar

coupling. The result for general J is that the central transition effectively nutates in the

|ω1| ¿ |ωQ| limit at a rate that is (J + 1
2) times faster than the nutation rate in the

|ω1| À |ωQ| limit. This nutation behavior of quadrupolar nuclei is well known (e.g. Refs.

[270, 271] and references therein) and stems from the fact that the nutation rate ω1 is

independent of the spin quantum number J for a pure rf rotation, whereas the matrix

elements for rotation in the subspace of the central transition states do depend on J as

〈J,m = ±12 |ω1Ĵx|J,m = ∓12〉 = 1
2(J + 1

2)ω1, which are (J + 1
2) times larger than the matrix

elements for a J = 1/2 spin.

Now consider the case when the initial density operator is ρ̂(0) ∝ Ĵx = 2Ĵ2−3x +

√
3(Ĵ1−2x + Ĵ3−4x ). For simplicity, the time evolution will be evaluated only at τQ = 2π/ωQ

(or at integer multiples of τQ that are stroboscopically synchronized with the quadrupolar

evolution frequency). In this case, the rotating-frame evolution is:

ρ̂(τQ) = Ûrot(τQ) Ĵx Û
−1
rot (τQ)

' 2Ĵ2−3x +
√
3[(Ĵ1−2x + Ĵ3−4x ) cos(ω1τQ) + (Ĵ1−3y − Ĵ2−4y ) sin(ω1τQ)], (5.40)

where it can be seen that the Ĵ2−3x central transition term is invariant under the rf irra-

diation (and would also be invariant under quadrupolar evolution), whereas the satellite

transition coherences evolve during the irradiation (and evolve further under the quadrupo-

lar Hamiltonian). Therefore the central transition coherence, Ĵ2−3x , is a constant of the
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motion and is said to be “spin-locked” by the rf irradiation. This result would also hold if

the central transition coherence was excited selectively: for example, a y-directed ω1t = π/4

pulse would transform ρ̂(0) = Ĵz into 3Ĵ1−4z − Ĵ2−3x as described above. Application of an

x-directed rf pulse would spin-lock the central transition coherence Ĵ2−3x . The spin locking

behavior of the central transition coherence under rf irradiation is important because when

the spin locking fails, central transition coherence can be transformed into different types

of polarization, as is the case in NMR quadrupolar rotational adiabatic coherence transfer

(§5.6.3) or rotary resonance experiments (§5.6.5).

5.6.3 Adiabatic coherence transfer in half-integer spins via slow modula-

tion of the quadrupolar interaction: RIACT

The previous section examined the dynamics of the central transition under con-

stant rf irradiation when the quadrupolar coupling was time-independent. However, the

size of the quadrupolar coupling can be manipulated in high-field NMR experiments by

spinning the sample. The angular momentum dynamics of half-integer quadrupolar nuclei

under rf irradiation and static or magic-angle sample spinning conditions has been studied

in detail by A. Vega [158]. As was discussed previously, magic-angle spinning at a frequency

ωR causes the periodically-modulated quadrupolar coupling to undergo multiple sign inver-

sions/zero crossings over one rotor period τR = 2π/ωR. Assuming that at its maximum the

quadrupolar coupling frequency |ωQ(t)| is much greater than the rf nutation frequency, the

quadrupolar Hamiltonian dominates the rf Hamiltonian near the extrema of the ωQ(t), and

the rotating-frame eigenstates are very nearly the eigenstates of the quadrupolar Hamilto-

nian Ĥ
(1)
Q ∝ T̂2,0. These eigenstates are doubly-degenerate within the ±|m| manifolds, and
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Vega writes the quadrupolar eigenstates as the superpositions |C±〉 = 1√
2
(|32 ,+1

2〉±|32 ,−12〉)

and |T±〉 = 1√
2
(|32 ,+3

2〉 ± |32 ,−32〉), where |C±〉 represent the central transition single-

quantum coherences, and |T±〉 represent the unique triple-quantum coherences. The in-

stantaneous eigenenergies are +~ωQ(t)/2 for the |T±〉 states and −~ωQ(t)/2 for the |C±〉

states.14 The important point to note is that the |C±〉 states cross the |T±〉 states when

ωQ(t) = 0 since the rf perturbation is no longer negligible (|ω1| À |ωQ(t)|), which results

in strong mixing of the |C±〉 states with the |T±〉 states. In fact, when one considers

the instantaneous eigenstates15 of the Hamiltonian Ĥrot(t)/~ = ωQ(t)T̂2,0 − ω1Ĵx over the

full range of ωQ(t), the state |C+〉 is converted smoothly to |T+〉 and |C−〉 is converted

smoothly to |T−〉 (or vice versa) as ωQ(t) varies from a large positive value to a large nega-

tive value (or vice versa). The system would remain in the |C±〉 states or |T±〉 during the

course of the mechanical rotation if no rf perturbation were present.

As long as the variation of Ĥrot(t) is adiabatic, the mixing of the instantaneous

eigenstates allows for the efficient conversion of central transition coherence to triple-

quantum coherence and back again as the quadrupolar coupling undergoes sign inversions

during magic-angle spinning. Vega has defined an adiabaticity parameter α = |ω21/(ωQωR)|,

where α À 1 marks the adiabatic passage regime and α ¿ 1 marks the sudden passage

regime [158]. According to the well-known quantum mechanical adiabatic theorem [272,

§XVII], if the system is prepared in an eigenstate of the Hamiltonian, the system is main-

14When the rf perturbation Ĥrf = −~ω1Ĵx is included the zeroth-order eigenstates may be retained, but
the |C±〉 states receive a first-order energy splitting of 2~ω1, while the |T±〉 states remain degenerate.
15By “instantaneous eigenstate” it is meant a state |ψ(t)〉 that satisfies the eigenvalue equation

Ĥ(t)|ψ(t)〉 = E(t)|ψ(t)〉 for a particular value of t, although these are not truly eigenstates because the
time-dependent system does not have a well-defined energy. In quantum chemistry the instantaneous eigen-
states of a large time-independent system in the presence of a time-dependent perturbation are also known
as the “adiabatic states”, whereas the true eigenstates in the absence of the perturbation are known as the
“diabatic states”.
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tained in the instantaneous eigenstate of the Hamiltonian as long as the Hamiltonian changes

adiabatically. In the sudden passage regime (αÀ 1) the system remains in its original eigen-

state before and after the crossing. Therefore one expects that adiabatic single-quantum

to triple-quantum coherence conversions can be implemented in the limit α À 1 where

the rf pulse amplitude |ω1| is high and the spinning speed ωR is slow for relatively small

quadrupolar couplings |ωQ|.

In fact, such adiabatic conversions have been demonstrated experimentally in the

rotation-induced adiabatic coherence transfer (RIACT) experiment [273]. In this exper-

iment, adiabaticity is ensured setting the rf power as high as possible with the sample

spinning speed made as slow as possible while still retaining line-narrowing effects. The

basic RIACT triple-quantum excitation scheme uses a π/4 pulse of phase φ for the selective

creation of central transition single-quantum coherence from longitudinal magnetization, fol-

lowed by a spin-locking pulse of phase φ+π/2 and duration τp, as described in the previous

section. During the course of the spin-locking pulse the sample rotation induces adiabatic

transfer of the central transition coherences to triple-quantum coherences. The crystallites

do not undergo quadrupolar zero crossings all at the same time; in fact, crystallites in which

ωQ(t) is dominated by oscillation at the frequency ωR undergo two zero crossings over one

rotor period τR that cause the transfer |C±〉 → |T±〉 → |C±〉, whereas crystallites in which

ωQ(t) is dominated by oscillation at the frequency 2ωR undergo four zero crossings that

cause the transfer |C±〉 → |T±〉 → |C±〉 → |T±〉 → |C±〉 during τR. These correspond to

adiabatic demagnetization and remagnetization cycles of the central transition transverse

magnetization. In a random powder, the choice of pulse width τp = τR/4 maximizes the
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net transfer of central transition single-quantum coherence to triple-quantum coherence,

as was determined numerically [273]. RIACT conversions of triple-quantum coherence to

central transition single-quantum coherence during a single spin-locking pulse were found

to be more efficient than triple-quantum excitation from longitudinal magnetization using

a π/4 pulse followed by a spin-locking pulse. The RIACT technique is somewhat limited by

the presence of resonance offsets and second-order quadrupolar coupling effects (which have

not been considered here) and is useful in systems where the quadrupolar coupling is not

too large. RIACT also can be applied in higher spin systems, for instance to induce con-

versions between central transition single-quantum coherence and five-quantum coherence

in J = 5/2 systems [274].

The analog of the RIACT experiment cannot be applied efficiently to atomic sys-

tems if only amplitude modulation of the optical field is employed. A modulated Stark

splitting frequency ωE(t) depends on the absolute square of the modulated electric field,

so it never changes sign and the types of adiabatic conversions described above cannot be

completed. The best case would be a partial coherence transfer as E(t) is adiabatically

reduced to zero, leaving the system in a superposition of central transition single-quantum

and triple quantum-states. The quadratic Stark splitting is, however, an odd function of

the detuning of the laser frequency from resonance [232]. It therefore may be possible to

implement RIACT-type experiments in atomic systems using frequency sweeps of the laser

through resonance.
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5.6.4 Coherence transfer in half-integer spins via fast resonant modula-

tion of the magnetic field: FAM

The fast-amplitude modulation (FAM) technique was developed to induce more

efficient transfers of multiple-quantum coherence to single-quantum coherence in quadrupo-

lar nuclei in powdered solids [275]. The technique is most widely applied in magic-angle

spinning experiments, but is also valid in static samples, which are considered here. As has

been seen previously, a constant weak rf field applied to a static half-integer quadrupolar

spin system is only effective at causing transitions within the central transition subspace,

with any other conversions appearing in a higher-order perturbation theory treatment. The

coherence transfer that will be considered is the conversion of triple-quantum coherence to

central transition single-quantum coherence in a J = 3/2 spin system.

As the FAM principle was originally conceived [151], a modulation of the rf field

in the rotating frame at a frequency ωm that is near the quadrupolar splitting frequency

ωQ is expected to be effective at selectively exciting the | 32 ,±32〉 ←→ |32 ,±12〉 satellite tran-

sitions. This corresponds to a selective excitation at the satellite transition frequency in

the rotating frame. Since the satellite transitions connect the {| 32 ,±32〉} manifold to the

{|32 ,±12〉} manifold, it might be expected that this excitation would be capable of con-

verting triple-quantum coherence (a superposition of | 32 ,±32〉 states) into central-transition

single-quantum coherence (a superposition of | 32 ,±12〉 states).

The theoretical formalism for FAM pulses in static and rotating single crystals

and powders has been worked out in detail and has been compared to the continuous pulse

and RIACT methods in the quadrupolar MQMAS experiment [276]. The treatment of a
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J = 3/2 nucleus in a single static crystallite in the absence of second-order quadrupolar

effects and resonance offsets is straightforward. The rotating-frame Hamiltonian in this case

is:

Ĥrot(t)/~ = ωQT̂2,0 − ω1 cos(ωmt)Ĵx, (5.41)

where the laboratory-frame rf field is B1(t) = B1 cos(ωmt) cos(ωrt), where ωm is the am-

plitude modulation frequency, and ωr is the rf carrier frequency (assumed to be set on

resonance), and 2ω1 = γB1. Methods of experimentally creating this type of amplitude

modulation will be discussed later. It can be readily appreciated that the rotating-frame

Hamiltonian 5.41 looks like the EFG PAS-frame NQR Hamiltonian in Eq. 5.10 in the case

that the rf field is perpendicular to the axially-symmetric EFG principal axis (which is

the geometry at which the NQR pulse is most efficient). So, in a sense, the problem of a

rotating-frame FAM pulse is the same problem as that of an EFG PAS-frame NQR pulse

applied to a J = 3/2 nucleus for a static crystallite. The NQR pulse was seen to be efficient

in J = 1 nuclei when the carrier frequency was set on resonance to the NQR transition

ωr ' 3ωQ/
√
6; likewise, it is expected that the FAM pulse will be efficient in converting

triple-quantum to single-quantum coherence in J = 3/2 nuclei when the modulation fre-

quency is nearly resonant with the rotating-frame quadrupolar splitting frequency ωm ' ωQ.

In an analogy to the treatment of NQR pulses presented earlier, the behavior during the

pulse can be better appreciated in the case of a resonant amplitude modulation ωm = ωQ
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by transforming into the quadrupolar interaction frame according to Eq. 5.36:16

ˆ̃
Hrot(t)/~ = −ω1 cos(ωQt){2Ĵ2−3x +

√
3[(Ĵ1−2x + Ĵ3−4x ) cos(ωQt)− (Ĵ1−2y − Ĵ3−4y ) sin(ωQt)]}

= −2ω1 cos(ωQt)Ĵ2−3x −
√
3

2
ω1

[
(Ĵ1−2x + Ĵ3−4x ) +

+cos(2ωQt)(Ĵ
1−2
x + Ĵ3−4x )− sin(2ωQt)(Ĵ

1−2
y − Ĵ3−4y )

]
, (5.42)

which contains a time-independent piece, and all the other terms average to zero over the

interval τQ = 2π/ωQ. The remaining effective Hamiltonian in the quadrupolar interaction

frame is:

ˆ̃
Hrot(t)/~ = −

√
3

2
ω1(Ĵ

1−2
x + Ĵ3−4x ), (5.43)

which selectively excites the satellite transitions by coupling the | 32 ,±32〉 states to the

|32 ,±12〉 states. The resonant rf amplitude modulation can be thought of as causing ei-

ther a frequency-selective excitation of the satellite transitions, or a recoupling of terms in

the rf Hamiltonian that are ordinarily truncated by the quadrupolar Hamiltonian. Upon

transforming back into the rotating frame the time development operator becomes:

Ûrot(t) ' exp[−iωQt(Ĵ1−2z − Ĵ3−4z )] exp[+i

√
3

2
ω1t(Ĵ

1−2
x + Ĵ3−4x )]. (5.44)

The evolution of a triple quantum coherence ρ̂(0) = Ĵ1−4x = 1
2(|

3
2 ,+

3
2〉〈32 ,−32 |+|32 ,−32〉〈32 ,+3

2 |)
16Ref. [276] uses the quadrupolar modulation frame transformation V̂m(t) = exp[−iωmtT̂2,0] for the nearly-

resonant ωm ' ωQ case, which is the more realistic situation in a powdered solid due to the broad distribution
of quadrupolar frequencies ωQ. Also, it should be noted that the application of perturbation theory in the
quadrupolar interaction frame is valid for |ωQ| À |ω1|, which may not be satisfied for all crystallites due to
the orientation dependence of ωQ.
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under resonantly amplitude-modulated rf irradiation is most easily evaluated at τQ = 2π/ωQ

(or an integer multiple thereof):

ρ̂(τQ) ' e+i
√
3
2
ω1τQ(Ĵ

1−2
x +Ĵ3−4x ) Ĵ1−4x e−i

√
3
2
ω1τQ(Ĵ

1−2
x +Ĵ3−4x )

= cos2(ωe1τQ)Ĵ
1−4
x + sin2(ωe1τQ)Ĵ

2−3
x + cos(ωe1τQ) sin(ω

e
1τQ)(Ĵ

1−3
y − Ĵ2−4y ),(5.45)

where ωe1 =
√
3ω1/4; the first term represents triple-quantum coherence, the second term

represents central transition single-quantum coherence, and the third term includes double-

quantum coherences. If the time evolution is not evaluated at τQ so that quadrupolar

evolution is included, the (non-symmetric) double-quantum coherences evolve further under

the quadrupolar Hamiltonian, but the other terms represent symmetric transitions that are

invariant to first-order quadrupolar evolution. Therefore, it can be seen that FAM pulses can

efficiently convert triple-quantum coherence to central-transition single-quantum coherence

(and also back again) in J = 3/2 systems.

In practice [275] the FAM modulations are usually implemented by approximat-

ing the cos(ωmt) modulation by a train of n binary pulse pairs (τm/2)φ(τm/2)φ, where

τm = 2π/ωm, φ represents the rf phase, and φ = φ + π. This causes a square-wave mod-

ulation of frequency ωm between +ω1 and −ω1 in the rotating frame, where the π phase

shift of the rf carrier frequency switches the direction of the rf field in the rotating frame.

This approach was chosen because for typical values of ωQ/2π > 1 MHz, τm can be on

the order of hundreds of nanoseconds, and implementing a smooth amplitude modulation

on a timescale much faster than this can be experimentally challenging when using high-

power solid-state spectrometers. It should also be noted that when FAM pulses are applied
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to rotating powders, the situation again becomes a radiation- and rotation-mediated adi-

abatic coherence transfer. Additionally some of the efficiency of the FAM pulse is due to

orientational-averaging effects [276].

When applied to AMO systems of half-integer angular momentum, similar weak

magnetic field modulation techniques will be able to cause efficient conversions of central-

transition single-quantum coherence (which is present in a system that is oriented perpen-

dicular to the applied electric field) into triple-quantum coherence in J = 3/2 systems, where

the quantization axis is along the electric field. Likewise, other coherence transfers could

be facilitated in higher angular momentum systems, i.e., not only triple-quantum/single-

quantum conversions in J = 5/2 systems, but also five-quantum/triple-quantum conver-

sions. The FAM-type conversions also have been implemented using adiabatic sweeps of

the rf frequency to induce similar transfers between |J,±|m|〉 populations and |J,±|m− 1|〉

populations [277, 278, 279, 280]. These techniques would be the most useful in AMO exper-

iments in which |ωE | À |ωB|. If the Stark and Larmor splittings are comparable, however,

the dynamics become much more complicated.

5.6.5 Coherence transfer in half-integer spins via matching the quadrupo-

lar modulation frequency to the rotating frame Larmor frequency:

rotary resonance

A description of some rotary resonance effects in J = 5/2 MQMAS experiments

was given in §3. This discussion will include a schematic description of some rotary reso-

nance effects in J = 3/2 systems.

As was noted in §5.6.3, under fast magic-angle sample spinning conditions and
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low-power rf spin locking the spin system is in the sudden-passage regime α¿ 1, in which

the central transition states |C±〉 and the triple-quantum states |T±〉 are expected to

remain spin-locked during sample rotation, with no interconversions between single- and

triple-quantum coherences. However, the conventional theory of the spin-locking of half-

integer quadrupolar nuclei under MAS conditions [158] does not take into account certain

resonances that can occur when the rf nutation frequency is appropriately matched to

the sample rotation frequency. Indeed, losses of spin-locking efficiency at these “rotary

resonance” conditions were observed experimentally [159, 160] and a partial theory of the

effects was advanced [159] before further experiments proved that these losses in spin locking

efficiency amounted to gains in the efficiency of multiple-quantum coherence conversion

[161], or before full theories of the rotary effects were developed [162, 163, 164].

Consider the rotating-frame Hamiltonian for a modulated quadrupolar interaction

in the presence of a steady rf field, neglecting resonance offset and second-order quadrupolar

effects:

Ĥrot(t) = Ĥ
(1)
Q (t) + Ĥrf = ~ωQ(t)T̂2,0 − ~ω1Ĵx, (5.46)

where ωQ(t) is modulated at harmonics of the spinning frequency, ωR, according to Eq.

5.33. This is the Hamiltonian that was under consideration in the previous discussion of

the RIACT technique, although here |ω1| ∼ ωR instead of the typical |ω1| À ωR conditions

in RIACT experiments. It is useful to separate the rf Hamiltonian as:

Ĥrf/~ = −ω1Ĵx = −2ω1Ĵ2−3x −
√
3ω1(Ĵ

1−2
x + Ĵ3−4x ), (5.47)
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where the first term, ĤCT
rf /~ = −2ω1Ĵ2−3x , drives the central transition and the second

term ĤST
rf /~ = −

√
3ω1(Ĵ

1−2
x + Ĵ3−4x ) drives the satellite transitions. It is convenient to

transform into the interaction frame of the modulated quadrupolar interaction plus the

central transition rf Hamiltonian, defined by [162]:

V̂Q,CT (t) = T{exp[− i
~

∫ t

0
dt′
(
Ĥ
(1)
Q (t′) + ĤCT

rf

)
]}

= exp[−i
(
ΦQ(t)T̂2,0 − 2ω1tĴ

2−3
x

)
]

= exp[−iΦQ(t)(Ĵ1−2z − Ĵ3−4z )] exp[+i2ω1tĴ
2−3
x )], (5.48)

where T is the Dyson time-ordering operator and the MAS quadrupolar dynamic phase

is ΦQ(t) =
∫ t
0 dt

′ ωQ(t′). The fact that [Ĥ
(1)
Q (t), ĤCT

rf ] = 0 ensures that Ĥ
(1)
Q (t) + ĤCT

rf

commutes with itself at all times so that the time ordering in Eq. 5.48 is unimportant. The

quadrupolar-rf central transition interaction frame Hamiltonian is:

ˆ̃
Hrot(t)/~ = V̂ −1Q,CT (t) Ĥ

ST
rf V̂Q,CT (t)

= −
√
3ω1

{
cos[ΦQ(t)]

[
(Ĵ1−2x + Ĵ3−4x ) cos(ω1t)− (Ĵ1−3y − Ĵ2−4y ) sin(ω1t)

]

− sin[ΦQ(t)]
[
(Ĵ1−2y − Ĵ3−4y ) cos(ω1t) + (Ĵ1−3x + Ĵ2−4x ) sin(ω1t)

]}

= −
√
3

2
ω1

{
cos(ω1t)

[
e+iΦQ(t)(Ĵ1−2+ + Ĵ3−4− ) + e−iΦQ(t)(Ĵ1−2− + Ĵ3−4+ )

]

+i sin(ω1t)
[
e+iΦQ(t)(Ĵ1−3+ + Ĵ2−4− )− e−iΦQ(t)(Ĵ1−3− + Ĵ2−4+ )

]}
, (5.49)

where Ĵ j−k± = Ĵ j−kx ± iĴ j−ky . Since the modulated quadrupolar frequency is periodic such

that ωQ(t+τR) = ωQ(t) where τR = 2π/ωR, the exp[±iΦQ(t)] are also periodic and therefore
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can be expanded in a Fourier series as:

exp[+iΦQ(t)] =
+∞∑

n=−∞
Ane

inωRt

exp[−iΦQ(t)] =
+∞∑

n=−∞
A∗ne

−inωRt =
+∞∑

n=−∞
A∗−ne

inωrt, (5.50)

where the coefficients An are complex and depend on the quadrupolar parameters CQ and

ηQ and on crystallite orientation. The cos(ω1t) and sin(ω1t) terms also can be expanded in

terms of exponential functions, such that:

ˆ̃
Hrot(t)/~ = −

√
3

4
ω1

+∞∑

n=−∞

∑

m=±1
einωRteimω1t

{[
An(Ĵ

1−2
+ + Ĵ3−4− ) +A∗−n(Ĵ

1−2
− + Ĵ3−4+ )

]

+ei[π(m−1)/2]
[
An(Ĵ

1−3
+ + Ĵ2−4− )−A∗−n(Ĵ1−3− + Ĵ2−4+ )

]}
, (5.51)

where ei[π(m−1)/2] = ±1 for m = ±1. This can be written in the form:

ˆ̃
Hrot(t) =

+∞∑

n=−∞

∑

m=±1

ˆ̃
Hn,me

inωRteimω1t, (5.52)

where in terms of the |C±〉, |T±〉 basis states:

ˆ̃
Hn,±1/~ = −

√
3

2
ω1[An|T±〉〈C ± |+A∗−n|C∓〉〈T ∓ |]. (5.53)

The interaction frame Hamiltonian has a complicated time dependence, but when the nu-
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tation frequency ω1 is an integer multiple of the spinning frequency such that ω1 = NωR,

ˆ̃
Hrot(t) =

+∞∑

n=−∞

∑

m=±1

ˆ̃
Hn,me

i(n+mN)ωRt, (5.54)

where terms with n+mN = 0 are time-independent. In a lowest-order average Hamiltonian

approach, the Hamiltonian is averaged over one rotor period τR, resulting in an effective

Hamiltonian in the interaction frame:

ˆ̃
Hrot(t) =

ˆ̃
HN,−1 +

ˆ̃
H−N,+1

= −
√
3

2
ω1[(AN |T−〉〈C−|+A∗N |C−〉〈T−|) + (A−N |T+〉〈C+|+A∗−N |T+〉〈C+|)].

(5.55)

It may be readily appreciated that this Hamiltonian couples the central transition states

|C±〉 to the triple-quantum transition states |T±〉, inducing efficient coherence trans-

fers. The generalized rotary resonance condition for an arbitrary half-integer spin J is

ω1 =
4N

2J + 1ωR. The lowest-order average Hamiltonian treatment is not sufficient to explain

other interesting conversions of polarization that can occur at or in between rotary resonance

conditions [161, 162, 163, 164, 165]; in fact, this method is suspect in the sudden passage

regime because the nth-order average Hamiltonian term goes like ∼ (ω1/ωR)
n, so the pertur-

bation series may not converge (or at least not converge rapidly) when ω1 = NωR. All these

problems have been addressed successfully by Floquet theoretical treatments [162, 163, 164].

This approach is very general and it is expected that these effects could be ob-

served in AMO systems with crossed electric and magnetic fields if the Larmor frequency



5.7. THE J = 1→ J ′ = 0 TRANSITION IN OPTICS EXPRESSED AS A
SYSTEM OF TWO COUPLED SPINS-1/2 IN NMR 319

is appropriately matched to the Stark modulation frequency such that ωB = 4N
2J + 1ωR, in

the limit that the Larmor splitting is much smaller than the Stark splitting. However, the

theory as described above is only applicable to systems with half-integer angular momenta,

as are the RIACT and FAM techniques.

5.7 The J = 1 → J ′ = 0 transition in optics expressed as a

system of two coupled spins-1/2 in NMR

Thus far only angular momentum dynamics within a single J manifold have been

considered. However, in AMO experiments, it is also possible to excite optical transitions

between levels of differing angular momentum, and this transition itself affects the angular

momentum dynamics of both states. The simple example that will be considered here is

the transition between a J = 1 ground state and a J ′ = 0 excited state during optical

pumping in the low light power limit while in the presence of a magnetic field. Radiation-

induced J → J ′ transitions are usually not considered in NMR, because excitations are

usually performed within the nuclear ground state and the radiation does not directly couple

different nuclei to each other. However, the J = 1, J ′ = 0 system has four levels, and one

might expect that this problem could be translated into the problem of two coupled spin-

1/2 angular momenta. In that case, it may be possible that the atomic angular momentum

dynamics can be associated with the dynamics of an NMR system. This would represent

another analogy between AMO and NMR and potentially provide more opportunities for

new experimental design and cross-fertilization between these fields.
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5.7.1 The optically-pumped atomic J = 1, J ′ = 0 system

Consider the atomic J = 1→ J ′ = 0 low-power optical transition in the presence

of a magnetic field parallel to the light propagation axis; the quantum-mechanical formu-

lation of this problem has been considered by Malakyan et al. [281]. Only the coherent

dynamics will be considered here; i.e., relaxation will be neglected, because the mechanisms

of relaxation can differ substantially between AMO and NMR systems (although these dif-

ferences themselves would make interesting topics of study). The system is subject to the

internal atomic Hamiltonian Ĥ0, the magnetic field (Zeeman) Hamiltonian ĤB, and the

light-atom interaction (Stark) Hamiltonian Ĥl induced by the electric field of the radiation:

Ĥ(t) = Ĥ0 + ĤB + Ĥl(t). (5.56)

The J = 1 triplet ground state has three magnetic sublevels |T+〉 ≡ |αg; J,mJ = +1〉, |T0〉 ≡

|αg; J,mJ = 0〉, and |T−〉 ≡ |αg; J,mJ = −1〉, and the J ′ = 0 singlet excited state has one

level |S0〉 ≡ |αe; J ′,mJ ′ = 0〉. Here αg and αe represent the quantum numbers for the ground

and excited states, respectively, other than the angular momentum quantum numbers, and

the quantization axis z is taken to be along the direction of light propagation.17

If the atomic ground state is assumed to have energy Eg = 0 and the excited state

17This differs from the examples considered previously, in which the z-axis was taken to be along the
electric field axis, which is the polarization axis in the case of a linearly-polarized optical field.
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has an energy Ee = ~ΩA, the laboratory-frame atomic Hamiltonian may be written as:

Ĥ0 = ~ΩA|S0〉〈S0| = ~ΩA




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



, (5.57)

where the ordering of the basis states in the matrix has been taken to be {|T+〉, |T0〉, |S0〉, |T−〉}

in order to group the states by the value of their magnetic sublevel mJ or mJ ′ .

The Zeeman Hamiltonian in a z-directed magnetic field B = Bz̃ is:

ĤB = −µ̂
g
·B = −ggµBĴzB/~ = −~ωB




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1



, (5.58)

where µ̂
g
is the magnetic dipole moment operator of the J = 1 ground state, ωB = ggµBB

is the Larmor frequency of the J = 1 state, and µ0 is the Bohr magneton.18 The |T0〉 and

|S0〉 states are not shifted by a magnetic field.

The atom-light interaction Hamiltonian with an oscillating light field E = E0 cos(ωt)x̃

linearly polarized along x is:

Ĥl(t) = −d̂ · E = −dxE0 cos(ωt) = −2~ωl cos(ωt)




0 0 −1 0

0 0 0 0

−1 0 0 1

0 0 1 0



, (5.59)

where d̂ is the atomic electric dipole moment operator (with d̂x = −(d̂1,+1 − d̂1,−1)/
√
2

18In this notation the electron g-factor is negative and the Bohr magneton is positive, so ωB < 0 if B is
in the +z-direction.
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in the spherical basis), ωl = E0〈α′; J ′ ‖ d̂1 ‖ α; J〉/(2
√
2~) is the optical Rabi frequency,

and 〈α′; J ′ ‖ d̂1 ‖α; J〉 is a reduced matrix element given by the Wigner-Eckart theorem

〈α′; J ′,mJ ′ |d̂k,q|α; J,mJ〉=〈J ′,MJ ′ ; k, q|J,mJ〉〈α′; J ′‖d̂k‖α; J〉, where 〈α′; J ′,mJ ′ |d̂k,q|α; J,mJ〉

is a Clebsch-Gordan coefficient. The laser frequency ω is near the optical resonance fre-

quency ΩA, and potentially ω = ω(t), i.e., the optical field is frequency-modulated. The

quadratic Stark effect considered in previous sections may be neglected in the low light

power limit where the optical pumping is not saturated.

The total Hamiltonian in the {|T+〉, |T0〉, |S0〉, |T−〉} basis is therefore:

Ĥ(t)/~ =




−ωB 0 2ωl cos(ωt) 0

0 0 0 −2ωl cos(ωt)
2ωl cos(ωt) 0 ΩA 0

0 0 −2ωl cos(ωt) ωB



, (5.60)

and it is this Hamiltonian that will be used to try to make an analogy to an NMR system.

5.7.2 The fictitious two-spin system

The four-level system can be converted into a fictitious system of two spin-1/2

particles J1 and J2 through the associations |T+〉 = |++〉, |T0〉 = (|+−〉 + |−+〉)/
√
2,

|T−〉 = |−−〉, and |S0〉 = (|+−〉 − |−+〉)/
√
2.19 The J , J ′ Hamiltonian can be converted

into this fictitious two-spin basis through the transformation:

Ĥ ′(t) = ÛT Ĥ(t)Û−1T , (5.61)

19| + +〉 = |J1 = 1/2,m1 = +1/2〉 ⊗ |J2 = 1/2,m2 = +1/2〉, | + −〉 = |J1 = 1/2,m1 = +1/2〉 ⊗ |J2 =
1/2,m2 = −1/2〉, |+−〉 = |J1 = 1/2,m1 = −1/2〉 ⊗ |J2 = 1/2,m2 = +1/2〉, and | − −〉 = |J1 = 1/2,m1 =
−1/2〉 ⊗ |J2 = 1/2,m2 = −1/2〉.



5.7. THE J = 1→ J ′ = 0 TRANSITION IN OPTICS EXPRESSED AS A
SYSTEM OF TWO COUPLED SPINS-1/2 IN NMR 323

where

ÛT =




1 0 0 0

0 1√
2

1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1




, (5.62)

where the columns of ÛT are the two-spin basis states written in the triplet-singlet basis.

It is instructive to write the Hamiltonian Ĥ ′ in terms of basis operators of the

fictitious two-spin system. A convenient choice of basis operators {B̂} is the set of sixteen

dimensionless Ĵ1iĴ2j angular momentum direct product operators, where i, j ∈ {x, y, z} and

the identity operators 1̂1 and 1̂2 have also been included in the single-spin basis sets.20 The

Hamiltonian can be written:

Ĥ ′(t) =
∑

i,j

bij(t)B̂ij , (5.63)

where bij = Tr[B̂†ijĤ
′(t)]/Tr[B̂†ijB̂ij ]. It follows that:

Ĥ ′(t)/~ =
ΩA
4

1̂ + (−ωBĴ1z − ωBĴ2z)− ΩA(Ĵ1 · Ĵ2) + [−ω′l cos(ωt)Ĵ1x + ω′l cos(ωt)Ĵ2x]

= [Ĥ ′0 + Ĥ ′B + Ĥ ′l(t)]/~, (5.64)

where

Ĥ ′B/~ = −ωB(Ĵ1z + Ĵ2z), (5.65)

20For instance, Ĵ1xĴ2z = ( 1
2
|+〉〈−| + 1

2
|−〉〈+|) ⊗ ( 1

2
|+〉〈+| − 1

2
|−〉〈−|), or Ĵy2 ≡ 1̂1 ⊗ Ĵy2 = (|+〉〈+| +

|−〉〈−|)⊗ (−i
2
|+〉〈−|+ i

2
|−〉〈+|).
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and

Ĥ ′0/~ =
ΩA
4

1̂− ΩA(Ĵ1 · Ĵ2). (5.66)

and

Ĥ ′l(t)/~ = −ω′l cos(ωt)(Ĵ1x − Ĵ2x), (5.67)

with ω′l = 2
√
2ωl = E0〈α′; J ′‖d̂1‖α; J〉/~.

5.7.3 The potential Hamiltonian analogy to NMR

A spin-1 coupled to a spin-0 system does not often arise in NMR studies, so it is

natural to try to represent such a system as two spin-1/2 systems that are coupled. The

coupled spin-1/2 problem is ubiquitous in NMR.21 As will be seen, the Hamiltonian in Eq.

5.64 has some similarities to NMR Hamiltonians. The atomic Zeeman term, Ĥ ′B, looks

exactly like the Zeeman Hamiltonian of two chemically equivalent spin-1/2 nuclei, upon

identifying the J = 1 atomic Larmor frequency with a spin-1/2 nuclear Larmor frequency.

The internal atomic Hamiltonian Ĥ ′0 resembles the isotropic component of the NMR scalar

coupling (J-coupling) Hamiltonian with a J-coupling constant equal to −ΩA in angular

frequency units, plus a constant energy shift ~ΩA/4 of all the levels that does not affect the

angular momentum dynamics.22

There is one critical difference between the atomic Hamiltonian and an NMR

21In fact, in certain problems it is not unusual to write the two spin-1/2 system in a singlet-triplet basis.
22Note that J is the conventional symbol for the NMR indirect spin-spin coupling constant, and does not

refer to an angular momentum quantum number here.
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Hamiltonian that makes the analogy incomplete. The atom-light coupling Hamiltonian

Ĥ ′l looks similar to the laboratory-frame Hamiltonian for two nuclei in a radiofrequency

magnetic field B1(t) = B1 cos(ωt)x̃ if ω′l is identified with the rf nuclear nutation frequency

ω1, except that the first spin sees a field +B1(t) and the second spin sees a field −B1(t).

This sign difference in the “rf Hamiltonian” is unphysical in real NMR experiments, which

have no way of applying magnetic fields of different signs to two different nuclei. The

other way to get a sign difference in the nutation frequency is if the nuclei had oppositely-

signed gyromagnetic ratios, which again is unphysical, as no two nuclei have the same

magnitude but opposite sign of gyromagnetic ratio. However, even if this were the case,

this sign difference would also have to be reflected in the Zeeman Hamiltonian Ĥ ′B in the

form of a sign difference between the Larmor frequencies ωB of the two nuclei, which it

is not. Physically, this sign difference would mean that two equivalent nuclei could be

distinguished by using rf fields to make them nutate in opposite directions. This behavior

could also provide a means of decoupling two identical scalar-coupled nuclei using rf fields,

which has never been done.

The Hamiltonian in Eq. 5.64 can also be considered to be somewhat unphysical

from an NMR perspective if one considers the actual values of the physical constants.

In an atomic system, the dominant Hamiltonian is the internal atomic Hamiltonian; i.e.,

ΩA À ωB, ωl.
23 However, the nuclear J-coupling is usually one of the smallest interactions

in NMR (∼ 1 − 102 Hz), whereas at high magnetic fields the nuclear Larmor frequency is

∼ 108 Hz, and rf nutation frequencies typically go up to ∼ 104 Hz in liquid-state probes to

23ΩA/2π ∼ 1014 Hz for a near-IR resonance; in the perturbative limit ωl/2π ∼ 103 Hz is a reasonable
value; and for B in the 10−3 G range, ωB/2π ∼ 103 Hz.
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∼ 105 Hz in solid-state probes.

Although the NMR J-coupling obviously does not dominate the dynamics in the

laboratory frame, consider the following common liquid-state NMR Hamiltonian in the

laboratory frame for two equivalent J-coupled spins in a static magnetic field B0 = B0z̃,

with an additional amplitude-modulated rf field B1(t) = B1 cos(ωt)x̃:

Ĥlab/~ = −ω0(Îz1 + Îz2) + ωJ(Îz1 · Îz2)− 2ω1(t) cos(ωrt)(Îx1 + Îx2), (5.68)

where ω0 = γB0, ωJ = 2πJ , ω1(t) = ω1 cos(ωmt), 2ω1 = γB1, and ωr is the rf carrier

frequency. In the rotating frame defined by the transformation V̂rot(t) = exp[+iωrt(Îz1 +

Îz1)], the effective Hamiltonian becomes:

Ĥrot/~ ' −δ(Îz1 + Îz2) + ωJ(Îz1 · Îz2)− ω1 cos(ωmt)(Îx1 + Îx2) (5.69)

where δ = ω0−ωr is the resonance detuning and the rapidly-oscillating terms at frequencies

ωm ± 2ωr can be neglected if |ωm ± 2ωr| À |ω1|, since |ω1|, |ωm| ¿ |ωr|. The resemblance

of this rotating frame Hamiltonian to Eq. 5.64 should be apparent (aside from the relative

signs of the Îx1 and Îx2 terms, which again is crucial), but the physical parameters have

somewhat different meanings. In effect, the nuclear Larmor frequency has been reduced

in the rotating frame to a small resonance offset δ that can be made arbitrarily small by

tuning the rf carrier frequency ωr close to the Larmor frequency ω0. If the resonance offset

δ/2π is adjusted to be on the order of a few Hz and the rf nutation frequency ω1/2π is

made to be very weak and also of the order of only a few Hz, then |δ|, |ω1| ¿ |ωJ | for large
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values of the J-coupling constant, and this situation resembles the atomic system. In order

to make the analogy complete, the rf amplitude modulation frequency ωm should be of the

order of the J-coupling frequency ωJ (since ω ∼ ΩA in the atomic system), and potentially

ωm = ωm(t).

The dynamics under the atomic Hamiltonian in Eq. 5.56 are usually calculated by

making a “rotating wave approximation” in the rotating frame defined by the transformation

V̂rot(t) = exp[−iĤ0t/~]. If the J-coupling Hamiltonian is truly dominant (an unusual case in

NMR when an rf field is present) in Eq. 5.69 and if the modulation frequency is chosen such

that ωm ∼ ωJ , then the equivalent procedure would be to approximate the Hamiltonian in

the modulated frame defined by the transformation exp[−iωmt(Îz1 ·Îz2)], which is analogous

to the J-coupling interaction frame transformation exp[−iωJ t(Îz1 · Îz2)].24

5.7.4 The observables

As was discussed in §5.4.2, there are many possible observable quantities in the

atomic physics experiment. For example, the optical rotation of the light polarization in

the atomic system is proportional to the polarization moment P4, which yields [281]:

∆φ ∝ Re[〈S0|ρ̂(t)|T−〉+ 〈T+|ρ̂(t)|S0〉], (5.70)

where ρ̂(t) is the density operator for the system; its time dependence is determined by

evolution under the Hamiltonian in Eq. 5.56 plus relaxation effects. The right-hand side

of this equation is equal to Re[Tr[ ˆρ(t)Ôφ]], where Ôφ = |T−〉〈S0| + |S0〉〈T+|. If the non-

24It is possible to apply the second frame transformation to the approximate Hamiltonian in Eq. 5.69 if
ωr À ωm, which will be the case since ωr ∼ ω0 ∼ 108 Hz and ωm ∼ ωJ ∼ 102 Hz.
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Hermitian operator Ôφ is written as Ôφ = Ô+φ + iÔ−φ , where Ô+φ = 1
2(Ôφ + Ô†φ) and

Ô−φ = 1
2i(Ôφ − Ô

†
φ) are Hermitian operators, then Eq. 5.70 can be rewritten as:

∆φ ∝ Tr[ρ̂(t)Ô+φ ], (5.71)

where Ô+φ = 1
2(|T−〉〈S0|+ |S0〉〈T−|+ |S0〉〈T+|+ |T+〉〈S0|).

The optical rotation observable operator Ô+φ can be written in terms of the ficti-

tious two-spin operators as:

Ô
′ +
φ =

√
2(Ĵz1Ĵx2 − Ĵx1Ĵz2), (5.72)

which is not a directly observable quantity in NMR (i.e., it does not correspond to nuclear

magnetization), but it can be indirectly observed in a two-dimensional experiment. In two-

spin spherical tensor notation, Ô+φ =
√
2(T̂1,+1+ T̂1,−1), where T̂1,±1 = 1

2(Ĵz1Ĵ±2− Ĵ±1Ĵz2).

The observable Ô+φ in NMR terminology corresponds to a particular combination of so-

called antiphase magnetization.

As has been noted before, given a spin system prepared in some initial state, the

NMR spectroscopist’s game is to figure out how to manipulate the system into some other

interesting state by implementing different Hamiltonians, usually by applying magnetic

fields and/or sample rotations. As an interesting exercise, one may refer to Appendix D for

some exact solutions of the time evolution of a J-coupled two-spin system in a magnetic

field. Using the approach outlined above, these expressions can be converted into exact

solutions of the J = 0, J ′ = 1 atomic system in the presence of a static magnetic field but
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no optical field. For instance, if the initial density operator for a pair of identical spin-1/2

nuclei could be prepared as ρ̂′(0) ∝ Ĵx1− Ĵx2 for a pair of identical spin-1/2 nuclei (ignoring

the term proportional to the identity operator), then ρ̂(t) includes a term proportional to

−1
2{cos[(ωJ+δ)t]−cos[(ωJ−δ)t]}(Ĵz1Ĵx2−Ĵx1Ĵz2) = sin(ωJ t) sin(δt)(Ĵz1Ĵx2−Ĵx1Ĵz2), where

ωJ is the J-coupling constant and δ is the Larmor frequency in angular units. This term is

proportional to the atomic optical rotation observable, Ô
′ +
φ . It averages to zero over times

tÀ ω−1J in the limit of a strong J-coupling and weak magnetic field |ωJ | À |δ|. Upon making

a transformation back into the singlet-triplet basis, one finds that ρ̂′(0) = ±(Ĵx1− Ĵx2) can

be created upon equally populating the two states 1√
2
(|T+〉∓ |S0〉) and 1√

2
(|T−〉± |S0〉). If

such a state could be prepared, one would expect that the system would develop a non-zero

time-averaged optical rotation, but only on a timescale not much faster than the reciprocal

optical frequency Ω−1A , which is somewhat of an unrealistic case to measure.

5.8 Conclusions

The goal of this work has been to establish analogies between the angular momen-

tum dynamics in atomic and molecular optics experiments in the presence of external fields

and those in nuclear magnetic and quadrupole resonance experiments. In particular, the

emphasis has been placed on the similarities between the coherent, quantum mechanical

dynamics of these systems in the absence of relaxation effects, which can differ markedly

between AMO and nuclear systems.

The analogies have been laid out to address the following questions: how can

the two types of systems be polarized? What are the Hamiltonian operators that dictate
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their dynamics? What types of polarization can be measured? The Hamiltonian analogy

focused on the fact that the effect of a magnetic field is the same in AMO and nuclear

systems, but an electric field in J > 1/2 AMO systems affects the dynamics through the

quadratic Stark effect in nearly the same way as axially symmetric electric field gradients

affect nuclear dynamics through the electric quadrupolar coupling. Several comparisons

were made between NMR/NQR systems and AMO systems with magnetic and electric

fields applied in different geometries. An exact solution was developed in the spherical

tensor operator notation for the dynamics of a J = 1 AMO system in crossed static electric

and magnetic fields, which corresponds to the high-field NMR dynamics of a spin-1 nucleus

with an axially-symmetric quadrupolar coupling during a steady rf pulse. The origin of

signal in the nuclear quadrupolar resonance experiment was seen to be an example of an

alignment-to-orientation conversion process that is familiar to AMO physicists, and a new

analytical expression for the powder-averaged spin-1 NQR nutation signal was presented.

The quadrupolar NMR analogy was extended to a review of techniques for manipulating

polarization in high-field NMR studies of half-integer quadrupolar nuclei along with some

comments on the potential applicability to AMO experiments.

An attempt was also made to draw an analogy between the dynamics of a resonant

optical transition in the four-level J = 0→ J ′ = 1 system and NMR dynamics in the four-

level system of two spin-1/2 nuclei. This analogy was found to be incomplete in that the

AMO system could not be directly translated into a physical NMR system. However, it

would be interesting to see what sort of dynamics could be induced in this system by

coherent manipulation of the Hamiltonian.
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It is hoped that the formalism and analogies developed in this work can help to

facilitate more interdisciplinary work that draws on the substantial expertise of the atomic

and molecular physics and magnetic resonance communities. At a minimum, researchers

could apply the insights and theoretical methods developed in other fields to their own

work. Ideally, the ideas and techniques from one field could be applied to develop new

experiments in the other.
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Chapter 6

Distant dipolar field effects and

Xe-129 NMR “remote detection”

6.1 Remote detection NMR

6.1.1 Introduction to remote detection NMR

Conventional NMR experiments are typically performed according to an “all-in-

one” paradigm in which the same coil that is used to apply rf pulses to manipulate the

spin system is also used to detect the time-dependent nuclear magnetization by Faraday

induction. This type of experiment is not only conceptually simple and easy to imple-

ment, it also makes good sense because the NMR reciprocity principle (§1.7) dictates that

an rf coil that produces optimal (i.e., strong, homogeneous) pulses is also optimized for

sensitive Faraday detection. For these reasons it has been sometimes overlooked that the

information-encoding (usually coherent spin manipulation) portion of the NMR experiment
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can be considered separately from the magnetization-detection portion. In fact, some ex-

periments exist for which the optimal conditions for NMR encoding are incompatible with

the optimal conditions for NMR detection; therefore, it may prove advantageous to be able

to separate and independently optimize the encoding and detection steps. For example, it

may be desirable to perform experiments on powdered solids at zero magnetic field (i.e.,

spin encoding under an isotropic Hamiltonian) in order to obtain narrow lines, but Faraday

detection is not applicable at zero field because the Larmor frequency is zero.

The original zero-field NMR experiment of Pines et al. shuttled the sample back-

and forth between high- and low-field environments for polarization, encoding, and detection

[282, 283]. Since the detection was not carried out directly during the evolution period, the

zero-field evolution was incremented as the indirect time dimension of a two-dimensional

Fourier NMR experiment. This experiment yielded good results but was somewhat me-

chanically challenging to implement.

Some twenty years after the first zero-field NMR work a general NMR encod-

ing/detection modality dubbed “remote detection” NMR was introduced [284, 285, 286].

Rather than physically transporting the sample, the remote detection methodology relies

on the use of a mobile “carrier” nucleus whose longitudinal magnetization can be encoded

with NMR information point-by-point in one location and then transported to another lo-

cation for detection.1 As opposed to an “all-in-one” encoding/detection experiment, the

encoding and detection steps in a remote detection experiment are distant from each other

in space and time. The experiment is modular in the sense that different combinations of

1Ref. [284] cites some examples of experiments that have used two-location encoding-detection schemes
or other separate optimizations of the encoding and detection steps.
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encoding and detection environments can be employed as desired. For example, the NMR

encoding could take place at high magnetic field or at low field, and the pulse sequence

could encode the carrier nucleus with spectroscopic or image information [284, 287]. The

carrier nucleus could be detected using Faraday induction at high field or by low-field atomic

magnetometry [110], SQUID flux magnetometry [111], or spin-exchange optical detection

[112]. In certain remote detection experiments there may be circumstances under which the

individual optimization of the detection step can result in an increased sensitivity over the

conventional NMR encoding/detection modality.

Perhaps the simplest remote detection encoding “module” is a two-pulse 90◦—t1—

90◦ spectroscopic encoding sequence, which will be discussed quantitatively in §6.1.2. The

first pulse converts initial longitudinal magnetization of the carrier nucleus to transverse

magnetization, which evolves during the incremented indirect evolution time t1. The second

pulse converts the component of transverse magnetization that is orthogonal to the pulse

phase into longitudinal magnetization. The magnitude of the stored longitudinal magneti-

zation is an amplitude-modulated function of the evolution time t1, where the modulation

frequency is the rotating-frame frequency of the carrier nucleus. The longitudinal mag-

netization after the second rf pulse is thus encoded with a single indirect point t1 of the

time-domain NMR signal of the carrier nucleus.

Once an indirect point of the encoded signal is stored as longitudinal magnetiza-

tion, the carrier nucleus can be safely transported to another location for detection as long

as the transport time is shorter than the carrier longitudinal relaxation time. The longi-

tudinal magnetization is preserved during transport as long as the external magnetic field
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along z (i.e., the field parallel to the magnetization) dominates any transverse magnetic

field components or any internal spin Hamiltonians.2 The transported magnetization can

be detected by any means of choice; e.g., if Faraday detection is employed, a 90◦ pulse at

the beginning of the detection interval will convert the stored magnetization to transverse

magnetization for detection. Note that the 90◦—t1—90◦ encoding sequence also leaves a

t1-dependent transverse magnetization component which is assumed to undergo complete

dephasing on the way to the detector either through natural T2 relaxation or by bulk dephas-

ing during transport through magnetic field gradients. Any bulk transverse magnetization

that is not dephased by the time it reaches the detector can add noise to the indirect sig-

nal, depending on the detection scheme. For example, if Faraday detection is employed,

any surviving bulk transverse magnetization will in general possess a random component

parallel to the direction of the detection pulse that will remain in the transverse plane after

the pulse. As the indirect signal is recorded point-by-point, these random contributions to

the signal will appear as noise in the indirect spectrum. A simple test to determine whether

any transverse magnetization is reaching the detection coil is simply to turn on the receiver

without applying a detection pulse.

The most important characteristics that the signal carrier nucleus should possess

are mobility and a long longitudinal relaxation time. The carrier needs to be mobile in

order to convey the encoded magnetization to the detector, and this magnetization should

relax to equilibrium on a timescale that is long compared to the transport time in order

to avoid signal loss. Xe-129 gas has been the mobile carrier of choice in remote detection

2The notion of storing indirectly-encoded magnetization along the z-axis during mechanical transport is
not new; for example, this method is used in dynamic angle spinning experiments [135, 136, 137] to preserve
the indirectly-encoded magnetization while the spinning rotor hops from one angle to another.
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experiments to date. The use of a fluid is ideal for continuous- or stopped-flow remote

detection experiments in which the point-by-point encoding of NMR information takes

place in subsequent volumes of the magnetized fluid. Xenon-129 gas has a longitudinal

relaxation time on the order of tens of minutes or longer because it has relatively few

efficient channels for nuclear magnetic relaxation, since it is monatomic, diamagnetic, dilute

(low spin density), chemically inert, and possesses a spin-1/2 (non-quadrupolar) nucleus.

Xenon also has the advantage that its nuclei can be hyperpolarized by spin-exchange optical

pumping to levels that are 103–105 times higher than the equilibrium polarization that can

be achieved in a high magnetic field (on the order of ∼ 1–10 Tesla) at room temperature.

Note, however, that a gas has a low spin density (near atmospheric pressure) that results

in a magnetization density that is two to three orders of magnitude lower than that of a

similarly-polarized condensed phase sample. Nevertheless, the ability to produce nuclear

polarization without having to use large superconducting magnets is convenient.

In addition to having properties that make it a good magnetization carrier, xenon

also has properties that make it an interesting analyte [288], where “analyte” in the context

of remote detection NMR means a nucleus whose NMR information—e.g., its spectrum

or spatial distribution—is indirectly encoded. Xenon has a highly polarizable electron

cloud, which results in a large range of potential chemical shifts, on the order of hundreds

to thousands of ppm. This makes xenon a very sensitive probe of its local molecular

environment. Xenon is also chemically inert, which means it can be introduced into other

samples to “spy” on them without disrupting them chemically. Furthermore, xenon gas can

be used for void-space imaging or fluid dynamics studies.
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In all the aforementioned examples xenon itself doubles as the analyte and as the

mobile information carrier. The principal purpose of the work in this chapter, as discussed

further in §6.1.3, is to develop a remote detection experiment in which the carrier nucleus

can be encoded with the NMR spectroscopic information of some different analyte nucleus.

The mechanism by which is the spectroscopic information can be transmitted from the

analyte to the carrier nucleus is the long range nuclear dipolar field.

It should be noted that helium-3 also can be hyperpolarized and may be superior

to xenon-129 as remote detection carrier nucleus because it has a larger magnetic moment

and a generally longer longitudinal relaxation time. On the other hand helium has a much

smaller chemical shift range and therefore is not very useful as an analyte in spectroscopic

encoding experiments, but would be ideal for void space imaging experiments. It also would

be useful for dipolar field experiments in which the carrier nucleus does not also serve as

the analyte. This work, however, used the pre-existing xenon polarization apparatus and

expertise of the Pines laboratory.

6.1.2 An example of remote detection NMR with spectroscopic encoding

The concept of using an indirect point-by-point pulse sequence with physical trans-

port of the spins to generate an NMR spectrum may seem somewhat unusual to the conven-

tional NMR practitioner. The aim of this section is to give a pedagogical but quantitative

account of how a simple two-pulse encoding remote detection experiment can be gently and

gradually developed conceptually from a conventional one-pulse Fourier NMR experiment.

Simpler descriptions of the remote detection experiment are available elsewhere [284, 286].

It will be assumed that the analyte nucleus and the mobile information-carrier nucleus are
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one and the same, and that both NMR encoding and detection are achieved by use of rf

coils (i.e., detection by Faraday induction is employed). Spin relaxation will be neglected,

although its effects are easily added to this treatment. Fig. 6.1 shows a schematic of the

simple pulse sequence toward which this discussion will build.

90ox

t1

90ox90ox 90ox

t2detect

transport

Δt

Figure 6.1: NMR remote detection experiment utilizing a two-pulse spectroscopic encoding
sequence. After the sequence is applied the spin evolution during t1 is stored as longitudinal
magnetization of the carrier nucleus. This magnetization then can be transported during
∆t to another location for detection. If inductive detection is to be used, a 90◦ pulse will
read out the stored magnetization for detection during t2 as transverse magnetization.

Consider a one-pulse NMR experiment on a spin species I whose spectrum con-

tains only a single resonance. The rotating-frame Hamiltonian is time independent and

may be written Ĥ/~ = δÎz, where δ is the resonance offset of the spin in the presence of

some magnetic field directed along the z-axis. The spin system is assumed to be initially

polarized along the z-axis, where the difference density operator is ρ̂(0) ∝ Îz. A single 90◦

pulse is applied in the +x-direction in the rotating frame. The precession of the resulting

magnetization vector in the transverse plane is detected in quadrature. The pulse sequence

and detected signal are:

90◦x—t—detect (6.1)

S(t) ∝ Tr[ρ̂(t)Î+] = −
i

2
eiδt. (6.2)

The numerical prefactor in the signal has been calculated assuming I = 1/2, but the value
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of the spin quantum number does not actually play an important role in this discussion.

The signal is not continuously sampled; rather, a total of N points are discretely sampled

from t = 0 to t = tmax with an interval (dwell time) of dt = tmax/N . The (discrete)

Fourier transform of Eq. 6.2 obviously yields a peak at the frequency δ. The encoding and

detection steps in the conventional one-pulse NMR experiment overlap spatially; i.e., the

same coil is used for excitation and for detection. They nearly overlap temporally; i.e.,

the spin precession at the resonance offset frequency is detected in real time, although one

cannot detect at the same time a pulse is being applied. Here the excitation of the spins

by the 90◦ pulse is considered to be part of the encoding step.

Now imagine dividing the interval t into two back-to-back intervals t1 and t2. In

other words, the time variable t1 = t is used only up until a certain point, after which the

variable t2 = t − t1 is used. This is only a mathematical split; nothing in the experiment

has changed, so the detected signal is the same as Eq. 6.2 with renamed time variables:

90◦x—t1, t2—detect (6.3)

S(t1, t2) ∝ Tr[ρ̂(t1, t2)Î+] = −
i

2
eiδt1eiδt2 . (6.4)

A total of N1 points are sampled during the first interval t1 and N2 points are sampled

during t2. If the signal of Eq. 6.4 is subjected to a two-dimensional Fourier transform with

respect to t1 and t2, a diagonal peak is obtained in the 2D spectrum at frequency δ in both

dimensions. Interestingly, the chemical information is obtained redundantly: the projection

of the 2D spectrum onto either frequency axis gives the same NMR spectrum. In particular,

the usual mathematical representation of the one-pulse NMR spectrum is recovered by
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setting t2 = 0 in Eq. 6.5 (i.e., t1 = t at all times) and taking the one-dimensional Fourier

transform of the signal S(t1, 0).

This two time variable approach is easily extended to an indirect dimension/direct

dimension two-dimensional NMR experiment. Rather than continuously detecting signal

during the intervals t1 and t2, imagine shutting the detector off during t1 and only recording

signal during t2. Instead of directly recording N1 points during t1, N1 experiments are per-

formed where the interval t1 between the excitation pulse and the start of detection at t2 = 0

is incremented experiment-by-experiment with an interval of tmax1 /N1. This is perhaps the

most simple 2D NMR experiment: apply a pulse to create transverse magnetization, do

not detect this magnetization over the course of a point-by-point incremented time t1, and

then measure the signal directly during the time t2. Since the evolution during t1 is not

measured directly, t1 is called an “indirect” time dimension, whereas t2 is a “direct” time

dimension. The spin evolution during t1 has been switched from being directly detected to

being indirectly detected, but the overall signal is the same as in Eq. 6.4:

S(t1, t2) ∝ Tr[ρ̂(t1, t2)Î+] = −
i

2
eiδt1eiδt2 . (6.5)

Note that the NMR spectrum can be mapped out almost completely indirectly by measuring

the signal at only a single point t2 = 0 for every experimental increment of t1, generating

the one-dimensional data set S(t1, 0). Normally this would be an inefficient method of

taking a one-dimensional spectrum because N1 experiments are required rather than a

single experiment. However, this indirect method may be worthwhile if the remote detection
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technique can offer an increase in sensitivity.3

When considering the two-dimensional NMR experiment described above, it is

important to remember that when quadrature detection is employed (i.e., the observable is

proportional to Î+), only the evolution of the −1-quantum coherence (−1QC) during the

direct dimension contributes to the signal. During the indirect evolution the spin system

is not observed, and no such automatic selection of the −1QC occurs. Ordinarily, the

application of a coherence pathway selection scheme can ensure that only the −1QC is

selected during t1, resulting in a signal of the form of Eq. 6.5. However, since there are no

mixing pulses between the t1 and t2 intervals that can change the coherence order of the

system, the −1QC is automatically selected during t1. This is a consequence of the facts

that the −1QC is selected during direct detection and coherence order is preserved during

free precession intervals.

The pulse sequence in Eq. 6.3 may be modified to include a back-to-back [90◦
φ
, 90◦φ]

pulse pair between the t1 and t2 intervals, where φ = φ + π. The pulse phase convention

is defined such that a pulse with phase φ = 0 has a magnetic field in the +x direction in

the rotating frame, and the corresponding φ = π pulse is in the −x direction. Such a pair

of pulses acts as a “do-nothing” element of the pulse sequence; i.e., the time development

operator for a [90◦x, 90
◦
x] pair of ideal delta-function pulses (see §2.3.3) is the identity opera-

tor, Û90◦xÛ90◦x = e−i(π/2)Îxe+i(π/2)Îx = 1̂. Since the pulses do nothing, the signal is the same

3Note that in principle, the N1 indirect points may be encoded more rapidly in an NMR experiment
that utilizes flow than in a conventional 2D NMR experiment. The rate at which indirect points can be
encoded is limited in conventional 2D experiments by waiting for the equilibrium magnetization of the spins
to recover via longitudinal relaxation. The next indirect point in a flow mode/remote detection experiment
can be encoded as quickly as a fresh volume of carrier spins can be introduced into the encoding region.
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as in Eqs. 6.4 or 6.5:

90◦x—t1—[90◦x, 90
◦
x]—t2—detect (6.6)

S(t1, t2) ∝ −
i

2
eiδt1eiδt2 . (6.7)

Coherence pathway selection is not necessary to obtain this signal even if the evolution

during t1 is detected indirectly, assuming that the pulse pair is perfect and causes no

coherence transfers. For the sake of generality, one can also consider the situation where

the system Hamiltonian changes suddenly at the division between the indirect and direct

time intervals. The simplest case to consider is that of two time-independent Hamiltonians

Ĥ1 and Ĥ2 that are active during the respective intervals t1 and t2 and commute with each

other, [Ĥ1, Ĥ2] = 0. If Ĥ1/~ = δ1Îz and Ĥ2/~ = δ2Îz represent two different rotating-frame

resonance offset Hamiltonians, the signal due to the pulse sequence in Eq. 6.6 is found to

be:

S(t1, t2) ∝ −
i

2
eiδ1t1eiδ2t2 . (6.8)

Such a situation could arise if the external magnetic field or the rf carrier frequency is

suddenly changed after the end of the indirect evolution period. A two-dimensional Fourier

transform of Eq. 6.8 gives a peak at the frequencies (δ1,δ2) in the 2D spectrum. A projection

of the 2D spectrum along either the indirect or direct frequency dimension yields the 1D

NMR spectrum in the presence of the Hamiltonian Ĥ1 or Ĥ2, respectively. Note that in this

manner the spectrum of the spin evolution during the interval t1 can be recorded without
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making any direct measurements during this time. In particular, if only the first point

t2 = 0 is recorded for each of the N1 transient experiments, the Fourier transform of the

one-dimensional data set S(t1, 0) ∝ − i2e
iδ1t1 with respect to t1 yields the indirectly-detected

spectrum of the spin evolution under Ĥ1. The evolution under Ĥ2 during t2 is immaterial for

the purpose of determining the indirect spectrum, although the sensitivity of the detection

can be improved by measuring for a longer period of time.

Now consider adding a delay ∆t between the two back-to-back pulses. If the density

operator after the first pulse but before the second, ρ̂(t+1 , 0
−), commutes with the system

Hamiltonian Ĥt(t) at all times t during the delay ∆t, the density operator is preserved

during the delay. Therefore, the signal calculated in Eq. 6.8 does not change with the

addition of the delay:

[90◦x—t1—90◦x]—∆t—[90◦x—t2—detect] (6.9)

S(t1, t2) ∝ −
i

2
eiδ1t1eiδ2t2 . (6.10)

A simple case when [ρ̂(t+1 , 0
−), Ĥt(t)] is guaranteed to be true is when Ĥt = 0. Since Ĥt

is written in the rotating frame, the condition Ĥt = 0 holds when a constant z-directed

magnetic field whose Larmor splitting is resonant with the rf carrier is applied during ∆t.
4

If Ĥt 6= 0, it is difficult in practice to arrange a situation in which the Hamiltonian com-

mutes with the density operator. This can be demonstrated by a more explicit calculation.

Starting from initial z-magnetization, ρ̂(0) ∝ Îz, the density operator immediately after the

4If separate encoding and detection coils are employed, the relevant rotating frame is that of the detection
circuit.
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[90◦x—t1—90◦x] sequence is:

ρ̂(t+1 , 0
−) ∝ Îz cos(δ1t1) + Îx sin(δ1t1), (6.11)

where the evolution during t1 is under the Hamiltonian Ĥ1/~ = δ1Îz. This density operator

corresponds to magnetization in the direction of the unit vector ũ = cos(δ1t1)z̃+sin(δ1t1)x̃.

This magnetization will be preserved during the delay ∆t if the external magnetic field

that gives rise to Ĥt is parallel to ũ at all times. This is difficult to implement because

the direction of ũ depends on both δ1 and t1, so the magnetic field direction would have

to be adjusted for every increment of t1 using a known value of δ1. The situation is even

more complicated if the spectrum contains multiple resonances δj1. Furthermore, since the

calculation takes place in the rotating frame, the x-component of u rotates with respect to

laboratory-frame coordinates, so the complete preservation of the density operator during

∆t would require the application of transverse rf fields. It would be almost hopeless to

try to preserve the transverse magnetization component during ∆t if Ĥ1 and Ĥ2 were due

to two very different laboratory-frame magnetic fields. The question arises as to how the

information about the evolution under Ĥ1 can be safely transmitted for detection through

some environment that has a potentially arbitrary Hamiltonian Ĥt.

Consider the situation encountered in a remote detection experiment that uses

an rf coil for detection by Faraday induction. Here Ĥ1 and Ĥ2 are the resonance offset

Hamiltonians in the encoding and detection coils, respectively, and t1 and t2 are the re-

spective encoding and detection times. The encoding and detection coils are in separate

locations, so the spins can experience external magnetic fields that differ between the coils.
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The Hamiltonian Ĥt corresponds to the interaction of the mobile carrier spins with some

possibly varying external magnetic field during transport from the encoding coil to the de-

tection coil. The travel time of the spins between the encoding and detection coils is ∆t.

Each indirect point of the analyte spectrum is encoded in a volume dV of the magnetized

carrier. This information must be transmitted without loss as the volume is transported to

the detection region.

Inspection of Eq. 6.11 reveals that there is a redundancy in the encoded magneti-

zation: both the z-component and x-component of magnetization after the [90◦x—t1—90◦x]

indirect encoding sequence depend on the spin evolution during t1 as the functions cos(δ1t1)

and sin(δ1t1), respectively. If the transport Hamiltonian Ĥt is due to a magnetic field whose

longitudinal component is much larger than its transverse component at all times, the z-

component of the encoded magnetization will be very nearly preserved during transport.

This is because this component of the magnetization is parallel to the magnetic field, i.e.,

that component of the density operator commutes with Ĥt.
5 The transverse magnetiza-

tion component will continue to precess during transport but decays with the intrinsic

relaxation time T2, and it will also experience bulk dephasing due to gradients of the lon-

gitudinal magnetic field.6 If the condition 1/T1 ¿ ∆t ¿ 1/T ∗2 is satisfied, where T1 is the

longitudinal relaxation time of the carrier spins and T ∗2 is the effective transverse relaxation

time including both intrinsic and bulk dephasing effects, the longitudinal component of the

encoded magnetization will be preserved at the end of the travel time ∆t but the transverse

5The requirement that the external magnetic field be directed along z at all times during the transport
is actually too restrictive. The spins in a magnetization volume experience a time-varying magnetic field as
they are transported through a spatially inhomogeneous magnetic field. If this variation is adiabatic over
the course of the transport the stored magnetization will follow the external field.

6The amount of gradient dephasing also depends on the rate at which the volume is transported through
the gradient and on diffusion.
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component will be dephased:

ρ̂(t+1 , 0
+) ∝ Îz cos(δ1t1). (6.12)

The signal recorded by the [90◦x—detect] quadrature detection sequence is:

S(t1, t2) ∝ −
i

2
cos(δ1t1)e

iδ2t2 . (6.13)

This differs somewhat from Eq. 6.10 in that there is no frequency discrimination in the

indirect spectrum between +δ1 and −δ1 due to the amplitude modulation of the signal

cos(δ1t1) =
1
2(e

+iδ1t+ e−iδ1t); frequency discrimination can be restored by employing coher-

ence pathway selection. The source of the difference between the signal in Eq. 6.13 and the

signal in Eq. 6.10 that was built up by adding conceptual or “do-nothing” elements to the

one-pulse NMR experiment is that the transverse magnetization is irreversibly dephased

during the travel time ∆t.

A generalized remote detection NMR experiment may be represented as:

[encode t1]—∆t—[detect], (6.14)

i.e., the carrier is indirectly encoded point-by-point in one location as a function of the

indirect time t1 and transported to a second location for detection. In most cases of practical

import the [encode] module can be further expanded as [prepare—evolve t1—store]. In

this case the remote detection experiment resembles the conceptual two-dimensional NMR

experiment: [prepare]—[evolve t1]—[mix]—[detect t2] (see §1.8). One example of a remote
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detection encoding module is the [90◦x—t1—90◦x] sequence, in which the first pulse prepares

the system for evolution by converting initial z-magnetization to transverse magnetization,

the delay t1 allows the system to evolve, and the second pulse stores the information about

this evolution as z-magnetization for transport during ∆t. The modular nature of the remote

detection experiment allows this sequence to be replaced with sequences in which different

types of NMR information are encoded, for example, a magnetic resonance image [287]. The

nature of the [detect] module is also left purposely vague: the stored magnetization could

be converted with a pulse to transverse magnetization for detection at high magnetic field

using Faraday induction, or it could be detected directly using magnetometric techniques.

One can conclude that the remote detection experiment is simply a generalization of the

conventional NMR modality, the difference being that the NMR information is encoded

indirectly point-by-point in the magnetization of a mobile carrier rather than being encoded

directly, and the stored magnetization is then transported to another location to be detected

by one of a variety of methods.

6.1.3 Dipolar field-encoded remote detection NMR of an analyte

Thus far NMR remote detection experiments have used encoding schemes in which

the analyte (i.e., the sample of interest) is also the mobile carrier of the encoded longitudinal

magnetization. For example, in the imaging or spectroscopy experiments involving xenon

as the mobile carrier, it was the spatial distribution or chemical shift of the xenon itself

that was encoded indirectly. It also would be useful to be able to encode information

about a separate analyte in the magnetization of the mobile carrier. As an example, one

could imagine flowing the carrier into or through a sample, encoding the NMR spectrum
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of a heteronucleus in that sample as stored carrier magnetization, and transporting the

carrier to another location for sensitive detection. This chapter will explore the use of the

long-range nuclear dipolar field for this purpose. Using this technique, the precession of

the analyte can be encoded into longitudinal magnetization as in the conventional remote

detection experiment, but then that encoded information can be transferred to a carrier

nucleus which senses the magnetic field created by the analyte magnetization. This is a

long-range (on the order of millimeters) interaction, so there is no need for the carrier ever

to come in contact with the analyte and the technique is “non-invasive” even if the carrier

is not chemically inert.7 However, as will be seen, the sensitivity of the technique is limited

because the dipolar field effects are small, and the analyte needs to be concentrated and/or

highly polarized.

6.2 The distant dipolar field

It has been known for some time that highly-magnetized nuclei in fluids can exhibit

unusual spin dynamics due to the effect of their own bulk nuclear magnetic field. The

strong, microscopically inhomogeneous local dipolar fields that drive the coherent dynamics

in solids are averaged away by diffusion in fluids, leaving only the macroscopic mean field

contribution of many distant dipoles [77]. The effects of the distant dipolar field (DDF,

also known as the dipolar demagnetizing field) are weak but not negligible when the sample

is highly magnetized, i.e., when the nuclei are highly polarized and/or there is a high spin

7A. Pines has noted that a similar information transfer from analyte to carrier nucleus can be induced by
the nuclear Overhauser effect (NOE). However, NOE transfers are short range (i.e., they are on a molecular
length scale), requiring the carrier to be mixed physically with the analyte. Under these circumstances the
carrier needs to be chemically inert with respect to the analyte, and some mechanism needs to employed to
extract the carrier from the analyte for transport.
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density.

The NMR effects of the DDF were first observed as a series of unexpected spin

echoes in two-pulse experiments on condensed-phase He-3 [289, 290, 291],8 which has a

large magnetization due to its high spin density and large thermal polarization at cryo-

genic temperatures and high magnetic field. DDF effects were later rediscovered in more

conventional samples in the early 1990s. The DDF was observed to cause small resonance

shifts and lineshape distortions after a single pulse in protic solvents [292]. Bowtell et al.

used DDF theory to describe the multiple-echo effects that had been rediscovered in water

[293, 294], multicomponent mixtures of protic solvents [295], and multicomponent heteronu-

clear systems [296]. Ref. [296] also proposed a method of indirectly imaging the DDF in

heteronuclear systems and a two-dimensional technique for indirectly detecting the NMR

spectrum of one spin species through the effect of its dipolar field on another (perhaps in-

termolecular) species. Morris et al. also investigated DDF-induced heteronuclear [297] and

homonuclear [298] multiple spin echoes during this period.

At about the same time Warren’s group independently began to study unusual

peaks that appeared in the spectra of even very simple multidimensional NMR experiments

on highly-magnetized systems [299, 300, 301]. The cause of these peaks was initially unclear

and was originally ascribed to radiation damping effects, in which the precession of a highly-

magnetized species induces an oscillating current in the receiver coil that is strong enough

that the coil itself produces a transverse resonant magnetic field which causes a torque

on the spins. However, it eventually became clear that radiation damping effects could

8The first experiment was in solid He-3 [289], in which DDF effects are observable because of an effective
spin diffusion due to quantum-mechanical exchange.
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not explain all of the experimental results, particularly when gradient pulses that dephased

the bulk magnetization were employed, and the consideration of additional DDF effects was

necessary [302, 303]. A great deal of the confusion about these multidimensional experiments

was due to the fact that the additional peaks had the characteristics of multiple-quantum

resonances. Unfortunately, the conventional quantum-mechanical theory of solution-state

NMR had long before been stripped of its ability to describe coherent dipolar effects by

the removal of the motionally-averaged dipolar Hamiltonian and the adoption of the single-

molecule reduced density operator. The discovery of coherent dipolar effects in solution

lead to some rather dramatic descriptions of the generation of “impossible” cross peaks in

2D solution NMR and violation of the high-temperature approximation, as well as a pulse

sequence dubbed CRAZED (COSY revamped with asymmetric z-gradient echo detection)

[303].

The quantum-mechanical theory was by then so integrated into the mainstream

view of solution-state NMR that the DDF had to be re-justified as arising from long-range

dipolar couplings that were not averaged away due to diffusion [302], despite its well-justified

classical behavior in the multiple-echo experiments. Some workers even suspected that the

classical DDF theory could not account for the complete behavior of the dipolar-induced

intermolecular multiple-quantum coherences (iMQCs) [302]. At the time, a full quantum

theory of iMQCs was not available and the connection between the multidimensional iMQC

experiments and the multiple-echo DDF experiments hadn’t been completed. Publications

by Bowden et al. [304], Jeener et al. [75], and Levitt [305] helped to emphasize the correctness

of the classical theory while also embracing the new ideas of the quantum-mechanical theory.
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Warren’s group put forth a full quantum-mechanical theory of dipole-dipole in-

teractions and iMQCs in liquids in an exhaustive work by Lee et al. in 1996 [76]. In

this theory intermolecular multiple quantum coherences arise from multi-spin terms in

the full N ≈ 1020-spin thermal equilibrium density operator that are converted into ob-

servable signal with the aid of rf pulses and short-time coherent dipolar coupling evolu-

tion. It is not a rigorous quantum-mechanical theory per se, in that it includes some

very reasonable but non-quantum mechanical assumptions about the nature of molecu-

lar diffusion and the length of time over which dipole-coupled spin pairs can interact

coherently in the presence of diffusion, which in turn restrict the number of coherence

pathways available to the multi-spin system. These assumptions recover the classical

DDF limit in which there are no correlated angular momentum dynamics between dis-

tant spins, as discussed in Ref. [76] and elsewhere [75, 306, 77, 307]. The multiple-echo

DDF effects in homonuclear spin systems have since been explained in terms of the quan-

tum formalism, where the nth echo arises due to n-spin terms in the full equilibrium

density operator [308]. There have been many subsequent studies of CRAZED-type se-

quences and the nature, excitation, and dynamics of iMQCs in solution NMR, e.g. Refs.

[77, 309, 310, 311, 312, 313, 314, 315, 316]. The long-range nature of iMQCs and DDF effects

have made them useful probes of mesoscopic structure: e.g., as a contrast mechanism in

magnetic resonance imaging [317, 318, 319, 320, 321, 322, 323, 324, 325]; in NMR multiple-

echo, scattering, and microscopy-type experiments [326, 327, 328, 329, 330, 331, 332, 333];

and even in the direct mapping of the dipolar field or magnetization distribution in solution

[334, 335]. Some of these experiments rely on the facts that the dipolar field is active only
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on the mesoscopic length scale (∼ 10 µm to 10 mm) and that homonuclear intermolecular

zero-quantum coherences are invariant to evolution under the B0 field; these properties can

be used to obtain narrow solution-state NMR spectra in the presence of a B0 field that

is inhomogeneous on the scale of sample dimensions but is relatively homogeneous on the

length scale of the dipolar field [336, 337, 338, 339, 340, 341]. Recently, the DDF has been

identified as a source of unusual turbulent/nonlinear spin dynamics in highly magnetized

systems [342, 343, 344, 345, 346, 347, 348, 349, 350, 351]. Mukamel et al. have also tried to

make analogies between intermolecular multiple-quantum coherences in NMR and certain

nonlinear optics phenomena [352, 353, 354].

6.2.1 Classical calculation of DDF effects

The theory of calculating the dipolar field diverges into many seemingly-unrelated

tentacles and this section attempts to review some of the common mean-field techniques.

Some combination of these methods is employed in nearly all of the fast numerical algorithms

now used for calculating classical DDF effects [355, 356, 357, 358, 359]. The discussion will

not include dynamic effects such as molecular diffusion (which can cause a redistribution of

the sample magnetization) or radiation damping. Furthermore, the macroscopic mean-field

approach is insufficient to describe the interesting dipole-dipole confinement effects that

have been observed in fluid nanovolumes [360].
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Direct calculation of Bd(r)

The magnetic field created at the point r by N non-overlapping classical magnetic

dipoles µ
j
located at positions rj can be found using Eq. 1.36:9

bd(r) =
N∑

j=1

µ0
4π

1

|r − rj |3

[
3(r − rj)[(r − rj) · µj ]

|r − rj |2
− µ

j

]
, (6.15)

where r−rj is the vector from the location of µ
j
to the field point r. It will be assumed that

all the magnetic dipoles are of identical strength, |µ
j
| = µ. The lower-case notation b is used

here to denote that this equation is valid microscopically, i.e., when matter is considered to

be discrete (“granular”) on an atomic level rather than continuous. The microscopic field

can vary wildly on the atomic length scale, which is a true picture of the landscape that

would be seen by a test dipole. Discussions of microscopic versus macroscopic fields may

be found in Refs. [17, §6.6], [361, §1.2–1.3], and [362].

Eq. 6.15 can be rewritten as:

bd(r) =
N∑

j=1

Aj
D
µ
j
, (6.16)

where Aj
D
= Aj

D
(r− rj) is a second-rank tensor (see §1.3.5). If the dipoles are fixed relative

to each other in a molecular framework and r is static in the molecule-fixed frame (say

r = ri marks the position of spin i), then r − rj will randomly reorient in the laboratory

frame due to rapid molecular tumbling in an isotropic fluid; the traceless tensor Aj
D

and

hence the intramolecular dipolar field then averages to zero. The situation is different,

9Note that in this expression µ0 is a physical constant (the magnetic permeability of free space) rather
than one of the classical dipoles.
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however, in the case of intermolecular interactions in a fluid. The vectors rj point to spins

on different molecules, and in a space-fixed frame r − rj wanders due to the diffusional

motion of molecule j. Clearly, a molecule can diffuse only so far in a given amount of time,

so in general the magnitude and direction of r − rj changes more during a given interval

when |r− rj | is small than when |r− rj | is large. When the dipolar field is felt by a nucleus

on some molecule i such that r = ri, the internuclear vector ri−rj is more likely to undergo

random isotropic reorientation while the molecules i and j are diffusing relative to each

other when the molecules are initially close together than when they are far apart. The

internuclear vector between nuclei on distant molecules hardly changes unless the diffusion

time is very long, and Aj
D

does not orientationally-average to zero on a macroscopic length

scale.10 This situation is described more quantitatively in Ref. [76]. The fact that the

dipolar field is active on a macroscopic length scale should not be surprising; if it was not,

a nucleus in a molecule undergoing diffusion could not produce a non-zero time-averaged

magnetic field that could be felt by a test dipole (or a coil) external to the sample. Of

course, the cases of a local dipolar field inside of and external to a magnetized medium are

somewhat different, as will be discussed later.

It is difficult to work with a macroscopic number of N ≈ 1020 dipoles, and it is

customary to take a simplifying mean-field approach. An average magnetization density M

10As is discussed in §1.5.4, whether the orientational averaging is applied before or after secular truncation
of the dipolar field (i.e., whether Aj

D
or just (AjD)2,0 is averaged) depends on whether the internuclear vector

reorients on a faster or slower timescale than the inverse Larmor frequency, which is determined by the
intermolecular separation. However, since the truncated secular dipolar Hamiltonian also averages to zero
under random reorientation of the internuclear vector, the arguments above still hold.
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may be introduced:

M(r) = 〈
N∑

j=1

µ
j
δ3(r − rj)〉, (6.17)

where the three-dimensional Dirac delta function δ3(r − rj) fixes the dipoles at rj . The

angular brackets denote a “coarse-grained” spatial average such that enough dipoles are

included in each small volume dV that the average magnetization density dM is uniform

across the volume. The delta function has units of inverse volume, so M has units of

magnetic dipole moment per unit volume. The vector M is called the macroscopic magne-

tization density or sometimes just the macroscopic magnetization; it varies smoothly on a

macroscopic length scale. The macroscopic magnetic dipolar field Bd(r) can be found by

summing the contributions from each magnetization volume dM(r′) in the continuum limit:

Bd(r) =
µ0
4π

∫
d3r′

1

|r − r′|3
[
3(r − r′)[(r − r′) ·M(r′)]

|r − r′|2 −M(r′)

]
. (6.18)

This is a non-local equation, in the sense that the dipolar field at a single field point r

depends on the magnetization density at every source point r′. Note that Bd(r) = Bd[M(r′)]

is a functional of the magnetization M(r′).

High-field NMR studies are not sensitive to the entire dipolar field Bd, only the

part that affects the spin dynamics in the presence of a much larger applied magnetic field

B0 = B0 z̃. The equation of motion of the magnetization M of a single spin species in the
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presence of a magnetic field B is:

dM

dt
= γM ×B

= −ω ×M, (6.19)

where γ is the gyromagnetic ratio characterizing the strength of the magnetic dipoles µ
j

that make up M and ω = γB. This equation is also valid in the rotating frame if M and

B are replaced with the corresponding rotating frame variables. Eq. 6.19, when written

in a component form that includes phenomenological relaxation effects, becomes the set of

coupled Bloch equations:

dMx

dt
= γ(MyBz −MzBy)−Mx/T2

dMy

dt
= −γ(MxBz −MzBx)−My/T2

dMz

dt
= γ(MxBy −MyBx)− (Mz −Meq)/T1, (6.20)

where the equilibrium value of the magnetization isMeq z̃ and T1 and T2 are relaxation times

for the components that are longitudinal and transverse to z, respectively. The distinction

between longitudinal and transverse relaxation times is meaningful at high field. The Bloch

equations may be solved trivially if B = B0, but things are greatly complicated when the

dipolar field is added (B = B0 + Bd), since Bd itself depends on M . This turns Eq. 6.20

from a linear into a nonlinear set of equations. The Bloch equations are transformed in a
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frame rotating about z at ω ≈ ω0 = γB0, where the effective (secular) part of Bd is:

Bsec
d (r) =

µ0
4π

∫
d3r′

1

|r − r′|3
(3 cos2 θ − 1

2

)
[3Mz(r

′)z̃ −M(r′)], (6.21)

where θ = cos−1[(r̃ − r̃′) · z̃] is the angle between r − r′ and z. Eq. 6.21 represents the

effective dipolar field in a homonuclear system and is the direct generalization of Eq. 1.42.

Another situation of interest is the effect of a dipolar field created by the magne-

tization of a species I on a heteronuclear species S. The effective field in a heteronuclear

system can be found by taking the secular contribution in the doubly-rotating frame of

ωI0 = γIB0 and ωS0 = γSB0:

BI,sec
d (r) =

µ0
4π

∫
d3r′

1

|r − r′|3
(3 cos2 θ − 1

2

)
[2M I

z (r
′)z̃], (6.22)

where M I is the spin-I magnetization, and it is understood that this equation represents

the effect of BI,sec
d (r) on the spin-S magnetization MS . The field point r represents a

location of spin-S magnetization and the source point r′ represents locations of spin-I

magnetization. The transverse terms of Bsec
d in Eq. 6.21 disappear in Eq. 6.22 because they

rapidly oscillate at |ωI0−ωS0 | in the frame of the spin S and time-average to zero. Note that

although the effective dipolar field in Eq. 6.22 is along the z-axis, it does not correspond to

the z-component of BI
d given by Eq. 6.18. This is because some of the z-component of Bd is

non-secular (also in the homonuclear case). Eq. 6.22 would correspond to the z-component

of the full spin-I dipolar field if the full field Bd was evaluated using only the z-component

of M I .
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The “homonuclear” and “heteronuclear” labels are associated with the “strong

dipolar coupling” and “weak dipolar coupling” limits of the secular dynamics (see §1.3.5).

As will be discussed in §6.2.3, even the collective effect of the distant dipolar couplings

is very weak. In practice, almost any two homonuclear species satisfy the weak coupling

condition where it is appropriate to use the “heteronuclear” secular dipolar field (Eq. 6.22)

to describe the dynamics of one species due to the dipolar field of the other. The use of

the “homonuclear” secular dipolar field (Eq. 6.21) will be limited mostly to studies of the

self-dynamics of a spin species in the presence of its own dipolar field.

Eqs. 6.21 and 6.22 are difficult to evaluate analytically even for many symmetric

distributions of the magnetization M(r) because of the P2(cos θ) dependence in the inte-

grand. The |r − r′|−3 term also can cause difficulties in certain coordinate systems. It is

more convenient to evaluate these equations in a conjugate Fourier space [289]. The spatial

Fourier transforms of the magnetization M(r) and secular dipolar field Bd(r) in Eq. 6.21

(the secular label “sec” will be dropped for convenience) are [289]:

M̃(k) =

∫
d3r eik·rM(r) (6.23)

B̃d(k) =

∫
d3r eik·rBd(r)

=
µ0
4π

4π

3

1

2
[3(k̃ · z̃)2 − 1][3M̃z(k)− M̃(k)], (6.24)

where k = k k̃ is the Fourier conjugate variable to r and has units of reciprocal length.11

Note that Eq. 6.24 is local in k-space: there are no integrals over k′ involved, and only a

11This definition of k differs by a factor of 2π from the definition that has been adopted by the magnetic
resonance imaging community, which uses a convention of exp(i2πk · r) in spatial Fourier transforms.
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trivial algebraic computation is necessary to find the dipolar field in k-space. An inverse

Fourier transformation yields the dipolar field in coordinate space. Certain edge-effect errors

that occur during numerical discrete Fourier transforms can be avoided by including empty

grid space around the magnetization volume [355]. Some analytical calculations can be

facilitated by making Fourier series expansions of the magnetization if the longitudinal and

transverse components are each modulated with a single characteristic wavelength [291, 293].

A simple analytical expression for the dipolar field in position space may be ob-

tained if the magnetization is strongly modulated along a single coordinate s. This may

be accomplished, for example, by employing magnetic field gradients ∂Bz/∂s, as will be

discussed in §6.2.3. In such a case the homonuclear secular dipolar field in position space

becomes [289]:

Bd(s) = µ0∆s[Mz(s)z̃ −
1

3
M(s)], (6.25)

where ∆s =
1
2[3(s̃ · z̃)

2 − 1]. The heteronuclear secular dipolar field is:

Bd(s) = µ0∆s[
2

3
Mz(s)]z̃. (6.26)

These equations are valid only when the magnetization is strongly modulated compared

to the smallest sample dimensions, i.e., when the spectrum of M̃(k) contains only high-

|k| components such that all |kL| À 1, where L is the distance to the nearest edge of

the sample [363]. The magnetization is not required to be modulated at only a single

characteristic wavelength, just that it is modulated along only one direction. Refs. [363]
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and [76] make important corrections to Eqs. 6.25 and 6.26 when the magnetization contains

a k = 0 (unmodulated) component, which never satisfies the condition |kL| À 1; the

case of completely uniform magnetization in simple sample geometries is best treated by

magnetostatic methods (see the next section). Note that the presence of unmodulated or

weakly modulated magnetization is requisite for the detection of any signal since in that

caseM does not average to zero over the sample volume. The k = 0 pathology of the Fourier

transform technique has been noted in studies of classical dipole lattices [364]. Note that

Eqs. 6.25 and 6.26 are local and depend only on the direction of s relative to B0 and the

displacement in the s-direction. The field does not depend on the geometry of the sample:

when the magnetization is modulated on a length scale that is much shorter than the size

of the sample, the dipolar field effectively does not “know” about the shape of the sample

except at points near the edges.

Calculation of Bd(r) by the magnetostatic method

Recall that in normal NMR experiments the macroscopic nuclear magnetization

M is a result of the thermal polarization of the nuclei in the presence of the magnetic field

B0. The study of magnetic fields produced in magnetized media belongs to the realm of

classical magnetostatics [17, §5], [47, §6]. The magnetostatic approach to calculating the

nuclear dipolar field has been described clearly and with many illuminating examples by

Levitt [305], Vlassenbroek et al. [365], and Augustine [366]. Magnetic fields inside of matter
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are usually calculated with the aid of an auxiliary field H,12 defined by:

B = µ0(H +M). (6.27)

The rationale for the introduction of this new field is based on the classical view that all

magnetic fields are produced from charged currents; some of these currents can be “free”

(e.g., the electron supercurrent in a superconducting magnet that surrounds the sample),

and some are “bound” within the matter itself (e.g., the induced currents of circulating

atomic electrons) [47, §6.2], [368, §10.8]. The field H is the free current contribution to the

magnetic field. Where there is no matter present, M = 0 and all currents are free, so B

and H are simply proportional by a factor of µ0, the vacuum permeability.

Solutions of B or H in terms ofM can be obtained using the Maxwell equations. If

there are no time-varying macroscopic electric fields inside the sample, the relevant Maxwell

equations for B are:

∇ ·B = 0 (6.28)

∇×B = µ0J, (6.29)

where J is the macroscopic volume current density. If J is separated into free and bound

currents J = Jf + Jb, then Eqs. 6.28 and 6.29 in conjunction with Eq. 6.27 yield the

12In the classic literature H is called the magnetic field and B is the magnetic flux density or magnetic
induction field. The distinction between B and H has caused much confusion in the past [367]. Although
the use of H is often more convenient for the experimentalist, the field B is the more fundamental quantity;
following Griffiths [47, §6.3], B will be referred to as the magnetic field and H will remain nameless.



6.2. THE DISTANT DIPOLAR FIELD 362

differential equations for H:

∇ ·H = −∇ ·M (6.30)

∇×H = Jf , (6.31)

where the bound current is defined by

Jb = ∇×M. (6.32)

A medium in which the induced magnetization is proportional to the applied

magnetic field is called a linear magnetic medium, which satisfies the relation:

M = χH, (6.33)

where χ is the magnetic susceptibility tensor and H represents the applied field. Often the

induced magnetization is parallel to the applied field, in which case:

M = χH, (6.34)

where χ is a constant called the magnetic susceptibility of the medium. Eq. 6.27 yields:

B = µ0(1 + χ)H = µH, (6.35)

where B and H are proportional by a factor of µ = µ0(1 + χ), the magnetic permeability
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of the material.13 In vacuum there is no matter and hence no magnetic susceptibility or

magnetization, so µ = µ0, the permeability of free space.

The usual case considered in NMR is of a polarization field H0 = B0/µ0 generated

by a superconducting magnet which magnetizes the sample according to:

M tot = (χe + χn)H0, (6.36)

where χe represents the electronic contribution to the magnetic susceptibility and χn rep-

resents the nuclear contribution. The electronic magnetization in a diamagnetic substance

comes from induced currents in the atomic electrons.14 An electronically paramagnetic sub-

stance will also have a contribution to χe through the magnetic alignment of the electron

magnetic moments. Nuclear paramagnetism, i.e., the magnetic alignment of the nuclear

magnetic moments, is responsible for the nuclear susceptibility. The bulk nuclear sus-

ceptibility per unit volume can be calculated by statistical mechanical means in the high

temperature limit according to the Curie law (Eq. 1.119):

χn ' Cµ0
γ2~2I(I + 1)

3kBT
, (6.37)

where C = N/V is the concentration of a spin-I nucleus with gyromagnetic ratio γ and kBT

is the thermal energy. Materials whose magnetization is due to spin paramagnetism act as

linear magnetic media in the high temperature limit because in this limit the Curie law states

that the thermal equilibrium magnetization is proportional to the applied magnetic field. An

13Note that here the symbols µ0 and µ represent magnetic permeabilities, not dipole moments.
14Although the diamagnetic susceptibility is a macroscopic quantity, its microscopic source is the same

type of atomic-scale interactions that cause the chemical shielding [5, §4.5].
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I = 1/2 nucleus at T = 298 K has a Curie susceptibility of χn ' (2.0×10−14)·C ·(γ/2π)2 if C

is measured in molarity (moles per liter) and γ/2π is measured in MHz/Tesla. Water (H2O)

at room temperature has a concentration of ∼ 55.5 M; using a proton concentration of C ∼

111 M and gyromagnetic ratio γH1/2π = 42.6 MHz/Tesla, the bulk nuclear susceptibility of

room temperature water is χH2OH1 = +4.0×10−9. The bulk electronic susceptibility of water,

which is diamagnetic, is −1.3× 10−5.15 The electronic susceptibility usually dominates the

nuclear susceptibility so completely that the total magnetic susceptibility of a substance is

approximately equal to the electronic susceptibility.

The combination of Eq. 6.36 and Eq. 6.27 gives:

B = µ0(1 + χe + χn)H0

= B0 +Be +Bn, (6.38)

where Be = µ0M e = µ0χeH0 can be considered to be the magnetic field generated by the

electrons and Bd = µ0Mn = µ0χnH0 is the magnetic field generated by the magnetized

nuclei. This equation holds only if the matter is uniformly magnetized and characterized

by only one type of nuclear and electronic susceptibility; i.e., the problem has no boundary

conditions. Any real sample, however, is finite and has physical boundaries: e.g., a liquid

constrained in a cylindrical sample tube. In this case one must be concerned with how

changes in susceptibility (e.g. from liquid to glass to air) affect the magnetic fields inside

15One generally expects the bulk electronic susceptibility of a diamagnetic compound to be negative, since
the induced electronic currents generate magnetic fields that oppose the applied field, as is observed on the
atomic level in the form of the chemical shielding. Conversely, bulk paramagnetic susceptibilities tend to be
positive since the net alignment of nuclear or electronic dipoles (and hence the magnetization) is parallel to
the applied field. Note that the net spin angular momentum aligns parallel to the applied field for nuclei
with positive gyromagnetic ratios and antiparallel to the applied field for electrons and negative-γ nuclei.



6.2. THE DISTANT DIPOLAR FIELD 365

these media. Once boundary conditions are added to the problem, e.g., in the case of a

finite-length cylinder with uniform magnetization inside and zero magnetization outside,

the bulk electronic and nuclear fields can become dependent on position:

B = B0 +Be(r) +Bn(r). (6.39)

The electronic and nuclear fields Be(r) and Bn(r) also would become dependent on posi-

tion if the electronic or nuclear magnetization were to be made non-uniform. The electronic

magnetization is typically uniform in a homogeneous medium of constant χe, but is not

uniform in an inhomogeneous medium. The nuclear magnetization is uniform in a homo-

geneous medium but can be shaped under the combination of resonant radiofrequency and

gradient pulses. The bulk electronic magnetization is not manipulated in an NMR experi-

ment and the electronic susceptibility field Be(r) is constant (in time) from the perspective

of the nuclei, particularly since the electrons adjust themselves to perturbations of the nu-

clear magnetization on a timescale that is much faster than the nuclear dynamics. For this

reason the electronic susceptibility field is often included as a contribution to inhomogeneity

of the B0 field:

B = B0(r) +Bn(r), (6.40)

where B0(r) = B0 +Be(r). The dependence of Be(r) on position indicates that even if the

external field B0 is completely homogeneous (in practice, it never is), magnetic susceptibility

boundaries inside or outside of the sample can contribute to magnetic field inhomogeneities
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that are felt by the nuclei.16 This causes a distribution of resonance frequencies across the

sample, which leads to deleterious line broadening effects. Magnetic field inhomogeneities

can be partially compensated by employing shim coils, if the inhomogeneities slowly vary

over distance. As was mentioned previously, intermolecular zero-quantum coherences can

also be used to obtain narrow lines in the presence of inhomogeneous fields.

As may be apparent, the bulk nuclear susceptibility field Bn[Mn(r)] is the same

entity as the distant (nuclear) dipolar field Bd[M(r)] that has been discussed in previous

sections. The most common magnetostatic method of calculating the dipolar field in terms

of the magnetization comes from ignoring the polarization field B0 and considering the

induced magnetization M(r) to be “frozen” into the medium, as in a ferromagnet. In this

model the nuclear magnetization is no longer “induced” by H0, and one can define an

internal field Hd such that:

Bd = µ0(Hd +M). (6.41)

The only real free current Jf that generates H0 is zero in this model; the entire effective

current is then due to only the bound current J b = ∇×M created by the magnetization.

Eqs. 6.30 and 6.43 become:

∇ ·Hd = −∇ ·M (6.42)

∇×Hd = 0. (6.43)

16Strictly speaking, the nuclei only feel the secular contribution of Be(r), and Be(r) must be modified to
be microscopically correct, as will be discussed later.
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Since∇×Hd = 0, an effective magnetic “scalar potential” can be defined as in electrostatics,

despite the fact that there are no real magnetic charges.17 The auxiliary field may be written

in terms of the scalar potential ΦM as:

Hd = −∇ΦM . (6.44)

Inserting Eq. 6.44 and Eq. 6.27 into Eq. 6.28 yields:

∇2ΦM = −ρM , (6.45)

where ρM = −∇ ·M is the effective magnetic charge density that generates the nuclear

field Hd. Eq. 6.45 is an effective magnetostatic Poisson equation, which may be solved

given suitable boundary conditions. The boundary conditions used here will be defined by

a magnetization densityM(r) that may be non-zero within some volume V ′ bounded by the

surface S′, but falls sharply to zero outside of S ′. The Poisson equation may be integrated

with these boundary conditions to yield [17, §5.9.C]:

ΦM (r) = − 1

4π

∫

V ′
d3r′

∇′ ·M(r′)
|r − r′| +

1

4π

∫

S′
d2r′

ñ′ ·M(r′)
|r − r′| , (6.46)

where primed coordinates are source coordinates and unprimed coordinates are field coordi-

nates; ñ represents the unit vector outwardly normal from the surface S ′. The first term is

a volume integral over source points within V ′ and the second term is a surface integral over

17Note that the E and B fields of physical classical electric and magnetic dipoles are very different on
a microscopic level (Fig. 10.8 of Ref. [368]), and the fields inside of polarized/magnetized media also differ
(Fig. 10.21 of Ref. [368]).
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S′ that arises due to the discontinuity in M at S ′. Note that the volume integral vanishes

if the magnetization is uniform within the volume since ∇ ·M = 0. Also note that both

integrals involve powers of |r− r′|−1 instead of |r− r′|−3 as in Eq. 6.18. This may simplify

the calculation if |r − r′| is expanded in a coordinate system.

The dipolar field may be calculated by the magnetostatic potential method using

Eqs. 6.41, 6.44, and 6.46:

Bd(r) = µ0[M(r)−∇ΦM (r)]. (6.47)

The secular part of Bd(r) gives the desired dipolar field contribution to the spin dynamics,

after one important modification is made. The macroscopic dipolar field Bd is obtained

by averaging the microscopic dipolar field bd over some length scale dV 1/3 that is large

compared to molecular dimensions. A nucleus at some position r, however, is sensitive

not only to the long-range environment, but also to its local environment. Consider the

contribution of nearby dipoles within a volume δV centered at r that is smaller than the the

coarse-graining volume dV over which Bd is uniform, but is large enough to include many

dipoles. If this volume is spherical and contains many dipoles that are randomly distributed

but aligned parallel to each other, the magnetic field contribution of these nearby dipoles

is nearly zero [305, 365, 362]. Furthermore, when molecular diffusion is considered, the

contributions of the nearest dipoles average to zero on an NMR timescale due to random

reorientation of the internuclear vector. From a local perspective, the dipole at r does not

see a net field from the nearby dipoles and appears to reside within an empty cavity δV .
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The local field felt by the dipole at r is:

Bl
d(r) = Bd(r)−Bδ

d(r), (6.48)

where the field Bδ
d(r) of a uniformly-magnetized spherical volume δV at r has been sub-

tracted from the macroscopic field to give the effective field inside the “cavity”. The mag-

netic field inside a sphere of uniform magnetization M is
µ0
4π

8π
3 M , so the correct local field

experienced by a nucleus is:

Bl
d(r) = Bd(r)−

2

3
µ0M(r). (6.49)

This approximation to the local field is called the Lorentz sphere correction and is com-

monly employed in magnetostatic treatments of the dipolar field [369, 305, 365, 362]. This

correction obviously is not necessary if the nuclei that are the sources of the macroscopic

dipolar field are completely external to the nuclei of interest, i.e., in the case of a solution

containing “analyte” nuclei that is physically separated from the “probe” nuclei that sense

the analyte dipolar field. Note that since a mean field approximation is still being used,

the local field Bl
d is only an approximation to the exact microscopic field bd in Eq. 6.15.

Romalis et al. [370] have taken an approach that appears to be equivalent to saying that

the macroscopic dipolar field Bd(r) is normally calculated using an average contribution of

µ0
4π

8π
3 M(r) due to the contact term in Eq. 1.36 and that this the contact term should be
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subtracted out because the nuclei do not overlap. In that case Eq. 6.41 becomes:

Bd(r) = µ0[Hd(r) +
1

3
M(r)]. (6.50)

The physical reasoning is somewhat different from that of the Lorentz sphere approach, but

the result is the same.

The literature contains many magnetostatic calculations of the fields inside of mag-

netized media; some of these calculations were made in the context of electronic diamagnetic

susceptibility or ferromagnetic susceptibility problems, but the methods are equally appli-

cable to nuclear susceptibility problems. One useful result gives the internal field of a

uniformly magnetized ellipsoidal volume [371, 365]:

Hd = −DM, (6.51)

where D is a geometrical factor; it depends on only the shape of the sample, not on position.

The tensor D is easily specified in the principal axis system of the ellipsoid; i.e., by the

components DXX , DY Y , and DZZ , where X, Y , and Z are along the three ellipsoid semi-

axes. The trace of D is DXX + DY Y + DZZ = 1. The dipolar field is given by Eqs. 6.41

and 6.49:

Bd = µ0(−DM +M). (6.52)

The contribution of Ĥd to Bd often (but not always) opposes the contribution ofM itself; for
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this reason, Hd is sometimes called the dipolar demagnetizing field andD is a demagnetizing

factor. Demagnetization field effects have been known in NMR for a long time, although

not necessarily due to the nuclear susceptibility [369, 372, 373]. When the Lorentz sphere

correction added to Eq. 6.52, the local dipolar field is:

Bl
d = µ0(−DM +M)− 2

3
µ0M

= −µ0
3
(3D − 1)M. (6.53)

Note the formal similarity of this equation to Eq. 1.36 for the field of a magnetic dipole

without the contact contribution, which can be written as B(r) = A
D
µ, where A

D
=

µ0
4πr3

[3rr/r2 − 1]. Note, however, that A
D

is axially symmetric whereas D is not axially

symmetric unless the ellipsoid is axially symmetric, i.e., unless the semiminor axes along X

and Y are equal.18 Note that (3rr/r2−1) and (3D−1) are both traceless, since Tr[rr] = r2,

Tr[D] = 1, and Tr[1] = 3. If the ellipsoid is axially symmetric, i.e., it is a spheroid with

symmetry axis Z̃ along the direction s̃ in the laboratory frame, the secular contribution to

Bl
d may be calculated in exact analogy to the calculation of the homonuclear secular dipolar

Hamiltonian:

Bl,sec
d = µ0αs[Mz z̃ −

1

3
M ], (6.54)

18Here the ellipsoid is axially symmetric about the Z axis; Refs. [371] and [365] have the symmetry axis
along X.
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and in the heteronuclear case:

Bl,sec
d = µ0αs[

2

3
Mz]z̃, (6.55)

where the spheroid shape factor is αs = −1
2(3DZZ − 1)12[3(s̃ · z̃)

2− 1]; DZZ is the principal

component of D along Z̃.19 Eqs. 6.54 and 6.55 still hold if the magnetized volume is a

general ellipsoid but not a spheroid, but αs then depends on additional elements of the D

tensor. Note the similarity between Eqs. 6.54 and 6.55 and the secular magnetic dipole

fields given by Eqs. 1.42 and 1.43. Care should be taken to remember that Eqs. 6.54 and

6.55 do not represent the full local dipolar field, only its secular contribution.

The secular dipolar field given by Eqs. 6.54 and 6.55 for a uniformly magnetized

ellipsoid also has the same form as the dipolar field given by Eqs. 6.25 and 6.26 for a uni-

directional strongly modulated magnetization in an arbitrary volume. The interpretation,

however, is entirely different. The geometric factor ∆s in Eqs. 6.25 and 6.26 depends only

on the orientation of the modulation direction relative to the B0 field; it does not depend

on the shape or size of the sample as long as the modulation is on a much shorter length

scale than any sample dimension. Conversely, the shape factor αs in Eqs. 6.54 and 6.55

depends only on the shape of the sample (although not its size) and on the orientation

of the sample (but not of the magnetization) relative to the B0 field. These properties

can be appreciated by considering several useful special cases of the spheroid. A spherical

sample has DZZ = 1/3 and αs = 0, and the local dipolar field vanishes everywhere inside a

sphere that is uniformly magnetized along any direction. This holds not only for the secular

19This definition of αs differs from the definition in Ref. [346] by a factor of −1.
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contribution but for the whole dipolar field, because the Lorentz sphere correction exactly

cancels the internal macroscopic field of the sphere. Often the dipolar field is small due

to the symmetry of a uniformly-magnetized sample; this is why gradient pulses are often

employed to create a strong modulation of the magnetization that breaks this symmetry

(see §6.2.3). Two other special cases of the uniformly-magnetized spheroid are the extreme

prolate spheroid tending toward an infinite cylinder with DZZ → 0 and the extreme oblate

spheroid tending toward a flat disk with DZZ → 1. If the infinite cylinder has its axis along

B0 such that (s̃ · z̃) = 1, then αs = 1/2. A disk whose plane is perpendicular to B0 has

(s̃ · z̃) = 1 and αs = −1; a disk whose plane includes B0 has (s̃ · z̃) = 0 and αs = 1/2.

Any uniformly magnetized spheroid whose axis is at the magic angle with respect to B0

has [3(s̃ · z̃)2 − 1] = 0, in which case the local secular dipolar field vanishes everywhere

(independent of the direction of magnetization). This result has been used to average the

inhomogeneous bulk (electronic) susceptibility field via magic-angle spinning experiments

on liquids [374].

The magnetostatic calculations become more complicated if the magnetized vol-

ume is not ellipsoidal. Some simple cases have been solved or approximated. Levitt [305]

has considered the problem of the dipolar field in a volume that has strongly-modulated

magnetization in a single direction; the secular part of the field agrees with the predictions

of Eqs. 6.25 and 6.26. The problem of the susceptibility field in finite-length cylinders of

uniform but arbitrarily-directed magnetization has been studied by direct numerical evalu-

ation of the magnetostatic surface integral [375] and via an expansion of the magnetostatic

potential in a series of spherical harmonics [376]. Susceptibility effects in some other simple
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geometries were considered in Refs. [377] and [378]. The magnetostatic calculations become

difficult when the magnetization is not uniform because the volume integral in Eq. 6.46

cannot be neglected. A simplification of Eq. 6.46 for cylindrical samples is discussed in

§6.5.

6.2.2 Quantum-mechanical calculation of intermolecular multiple quan-

tum coherences

The starting point for any quantum-mechanical calculation is the determination

of the initial density operator and Hamiltonian. The quasi-motionally-averaged laboratory-

frame Hamiltonian in solution is:

Ĥlab = ĤZ + Ĥcs + ĤJ + ĤD(t), (6.56)

where the Zeeman, chemical shielding, J-coupling, and dipole–dipole coupling Hamiltonians

have been included. All anisotropic interactions have been considered to be averaged to

zero by rapid molecular tumbling except for the dipole–dipole interaction, which is retained

but remains time dependent because of molecular diffusion. At high magnetic fields the

Zeeman interaction dominates all other spin interactions determines the thermal equilibrium

polarization. The homonuclear thermal equilibrium density operator for N molecules j that

each include an I = 1/2 nucleus is:

ρ̂eq ' Q−1 exp[−βĤZ ]

=
N∏

j=1

(
1

2
1̂j + ζÎzj), (6.57)
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where Eq. 1.120 has been used and the thermal polarization of the nuclei is ζ = tanh(β~γB0/2).

Here β = (kBT )
−1 is the reciprocal thermal energy, γ is the gyromagnetic ratio, B0 = B0z̃

is the polarizing magnetic field, and N ≈ 1020 for a macroscopic sample. Eq. 6.57 is exact

for spin-1/2 nuclei and there is no need to apply the weak high temperature approximation

Eq. 1.112 using ζ ≈ β~γB0/2. Eq. 6.57 is also general in that it could represent any sample

magnetized along z with polarization ζ, regardless of the source of polarization.

The spin dynamics are best calculated in the nearly-resonant rotating frame where

the Zeeman interaction is mostly subtracted out. For the sake of simplicity J-couplings will

not be considered. The rotating-frame Hamiltonian is:

Ĥ/~ =
N∑

j=1

δj Îzj +
N∑

j=1

N∑

k>j

Ĥjk
D

=
N∑

j=1

δj Îzj +
1

2

N∑

j=1

N∑

k 6=j
ωjkD (t)[3Îzj Îzk − Îj · Îk], (6.58)

where the resonance detuning and chemical shift of nucleus j has been included in the

frequency δj and only the secular dipole–dipole coupling Ĥjk
D (Eq. 1.40) has been retained.

The factor of 1
2 before the dipolar Hamiltonian in the second line corrects for the double-

counting of couplings ωjkD (t) = ωkjD (t). The secular dipolar coupling constant ωjkD (t) =

−µ04πγ
2~|rjk(t)|−3P2[cos θjk(t)] includes the dependence on the angle θjk(t) = cos−1[r̃jk(t)·z̃]

between the internuclear vector rjk(t) = rj(t) − rk(t) and B0; the second-rank Legendre

polynomial is P2(x) = (3x2−1)/2. The internuclear vector is explicitly time dependent due

to molecular diffusion.

The density operator for two z-magnetized spin-1/2 heteronuclear species I and S
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is:

ρ̂eq =

NI∏

j=1

NS∏

k=1

(
1

2
1̂Ij + ζI Îzj)(

1

2
1̂Sk + ζSŜzk), (6.59)

where the polarizations are ζI = tanh(β~γIB0/2) and ζS = tanh(β~γSB0/2) at thermal

equilibrium. The heteronuclear secular Hamiltonian is:

Ĥ/~ =

NI∑

j=1

δIj Îzj +

NS∑

k=1

δSk Ŝzk +
1

2

NI∑

j=1

NS∑

k=1

ωjkD (t)[2ÎzjŜzk], (6.60)

where ωjkD (t) = −µ04πγIγS~|rjk(t)|−3P2[cos θjk(t)]. Note that the secular dipolar Hamilto-

nian commutes with the resonance offset Hamiltonian in both the homonuclear and het-

eronuclear cases, so the evolution under these two Hamiltonians can be calculated separately

and sequentially.

The central assumption of Warren’s theory of intermolecular multiple-quantum

coherences [76] is that the time tc over which each dipolar coupling can act coherently is

short enough that rjk(t) is approximately constant and:

|ωjkD |tc ¿ 1. (6.61)

An estimate of the coherence time is the time over which rjk(t) changes appreciably due to

diffusion; after this time the spins have moved apart or the internuclear vector has reoriented

randomly. The chief consequence of this assumption is that only the short time evolution

under each dipolar coupling need be considered. Integrating the lowest-order contribution
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to Eq. 2.14 gives:

ρ̂(t) ' − i
~
t[Ĥjk

D , ρ̂(0)], (6.62)

where t > tc. This approximation is valid when ‖ Ĥjk
D /~ ‖ t ¿ 1, i.e., |ωjkD |t ¿ 1. Warren

et al. have shown that each dipolar coupling is able to act only once on the density operator

through a single commutator; evolution pathways in which the same coupling ωjkD acts twice

or more are negligibly small.

Another result of Warren et al. is that the Îj · Îk terms in Eq. 6.58 can be omitted

if all the spins in the system are identical (i.e., they belong to the same chemical species)

because they do not cause evolution that leads to observable signal. This is tantamount to

neglecting the M(r′) term in Eq. 6.21. The assumption that the spins are identical implies

δj = δ, i.e., all the spins have the same chemical shift and resonance offset. Note, however,

that if the spins are subject to an inherently or susceptibility-induced inhomogeneous B0

field, their resonance frequencies will become dependent on position: δj = δj(r). The

same situation applies during a magnetic field gradient pulse. In these cases the spins

are distinguishable through a position-dependent shift of their Larmor frequencies, and the

assumption that the Îj ·Îk terms (or theM(r′) term in the classical picture) can be neglected

is suspect. This point will be discussed further in §6.2.3.

If the Îj · Îk terms can be neglected, all the two-spin homonuclear dipolar Hamil-

tonians Ĥjk
D /~ = 3ωjkD Îzj Îzk commute with each other, so the dipolar evolution can be

calculated by sequential single commutations of the density operator with two-spin dipolar

Hamiltonians. All the heteronuclear two-spin dipolar Hamiltonians Ĥjk
D /~ = 2ωjkD ÎzjŜzk
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commute with each other as well. The full equilibrium density operator in Eq. 6.57 may be

expanded in a manner similar to Eq. 1.112:

ρ̂eq = 2−N
{
1̂ + ζ

N∑

j

Îzj + ζ2
N∑

j<k

Îzj Îzk + ζ3
N∑

j<k<l

Îzj ÎzkÎzl + . . .
}
, (6.63)

where the nth sum in the series contains products only of n single-spin operators Îzj (the

product of N −n single-spin identity operators is implicit in these terms). Eq. 6.63 is exact

for a spin-1/2 system if the series is not truncated; no high-temperature approximation has

been applied, although the weak high temperature approximation is certainly appropriate.

As was discussed in §1.4.3, the n 6= 1 terms do not correspond to observable (single-spin)

magnetization. Evolution due to resonance offsets or rf pulses causes pure rotations of the

single-spin operators, but it does not remove or add non-identity single-spin operators from

an n-spin term in the density operator. At best, a combination of rf pulses and offset

evolution can convert an n-spin term B̂eq
n = 2−Nζn

∏n
j=1 Îzj in the equilibrium density

operator into an arbitrary n-spin term:

B̂n =
n∏

j′=1

Îαj′ , (6.64)

where α ∈ {x, y, z}. The primed notation indicates that the index j ′ need not be taken

sequentially from 1 to n, just as long as n terms are taken in the product. Consider what

happens when a two-spin density operator term Îαj Îzk evolves for a short time under the

homonuclear dipolar coupling Hamiltonian Ĥjk
D (neglecting the Îj · Îk Hamiltonian term)
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according to Eq. 6.62:

B̂n=2 = Îxj Îzk −→ −
i

~
t[3~ωjkD Îzj Îzk, Îxj Îzk] =

3

4
ωjkD tÎyj

B̂n=2 = Îyj Îzk −→ −
i

~
t[3~ωjkD Îzj Îzk, Îyj Îzk] = −

3

4
ωjkD tÎxj

B̂n=2 = Îzj Îzk −→ −
i

~
t[3~ωjkD Îzj Îzk, Îzj Îzk] = 0. (6.65)

The term involving two longitudinal spin operators does not evolve under the dipolar cou-

pling, but the terms containing a transverse spin operator on spin j and a longitudinal

spin operator on spin k are reduced to transverse single-spin operators on spin j. This

type of mechanism is well-known in solution-state NMR in the context of the conversion

of unobservable intramolecular two-spin density operator (antiphase magnetization) terms

into observable single-spin (in-phase) transverse magnetization under weak J-coupling evo-

lution. Two-spin transverse terms Î(x/y)j Î(x/y)k are not converted to single-spin terms after

a single commutation with the dipolar Hamiltonian.

It should be clear by induction that an n-spin term containing n− 1 longitudinal

spin operators and a single transverse spin operator j can be converted to observable single-

spin transverse magnetization after commutation with n−1 separate dipolar couplings ωjkD ,

e.g.:

B̂n=3 = Îxj ÎzkÎzl −→ −
i

~
t[3~ωjkD Îzj Îzk,−

i

~
t[3~ωjlD Îzj Îzl, Îxj ÎzkÎzl]] = −

9

16
ωjkD ω

jl
Dt
2Îxj .

(6.66)

It is in this manner that the multi-spin terms in the full N -spin density operator are con-
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verted into observable magnetization by long-range dipolar couplings. When summed over

all spins, three spin terms like the one in Eq. 6.66 contribute a factor of ζ2
∑

k,l ω
jk
D ω

kl
D =

(ζ
∑

k ω
jk
D )2 to the observable signal. An n-spin term with one transverse spin operator

and n− 1 longitudinal spin operators makes a contribution to the observable signal on the

order of (ζ
∑

k ω
jk
D )n−1. Note that if only single-spin terms were retained in the equilibrium

density operator in the “strong” high temperature approximation (Eq. 1.114), the distant

dipolar couplings would not contribute to any observable signal. Any commutation of a

single-spin operator with a dipolar coupling either leaves the operator invariant (in the case

of longitudinal magnetization) or creates an unobservable two-spin operator (in the case of

transverse magnetization). The two-spin operator could only be converted back into single-

spin transverse magnetization by commutation with the same dipolar coupling. Warren et

al. have shown that this is a negligibly weak process because it goes as ζ
∑

j(ωjkt)
2, and

ωjkt is already known from Eq. 6.61 to be very small. The abandonment of the strong high

temperature approximation in favor of making the weak high temperature approximation

or keeping the full N -spin density operator is what Warren et al. have called “violation of

the high temperature approximation.”

The details of the Warren iMQC calculations can be quite complex, particularly if

spatial inhomogeneities such as magnetic field gradient pulses are included. Furthermore,

only the classical theory is suitable for including radiation damping and molecular diffu-

sion dynamics in a tractable manner. The Warren theory has been presented only very

schematically and most of the remaining discussion will focus on the classical description,

but schematic quantum calculations often provide the quickest insight into the results of a
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particular pulse sequence.

6.2.3 DDF effects in homonuclear systems: resonance shifts and multiple

echoes

The effects of the distant dipolar field are best understood by considering a few

simple examples of one- and two-pulse experiments in a homogeneous, homonuclear system

(e.g., proton NMR experiments on pure water).

Resonance shift under the dipolar field after the action of a single rf pulse

Consider a infinite cylinder aligned parallel to B0 with uniform magnetization

M0 = M0z̃ also along B0. This could, for example, represent a thermally-polarized homo-

geneous sample in a long NMR tube. The magnetization immediately after a θy rf pulse

is:

M θ =M0 cos θz̃ +M0 sin θx̃. (6.67)

It is assumed that the pulse tips the magnetization uniformly across the sample, rather than

the more realistic case that only the small region of magnetization near the rf coil is tipped.

It is also assumed that the B0 field is perfectly homogeneous across the sample, so that

the transverse magnetization does not spatially dephase. Relaxation effects are neglected.

The secular contribution of the magnetization in Eq. 6.67 to the local dipolar field can be
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calculated according to Eq. 6.54 as:

Bl,sec
d =

1

2
µ0[M0 cos θz̃ −

1

3
M ]

=
1

3
µ0M0 cos θz̃ −

1

6
µ0M0 sin θx̃, (6.68)

where the value αs = 1
2 has been used for an infinite cylinder whose symmetry axis is

parallel to z̃. The equation of motion for the magnetization Eq. 6.19 indicates that the

term proportional toM in Eq. 6.68 has no effect on the spin dynamics becauseM ×M = 0,

and the total effective magnetic field felt by the nuclei is:

Beff = (B0 +
1

2
µ0M0 cos θ)z̃, (6.69)

where the chemical shift has been included in the definition of B0. The spins therefore see

an increase (if M0 > 0) in their resonance frequency by the factor:

∆ωθ =
1

2
µ0γM0 cos θ. (6.70)

This shift in resonance frequency is most pronounced when the tip angle θ is small and

most of the initial magnetization remains along z̃, but θ must be large enough to create an

observable amount of transverse magnetization. No dipolar field-induced resonance shift is

observed after a θ = π/2 pulse. The results of the θ-tip angle experiment could be compared

with an experiment using a θ′y rf tip pulse, where θ′ = π − θ. This would cause a shift in

resonance frequency by −∆ωθ due to dipolar field effects, or a −2∆ωθ decrease in frequency
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from the θ-tip experiment. One could imagine using these two single-pulse experiments

to perform a nuclear self-magnetometry determination of M0; a more detailed study would

map ∆ωθ versus θ. Of course, this determination would requires Eq. 6.68 to be accurate, i.e.,

the initial magnetization is uniform and the rf pulse uniformly tips the magnetization over

the length of a long cylinder. The two-pulse determination would be the most accurate if θ

is small since the secular dipolar field is maximized and the transverse magnetization (which

induces radiation damping effects if the detection is by Faraday induction) is minimized.

Note that the resonance shift is expected to be small; protons in room temperature water

in a 700 MHz magnet have 1
2µ0γM0 = 1

2χ
H2OγB0 = 1

2(4.0 × 10−9) · (2π × 700 × 106

Hz) = 2π × 1.4 Hz. Therefore, the maximum frequency difference between the θ ≈ 0 and

θ′ ≈ π experiments is about 2.8 Hz in a 700 MHz magnet, which may be not too much

larger than the width of the water resonance.

Edzes [292] made the first measurements of self-precession and cross-precession in

homonuclear systems after the application of a single pulse. One effect that was observed

during these experiments was a “frequency chirp” of the NMR line; this effect was ascribed to

the transient change inMz as the longitudinal magnetization was restored to its equilibrium

value after the action of the θ-pulse. The resulting time-dependent frequency shift of the

NMR line was found to interfere with the establishment of an internal frequency lock because

the T1 relaxation time was faster than the lock time constant.

The effects of the dipolar field are slightly different when two spin species are

present rather than just one. Consider a mixture of two homonuclear species IA and IB (of

the same gyromagnetic ratio γ) in a long cylindrical sample with uniform magnetization
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M0 = MA
0 +MB

0 = MA
0 z̃ +MB

0 z̃. For instance, one species could be water and the other

could be acetone. The magnetization after a non-selective uniform θy-tip pulse is:

M θ = (MA
0 cos θz̃ +MA

0 sin θx̃) + (MB
0 cos θz̃ +MB

0 sin θx̃). (6.71)

As per Eq. 6.70, species IA sees a resonance shift of ∆ωAAθ = 1
2µ0M

A
0 cos θ due to the

dipolar field of its own magnetization and species IA sees a self-resonance shift of ∆ωBBθ =

1
2µ0M

B
0 cos θ. However, each species also precesses in the dipolar field of the other. A

simple analysis of the coupled Bloch equations for MA and MB indicates that the strong-

coupling “homonuclear” limit of the secular dipolar field crosses over to the weak-coupling

“heteronuclear” limit when |ωA0 − ωB0 | À |γBd| [363, 305, 365], i.e., when the difference

in resonance frequency between the two species becomes much greater than the shifts in

resonance frequency caused by the action of the dipolar field of one species on the other.

These shifts are expected to be on the order of ∼ 1 Hz at best for concentrated room-

temperature protic solvents at high field; most homonuclear species have lines that are

spaced by much more than this. Therefore, it is more appropriate to use the “heteronuclear”

expression Eq. 6.55 for the secular dipolar field:

Bl,sec
d =

1

2
µ0[

2

3
M0 cos θ]z̃, (6.72)

where it is implicitly understood that this secular contribution is felt by one species in

the presence of the dipolar field of the other species. In addition to the self-dipolar

field precession, the spin species experience cross-precessional resonance shifts of ∆ωABθ =
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1
3µ0γM

B
0 cos θ and ∆ωBAθ = 1

3µ0γM
A
0 cos θ, where the ∆ωXYθ notation indicates the dipolar

field felt by species X due to the dipolar field of species Y . The total resonance shifts are:

∆ωAθ =
1

2
µ0γ(M

A
0 +

2

3
MB
0 ) cos θ

∆ωBθ =
1

2
µ0γ(M

B
0 +

2

3
MA
0 ) cos θ. (6.73)

An interesting result that has been noted by several workers [365, 306] is that when θ <

π/2, even if the two species have the same magnetization MA
0 = MB

0 = M0, dipolar

field cross-precession when causes a small redistribution between the Zeeman energy and

z-magnetization such that the two lines have unequal intensities, although their sum is

conserved.

The case of two heteronuclear species I and S at high field is similar except pulses

of different tip angles can be individually applied to each species using different rf channels.

This is only possible in the homonuclear case by the use of frequency-selective pulses.

Consider the case in which no pulse is applied to spin I and a 90◦ pulse is applied to spin S

(θI = 0, θS = π/2). The self-dipolar field precession of spin S is zero since the magnetization

is purely transverse; the precession of S due to the dipolar field of I is maximized since all

the I magnetization remains along z. The resonance shift of spin S due to the dipolar field

of spin I is:

∆ωSI =
1

3
µ0γSM

I
0 . (6.74)

In this manner spin S can be used as a nuclear magnetometer to determine the magneti-
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zation of spin I. Again, this result is valid for a uniformly-magnetized, homogeneous, long

cylindrical system that is uniformly affected by rf pulses.

One final point to consider about the single-pulse experiment is what happens

when the B0 field is not homogeneous (i.e., due to magnetic susceptibility effects) or when

a pulsed magnetic field gradient of Bz is applied. In both cases the total z-directed magnetic

field B0(r)z̃ (excluding the dipolar field) becomes dependent on position and the resonance

frequency varies from point to point in the sample. As a consequence, even if the sample

is initially uniformly magnetized at thermal equilibrium and that uniformity is preserved

after the application of a homogeneous rf pulse, the transverse magnetization will spatially

dephase as it evolves under the inhomogeneous B0 field. The integrand of Eq. 6.21 for the

secular homonuclear dipolar field contains a term proportional toM(r′); call this component

of the field B
M
d . Clearly B

M
d ∝ M if the magnetization M(r′) = M is uniform. When

the magnetization is spatially inhomogeneous, however, B
M
d (r) may not be proportional

to M(r) because it depends on the size and direction of M(r′) everywhere. The B
M
d

contribution to the secular dipolar field was neglected in Eq. 6.68 when the magnetization

was uniform because M ×BM
d = 0 in the Bloch equations; the result was that the effective

homonuclear secular dipolar field was entirely longitudinal. This contribution of B
M
d (r)

cannot be neglected when it is not proportional to M(r) because the cross product of

the two vectors is not zero. Therefore M(r) precesses about B
M
d (r) (and simultaneously

about the purely z-directed dipolar field contribution) such that transverse magnetization

can be tipped out of the transverse plane. In this case dipolar field effects cannot be

ignored even if the magnetization is initially purely transverse. If the B0 inhomogeneities
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are strong, however (perhaps due to a strong gradient pulse), it will be assumed that

the strong dephasing of transverse magnetization across the sample will lead to a small

contribution to B
M
d (r) from the magnetization at distant points r′; in this case B

M
d (r)

may be nearly parallel to M(r) in which case the effects of B
M
d can be neglected.20 These

transverse field effects would not be observed in heteronuclear or most multicomponent

homonuclear systems because the secular dipolar field (Eq. 6.22) does not depend on any

transverse components of M(r′), and hence is invariant to spatial dephasing of transverse

magnetization during evolution under an inhomogeneous B0 field.

Two-pulse experiments and multiple echoes

It is well-known that the two-pulse 90◦—τ—90◦ pulse sequence generates a spin

echo at time τ after the second pulse. In fact, this is the original sequence that Hahn

used when he discovered the spin echo phenomenon [379]. The Hahn echo occurs after the

second pulse initiates a rephasing of transverse magnetization that has dephased due to

evolution in an inhomogeneous B0 field during the interval between the two pulses. The

dephasing of transverse magnetization due to T2 relaxation is caused by random magnetic

field fluctuations on the molecular level and cannot be reversed to form an echo. A 90◦—

τ—180◦ pulse sequence completely refocuses the inhomogeneous dephasing, but the 90◦—

τ—90◦ sequence induces only a partial refocusing. Nevertheless, both sequences produce a

single spin echo at a time t = τ after the second pulse. Therefore, it was very surprising

when multiple echoes were observed by Deville et al. [289] and later workers after applying

20In this case the transverse magnetization becomes strongly modulated due to dephasing and one might
think that Eq. 6.25 would be applicable, which indicates that the B

M
d term is parallel to M . However, here

the magnetization is not strongly modulated along a single direction, and Eq. 6.25 does not apply.
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two-pulse sequences to highly magnetized systems. The appearance of multiple echoes was

linked to the effects of the distant dipolar field; these effects will be illustrated here with

the results of some simple two-pulse H-1 NMR experiments (with and without pulsed field

gradients) in room temperature water in a cylindrical sample tube at B0 = 7.04 T.

Fig. 6.2 shows the pulse sequences and experimental spectra that will be discussed.

The simplest sequences to calculate are the ones that involve strong magnetic field gradient

pulses because the sample geometry will not be important in determining the dipolar field.

Relaxation and molecular diffusion effects will be neglected, and all calculations will be

performed in the rotating frame. The only magnetic fields considered during free preces-

sion periods will be the local secular dipolar field, a z-directed static resonance offset field

Bδ(r) = [(1−σiso)B0(r)−ωr/γ] that is possibly inhomogeneous, and pulsed magnetic field

z-gradients G(z − z0)z̃, where G = ∂Bz/∂z. The variable zl = z − z0 will be introduced as

a matter of convenience.

Continuous gradients. Fig. 6.2(a) is the continuous-gradient version of the two pulse

experiment. The initial thermal equilibrium magnetization is M(0) = M0z̃. An initial 90◦x

pulse creates transverse magnetization

M(0+) = −M0ỹ (6.75)

in an approximately 1 cm-high portion of the sample within the active region of the rf

coil. The rest of the magnetization in the sample tube is considered to be unaffected by

the rf pulse and contributes no signal; it also will be assumed to generate no significant
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Figure 6.2: Dipolar field-induced multiple echoes in water observed after two-pulse
sequences.

dipolar field in the active region.21 Immediately after the first rf pulse a z-gradient pulse

21In actuality, the longitudinal magnetization outside the active region generates at least some small
dipolar field within the active region near the top and bottom edges. Also, molecular diffusion is expected
to transport some small amount of magnetization across the “boundaries” of the active region.
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of strength G1 is applied for duration τG. The gradient is assumed to be large enough that

the inhomogeneities in B0 can be neglected by comparison; dipolar field effects will also

be neglected because the magnetization is purely transverse and strongly dephased and the

contribution of B
M
d (discussed in the section on single-pulse experiments) is considered to

be small. Therefore, just before the second pulse the transverse magnetization is:

M(zl, τ
−
G ) = −M0 cos[(δ − γG1zl)τG]ỹ +M0 sin[(δ − γG1zl)τG]x̃, (6.76)

where δ = −γBδ. At time τ−G the magnetization is purely transverse and is wound in a

helix of pitch 2π/k1 = 2π/(γG1τG) over the length of the active region of the sample.22

There are k1L/2π windings of the helix over the length of the active region L. The 90◦x

pulse converts the magnetization to:

M(zl, τ
+
G ) =M0 cos[(δ − γG1zl)τG]z̃ +M0 sin[(δ − γG1zl)τG]x̃. (6.77)

The two-pulse sequence has created a purely sinusoidally-modulated z-magnetization that

will create a secular dipolar field during the detection interval t. It will be convenient to track

only the circularly-polarized component of magnetization density M+ = Mx + iMy during

the detection interval since it is the integral of M+(r) over the sample that is measured

in a quadrature-detected NMR experiment. If the helix pitch |k1| is large compared to

the length of the active region L and the diameter of the tube d, Eq. 6.25 can be used to

calculate the secular contribution of the dipolar field felt by the spins during the detection

22The helix makes an angle of δτG − γG1z0τG from the −y-axis at height z0.



6.2. THE DISTANT DIPOLAR FIELD 391

interval:

Bd = µ0M0 cos[(δ − γG1zl)τG]z̃, (6.78)

where the direction of modulation is s̃ = z̃ and the contribution to Bd(r) due to M(r′)

is assumed to be parallel to M(r) and has been neglected. Immediately after the second

rf pulse a continuous z-gradient of strength G2 is applied. The evolution of transverse

magnetization under the second gradient, resonance offset field, and secular dipolar field is:

M+(zl, t; τG) =M0 sin[(δ − γG1zl)τG] exp{i[δ − γG2zl − µ0γM0 cos[(δ − γG1zl)τG]]t}.

(6.79)

The winding of the second gradient pulse at time t can be characterized by a wavenumber

k2 = γG2t. The exponential function in Eq. 6.79 can be expanded using a Jacobi-Anger

relation [170, §2·22]:

eiZ cos θ =
+∞∑

m=−∞
imJm(Z)e

imθ, (6.80)
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where Jm(Z) is the Bessel function of the first kind of order m. The result is:

M+(zl, t; τG) = M0 sin[(δ − γG1zl)τG]ei(δ−γG2zl)t
+∞∑

m=−∞
imJm(−µ0γM0t)e

im(δ−γG1zl)τG

= −1

2
M0

+∞∑

m=−∞
im[Jm−1(−t/τd) + Jm+1(−t/τd)]ei[(δ−γG2zl)t+m(δ−γG1zl)τG]

= M0

+∞∑

m=−∞
im
(mτd
t

)
Jm(−t/τd)ei[(δ−γG2zl)t+m(δ−γG1zl)τG],

(6.81)

where the Bessel function recursion identity Jn−1(x) + Jn+1(x) = 2nJn(x)/x has been used

and τd = µ0γM0 is known as the characteristic dipolar demagnetizing time; its value is

|τd| = |χH2Oω0|−1 ≈ 130 ms for thermally-polarized protons in room temperature water at

B0 = 7.04 T. The bulk NMR signal depends on average transverse magnetization density

M+(t; τG) = 1
L

∫ L
0 dzl M+(zl, t; τG). In general, the transverse magnetization density is

dephased as a function of z and integrates to a small value. Note, however, that Eq. 6.81

has a component that is independent of position when t = −n(G1/G2)τG:

M+(zl, t = −n
G1
G2

τG) = inM0

(nτd
t

)
Jn(−t/τd)ei[n(1−G1/G2)δτG]

+M0

∑

m6=n
im
(mτd
t

)
Jm(−t/τd)ei[(m−nG1/G2)δτG−(m−n)G1zlτG].

(6.82)

Assuming that the integral over the sum of position-dependent terms is small, the average
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magnetization density at this time is:23

M+(t = −n
G1
G2

τG) = inM0

(nτd
t

)
Jn(−t/τd)ei[n(1−G1/G2)δτG]. (6.83)

This result is demonstrated in Fig. 6.2(a): transverse magnetization is dephased by the gra-

dients is rephased at times t = −nG1G2 τG due to evolution under the gradients and position-

dependent dipolar field. Since t > 0, the rephasing occurs only for the n < 0 terms when

the two gradients have the same sign and only for the n > 0 terms when the gradients

have opposite signs. The nth-order echo is due to the |n|th term in the sum Eq. 6.81. The

higher-order echoes are damped, partly due to T2 relaxation. Note, however, that there is

also a contribution due to the Jn intensity factors; for instance, at short times x = t/τd ¿ 1

these functions go like Jn(x) ≈ xn/(2nn!), so Jn+1(x)/Jn(x) ≈ x/[2(n + 1)] ¿ 1. This

gives the damping at the echo maxima; the actual echo envelopes are attenuated due to

the action of the gradient G2 and natural B0 inhomogeneities. Note that the magnitude

of the dipolar field and hence the intensities of the echo maxima are independent of the

gradient strength as long as the gradients are strong enough to put the system in the strong

modulation limit of Eq. 6.25.

If no dipolar field were present, Eq. 6.79 would read M+(zl, t; τG) = M0 sin[(δ −

γG1zl)τG] exp[i(δ − γG2zl)t], where the dephasing of transverse magnetization due to G1

is rephased under the gradient G2 to form a single echo at t = |G1/G2|τG with aver-

age magnetization M+(t = G1
G2
τG) = i

2M0 exp[−i(1 − G1/G2)δτG] if G1/G2 > 0 and

23Note that when the transverse magnetization is detected by the induction current generated in a coil,
the NMR signal is proportional to ∂M+(t)/∂t (in the laboratory frame) rather than to the net magnetization
M+(t). This point is considered further in §6.3.
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M+(t = −G1
G2
τG) = − i2M0 exp[i(1 − G1/G2)δτG] if G1/G2 < 0. The case G1 = G2 is

the familiar Hahn echo in the presence of a steady inhomogeneous z-directed magnetic

field. The magnetization at the time of the echo t = τG after the second rf pulse is

M+(t = G1
G2
τG) = − i2M0; the resonance offset/chemical shift has also been refocused,

and the factor of 12 indicates a loss of half the signal intensity due to an incomplete echo.24

The Hahn echo originates from single-spin terms in the initial density operator; the nth

DDF-induced echo originates from |n|-spin terms in the initial density operator [308]. This

point will be discussed further in the next section.

Pulsed field gradients with an n-quantum filter. Fig. 6.2(b) shows a pulse sequence

that is capable of cleanly selecting out only the nth echo by use of properly-matched pulsed

field gradients. The analysis is similar to the case of continuous gradients, except here

the gradient pulses will be considered to be strong enough that the gradient time τG can

be chosen to be short enough that evolution under the resonance offset can be neglected

during τG. Furthermore, the B0 field is considered to be inhomogeneous such that δ = δ(r)

dominates the reversible dephasing during the τ and t intervals, although this position

dependence will be suppressed in the notation for convenience.

After the 90◦x—G1(τG)—τ—90◦x two-pulse sequence, the initial uniform magneti-

zation M(0) =M0z̃ becomes:

M(zl, τ
+) =M0 cos(δτ − γG1zlτG)z̃ +M0 sin(δτ − γG1zlτG)x̃. (6.84)

24The other half of the signal is the portion that is refocused at τG when G1 = −G2; this gradient
“anti-echo” retains chemical shift information.
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The z-magnetization is strongly modulated with a characteristic wavenumber G1τG. The

x-magnetization is also strongly modulated and can be represented as the superposition of

two oppositely-wound helices. The second gradient pulse G2 = nG1 of duration τG causes

an additional winding of the transverse magnetization:

M+(zl, τ
+) = M0 sin(δτ − γG1zlτG) exp(−iγnG1zlτG)

= − i
2
M0[e

i[δτ−(n+1)γG1zlτG] − e−i[δτ+(n−1)γG1zlτG]]. (6.85)

When n = ±1 the second gradient pulse exactly unwinds one or the other of the oppositely-

wound helices and that part of the transverse magnetization is rephased. The secular dipolar

field is during the detection interval due to the z-magnetization is:

Bd = µ0M0 cos(δτ − γG1zlτG)z̃. (6.86)

The transverse magnetization during the detection interval t evolves under the resonance

offset field and dipolar field:

M+(zl, τ, t) = M0 sin(δτ − γG1zlτG)e−iγnG1zlτG exp{i[δ − µ0γM0 cos(δτ − γG1zlτG)]t}

= − i
2
M0e

iδt
+∞∑

m=−∞
imJm(−µ0γM0t)

×[ei[(m+1)δτ−(m+n+1)γG1τG] − ei[(m−1)δτ−(m+n−1)γG1τG]]

= −1

2
M0e

iδt
+∞∑

m=−∞
im[Jm−1(−µ0γM0t) + Jm+1(−µ0γM0t)]e

imδτe−i(m+n)γG1zlτG

=
+∞∑

m=−∞
imM0

(mτd
t

)
Jm(−t/τd)e−i(m+n)γG1zlτGeimδτeiδt, (6.87)
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where τd = (µ0γM0)
−1. The m = −n term in the sum is independent of position, and the

integrated average magnetization density is:

M+(τ, t) = −inM0

(nτd
t

)
Jn(−t/τd)e−inδ(r)τeiδ(r)t, (6.88)

where the relation J−n(x) = (−1)nJn(x) for integer n has been used.25 The results of this

experiment on protons in room temperature water at B0 = 7.04 T are shown in Fig. 6.2(b)

for n = +2 and n = +5. Eq. 6.89 indicates that dephasing of transverse magnetization

due evolution in an inhomogeneous B0 field during the interval τ is refocused into a single

echo at time t = nτ . Unlike the continuous gradient version of the experiment (Fig. 6.2(a)),

the pulsed gradient version (Fig. 6.2(b)) refocuses all of the spatial inhomogeneity of the

magnetization before t = 0, but only for the nth echo. The other echoes that are observed

in the continuous gradient experiment never form because the magnetization components

that give rise to them are dephased at the beginning of the detection interval and are never

rephased by another gradient. The echo envelopes in Fig. 6.2(b) are much more robust than

those in Fig. 6.2(a) because the dephasing is due to weak natural B0 inhomogeneities rather

than strong applied magnetic field gradients. Note that if n < 0 (i.e., the gradient pulses

G1 and G2 have opposite signs), although the gradient dephasing is refocused at t = 0, the

B0 inhomogeneities do not form an echo during t because the phase factor ei|n|δ(r)τeiδ(r)t is

never independent of δ(r) for τ > 0, t > 0. This is the “anti-echo” experiment, whereas the

n > 0 condition (i.e., gradient pulses of the same sign) selects the echo pathway.

25The evolution under the inhomogeneous z-field has been represented explicitly through the position-
dependent frequency δ = δ(r). This notation is not actually correct: the spatial averaging requires quantities
like exp[iδ(r)t] to be spatially integrated. The inhomogeneous evolution due to Bδ(r) should really considered
at the level of Eq. 6.87 before the spatial integration is performed.
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If the interval between the two rf pulses is incremented as an indirect dimension,

Eq. 6.89 can be used to calculate the average transverse magnetization:

M+(t1, t2) = −inM0

(nτd
t2

)
Jn(−t2/τd)e−inδt1eiδt2 , (6.89)

where t1 is the time variable in the indirect dimension and t2 is the direct time. The spin

system evolves at the frequency −nδ during the indirect dimension and δ during the direct

dimension; this behavior is characteristic of a multiple-quantum correlation experiment

in which an n-quantum coherence in the indirect dimension is converted to −1-quantum

coherence for direct detection.26 In fact, the 90◦—G1(τG)—t1—90◦—nG1(τG)—t2 pulse

sequence is exactly the n-quantum CRAZED experiment of Warren et al., which indirectly

detects n-quantum intermolecular multiple quantum coherence evolution. The multiple-

quantum NMR interpretation is that only one coherence in the indirect dimension is selected

via an n-quantum filter using standard pulsed field gradient coherence pathway selection.

The Fourier-transformed n-quantum CRAZED spectrum exhibits a cross peak at frequency

−nδ in the indirect dimension with frequency δ in the direct dimension. It is also possible

to generate cross peaks between spins in different molecules [302], e.g., protons in water

with protons in acetone. Note that the use of the weak coupling expression for the secular

dipolar field is appropriate when the chemical shift difference between the two spin species

exceeds |γBd| ∼ |τd|−1; the Bessel function arguments then go as Jn(
2
3 t/τd).

The multiple-quantum nature of the CRAZED experiment can be appreciated by

some simple density operator calculations. Starting with the initial density operator in Eq.

26A p-quantum coherence evolves at frequency −pδ under the resonance offset Hamiltonian Ĥδ/~ = δÎz.
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6.57, the N -spin density operator at the end t1 before the second rf pulse is:

ρ̂(t1) =
N∏

j=1

[
1

2
1̂j − ζÎyj cos(δjt1 − γG1zjτG) + ζÎxj sin(δjt1 − γG1zjτG)], (6.90)

where γj = γ for a homonuclear species and Warren’s argument that evolution under the

dipole–dipole Hamiltonian can be neglected during t1 is in effect. The resonance offsets

δj can vary from spin to spin through the chemical shift if multiple chemical species are

present; even if there is only one species, the δj can still vary if B0 is inhomogeneous. The

vertical position zj of course varies from spin to spin. Consider only a single 3-spin term

from Eq. 6.90:

B̂3(t1) = 2−(N−3)ζ3Îxj sin(δjt1 − γG1zjτG)Îyk cos(δkt1 − γG1zkτG)Îyl cos(δlt1 − γG1zlτG).

(6.91)

This term arose from the term B̂3(0) = −2−(N−3)ζ3Îzj ÎzkÎzl in the initial density operator.

This term contains ±3- and ±1-quantum coherences. Only the +3-quantum coherence will

end up passing a n = +3-quantum filter (G2 = 3G1) filter:

B̂
(3)
3 (t1) ∝ Î+j Î+kÎ+lei[3δt1−γG1(zj+zk+zl)τG], (6.92)

where the relation δj+δk+δl = 3δ in the case of equivalent spins in a homogeneous magnetic

field has been used to emphasize the triple-quantum nature of the evolution. Returning to



6.2. THE DISTANT DIPOLAR FIELD 399

Eq. 6.91, the total density operator after the second rf and G2 = 3G1 gradient pulse is:

ρ̂(t1, t2 = 0) =
N∏

j=1

[
1

2
1̂j + ζÎzj cos(δjt1 − γG1zjτG)

+ζÎxj sin(δjt1 − γG1zjτG) cos(−3γG1zjτG)

+ζÎyj sin(δjt1 − γG1zjτG) sin(−3γG1zjτG)]. (6.93)

The 3-spin term of Eq. 6.91 has evolved to contain the component:

B̂3(t1, t2 = 0) = 2−(N−3)ζ3Îxj ÎzkÎzl sin(δjt1 − γG1zjτG) cos(δkt1 − γG1zkτG)

× cos(δlt1 − γG1zlτG) cos(−3γG1zjτG). (6.94)

The discussion of §6.2.2 showed how a density operator term like Îxj ÎzkÎzl could be converted

into single-spin transverse magnetization Îxj after two successive commutations with the

dipole–dipole Hamiltonians Ĥjl
D and Ĥjk

D . Quadrature detection selects out the −1-quantum

coherence which evolves at Î−jeiδjt2 in the direct dimension. The spatial averaging required

to find the position-independent terms in the density operator is somewhat complicated [76],

but the term that passes the triple-quantum filter is the +3-quantum coherence that evolved

as Î+j Î+kÎ+le
−i3δt1 during the indirect evolution time. Note that (n+1)- and higher-order

spin terms in the density operator also generate n-quantum coherences during t1 but require

two or more commutators using the same dipolar coupling to produce observable signal,

which is a negligibly small pathway. The general result is that n-spin terms in the initial

density operator lead to the nth multiple echo which gives the n-quantum CRAZED signal.

When multi-spin terms in the density operator or dipolar couplings are neglected, only the
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usual n = 1 Hahn echo is predicted.

No gradients. The experiment shown in Fig. 6.2(c) is an ordinary Hahn echo experiment

(or COSY NMR experiment if the delay τ is instead incremented as an indirect dimension

t1). These data were taken with the sample arranged such that only the tip of the NMR

tube was in the active region of the rf coil; the water-glass-air susceptibility boundary at

the bottom of the tube makes a very inhomogeneous B0 field within the water. This in-

homogeneity manifests itself as a line broadening effect in a conventional one-pulse NMR

experiment. During the interval τ the transverse magnetization evolves in the presence of

the inhomogeneous offset field Bδ(r). This will eventually lead to a complicated magneti-

zation distribution from which it is hard to calculate the dipolar field. A large simplifying

assumption is made here, which is that the local secular dipolar field is of the form:

Bd(r) = µ0αδ[3Mz(r)z̃ −M(r)], (6.95)

where αδ is a position-independent proportionality constant. There is no real justification

for this assumption, except it is true in a uniformly-magnetized ellipsoid or in a sample

in which the magnetization is strongly modulated along one direction; it is not true in

a sample with an arbitrary geometry or arbitrary magnetization. Starting from initially

uniform magnetization M(0) =M0z̃, the magnetization after the two rf pulses is:

M(r, τ+) =M0 cos[δ(r)τ ]z̃ +M0 sin[δ(r)τ ]x̃, (6.96)
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where Eq. 6.95 guarantees that the effect of the local secular dipolar field is zero during this

time because the magnetization is transverse and M(r) × Bd(r) = 0. The magnetization

dephases during τ due to the inhomogeneous B0 field; if this dephasing is strong enough,

perhaps B(r) sees only a local contribution from the magnetization and Eq. 6.95 may be

valid. Assuming that the effective part of the local secular dipolar field during the detection

time t is:

Bd(r) = µ0αδM0 cos[δ(r)τ ]z̃ (6.97)

the transverse magnetization density at time t is:

M+(r, t; τ) = M0 sin[δ(r)τ ] exp{i[δ(r)− µ0γαδM0 cos[δ(r)τ ]]t}

=
+∞∑

m=−∞
imM0(

mτd
αδt

)Jm(−αδt/τd)eimδ(r)τeiδ(r)t, (6.98)

where τd = (µ0γM0)
−1. Evolution under B0 inhomogeneity causes a dephasing of the

transverse magnetization which is refocused to form echoes at times t = |m|τ for m < 0.

6.2.4 A comment on DDF effects in quadrupolar spin systems

Chapters 3, 4, and 5 deal almost exclusively with quadrupolar nuclei and their

dynamics and it is reasonable to consider how the analysis of such systems can be extended

to include distant dipolar field effects. DDF effects can be described in I = 1/2 systems

using a purely classical model because the average nuclear polarization can be described

entirely in terms of the classical magnetization vector. Quadrupolar (I > 1/2) nuclei,
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however, have more degrees of freedom and can support types of polarization other than

dipole polarization. A correct description of the quadrupolar nuclear dynamics must include

the effects of the nuclear dipolar field on these degrees of freedom. Quantum-mechanical

or semiclassical descriptions of distant dipolar field effects in multilevel systems have been

developed by other workers in the context of J-coupled spin-1/2 systems [306, 380, 381].

It seems that DDF effects in I > 1/2 systems have not been considered thus far in the

literature. At the least there has been one report of using Li-7 (I = 3/2) to detect the

dipolar field of a protonated solvent [297], although the data were not included and no

mention of the quadrupolar nature of Li-7 was made.

The analysis must be done using a quantum-mechanical or semiclassical formalism

since not all of the degrees of freedom of an I > 1/2 nucleus can be described classically.

It is convenient to use a basis of spherical tensor operators (see Appendix A) to represent

the nuclear angular momentum polarization. The density operator of a spin I nucleus can

be written in terms of (2I + 1)2 spherical tensor operator components T̂k,q of integer rank

0 ≤ k ≤ 2I and order q = −k, · · · ,+k. Rank k = 1 operators correspond to nuclear

magnetization (q = 0 for longitudinal magnetization, q = ±1 for transverse magnetization).

In the Warren quantum mechanical picture multispin terms in the full N ≈ 1020-spin

density operator can be converted to observable single-spin terms by short-time evolution

under non-repeated intermolecular dipolar couplings (see §6.2.2). Mathematically speaking,

density operator terms like Îxj Îzk are converted to terms like Îyj by a single commutation

with the dipolar Hamiltonian Ĥjk
D ∝ Îzj Îzk; the spin operator Îzk is “removed” from the

density operator term (i.e., it is converted to 1̂k). It is easy to show that in the general
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I ≥ 1/2, S ≥ 1/2 case only Îzi or Ŝzj terms can be removed by a single commutation with

the heteronuclear dipolar Hamiltonian.27 Therefore one expects that heteronuclear DDF

effects will manifest themselves in systems containing at least one quadrupolar nucleus in

the same way as in spin-1/2 heteronuclear systems, if the quadrupolar nucleus is prepared

only in a state of magnetization (rank-1 polarization). Normal DDF H-1–H-2 (I = 1/2,

S = 1) correlation experiments at B0 = 7.05 T in an 80%/20% H2O/D2O mixture exhibited

no unexpected results (data not shown). Note that higher rank polarization terms will also

evolve under the dipolar field, but not into observable rank-1 polarization.

The situation is different in homonuclear systems. Here the term “homonuclear

system” will be taken to mean a single-species system in the strong-dipolar coupling limit;

dipolar field effects are so weak that the truncated weak-coupling (“heteronuclear”) dipolar

Hamiltonian applies to most multiple-component homonuclear systems. The full homonu-

clear secular dipolar Hamiltonian Ĥjk
D /~ = ωjkD (3Îzj Îzk − Îj · Îk) contains extra “flip-flop”

terms that the heteronuclear secular dipolar Hamiltonian does not. The entire Îj · Îk term

is usually neglected in the Warren treatment of homonuclear DDF experiments [76]. This

is justified when the spins are truly equivalent—i.e., when a single spin-1/2 species is con-

sidered and the spins are not “labeled” by their position in an inhomogeneous magnetic

field—because the multi-spin terms enter symmetrically into the equilibrium density opera-

tor and this symmetry is not broken by non-selective pulses. This is equivalent to neglecting

the term proportional to M in Eq. 6.21 in the absence of magnetic field gradients (see the

27The commutator [B̂n=2, Ĥ
jk
D ] = [T̂ I il,mT̂

S j
k,q , 2~ωijD ÎziŜzj ] contains products like T̂

S j
k,q Ŝzj = T̂S jk,q T̂

S j
1,0 ; since

the multiplication of spherical tensor operators follows the rules of angular momentum addition, the spin-S
term of this product can only equal 1̂jS = T̂S j0,0 if the Clebsch-Gordan coefficient 〈k, q; 1, 0|0, 0〉 6= 0, i.e.,

k − 1 = 0 and q + 0 = 0 such that T̂S jk,q = T̂S j1,0 = Ŝzj . An analogous argument may be used when removing
spin-I terms.
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discussion of DDF effects in the one-pulse experiment in §6.2.3). The commutator of density

operator terms like (Îαj Îβk + ÎαkÎβj) with the Îj · Îk Hamiltonian term does not remove

a spin operator when α, β ∈ {x, y, z}. Since only the short-time (single commutator) dy-

namics are relevant to describe DDF effects in solution, the Îj · Îk terms in the dipolar

Hamiltonian do not lead to the development of observable single-spin terms in the density

operator, and therefore can be neglected. This is no longer the case in quadrupolar spin

systems because a single commutation with Îi · Îj can remove a spin operator from certain

symmetric density operator terms of the form (T̂ il,m;φT̂
j
k,q;φ′ + T̂ jl,m;φT̂

i
k,q;φ′), where T̂l,m;φ is

a Hermitian combination of spherical tensor operators of a given l and |m| (see Eq. 5.2).

As an example, consider a spin I = 1 homonuclear system in the absence of all

interactions except chemical shifts and long-range dipolar couplings. An analysis of the

relevant commutators shows that when the density operator contains only rank-1 (mag-

netization) spin operators the dipolar field dynamics proceed in the same manner as in a

spin-1/2 system, i.e., the Îi · Îj Hamiltonian terms can be neglected, which is equivalent

to neglecting the transverse dipolar field. A normal homonuclear Li-7 (I = 3/2) CRAZED

experiment at B0 = 7.05 T in nearly-saturated LiBr(aq) exhibited no unexpected results

(data not shown). However, the presence of the Î i · Îj terms in the Hamiltonian can affect

the dynamics when higher-rank polarization is present. These dynamics are not due to

evolution of the spins in some sort of “distant multipolar field”; rather, they are due to the

evolution of rank k > 1 polarization in the presence of the usual transverse secular dipolar

field. For example, DDF-mediated conversions of the type q = 0 ↔ |q| = 1 ↔ |q| = 2 are

possible for k = 2 polarization in the I = 1 system.28 This of course requires the system to

28This is a simplification because the phase of the transverse dipolar field (x or y) determines which
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be prepared in some mixture of transverse magnetization and rank-2 polarization. However,

these effects would be difficult to observe because rank-2 polarization is not directly mea-

surable. It can be shown for the general spin I case that no secular DDF effects can convert

k > 1 polarization into observable k = 1 magnetization. Therefore one would have to per-

form a 2D experiment that involves both a multiple-quantum excitation and a conversion

to observable signal; looking for small DDF effects during multiple-quantum spectroscopy

of a potentially low-γ quadrupolar nucleus is a difficult proposition.

Thus far the discussion of DDF effects in quadrupolar nuclei have focused on the

ability of I > 1/2 nuclei to support rank k > 1 polarization; it would be interesting to

see what would happen if a quadrupolar coupling was included. The motionally-averaged

electric quadrupolar coupling is zero in isotropic but is non-zero in general in an anisotropic

medium. For example, the spectrum of an I = 1 nucleus in an oriented medium presents

a quadrupolar-split doublet (see §4). Goldman and Desvaux have investigated the cross-

precession of the components of a J-split doublet (I1 = 1/2, I2 = 1/2) in the presence of

each other’s dipolar fields in a variable tip-angle experiment [306]. Their analysis could be

applied to an I = 1 system to determine whether such a DDF cross-precession effect can be

observed between the components of a quadrupolar-split doublet.29 The DDF effect in the

J-coupled system was quite small even in a concentrated protic solvent: a small shift of the

resonance frequencies was observed and the intensity ratio of the two doublet components

deviated from unity by a maximum of 8–9%. The dipolar field would be even smaller

order-q components can convert into each other, e.g., T̂2,0 polarization in an x-directed DDF evolves as
(ÎxiT̂

j
2,0 + Îxj T̂

i
2,0)→ (T̂ i2,1;π/2 + T̂ j2,1;π/2) under Ĥ

ij
D .

29The theoretical analysis might best be done in a fictitious spin-1/2 operator basis [150] rather than in
a spherical tensor operator basis.
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in the case of a dilute nucleus that had a smaller gyromagnetic ratio than that of H-1.

Furthermore, it is important that the doublet splitting not exceed by too much the Larmor

frequency of the nucleus due to its own dipolar field; this may be related to the truncation

of the secular dipolar field by the frequency difference between the doublet components.

The maximum cross-precession effect was observed at rf pulse tip angles near θ = 0 and

θ = π; unfortunately these are the tip angles for which the transverse magnetization and

hence the observed signal is the smallest.

When investigating DDF effects in homonuclear quadrupolar systems it is difficult

to find a physical system in which the DDF is large, i.e., one that has a relatively high-γ

nucleus present at high concentration. For example, the I = 1 nuclei H-2 and N-14 can

be found at high concentrations in neat liquids but have low gyromagnetic ratios (recall

that the thermal equilibrium magnetization is quadratic in γ and the low Larmor frequency

is also a disadvantage when inductive detection is employed). It might be advantageous

to try to observe a DDF cross-precession effect in the I = 3/2 nucleus Li-7, which has a

relatively high gyromagnetic ratio, γLi7/2π = 16.55 MHz/T. It also has a small quadrupolar

coupling in Li+ salts (e.g., the Li-7 linewidth is only a few Hz in LiBr(aq)), which leads to

sharp, intense lines. The small coupling also would result in a small averaged quadrupolar

coupling in an anisotropic medium, which is good for cross-precession investigations. It is

possible to find systems that contain Li in high concentrations, e.g., molten lithium acetate

(Li[O(CO)CH3]·2H2O, m.p. = 70◦ C), although this would be an isotropic fluid. It might

be difficult to prepare an oriented system with a high Li concentration: a polar salt would

not dissolve in an organic liquid crystal, and high concentrations of Li+ may disrupt the
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liquid crystalline phase of an aqueous bicellar solution. A concentrated aqueous solution of

a lithium salt prepared in a stretched gel may be feasible.

6.3 Indirect detection with the distant dipolar field

The homonuclear dipolar field experiments potentially could be modified so that

structural or contrast-enhanced image information about a mobile carrier nucleus in a spa-

tially inhomogeneous environment could be encoded via the carrier’s self-DDF. Some of

the experiments are discussed in a non-remote detection modality in Refs. [317, 318, 319,

320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335]. Another

situation that might commonly arise in remote detection experiments is when some of the

carrier nucleus is bound and some is mobile, e.g., xenon in solution with some sample of

interest versus free xenon gas. In this case the distant dipolar field could be used to trans-

fer spectral information from the “bound” nuclei through space to the mobile nuclei via a

CRAZED-type experiment, which would obviate the need to take the xenon out of solution

before transport. However, many analytes of interest do not contain xenon, so when xenon

is the mobile carrier of choice it would make more sense to use a heteronuclear indirect

detection experiment in which the spectrum of an analyte heteronucleus is transferred via

its DDF to the xenon carrier. The DDF is significant on length scales of up to millimeters,

so there is no need for the analyte and carrier ever to come in contact with each other.

This section will introduce the basic DDF indirect detection experiment and explain how

it could be modified for use as an encoding module in remote detection experiments. Much

of the discussion is also applicable to homonuclear experiments.
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6.3.1 The basic indirect detection experiment

Bowtell [296] was the first to propose using the distant dipolar field to transfer

the indirectly-encoded NMR spectroscopic information of an analyte nucleus to a sensor

heteronucleus on a different molecule for direct detection. He suggested that this method

could be used to enhance the detection sensitivity of a low-γ or dilute analyte nucleus (i.e.,

one with low bulk magnetization) if the sensor nucleus was highly polarized, although some

signal per unit time was sacrificed by incrementing the analyte indirect time dimension

point-by-point rather than detecting in direct time. Intramolecular heteronuclear polariza-

tion transfers are routine in solution-state NMR using the J-coupling, but the ability to

perform intermolecular transfers through the DDF is a great advantage because the exper-

imenter has the freedom to add a probe molecule which contains high-γ nuclei that are not

present in the analyte molecule or are present in much higher concentration. In the context

of remote detection experiments, it is useful to have a probe that can act as a mobile carrier

of the NMR information and which is not required to come into physical contact with the

analyte.

Bowtell’s three-pulse experiments studied heteronuclear multiple spin echoes, but

he suggested a means by which frequency-domain spectra could be acquired. Augustine

and Zilm used slightly-modified versions of Bowtell’s pulse sequence to demonstrate P-31-

detected intermolecular heteronuclear correlation spectra of H-1 in solution [366, 382] and

gas-phase Xe-129-detected spectra of H-1 in methane [366]. Bachiller et al. [383] introduced

a four-pulse experiment that used heteronuclear double- and zero-quantum coherences to en-

code heteronuclear sum- and difference-frequency spectra in the indirect dimension. Warren
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et al. [77] have also considered a Bowtell-type three-pulse experiment from a theoretical per-

spective and critiqued its ability to provide significant sensitivity enhancement. Ardelean

et al. [384] used similar sequences to investigate the attenuation of heteronuclear DDF-

induced multiple echoes by diffusion. All these studies considered homogeneous mixtures

of the sensor and analyte, although He et al. have demonstrated homonuclear correlations

between two separated chemical species [302].

The basic version of the DDF heteronuclear correlation experiment considered here

uses the following three-pulse sequence (Fig. 6.3):

[90◦ Iφ1 ]–G1(τG)—t1—[90◦ Iφ2 , 90
◦ S
φ3 ]–G2(τG)—t2—detect S(φr), (6.99)

where I is the indirectly-detected analyte nucleus and S is the directly-detected sensor

nucleus. The two spin-I rf pulses have phases φ1 and φ2, the spin-S pulse has phase φ3, and

the receiver phase is φr. There are two z-gradient pulses of strength G1 and G2 and duration

τG; these pulses are employed in a specific ratio G2 = κG1 that will be discussed later.

Since this is a two-dimensional experiment, it is sometimes desirable to include a strong,

long “crusher” z-gradient pulse before the recycle delay at the start of the experiment to

dephase any leftover transverse magnetization from the last transient acquisition.

The evolution of the system under the pulse sequence in Fig. 6.3 will be calculated

including relaxation effects but excluding molecular diffusion effects, which are considered

in Ref. [296]. The sample will be considered to be a homogeneous mixture of the molecules

that contain spins I and S; the case in which the analyte and sensor are physically sep-

arated is discussed in §6.4.2. The resonance offsets of spins I and S are denoted δI and
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90oφ1

t1

I

S

t2
detect (φr)

G1

τG

G2

τG

crusher

z-gradients

90oφ2

90oφ3

Figure 6.3: Pulse sequence for DDF indirect detection.

δS , respectively. The offset corresponds to the sum of the resonance detuning, chemical

shielding, and any intrinsic or susceptibility-induced spatial inhomogeneity of the B0 field.

It will be assumed that φ1 = φ2 = φ3 = φr = 0. The initial total magnetization density is

M =M I(0)+MS(0) =M I
0 z̃+M

s
0 z̃, whereM

I
0 andMS

0 are only the initial (not necessarily

equilibrium) magnetizations. The magnetization of spin I after the rf and gradient pulses

have been applied but before acquisition begins is:

M I(r, t1, 0) = −M I
0 cos(δIt1 − γIG1zlτG)e−t1/T

I
2 z̃

+M I
0 sin(δIt1 − γIG1zlτG)e−t1/T

I
2 [cos(−γIG2zlτG)x̃+ sin(−γIG2zlτG)ỹ],

(6.100)

where the gyromagnetic ratio of spin I is γI ; the variable zl = z− z0 is the vertical position

within the sample, where z0 marks the bottom of the active region of the rf coil. The gradient
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pulse length τG is assumed to be short enough that resonance offset evolution and relaxation

effects can be neglected during the gradient pulses. The transverse relaxation time of spin

I is T I2 ; any inhomogeneous dephasing that is normally included in the T I ∗2 relaxation time

has been implicitly included in the position-dependent offset frequency δI(r). It has been

assumed that the evolution of the purely-transverse magnetization of spin I during t1 is not

influenced by its self-dipolar field.

Note that the magnetization of the spin S at the same time is:

MS(r, t1, 0) = −MS
0 [cos(−γSG2zlτG)ỹ + sin(−γSG2zlτG)x̃], (6.101)

which corresponds to a helix of pitch 2π/(γSG2τG). The S-spin transverse magnetization is

completely dephased at the beginning of the detection interval, so this pulse sequence would

lead to no net signal if the dipolar field of spin I did not rephase the magnetization at some

point. In the absence of dipolar field effects the analyte and sensor nuclei are uncoupled

and the indirect detection sequence would give the same result as a one-pulse experiment

on spin S.

The z-component of I spin magnetization relaxes during t2 to its equilibrium value

M I
eq with the longitudinal relaxation time T I1 as:

M I
z (r, t1, t2) = −M I

0 cos(δIt1 − γIG1zlτG)e−t1/T
I
2 e−t2/T

I
1 +M I

eq(1− e−t2/T
I
1 ). (6.102)

If the spin system is initially prepared at thermal equilibrium, thenM I
0 =M I

eq. During t2 the

longitudinal component of spin-S magnetization that develops due to T S1 relaxation creates
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a secular dipolar field felt by spin I that is parallel to the z-axis, and thus does not affect

the evolution of M I
z . It could cause some precession of the transverse magnetization of spin

I, but this magnetization is not observed and does not contribute to the secular dipolar field

felt by spin S. The z-magnetization in Eq. 6.102 contains a cosine-modulated component

and an unmodulated component 〈M I
z 〉 =M I

eq(1− e−t2/T
I
1 ). Assuming that the modulation

length |2π/(γIG1τG)| is small compared to any sample dimension, the secular dipolar field of

spin I felt by spin S can be calculated using Eq. 6.26 upon first subtracting the unmodulated

component of magnetization 〈M I
z 〉 from M I

z according to Warren’s correction [363]:

BI
d = −

2

3
µ0M

I
0 cos(δIt1 − γIG1zlτG)e−t1/T

I
2 e−t2/T

I
1 z̃. (6.103)

This correction makes the implicit assumption that the dipolar field created by the uni-

form (unmodulated) magnetization is small compared to the field created by the strongly

modulated magnetization. If the contribution of the unmodulated magnetization is to be

included the result will depend on the sample geometry. In the case of an infinite cylinder

this contribution is 1
3µ0Meq(1 − e−t2/T

I
1 )z̃ (see Eq. 6.55). This factor is small for times

t2 ¿ T I1 . At longer times it may not have negligible magnitude, but it is independent of

the parameter t1 and will cause only a small chirped resonance shift of the S spins, which

will be neglected here. Eq. 6.103 depends on the direct time t2, so the S spins will evolve

in the presence of the DDF of the I spins with the dynamic phase:

Φd(t2; 0) = −γS
∫ t2

0
dt
[
− 2

3
µ0M

I
0 cos(δIt1 − γIG1zlτG)e−t1/T

I
2 e−t/T

I
1
]

=
2

3
γSµ0M

I
0T

I
1 cos(δIt1 − γIG1zlτG)e−t1/T

I
2 (1− e−t2/T I1 ). (6.104)
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See Eq. 2.8 for a description of dynamic phases in the context of quantum-mechanical time

evolution.

If quadrature detection is employed in the direct dimension, only the transverse

magnetization component MS
+ = MS

x + iMS
y is of interest. The transverse magnetization

evolves during t2 under a combination of the spin-S resonance offset and the spin-I dipolar

field as:

MS
+(r, t1, t2) = −iMS

0 e
i[δSt2−γSG2zlτG+ 23µ0γSMI

0T
I
1 cos(δI t1−γIG1zlτG)e−t1/T

I
2 (1−e−t2/TI1 )]e−t2/T

S
2

= −iMS
0

+∞∑

m=−∞

{
imJm

[2
3

T I1
τSd
e−t1/T

I
2 (1− e−t2/T I1 )

]
eimδI t1eiδSt2e−t2/T

S
2

×e−i(mγIG1+γSG2)zlτG
}
, (6.105)

where the Jacobi-Anger expansion (Eq. 6.80) has been used and τSd = (µ0γSM
I
0 )
−1 is the

characteristic dipolar demagnetizing time of spin S in the presence of the dipolar field of spin

I. The helix of spin S magnetization wound by the gradient pulse G2 = κG1 is unwound

by the action of the spin I dipolar field if the relative gradient strengths are chosen such

that κ = nγI/γS , where n is an integer.30 In that case the spatially-averaged magnetization

density is equal to the m = −n position-independent component of Eq. 6.105:

MS
+(t1, t2) = −in+1MS

0 Jn

[2
3

T I1
τSd
e−t1/T

I
2 (1− e−t2/T I1 )

]
e−inδI t1eiδSt2e−t2/T

S
2 . (6.106)

The relation J−n(x) = (−1)nJn(x) for integer n has been used. Eq. 6.106 is valid in a

homogeneous B0 field; if the evolution frequencies δI and δS depend on position, the factor

30In this case the pitch of the helix of spin S magnetization after the second gradient pulse is an integer
submultiple of the wavelength of modulated spin I magnetization.
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e−inδI t1eiδSt2 must be replaced by its spatially-averaged value. The choice of n selects the

n-quantum spectrum of spin I in the indirect dimension. The indirect spectrum corresponds

to the normal quadrature-detected spectrum of I when n = −1 and G2 = −(γI/γS)G1:

MS
+(t1, t2) =MS

0 J1

[2
3

T I1
τSd
e−t1/T

I
2 (1− e−t2/T I1 )

]
eiδI t1eiδSt2e−t2/T

S
2 . (6.107)

This is the standard version of the DDF indirect detection sequence, which transmits the

information about the single-quantum spectrum of the analyte nucleus I to the sensor

nucleus S through the distant dipolar field. If the rotating magnetization of spin S is

detected by the current it inductively generates in an rf coil, the quadrature-detected signal

is SS+ ∝
∂M lab

+ (t2)
∂t2

. The laboratory-frame rotating magnetization M lab
+ can be generated

from Eq. 6.107 simply by replacing the offset frequency δS with the Larmor frequency ωS0 ,

which includes the chemical shielding but excludes the resonance detuning. The signal after

transformation back into the rotating frame (i.e., after mixing the laboratory-frame signal

with the rf carrier frequency) is:

SS+ ∝ MS
0

2

3τSd
J0

[2
3

T I1
τSd
e−t1/T

I
2 (1− e−t2/T I1 )

]
eiδI t1e−t1/T

I
2 eiδSt2e−(t2/t

I
1+t2/T

S
2 )

+MS
0

(
iωS0 −

1

TS2
− 1

T I1

e−t2/T
I
1

1− e−t2/T I1
)
J1

[2
3

T I1
τSd
e−t1/T

I
2 (1− e−t2/T I1 )

]
eiδI t1eiδSt2e−t2/T

S
2 ,

(6.108)

where the relation
dJ1(x)
dx

= J0(x) − J1(x)/x has been used. At high magnetic fields the

Larmor frequency |ωS0 | ≈ 108 Hz is orders of magnitude larger than |τSd |−1, |TS2 |−1, or
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|T I1 |−1, so the signal is approximately:

SS+ ∝ iωS0MS
0 J1

[2
3

T I1
τSd
e−t1/T

I
2 (1− e−t2/T I1 )

]
eiδI t1eiδSt2e−t2/T

S
2 , (6.109)

which is proportional to MS
+(t1, t2) in Eq. 6.107. This proportionality is usually taken for

granted in single-pulse NMR spectroscopy where the signal S+ ∝ ∂M+/∂t due to a rotating

magnetization component of the form M+(t) = M0e
iδt is obviously proportional to M+(t)

itself. The additional time modulation due to the dipolar field makes the proportionality

less obvious, but it is still valid.

The amplitude of the signal in Eq. 6.109 goes like MS
0 J1[

2
3
T I1
τSd
e−t1/T

I
2 (1− e−t2/T I1 )],

where the argument of the Bessel function depends on the dipolar demagnetizing time τ Sd

and the analyte spin relaxation parameters T I1 and T I2 . In the absence of relaxation this

amplitude isMS
0 J1[

2
3 t2/τ

S
d ], which grows to be on the order ofMS

0 for t2 ∼ τSd . In this limit

the signal of a single point of the spin-I indirect spectrum is on the order of the single-shot

direct spin-S signal, which would be a great enhancement if the analyte is dilute or has

low polarization and the sensor is highly magnetized. In practice, the signal is rarely able

to evolve to its full relaxation-free value. Relaxation effects help to ensure that the Bessel

function argument is small. The dipolar demagnetizing time can also be quite long—e.g.,

τSd ≈ 105 s for H-1 detection of a 1 mM C-13 labeled compound thermally polarized at

room temperature with B0 = 16.45 T—so even in the absence of relaxation it may not

be desirable to wait until the full signal develops. These factors and others that will be

described later limit the amount of signal that can be collected per shot, and most physical

systems will be in the limit where the Bessel function argument is small compared to unity.
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The Bessel function power series

Jn(x) =
+∞∑

k=0

(−1)kx2k+n
22k+nk!(n+ k)!

, (6.110)

can be used to approximate the Bessel function in the x¿ 1 limit:

Jn(x) ≈
xn

2nn!
, (6.111)

where only the leading k = 0 term has been retained. The short-time approximation to the

signal in Eq. 6.109 is:

SS+ ∝
1

3
iωS0 γSµ0M

I
0M

S
0 T

I
1 e

iδI t1e−t1/T
I
2 eiδSt2e−t2/T

S
2 (1− e−t2/T I1 ), (6.112)

which is bilinear in the analyte and sensor nuclear magnetizations. The signal is scaled down

by a factor on the order of
T I1
τSd
e−t1/T

I
2 relative to the spin-S direct signal, and in addition to

the normal T2 relaxation in the direct dimension there is a factor of 1 − e−t2/T I1 that goes

like t2/T
I
1 at the beginning of the acquisition but grows to unity over a time long compared

to T I1 . It is not surprising that a large sensor magnetization MS
0 and long lifetime T I1 of

the modulated analyte magnetization are desirable, but in the short time limit the size of

the analyte magnetization M I
0 also determines the magnitude of the signal.

Bowtell [296] has made a detailed analysis of the prospects of sensitivity enhance-

ment using this type of indirect detection sequence. Although the direct detection of spin

I has the advantage that N1 signal averages could be performed in about the time it takes

to collect N1 spin-S transients indirectly without signal averaging, some of the advantage
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of direct detection is offset by the fact that in the indirect method the detection bandwidth

need be only wide enough to accommodate the spectrum of the sensor, which potentially

could be only a single line. The direct detection method collects signal across a bandwidth

that must accommodate the entire spectrum of spin I and therefore collects a commen-

surate amount of noise. On the other hand, indirect detection sequences are subject to

multiplicative noise termed “t1 noise”, in which fluctuations in the experimental conditions

from transient to transient manifest themselves as noise in the indirect dimension of the

spectrum [7, §6.8.2]. Bowtell has suggested on the basis of sensitivity considerations that

intermolecular indirect detection may best be implemented through the nuclear Overhauser

effect [385], although the NOE does not act over a mesoscopic distance and the sensor and

analyte are required to be intermingled on a molecular scale.

Warren et al. [77] have raised some additional concerns about sensitivity en-

hancement that were not included in Bowtell’s estimates. If the sensor nucleus is highly

magnetized—which is desirable for sensitivity enhancement experiments—and if inductive

detection is employed, radiation damping can be significant as the transverse magnetiza-

tion of the sensor rephases under the action of the analyte dipolar field. The NMR signal is

reduced as the radiation damping torque returns the transverse magnetization to its equi-

librium orientation along z. A simple way to suppress radiation damping is to prepare only

a small amount of sensor transverse magnetization with a small tip-angle pulse; unfortu-

nately, less sensor magnetization results in less signal. Detuning the rf detection circuit also

reduces radiation damping but adversely affects the detection sensitivity. Radiation damp-

ing effects also can be largely suppressed by active electronic feedback techniques [386, 387]
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or by using quality factor-switching probes [388, 389]. As will be discussed in §6.3.2, the use

of remote detection methodology also can circumvent the radiation damping problem. A

more serious problem is the action of the transverse self-dipolar field of the sensor nucleus.

As the sensor magnetization rephases under the action of the analyte dipolar field, it creates

its own dipolar field which is not necessarily parallel to the magnetization. This field can

rotate the magnetization out of the transverse plane and cause a reduction of the NMR

signal. Warren et al. have suggested that these effects may be suppressed by employing e.g.

homonuclear dipolar decoupling sequences as is routine in solid-state NMR experiments.

The effects of molecular diffusion may also have a deleterious effect on the sensitivity of

the DDF indirect detection experiment, particularly if a rapidly-diffusing species such as a

gas is used (e.g., Xe-129 as a sensor/mobile carrier for remote detection applications). For

example, the sensitivity enhancement that can be achieved by using gradient-modulated

magnetization distributions would be destroyed if the sensor diffuses over a distance larger

than the length scale of the magnetization modulation during the DDF encoding interval.

The two-dimensional Fourier transform of Eq. 6.112 with respect to the time vari-

ables t1 and t2 clearly generates cross peaks (δI ,δS) at the offset frequencies of the analyte

and sensor nuclei, some examples of which will be presented in §6.4.3. The projection along

the indirect dimension of the spectrum is just the normal one-dimensional NMR spectrum

of the analyte. In fact, the pulse sequence of Fig. 6.3 is often used as a basic element of

heteronuclear correlation sequences in J-coupled systems. The similarity between the stan-

dard heteronuclear correlation spectroscopy and the DDF version is perhaps evident upon

considering that the heteronuclear J-coupling and dipolar coupling Hamiltonians have the



6.3. INDIRECT DETECTION WITH THE DISTANT DIPOLAR FIELD419

same form. Of course, the DDF version of the experiment yields a much weaker signal

because it arises from only the short-time contribution of small distant dipolar couplings.

In the context of remote detection the spectral information of the sensor nucleus is generally

not of interest, and recording only one point t2 = T of the signal is sufficient to generate a

one-dimensional data set S+(t1;T ) that maps out the analyte signal in an indirect, point-

by-point fashion. The time T can be determined experimentally in order to maximize the

dipolar field-induced signal.

The choice of relative gradient strengths G2/G1 = κ = −γI/γS selects the −1-

quantum coherence in the indirect dimension (see Eq. 6.107). In some cases it may be

advantageous to select another coherence. For instance, the sign of the coherence (+n ver-

sus −n) can be important. If the analyte and sensor molecules are mixed homogeneously

and the B0 field is inhomogeneous on a length scale that is larger than the scale over which

the dipolar field is active, one expects that any given small volume of sensor molecules

experiences the same external field as does the nearby small volume of analyte molecules

responsible for creating the DDF felt by the sensor. Eq. 6.105 indicates that the inhomoge-

neous dephasing of an analyte n-quantum coherence during t1 can be transmitted through

the DDF to the sensor nucleus at time t2 with a total phase equal to:

−nδIt1 + δSt2 = nγIBδ(r)t1 − γSBδ(r)t2

= nγI [(1− σIiso)B0(r)− ωIr/γI ]t1 − γS [(1− σSiso)B0(r)− ωSr /γS ]t2

' −nδ0I t1 + δ0St2 + (nγIt1 − γSt2)∆B0(r), (6.113)

where B0(r) = [B0 + ∆B0(r)]z̃ is the inhomogeneous external field and δ0I = −γI [(1 −
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σIiso)B0−ωIr/γI ] and δ0S = −γS [(1−σSiso)B0−ωSr /γS ] are the inhomogeneity-free resonance

offsets of spins I and S respectively. The right-hand side of the last line of Eq. 6.113 has

used the approximation 1 − σiso ≈ 1 because chemical shieldings are usually only ∼ 103

ppm at best. Eq. 6.113 assumes that only analyte and sensor molecules at the same point r

are correlated through the dipolar field and hence experience the same field inhomogeneity

∆B0(r), which is a reasonable assumption if B0(r) varies on a longer length scale than the

dipolar field.31 The field inhomogeneities are refocused in a coherence transfer echo [390]

at t2 = n(γI/γS)t1 = κt1 if the sign of n is chosen properly. Coherence transfer echoes

of the inhomogeneous dephasing are well-known in intramolecular J-coupled systems in

which the two spins I and S obviously experience the same external field B0(r). The sign

of the coherence order n determines whether the inhomogeneous dephasing is refocused:

since the −1-quantum coherence is detected on spin S, a +|n|-quantum coherence on spin

I must be used to form the echo if γI/γS > 1 and a −|n|-quantum coherence on spin I

must be used if γI/γS < 1. The echo is formed at a time during the acquisition that is

proportional to the indirect time t1, so the echo travels in the acquisition window as t1 is

incremented. This leads to a characteristic shearing [7, §6.6.1] of the 2D NMR spectrum

along a skew axis of slope κ with a projection along the indirect dimension that is not

free of the inhomogeneous dephasing. The echo and anti-echo pathways have opposite

signs of κ and the respective cross peaks fall on opposite sides of zero frequency in the

indirect dimension; the peak that corresponds to the echo pathway is easily distinguished

by the shearing effect. A narrow, inhomogeneity-free line can be obtained in the indirect

dimension after applying a mathematical shearing transformation to the echo pathway peak.

31Note that if the analyte and sensor are physically separated, this assumption may not hold.
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Alternatively, the pulse sequence could be modified to include a delayed acquisition period or

to realign the coherence transfer echo such that it forms at a constant time in the acquisition

window [391, 392]; these techniques are heteronuclear predecessors of the more recent split-

t1 technique [142] used to remove the shearing effect in the MQMAS echo experiment (see

§3). If the sign of the coherence in the indirect dimension is chosen such that the echo

pathway is selected, the use of these methods may increase the resolution of the indirect

spectrum by removing the inhomogeneous broadening.

The resolution of the indirect spectrum can also be increased by choosing a co-

herence order |n| > 1. A spin-I n-quantum coherence evolves during t1 at the frequency

−nδI , so the resolution of an n-quantum spectrum is |n| times that of the single-quantum

spectrum, assuming that the coherence relaxation rates (and hence the linewidths) are the

same. This phenomenon is discussed in §4 in the context of double-quantum line narrowing

in spin-1 systems. Note, however, that the intensity of a multiple-quantum line is less than

that of a single-quantum line, as can be seen from the Jn-dependence of Eq. 6.105. Since

sensitivity seems to be the major concern in the indirect detection experiments, it may not

be worthwhile to seek higher spectral resolution with analyte multiple-quantum coherences.

Technical issues

Several issues regarding the implementation of the DDF indirect detection se-

quence should be discussed. The pulse sequence as diagrammed in Fig. 6.3 places the first

gradient pulse G1 immediately after the rf pulse, but the signal as calculated above is the

same regardless of where the gradient pulse is placed within the t1 interval. It is advan-

tageous to place the gradient pulse at the beginning of the t1 interval if the analyte has



6.3. INDIRECT DETECTION WITH THE DISTANT DIPOLAR FIELD422

a high enough magnetization that radiation damping may be significant. However, since

the rf channel of spin I is used only for excitation and not for detection, the rf circuit

can be safely detuned to suppress radiation damping without loss of detection signal. The

disadvantage of putting the gradient pulse at the beginning of the indirect evolution time is

that the magnetization helix it creates can be partially destroyed by diffusion of the analyte

molecules if t1 is long and the pitch of the helix 2π/(γG1τG) is small. Furthermore, if the

dipolar field of the analyte is made large by the spatial symmetry-breaking of the gradient

pulse, the interaction between the analyte DDF and radiation damping in the excitation

coil may in time induce turbulent spin dynamics [351]. For these reasons, it may be more

desirable to place the gradient pulse at the end of the t1 interval just before the second

spin-I rf pulse. Alternatively, a compromise can be made where the gradient pulse G1 is

split into two parts that are placed at the beginning and the end of the t1 interval [363].

The signal in Eq. 6.112 gives an undesirable phase-twist lineshape [7, §6.5.1],[4,

§4.3.4] upon Fourier transformation. This lineshape contains dispersive components with

broad wings that can interfere with the resolution of closely-spaced resonances. Pure

absorptive-phase lineshapes can be obtained e.g. by the States hypercomplex method [143]

or other techniques [7, §6.5.3]. These methods require the collection of both the echo and

antiecho pathways, at the expense of including the inhomogeneous broadening inherent in

the antiecho signal [7, §6.5.2],[145].

The use of pulsed field gradients G2/G1 = κ = nγI/γS automatically selects

the spin-I n-quantum coherence in the indirect dimension, but if no gradients are used all

coherences pass and are observed in the spectrum. This can be appreciated from a schematic
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density operator description of the pulse sequence of Fig. 6.3. If φ1 = φ2 = φ3 = φr = 0

(i.e., all rf pulses are along the rotating frame x-axis) and no gradient pulses are employed,

the I = 1/2, S = 1/2 initial density operator in Eq. 6.59 has evolved by the beginning of

the acquisition into:

ρ̂(t1, t2 = 0) =

NI∏

j=1

NS∏

k=1

[
1

2
1̂Ij − ζI Îzj cos(δIt1)− ζI Îxj sin(δIt1)][

1

2
1̂Sk − ζSŜyk]. (6.114)

The multi-spin terms in this product that contain |n| longitudinal spin-I operators {Îzj}

and a single transverse spin-S operator Ŝyk evolve as spin-I |n|-quantum coherences during

t1 and are converted into transverse magnetization on spin S after the action of n dipolar

couplings Ĥjk
D during t2. For instance, single-quantum spin-I signal arises from the evolution

of terms like

2−(NI+NS−2)ζIζS cos(δIt1)ÎzjŜyk −→ −2−(NI+NS−1)ζIζS cos(δIt1)ωjkD t2Ŝxk (6.115)

under the action of Ĥjk
D at short times t2 according to Eq. 6.62. Triple-quantum spin-I

signal can arise from evolution of terms like:

2−(NI+NS−4)(ζI)3ζS cos3(δIt1)Îzj ÎzlÎzmŜyk −→

2−(NI+NS−1)(ζI)3ζS cos3(δIt1)ω
jk
D ω

lk
Dω

mk
D t32Ŝyk (6.116)

under the action of the dipolar couplings ωjkD , ωlkD , and ω
mk
D . Processes like these occur for

all coherence orders n leading to peaks at frequencies −nδI in the indirect dimension of the



6.3. INDIRECT DETECTION WITH THE DISTANT DIPOLAR FIELD424

spectrum, although the higher-order peaks are less intense.

When the indirect detection experiment is performed without gradient pulses or

with only weak gradients that incompletely suppress undesired coherences, an alternative

method of coherence pathway selection must be used. It is particularly important to sup-

press the strong direct free induction decay of the S spins. This FID is the usual signal that

would follow a single rf pulse on the S spins and is not produced by DDF effects; therefore,

it is not modulated by evolution of the analyte spins during the indirect time dimension

and leads to a large zero-frequency artifact in the indirect spectrum. The obvious choice of

coherence pathway selection in the absence of pulsed field gradients is phase cycling of the

rf pulses. The direct FID is easily suppressed using a two-step phase cycle. This can be ap-

preciated by examining the evolution of the terms in the initial density operator that evolve

into observable heteronuclear DDF-induced spin-S signal or the direct spin-S FID. The set

of phases that will be considered is φ1 = φ2 = φ3 = φr = 0 (see Fig. 6.3), i.e., all pulses

are along the x-direction in the rotating frame. Neglecting relaxation, the spin-S trans-

verse magnetization (corresponding to the direct FID) evolves from initial z-magnetization

ρ̂(0) ∝ Ŝz according to:

Ŝz
90◦Ix−−−→ Ŝz

t1−→ Ŝz
90◦Ix−−−→
90◦Sx

−Ŝy t2−→
φr
− i
2
eiδSt2 , (6.117)

where the final expression is the quadrature-detected signal in the direct dimension propor-

tional to eiφrTr[ρ̂Ŝ+] (see §1.7). Using the same set of pulse and receiver phases, the spin-I

indirect evolution detected on spin S evolves from initial two-spin terms like ρ̂(0) ∝ ÎzjŜzk
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according to:

ÎzjŜzk
90◦Ix−−−→−ÎyjŜzk t1−→−ÎyjŜzk cos(δIt1)

90◦Ix−−−→
90◦Sx

ÎzjŜyk cos(δIt1)
t2−→
φr
−1

4
ωjkD t2 cos(δIt1)e

iδSt2 ,

(6.118)

where density operator terms that do not lead to observable transverse magnetization on

spin S have been omitted and only the short time evolution ÎzjŜyk → −12ω
jk
D t2Ŝxk under the

heteronuclear dipolar coupling Hamiltonian Ĥjk
D has been included. If a second experiment

is performed in which the phases of the simultaneous spin I and spin S 90◦ pulses are

shifted by π radians so that they are in the −x direction in the rotating frame (i.e., φ1 = 0◦,

φ2 = φ3 = 180◦, φr = 0◦), then the direct FID is:

Ŝz
90◦Ix−−−→ Ŝz

t1−→ Ŝz
90◦Ix−−−→
90◦Sx

Ŝy
t2−→
φr

i

2
eiδSt2 , (6.119)

and the indirectly-detected signal comes from terms like:

ÎzjŜzk
90◦Ix−−−→−ÎyjŜzk t1−→−ÎyjŜzk cos(δIt1)

90◦Ix−−−→
90◦Sx

ÎzjŜyk cos(δIt1)
t2−→
φr
−1

4
ωjkD t2 cos(δIt1)e

iδSt2 .

(6.120)

A comparison of the two experiments shows that the pulse phase shifts invert the sign of the
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direct FID but do not change the indirect signal. Coaddition of the signals from these two

experiments therefore suppresses the direct FID but retains the indirect heteronuclear signal.

This result holds when relaxation is neglected; if relaxation is included, the 90◦Ix —t1—90◦Ix

sequence stores spin-I magnetization in the −z direction and the 90◦Ix —t1—90◦Ix sequence

stores spin-I magnetization in the +z direction, and these two longitudinal magnetization

components relax differently.

The indirect signal in Eqs. 6.118 and 6.120 becomes amplitude-modulated as

cos(δIt1) =
1
2(e

+iδI t1 + e−iδI t1) by incrementation of the indirect time variable and contains

the frequency components ±δI in the indirect spectrum. This lack of frequency discrimi-

nation is a result of passing both the +1-quantum and −1-quantum coherences during t1,

and results in an indirect spectrum that corresponds to the superposition of the normal

quadrature-detected (−1QC) spectrum with its mirror image. As has been discussed al-

ready, pulsed field gradient coherence pathway selection naturally chooses either the +1QC

or the −1QC during t1 depending on the relative sign of the gradient pulses; this frequency

discrimination is also easily implemented via a proper phase cycling scheme. Consider the

choice of pulse and receiver phases φ1 = 0◦, φ2 = φ3 = 90◦, φr = 0◦; i.e., the simulta-

neous spin-I and spin-S 90◦ pulses are along the y-direction in the rotating frame. The

indirectly-detected signal develops according to:

ÎzjŜzk
90◦Ix−−−→−ÎyjŜzk t1−→ ÎxjŜzk sin(δIt1)

90◦Iy−−−→
90◦Sy

−ÎzjŜxk sin(δIt1) t2−→
φr
− i
4
ωjkD t2 sin(δIt1)e

iδSt2 ,

(6.121)
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where again only density operator terms that eventually develop into observable spin-S

transverse magnetization have been retained, and the short time evolution under the het-

eronuclear dipolar coupling Hamiltonian Ĥjk
D is ÎzjŜxk → 1

2ω
jk
D t2Ŝyk. Coaddition of the

signals in Eqs. 6.118 and 6.121 gives a net signal from the arbitrary spin pair j–k that is

proportional to − 14ω
jk
D t2e

iδI t1eiδSt2 , a phase-modulated signal which corresponds to the se-

lection of the pure −1-quantum coherence on spin I during t1. Selection of the +1-quantum

coherence during t1 can be achieved with the choice of phases φ1 = 0◦, φ2 = φ3 = 90◦,

φr = 180◦, where the 180◦ shift of the receiver phase corresponds to a multiplication of the

signal in Eq. 6.121 by eiπ = −1; when this signal is added to the signal in Eq. 6.118, the net

result is −14ω
jk
D t2e

−iδI t1eiδSt2 . The two-step phase cycle that achieves frequency discrimi-

nation in the indirect dimension does not suppress the direct FID; however, the two-step

FID-suppression and frequency discrimination phase cycles always can be combined into a

larger four-step phase cycle.

It may be concluded that when pulsed field gradients are absent or weak, sup-

pression of the direct spin-S FID can be achieved along with frequency discrimination of

the indirect spin-I signal by using a four-step phase cycle in which the first spin-I 90◦

pulse phase and the receiver phase are held constant at φ1 = φr = 0◦, 0◦, 0◦, 0◦ while the

phases of the simultaneous spin-I and spin-S 90◦ pulses are incremented together through

φ2 = φ3 = 0◦, 90◦, 180◦, 270◦. This choice of phases selects the spin-I −1QC during t1; the

+1QC can be selected by inverting the receiver phase according to φr = 0◦, 180◦, 0◦, 180◦.

The spin-I +1QC and −1QC carry the same spectral information, but only one coherence

will result in the formation of a coherence transfer echo of the inhomogeneous broadening
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during t2, depending on the relative signs of γI and γS . Note that signals of the form

e±iδI t1eiδSt2 do not yield pure absorptive-phase lineshapes upon Fourier transformation,

as was discussed earlier. The elimination of broad dispersive components from the two-

dimensional lineshape can be effected by adopting e.g. a hypercomplex acquisition scheme,

resulting in enhanced spectral resolution.

6.3.2 Proposed modification of the indirect detection experiment for re-

mote detection

The pulse sequence in Fig. 6.3 was developed for use with a conventional NMR

detection scheme. This sequence is easily modified to serve as an encoding module for a

remote indirect detection sequence:

[90◦ Iφ1 ]—t1—G1(τG)–[90
◦ I
φ2 , 90

◦ S
φ3 ]–G2(τG)—

T

2
—[180◦ Iφ4 , 180

◦ S
φ5 ]—

T

2
—[90◦ SφS ], (6.122)

as shown in Fig. 6.4. The analyte nucleus is designated as spin I and the mobile sensor

nucleus is designated as spin S. This sequence is similar to the basic DDF heteronuclear

correlation sequence, except that the sensor spin magnetization is not detected during a

direct dimension t2; rather, the dipolar field-mediated signal—which is zero immediately

after the creation of the analyte dipolar field at the end of the indirect time interval t1—is

allowed to develop for a time T into transverse magnetization on spin S before being stored

as longitudinal magnetization for transport and subsequent remote detection. The delay

T is chosen to maximize the DDF-encoded spin-S magnetization at the point when it is

stored for transport; the value of T can be optimized experimentally.
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S

T/2
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t1

90oφ290oφ1
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Figure 6.4: Modified DDF indirect detection pulse sequence for use as an encoding module
for remote detection NMR.

Simultaneous 180◦ pulses are applied to both spins at a time t = T/2 that is

halfway between the creation of the encoded analyte dipolar field and the storage of the

sensor magnetization. As will be seen, these 180◦ pulses refocus the chemical shift evolution

of spin S at the storage time t = T while retaining the dipolar evolution. The gradient pulses

are optional and may be used for coherence pathway selection or to enhance the dipolar field

for certain sample configurations, as will be discussed later. Phase cycling may be employed

if no gradient pulses are used or if they are too weak to provide complete coherence pathway

selection. The first gradient pulse is placed at the end of the indirect evolution period t1 to

minimize the effects of molecular diffusion of the analyte and turbulent spin dynamics, as

is discussed in the “technical issues” portion of §6.3.1.

The magnitude of the stored longitudinal magnetization of spin S at t = T may be

calculated using the usual techniques. Consider the experiment in which all pulse phases are

equal to zero: φ1 = φ2 = φ3 = φ4 = φ5 = φS = 0. The analyte longitudinal magnetization
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that contributes to the heteronuclear secular dipolar field when t < T/2 is given by Eq.

6.102, and the 180◦Ix pulse at t = T/2 inverts this magnetization, such that:

M I
z (r, t1, t<

T

2
) = −M I

0 cos(δIt1 − γIG1zlτG)e−t1/T
I
2 e−t/T

I
1 +M I

eq(1− e−t/T
I
1 ),

M I
z (r, t1, t>

T

2
) =M I

0 cos(δIt1 − γIG1zlτG)e−t1/T
I
2 e−t/T

I
1 +M I

eq(1 + e−t/T
I
1 − 2e−(t−

T
2
)/T I1 ),

(6.123)

where the solution of the Bloch equations (Eq. 6.20) for the relaxation of longitudinal

magnetization Mz(t) = Meq + [Mz(t0) −Meq]e
−(t−t0)/T1 has been used. The longitudinal

relaxation may be neglected if it so happens that T ¿ T I1 ; if not, at least the constant-

magnetization component contribution to the dipolar field presumably can be neglected, as

was discussed in §6.3.1. In the limit that the gradient modulation length |2π/(γIG1τG)| is

small compared to any sample dimension, the secular heteronuclear dipolar field of spin I

felt by spin S is:

BI
d(t <

T

2
) = −2

3
µ0M

I
0 cos(δIt1 − γIG1zlτG)e−t1/T

I
2 e−t/T

I
1 z̃,

BI
d(t >

T

2
) = +

2

3
µ0M

I
0 cos(δIt1 − γIG1zlτG)e−t1/T

I
2 e−t/T

I
1 z̃. (6.124)

The respective dynamic phases acquired by spin S during evolution during the intervals
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[0, T/2] and [T/2, T ] in the presence of the dipolar field of spin I are:

Φd(T/2; 0) = −γS
∫ T/2

0
dt
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− 2
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I
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I
1 (1− e−T/2T I1 ).

(6.125)

If only the dipolar field was inverted at t = T/2 due to the inversion of the longitudinal

magnetization of spin I by the 180◦Ix pulse, the total phase accumulated by the S spins at t =

T under the dipolar evolution would be Φd(T/2; 0) + Φd(T ;T/2) =
2
3γSµ0M

I
0T

I
1 cos(δIt1 −

γIG1zlτG)e
−t1/T I2 (1 − e−T/2T I1 )2, which would equal zero if the longitudinal relaxation of

spin I could be neglected (T I1 → ∞); i.e., the inversion of the dipolar field at t = T/2

would refocus the dipolar evolution at time t = T . However, not only is the dipolar field

inverted at t = T/2, but at the same time the magnetization of spin S is rotated by

180◦ around the x-axis by the 180◦Sx pulse. It can be shown that at t = T/2 the dipolar

evolution contributes a phase equal to Φd(T/2; 0) − Φd(T ;T/2) = 2
3γSµ0M

I
0T

I
1 cos(δIt1 −

γIG1zlτG)e
−t1/T I2 (1 − e−T/T

I
1 ) (which goes to 2

3γSµ0M
I
0T cos(δIt1 − γIG1zlτG)e

−t1/T I2 as

T I1 → ∞); i.e., the dipolar evolution of spin S continues for t > T/2 without refocusing.

As usual, the 180◦Sx pulse refocuses any chemical shift/resonance offset evolution of the

spin S transverse magnetization in a spin echo at t = T ; the 180◦Ix pulse also creates an

echo of the spin I transverse magnetization, but this component does not contribute to
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the secular dipolar field and therefore does not affect the observed signal. The fact that

the simultaneous 180◦ pulses refocus the resonance offset evolution but retain the dipolar

evolution is easily appreciated from a quantum-mechanical perspective by transforming

into the toggling frame (§2.3.3) of the 180◦ pulses. Since a 180◦x rotation of spin I or

spin S takes Îz → −Îz or Ŝz → −Ŝz, respectively, the resonance offset Hamiltonians

ĤI
δ /~ = δI Îz and ĤS

δ /~ = δSŜz are inverted by the 180◦ pulses, but the heteronuclear

dipolar Hamiltonian ĤIS
D /~ =

∑
j,k 2ω

jk
D ÎzjŜzk is unchanged. Since the resonance offset and

dipolar Hamiltonians commute with each other, it is easily appreciated that the inversion of

the resonance offset Hamiltonians leads to an apparent time reversal of the offset evolution,

while the dipolar evolution proceeds as usual.

A detailed calculation in the absence of molecular diffusion, radiation damping,

and sensor nucleus self-DDF effects shows that when all the pulse phases are equal to zero,

at t = T the DDF-encoding sequence stores the cosine-modulated component of sensor

transverse magnetization as longitudinal magnetization according to:
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(6.126)
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where τSd = (µ0γSM
I
0 )
−1. If the storage pulse phase is shifted to φS = 90◦, the sine-

modulated component of transverse magnetization is stored, and a similar Bessel function

expansion of the magnetization can be performed.

If the ratio of gradient pulse amplitudes is chosen to be κ = G2/G1 = nγI/γS ,

only the following position-independent m = −n and m = +n components of Eq. 6.126

contribute to the net magnetization density:
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(6.127)

where the relation J−n(x) = Jn(−x) = (−1)nJn(x) for integer n has been used. The

expression in braces is equal to (−1)(n−1)/2 sin(nδIt1) when n is an odd integer and is

equal to (−1)n/2 cos(nδIt1) when n is an even integer. The single-quantum spectrum of the

analyte is selected by choosing |n| = 1. When n = 1 the stored net magnetization equals:

MS
z (t1;T ) =MS

0 J1

[2
3

T I1
τSd

(1− e−T/T I1 )e−t1/T I2
]
e−T/T

S
2 sin(δIt1). (6.128)

When the argument of the Bessel function is small either due to relaxation effects or by

simply not waiting until T ∼ τSd , Eq. 6.128 may be approximated using Eq. 6.111:

MS
z (t1;T ) ≈MS

0 f(T ) sin(δIt1)e
−t1/T I2 , (6.129)
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where the dimensionless amplitude factor f(T ) =
T I1
3τSd

(1 − e−T/T I1 )e−T/TS2 ¿ 1 explicitly

depends on the value of the delay T , which may be optimized experimentally to maximize

f(T ). Eq. 6.129 clearly demonstrates that the DDF remote detection encoding module

Eq. 6.122 encodes the amplitude-modulated free induction decay of the analyte spins I

in the longitudinal magnetization of the sensor spins S. This magnetization may then be

transported for remote detection.

Some significant differences arise between the basic DDF indirect detection exper-

iment and the remote detection version due to the fact that whereas the basic experiment

employs quadrature detection in the direct dimension t2, the remote detection experiment

does not detect the sensor magnetization during the T delay and does not select a magneti-

zation component in quadrature. This latter factor is responsible for the lack of frequency

discrimination in the indirect dimension even when pulsed field gradients are employed, i.e.,

both the +nδI and the −nδI Fourier components are selected regardless of the relative signs

of the gradient pulse amplitudes. By convention, when quadrature detection is used only

the evolution of the −1QC is measured, and the +1QC is disregarded. The application

of the linear gradients G1 (during the indirect time interval) and G2 = κG1 = n(γI/γS)

(during detection) selects the coherence pathway p1 = −np2, where p1 is the coherence

order selected in the indirect dimension and p2 is the coherence order selected in the direct

dimension. Quadrature detection ensures p2 = −1, so the p1 = +n coherence is selected

in the indirect dimension. However, the magnetization is not detected during the remote

detection DDF encoding sequence and both the p2 = +1 and p2 = −1 coherences con-

tribute during the interval T . Therefore two coherence pathways are selected: +n → −1
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and −n → +1. The gradient pulses do filter out the two additional pathways +n → +1

and −n→ −1, as well as any additional pathways that would be present in the absence of

coherence pathway selection. The selection of a single coherence pathway can be enforced

by a proper phase cycling scheme, with or without concurrent pulsed field gradient coher-

ence pathway selection. Note that the analyte +1QC and −1QC carry the same spectral

information, but the selection of one or the other in the conventional version of the DDF

indirect detection experiment can result in the formation of a coherence transfer echo due

to cancellation of the analyte inhomogeneous evolution during t1 by the sensor inhomoge-

neous evolution during t2. In the remote detection version of the experiment, however, the

180◦ pulse on spin S refocuses the inhomogeneous evolution of the sensor at time T , which

therefore cannot be used to cancel the inhomogeneous evolution of the analyte during t1.

The fact that the magnetization is not detected over the course of the DDF indirect

detection encoding sequence (Eq. 6.122) is a consequence of the key feature of the NMR

remote detection modality, namely that the encoding and detection steps are separated.

The DDF encoding module provides an example of the potential advantage of the remote

detection technique over the conventional all-in-one NMR encoding-detection scheme. If

the conventional DDF indirect detection experiment (see §6.3.1) is performed using a highly

magnetized sensor nucleus—as is desirable for high detection sensitivity—the action of the

analyte dipolar field may create transverse magnetization of the sensor nucleus that is so

large that the radiation damping interaction with the rf coil may significantly torque the

magnetization out of the transverse plane. This results in a reduction of the observed

signal. Radiation damping effects can be suppressed by detuning the resonant circuit of
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the detection channel of the rf probe because the oscillating nuclear magnetization induces

a smaller current in the coil, which in turn creates a smaller magnetic field acting back

upon the spins. The disadvantage of detuning the detection circuit is that this decreases

the detection efficiency, which again results in reduced signal. However, if the experiment

is performed in a remote detection modality, the rf channel that serves the sensor spins

can be safely detuned without a loss of detection efficiency because this channel is not used

to detect the sensor magnetization.32 Rather, the DDF-encoded sensor magnetization is

stored as longitudinal magnetization, which then may be transported to a detector that is

not susceptible to radiation damping effects, such as an atomic magnetometer or SQUID

flux magnetometer. One adverse effect of detuning the sensor spin channel during the

DDF remote detection encoding sequence is a decrease of the S-spin rf pulse strength that

necessitates the use of increased pulse lengths, but this is only a minor problem if the

reduction of rf field strength is not too severe. The remote detection modality’s ability

to optimize the NMR encoding and detection steps separately may provide an answer to

the objection [77] (see §6.3.1) that radiation damping makes the DDF indirect detection

experiment infeasible, although this experiment still must contend with the deleterious

effects of the sensor spin transverse self-dipolar field.

The use of stopped-flow remote detection methodology also may be able to im-

prove the sensitivity of the DDF indirect detection experiment in the case that the analyte

longitudinal relaxation is slow. If the analyte longitudinal relaxation time T I1 is long com-

32This is similar in spirit to techniques that use quality factor-switching probes, as discussed in Refs.
[388, 389] and references therein. The Q-switching experiments require special hardware, as do remote
detection NMR experiments. However, remote detection can be implemented using standard NMR probes
for encoding and using standard detectors; the extra hardware is necessary to transport the information-
bearing nucleus. Q-switching techniques require modification of the probe itself.
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pared to the DDF encoding interval T , the analyte dipolar field is long-lived enough that it

should be possible to transport several volumes of sensor magnetization past the analyte for

encoding before the analyte dipolar field decays away. The use of several volumes of sensor

magnetization to encode each indirect point of the analyte spectrum could be advantageous,

i.e., the signals recorded from each volume could be coadded to enhance the sensitivity of

the experiment. When all other things are equal it is better simply to encode for a longer

interval T since the DDF signal increases linearly with T under the conditions considered

in this work. However, it might be preferable to encode several volumes using a shorter

value of T in order to minimize the amount of time that the effects of diffusion, radiation

damping, or the transverse self-dipolar field of the sensor could act. All of these factors tend

to decrease the observed signal. Note that it would also be possible to perform multiple ac-

quisitions per indirectly encoded point of the analyte spectrum in the case when the sensor

magnetization was static (i.e., not refreshed by flow), but only if the sensor magnetization

returned to its initial value between each acquisition. This would require T S2 , T
S
1 ¿ T I1 .

Whether or not flow is used, it also would be beneficial to encode multiple sensor volumes

per indirect point to enhance sensitivity anytime when the sensor transverse relaxation time

TS2 was very short. In that case no advantage could be gained by encoding for a time T that

is much longer than T S2 because the sensor transverse magnetization would have decayed

away.
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6.4 Heteronuclear DDF indirect detection experiments using

Xe-129 as a sensor

The discussion in §6.1.1 outlined how the properties of Xe-129 gas make it an ideal

mobile carrier of NMR information in remote detection experiments. Some experimental

studies were performed to examine the suitability of hyperpolarized Xe-129 gas for use as

a sensor nucleus in distant dipolar field indirect detection experiments. These experiments

were not implemented in a remote detection mode; rather, they were conducted in a single

location with the pulse sequence in Fig. 6.3 to be used as a proof-of-principle for the DDF-

encoding module. Augustine et al. have already demonstrated hyperpolarized Xe-129 DDF

indirect detection using the protons of methane gas as an analyte [366]. Romalis et al. have

investigated dipolar field effects in hyperpolarized liquid Xe-129 [393, 348, 394, 359] and

gas-phase He-3 [370] but have not indirectly encoded NMR spectra using the dipolar field.

Augustine’s experiments were performed on a homogeneous mixture of xenon and methane

gases, but a homogeneous mixture is not ideal for remote detection experiments because

the carrier cannot easily be extracted from the analyte for transport. The experiments

described in this work were conducted in a coaxial tube-within-a-tube geometry, i.e., xenon

gas in the inner cylindrical tube was used to detect an analyte in the outer tube. In such a

geometry the analyte dipolar field at the location of the sensor spins falls off with distance

from the analyte magnetization; some of the subtleties of experiments that use this sample

geometry are discussed in §6.4.2.

The characteristics other than sample geometry that distinguish DDF-encoded

xenon remote detection experiments from the heteronuclear DDF experiments described
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above have to do with the mechanisms of producing and maintaining hyperpolarization and

the fast diffusion rate of a gas-phase carrier. The production of hyperpolarized xenon nuclei

by spin-exchange optical pumping is discussed in §6.4.1. The use of hyperpolarized nuclei

presents special problems if point-by-point indirect encoding is to be performed on the

same sample volume because the initial polarization is depleted by multiple rf pulses as the

polarization relaxes toward its comparatively small thermal equilibrium value; this problem

is discussed further in §6.6. Furthermore, the high diffusion rate of xenon gas can potentially

cause difficulties for DDF encoding since the remote detection sensor nucleus ideally should

remain static during its evolution in the presence of the spatially inhomogeneous analyte

dipolar field. This problem is discussed in §6.4.1.

6.4.1 Introduction to Xe-129 NMR

The many NMR studies using xenon, primarily in the gas phase, have established

the utility of this nucleus as a chemically inert probe of its local environment. Xenon

spectroscopy has proved useful in the study of such diverse topics as the gas flow in and

the structure of nanoporous materials and the specific or non-specific interactions of xenon

with hydrophobic sites in proteins. Xenon gas has also been used successfully in void-space

imaging and visualization of macroscopic gas flow. The review by Goodson [288] discusses

all of these experiments as well as many more applications of xenon NMR; a comprehensive

review of xenon NMR experiments will not be attempted here.

Due to its high electronic polarizability xenon has a large chemical shift range,

which makes it a useful probe for spectroscopic studies. A more striking and widely utilized

property of xenon is that its nuclei (as well as those of other noble gases) can be polarized



6.4. HETERONUCLEAR DDF INDIRECT DETECTION EXPERIMENTS
USING XE-129 AS A SENSOR 440

to a substantial fraction of unity via spin-exchange interactions with the highly-polarized

electrons of optically-pumped alkali atoms. The ability to create nuclear hyperpolarization

establishes the feasibility of NMR detection of gases, which have inherently low thermal

equilibrium nuclear magnetization due to the low number density of nuclei. Furthermore,

this hyperpolarization persists for a long time due to the typically long longitudinal relax-

ation times of noble gas nuclei.

Xenon has two NMR-active isotopes: the spin-1/2 Xe-129 isotope at 26.4% nat-

ural abundance (γXe129/2π = −11.86 MHz/T) and the spin-3/2 Xe-131 isotope at 21.2%

natural abundance (γXe131/2π = 3.52 MHz/T). Both nuclei can be hyperpolarized, but

in remote detection applications it is more practical to measure only the spin-1/2 Xe-129

isotope because of its larger gyromagnetic ratio and because the Xe-131 hyperpolarization

is quickly dissipated into its efficient electric quadrupolar relaxation channel [395]. Xe-131

also cannot be hyperpolarized as efficiently as Xe-129 due to its lower spin-exchange cross

section [396]. The Xe-129 hyperpolarization can persist for a long time due to the typically

long longitudinal relaxation times times of spin-1/2 noble gas nuclei; consequently, xenon

polarization can be maintained during transport over relatively long distances in remote

detection experiments. It is also possible to perform many NMR experiments on the same

volume of xenon by using up the polarization bit-by-bit if the length of the experiments are

much shorter than the longitudinal relaxation time.

Diffusion of xenon gas

Gases have much higher diffusion rates than liquids and it is necessary to consider

whether xenon gas diffusion is significant enough to destroy the sensor magnetization helix
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created in a DDF indirect detection experiment over the timescale during which the sensor

evolves in the presence of the analyte dipolar field. It is also necessary to consider the

effects of diffusion when multiple experiments are performed on the same batch of xenon

in the case where the excitation coil is too small to excite the entire xenon volume. The

characteristic diffusion coefficient of free xenon gas (90%-enriched Xe-129) at a pressure of

1 atm has been determined to be [397]:

DXe = 5.7× 10−2 cm2 s−1. (6.130)

The diffusion coefficient of Xe-129 in a xenon mixture of natural isotopic abundance will

differ from the value for pure Xe-129, but this difference should be small since the masses

of the naturally-occurring isotopes of xenon differ from 129 by a relatively small fraction.

Ref. [398] has obtained a comparable result for the xenon self-diffusion coefficient.

The diffusion coefficient is ideally inversely proportional to the gas pressure, so at

room temperature it will be assumed to be:

DXe = (5.7× 10−2 cm2 s−1)/P, (6.131)

where P is the pressure measured in atmospheres.

Spin-exchange optical pumping of xenon is typically performed in the presence of

a buffer gas. As will be discussed later, the experimentalist has the option of using this

xenon–buffer gas mixture directly or of freezing out pure xenon. If the mixture is used the

xenon diffusion rate will be affected. The buffer gas mixture often contains a large amount
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of helium, which is a light atom with a high diffusion coefficient, and its presence increases

the diffusion coefficient of the mixture. The mutual diffusion coefficient of a xenon–helium

binary mixture is easily calculated in terms of the diffusion coefficients of the individual

components and such quantities have been measured long ago [399]. However, the quantity

that is actually of interest in xenon NMR experiments is not the mutual diffusion coefficient

of the mixture, but rather the self-diffusion coefficient of xenon in the presence of the buffer

gas. This coefficient may be calculated according to [400]:

DXe/BG(x) =

[
x

DXe
+

1− x
0DXe/BG

]−1
, (6.132)

where x is the molar fraction of Xe in the mixture and 1−x is the molar fraction of the buffer

gas; DXe is the diffusion coefficient of xenon alone and 0DXe/BG is the diffusion coefficient

of xenon at infinite dilution in the buffer gas. Unfortunately, the diffusion coefficient of a

species at infinite dilution is not as commonly measured as the diffusion coefficient of the

pure species or the mutual diffusion coefficient of a binary mixture.

The effects of diffusion on dipolar field experiments can be considerable, particu-

larly if gradient pulses are employed [296, 401, 384, 402, 403, 404, 405]. Assuming that the

diffusion of the analyte can be neglected over the course of an encoding experiment, the

diffusion of the sensor nucleus (i.e., xenon) can be roughly estimated to be non-negligible

when the encoding interval T is long enough that
√
DT ∼ d, where D is the diffusion coef-

ficient and d is a characteristic distance over which the analyte dipolar field varies. In an

experiment without gradient pulses d might be the distance over which the rf coil excites the

sample. In an indirect detection experiment with gradient pulses the characteristic distance
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can be taken to equal the pitch of modulation of the analyte and sensor magnetization,

d = 2π/|γIG1τG| = 2π/|γSG2τG|. The diffusion over T = 1 s is on the order of
√
DT = 0.24

cm for pure Xe gas under standard conditions (Eq. 6.130), which is not negligible compared

to an rf excitation region of ∼ 1 cm. The diffusion can be made slower by using higher gas

pressures.

Spin-exchange optical pumping of Xe-129

The electronic polarization of alkali metals in atomic vapors can be enhanced

almost to 100% via optical pumping with circularly polarized laser light [406, 407, 408].

The enhanced electronic polarization can be transferred to the nuclei of noble gas atoms

via dipole coupling-mediated spin exchange collisions. This means of producing nuclear

hyperpolarization is called spin-exchange optical pumping [409, 407, 410, 411, 251, 412,

413, 414], which is quite effective when applied to xenon [410] and has been used in recent

years [415, 416, 417, 418] to produce Xe-129 polarizations approaching 70% [416, 417, 418].

The hyperpolarized xenon subsequently can be removed from the optical pumping mixture

if desired and used on its own (see e.g., Ref. [419] and many later studies by various workers).

Some good introductory references on spin-exchange optical pumping include the review by

Walker and Happer [412], the monograph by Knize et al. [251], the monograph by Appelt

[414], the brief review in Ref. [420] by Brunner, and the dissertation by Long [421]. The

review by Happer [407] is authoritative but advanced, as is the review by Appelt et al.

[413]. This section will describe spin-exchange optical pumping technique as well as the

experimental conditions that were used in this work. The experimental apparatus will be

described first in order to be used as an illustrative example in the subsequent discussion
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of the general technique. No effort will be made to discuss the variety of optical pumping

techniques; rather, the specific technique used here will be described.

Xenon hyperpolarization was achieved using a commercial continuous-flow spin-

exchange polarizer (MITI IGI 9800 Xe, Magnetic Imaging Technologies, Inc. (Polarean),

Durham, NC). Optical pumping of the D1 transition of natural isotopic abundance rubidium

vapor was performed in a ∼ 70 cm3 cylindrical pyrex optical cell heated to 155–185 ◦C

(corresponding to an estimated number density of ∼ 1–5 × 1014 atoms/cm3 [414, 420])

using circularly polarized light from a 60 W c.w. diode laser array operating at 794.8 nm

(FWHM 1.35 nm). A magnetic field of ∼20 G was applied parallel to the direction of laser

propagation using a Helmholtz coil pair. The cell was pressurized to ∼70 psig (5.8 atm) with

a natural isotopic abundance mixture of xenon with helium/nitrogen buffer gas in a 1:10:89

Xe:N2:He ratio, which corresponds to a total Xe partial pressure of ∼44 Torr (11 Torr Xe-

129). Pure hyperpolarized xenon was isolated from the optical pumping mixture by freezing

in a liquid nitrogen-cooled cold finger in a ∼500 G magnetic field. The remaining buffer gas

was evacuated from the polarizer manifold and pure xenon gas was recovered by thawing

the xenon ice. The polarizer was operated under conditions such that approximately 1 atm

of pure xenon could be produced in a 5 mm o.d. J-Young NMR tube per 15 minutes of

optical pumping and xenon collection. Final xenon polarizations were in the range of 1–10%

with 4–8% being typical.

The rubidium D1 transition is between the |g = 5 2S1/2〉 ground state and an

excited state |e = 5 2P1/2〉. The ground state is characterized by the electronic angular

momentum quantum numbers Sg = 1/2, Lg = 0, and Jg = 1/2, where Jg = Lg + Sg is the
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total ground state electronic angular momentum vector and Lg and Sg are the ground state

orbital and intrinsic spin angular momenta, respectively. The excited state is characterized

by Se = 1/2, Le = 1, and Je = 1/2. Rubidium has two stable isotopes: Rb-85 (I = 5/2)

and Rb-87 (I = 3/2), and the total atomic angular momenta in the ground and excited

states are F g = Jg + I and F e = Je + I, respectively. The values of F can range from

|J + I| to |J − I| in integer steps. The electronic angular momentum couples to the nuclear

angular momentum through the hyperfine interaction, which is dominated by a magnetic

dipole–dipole contact coupling Hamiltonian of the form Ĥhf/~ = A(Ĵ · Î). The typical

magnetic field applied to the Rb cell in a spin-exchange optical pumping experiment is not

strong enough to decouple the electronic and nuclear angular momenta.33 In this case the

good eigenstates of the atomic system are the eigenstates {|F,mF 〉} of F̂ 2 and the ground

and excited states have (2Fg+1) and (2Fe+1) magnetic sublevels, respectively. Ordinarily

this magnetic hyperfine structure would have to be included in any treatment of optical

pumping, but the presence of He buffer gas at a pressure of several atmospheres causes

enough pressure broadening of the Rb lines that the hyperfine structure is unresolved and

the optical pumping can be considered to occur between states of well-defined Jg and Je.

This neglect of the hyperfine structure can be justified more physically. Collisions

between the polarized rubidium atoms and spinless buffer gas atoms (in this case the nearly

100% naturally-abundant He-4 isotope) perturb the Rb electron cloud and cause a ran-

33The Zeeman plus hyperfine coupling Hamiltonian of the atomic system is ĤZ,hf/~ = −[ωJ Ĵz + ωI Îz] +
A(Ĵ · Î), where ωJ and ωI are the respective electronic and nuclear Larmor frequencies. This Hamiltonian
has the same form as the NMR scalar coupling Hamiltonian (see Appendix D). The strong coupling limit
|A| À |ωJ − ωI | has approximate eigenstates |F,mF ; J, I〉 and the weak coupling limit |A| ¿ |ωJ − ωI | has
approximate eigenstates |J,mJ ; I,mI〉. Since |ωJ − ωI |/2π ≈ |ωJ |/2π is ∼56 MHz in a magnetic field of 20
G (γe−/2π = −28 GHz/T) and |A|/2π for the Rb isotopes is on the order of GHz in the 5 2S1/2 ground
state and hundreds of MHz in the 5 2P1/2 excited state [414], this system is located well inside the strong
hyperfine coupling regime.



6.4. HETERONUCLEAR DDF INDIRECT DETECTION EXPERIMENTS
USING XE-129 AS A SENSOR 446

domization of the total angular momentum vector J e of the excited state [422, 423]. The

perturbations due to these collisions are sudden with respect to the reorientation of the

alkali nuclear angular momentum vector I, which therefore remains unchanged by the colli-

sions. Consequently the excited-state electronic angular momentum vector changes rapidly

with respect to the nuclear angular momentum vector. If the correlation time for electron

randomization is much shorter than the reciprocal excited-state hyperfine coupling constant,

τe ¿ |Ae|−1, then the excited-state hyperfine coupling Hamiltonian Ĥe
hf (t)/~ = Ae[Ĵe(t) · Î]

effectively averages to zero over the characteristic timescale of the electron-nucleus coupling

dynamics.34 Collisional de-excitation of the alkali atoms (which will be discussed later)

is also sudden with respect to the nuclear angular momentum dynamics, and under these

conditions the alkali nuclear polarization is conserved in the interval between electronic ex-

citation by a pumping photon and collisional de-excitation. Since the optical pumping only

directly affects the electrons and not the nucleus, the collision-induced decoupling of the

hyperfine interaction largely removes the nuclear spin as an actor in the optical pumping

cycle. The hyperfine interaction that is averaged away by fast electron randomization does

re-enter when considering spin relaxation; he alkali nucleus serves as a reservoir of angular

momentum and the recoupling of the hyperfine interaction in between alkali–alkali spin-

exchange collisions (which redistribute angular momentum among the hyperfine levels) is

known to help establish an internal spin temperature quasi-equilibrium among the hyper-

fine states [424]. The establishment of a spin-temperature distribution has been observed

to occur even in high-pressure spin-exchange optical pumping cells in which alkali–alkali

34This concept is similar to NMR heteronuclear decoupling of dipolar or indirect spin–spin couplings by
continuous-wave irradiation of one partner of the spin pair, although c.w. decoupling does not completely
randomize the nuclear angular momentum.
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spin exchange rates are smaller than the optical pumping or electron randomization rates

[425, 426, 414]. For further discussions of electron randomization, spin temperature distri-

bution, and the neglect of hyperfine structure in certain optical pumping experiments, the

reader is referred to Refs. [407, 427, 251, 412, 413, 414] (general), [428, 429, 422, 423],[32,

§5.6] (electron randomization), [424],[32, §5.5] (spin temperature), and [430],[215, §5.4] (spin

temperature and neglect of hyperfine structure).

The neglect of hyperfine structure results in a much-simplified picture of optical

pumping, and pumping of the alkali D1 transition is particularly simple. In the case of

rubidium the process may be viewed as a selective excitation followed by de-excitation of

the valence electron in the system of four magnetic sublevels of the 5 2S1/2 = [Kr]5s1 and

5 2P1/2 = [Kr]5p1 electronic states (Fig. 6.5). Both rubidium isotopes can be considered

to be equivalent in this picture that neglects hyperfine structure. Following a relatively

standard notation, S ≡ Sg = Jg denotes the ground state electronic angular momentum

vector and J ≡ Je denotes the excited state electronic angular momentum vector. The

alkali D1 optical pumping cycle can be reduced to three steps [412, 414]: (1) selective

depopulation of one of the two ground state magnetic sublevels by absorption of circularly

polarized light (longitudinal depopulation pumping); (2) equalization of the excited-state

sublevel populations by collisional mixing (J-randomization) mainly due to the buffer gas

(primarily helium); and (3) non-radiative quenching from the excited state by collisions

with nitrogen molecules, after which the ground state magnetic sublevels are repopulated

equally. Each of these three processes will be described in turn; the complete process is

diagrammed schematically in Fig. 6.5.35 The net effect of the optical pumping cycle is to

35It has been assumed that the nitrogen quenching distributes population to the ground state magnetic
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transfer population from one ground state sublevel to another, which results in a polarization

of the electronic angular momentum. This cycle is continually repeated during a continuous

pumping experiment, resulting in an accumulation of nearly all of the population in one

ground state magnetic sublevel and a ground state electronic polarization near 100%. This

electronic polarization then can be partially transferred to a noble gas nucleus through

spin-exchange collisions, which will be discussed later.

5 2S1/2

5 2P1/2

mS = -1/2 mS = +1/2

mJ = -1/2 mJ = +1/2

N2 quenching

J-randomization

σ+

N2 quenching

Figure 6.5: Schematic of optical pumping of the Rb D1 transition using circularly-polarized
light. The σ+ pumping light causes a selective mS = −1/2 → mJ = +1/2 transition.
The excited-state sublevel populations are equalized by electron-randomization collisions
with the buffer gas. Collisions with nitrogen non-radiatively quench the atoms from the
excited state; de-excitation populates the ground state sublevels equally. The net effect is
an accumulation of population in the mS = +1/2 ground state sublevel. If the relaxation
of the ground state polarization is slow, significant spin polarization can accumulate.

Circularly-polarized light has a well-defined component of intrinsic spin angular

sublevels equally rather than conserving the magnetic quantum number. It does not in actuality matter
which process occurs as far as the optical pumping is concerned if the excited-state sublevel populations are
equalized before the quenching collision occurs.
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momentum along the direction of light propagation: +~ (ms = +1) for left-circularly po-

larized (σ+) light and −~ (ms = −1) for right-circularly polarized (σ−) light [431],[432,

Appendix 1]. Absorption of σ+ light resonant with the Rb D1 transition selectively trans-

fers population from the |5 2S1/2,mS = −12〉 magnetic sublevel of the electronic ground

state to the |5 2P1/2,mJ = +1
2〉 excited state sublevel in accordance with one of the well-

known atomic selection rules [414],[433, §15.2]: ∆L = +1, ∆S = 0 with ∆J = 0 (not

0→ 0), ∆mJ = +1.36 This process is called longitudinal depopulation pumping because it

is performed with the direction of light propagation parallel to an applied magnetic field.

The application of a magnetic field that is larger than stray inhomogeneous fields across the

pumping cell ensures that all atoms are polarized along the axis of circular light polarization.

The absorption of a pumping photon by the atom thus can be seen to conserve the longitu-

dinal component of angular momentum (∆ms = −1 for photon destruction combined with

∆mJ = +1 for the electron spin-flip). This transfer of photon spin to the atom is the basic

mechanism by which the alkali electronic polarization is increased. If a broadband laser

source such as a diode array is used, buffer gas collisions can also play an important role in

the pumping process by broadening the D1 absorption line to a width that is comparable to

that of the laser source, which allows the efficient absorption of laser power [434, 422, 435].

The Rb 52P1/2 excited state is initially nearly unpopulated at thermal equilibrium,

but optical pumping with σ+ light selectively creates population in the mJ = +1/2 mag-

netic sublevel. This population, however, is rapidly distributed nearly evenly between the

two excited state sublevels due to destruction of the ensemble spin polarization by electron

36Optical pumping with σ− light works equally well and selects the transition |5 2S1/2;S,mS = + 1
2
〉 →

|5 2P1/2,mJ = − 1
2
〉.
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randomization collisions with He-4 [428, 429, 422, 423]. This process is also called colli-

sional mixing. The collisional depolarization of the excited state ensures that the ground

state sublevels are equally repopulated by de-excitation. This de-excitation may include

spontaneous radiative emission (fluorescence): the |e,mJ = +1
2〉 → |g,mS = −12〉 emission

in a S = 1/2, J = 1/2 system occurs at twice the rate as the |e,mJ = +1
2〉 → |g,mS = +1

2〉

emission [407],[32, §3.8]. This repopulation pumping would ordinarily reduce the optical

pumping efficiency by preferentially returning excited-state population to the ground-state

sublevel from which it originated. If, however, the excited-state collisional mixing occurs on

a faster timescale than the fluorescence lifetime, the photon emissions from the two equally-

populated excited-state sublevels balance each other and the two ground-state sublevels

are repopulated equally. If the electron randomization is slow, a quenching buffer gas can

be added in order to ensure that the ground-state sublevels are populated equally by non-

radiative (collisional) de-excitation, as is discussed below. When the system is de-excited

without a preferential repopulation of the ground state magnetic sublevels, the ground

state polarization is created solely by the population imbalance produced by depopulation

pumping.37

The role of nitrogen molecules in the buffer gas mixture is to non-radiatively de-

37Several sources provide various descriptions of the “average efficiency” of alkali-D1 optical pumping over
one cycle of excitation and de-excitation (neglecting hyperfine structure) [408, 436, 412]. Imagine an initially
unpolarized atomic ensemble represented by four atoms, with two atoms populating each magnetic sublevel
of the 5 2S1/2 ground state. Two σ+ photons will pump the two mS = − 1

2
atoms into the mS = + 1

2
sublevel

of the 5 2P1/2 excited state, and electron randomization will distribute (in an average sense) one atom into
each excited-state magnetic sublevel. The ground state sublevels are repopulated with one atom each upon
de-excitation, so the average effect of the two pumping photons is to leave one atom in the mS = − 1

2
ground

state sublevel and three in the mS = + 1
2
sublevel, which is a net addition of one unit of angular momentum

(measured in ~) and a population imbalance of two atoms. Therefore it can be said that on average it takes
two circularly-polarized photons to deposit one unit of angular momentum in the alkali vapor, or that each
photon deposits an average of a half unit of angular momentum with the other half of the angular momentum
being lost to translational motion after electron randomization. Alternatively, it takes an average of one
photon to polarize one atom fully (i.e., it takes two photons to create a population excess of two atoms).
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excite (quench) Rb atoms from the excited state via collisions [437, 438, 407, 439, 435].

Molecular nitrogen makes an ideal inelastic collision partner (as opposed to helium atoms)

because it can carry away a variable amount of energy in its vibrational and rotational de-

grees of freedom. This energy is eventually thermalized by equilibration with the nitrogen

translational degrees of freedom. Nitrogen quenching is used to reduce the effects of radi-

ation trapping. In the absence of rapid quenching the Rb atoms can return to the ground

state by fluorescence emission, which is not completely polarized and is resonant with the

D1 transition. The multiple scattering and reabsorption of these photons in an atomic va-

por that is sufficiently optically thick is called radiation trapping [407, 440]. Since these

photons are not fully polarized and they scatter in various directions, their reabsorption

reduces the efficiency of the optical pumping, which relies on the atoms absorbing light of

a well-defined circular polarization and propagation direction. Radiation trapping can be

suppressed by adjusting the concentration of nitrogen in the pumping cell so that the Rb

excited state lifetime is reduced to a value that is less than the fluorescence lifetime, i.e., the

atoms are non-radiatively quenched before they can fluoresce. When spin-exchange optical

pumping is performed in cells that have a high noble gas density, the effect of quenching

gas on the final noble gas nuclear polarization has been found to be diminished because

the destruction of electronic polarization via alkali–noble gas collisions is fast enough to

compete with the depolarization due to radiation trapping [441].

The ground state electronic spin polarization can relax by several mechanisms,

the most notable of which are spin-exchange collisions with species that bear a nuclear spin

[407, 408, 251, 413],[32, §5.4],[442, 443, 444].38 A spin-exchange collision conserves the total

38There also exist so-called “spin destruction” interactions, e.g., anisotropic dipolar interactions during
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angular momentum of the system but not necessarily the individual angular momentum

components; the transfer of electronic polarization to another angular momentum reservoir

serves as a relaxation mechanism for the electron spin. Non-negligible cross sections exist

in typical spin-exchange optical pumping cells for both two- and three-body spin exchange

collisions.

The mechanism of three-body spin exchange is well understood [448, 449, 411,

450] and involves the formation of an alkali-atom–noble gas van der Waals complex in the

presence of a third body (typically a buffer gas atom or molecule) that carries away the

energy that is liberated upon complex formation. Collisions with molecular nitrogen have

been found to be efficient at initiating and terminating the formation of alkali–noble gas

van der Waals complexes, but other species in the gas mixture also can serve this role. Spin

exchange in long-lived alkali atom–heavy noble gas van der Waals complexes dominates the

contribution of binary collisions if the gas pressure is not too high [451, 452, 453].39 However,

in the work described here the total gas pressure is on the order of several atmospheres and

binary collisions dominate the spin exchange because frequent collisions with the buffer gas

severely limit the lifetime (and hence the Rb–Xe spin-exchange contact time) of the van

der Waals complexes [452, 454, 455].40 The duration of a binary collision is very short (on

alkali–alkali atom collisions that do not conserve total spin angular momentum [445, 446, 447],[32, §5.8].
39Heavy noble gases (such as Xe) form these complexes more easily than light ones because they experience

longer-range van der Waals forces due to their larger electronic polarizabilities.
40The determination of spin exchange rates—particularly the relative contributions of binary and three-

body collisions—is not simple (see e.g., [450, 442, 454, 456, 455, 457, 458]) and it is difficult to find experi-
ments that were conducted both at high buffer gas pressure and low magnetic field. Cates et al. [454] have
estimated that spin exchange due to binary collisions dominates three-body spin exchange at greater than
∼350 Torr total Xe pressure (compared to ∼44 Torr in this work), but these experiments were performed in
the absence of buffer gas where the breakup of Rb–Xe van der Waals complexes is caused by collisions with
Xe itself. Rice and Raftery’s [455] high field experiments clearly demonstrate the dominance of binary spin
exchange collisions at buffer gas pressures of an atmosphere or more, and their results indicate that their
high field binary spin exchange rates are actually smaller than those at low field, which is consistent with
Ref. [457].
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the order of ps) but the collisions are frequent and the net spin transfer can be significant.

Most of the Rb electronic polarization lost in spin-exchange collisions with Xe is transferred

to rotational angular momentum of the relative motion of the two atoms [459, 452, 460],

largely due to a spin-orbit interaction of the alkali valence electron within the electron core of

the heavy noble gas atom.41 This spin-rotation exchange manifests itself as spin relaxation

because the rotational angular momentum vectors of the Rb–Xe pairs are randomly oriented

within gas, which causes an ensemble-averaged depolarization of the Rb electrons.

The electronic polarization of the rubidium ground state can also be transferred to

polarization of the nucleus of its collision partner, in this case xenon. From the perspective of

the rubidium electron this is a mechanism of spin relaxation, but from the perspective of the

xenon nucleus it is the mechanism by which nuclear hyperpolarization can be produced. The

mechanism of spin exchange is a hyperfine interaction between the rubidium electron and

the xenon nucleus during the collision. The hyperfine interaction is due to the direct dipole–

dipole coupling of the electron spin with the nuclear spin. Unlike the dipolar field effects

discussed elsewhere in this chapter which arise from the anisotropic long-range contribution

of the dipole field, the electron-nucleus hyperfine coupling is dominated [462, 412, 411] by

the isotropic contact contribution to the dipole field (see Eq. 1.37) since the probability

of finding the rubidium valence electron at the location of the xenon nucleus is quite high

(particularly due to exchange correlation effects) [463, 464, 465, 251, 412]. The theory of spin

exchange between polarized alkali atom electrons and noble gas nuclei is well understood

[463, 464, 465, 412], and the Hamiltonian for this type of spin exchange can be written as

41The mechanism of alkali–noble gas spin-rotation coupling is somewhat different when light noble gas
atoms such as He are involved [461].
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[412]:

Ĥs.e./~ = α(R)[Ŝ · K̂]

= α(R)[ŜzK̂z +
1

2
(Ŝ+K̂− + Ŝ−K̂+)], (6.133)

where Ŝ is the electron spin angular momentum operator for the Rb ground state, K̂

is the Xe nuclear spin angular momentum operator, and α(R) is the Rb–Xe hyperfine

coupling constant parameterized by the Rb–Xe interatomic distance R. The “flip-flop”

terms 1
2(Ŝ+K̂− + Ŝ−K̂+) in Eq. 6.133 induce transfers of angular momentum between the

Rb electron and Xe nucleus [32, §5.4]; e.g., the Ŝ−K̂+ term can induce the spin-exchange

transfer |mS = +1
2 ;mK = −12〉 → |mS = −12 ;mK = +1

2〉.42

Not only is the Xe nuclear relaxation slow enough to allow substantial polarization

to build after numerous spin exchange collisions, but once the xenon is separated from the

rubidium its longitudinal relaxation can be on the order of minutes to hours (depending on

the external magnetic field strength and whether the cell is coated or otherwise designed

to protect against depolarizing wall collisions). This is enough time to allow the xenon to

be transported or for its hyperpolarization to be used up bit-by-bit in consecutive NMR

experiments. Xenon gas relaxation has been studied at high and low magnetic fields [466,

456, 467, 468, 455]; the dominant sources of relaxation in the absence of Rb tend to be Xe–

wall collisions as well as binary Xe–Xe collisions at high gas pressures and the formation of

Xe–Xe van der Waals complexes at low pressures. Xenon relaxation by diffusion through

magnetic field inhomogeneities also can be significant [464, 469, 470, 471],[32, §2.8]; this
42Spin-independent quantum numbers have been neglected.
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mechanism may be important in low-field NMR applications but is negligible in the highly

homogeneous fields of modern high-field superconducting magnets.

Batch mode xenon NMR experiments

Cates et al. [472] first demonstrated that xenon could be frozen out of the optical

pumping gas mixture while still retaining its hyperpolarization. If a continuous-flow spin-

exchange hyperpolarization apparatus is used the freezing can be accomplished by flowing

the xenon/buffer gas mixture through a liquid nitrogen-cooled (T = 77 K) cold finger until

sufficient xenon ice has accumulated. The remaining buffer gas is then evacuated from the

cold finger and a “batch” of pure hyperpolarized xenon gas can be recovered by thawing

the ice [473, 416]. The 1:10:89 Xe:N2:He gas ratio of the optical pumping mixture has been

chosen to optimize xenon polarization so that the magnetization of pure xenon in batch

mode experiments is maximized.

The freeze-thaw batch method should be implemented with an awareness of the

relaxation properties of xenon polarization in the solid state [472, 473, 474, 475]. A natural

isotopic abundance mixture of xenon contains both the Xe-129 and Xe-131 isotopes; the

latter nucleus possess an electric quadrupole moment which couple to local electric field

gradients caused by lattice defects [476]. These quadrupolar couplings can be quite large and

cause rapid relaxation of the Xe-131 nucleus. If there exists a degeneracy between the Xe-129

energy levels and the levels of an appropriate Xe-131 transition, cross relaxation [477, 478]

of Xe-129 with fast-relaxing Xe-131 can significantly increase the relaxation rate of the Xe-

129. In fact, this mechanism may dominate the Xe-129 relaxation at temperatures below

20 K [473, 474, 479]. The experiments that are described in this chapter were performed
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with a ∼500 G magnetic field applied to the xenon cold finger. This field corresponds to a

Xe-129 Larmor frequency of ∼0.6 MHz, which should be large enough to render the cross

relaxation inefficient by breaking the degeneracy of the Xe-129 levels with the continuum43

of Xe-131 levels, assuming that the the Xe-129 Larmor splitting is greater than the Larmor

splitting plus quadrupolar splitting of Xe-131. Between temperatures of 20 K and 120 K and

at magnetic fields greater than 500 G the Xe-129 relaxation is dominated by nuclear spin-

flip scattering of lattice phonons mediated by the spin-rotation interaction [473, 474, 475].

However, at temperatures above 120 K as the xenon nears its melting point at 161.4 K the

Xe-129 relaxation appears to be dominated by fluctuations of the Xe–Xe dipolar couplings

due to vacancy diffusion, which can result in longitudinal relaxation times on the order of

seconds [475]. For this reason it is advantageous to thaw the xenon ice as rapidly as possible

to minimize the time it spends at temperatures near the phase transition.44

Nuclear relaxation times can be drastically reduced if the xenon comes into contact

with paramagnetic or ferromagnetic species, due to the large dipole couplings to unpaired

electrons. For this reason it is important to ensure that the hyperpolarization system and

sample cell are free of oxygen and that the joints in the vacuum lines are not made out of

steel. Furthermore, wall collisions can also serve as a major relaxation mechanism depending

on the composition of the sample cell. Most of the experiments described here used glass

sample tubes whose inner surfaces were coated with SurfaSil r©, which is a siliconizing fluid

that has been found to reduce nuclear relaxation due to wall collisions [450, 480], probably

43There exists a continuum of levels over a finite range of quadrupolar couplings due to the random
distribution of the orientations of local electric field gradients in the lattice.
44The triple point of xenon is at T = 161.4 K and P = 0.8 atm, which indicates that the thawing of xenon

ice under vacuum at liquid nitrogen temperature is actually a sublimation process. However, if enough
xenon ice is collected to produce gas at a pressure of multiple atmospheres, the pressure during the thaw
can rapidly exceed 0.8 atm, causing the xenon ice to melt rather than sublime.
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by covering open oxygen sites on the glass surface and by reducing the duration of xenon

adsorption.

The batch method allows the creation of a finite volume of hyperpolarized xenon

gas which can then be used for a variety of purposes, including conducting DDF indirect

detection experiments. The indirect detection experiments are multidimensional experi-

ments that require an rf pulse on the xenon sensor nucleus for every indirectly detected

point. The hyperpolarization is continuously depleted over the course of the experiment

because not only is longitudinal magnetization lost after every pulse due to conversion to

transverse magnetization, but the non-equilibrium xenon hyperpolarization also relaxes to-

ward its thermal equilibrium value in the interval between pulses rather than return to its

initial value. A 90◦ rf pulse applied to a static volume of xenon would use up all of the

hyperpolarization, leaving only the relatively tiny thermal equilibrium polarization (which

grows in slowly with the time constant T1) for the acquisition of the indirect point; this

necessitates the use of small tip-angle pulse arrays which result in reduced signals. The

consequences of small tip-angle experiments are considered in detail in §6.6.

Flow mode xenon NMR experiments

Instead of using the freeze-thaw batch mode method, it is possible to use the output

of a continuous flow xenon polarizer directly. Such experiments in continuous- and stopped-

flow mode have been conducted in the Pines lab, but they were not used in this work. Only

dilute xenon gas is available in the current Pines lab flow mode experiments due to the

presence of buffer gases in the optical pumping mixture, as opposed to the batch method

which produces pure xenon gas. If flow mode experiments are to be performed it may be
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possible to maximize the xenon magnetization by increasing the fraction of xenon in the

mixture somewhat beyond the 1% level used in batch mode experiments; this may sacrifice

some polarization, but the magnetization is proportional not only to xenon polarization but

also to xenon concentration.

Since a fresh volume of xenon can be used for each indirectly encoded point, flow

mode experiments have the advantage that long, multiple-pulse experiments with large pulse

tip angles can be implemented without worrying about the hyperpolarization being depleted

by pulses or relaxation. The use of large tip angle (i.e., 90◦) pulses allows an increase in

signal over the small tip angle schemes that must be employed in multi-pulse batch mode

experiments; however, this gain can be more than offset by the reduction in magnetization

caused by using a dilute xenon mixture. In practice, batch mode experiment of reasonable

length should yield a somewhat larger signal than a flow mode experiment using a 1% xenon

mixture; however, the situation may become comparable for very long experiments in which

the batch mode tip angle must be made very small. The flow method (and in particular

the stopped flow method) is by far ideal for remote detection experiments because flow is a

natural means of transporting encoded volumes of magnetization, as opposed to creating a

new batch of xenon for each indirectly encoded point. It should also be possible to create a

single large batch of pure xenon and then flow it until the batch is depleted, but thus far in

this laboratory the flow experiments have exploited the continuous-flow polarizer in order

to produce indefinite amounts of hyperpolarized xenon.

Perhaps the biggest disadvantage of using dilute xenon mixtures from the perspec-

tive of conducting distant dipolar field experiments is the increase in the xenon diffusion
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rate due to the large fraction of helium buffer gas. Dipolar field encoding experiments

require the sensor nucleus to be relatively stationary on the length scale over which the

analyte dipolar field varies during the course of the encoding. The use of stopped flow can

ensure that there is no bulk transport of the gas during the encoding step, but a large

amount of xenon diffusion into, out of, or within the encoding volume during this time can

effectively destroy the desired signal. Diffusion during the encoding step is likely a major

source of diminished signal even in the experiments on pure xenon discussed in this work

(for example, no signal was observed in preliminary DDF experiments involving xenon–He

buffer gas mixtures); any increase in the diffusion rate would only exacerbate the problem.

6.4.2 Geometric considerations for dipolar field encoding: coaxial sample

tube configuration

The examples and calculations of dipolar field encoding experiments presented

thus far have considered only the case in which the analyte and sensor spins are mixed

homogeneously. This configuration is not ideal for remote detection NMR experiments

because it is difficult to remove the sensor from the analyte for subsequent transport and

detection. It may be particularly convenient to encode the sensor nucleus while flowing it

past the analyte without the two ever coming into contact with each other. Fortunately

the nuclear dipolar field acts through space and there is no requirement for the sensor

and analyte to be mixed. This feature of dipolar field encoding was first demonstrated by

Warren et al. [302, 317] in homonuclear CRAZED experiments that correlated the NMR

signals of separated species in a two-phase system of immiscible fluids and in a coaxial

sample tube configuration.
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The calculations of the heteronuclear DDF indirect detection NMR signals in §6.3.1

and §6.3.2 were based on the assumption that the sensor nucleus sampled the analyte dipolar

field over the same volume as the magnetization distribution that created the field, i.e., that

the sensor and analyte were intermixed. These calculations need to be modified in the case

that the sensor nucleus samples the analyte dipolar field over a volume that is external to

the analyte magnetization. A detailed modification of these calculations is not attempted

here, but the problem of the separation of analyte and sensor nuclei is explored qualitatively

via experiments and magnetic field calculations.

The pulsed field gradient version of the dipolar field encoding experiment relies

on the winding of the sensor magnetization into a helix with a pitch that is matched to

the wavelength of modulation of the analyte longitudinal magnetization; observable signal

arises as the sensor magnetization helix is unwound under the action of the analyte dipolar

field. Since it is this distant dipolar field that transmits the analyte spectral information to

the sensor nuclei, what really matters for the experiment is that the modulation wavelength

of the analyte secular dipolar field matches the pitch of the sensor magnetization helix after

the second gradient pulse. It is therefore crucial that the modulation of the analyte secular

dipolar field mirror the modulation of the analyte magnetization. This is easily shown to

be the case in homogeneous mixtures if the analyte magnetization is strongly modulated,

i.e., when the modulation wavelength is small compared to any sample dimension (see e.g.

Refs. [305, 366] and Eqs. 6.25 and 6.26). Furthermore, as long as the strong modulation

condition is satisfied the size of the signal in homogeneous mixtures depends only weakly on

the actual value of the modulation wavelength [303, 317], at least until molecular diffusion



6.4. HETERONUCLEAR DDF INDIRECT DETECTION EXPERIMENTS
USING XE-129 AS A SENSOR 461

can no longer be neglected as the characteristic diffusion length over the timescale of the

DDF encoding becomes comparable to the magnetization modulation wavelength.

The xenon-sensor DDF indirect detection experiments that were performed here

(see §6.4.3) used a coaxial tube geometry where a xenon sensor sealed in the inner tube was

placed in an analyte solution held in the outer tube. A schematic of this sample geometry

is shown in Fig. 6.6. At the beginning of the detection interval in the indirect detection

pulse sequence (Fig. 6.3) the combination of rf and gradient pulses has created in the coil

region a sinusoidally-modulated analyte z-magnetization in the outer tube and a sensor-

spin magnetization helix in the inner tube. The chemical shift evolution during the indirect

dimension affects the phase of the z-modulation but otherwise does not affect its spatial

distribution (neglecting B0 inhomogeneity) and will not be considered here. The question

to be resolved is, does the z-modulated analyte magnetization create a secular dipolar field

in the inner tube with a matching z-modulation? If so, the gradient dephasing of the sensor

transverse magnetization would rephase in the presence of the analyte dipolar field as usual,

producing an observable signal.

DDF indirect detection experiments with gradient pulses were performed using a

simple model system: the H-1 nucleus in benzene (C6H6) was used as the analyte in the

outer tube 10 mm o.d. outer tube and the P-31 nucleus in concentrated phosphoric acid

(H3PO4(aq)) was used as the sensor in the 5 mm o.d. inner tube (Fig. 6.6). The geometry of

this system simulated that of the xenon experiments but it was advantageous here to avoid

the use of hyperpolarized xenon gas both for reasons of convenience and to minimize the

effects of diffusion of the modulated magnetization, which can be rapid in the case of a gas.
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Figure 6.6: Schematic of typical coaxial tube geometry used in distant dipolar field inves-
tigations. The analyte was placed in the outer tube and the sensor was placed in the inner
tube. The outer diameters of the inner and outer tubes were 5 mm and 10 mm, respectively.
The wall of the inner tube was 0.9 mm thick.

The experiments were performed at 7.05 Tesla on a Varian Unity Inova spectrometer using

a Varian 10-mm broadband solution-state NMR probe. The customized 10-mm probe had

three rf channels: H-1/F-19, broadband, and Xe-129. The P-31-detected benzene spectra

were recorded for several values of the gradient-induced modulation using the DDF indirect

detection pulse sequence in Fig. 6.3. A plot of the integrated intensity of the indirect

dimension projection of the cross peak between benzene (H-1) and phosphoric acid (P-31)

versus the number of magnetization modulation wavelengths over the coil region is shown

in Fig. 6.7. The signal is seen to be attenuated when the magnetization modulation is large,

contrary to the the results obtained in homogeneous mixtures in which the signal levels off

to a constant non-zero value as the magnetization becomes strongly modulated [303, 317].

The source of this attenuation can be understood by considering the spatial dis-

tribution of the secular dipolar field of the analyte within the inner tube where the sensor

resides. Eq. 6.26 for the heteronuclear secular dipolar field is not valid for slowly varying

magnetization distributions or in regions outside the source magnetization volume; there-
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Figure 6.7: Plot of the intensity of the DDF-encoded H-1 spectrum of benzene as a function
of magnetization modulation wavelength using a separated P-31 sensor in a coaxial tube
geometry. The pulse sequence in Fig. 6.3 was used with 256 points in the indirect dimension;
the signal reported here (in arbitrary units) was the sum of the three points nearest the
maximum of the indirect dimension projection of the benzene (H-1)/phosphoric acid (P-31)
cross peak. Gz denotes the strength of a τG = 1 ms z-gradient pulse, which represents
either the first gradient pulse G1 which modulated the C6H6/H-1 magnetization or the
second gradient pulseG2 which modulated the H3PO4/P-31 magnetization. G0 = 2π/|γτGd|
represents the z-gradient strength that would modulate either the H-1 or P-31 magnetization
by one wavelength over the rf coil length (d = 1.5 cm): G10 = 0.157 G/cm or G20 = 0.387
G/cm. The ratioG2/G1 = G20/G

1
0 was fixed to the value κ = −γH1/γP31 = −2.47. The ratio

Gz/G0 equals the number of modulation wavelengths of H-1 longitudinal magnetization and
the number of turns of the P-31 magnetization helix over the distance d. A four-step phase
cycle was employed to suppress the direct P-31 FID and to ensure frequency discrimination
in the indirect dimension. A recycle delay of 6 s between transient acquisitions was used
and a 4 ms, 22 G/cm z-gradient spoiler pulse preceded each delay. This done to ensure that
the analyte and sensor magnetizations had returned nearly to their equilibrium values by
the time of the next acquisition; otherwise spectral artifacts can occur [481].

fore, simulations of this field were performed by numerically evaluating Eq. 6.157 in §6.5.

The integrals in Eq. 6.157 were evaluated using the MATLAB r© [482] code in Appendix E.

The integration was not optimized; Riemann sums were performed over the entire range
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of radial and axial coordinates (only sums over points within the analyte magnetization

distribution are actually necessary). The coaxial tubes were taken to be of infinitesimal

thickness; the inner and outer tubes had diameters of 5 mm and 10 mm, respectively, and

the coil region was taken to be 15 mm high. The analyte magnetization volume was defined

by 2.5 mm < R < 5.0 mm and −7.5 mm < z < 7.5 mm, where R and z are the radial

and axial coordinates, respectively. The analyte magnetization distribution was taken to be

symmetric about the z-axis. In the real system the analyte magnetization above and below

the coil region is uniform, but this magnetization was neglected here. The secular dipolar

field was determined on a 30 mm high by 20 mm wide grid in the x–z plane made up of

squares 0.1 mm on a side; only points with x > 0 were calculated and the x < 0 points were

generated by mirror reflection. The secular dipolar field was evaluated at the center of the

grid squares and its amplitude was plotted in arbitrary units.

The field distribution in a vertical cross section of the tube (x–z plane) is shown in

Figs. 6.8 and 6.9 in the case of an analyte magnetization modulation of a half-wavelength

over the length of the coil region and in Figs. 6.10 and 6.11 in the case of a modulation

of three wavelengths over the coil region. The Lorentz sphere correction to the secular

dipolar field was not made in the region of the analyte magnetization and was not necessary

elsewhere, since this correction only yields the local field at positions that coincide with

magnetization source points. As can be seen, in both cases the overall vertical distribution

of dipolar field modulation matches the z-modulation of the analyte magnetization, and

one expects that a matched-pitch magnetization helix of the sensor spins in the inner tube

would successfully rephase under the action of the analyte field. The dependence on gradient
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strength enters because of the cancellation and attenuation of the dipolar field in regions

external to the analyte volume. The dipolar field falls off rapidly with distance from the

magnetization source. Furthermore, the volumes of analyte magnetization of alternating

sign may be approximated as adjacent uniformly-magnetized volumes of opposite sign whose

external dipolar fields tend to cancel each other. The result is that the analyte dipolar field

becomes attenuated near the center of the inner tube when the analyte magnetization

modulation wavelength (which characterizes the length scale of the magnetization volumes

of opposite sign) becomes comparable to or smaller than the distance from the analyte

volume to the center of the tube. In that case the parts of the sensor spin magnetization

helix near the center of the inner tube will not properly rephase because they do not feel

the analyte dipolar field, and will not contribute to the net signal. When the analyte

magnetization modulation wavelength becomes very short the analyte dipolar field hardly

penetrates into the sensor volume. This problem is only exacerbated upon accounting for

the finite thickness of the inner tube, which further separates the sensor from the analyte.

Note that the calculation of the signal in the DDF experiment is no longer as straightforward

as it was in §6.3.1; the time evolution of the sensor magnetization must be calculated for

every point in the sensor volume and the net signal is proportional to the integral of the

transverse magnetization over this volume.

One interesting point to note is that the dipolar field simulations indicate that the

sign of the analyte secular dipolar field in the inner tube is opposite that of the analyte

magnetization at the same vertical position z. This is easily understood by considering the

full dipolar field distribution; the field lines outside a volume magnetized in the +z-direction
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Figure 6.8: Plot (pseudocolor) of a vertical cross section of the secular dipolar field generated
by modulated analyte magnetization in the outer tube in a coaxial tube geometry (0.5
modulation wavelengths over the coil region).

Figure 6.9: Plot (mesh) of a vertical cross section of the secular dipolar field generated
by modulated analyte magnetization in the outer tube in a coaxial tube geometry (0.5
modulation wavelengths over the coil region).
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Figure 6.10: Plot (pseudocolor) of a vertical cross section of the secular dipolar field gener-
ated by modulated analyte magnetization in the outer tube in a coaxial tube geometry (3
modulation wavelengths over the coil region).

Figure 6.11: Plot (mesh) of a vertical cross section of the secular dipolar field generated by
modulated analyte magnetization in the outer tube in a coaxial tube geometry (3 modulation
wavelengths over the coil region).
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start out parallel to the magnetization at the top of the volume but curve around so that

they are in the −z-direction next to the volume. The sign of the dipolar field within the

inner tube is the opposite of what it would be if the analyte was magnetized in the same

direction but the analyte and sensor were homogeneously mixed. The analyses in §6.3.1

and 6.2.3 predict that this would result in a reversal of the sign of the indirectly detected

spectrum in a phase-sensitive experiment and a reversal of the sign of the odd-order echoes

(since Jn(−x) = (−1)nJn(x) for integer n) in a DDF multiple echo experiment.

6.4.3 Experimental DDF indirect spectra using the coaxial tube geome-

try. Results and future prospects.

Distant dipolar field indirect detection was implemented using a hyperpolarized

Xe-129 gas sensor in the coaxial tube geometry using the pulse sequence in Fig. 6.3. These

experiments were performed to investigate the suitability of Xe-129 for dipolar field encoding

and were not incorporated into a complete remote detection experiment. The hyperpolarized

Xe-129 gas was produced by the batch-mode (freeze–thaw) spin-exchange optical pumping

method (see §6.4.1) at polarization levels of 1–10% and was stored in a SurfaSil r©-coated

J-Young tube. The tube had an outer diameter of 5 mm and the length of the tube up to

the bottom of the valve was about 20 cm. This tube was filled with pure natural-abundance

xenon to a total xenon gas pressure of 3–5 atm and was placed in a 10-mm outer diameter

NMR tube that was partially filled with the analyte solution to be studied. The NMR

experiments were performed at 7.05 Tesla on a Varian Unity Inova spectrometer using a

Varian 10-mm broadband solution-state NMR probe. The custom-made 10-mm probe had

three rf channels: H-1/F-19, broadband, and Xe-129; the broadband channel was used for
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Xe-129 detection due to its higher sensitivity. The batch mode experiments provide only

a finite reservoir of hyperpolarized gas; therefore, Xe-129 detection rf pulses of less than

90◦ were used in order not to use up all the hyperpolarization at once by converting it to

transverse magnetization.

The ideal analyte for a proof-of-principle experiment would have a high magne-

tization, i.e., a high spin density and polarization. Fig. 6.12 shows the indirect-dimension

projection of the Xe-129-detected DDF indirect H-1 spectrum of water (H2O) in the coax-

ial tube geometry at 7.05 T.45 The indirectly-detected spectrum reproduces the normal

directly-detected water H-1 spectrum at a resonance offset of ∼ 200 Hz. It does, however,

exhibit a distorted (non-Lorentzian) lineshape with a broadened base. This distortion is

likely primarily due to the depletion of the hyperpolarized (non-equilibrium) Xe-129 longitu-

dinal magnetization over the course of multiple acquisitions due to conversion to transverse

magnetization by rf pulses and to a lesser extent T1 relaxation. This gradual depletion of

magnetization causes a non-exponential damping of the time-domain signal in the indirect

dimension, which leads to distorted lineshapes. This problem is considered further in §6.6

along with a proposed remedy. Since Xe-129 rf tip pulses of less than 90◦ were used there

was always longitudinal magnetization present during the experiment; part of the lineshape

distortion in the indirect dimension could also be due to a chirp of the Larmor frequency of

Xe-129 in the presence of its own gradually diminishing longitudinal self-dipolar field. Note

that this effect is not present in normal DDF indirect detection experiments that use 90◦

sensor-spin pulses.

45The H-1 thermal equilibrium magnetization density at this field can be calculated according to Eq. 1.102
for I = 1/2 nuclei using γH1/2π = 42.6 MHz/T and a total H-1 concentration of ∼111 M: µ0|MH1

eq | ≈ 286
µG at 7.05 T and room temperature. The Xe-129 magnetization is calculated in §6.7.2 to be |MXe129| ≈ 80
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Figure 6.12: H-1 spectrum of water at 7.05 T detected indirectly via the distant dipolar field
using a separated Xe-129 sensor. Xe-129 small-tip pulses of θ ≈ π/8 were used. A coaxial
sample geometry was used. A total of 512 points were taken in the indirect dimension
with a spectral window of 2048 Hz; a four-step phase cycle per indirect point was employed
to suppress the Xe-129 direct FID and to ensure frequency discrimination in the indirect
dimension. The sequence employed τG = 1 ms z-gradient pulses at strengths G1 = 0.33
G/cm and G2 = 1.18 G/cm in the ratio κ = G2/G1 = −γH1/γXe129 = 3.59. Xe-129 was
detected at 82.92 MHz during an acquisition time of 1 s with a spectral window of 2000
Hz. Residual Xe-129 net transverse magnetization was suppressed before each transient
acquisition by using a recycle delay of 2 s between acquisitions preceded by a 4 ms, 22
G/cm z-gradient spoiler pulse.

Another inherent disadvantage of batch-mode Xe-129 NMR experiments is the

restriction to small tip-angle rf pulses on the xenon channel, which leads to diminished

Xe-129 transverse magnetization and an accompanying reduction in signal, as well as to

the lineshape distortions caused by depletion of the reservoir of hyperpolarization. These

limitations may be overcome in the future by performing experiments in flow mode. The

use of flow—preferably stopped flow so that the bulk xenon gas is static during the DDF

µG under conditions that were similar (perhaps somewhat more favorable) than those used here.
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encoding interval—would allow the gas to be refreshed after each transient acquisition so

that full 90◦ Xe-129 rf pulses can be applied without destroying the hyperpolarization for the

next acquisition. Flowing the sensor nucleus is also the most natural mode of transport in

remote detection experiments; the alternative in batch mode is to encode one indirect point

in a fixed volume of gas and transport the whole sample to another point for detection.

However, flow mode experiments can have their own disadvantages, as was discussed in

§6.4.1. As implemented in the Pines lab using the commercial continuous-flow spin-exchange

polarizer, the Xe-129 optical pumping mixture contains mostly inert buffer gases that are

removed during freeze–thaw batch mode operation but are present in flow mode when using

the direct output of the polarizer. This dilution of the Xe-129 causes a reduction of the xenon

magnetization and hence of the signal. The Xe-129 magnetization can be greatly increased

by performing spin-exchange optical pumping at high xenon concentrations and/or by using

isotopically-enriched Xe-129 mixtures. The spin-exchange optical pumping of high pressure

xenon can result in enhanced magnetization due to an increase in spin density even as the

nuclear polarization decreases [441]. Another important reason to eliminate buffer gases

from the xenon mixture is the increase of the Xe-129 diffusion rate in the presence of low-

molecular weight species (see Eq. 6.132). Fast xenon diffusion during dipolar field encoding

can destroy any enhancements of the signal due to the use of gradient modulation of the

magnetization.

The distant dipolar field can be used to record indirect analyte spectra that have

a more complicated structure than just a single resonance; e.g., it is possible to observe a J-

coupled (scalar-coupled) analyte indirect spectrum. Other workers have considered the case



6.4. HETERONUCLEAR DDF INDIRECT DETECTION EXPERIMENTS
USING XE-129 AS A SENSOR 472

of heteronuclear correlation spectroscopy in which two spin species interact with each other

through both intramolecular J-couplings and distant intermolecular dipolar couplings [380,

381]. The problem considered here is somewhat simpler, i.e., two intramolecular analyte spin

species that interact with each other through J-couplings and with a third sensor nucleus

through distant intermolecular dipolar couplings. The analysis of this system proceeds

analogously to the analysis in §6.3.1 except the analyte magnetization is modulated by the

J-coupling as well as by the chemical shift. Some difficulty was encountered when trying to

resolve J-modulated analyte spectra using a Xe-129 sensor due to the line broadening caused

by the gradual depletion of xenon hyperpolarization (see §6.6); therefore, the thermally-

polarized P-31 nucleus in concentrated phosphoric acid (85% H3PO4 in water) was used as

a sensor to acquire a proof-of-principle J-resolved spectrum. Fig. 6.13 shows the indirect-

dimension projection of the P-31-detected DDF indirect F-19 spectrum as well as the 2D

spectrum of 2,2,2-trifluoroethanol (CF3CH2OH) at 7.05 T. The same type of coaxial sample

tube geometry that was used in the xenon experiments was used here with the P-31 sensor

in the inner tube and the analyte in the outer tube. As can be seen, the lineshapes and

spectral resolution are better than those in the Xe-129-detected DDF indirect spectrum of

water. The signal-to-noise ratio was smaller in this experiment than it was in the DDF Xe-

129 detection of water (Fig. 6.12); both the analyte and sensor magnetization densities were

larger in the H2O/Xe-129 experiment than they were in the CF3CH2OH/H3PO4 experiment,

although the Xe-129 Larmor frequency was only 68% that of the P-31 Larmor frequency.46

The spectral intensity of the fluorine nuclei is distributed over a 1 : 2 : 1 triplet split by the

46The F-19 thermal equilibrium magnetization density can be calculated according to Eq. 1.102 using
γF19/2π = −40.1 MHz/T and a total F-19 concentration of ∼42 M: total µ0|MF19

eq | ≈ 96 µG at 7.05 T and
room temperature. The P-31 magnetization density can be calculated using γP31/2π = 17.25 MHz/T and a
P-31 concentration of ∼15 M: µ0|MP31

eq | ≈ 6 µG at 7.05 T and room temperature.
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F-19–H-1 scalar coupling constant 3JFH , as expected.
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Figure 6.13: F-19 spectrum of 2,2,2-trifluoroethanol at 7.05 T detected indirectly via the
distant dipolar field using a separated P-31 sensor: (a) is a trace of the indirect dimension
and (b) is a portion of the 2D spectrum (ν1 is the indirect dimension (F-19) frequency
and ν2 is the direct dimension (P-31) frequency). A coaxial sample geometry was used. A
total of 512 points were taken in the indirect dimension with a spectral window of 1000 Hz;
a two-step phase cycle per indirect point was employed to suppress the P-31 direct FID.
The sequence employed τG = 1 ms z-gradient pulses at strengths G1 = 0.38 G/cm and
G2 = 0.88 G/cm. An experimentally-optimized ratio of G2/G1 = 2.29 was used instead of
the predicted ideal value G2/G1 = κ = γH1/γP31 = 2.47. P-31 was detected at 121.35 MHz
during an acquisition time of 1.5 s with a spectral window of 500 Hz. A recycle delay of
5 s between transient acquisitions was used and a 4 ms, 22 G/cm z-gradient spoiler pulse
preceded each delay.

It is clear from Fig. 6.12 that the signal-to-noise ratio in the Xe-129 DDF indi-

rect detection experiment is much less than what is routinely recorded in high-field direct-

detection NMR experiments. Some loss of signal is of course expected due to the fact that

the magnetization of the Xe-129 sensor was smaller than the H-1 magnetization of the H2O

analyte; ideally a sensitivity enhancement would be sought by using a sensor that was more

highly magnetized than the analyte. However, the DDF indirect detection signal is even

much less than the direct Xe-129 free induction decay. As has been discussed previously in

various sections, the reduction of signal of DDF indirect detection compared to direct de-



6.4. HETERONUCLEAR DDF INDIRECT DETECTION EXPERIMENTS
USING XE-129 AS A SENSOR 474

tection can come from several sources, which are summarized below. Some of these effects

cannot be compensated by or even become worse upon using a more highly magnetized

sensor. In a remote detection experiment it is also possible to use a more sensitive detector,

but even the most sensitive magnetometers may not be able to compensate for the signal

losses.

The DDF indirect detection experiment is susceptible to a number of signal-

reducing factors. Molecular diffusion of the sensor during DDF encoding can destroy spatial

modulations of the magnetization that are desirable for coherence pathway selection and

creating large signals. This effect can be minimized by reducing the diffusion rate of the

sensor, e.g., by reducing the amount of light buffer gases in the Xe-129 gas mixture. Another

alternative would be to use a solution of Xe-129 in a nonpolar solvent (xenon is hydropho-

bic) as the sensor; this would decrease the xenon diffusion rate but also would decrease the

Xe-129 relaxation times, which may be undesirable in remote detection experiments if the

sensor transport period is long. The efficiency of DDF encoding can be reduced by the

effects of the sensor transverse self-dipolar field, which can rotate the sensor magnetization

out of the transverse plane. Radiation damping interactions between a highly polarized sen-

sor and a resonantly-tuned rf coil can have similar deleterious effects. Radiation damping

did not appear to be a significant problem in the experiments conducted here, but at any

rate its effects may be reduced in a remote detection experiment by using a detuned rf coil

for the encoding of the sensor. Radiation damping and self-dipolar field effects will become

larger if a more highly magnetized sensor is used in an attempt to increase sensitivity, e.g.,

an isotopically-enriched Xe-129 mixture at a higher polarization or pressure than was used
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here. The effects of diffusion, radiation damping, and self-DDF interactions take time to

develop; if the analyte T1 happens to be long, it may be possible to reduce these effects

on the DDF encoding in a remote detection experiment by using a short encoding time to

encode several volumes of sensor magnetization per indirect point of the analyte spectrum.

The signals from each of these volumes could be coadded to enhance sensitivity. Another

potentially serious problem in DDF encoding experiments is the effect of t1 noise, i.e., fluc-

tuations of the environmental conditions from experiment to experiment that show up as

noise in the indirect dimension [7, §6.8.2]. There is currently no good solution for the t1

noise or transverse self-DDF problems. One final problem is that the dipolar field may have

a long range a the molecular length scale but actually has a short range on a macroscopic

length scale; if the sensor and analyte are physically separated the sensor will not be able

to sample the full strength of the analyte dipolar field. This effect can be minimized by

using a thin-walled container to separate the sensor from the analyte.

Note that the Xe-129 experiments reported here were conducted in batch mode.

Xenon-129 remote detection experiments will likely be performed in flow mode, for which

several additional factors affecting the sensitivity need to be considered. Flow mode ex-

periments are able to provide an indefinite supply of hyperpolarized Xe-129 gas, whereas

batch mode experiments are limited to a finite reservoir of gas. Flow mode experiments

can be conducted using full 90◦ pulses on the Xe-129 without worrying about depleting the

magnetization reservoir or about T1 relaxation losses over multiple transient acquisitions.

This will lead to larger signals than in the batch mode small tip-angle scheme. However,

the xenon spin density is lower in a flow mode experiment if the buffer gases in the optical
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pumping mixture are not removed first, and this will reduce the signal as compared to a

batch mode experiment using pure xenon gas. It may however be possible to prepare a

batch of hyperpolarized Xe-129 gas by the freeze-thaw method and then use it for a (finite

duration) flow experiment. Note that if the direct output of the continuous flow polarizer

is used, the length of the indirect detection experiment is indefinite and signal can be ac-

cumulated by using extra acquisitions (at the expense of performing a longer experiment).

Also note that radiation damping and self-DDF effects would be expected to be larger in a

flow mode experiment compared to a batch mode experiment if larger tip angles were used

at the same Xe-129 spin density.

The DDF indirect detection experiments described above used analytes that were

thermally polarized in a high magnetic field on the order of Tesla. This restricts the remote

detection DDF encoding to take place in a high field environment unless a magnetic-field

prepolarization is performed or the analyte polarization can be enhanced past its thermal

equilibrium value, e.g., by direct optical pumping or spin exchange-optical pumping. Barros

et al. have performed intermolecular double-quantum coherence imaging of the protons in

water in a relatively low field of 16 mT (160 G) by using an Overhauser polarization transfer

from the electrons of a dissolved organic free radical, a technique that also requires the ability

to irradiate EPR transitions [483].
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6.5 Calculation of the distant dipolar field for cylindrically

symmetric geometries

Eq. 6.26 for the heteronuclear secular dipolar field is simple and local in coordinate

space but is not valid when the magnetization distribution varies slowly over the magne-

tization volume or at points exterior to this volume. The most efficient of the methods

discussed in §6.2.1 for calculating the secular dipolar field of an arbitrary magnetization

distribution seems to be the evaluation of the local equation in Fourier space (the heteronu-

clear counterpart of Eq. 6.24), where the conversion between coordinate space and k-space

and back again can be implemented via numerical Fourier transforms. However, the sample

geometries investigated in this work either involved a cylindrical tube or two coaxial tubes,

and the resulting magnetization distributions—or at least their secular contributions—also

possessed cylindrical symmetry. It is therefore worthwhile to investigate to what degree

the calculation of the secular dipolar field can be simplified in a system that has cylindrical

symmetry.

A continuous magnetization distribution M(r) inside a volume V ′ bounded by a

surface S′ creates a macroscopic magnetic field that is given everywhere by Eqs. 6.46 and

6.47 (reproduced here):

Bd(r) = µ0[M(r)−∇ΦM (r)], (6.134)
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where the effective magnetostatic potential is:

ΦM (r) = − 1

4π

∫

V ′
d3r′

∇′ ·M(r′)
|r − r′| +

1

4π

∫

S′
d2r′

ñ′ ·M(r′)
|r − r′| . (6.135)

Primed coordinates are source coordinates and unprimed coordinates are field coordinates;

ñ represents the unit vector outwardly normal from the surface S ′. Note that the dipolar

field in Eq. 6.134 can be written as a functional of the magnetization density:

Bd(r) = Bd[M(r)]. (6.136)

The quantity of interest in NMR dipolar field experiments is not the full dipolar field,

but rather only its secular portion. In particular, the DDF remote detection experiments

primarily concern the heteronuclear secular dipolar field created by a magnetization distri-

butionM I(r) of the analyte spins and experienced by the sensor spins. The discussion after

Eq. 6.22 indicates that the heteronuclear secular dipolar field is equal to the z-component

of the full dipolar field evaluated as a functional of only the z-component of the source

magnetization vector:

BI,sec
d (r) =

(
BI
d[M

I
z (r)z̃] · z̃

)
z̃. (6.137)

Note that this prescription for determining BI,sec
d (r) is not equivalent to evaluating Eq.

6.134 via Eq. 6.135 and then retaining only the z component of the resultant field. Eq.

6.137 can be used in conjunction with Eqs. 6.134 and 6.135 to write expressions for the
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heteronuclear secular dipolar field:

BI,sec
d (r) = µ0

[
M I
z (r)−

∂

∂z
ΦI,zM (r)

]
z̃, (6.138)

where

ΦI,zM (r) = − 1

4π

∫

V ′
d3r′

[
1

|r − r′|
∂M I

z (r
′)

∂z′

]
+

1

4π

∫

S′
d2r′

M I
z (r
′)(ñ′ · z̃′)
|r − r′| . (6.139)

It will be useful to expand the magnetization density in a cylindrical coordinate system:

M I(r) =M I
R(R,φ, z)R̃+M I

φ(R,φ, z)φ̃+M I
z (R,φ, z)z̃, (6.140)

where R̃, φ̃, and z̃ are unit vectors in the direction of increasing R =
√
x2 + y2, φ =

tan−1(y/x), and z, respectively. If the analyte magnetization distribution is axially sym-

metric about z, it is independent of the azimuthal angle:

M I(r) =M I(R, z), (6.141)

and furthermore the surface normal unit vector ñ′ is also independent of φ′. In that case

the evaluation of Eq. 6.139 involves the evaluation of integrals of the form

I =

∫

V ′
d3r′

f(R′, z′)
|r − r′| . (6.142)

The surface integral in Eq. 6.139 is just a special case of Eq. 6.142 with a constraint on the
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integration boundaries. The volume integral can be written in cylindrical coordinates as

∫

V ′
d3r′ =

∫
dR′R′

∫
dφ′

∫
dz′, (6.143)

where the limits of integration constrain r′ = (R′, φ′, z′) to be within the volume V ′.

The key to evaluating Eq. 6.142 lies in determining an appropriate expansion for

|r−r′|−1. This function is a type of Green function, which is a class of functions that satisfy

the differential equation ∇′2G(r, r′) = −4πδ3(r−r′) [17, §1.10]. The function |r−r′|−1 may

be written exactly in terms of cylindrical coordinates as:

1

|r − r′| =
1√

R2 +R′2 − 2RR′ cos(φ− φ′) + (z − z′)2
. (6.144)

This is not a particularly simple form; even the integration of |r − r′|−1 alone with respect

to φ′ would be difficult. A standard technique is to expand the Green function as a sum of

spherical harmonic functions [17, §3.9]:

1

|r − r′| = 4π
∞∑

l=0

l∑

m=−l

1

2l + 1

rl<

rl+1>

Y ∗l,m(θ
′, φ′)Yl,m(θ, φ), (6.145)

where r =
√
x2 + y2 + z2, θ = cos−1(z/r), and φ = tan−1(y/x) are the usual spherical

polar coordinates. The symbol r< (r>) denotes the lesser (greater) of r and r′. Eq. 6.145

becomes particularly simple in the case of axial symmetry about z because only the m = 0

term survives the integration in Eq. 6.142 with respect to φ′; therefore, the double sum

is reduced to a single sum over l. This is, however, still an infinite sum, which may not

converge very quickly, particularly in the case of a magnetization distribution that differs
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significantly from a spherical geometry (such as a long cylinder). A common Green function

expansion in cylindrical coordinates is [17, §3.11]:

1

|r − r′| =
2

π

∞∑

m=−∞

∫ ∞

0
dk eim(φ−φ

′) cos[k(z − z′)]Im(kR<)Km(kR>), (6.146)

where Im andKm are the modified Bessel functions of the first and second kind, respectively,

of order m [484, §11.5],[241, §9.6]. The symbol R< (R>) denotes the lesser (greater) of R

and R′. In the case of axial symmetry about z only the m = 0 term survives the integration

in Eq. 6.142 with respect to φ′, which eliminates the sum over m. However, Eq. 6.146 is still

somewhat unsatisfactory because it involves an extra integral with respect to the variable

k over a product of trigonometric and Bessel functions.

Although it does not seem to have achieved wide use, there exists another compact

representation of the Green function in cylindrical coordinates [485, 486]:

1

|r − r′| =
1

π
√
RR′

∞∑

m=−∞
eim(φ−φ

′)Qm− 1
2
(χ), (6.147)

where Qm− 1
2
is a Legendre function of the second kind47 of half-integer order m − 1

2 [484,

§12.10],[241, §8] and the variable χ is defined by:

χ =
R2 +R′2 + (z − z′)2

2RR′
, (6.148)

47These functions can be implemented in Mathematica r© [242] for χ ≥ 1 as the Type 3 LegendreQ functions.
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where it can be seen that χ ≥ 1. Eq. 6.147 can be used to rewrite Eq. 6.142 as

I =
1

π
√
R

∫

V ′
d3r′

1√
R′

∞∑

m=−∞
eim(φ−φ

′)Qm− 1
2
(χ)f(R′, z′)

=
2√
R

∫ ∫

V ′
dR′ dz′

√
R′ Q− 1

2
(χ) f(R′, z′), (6.149)

where the definite integration with respect to φ′ from 0 to 2π returns 2π times the m = 0

component, according to the relation
∫ 2π
0 dφ′ e−imφ

′
= 2πδm,0, where m is an integer.

According to Eq. 6.138 it is not the integral I (proportional to the effective mag-

netostatic potential) that matters when calculating the secular dipolar field, but rather its

derivative ∂I
∂z

with respect to the field coordinate z. The limits of integration in Eq. 6.149

are independent of the coordinate z and therefore it is possible to differentiate under the

integral sign, where the only z-dependence of the integrand is within χ:

∂I
∂z

=
∂

∂z

[
2√
R

∫ ∫

V ′
dR′ dz′

√
R′ Q− 1

2
(χ) f(R′, z′)

]

=
2√
R

∫ ∫

V ′
dR′ dz′

√
R′
[
∂

∂z
Q− 1

2
(χ)

]
f(R′, z′). (6.150)

The derivative may be found more simply after re-writing the Legendre function in terms

of an elliptic integral [241, §8.13]:48

Q− 1
2
(χ) = µK(µ), (6.151)

48The symbols χ and µ are used only in order to be consistent with Ref. [485] and do not represent the
magnetic susceptibility or magnetic dipole moment.
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where K is the complete elliptic integral of the first kind [484, §5.8],[241, §17.3], and

µ =

√
2

χ+ 1
=

√
4RR′

(R+R′)2 + (z − z′)2 , (6.152)

where µ is on the interval (0, 1]. The derivative of the Legendre function may then be

written

∂

∂z
Q− 1

2
(χ) =

∂µ

∂z
K(µ) + µ

∂K(µ)

∂µ

∂µ

∂z
=
∂µ

∂z

[
K(µ) + µ

∂K(µ)

∂µ

]

= −1

8

z − z′
RR′

µ3
[
K(µ) +

E(µ)

1− µ

]
, (6.153)

where E is the complete elliptic integral of the second kind [484, §5.8],[241, §17.3]. The

derivative of µ follows from its definition (Eq. 6.152):

∂µ

∂z
= −z − z

′

4RR′
µ3, (6.154)

and the derivative of K follows from the identity [242]:

∂K(Z)

∂Z
=
E(Z)− (1− Z)K(Z)

2(1− Z)Z . (6.155)

Eq. 6.153 may be used to re-write Eq. 6.150 as

∂I
∂z

= − 1

4R3/2

∫ ∫

V ′
dR′ dz′

1√
R′

(z − z′)µ3
[
K(µ) +

E(µ)

1− µ

]
f(R′, z′). (6.156)

This expression allows for a more direct evaluation of the dipolar field in a system that
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has symmetry about the z axis; the three dimensional integration over source coordinates

has been reduced to a two dimensional integration. Note that an expansion of the Green

function in Eq. 6.22 would lead to an expression that is more complicated than the one that

is obtained here due to the cube root of |r − r′| in the integrand.

As a concrete example, consider the case of two coaxial cylinders (tube-within-a-

tube geometry) with the analyte filling the space between the inner and outer cylinders.

The z axis defines the symmetry axis. The inner cylinder has radius R1 and the outer

cylinder has radius R2; the analyte magnetization M I(r′) is distributed from height z1 to

height z2 and is axially symmetric about z (Eq. 6.141). The volume V ′ is defined by the

simultaneous constraints R1 ≤ R′ ≤ R2 and z1 ≤ z′ ≤ z2. The boundary surface S ′ can

be split into four parts: an inner cylindrical surface at R′ = R1 with ñ′ = −R̃, an outer

cylindrical surface at R′ = R2 with ñ′ = +R̃, a bottom annulus at z′ = z1 with ñ′ = −z̃,

and a top annulus at z′ = z2 with ñ
′ = +z̃. According to Eq. 6.139 the magnetization at the

cylindrical surfaces does not contribute to the surface integral because the vector ñ′ normal

to these surfaces is perpendicular to z̃. However, the magnetization at the top and bottom

surfaces does contribute. If the discussion is limited to the so-called “exterior problem”

in which the magnetic field is evaluated only at points r that are exterior to the volume

V ′—which includes points within the inner cylinder where the sensor nucleus is contained

in the tube-within-a-tube geometry—then M I(r) and hence M I
z (R, z) in Eq. 6.138 is zero

at the location of every field point. Eq. 6.156 can then be used in conjunction with Eqs.

6.138 and 6.139 to write the following expression for the secular dipolar field exterior to the
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spins I in the tube-within-a-tube geometry:

BI,sec
d (R, z) = −µ0

4π

1

4R3/2

∫ R2

R1

dR′
∫ z2

z1

dz′
{

1√
R′

(z − z′)µ3
[
K(µ) +

E(µ)

1− µ

]
∂M I

z (R
′, z′)

∂z′

}

−µ0
4π

1

4R3/2

∫ R2

R1

dR′
{

1√
R′

(z − z1)µ31
[
K(µ1) +

E(µ1)

1− µ1

]
M I
z (R

′, z1)

}

+
µ0
4π

1

4R3/2

∫ R2

R1

dR′
{

1√
R′

(z − z2)µ32
[
K(µ2) +

E(µ2)

1− µ2

]
M I
z (R

′, z2)

}
,

(6.157)

where µ is defined by Eq. 6.152 and µ1 and µ2 are equal to µ when evaluated at z′ = z1 or

z′ = z2, respectively. The first integral is the volume integral over V ′ and the second and

third integrals are those portions of the surface integral over S ′ that include only the bottom

or top annular surfaces, respectively. Eq. 6.157 is probably about as far as this problem can

be simplified analytically because the integrals are quite difficult. Unlike Eq. 6.26 which

is valid only when the magnetization is strongly modulated in one direction, Eq. 6.157 is

generally applicable for any axially-symmetric magnetization distribution. However, this

technique still seems to remain disadvantageous when compared to the numerical Fourier

transform–inverse transform technique because the equation is still nonlocal, i.e., a double

integral must be performed over all points (R′, z′) within V ′ just to find the field at a

single point (R, z). These double integrations can be quite computationally expensive if

performed on a finely-discretized grid. One should also note that numerical integrations

in cylindrical coordinates are sometimes sensitive to the placement of the grid boundary.49

Ref. [485] found the compact Green function expansion (Eq. 6.147) to be insensitive to these

49Additional errors can occur in the numerical integration if the magnetization distribution is axially
symmetric but spheroidal instead of cylindrical, due to the difficulty of properly representing the spheroidal
surface in a discretized cylindrical coordinate system.
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integration errors when calculating potential functions, but Eq. 6.157 actually utilized the

gradient of the potential (see Eqs. 6.134, 6.138), and the process of taking the derivative

may amplify these errors.

The computation can be made slightly easier if the analyte magnetization distri-

bution is independent of the distance R from the z-axis, i.e.,M I
z (r) =M I

z (z), as is the case

in the DDF-encoding experiments described above where transverse magnetization is first

modulated by a linear z-gradient pulse and then one component is stored along the z-axis.

In this case the integration over R′ in Eq. 6.157 can be performed ahead of time given a

particular geometry, and then only a single integration need be performed for any further

choice of M I
z (z). As an example, consider the case of DDF encoding where the magneti-

zation distribution is sinusoidally modulated along z, which can be represented generally

as

M I
z (z) =M I

0 cos(kz + ϕ). (6.158)

For the purposes of this example the lower and upper limits of the reach of the rf and gradient

coils will be taken to be z1 = 0 and z2 = d, respectively. For the sake of simplicity, further

assume that the parameters of the gradient pulse are chosen such that the z-component of

analyte magnetization vanishes at z1 and z2, such that

M I
z (z) =M I

0 sin(knz), (6.159)
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where

kn =
nπ

d
, (6.160)

and n is an integer. In this case the z-magnetization vanishes at z1 and z2 and so do

the surface integrals in Eq. 6.157. The exterior solution of the analyte dipolar field then

becomes

BI,sec
d (R, z) = −µ0

4π
M I
0

kn

4R3/2

∫ d

0
dz′ cos(knz

′)F (z′; z), (6.161)

where the relation
∂M I

z (z
′)

∂z′
= knM

I
0 cos(knz) has been used, and

F (z′; z) = (z − z′)
∫ R2

R1

dR′
1√
R′

µ3
[
K(µ) +

E(µ)

1− µ

]
. (6.162)

Note that Eq. 6.161 can be re-written as

BI,sec
d (R, z) = −µ0

4π
M I
0

kn

4R3/2

∫ ∞

−∞
dz′ cos(knz

′)F (z′; z)[h(z′)− h(z′ − d)], (6.163)

where the term in square brackets is a boxcar function defined in terms of the Heaviside

step function, h(x − x0), which equals 1 when x > x0 and equals 0 when x < x0. The

boxcar function equals 1 when 0 < z′ < d and equals 0 otherwise. The integral in Eq. 6.163

is just the Fourier cosine transform with respect to z ′ (and with fixed kn) of the product of

F (z′; z) and the boxcar function. The Fourier convolution theorem [484, §15.5] states that

this integral is just the convolution of the Fourier transform of F (z ′; z) with the Fourier
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transform of the boxcar function. The Fourier transform of a boxcar function is known to

be a sinc function, but the Fourier transform of F (z ′; z) is not readily calculated.

6.6 Depletion and diffusion of xenon magnetization during

multi-pulse batch mode experiments

The key difference between an ordinary point-by-point (or multidimensional) NMR

experiment and a batch-mode experiment on a hyperpolarized sample is that the hyperpo-

larization does not return to its initial value during the recycle delay between the transient

acquisitions. Rather, this non-equilibrium longitudinal magnetization is continuously de-

pleted both by relaxation to its comparatively small thermal equilibrium value and by

conversion to transverse magnetization by rf pulses. Consequently, only a finite number of

indirectly-encoded points can be acquired before the magnetization returns to its thermal

equilibrium value, which in the case of xenon gas is too small to be detected efficiently.

Furthermore, any decay of the magnetization over the course of a point-by-point experi-

ment results in a damping of the indirect time-domain signal that manifests itself as line

broadening in the frequency domain that decreases spectral resolution. The imaging com-

munity has developed variable tip-angle rf pulse schemes that counter these types of effects

by progressively increasing the fraction of longitudinal magnetization that is tipped into

the transverse plane in order to maintain the transverse magnetization after each pulse at

a constant value [487, 488, 489]. These schemes, however, have relied on the assumption

that the rf pulses always act on the same volume of magnetization, i.e., either the entire

sample resides within the rf coil or magnetization is not transported into and out of the coil
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region by molecular diffusion. Diffusion effects are expected to be considerable in gas phase

samples; a proper model of these effects can lead to the development of variable tip-angle

pulse schemes that can lead to line narrowing in the indirect dimension in point-by-point

batch-mode xenon NMR experiments. This section explores some simple analytic models of

the effects of one-dimensional diffusion on multiple-pulse experiments in cylindrical tubes;

the experiment considered here consists of an array of evenly-spaced pulses of constant tip

angle. Another possible approach to the problem of depleted magnetization might be to

use a model-free feedback experiment to generate the variable tip angles, but this approach

is not considered here. Note that this section only discusses the diffusion of xenon during

intervals in between the encoding of indirect points; it does not consider the substantial

effects of diffusion during the encoding step itself in DDF indirect detection experiments.

6.6.1 Limit of extremely slow diffusion

An ideal rf coil generates a homogeneous magnetic field near the coil in what

will be referred to as the “active” region of the sample and a negligible field outside this

volume. It may be assumed that only spins within the active region are affected by rf pulses,

and reciprocally, only the net magnetization of the spins within this region is subsequently

detected by the coil. The simplest situation to consider is the case in which the diffusion of

magnetized spins in and out of the active region is negligible over the timescale of the NMR

experiment. In other words, over the course of the point-by-point experiment only the same

set of spins is pulsed and detected. This is the same situation as would be encountered if

there was significant diffusion but the rf coil was large enough to include the entire sample

in the region of homogeneous rf field, because transport of magnetization between different
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parts of the sample would not change the net magnetization within the active region. The

variable tip angle scheme has already been solved for this case [489] and the result is reviewed

here.

Consider an experiment that consists of an array of N rf pulses with the same

phase and inter-pulse delay ∆. This situation could be considered to correspond to a series

of detection pulses in a point-by-point encoding experiment separated by a constant recycle

delay, where the maximum indirect evolution time is assumed to be negligible compared

to the recycle delay. The theoretical treatment is easily modified to include variable delays

between the pulses. The pulses are labeled by an index n ranging from 0 to N − 1 and the

nth pulse has a tip angle θn. Initially it will be assumed that all the tip angles are equal,

θn = θ, as is the case in a normal point-by-point/multidimensional encoding experiment.

It will be assumed that θ is on the interval [0, π/2]. Let MA
z represent the longitudinal

magnetization within the active region of the sample at time t. The notation

tn = n∆ (6.164)

will denote the time of the nth pulse and t−n and t+n will denote the times just before and

just after the application of that pulse, respectively.

The initial longitudinal magnetization is:

MA
z (t
−
0 ) =M0. (6.165)

After the first rf pulse of tip angle θ is applied a fraction cos θ of the initial magnetiza-
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tion remains along the z-axis and a fraction sin θ is converted to transverse magnetization

which is assumed to be irreversibly dephased by T2 relaxation before the next pulse. The

longitudinal magnetization just after the first pulse is:

MA
z (t

+
0 ) =M0 cos θ. (6.166)

The general relation between the longitudinal magnetization just before and just after an

rf pulse of tip angle θ is:

MA
z (t

+
n ) =MA

z (t
−
n ) cos θ. (6.167)

If longitudinal relaxation is neglected for the moment, the longitudinal magnetization fol-

lowing the delay ∆ between the first and second pulses is:

MA
z (t
−
1 ) =M0 cos θ. (6.168)

After the second pulse:

MA
z (t

+
1 ) = [M0 cos θ] cos θ =M0 cos

2 θ. (6.169)

For future convenience, make the definition:

α = cos θ. (6.170)
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It is easy to see that a general recursion relationship can be written:

MA
z (t
−
n+1) = αMA

z (t
−
n ), (6.171)

such that:

MA
z (t
−
n ) = αnMA

z (t
−
0 ) = [cos θ]nM0. (6.172)

If longitudinal relaxation during the inter-pulse delay ∆ is to be included, Eq. 6.171 must

be modified:

MA
z (t
−
n+1) = αMA

z (t
−
n )e
−∆/T1 +Meq[1− e−∆/T1 ], (6.173)

where T1 is the longitudinal relaxation time and Meq is value of the thermal equilibrium

magnetization. For experiments with hyperpolarized nuclei it can be assumed that the initial

magnetization is much larger than the thermal equilibrium magnetization, i.e., M0 ÀMeq;

in fact, Meq will be assumed to be so small as to be below the measurement threshold. In

that case:

MA
z (t
−
n+1) ≈ αMA

z (t
−
n )e
−∆/T1 , (6.174)

and

MA
z (t
−
n ) = αnMA

z (t0)e
−tn/T1 , (6.175)
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where [e−∆/T1 ]n = e−n∆/T1 = e−tn/T1 . The magnitude of the transverse magnetization

immediately following each pulse is:

|MA
+ (t

+
n )| =MA

z (t
−
n ) sin θ. (6.176)

The signal detected after each pulse is therefore equal to:

S(t+n ) = [S0 sin θ]α
ne−tn/T1 , (6.177)

where S0 is the signal that would be detected if the entire initial magnetization M0 was

tipped into the transverse plane. This signal can be written as

S(t+n ) = [S0 sin θ]e
−tn/τ , (6.178)

where

τ =
[ 1

T1
+
−∆
lnα

]−1

=
[ 1

T1
+

−∆
ln(cos θ)

]−1
, (6.179)

where the relation αn = αtn/∆ = [elnα]tn/∆ = exp[ lnα∆ tn] has been used. The second term

in brackets in Eq. 6.179 is greater than zero since 0 < θ < π/2 and ∆ > 0. It follows that

Eq. 6.178 predicts the signal after each evenly-spaced pulse decays exponentially with an

effective relaxation time τ < T1 that approaches T1 for small tip angles. The decay is faster

than the longitudinal relaxation rate is due to the fact that longitudinal magnetization is
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continuously being depleted not only by relaxation but also by the succession of rf pulses. If

the array of rf pulses represents the series of detection pulses in a point-by-point experiment,

the exponential decay of Eq. 6.178 multiplies the indirect time-domain signal, resulting in an

effective indirect spectrum that is the convolution of the desired spectrum with a Lorentzian

of half-width at half-maximum τ .

Fig. 6.14 shows a comparison of the simulated depletion of the signal observed

immediately after each pulse in the case of a negligibly small tip angle (solid line), which

exhibits pure longitudinal relaxation, and in the case of a constant tip angle of θ = 22.5◦

in the presence of longitudinal relaxation with no diffusion (dotted line).

The extra line broadening caused by longitudinal relaxation and depletion of mag-

netization by rf pulses may be removed by adopting a variable tip-angle scheme. The

generalization of Eq. 6.171 to the case of variable tip angles θn is:

MA
z (t
−
n+1) = αnM

A
z (t
−
n ), (6.180)

where

αn = cos θn. (6.181)

The generalization of Eq. 6.175 is:

MA
z (t
−
n ) =

[ n−1∏

j=0

αj

]
MA
z (t
−
0 )e
−tn/T1 , (6.182)

The product in brackets reduces to αn when all αj = α (for n > 0) and will be assumed to
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Figure 6.14: Simulated decay of observed signal in multiple-pulse, constant tip-angle batch
Xe NMR experiments in a long tube. All decay curves were normalized to an initial value
of 1 and calculated using a longitudinal relaxation time of T1 = 40 min. A total of N = 128
pulses equally spaced by the interval ∆ = 60 s were used. The solid line indicates the
limit of negligibly small tip angles where the decay of signal is purely due to exponential
longitudinal relaxation. The rest of the curves were calculated using a constant tip angle
of θ = π/8 = 22.5◦. The dotted line indicates the limit of no gas diffusion. The dashed
line indicates the limit of fast diffusion with local equilibration of magnetization in the
infinite tube approximation using an active region length of 2d = 1.5 cm and a Xe diffusion
coefficient of D = 5.7 × 10−2 cm2 s−1 at 1 atm and room temperature (k1 = 0.23). The
dot–dash line indicates the limit of fast diffusion with extended diffusion of magnetization
using the same values of d and D.

equal 1 when n = 0. The generalization of Eq. 6.177 for the signal immediately after the

nth pulse is:

S(t+n ) = [S0 sin θn]
[ n−1∏

j=0

αj

]
e−tn/T1 . (6.183)
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The signal immediately after the first pulse is S(t+0 ) = S0 sin θ0; the signal immediately

after every subsequent pulse can be maintained at this value by choosing the tip angles to

be solutions of S(t+n ) = S0 sin θ0 [489]:

θn = sin−1
[ sin θ0

e−tn/T1
∏n−1
j=0 αj

]
= sin−1

[ sin θ0

e−n∆/T1
∏n−1
j=0 cos θj

]
. (6.184)

If there is no longitudinal relaxation (T1 →∞), Eq. 6.184 reduces to

θn = tan−1
[

1√
(N − 1)− n

]
. (6.185)

Note that Eq. 6.185 predicts θN−1 = π/2, i.e., the final rf pulse uses up the remaining

longitudinal magnetization by tipping it 90◦ into the transverse plane.

Note that in any variable tip angle scheme there is a restriction on the number of

pulses that can be used depending on how much signal is desired. If the signal S0 cos θ0 is

large, relatively few pulses can be applied before the magnetization is used up.

The preceding discussion only gave consideration to the situation in which the

xenon diffusion plays no role over the course of the experiment. The rest of the discussion

will focus on simple models of the role of diffusion.
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6.6.2 Limit of extremely fast diffusion with global equilibration of mag-

netization

Consider a cylindrical NMR tube of length 2L filled with xenon, with an active rf

coil region of length 2d. The ratio of the two lengths is

R = d/L, (6.186)

which is also the ratio of the tube volume affected by the rf coil to the total tube volume. It

will be useful to define a diffusion length λt that characterizes the distance over which gas

diffuses during some time t. The usual definition of the one-dimensional diffusion length is

[490]:

λt = 2
√
Dt, (6.187)

where D is the diffusion coefficient. If t is discretized into increments of ∆, the following

quantity can be defined:

λn = 2
√
D(n∆), (6.188)

which corresponds to the diffusion length over the time tn = n∆. An “extremely fast

diffusion” regime can be roughly defined by the condition L ¿ λ1, i.e., the gas diffuses

completely over the length of the tube during the interval ∆ between pulses. This condition

actually is not expected to hold for typical xenon experiments: using a value of D =
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5.7 × 10−2 cm2 s−1 for 1 atm of xenon gas at room temperature (Eq. 6.130) and a long

delay ∆ = 60 s yields λ1 = 3.7 cm, which is smaller than the length of a typical NMR

tube, 2L = 15 cm. However, the “extremely fast diffusion” regime is the simplest to treat

theoretically, so it is worth mentioning briefly.

The same case as before will be considered: N rf pulses of constant tip angle θ

labeled from n = 0 to N − 1 that are evenly separated by intervals ∆. All net transverse

magnetization is assumed to be irreversibly dephased between pulses. Let MA
z represent

the longitudinal magnetization in the active region of the tube and MR
z represent the lon-

gitudinal magnetization in the rest of the tube. Only MA
z is depleted by the rf pulses and

Eq. 6.167 still holds:

MA
z (t

+
n ) =MA

z (t
−
n ) cos θ. (6.189)

The magnetization outside the active region is unaffected by the pulses:

MR
z (t

+
n ) =MR

z (t
−
n ). (6.190)

If the diffusion is extremely fast the longitudinal magnetization at time t+n completely

equilibrates throughout the tube by time t−n+1. This magnetization density is the volume-

weighted average of the magnetization density inside and outside of the active region. Let

VA = (2d)A and VR = (2L)A − VA be the volumes inside and outside of the active region,

respectively, where A is the area of the cross section of the tube. The following relation can
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be written:

MA
z (t
−
n+1) =MR

z (t
−
n+1) =

MA
z (t

+
n )VA +MR

z (t
+
n )VR

VA + VR

= [MA
z (t
−
n ) cos θ]R+ [MR

z (t
−
n )](1−R), (6.191)

where Eqs. 6.189 and 6.190 have been used to write the last line. Since the extremely fast

diffusion ensures thatMA
z (t
−
n ) =MR

z (t
−
n ) at the point just before each rf pulse, it is possible

to write:

MA
z (t
−
n+1) = αMA

z (t
−
n ), (6.192)

where

α = R cos θ + (1−R)

= 1− 2R sin2(θ/2). (6.193)

The recursion relation in Eq. 6.192 is the same as in Eq. 6.171 and all the subsequent

results that follow from that equation hold here. Once longitudinal relaxation is included,

the signal immediately after each pulse is found to be:

S(t+n ) = [S0 sin θ]e
−tn/τ , (6.194)
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where

τ =
[ 1

T1
+
−∆
lnα

]−1

=
[ 1

T1
+

−∆
ln[1− 2R sin2(θ/2)]

]−1
. (6.195)

Since R is on the interval [0, 1] and θ is on the interval [0, π/2], the value of α in Eq. 6.193 is

on the interval [0, 1] and is always greater or equal to the value of α in Eq. 6.170. Therefore

the effective exponential damping of the signal in the extremely fast diffusion case (Eq.

6.194) has a longer time constant (i.e., closer to the intrinsic relaxation time T1) than in

the case where there is no diffusion (Eq. 6.178). This is to be expected: the longitudinal

magnetization within the active region that is depleted by rf pulses is partially replenished

by diffusional equilibration with fresh magnetization in the rest of the tube.

Note that τ → T1 in Eq. 6.195 as θ → 0. This indicates that an array of evenly-

spaced rf pulses of sufficiently small tip angle can be used to determine the intrinsic lon-

gitudinal relaxation time of the sample, T1, independent of the sample geometry (as long

as the extremely fast diffusion limit holds). The results of two or more constant-θ array

experiments with different finite values of θ can be used to fit Eq. 6.195 to obtain T1 and

R. If these values are known, a variable tip angle scheme analogous to the one given by Eq.

6.184 can be implemented using the modified definition:

αn = 1− 2R sin2(θn/2). (6.196)
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6.6.3 Limit of fast diffusion with local equilibration of magnetization

Although the “extremely fast diffusion” model is simple and indicates how molec-

ular diffusion can extend the “lifetime” of hyperpolarized signal, the diffusion rate of xenon

gas under normal conditions is not fast enough to place the system in this limit. If the dif-

fusion is somewhat slower, one can consider the “fast diffusion limit.” This limit is roughly

characterized by the condition d ¿ λ1 ¿ L where the diffusion between pulses causes

the magnetization to equilibrate across the active region of the tube but not across the

whole tube. It will be necessary to consider the effects of diffusion on the magnetization

distribution in more detail. Once again the problem will be to follow the distribution of

the longitudinal magnetization MA
z (z, t) in the active region of the coil over the course

of the tip angle array, where z denotes the position along the tube axis. The longitudi-

nal magnetization in the rest of the tube (i.e., outside the active region) will be denoted

MR
z (z, t). The initial magnetization distribution is assumed to be uniform over the tube,

MA
z (z, 0) =MR

z (z, 0) =M0.

Before tackling the diffusion problem head-on, imagine the case in which the lon-

gitudinal magnetization has some constant value MA
z (z, 0) = MA

z inside the active region

of the tube and another constant value MR
z (z, 0) = MR

z outside the active region. As-

sume for now that the active region is at the center of the tube so that its position defined

by −d < z < d) and the external region is defined by d < z < L and −L < z < −d.

The solution of the one-dimensional diffusion equation for the magnetization distribution
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everywhere in the tube at time t is known analytically [490, §2.2.4]:

Mz(z, t) =MR
z +

1

2
(MA

z −MR
z )

+∞∑

m=−∞

[
erf
(d+ 2mL− z

λt

)
+ erf

(d− 2mL+ z

λt

)]
,

(6.197)

where erf(x) is the error function and λt is given by Eq. 6.187. If the diffusion is not

“extremely” fast, i.e., it is slow enough that the condition λt ¿ L holds, the magnetization

gradient between the active region and the rest of the tube will not have time to fully

equilibrate over the length of the tube, 2L, during the time t. In this case the tube can

be considered to be effectively “infinitely” long. In this limit it does not matter whether

or not the active region is at the center of the tube. Under the same initial conditions the

magnetization everywhere in an infinitely long tube is:

Mz(z, t) =MR
z +

1

2
(MA

z −MR
z )
[
erf
(d− z

λt

)
+ erf

(d+ z

λt

)]
. (6.198)

If the diffusion is fast enough that λt À d, the argument of the error function is small near

the active region of the tube where |z| ∼ d. In the limit x ¿ 1 the error function may be

approximated as:

erf(x) ≈ 2√
π
x. (6.199)
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In this limit Eq. 6.198 becomes:

Mz(z, t) ≈MR
z +

2d√
πλt

(MA
z −MR

z ) = (1− kt)MR
z + ktM

A
z , (6.200)

where

kt ≡
2d√
πλt

. (6.201)

Eq. 6.200 states that if the diffusion is fast on a timescale t over the length d, the resulting

magnetization distribution is approximately uniform (i.e., independent of z) in regions near

the boundaries of the active region of the tube. In other words, in the fast diffusion limit

all of the active region is assumed to be “near” the boundary, and MR
z is then taken to

represent the magnetization outside of but close to the active region. It will be assumed that

the diffusion of magnetization in parts of the tube that are far from the active region does

not contribute to the magnetization distribution near the active region. This assumption

results from the infinite tube approximation and breaks down when the pulse array is long

enough that the characteristic diffusion length over the course of the array is on the order

of the half-length of the tube, λN−1 = 2
√
D(N − 1)∆ ∼ L, in which case the full Eq. 6.197

must be used.

Now consider what happens when θ-tip angle pulses are applied at the times

tn = n∆, where n ranges from 0 to N −1. Relaxation effects will be neglected for now. The

condition of “fast diffusion” over the inter-pulse interval ∆, previously defined as λ1 ¿ L,
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is more accurately defined to be:

k1 =
2d√
πλ1

¿ 1, (6.202)

where λ1 = 2
√
D∆. This defines the criterion under which the diffusion distributes mag-

netization approximately uniformly across the active region of the tube. The value of this

constant for a sample of xenon gas at 1 atm pressure and room temperature with an active

region of 2d = 1.5 cm is k1 = 0.23 for ∆ = 60 s and k1 = 0.46 for ∆ = 15 s.

The longitudinal magnetization before the first pulse in the array is:

MA
z (z, t

−
0 ) =MR

z (z, t
−
0 ) =M0. (6.203)

After the first pulse:

MA
z (z, t

+
0 ) = M0 cos θ

MR
z (z, t

+
0 ) = M0, (6.204)

i.e., the pulse tips the magnetization inside the active region of the tube but does not

affect the magnetization outside the tube. Eq. 6.200 for the local magnetization in the fast

diffusion limit can be used to calculate the magnetization near the tube at time t−1 = ∆

before the next pulse:

MA
z (z, t

−
1 ) ≈ (1− k1)M0 + k1M0 cos θ

MR
z (z, t

−
1 ) ≈ (1− k1)M0 + k1M0 cos θ, (6.205)
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MR
z (z, t

−
1 ) is only defined for locations |z| ∼ d near the active region. The position label

z will be suppressed from now on. It is apparent from these equations that magnetization

that is depleted in the active region of the coil by the pulse is partially replenished by local

equilibration with magnetization outside of but near to the active region.

After the second pulse the longitudinal magnetization distribution is approxi-

mately equal to:

MA
z (t

+
1 ) = [(1− k1)M0 + k1M0 cos θ] cos θ

MR
z (t

+
1 ) = (1− k1)M0 + k1M0 cos θ, (6.206)

and after diffusion over the interval ∆:

MA
z (t
−
2 ) = (1− k1)[(1− k1)M0 + k∆M0 cos θ] + k1{[(1− k1)M0 + k1M0 cos θ] cos θ}

MR
z (t
−
2 ) = (1− k1)[(1− k1)M0 + k1M0 cos θ] + k1{[(1− k1)M0 + k1M0 cos θ] cos θ}.

(6.207)

The recursive solution for the longitudinal magnetization inside the active region at time

t−n+1 in terms of t−n is:

MA
z (t
−
n+1) = (1− k1)MR

z (t
+
n ) + k1M

A
z (t

+
n )

= (1− k1)MR
z (t
−
n ) + k1M

A
z (t
−
n ) cos θ

= [k1(cos θ − 1) + 1]MA
z (t
−
n )

≡ αMA
z (t
−
n ), (6.208)
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where the relation MA
z (t
−
n ) =MR

z (t
−
n ) has been used and

α = k1(cos θ − 1) + 1

= 1− 2k1 sin
2(θ/2). (6.209)

The inequality 0 < α < 1 holds in the fast diffusion limit where d/λ1 ¿ 1.

The recursion relation in Eq. 6.208 is familiar (see Eqs. 6.171, 6.192) and once

longitudinal relaxation is included, the signal immediately after the nth pulse is found to

be:

S(t+n ) = [S0 sin θ]e
−tn/τ , (6.210)

where the effective decay constant of the signal is defined by:

τ =

[
1

T1
+
−∆
lnα

]−1

=

[
1

T1
+

−∆
ln[1− 2d√

πD∆
sin2(θ/2)]

]−1
. (6.211)

Since α may be presumed to be on the interval [0, 1] in the fast diffusion limit, lnα is on

(−∞, 0] and τ < T1. The rf pulses still cause an effective exponential decay of the signal that

is faster than pure T1 relaxation alone, but diffusion again increases the effective relaxation

time of the magnetization somewhat by replenishing magnetization in the active region of

the tube that has been depleted by the rf pulses. Unlike the “extremely fast” diffusion

model, the “fast diffusion/local equilibration” model depends on parameters such as the
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diffusion coefficient and the absolute length of the active region of the tube. Note, however,

that these two models predict the same result if the tube length 2L in the extremely fast

diffusion model is replaced in the local equilibration model by the quantity
√
πλ1, which is

on the order of the diffusion length λ1 over the inter-pulse delay ∆. The physical content

of these two models is the same, the only difference is that the first model assumes that the

magnetization equilibrates over the entire length of the tube during ∆ and the second model

predicts that the gas equilibrates only over the characteristic length
√
πλ1 < 2L during this

time.

Fig. 6.14 shows the simulated depletion of the signal observed immediately after

each pulse in the case of a constant tip angle of θ = 22.5◦ in the presence of longitudinal

relaxation with fast diffusion (k1 = 0.23) in the local equilibration model (dashed line). The

signal decay—which is exponential—is slower than in the case of no diffusion (dotted line)

because the magnetization in the active region of the tube is continually refreshed by an

external—but local—reservoir of magnetization that is not depleted by rf pulses.

6.6.4 Limit of fast diffusion with extended diffusion of magnetization

The fast diffusion/local equilibration model predicts an apparent exponential damp-

ing of the signal in the periodic multi-pulse experiment. However, as will be discussed later

in this section, experiments performed in the fast diffusion regime indicate that the true

decay of the signal is non-exponential, and perhaps is biexponential. The failure of the

local equilibration model is most likely due to its inability to capture the long-time behav-

ior of the diffusion. In this model the magnetization distribution near the active region is

always uniform; as a result, as the magnetization near this region becomes more and more
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depleted, a magnetization gradient is established between this region and parts of the tube

that are somewhat farther away. Over the course of a long experiment with many pulses

this magnetization gradient may become quite large and physically one expects diffusion

to help to “average” this gradient. In order to fully explain the diffusion in the tube it is

necessary to develop a model that includes some features of long-time/long-range diffusion

throughout the tube.

The restriction that the diffusion after each pulse is local and occurs only over

a short time ∆ will now be lifted. The diffusion will still be assumed to be slow enough

that the tube can be considered to be infinite, i.e., there will be no “reflections” of diffusing

magnetization that is incident on the top or bottom of the tube. It will be assumed that in

the fast diffusion limit the magnetization is approximately uniform across the active region

of the tube at the discrete times tn = n∆. An rf pulse applied at tn therefore will be

assumed to “burn” a rectangular hole in the longitudinal magnetization over the length

of the active region of the tube, and the magnetization at the time of detection will be

assumed to be constant over the active region.

Eq. 6.198 can be used to track the diffusion of an initial square “plug” of magne-

tization over time in an infinitely long tube. Define a function gn(z) to be:

gn(z) =
1

2

[
erf
(d− z
λn

)
+ erf

(d+ z

λn

)]
, (6.212)

where λn is defined according to Eq. 6.188. Define another function σ(z) to be:

σ(z) = h(z + d)− h(z − d), (6.213)



6.6. DEPLETION AND DIFFUSION OF XENON MAGNETIZATION
DURING MULTI-PULSE BATCH MODE EXPERIMENTS 509

where the Heaviside step function, h(x − x0), equals 1 when x > x0 and equals 0 when

x < x0. The boxcar function σ(z) equals 1 when −d < z < d and equals 0 otherwise.

Since the magnetization distribution is to be tracked as a function of the incre-

mented time tn = n∆, Eq. 6.198 can be used to describe the evolution in increments of ∆

of an initial rectangular magnetization distribution Mz(z, 0) = c0σ(z):

c0σ(z)
∆−→ c0g1(z)

∆−→ c0g2(z)
∆−→ c0g3(z)

∆−→ . . . (6.214)

The preceding results can be used to follow the diffusion of magnetization while

relaxing the local equilibration condition. The inside/outside-the-active-region variables

MA
z (z) and M

R
z (z) may be dropped in favor of using a function Mz(z) that represents the

entire distribution. The evolution proceeds as follows. Initially,

Mz(z, t
−
0 ) =M0. (6.215)

The effect of any rf pulse is to reduce the longitudinal magnetization that was in the active

region before the pulse by an amount cos θ but leave the magnetization outside this region

unchanged. This action can be represented by the equation:

Mz(z, t
+
n ) =Mz(z, t

−
n )− (1− cos θ)Mz(z, t

−
n )σ(z), (6.216)

where the first term represents the magnetization distribution before the pulse and the

second term represents the “hole” burned in that distribution by the pulse. Therefore, after
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the first pulse the magnetization distribution becomes

Mz(z, t
+
0 ) =M0 −M0(1− cos θ)σ(z). (6.217)

After diffusion for time ∆:

Mz(z, t
−
1 ) =M0 −M0(1− cos θ)g1(z). (6.218)

After the second pulse:

Mz(z, t
+
1 ) = [M0 −M0(1− cos θ)g1(z)]− (1− cos θ)[M0 −M0(1− cos θ)g1(z)]σ(z).

(6.219)

Thus far the treatment has been exact (in the infinite tube limit). An approximation must

be invoked in order to treat the diffusion analytically over the next interval ∆. The first

term in Eq. 6.219 can be propagated using Eq. 6.214. The second term representing the

magnetization hole is not easily propagated in a closed mathematical form. In the fast

diffusion limit it will be assumed that all positions −d < z < d inside the active region are

near enough to the region boundaries that the distribution gn(z) within the active region

can be treated as a constant using Eq. 6.199:

gn(z)σ(z) ≈ knσ(z) =
2d√
πλn

σ(z), (6.220)

and kn is defined in terms of λn according to Eq. 6.201. Eq. 6.219 can be approximated
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using Eq. 6.220 as:

Mz(z, t
+
1 ) ≈ [M0 −M0(1− cos θ)g1(z)]− (1− cos θ)[M0 −M0(1− cos θ)k1]σ(z).

(6.221)

The physical assumption is that the magnetization is “flat” across the active region before

the pulse is applied and consequently the cos θ reduction of magnetization in that region

also results in a “flat” distribution, i.e., a “rectangular hole” is burned. Eq. 6.222 is easily

propagated through a time ∆ according to Eq. 6.214:

Mz(z, t
−
2 ) = [M0 −M0(1− cos θ)g2(z)]− (1− cos θ)[M0 −M0(1− cos θ)k1]g1(z).

(6.222)

After the third pulse the magnetization distribution becomes:

Mz(z, t
+
2 ) =

{[M0 −M0(1− cos θ)g2(z)]− (1− cos θ)[M0 −M0(1− cos θ)k1]g1(z)}

−(1− cos θ){[M0 −M0(1− cos θ)g2(z)]− (1− cos θ)[M0 −M0(1− cos θ)k1]g1(z)}σ(z).

(6.223)
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This may be approximated as:

Mz(z, t
+
2 ) = {[M0 −M0(1− cos θ)g2(z)]− (1− cos θ)[M0 −M0(1− cos θ)k1]g1(z)}

−(1− cos θ){[M0 −M0(1− cos θ)k2]− (1− cos θ)[M0 −M0(1− cos θ)k1]k1}σ(z).

(6.224)

After diffusion for time ∆ the distribution becomes:

Mz(z, t
−
3 ) = {[M0 −M0(1− cos θ)g3(z)]− (1− cos θ)[M0 −M0(1− cos θ)k1]g2(z)}

−(1− cos θ){[M0 −M0(1− cos θ)k2]− (1− cos θ)[M0 −M0(1− cos θ)k1]k1}g1(z).

(6.225)

The general procedure is clear: the diffusion of the holes burned in the magnetization

distribution by each pulse is treated exactly, but each new hole is initially approximated as

being rectangular.

If the notationMn
z (z; {gm}) is used to denote the dependence of the magnetization

distribution on the various gm(z) functions at time t−n , a general recursive relationship for

the magnetization distribution at successive intervals can be written as:

Mn+1
z (z; {gm}) =Mn

z (z; {gm+1})− (1− cos θ)Mn
z (z; {km})g1(z). (6.226)

Only the magnetization inside the active region of the tube, MA
z (z) = Mz(z)σ(z), is de-
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tected. This magnetization distribution is:

Mn+1
z (z; {gm})σ(z) =Mn

z (z; {gm+1})σ(z)− (1− cos θ)Mn
z (z; {km})g1(z)σ(z). (6.227)

Again approximate the magnetization within the active region as a constant using Eq. 6.220:

Mn+1
z (z; {gm})σ(z) ≈ Mn+1

z (z; {km})σ(z)

= Mn
z (z; {km+1})σ(z)− (1− cos θ)Mn

z (z; {km})k1σ(z).

(6.228)

The magnetization within the active region alone is:

Mn+1
z ({km}) =Mn

z ({km+1})− (1− cos θ)k1M
n
z ({km}). (6.229)

This is not yet a practical recursion relation sinceMn
z ({km+1}) andMn

z ({km}) are different

functions. The proper recursion relation can be obtained by working in a linear vector space

of the coefficients {km}. Define two N -dimensional column vectors g(z) and k:

g(z) =




1

g1(z)

g2(z)

g3(z)
...

gN−1(z)




k =




1

k1

k2

k3
...

kN−1




(6.230)

The magnetization distribution in Eqs. 6.215, 6.218, and 6.222 at the respective times t−0 ,
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t−1 , and t
−
2 can be written as:

Mz(z, t
−
0 ) = gT (z) ·M0

z (6.231)

Mz(z, t
−
1 ) = gT (z) ·M1

z (6.232)

Mz(z, t
−
2 ) = gT (z) ·M2

z, (6.233)

where gT (z) is the transpose of g(z) (i.e., a row vector). The vectors M 0
z, M

1
z, and M

2
z are:

M0
z =




M0

0

0

0
...

0




M1
z =




M0

−(1− cos θ)M0

0

0
...

0




M2
z =




M0

−(1− cos θ)[1− (1− cos θ)k1]M0

−(1− cos θ)M0

0
...

0




.

(6.234)

The next step is to seek a way to relate the vectors {Mn
z } to each other. The necessary

relations are made through by Eqs. 6.226–6.229. Eq. 6.226, which approximates the mag-

netization distribution at time t−n+1 in terms of distributions at time tn, may be written in

the vector notation as:

gT (z) ·Mn+1
z = [gT (z) ·G+ ·Mn

z ]− (1− cos θ)(kT ·Mn
z )[g

T (z) · u1], (6.235)
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where the N ×N -dimensional matrix G+ that takes every gm(z)→ gm+1(z) is defined by:

G+ =




1 0 0 0 0 · · ·
0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
...

. . .




, (6.236)

and the vector u1 is given by:

u1 =




0

1

0

0
...

0




. (6.237)

Eq. 6.235 may be written as:

gT (z) ·Mn+1
z = gT (z) · α ·Mn

z , (6.238)

with

α = G+ − (1− cos θ)u1k
T , (6.239)

where u1k
T is the outer product of u1 and k

T . The N×N -dimensional matrix representation
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of α is:50

α =




1 0 0 0 0 · · ·
−(1− cos θ) −(1− cos θ)k1 −(1− cos θ)k2 −(1− cos θ)k3 −(1− cos θ)k4

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
...

. . .




,

(6.240)

The definition of α can be modified to include longitudinal relaxation over the interval ∆:

α′ = [G+ − (1− cos θ)u1k
T ]e−∆/T1 . (6.241)

It is clear from Eqs. 6.238 and 6.241 that:

Mn+1
z = α′Mn

z = (α′)nM0
z

= (α)ne−tn/T1M0
z, (6.242)

where (e−∆/T1)n = e−tn/T1 . These results may be used in conjunction with Eq. 6.229 to

write a recursion relation in the vector notation for the approximation to the longitudinal

50The matrix α becomes very large if the number of pulses in the array, N , is very large; therefore it may

be difficult to manipulate α on a computer because of memory constraints. However, α is a sparse matrix

(i.e., most of its elements are zero) and sparse matrices can be implemented computationally with drastically
reduced memory requirements. If the implementation is, for example, performed in MATLAB r© [482] the
matrix α can be defined by the following commands: n = 1:N-1; k = [1, d./sqrt(pi*D*n*Delta)].′; alpha =

(sparse(1,1,1,N,N) + sparse(3:N,2:N-1,1,N,N)) – (1 – cos(theta))*sparse(2,1:N,k.′,N,N).
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magnetization within the active region at time tn+1:

Mn+1
z ({kn}) = kT ·Mn+1

z = kT · α′ ·Mn
z = kT · (α′)n ·M0

z

= M0[k
T · (α)n · u0]e−tn/T1 , (6.243)

where

u0 =




1

0

0

0
...

0




. (6.244)

The signal after each pulse is:

S(t+n ) = S0 sin θ[k
T · (α)n · u0]e−tn/T1 , (6.245)

where S0 is the magnitude of the signal that would be detected after a 90◦ pulse applied to

the initial z-magnetization.

Fig. 6.14 shows the simulated depletion of the signal observed immediately after

each pulse in the case of a constant tip angle of θ = 22.5◦ in the presence of longitudinal

relaxation with fast diffusion (k1 = 0.23) in the extended diffusion model (dash–dot line).

The signal decay is non-exponential and is slower than in the case of fast diffusion with

local equilibration (dashed line) because the magnetization in the active region of the tube

is continually refreshed by a possibly distant external reservoir of undepleted magnetization.
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Note that under the conditions considered here the diffusion nearly nullifies the depletion

of signal due to the action of rf pulses that have a fairly large tip angle, i.e., the pure

longitudinal relaxation limit (solid line) is almost recovered. The depletion of signal in the

limit of no diffusion (dotted line) is much more rapid.

Note that the extended diffusion model presented here can fail if the “infinite tube”

approximation fails, i.e., the total length of the experiment is long enough that the diffusion

of the magnetization gradient created in the active region of the tube diffuses far enough to

reflect off the top or bottom of the tube. This occurs when λN−1 = 2
√
D(N − 1)∆ ∼ L if

the active region is at the center of the tube. If the infinite tube approximation fails a full

treatment using Eq. 6.197 is necessary.

Eq. 6.245 can be used to generate the a variable tip angle scheme to generate a

constant signal over the pulse array if the tip angles θn are chosen according to:

θn = sin−1
[ sin θ0

e−tn/T1 [kT ·∏n−1
j=0 α

j
· u0]

]
, (6.246)

where

α
n
= G+ − (1− cos θn)u1k

T , (6.247)

and the product is time-ordered such that α
j
matrices with lower indices j act first:

n−1∏

j=0

α
j
= α

n−1
α
n−2
· · ·α

1
α
0
. (6.248)
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The predictions of the fast diffusion/extended equilibration model (Eq. 6.245)

were checked against an experimental measurement of the decay of Xe-129 signal in a long

(∼ 20 cm) tube. The length of the active region of the tube near the rf coil was 2d ≈ 1.5

cm. Fig. 6.15 shows the measured signal decay versus the predicted decay of Xe-129 at

a pressure of P = 0.9 atm during an array of 200 constant tip-angle pulses of θ ' π/8

spaced by 60 s (k1 = 0.217). The Xe-129 longitudinal relaxation time in this tube was

measured to be T1 = 32.4 minutes in an experiment that immediately preceded the diffusion

experiment. The experimental measurement of the signal decay including diffusion effects

agrees reasonably well with the predictions of the model; e.g., both predict similar non-

exponential decays. The agreement between the experiment and the model becomes very

good if an effective relaxation time of T ∗1 = 25–26 minutes is used in the model. One possible

explanation for the inability of the model to describe the experimental results completely is

that the “infinite tube” approximation failed because the bottom of the tube is only 2 cm

from the center of the active region of the tube (i.e., the distance to the bottom was only

about the size of the active region itself). In that case “reflections” of the magnetization off

the bottom of the tube during diffusion must be considered. It would then be possible for a

volume of depleted magnetization to diffuse out of the active region of the tube and reflect

off the bottom of tube to return once again to the active region, which would accelerate

the observed signal decay as compared to the case in which boundary reflections can be

neglected. If the accelerated decay manifested itself as an effective exponential relaxation,

this may explain the discrepancy between the model and the experiments.

It is interesting to observe that a Fourier transform of the experimentally-observed
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Figure 6.15: Measured decay of signal in a multiple-pulse, constant tip-angle batch Xe
NMR experiment in a long tube compared to a model that incorporates fast diffusion effects
causing an extended equilibration of magnetization. The experimental data are plotted with
a solid line and the results of the model (Eq. 6.245) are plotted with a dash-dot line; the
initial signals are normalized to 1. The 5 mm o.d. J-Young tube was ∼20 cm long and the
rf coil (about 1.5 cm high) was centered ∼ 2 cm from the bottom of the tube. The pulse
array used constant tip-angle pulses of θ ≈ π/8 spaced by 60 s. The Xe-129 longitudinal
relaxation time was measured to be T1 = 34.2 min in a prior experiment that used fewer,
more widely spaced pulses with smaller tip angles in order to minimize the depletion of
longitudinal magnetization.

signal decay in Fig. 6.15 reproduces the same type of distorted (non-Lorentzian) lineshape

observed in the Xe-129-detected DDF indirect H-1 spectrum of water in Fig. 6.12.51 The dis-

torted lineshape in Fig. 6.12 appears to be primarily due to the depletion of non-equilibrium

51Some care should be taken when comparing the Fourier transform (FT) of the data in Fig. 6.15 with the
indirect spectrum in Fig. 6.12. The FT of the data in Fig. 6.15 has width of much less than 1 Hz because
the decay occurs over the timescale of tens of minutes, whereas the width of the H2O resonance in Fig. 6.12
is on the order of tens of Hz. It is important to remember that the spectrum in Fig. 6.12 was acquired
indirectly (point-by-point), i.e., an increment of t1 between two indirect points that might be on the order
of milliseconds could correspond to seconds or minutes of experimental time while a transient acquisition
(or multiple acquisitions if phase cycling is employed) plus recycle delay is performed. Therefore the slow
relaxation of Xe-129 can manifest itself as a much more rapid damping of the indirectly-detected signal.
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Xe-129 longitudinal magnetization due to T1 relaxation and conversion to transverse mag-

netization by rf pulses.

6.7 Detection of nuclear magnetization by atomic magne-

tometry

This section reports the results of a measurement of the nuclear magnetization

of Xe-129 with a frequency-modulated nonlinear magneto-optical rotation (FM NMOR)

atomic magnetometer. Unlike the other parts of this chapter, the work described here is

not related to developing a dipolar field encoding module for remote detection NMR. It is,

however, related to the possibility of developing an optical atomic magnetometry detection

module for remote detection NMR, and thus is appropriately included in this chapter.

Furthermore, atomic magnetometry as applied to the detection of nuclear magnetization

may be viewed as the use of atomic electrons to measure the distant dipolar field of the target

nuclei. In this case the electrons and nuclei are not coherently manipulated using rf pulses

as the nuclei are in the DDF encoding experiments described above, but a discussion of

magnetometric techniques is certainly germane to a discussion of the potential applications

of the nuclear dipolar field.

Atomic magnetometers have existed for a long time; thirty-five years ago Cohen-

Tannoudji et al. first used atomic magnetometry to detect nuclear magnetization in an

experiment that utilized a Rb-87 magnetometer to detect the Larmor precession of optically-

pumped He-3 gas in a separate cell [491]. The work reported here [492] used the FM NMOR

atomic magnetometer built by the Budker group in the UC Berkeley physics department,
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which is further described in Refs. [493, 232, 494, 281]. The Romalis group at Princeton has

also constructed a sensitive atomic magnetometer using a small-volume (0.3 cm3) magne-

tometer cell [495]. Atomic magnetometers compete well with SQUID flux magnetometers

[111] in terms of sensitivity to small magnetic fields and do not require expensive electronics

or cryogenic temperatures for operation. Modern atomic magnetometers can achieve sensi-

tivities of better than 10−11 G/
√
Hz (see Refs. [493, 110, 495] and references therein), i.e.,

in the sub-femtotesla range for a measurement time of one second.

6.7.1 The Berkeley FM NMOR optical pumping magnetometer

The Budker lab magnetometer measures the rotation of the plane of linearly-

polarized laser light passed through an alkali-vapor magnetometer cell. The angle of optical

rotation in the FM NMOR experiment is simply proportional to the magnetic field when that

field is along the direction of the light propagation. Optical rotation due to the presence of a

magnetic field component along the direction of light propagation is also known as Faraday

rotation or the Faraday effect. The Berkeley technique takes advantage of ultra-narrow

dispersion-lineshape resonances in the magnetic field dependence of the optical rotation

[496, 493]; several such resonances in the frequency-modulated version of the experiment

are shown in Fig. 6.16. As can be seen from Fig. 6.16 the magnetometer response has

a linear dependence on deviations of the magnetic field from its value at the center of a

resonance; changes in the magnetic field on the order of µG can result in optical rotations

of 10−3–10−2 rad.

The version of the magnetometer used in this work utilized a 10-cm diameter

paraffin-coated spherical magnetometer cell containing Rb-87 at room temperature (∼1010
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Figure 6.16: Measured dispersive FM NMOR resonances in the Rb-87 D1 line as a function
of applied bias field at a laser modulation frequency of Ωm = 200 Hz. The amplitude of the
longitudinal bias field equals ΩL/(gFµB), where ΩL is the Rb electronic Larmor frequency
in the presence of the bias field, gF is the g-factor of the F = 2 sublevel of the 5 2S1/2 Rb-87
ground state, and µB is the Bohr magneton. The central resonance occurs at ΩL = 0 and
the “satellite” resonances occur at ΩL = ±Ωm/2.

atoms/cm3 number density) and no buffer gas.52 The apparatus is shown in Fig. 6.17.

The atoms were subjected to frequency-modulated 4 µW diode laser light whose mean

frequency Ω0 was locked to the Fg = 2 → Fe = 1 hyperfine transition within the Rb D1

(5 2S1/2 → 5 2P1/2) line using a technique involving an auxiliary Rb vapor cell (not shown).

The optical rotation was measured using a polarizer and analyzer oriented at ∼45◦ relative

52The low Rb density keeps the atomic medium optically thin under resonance conditions, allowing for
the transmission of most of the incident laser light. It also reduces the influence of depolarizing Rb–Rb
spin-exchange collisions which interfere with the magnetic precession of atomic alignment (see the discussion
below). The use of spherical optical cells is advantageous in magnetometry applications because the self-
dipolar field due to a uniform magnetization of the Rb atoms would be zero in this geometry (after making
the Lorentz sphere correction, see the magnetostatic calculations in §6.2.1). The use of spherical cells may
not be as important for the Berkeley FM NMOR magnetometry technique because the optical pumping
primarily creates atomic alignment (see the discussion below) which does not correspond to magnetization.
Additionally, any macroscopic magnetization would be proportional the Rb density, which is is low.
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to each other (a balanced polarimeter); the transmission through the analyzer was recorded

using two photodiodes in a scheme that allows the acquisition of in-phase and quadrature

(90◦ out-of-phase) signals. The magnetometer cell was surrounded by a four-layer magnetic

shield that suppressed external magnetic fields by a factor of ∼106.

Figure 6.17: FM NMOR atomic magnetometer used for detecting Xe-129 nuclear magneti-
zation. The abbreviation Bx refers to the bias magnetic field applied across the Rb vapor
cell and PD1 and PD2 refer to photodiodes used to detect the optical rotation.

The source of the nonlinear magneto-optical rotation (NMOR) can be understood

as follows (see also Ref. [110]). A nonlinear optical effect involves at least two light-atom

interactions, e.g., the absorption of a photon changes the atomic polarization and hence

changes the optical properties of the medium, which are subsequently probed by a second

atom-photon interaction. In the case of the NMOR magnetometer the linearly polarized

laser light tuned to the Fg = 2 → Fe = 1 transition optically pumps the Rb atoms into

an aligned state, where the axis of alignment is along the direction of light polarization.

Atomic alignment is the analog of what is known as quadrupolar order in NMR (see §5).
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Define the direction of light propagation to be in the +z-direction and the light polarization

to be along the x-axis. Atoms that are aligned in a particular direction (e.g., along the x-

axis) will not further absorb light polarized in that direction, but will absorb the orthogonal

polarization (i.e., along the y-axis).53 This differential between absorption coefficients of

orthogonal light polarizations is called linear dichroism. If there is a magnetic field in the

z-direction (parallel to the light propagation) the atomic alignment axis will precess in the

x–y plane around the magnetic field. This causes a rotation of the axis of linear dichroism,

which in turn rotates the plane of polarization of the light during its transmission through

the atomic vapor [221]. At higher light powers the combination of the Zeeman effect due

to the magnetic field along z and the quadratic Stark effect due to the light field along

x causes periodic interconversion of the atomic polarization of alignment along the x-axis

into orientation (analogous to magnetization in NMR) along the z-axis and back again

[232, 221, 240] (see §5). The presence of atomic orientation parallel to the direction of

light propagation creates circular birefringence, i.e., the indices of refraction and hence the

phase velocities of right- or left-circularly polarized light components differ. This causes a

relative phase shift of the two components as the light passes through the atomic medium,

which rotates the plane of linear polarization. The NMOR due to both linear dichroism

and circular birefringence requires the creation of ground state polarization (coherence) via

optical pumping.54

53This is a generalization; the actual effects can be more complicated.
54In addition to these two mechanisms of nonlinear optical rotation there is also a mechanism of Faraday

rotation that is linear, i.e., the atoms need not first be polarized (aligned or oriented) by the light in order
to exhibit optical rotation when probed [110]. The presence of a magnetic field along z causes a splitting
of the hyperfine sublevels due to the Zeeman effect, and the resultant detuning of the components from
the zero-field resonance causes a difference in the indices of refraction for right- and left-circularly polarized
light. This circular birefringence leads to a rotation of the plane of light polarization; there is also a linear
circular dichroism effect that induces ellipticity of the light. The light power used in the magnetometry
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The NMOR magnetometer described above uses the same laser beam to con-

tinuously optically pump (polarize) the system while simultaneously probing the optical

rotation. Once an atom is optically pumped the paraffin coating of the magnetometer cell

enables the polarization to survive many wall collisions before its polarization is probed

as it transits the laser beam again. The long lifetime of the ground-state polarization is

the source of the ultra-narrow resonances in the magnetic field dependence of the optical

rotation. The extreme narrowness of these resonances is what makes the magnetometer so

sensitive to small changes in the magnetic field; a sharp line results in a large change in

optical rotation given a relatively small change in magnetic field. Alternatively, the long

lifetimes of the ground state coherences allow them to evolve for a long time in the magnetic

field and therefore cause the light to acquire a relatively large angle of rotation when the

atomic polarization is probed.

The latest generation of the Berkeley NMOR magnetometer utilizes a frequency

modulation of the laser in the presence of a bias magnetic field applied parallel to the

direction of light propagation. Fig. 6.16 depicts the measured FM NMOR resonances as

a function of bias field when the modulation frequency is set to Ωm/2π = 200 Hz. The

central resonance is the zero field resonance and the “satellite” resonances occur at the

condition Ωm = 2|ΩL|, where ΩL is the Larmor frequency of the ground state electrons in

the presence of the bias field.55 The source of this resonance in the case of linear dichroism is

the modulation of the optical properties of the atomic medium at frequency 2ΩL due to the

experiments is strong enough that the NMOR dominates the linear magneto-optical rotation.
55The Larmor frequency is ΩL = gFµBB, where B is the value of the bias magnetic field, the Landé

g-factor of an electron in the Fg = 2 hyperfine level of the Rb-87 5 2S1/2 ground state is gF = 1/2, and
the Bohr magneton is µB/2π = 1.4 MHz/G (or 14 GHz/T). Therefore it can be seen that the condition
Ωm = 2|ΩL| is satisfied when B ≈ ±140 µG for Ωm/2π = 200 Hz.
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Larmor precession of atomic alignment.56 The theory [232, 281] of alignment-to-orientation

conversion (the source of circular birefringence in NMOR) has not been fully developed yet;

this effect may not contribute to the FM resonances. During the magnetometry experiments

the bias field was fixed to Bz = 140 µG and the laser modulation frequency was locked to

the center of the Ωm = 2ΩL resonance, leading to values of Ωm ≈ 200 Hz in the presence of

the net field inside the magnetic shield. The net field was a combination of the dominant

bias field, the field to be measured, and any other residual magnetic field contributions.

The optical rotation was measured using lock-in detection at the first harmonic of the

modulation frequency Ωm. The optical rotation was not measured on the in-phase channel

that exhibits dispersive lineshapes—for which the optical rotation is zero at the centers

of the resonances—but rather on a π/2 phase-shifted (quadrature) channel that exhibits

absorptive lineshapes, for which the optical rotation is maximal at the centers of the FM

resonances [494]. The FM technique is useful because it can extend the dynamic range

of the magnetometer so that it can detect magnetic fields below the µG range on top of

a background field (such as Earth’s field) on the order of even ∼ 1 G, rather than just

detecting µG or smaller deviations from zero field. The use of a dominant bias field also

renders the scalar NMOR magnetometer linearly sensitive to magnetic fields parallel to the

direction of light propagation (Faraday effect) and relatively insensitive to transverse fields

(Voigt effect) [493]. The ability of the FM technique to measure resonances away from the

zero-frequency resonance also can help to avoid some low-frequency noise.

56Atomic alignment, having the transformation properties of a rank-2 spherical tensor, returns to its
original state after every half-Larmor period during rotation about the orthogonal magnetic field, which
causes the modulation at frequency 2ΩL.
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6.7.2 Detection of hyperpolarized Xe-129 gas by atomic magnetometry

The FM NMOR magnetometer was used to detect the nuclear magnetization of

hyperpolarized xenon gas produced by the batch spin-exchange optical pumping method

described in §6.4.1. The basic magnetometer apparatus had to be modified slightly to

accommodate the xenon experiments. The hole in the magnetic shielding permitted the

introduction of a custom sapphire sample tube closed with a spring-loaded titanium valve;

the overall dimensions of the tube were 6.4 mm outer-/4.8 mm inner-diameter by 140 mm

long. The tube was designed to operate at gas pressures of up to 30 atm and the tube

materials were chosen to ensure a long xenon relaxation time [497]. A piercing solenoid

was built to accommodate the sample tube (Fig. 6.17) in order to avoid depolarization of

the xenon spins as they were moved from the laboratory magnetic environment (Earth field

∼ 0.5 G) to the zero field environment within the magnetic shield. The tube was inserted

into the part of the solenoid that was outside the magnetic shield and the DC solenoid field

was increased to ∼ 2 G (large enough to dominate any Earth field contributions) before

the tube was pushed inside the shield. Once the sample tube was in place next to the

magnetometer cell the solenoid field was reduced to 0.45 G, which was small enough to

induce an almost negligible magnetic field due to the magnetic susceptibility polarization

of the tube (primarily from the titanium valve), but large enough that the xenon spins

remained magnetized along the tube axis during the course of the measurement. The

ability to apply a magnetic field to the xenon while it is within the magnetic shielding is

important for magnetic resonance experiments (not reported here). The constant magnetic

field produced by the solenoid at the position of the magnetometer cell (i.e., the “leakage



6.7. DETECTION OF NUCLEAR MAGNETIZATION BY ATOMIC
MAGNETOMETRY 529

field”) was reduced by a factor of ≈2 × 105 (as determined by an auxiliary measurement)

compared to the field inside the solenoid. This leakage field was smaller than and mostly

transverse to the 140 µG bias field at the position of the magnetometer cell and therefore the

FM NMOR measurement was largely insensitive to it. An internal coil set was used to null

the leakage field during the xenon experiment in order to make sure it did not contribute

to the measurement.

The version of the FM NMOR magnetometer described here was not designed with

the intent to measure xenon nuclear magnetization, so it is not geometrically optimized for

maximum sensitivity. Even when the sample tube is optimally placed the xenon dipolar

field falls off rapidly over the 10-cm diameter cell. A calibration solenoid of the same

dimensions as the sample tube that generated a known current was used to measure a

geometric suppression factor of ∼5000 that is equal to the ratio of the macroscopic dipolar

field inside the sample tube to the average field sensed by the magnetometer.

Hyperpolarized Xe-129 gas in the range of 4–8% polarization and ∼ 5 atm total

xenon pressure was produced in a natural abundance xenon mixture using the Pines lab

MITI spin-exchange polarizer by the batch mode (freeze–thaw) method. NMR investiga-

tions of the xenon in the custom sample tube were performed at 7.05 Tesla on a Varian

Unity Inova spectrometer using a Varian 10 mm broadband solution-state NMR probe. The

custom 10 mm probe had three rf channels, H-1/F-19, broadband, and Xe-129, where the

broadband channel was used for Xe-129 detection due to its higher sensitivity. The longitu-

dinal relaxation time in the sapphire tube was measured to be T1 ∼ 45 minutes at 7.05 T.

The Earth-field T1 was estimated to be . 15 minutes by allowing the xenon magnetization
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to relax outside the magnet and periodically returning it to the magnet for measurement.57

When the FM NMOR measurements were conducted, immediately after thawing

the hyperpolarized xenon gas was carried by hand from the chemistry complex to the

magnetometer in the physics building (∼ 5 minute transport time).58 Fig. 6.18 shows

an example of the measurement of the longitudinal relaxation of Xe-129 magnetization

by atomic magnetometry. The measurement time was about 3 s per data point and the

calculated initial average magnetic field across the magnetometer cell was 10–20 nG with

a signal-to-noise ratio of about 10. An exponential decay of the signal was observed with

a time constant of 13.9 ± 1.5 minutes that was attributed to longitudinal relaxation in the

near-zero-field environment. The sample tube was moved in and out of position near the

magnetometer cell (always remaining within the magnetic shield) in intervals of about one

minute near the cell and one minute removed from it. The geometric suppression factor was

about two orders of magnitude higher when the tube was away from the cell than when the

tube was positioned optimally, which rendered the observed signal effectively zero during

these times. This movement of the sample tube caused a modulation of the magnetization

signal which made the signal easier to discriminate from slow background drifts (which were

subtracted from the data in Fig. 6.18). Fig. 6.18 exhibits a small (< 1 nG) average offset

from zero field due to the magnetic susceptibility contribution of the sample tube to the

observed field.

An estimate of the size of the dipolar field of the Xe-129 sample is consistent

with the measured value. The macroscopic magnetic field inside a long cylinder of uniform

57Care should be taken not to accidentally depolarize the sample, e.g., by bringing it too close to an active
computer monitor.
58Speedy transport was ensured by the efforts of J. Granwehr.
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Figure 6.18: Measurement of the nuclear magnetization of Xe-129 gas as a function of
time by atomic magnetometry. The discrimination of the Xe-129 longitudinal relaxation
from the background signal was aided by moving the sample approximately every minute
to a position of near-zero sensitivity of the magnetometer 14 cm away from the position of
optimum sensitivity. The slow drift of the background signal due to temperature-related
changes of the residual magnetization of the magnetic shielding was subtracted from the
data. The small < 1 nG offset of the decay curve from zero magnetic field was due to the
diamagnetic susceptibility contribution of the sample tube.

magnetization M = Mz̃ is B = µ0Mz̃, where the local Lorentz field correction has been

neglected. The macroscopic magnetization of N identical spin-1/2 nuclei may be calculated

according to Eq. 1.104 using γXe129/2π = −11.86 MHz/T (or −1.186 kHz/G) and typical

values of the polarization (ζ = 0.05) and spin density (N/V = xP/kBT = 3.2 × 1025

atoms/m3 for an ideal gas with pressure P = 5 atm, temperature T = 298 K, and Xe-129

mole fraction x = 0.264), resulting in a magnetic field of |B| ' 80 µG inside the sample

tube. Therefore the average field sensed by the magnetometer is estimated to be ≈15 nG

when the factor of ∼ 5000 geometric suppression factor is accounted for. This calculation
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used the value of the magnetization immediately after polarization; the value to which the

magnetization has relaxed by the time it has been carried to the magnetometer is expected

to be somewhat smaller, perhaps ≈ 10 nG depending on the travel time. A 10% initial

polarization would correspond to an average field of ≈ 20 nG. These values are consistent

with the experimental results (Fig. 6.18).

As was noted earlier, the FM NMOR magnetometer used in this work was not

optimized for xenon measurements. In particular, the geometric suppression factor can

be increased by some three orders of magnitude by using a smaller magnetometer cell

located as close as possible to the xenon sample. Furthermore, the magnetic noise observed

within the magnetic shield in this work was some two orders of magnitude higher than

the projected intrinsic sensor noise of the instrument of 10−11 G/
√
Hz or less [493, 494].

This noise can be suppressed by employing a gradiometric arrangement of magnetic sensors.

A next-generation FM NMOR gradiometer is already under construction; it employs two

small (1-cm diameter by 1-cm length) cylindrical magnetometer cells in gradiometric mode

within five-layer µ-metal magnetic shielding. It is hoped that Xe-129 remote detection

experiments (not necessarily dipolar field-encoded) can be carried out with this new atomic

magnetometer.

6.8 Conclusions

This chapter reviewed the effects of the nuclear distant dipolar field (DDF) in

solution-state NMR and examined the feasibility of performing NMR remote detection ex-

periments that used the DDF to encode the spectral information of an analyte of interest
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in the magnetization of a nearby mobile sensor nucleus. The principle of the recently de-

veloped remote detection detection method is to separate the NMR encoding and detection

steps both physically and temporally so that each step can be optimized independently;

the NMR information is transported from the encoding region to the detection region by

means of a mobile carrier nucleus such as hyperpolarized Xe-129 gas. The original version of

the remote detection experiment was not able to encode spectral information of an analyte

other than the carrier nucleus itself. The use of a DDF encoding module would for the first

time allow remote detection spectroscopy to be performed on a potentially arbitrary ana-

lyte; the long-range nature of the dipolar field permits this encoding to take place without

having to mix the mobile carrier with the analyte. Remote detection experiments were not

actually performed in this work, but a detailed theoretical and experimental analysis of the

prospects of DDF-encoding remote detection was conducted.

The theory of the distant dipolar field in solution was reviewed using both the

classical and the quantum-mechanical formalism. The DDF phenomena were interpreted

classically as the dynamics of the bulk nuclear magnetization in the presence of a macro-

scopic magnetic field created by the nuclear paramagnetism. The quantum-mechanical

interpretation ascribes these dynamics to the evolution of the nuclear polarization due to

the short-lived coherent action of a macroscopic number of nuclear dipole–dipole couplings.

DDF effects in highly-magnetized samples were seen to be the cause of some interesting nu-

clear spin dynamics such as resonance shifts and multiple spin echoes, which were described

theoretically and illustrated with the results of some H-1 NMR experiments on water.

An analysis of the basic version of the heteronuclear DDF indirect detection ex-
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periment (invented by previous workers) was conducted; the predicted signal was calculated

and the limitations of this technique were reviewed. The DDF indirect detection experi-

ment forms the cornerstone of the DDF remote detection encoding module; it is the means

by which the spectral information of an analyte nucleus is transferred through the analyte

dipolar field to a sensor heteronucleus. A modification of the basic DDF indirect experiment

for use as an encoding module in remote detection NMR experiments was proposed and its

advantages and limitations were discussed.

The remote detection experiments that have been conducted to date have used

hyperpolarized Xe-129 gas as the mobile information carrier, so an investigation of the

use of xenon in DDF experiments was conducted. The process of spin-exchange optical

pumping of Xe-129 was reviewed and the relative merits of the batch-mode xenon NMR

method (which was used in the proof-of-principle experiments here) versus the flow-mode

method (which has been used in remote detection experiments) were compared. Some new

insights were developed about the nature of DDF experiments in which the analyte and

sensor are physically separated (i.e., a coaxial tube geometry). The interpretation of exper-

imental measurements of the DDF indirect detection signal as a function of magnetization

modulation wavelength in the coaxial tube configuration was aided by a qualitative anal-

ysis using a computational method for calculating the dipolar field that is applicable to

cylindrically-symmetric geometries. This method has not been used thus far in other NMR

DDF studies. A new theoretical model incorporating the effects of rf pulses and gas dif-

fusion was developed to explain an unexpected decay profile of xenon hyperpolarization in

batch-mode experiments in a long sample tube. The model was compared to experimental
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results with some success and a technique for increasing the indirect-dimension resolution

of DDF-encoded xenon spectra in such samples was proposed.

The H-1 NMR spectrum of water was detected through the proton dipolar field in a

batch-mode experiment using a separated hyperpolarized Xe-129 gas sensor in a coaxial tube

configuration at a magnetic field of 7.05 T. The linewidth of the indirect spectrum of water

was unfavorably broad due to the depletion of xenon hyperpolarization in the batch mode

experiment, so a P-31 sensor was used in a proof-of-principle acquisition of a J-resolved F-19

spectrum of 2,2,2-trifluorethanol in the coaxial tube configuration. Although in principle the

use of a highly magnetized sensor nucleus such as hyperpolarized Xe-129 gas could permit

the sensitive detection of a weakly-magnetized analyte, the observed sensitivity of the DDF

indirect detection experiments was quite low when compared to direct NMR detection.

The DDF encoding method is limited by the long times that are required to encode indirect

spectra of dilute analytes with full sensitivity. The experiment was also predicted to be

susceptible to the effects of diffusion of the sensor, self-dipolar field nutation of the sensor,

radiation damping of the sensor, multiplicative noise in the indirect dimension, and the

limited range of the dipolar field. All of these effects tend to reduce the sensitivity of the

experiment; a few but not all of them could likely be eliminated or reduced by the use of

remote detection methodology and careful experimental design. One other drawback of the

DDF encoding method is that it requires not only the sensor but also the analyte to be highly

magnetized, which means that the DDF encoding must be conducted by polarizing the

analyte at high magnetic fields unless another source of creating high nuclear polarizations

is available. At this time it is difficult to foresee an application in which DDF-encoded
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remote detection spectroscopy would be superior to direct NMR detection. The DDF

encoding method proposed here does however remain as a novel extension of the remote

detection NMR methodology.

In addition to the DDF remote detection encoding module described above, ex-

periments were conducted to assess the ability of an optical atomic magnetometer built by

a physics group at Berkeley to detect nuclear magnetization. Atomic magnetometry has

applicability as a detection module for the remote detection NMR experiment; in particu-

lar, it is performed at low magnetic fields, obviating the need for high-field superconducting

magnets if the nucleus can be sufficiently polarized by an alternate means. The Berkeley

magnetometer was successfully used to measure the T1 decay of ∼5%-polarized Xe-129 gas

at ∼5 atm total xenon pressure with a signal-to-noise ratio of ∼10 using a detection time of

3 s per point. It is estimated that this demonstrated sensitivity can be improved by two to

three orders of magnitude by using an optimized gradiometer; the prospects of implementing

a remote detection experiment using this type of detection module are promising.

Finally, a brief digression on the theory of DDF effects on quadrupolar (spin I >

1/2) nuclei was made. This topic has not been explored in the literature. It was found that

DDF effects in these systems should be identical to those observed in spin-1/2 systems when

the only nuclear polarization present is in the form of magnetization, but some interesting

dynamics may occur when the quadrupolar nuclei are prepared in a state of polarization

that corresponds to a combination of classical magnetization and higher-rank polarization.

Some speculations were made about the feasibility of observing these effects experimentally;

the prospects are daunting.
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hyperpolarized Xe-129 gas.” Appl. Phys. B 68, 93 (1999).



BIBLIOGRAPHY 589

[417] Anthony L. Zook, Bhavin B. Adhyaru, and Clifford R. Bowers. “High capacity pro-

duction of > 65% spin polarized xenon-129 for NMR spectroscopy and imaging.” J.

Magn. Reson. 159, 175 (2002).

[418] Kevin Knagge, Jonathan Prange, and Daniel Raftery. “A continuously recirculating

optical pumping apparatus for high xenon polarization and surface NMR studies.”

Chem. Phys. Lett. 397, 11 (2004).

[419] D. Raftery, H. Long, T. Meersmann, P.J. Grandinetti, L. Reven, and A. Pines. “High-

field NMR of adsorbed xenon polarized by laser pumping.” Phys. Rev. Lett. 66, 584

(1991).

[420] Eike Brunner. “Enhancement of surface and biological magnetic resonance using

laser-polarized noble gases.” Concepts Magn. Reson. 11, 313 (1999).

[421] Henry W. Long. Applications of Highly Spin-Polarized Xenon in NMR. Ph.D. disser-

tation, UC Berkeley (September 1993).

[422] Alan Gallagher. “Collisional depolarization of the Rb 5p and Cs 6p doublets.” Phys.

Rev. 157, 68 (1967).

[423] B.R. Bulos and W. Happer. “Nuclear-spin inertia and pressure broadening of 2P1/2

Hanle-effect signals.” Phys. Rev. A 4, 849 (1971).

[424] L. Wilmer Anderson, Francis M. Pipkin, and James C. Baird Jr. “N-14–N-15 hyperfine

anomaly.” Phys. Rev. 116, 87 (1959).

[425] A.R. Young, S. Appelt, A. Ben-Amar Baranga, C. Erickson, and W. Happer. “Three-



BIBLIOGRAPHY 590

dimensional imaging of spin polarization of alkali-metal vapor in optical pumping

cells.” Appl. Phys. Lett. 70, 3081 (1997).

[426] A. Ben-Amar Baranga, S. Appelt, C.J. Erickson, A.R. Young, and W. Happer.

“Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells.”

Phys. Rev. A 58, 2282 (1998).

[427] N.D. Bhaskar, J. Camparo, W. Happer, and A. Sharma. “Light narrowing of magnetic

resonance lines in dense, optically pumped alkali-metal vapor.” Phys. Rev. A 23, 3048

(1981).

[428] A. Omont. “Relaxation par collisions des états excités dun atome.” J. Physique 26,

26 (1965).

[429] Frank A. Franz and Judy R. Franz. “Excited-state mixing in the optical pumping of

alkali-metal vapors.” Phys. Rev. 148, 82 (1966).

[430] Dieter Suter. “Optically excited Zeeman coherences in atomic ground states: Nuclear-

spin effects.” Phys. Rev. A 46, 344 (1992).

[431] Richard A. Beth. “Mechanical detection and measurement of the angular momentum

of light.” Phys. Rev. 50, 115 (1936).

[432] W. Heitler. The Quantum Theory of Radiation. Dover Publications, Inc., New York,

NY, 3rd edition (1984 (reproduced from 1954 Oxford 3rd edition)).

[433] Robert G. Mortimer. Physical Chemistry. Benjamin/Cummings Publishing Company,

Inc., Redwood City, CA (1993).



BIBLIOGRAPHY 591

[434] Shang yi Ch’en and Makoto Takeo. “Broadening and shift of spectral lines due to the

presence of foreign gases.” Rev. Mod. Phys. 29, 20 (1957).

[435] M.E. Wagshul and T.E. Chupp. “Optical pumping of high-density Rb with a broad-

band dye laser and GaAlAs diode laser arrays: Application to He-3 polarization.”

Phys. Rev. A 40, 4447 (1989).

[436] T.E. Chupp, M.E. Wagshul, K.P. Coulter, A.B. McDonald, and W. Happer. “Polar-

ized, high-density, gaseous He-3 targets.” Phys. Rev. C 36, 2244 (1987).

[437] F.A. Franz. “Enhancement of alkali optical pumping by quenching.” Phys. Lett. A

27, 457 (1968).

[438] J.A. Bellisio, P. Davidovits, and P.J. Kindlmann. “Quenching of rubidium resonance

radiation by nitrogen and the noble gases.” J. Chem. Phys. 48, 2376 (1968).

[439] E.S. Hrycyshyn and L. Krause. “Inelastic collisions between excited alkali atoms and

molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with

H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6.” Can. J. Phys. 48, 2761 (1970).

[440] D. Tupa, L.W. Anderson, D.L. Huber, and J.E. Lawler. “Effect of radiation trapping

on the polarization of an optically pumped alkali-metal vapor.” Phys. Rev. A 33,

1045 (1986).

[441] Muhammad G. Mortuza, Satyanarayana Anala, Galina E. Pavlovskaya, Todd J.

Dieken, and Thomas Meersmann. “Spin-exchange optical pumping of high-density

xenon-129.” J. Chem. Phys. 118, 1581 (2003).



BIBLIOGRAPHY 592

[442] Thad G. Walker. “Estimates of spin-exchange parameters for alkali-metal–noble-gas

pairs.” Phys. Rev. A 40, 4959 (1989).

[443] S.R. Schaefer, G.D. Cates, and W. Happer. “Determination of spin-exchange pa-

rameters between optically pumped rubidium and Kr-83.” Phys. Rev. A 41, 6063

(1990).

[444] I.A. Nelson and T.G. Walker. “Rb–Xe relaxation in dilute Xe mixtures.” Phys. Rev.

A 65, 012712 (2001).

[445] N.D. Bhaskar, J. Pietras, J. Camparo, W. Happer, and J. Liran. “Spin destruction

in collisions between cesium atoms.” Phys. Rev. Lett. 44, 930 (1980).

[446] C.J. Erickson, D. Levron, W. Happer, S. Kadlecek, B. Chann, L.W. Anderson, and

T.G. Walker. “Spin relaxation resonances due to the spin-axis interaction in dense

rubidium and cesium vapor.” Phys. Rev. Lett. 85, 4237 (2000).

[447] S. Kadlecek, T. Walker, D.K. Walter, C. Erickson, and W. Happer. “Spin-axis re-

laxation in spin-exchange collisions of alkali-metal atoms.” Phys. Rev. A 63, 052717

(2001).

[448] C.C. Bouchiat, M.A. Bouchiat, and L.C.L. Pottier. “Evidence for Rb–rare-gas

molecules from the relaxation of polarized Rb atoms in a rare gas. Theory.” Phys.

Rev. 181, 144 (1969).

[449] M.A. Bouchiat, J. Brossel, and L.C. Pottier. “Evidence for Rb–rare-gas molecules

from the relaxation of polarized Rb atoms in a rare gas. Experimental results.” J.

Chem. Phys. 56, 3703 (1972).



BIBLIOGRAPHY 593

[450] X. Zeng, Z. Wu, T. Call, E. Miron, D. Schreiber, and W. Happer. “Experimental de-

termination of the rate constants for spin exchange between optically pumped K, Rb,

and Cs atoms and Xe-129 nuclei in alkali-metal–noble-gas van der Waals molecules.”

Phys. Rev. A 31, 260 (1985).

[451] C.H. Volk, T.M. Kwon, and J.G. Mark. “Measurement of the Rb-87–Xe-129 spin-

exchange cross section.” Phys. Rev. A 21, 1549 (1980).

[452] N.D. Bhaskar, W. Happer, and T. McClelland. “Efficiency of spin exchange between

rubidium spins and Xe-129 nuclei in a gas.” Phys. Rev. Lett. 49, 25 (1982).

[453] N.D. Bhaskar, W. Happer, M. Larsson, and X. Zeng. “Slowing down of rubidium-

induced nuclear spin relaxation of Xe-129 gas in a magnetic field.” Phys. Rev. Lett.

50, 105 (1983).

[454] G.D. Cates, R.J. Fitzgerald, A.S. Barton, P. Bogorad, M. Gatzke, N.R. Newbury, and

B. Saam. “Rb–Xe-129 spin-exchange rates due to binary and three-body collisions at

high Xe pressures.” Phys. Rev. A 45, 4631 (1992).

[455] Charles V. Rice and Daniel Raftery. “Rubidium–xenon spin exchange and relaxation

rates measured at high pressure and high magnetic field.” J. Chem. Phys. 117, 5632

(2002).

[456] Matthew P. Augustine and Kurt W. Zilm. “Optical pumping magnetic resonance in

high magnetic fields: Measurement of high field spin exchange cross sections.” Chem.

Phys. Lett. 280, 24 (1997).



BIBLIOGRAPHY 594

[457] Yuan-Yu Jau, Nicholas N. Kuzma, and William Happer. “Magnetic decoupling of

Xe-129–Rb and Xe-129–Cs binary spin exchange.” Phys. Rev. A 67, 022720 (2003).

[458] Yuan-Yu Jau, Nicholas N. Kuzma, and William Happer. “Measurement of Xe-129–Cs

binary spin-exchange rate coefficient.” Phys. Rev. A 69, 061401(R) (2004).

[459] Robert A. Bernheim. “Spin relaxation in optical pumping.” J. Chem. Phys. 36, 135

(1962).

[460] Z. Wu, T.G. Walker, and W. Happer. “Spin-rotation interaction of noble-gas alkali-

metal atom pairs.” Phys. Rev. Lett. 54, 1921 (1985).

[461] Thad G. Walker, Joseph H. Thywissen, and William Happer. “Spin-rotation interac-

tion of alkali-metal–He-atom pairs.” Phys. Rev. A 56, 2090 (1997).

[462] D.K. Walter, W. Happer, and T.G. Walker. “Estimates of the relative magnitudes of

the isotropic and anisotropic magnetic-dipole hyperfine interactions in alkali-metal–

noble-gas systems.” Phys. Rev. A 58, 3642 (1998).

[463] R.M. Herman. “Theory of spin exchange between optically pumped rubidium and

foreign gas nuclei.” Phys. Rev. 137, A1062 (1965).

[464] Rodger L. Gamblin and Thomas R. Carver. “Polarization and relaxation processes

in He-3 gas.” Phys. Rev. 138, A946 (1965).

[465] T.G. Walker, K. Bonin, and W. Happer. “Electron–noble gas spin-flip scattering at

low energy.” Phys. Rev. A 35, 3749 (1987).



BIBLIOGRAPHY 595

[466] E.R. Hunt and H.Y. Carr. “Nuclear magnetic resonance of Xe-129 in natural xenon.”

Phys. Rev. 130, 2302 (1963).

[467] I.L. Moudrakovski, S.R. Breeze, B. Simard, C.I. Ratcliffe, J.A. Ripmeester, T. Sei-

deman, J.S. Tse, and G. Santyr. “Gas-phase nuclear magnetic relaxation in Xe-129

revisited.” J. Chem. Phys. 114, 2173 (2001).

[468] B. Chann, I.A. Nelson, L.W. Anderson, B. Driehuys, and T.G. Walker. “Xe-129–Xe

molecular spin relaxation.” Phys. Rev. Lett. 88, 113201 (2002).

[469] L.D. Schearer and G.K. Walters. “Nuclear Spin-Lattice Relaxation in the Presence

of Magnetic-Field Gradients.” Phys. Rev. 139, A1398 (1965).

[470] G.D. Cates, S.R. Schaefer, and W. Happer. “Relaxation of spins due to magnetic field

inhomogeneities in gaseous samples at low magnetic fields and low pressures.” Phys.

Rev. A 37, 2877 (1988).

[471] K.C. Hasson, G.D. Cates, K. Lerman, P. Bogorad, and W. Happer. “Spin relaxation

due to magnetic field inhomogeneities: Quartic dependence and diffusion-constant

measurements.” Phys. Rev. A 41, 3672 (1990).

[472] G.D. Cates, D.R. Benton, M. Gatzke, W. Happer, K.C. Hasson, and N.R. Newbury.

“Laser production of large nuclear-spin polarization in frozen xenon.” Phys. Rev.

Lett. 65, 2591 (1990).

[473] M. Gatzke, G.D. Cates, B. Driehuys, D. Fox, W. Happer, and B. Saam. “Extraordi-

narily slow nuclear spin relaxation in frozen laser-polarized Xe-129.” Phys. Rev. Lett.

70, 690 (1993).



BIBLIOGRAPHY 596

[474] R.J. Fitzgerald, M. Gatzke, David C. Fox, G.D. Cates, and W. Happer. “Xe-129 spin

relaxation in frozen xenon.” Phys. Rev. B 59, 8795 (1999).

[475] N.N. Kuzma, B. Patton, K. Raman, and W. Happer. “Fast nuclear spin relaxation in

hyperpolarized solid Xe-129.” Phys. Rev. Lett. 88, 147602 (2002).

[476] William W. Warren Jr. and R.E. Norberg. “Multiple-pulse nuclear-magnetic-

resonance transients of Xe-129 and Xe-131 in solid xenon.” Phys. Rev. 154, 277

(1967).

[477] N. Bloembergen, S. Shapiro, P.S. Pershan, and J.O. Artman. “Cross-relaxation in

spin systems.” Phys. Rev. 114, 445 (1959).

[478] Harold T. Stokes and David C. Ailion. “Zeeman-quadrupole cross relaxation between

two nuclear spin species.” J. Chem. Phys. 70, 3572 (1979).

[479] Stephen Lang, Igor L. Moudrakovski, Christopher I. Ratcliffe, John A. Ripmeester,

and Giles Santyr. “Increasing the spin-lattice relaxation time of hyperpolarized xenon

ice at 4.2 K.” Appl. Phys. Lett. 80, 886 (2002).

[480] B. Driehuys, G.D. Cates, and W. Happer. “Surface relaxation mechanisms of laser-

polarized Xe-129.” Phys. Rev. Lett. 74, 4943 (1995).

[481] C.A. Corum and A.F. Gmitro. “Spatially varying steady state longitudinal magneti-

zation in distant dipolar field-based sequences.” J. Magn. Reson. 171, 131 (2004).

[482] MATLAB v. 7. The MathWorks, Inc., Natick, MA (2004).



BIBLIOGRAPHY 597

[483] Wilson Barros Jr., Paulo Loureiro de Sousa, and M. Engelsberg. “Low field inter-

molecular double-quantum coherence imaging via the Overhauser effect.” J. Magn.

Reson. 165, 175 (2003).

[484] George B. Arfken and Hans J. Weber. Mathematical Methods for Physicists. Aca-

demic Press, Inc., San Diego, CA, 4th edition (1995).

[485] Howard S. Cohl and Joel E. Tohline. “A compact cylindrical Green’s function expan-

sion for the solution of potential problems.” Astrophys. J. 527, 86 (1999).

[486] Howard S. Cohl, A.R.P. Rau, Joel E. Tohline, Dana A. Browne, John E. Cazes, and

Eric I. Barnes. “Useful alternative to the multipole expansion of 1/r potentials.”

Phys. Rev. A 64, 052509 (2001).

[487] Michael K. Stehling. “Improved signal in “snapshot” FLASH by variable flip angles.”

Magn. Reson. Imag. 10, 165 (1992).

[488] J.P. Mugler III, F.H. Epstein, and J.R. Brookeman. “Shaping the signal response

during the approach to steady-state in 3-dimensional magnetization-prepared rapid

gradient-echo imaging using variable flip angles.” Magn. Reson. Med. 28, 165 (1992).

[489] Lei Zhao, Robert Mulkern, Ching-Hua Tseng, Daniel Williamson, Samuel Patz,

Robert Kraft, Ronald L. Walsworth, Ferenc A. Jolesz, and Mitchell S. Albert.

“Gradient-echo imaging considerations for hyperpolarized Xe-129 MR.” J. Magn.

Reson. B 113, 179 (1996).

[490] J. Crank. The Mathematics of Diffusion. Oxford University Press, Oxford, UK, 2nd

edition (1975).



BIBLIOGRAPHY 598

[491] C. Cohen-Tannoudji, J. DuPont-Roc, S. Haroche, and F. Laloë. “Detection of the
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Appendix A

Spherical tensor operators and the

Wigner-Eckart theorem

The spherical tensor operator formalism is very useful in the quantum theory of

angular momentum, particularly when rotations are concerned. The concept of spherical

tensors will be introduced in a series of abstractions from the more familiar concept of

Cartesian tensors, and this formalism will be extended to describe quantum-mechanical

spherical tensor operators. Afterward, the Wigner-Eckart theorem will be described as an

example of the utility of the spherical tensor operator formalism. Appendix B will discuss

the properties of spherical tensors under rotations.
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A.1 Cartesian Tensors and Dyadics

As a first introduction to tensors, we first consider the example of the classical

energy of a magnetic dipole moment interacting with a locally induced magnetic field. This

energy may be written as:

Uσ = −µT · σ ·B0 = −µT ·Bσ
ind, (A.1)

where µ is the magnetic dipole moment vector (represented by a column vector, where the

row vector µT is its transpose), B0 is the vector of the externally applied magnetic field,

and σ is a tensor that describes the ability of B0 to cause the local environment induce a

magnetic field Bσ
ind = σ ·B0 at the position of the magnetic dipole. Eq. A.1 is the completely

classical version of the usual NMR chemical shielding Hamiltonian. This equation does not

make reference to any particular coordinate system, but it can be cast into a representation

in terms of its Cartesian components if some Cartesian coordinate system {x, y, z} is chosen:

Uσ = −
∑

i,j∈{x,y,z}
µi σij B0j , (A.2)

where the vector and tensor components are defined by µi = ĩ
T · µ, B0j = j̃

T · B0, and

σij = ĩ
T · σ · j̃. The vectors ĩ and j̃ are Cartesian unit basis vectors from the set {x̃, ỹ, z̃}.
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Using this notation the vectors and tensors can be written in terms of their components as:

µT =
∑

i

µi ĩ
T

B0 =
∑

j

B0j j̃

σ =
∑

i,j

σij ĩ
T
j̃, (A.3)

where ĩ
T
j̃ is the outer product between the vectors ĩ

T
and j̃. When the tensor σ is written

in this way, it takes in a vector from either side and returns a scalar (i.e., a number), which

in this case is the energy Uσ. This is due to the direct product structure of this definition of

σ. Note that the tensor σ is described by two independent Cartesian indices, the vectors µ

and B0 take one Cartesian index each, and the scalar quantity Uσ has no Cartesian indices.

These entities are referred to as rank-2, rank-1, and rank-0 Cartesian tensors, respectively.

A rank-n Cartesian tensor has n Cartesian indices, and as a rule can be combined with n

vectors (rank-1 tensors) to form a scalar (rank-0 tensor) through a process called tensor

contraction. Eqs. A.1 and A.2 demonstrate how a second-rank Cartesian tensor σ can take

in two vectors µ and B to form a scalar Uσ by contraction. In fact, Eq. A.1 also shows

how a rank-1 tensor and another rank-1 tensor can be combined to give a scalar through a

special case of tensor contraction: i.e., the ordinary dot product µT ·Bσ
ind.

There is another way to reach Eq. A.2, which begins with a definition of σ in

terms of direct products (or dyad products) of the Cartesian basis vectors rather than in

terms of outer products. The direct product of ĩ and j̃ [29, §10.1] is written ĩ ⊗ j̃ ≡ ĩ j̃.1

1If the reader is more familiar with linear algebra manipulations through the Dirac notation of quantum

mechanics, the following associations may be helpful: ĩ → |i〉, ĩT → 〈i|, ĩT j̃ → |i〉〈j|, σ → σ̂, ĩ
T · j̃ = 〈i|j〉,



A.1. CARTESIAN TENSORS AND DYADICS 603

The double-underline notation is to show that this product can be treated as a second-rank

Cartesian tensor, since it has two Cartesian indices. A second-rank Cartesian tensor formed

from two vectors is called a dyadic. Two second-rank Cartesian tensors can be contracted to

give a scalar; for instance, the sums over two unit dyadics in three-dimensional space can be

contracted as
∑

m,n(m̃⊗ ñ)T :
∑

i,j (̃i⊗ j̃) =
∑

m,n;i,j(m̃
T · ĩ)(ñT · j̃) =∑m,n;i,j δm,iδn,j = 3,

which is just a number. The colon represents a generalization of the dot product between

two vectors to a scalar product between two second-rank tensors. Returning to the equations

for Uσ, we write σ (which is a second-rank tensor but not necessarily a dyadic) as a linear

combination of the Cartesian basis dyadics ĩ j̃, and make a dyadic out of the two vectors µ

and B0:

B0 µ = B0 ⊗ µ =
(∑

i

B0i ĩ
)
⊗
(∑

j

µj j̃
)
=
∑

i,j

B0iµj (̃i⊗ j̃)

=
∑

i,j

B0iµj ĩ j̃

σ =
∑

i,j

σij ĩ j̃, (A.4)

where the vector and tensor components are defined as usual. This is an alternative defini-

tion of the quantities in Eq. A.3. Now Eq. A.1 can be rewritten as:

Uσ = −(B0µ)T : σ, (A.5)

ĩ
T · σ · j̃ → 〈i|σ̂|j〉, ĩ ⊗ j̃ = ĩ j̃ → |i〉 ⊗ |j〉 = |i j〉. This analogy is not meant to be taken literally because

these Cartesian tensors are objects in real space, not in a quantum-mechanical Hilbert space. Furthermore,
quantum Hilbert spaces have some properties such as the dual-space relation between bra and ket vectors
that do not apply to vectors in real space.
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which of course recovers Eq. A.2:

Uσ = −
∑

i,j

µiB0j σij , (A.6)

where the following relations hold:

BT : A =
∑

i,j

BjiAij , (A.7)

BT =
∑

i,j

Bji(̃i⊗ j̃)T , (A.8)

where in this case B = −B0µ.

There is no difference between Eq. A.2 and Eq. A.6, since the vector or tensor

components are just numbers and may be taken in any order within the sum. The direct

product method of writing Cartesian tensors is more general than the outer product method

because it can be generalized to tensors with ranks higher than two. For instance, in this way

a product of n vectors on the left can be contracted with a rank-n tensor on the right—much

like the dot product between two vectors—whereas the outer product definition of a second-

rank tensor only accepts one vector from the left and one from the right, and there is no

good way to deal with how a third- or higher-rank tensor accepts vectors. This ambiguity

about how to form Cartesian tensors suggests that it might be more straightforward to

work directly with the tensor components, since the component equations A.2 and A.6 are

equivalent regardless of how the tensors were constructed. In fact, it makes sense to define

a vector (first-rank Cartesian tensor) v as the set of three components {vi} (i ∈ {x, y, z})

and to define a second-rank Cartesian tensor A as the set of nine components {Aij}, where
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the actual numeric values of the components depend on the choice of coordinate system.

In order to pursue this idea further, consider the components {ui} of a vector (first-

rank Cartesian tensor) u, and in particular how these components respond to a rotation of

the system. For instance, a positive 90◦ rotation about the z-axis takes the unit basis vectors

x̃→ ỹ, ỹ → −x̃, and z̃ → z̃, and thus ux → uy, uy → −ux, and uz → uz. Therefore it may

be concluded that the components {ui} of a first-rank tensor u transform under rotations

in the same way as do the unit basis vectors {̃i}. Next, consider some dyadic (second-rank

Cartesian tensor) A = u ⊗ v, where u and v are both vectors. The Cartesian components

of this dyadic are Aij = (̃i j̃)T : A = ĩ
T ·A · j̃ = uivj . Under the same 90◦ rotation about the

z-axis the unit dyadics transform as x̃ x̃→ ỹ ỹ, x̃ ỹ → −ỹ x̃, x̃ z̃ → ỹ z̃, etc. It can easily be

seen from the definition of the {Aij} in terms of ui and vj that Axx → Ayy, Axy → −Ayx,

and Axz → Ayz, etc., which mimics the form of the transformations of the unit dyadics

{̃i j̃ = (̃i⊗ j̃)}. These transformation rules hold even for second-rank tensors A that are not

dyadics (i.e., that are not necessarily made from two vectors). Upon extending the analogy,

the Cartesian components of a third-rank tensor are found to transform under rotations as

do the basis tensors {(̃i⊗ j̃ ⊗ k̃)}, and so on for higher-rank Cartesian tensors. Therefore a

rank-n tensor in three-dimensional Cartesian space can be thought of as a collection of 3n

components that transform into each other as do the rank-n unit basis tensors.

A.2 Spherical Tensors and Tensor Operators

The problem of representing a Cartesian tensor in terms of its Cartesian compo-

nents has already been considered, and the discussed now turns to the problem of generating
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the spherical components of Cartesian tensors. These components can be grouped to form

sets of spherical tensors, and it will be seen how the spherical tensors can be considered

to be stand-alone objects defined by their rotation properties, without making reference

to a definition in terms of Cartesian tensors. Finally, the concept of spherical tensors will

be extended to include spherical tensor operators, which are sets of quantum-mechanical

operators that obey the same transformation rules under rotations in the quantum Hilbert

space as do the spherical tensors under rotations in real space. The theory of these operators

is deeply rooted in the quantum theory of angular momentum [20, §5],[498],[45, §3.10],[29,

§15.3],[499, §11],[500, §17],[484, §4.4]. A good, concise description of spherical tensors and

tensor operators as they apply to NMR is given in Appendix A of the text by Mehring [8];

see also Appendix B.5 of Tl text by Schmidt-Rohr and Spiess [9].

A.2.1 Spherical Tensors

Section A.1 discussed the projection of Cartesian tensors A onto a set of Cartesian

basis vectors, thus generating the Cartesian tensor components. The same procedure can be

used to project a Cartesian tensor onto a set of spherical basis vectors in order to generate

the spherical components of that tensor. The spherical basis vectors are:

ẽ1,0 = z̃

ẽ1,±1 = ∓ 1√
2
(x̃± iỹ), (A.9)

where here i =
√
−1 is the imaginary factor. The three spherical components of a vector u

(a rank-1 Cartesian tensor) can be written as u1,0 = ẽ†1,0 ·u and u1,±1 = ẽ†1,±1 ·u, in analogy
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to the definition of the Cartesian components of u. The transpose has been generalized to

a conjugate transpose since the spherical unit vectors are complex. Eq. A.9 can be used to

relate the three spherical components of u to the three Cartesian components of u: u1,0 = uz

and u1,±1 = ∓ 1√
2
(ux ± iuy). Note that the spherical basis vectors in Eq. A.9 transform

into each other under rotations as do the spherical harmonics Y1,0 and Y1,±1, and so do the

spherical components of u.2 For example, a positive 90◦ rotation about the y-axis takes

z̃ = ẽ1,0 → x̃ = − 1√
2
(ẽ1,+1 − ẽ1,−1) and u1,0 → − 1√

2
(u1,+1 − u1,−1), and the same rotation

takes Y1,0 → − 1√
2
(Y1,+1 − Y1,−1).

In order to project out the spherical components of a second-rank Cartesian tensor,

the spherical basis tensors in the direct product space must first be formed. The spherical

harmonics Yl,m can be considered to be objects that bear total (orbital) angular momentum

l and a component of angular momentumm along some quantization axis, as may be verified

by applying the angular momentum operators l̂2 and l̂z in the coordinate representation to

a spherical harmonic function. Therefore, the spherical basis vectors can be considered to

be objects that carry angular momentum l = 1 with m = 0,±1. A set of spherical basis

tensors ẽ
L,M

can be created by combining two of these l = 1 basis vectors according to the

2In fact, the l = 1 spherical harmonic functions Y1,m are just proportional to the spherical components
of the position vector r = x x̃+ y ỹ + z z̃ (Ref. [500] §17).



A.2. SPHERICAL TENSORS AND TENSOR OPERATORS 608

quantum-mechanical rules of angular momentum addition [501, Appendix A]:

ẽ
0,0

=
1√
3
(ẽ1,+1 ẽ1,−1 + ẽ1,−1 ẽ1,+1 − ẽ1,0 ẽ1,0) = −

1√
3
(x̃ x̃+ ỹ ỹ + z̃ z̃)

ẽ
1,0

=
1√
2
(ẽ1,+1 ẽ1,−1 − ẽ1,−1 ẽ1,+1) = −

i√
2
(x̃ ỹ − ỹ x̃)

ẽ
1,±1

= ± 1√
2
(ẽ1,±1 ẽ1,0 − ẽ1,0 ẽ1,±1) = −

1

2
[(z̃ x̃− x̃ z̃)± i(z̃ ỹ − ỹ z̃)]

ẽ
2,0

=

√
1

6
(2ẽ1,0 ẽ1,0 − ẽ1,+1 ẽ1,−1 − ẽ1,−1 ẽ1,+1) =

√
1

6
[3z̃ z̃ − (x̃ x̃+ ỹ ỹ + z̃ z̃)]

ẽ
2,±1

= ± 1√
2
(ẽ1,±1 ẽ1,0 + ẽ1,0 ẽ1,±1) = ∓

1

2
[(x̃ z̃ + z̃ x̃)± i(ỹ z̃ + z̃ ỹ)]

ẽ
2,±2

= ẽ1,±1 ẽ1,±1 =
1

2
[(x̃ x̃− ỹ ỹ)± i(x̃ ỹ + ỹ x̃)], (A.10)

where ẽ l1,m1 ẽ l2,m2 ≡ ẽ l1,m1 ⊗ ẽ l2,m2, and the indices L = |l1 + l2|, . . . , |l1 − l2|, M =

+L, . . . ,−L obey the rules for the addition of two angular momenta l1 = 1 and l2 = 1. Not

surprisingly, the nine basis spherical tensors ẽ
L,M

can be written as linear combinations of

the nine basis Cartesian tensors ĩ j̃. The {ẽ
L,M
} transform into each other under rotations

as do the spherical harmonics {YL,M}. The L = 1 spherical basis tensors in Eq. A.10 have

a different form from the l = 1 basis vectors in Eq. A.9 because the tensors are written in

the combined l1 ⊗ l2 direct product space.

The spherical components of an arbitrary second rank Cartesian tensor A may

be generated by projecting A onto the spherical basis tensors: AL,M = ẽ†
L,M

: A, in direct

analogy to defining the Cartesian components as Aij = (̃i j̃)T : A. The spherical components
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are found to be:

A0,0 = − 1√
3
(Axx +Ayy +Azz)

A1,0 = − i√
2
(Axy −Ayx)

A1,±1 = −1

2
[(Azx −Axz)± i(Azy −Ayz)]

A2,0 =

√
1

6
[3Azz − (Axx +Ayy +Azz)]

A2,±1 = ∓1

2
[(Axz +Azx)± i(Ayz +Azy)]

A2,±2 =
1

2
[(Axx −Ayy)± i(Axy +Ayx)]. (A.11)

These nine spherical components of A are written in terms of the nine Cartesian components.

The {AL,M} transform under rotations as do the spherical basis tensors in Eq. A.10 and

also as do the spherical harmonics {YL,M}. In fact, in the case that A = r ⊗ r (such

that Aij = ij, where i, j ∈ {x, y, z}), then AL,M ∝ YL,M (θ, φ), where the spherical polar

coordinates (θ, φ) are those that describe the orientation of the position vector r itself. Note

that if A is a dyadic, the {AL,M} act like the {YL,M} only under rotations in the combined

direct product space. For example, if A = r1 ⊗ r2, then the AL,M acts like YL,M (θ, φ) only

if r1 and r2 are rotated together, not independently. In this case (θ, φ) are coordinates that

describe the joint system, since the (θ1, φ1) and (θ2, φ2) of r1 and r2 are not independent.

Reiterating the ongoing theme, the generalized definition of a spherical tensor is a

set of components {Tk,q} that transform into each other under rotations as do the spherical

harmonics {Yk,q}. The rank of the spherical harmonic (or spherical tensor component)

k can range from 0 to ∞ in integer steps, and a spherical tensor of a given rank k has
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(2k+1) spherical components of order q ranging from −k to +k in integer steps. It is

important to distinguish between the use of the word “rank” as applied to Cartesian tensors

and the word “rank” as applied to spherical tensors. The rank n of a Cartesian tensor

indicates how many Cartesian indices are needed to describe the tensor, or how many vectors

can be contracted with the tensor to form a (rank-0) scalar. The word rank as applied

to spherical tensors is terminology borrowed from the language of spherical harmonics,

since the spherical harmonics Yk,q(θ, φ) are defined in terms of the Legendre polynomials

Pk(cos θ) of rank k. A rank-0 (scalar) Cartesian tensor has one Cartesian component and

can be written in terms of a the single component of a rank-0 spherical tensor, and the

three components of a rank-1 (vector) Cartesian tensor can be written in terms of the

three components of a rank-1 spherical tensor. However, Eq. A.11 showed how a rank-2

Cartesian tensor can be decomposed into one rank-0, three rank-1, and five rank-2 spherical

components,3 and here the meaning of the word “rank” begins to diverge. The situation

is more complicated when relating higher-rank Cartesian tensors to the spherical tensors

[502]. However, it should be stressed that the definition of spherical tensors in terms of

their rotation properties is internally self-consistent, and no reference to Cartesian tensors

(dyadics or otherwise) need be made, unless the Cartesian representation is convenient.

Some interesting properties of spherical tensors will be mentioned at the end of §A.2.2, and

the transformation properties of spherical tensors under rotations will be discussed further

in Appendix B.

3In the language of group theory, a spherical tensor of rank k transforms as an irreducible representation
of the rotation group. In other words, a group of spherical tensor components of a given rank is the smallest
set of components that obey all the symmetries of the rotation group. Cartesian tensors transform reducibly,
since they can be broken down into irreducible sets of (rank-k spherical) components, cf. Eq. A.11.
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A.2.2 Spherical Tensor Operators

The discussion of spherical tensors has so far alluded several times to the quan-

tum theory of angular momentum. For instance, if the spherical harmonics Yl,m(θ, φ) =

〈θ, φ|l,m〉 were considered to be wavefunctions, they would be eigenstates of the orbital an-

gular momentum operator. In fact, the eigenstates of orbital angular momentum |l,m〉 can

be shown to transform into each other under quantum-mechanical rotations in the Hilbert

space as do the spherical harmonics Yl,m(θ, φ) under rotations in real space. Now, consider

an operator in the state space of some quantized angular momentum Î, where the eigenstates

of Î
2
are |I,m〉 withm being the projection of the angular momentum onto the quantization

axis. The angular momentum quantum number I can be integral or half-integral (compare

to the spherical harmonics, which have integer rank). The eigenstates of angular momen-

tum form a complete basis set in the state space of Î
2
, in the sense that any operator in this

space can be written in the general form Â =
∑

m,nAmn|I,m〉〈I, n|. By now, it should not

be surprising that linear combinations of the |I,m〉〈I, n| can be found that transform into

each other under rotations as do the spherical harmonics, in light of the fact that the in-

dividual angular momentum eigenstates transform this way. In fact, |I,m〉〈I, n| represents

an operator that can be decomposed using the rules of angular momentum addition into a

linear combination of operators T̂k,q of rank k = |I − I|, . . . , |I + I| = 0, . . . , 2I and order

q = −k, . . . ,+k, with m = n + q. The {T̂k,q} have integer k and q and are called spher-

ical tensor operators1; they transform into each other under rotations as do the spherical

harmonic functions {Yk,q}. The state space of an angular momentum I can be completely

1More accurately, they are the order-q components of the rank-k spherical tensor operators.
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described by the (2I + 1)2 spherical tensor operators that range from rank k = 0 to k = 2I

with q ranging from −k to +k. These operators are often conveniently written using the

set of operators {1̂, Îz, Î+, Î−} [8],[198],[503],[504]. A few such operators are listed below:

T̂0,0 = 1̂

T̂1,0 = Îz

T̂1,±1 = ∓
√

1

2
Î±

T̂2,0 =

√
1

6
[3Î2z − I(I + 1)1̂]

T̂2,±1 = ∓1

2
(Îz Î± + Î±Îz)

T̂2,±2 =
1

2
Î2±

T̂3,0 =

√
1

10
[5Î3z − {3I(I + 1)− 1}Îz]

T̂3,±1 = ∓1

4

√
3

10
[5(Î2z Î± + Î±Î

2
z )− {2I(I + 1) + 1}Î±]

T̂3,±2 =
1

2

√
3

4
(Îz Î

2
± + Î2±Îz)

T̂3,±3 = ∓1

2

√
1

2
Î3±, (A.12)

where these operators can be normalized via T̂k,q ← 1
k!
[
(2k + 1)(2I − k)! 2k(2k)!

(2I + k + 1)!
]1/2 T̂k,q,

such that Tr[T̂ †k,qT̂k,q] = 1 [198]. The T̂k,q are also orthogonal such that Tr[T̂ †k′,q′ T̂k,q] = 0

(where k 6= k′, q 6= q′), so that the spherical tensor operators form a complete set of basis

operators in the state space of the angular momentum I, and any operator in this space

can be written in the form Â =
∑

k,q ck,qT̂k,q. The similarity between the spherical tensors

in Eq. A.11 and the spherical tensor operators in Eq. A.12 may be observed by noting that

if A = u⊗u, then e.g. A2,0 =
√

1
6[3uzuz− (uxux+uyuy+uzuz)] =

√
1
6[3u

2
z−u ·u], whereas
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T̂2,0 =
√

1
6[3Î

2
z − Î · Î] for an angular momentum I, where Î · Î = I(I + 1)1̂.

The concept of spherical tensor operators can be extended to systems of multiple

angular momenta by forming higher rank tensor operators from angular momentum vector

operators through the formalism of angular momentum addition, in much the same way as

was used for the spherical tensors of §A.2.1. This formalism is the most useful in the case of

two coupled angular momenta due to the difficulty of coupling multiple angular momenta,

but attempts at the general case have been made [505]. Only the case of two angular

momenta will be considered here. The second-rank Cartesian tensor operator2 T̂ = Î2 ⊗ Î1

can be decomposed into nine rank k ≤ 2 spherical tensor operators T̂
(1,2)
k,q [8]:

T̂
(1,2)
0,0 = −

√
1

3
(Î1 · Î2)

T̂
(1,2)
1,0 = −1

2

√
1

2
(Î1+Î2− − Î1−Î2+)

T̂
(1,2)
1,±1 =

1

2
(Îz1Î±2 − Î±1Îz2)

T̂
(1,2)
2,0 =

√
1

6
(3Îz1Îz2 − Î1 · Î2)

T̂
(1,2)
2,±1 = ∓1

2
(Îz1Î±2 + Î±1Îz2)

T̂
(1,2)
2,±2 =

1

2
Î±1Î±2, (A.13)

The analogy to Eq. A.11 should be clear upon substituting Î± = Îx ± iÎy and Î1 · Î2 =

Îx1Îx2 + Îy1Îy2 + Îz1Îz2. However, the T̂
(1,2)
k,q operators do not form a complete basis set

in the (2I1 + 1)(2I2 + 1)-dimensional joint Hilbert space, even upon including operators of

up to rank k = 2(I1 + I2). It is often more convenient to use the basis of spherical tensor

2Here the direct product combines two Cartesian vectors into a second-rank Cartesian tensor.
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product operators {T̂ (1)k,q T̂
(2)
k′,q′}, or products of the symmetric/antisymmetric combinations

of the single-spin tensor operators [220]. However, in the special case of two coupled spin-

1/2 nuclei, the [(2I1+1)(2I2+1)]2 = 16 operator matrix elements can be written in a basis

of the nine T̂
(1,2)
k,q joint operators of rank k ≤ 2, plus the seven distinct single-spin operators

T̂
(1)
k,q and T̂

(2)
k,q of rank k ≤ 1 (noting that T̂

(1)
0,0 = T̂

(2)
0,0 = 1̂(1,2)) [7, §2.1.10].3

The spherical tensor operators have many interesting properties. The most im-

portant properties are treated in separate sections: the Wigner-Eckart theorem is discussed

in §A.3, and the behavior of spherical tensor operators under rotations is discussed in Ap-

pendix B. Additionally, the following commutation relations hold:

[Îz, T̂k,q] = q T̂k,q (A.14)

[Î±, T̂k,q] =
√
k(k + 1)− q(q ± 1) T̂k,q±1. (A.15)

Here it is understood that if the joint spherical tensors T̂
(1,2)
k,q are used, then Îz = Îz1 + Îz2

and Î± = Î±1 + Î±2. The spherical tensor operators also obey the relation:

(T̂k,q)
† = (−1)q T̂k,−q, (A.16)

i.e., they are not Hermitian.

Some other useful identities apply to both spherical tensors and spherical ten-

sor operators. The spherical tensors couple according to the rules of angular momentum

3The convention Â(1) = Â(1) ⊗ 1̂(2), B̂(2) = 1̂(1) ⊗ B̂(2), and Â(1)B̂(2) ≡ Â(1) ⊗ B̂(2) is employed, where
here the direct product combines the Hilbert spaces of the two angular momenta.
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addition:

Tk,q =
∑

m1,m2

〈l1,m1; l2,m2|k, q〉Al1,m1Bl2,m2 (A.17)

Al1,m1Bl2,m2 =
∑

k,q

〈l1,m1; l2,m2|k, q〉 Tk,q, (A.18)

where 〈l1,m1; l2,m2|k, q〉 is a Clebsch-Gordan coefficient. Eq. A.17 can be used to generate

Eq. A.13 from Eq. A.12. Two second-rank tensors can be contracted according to:

BT : A =
2∑

k=0

+k∑

q=−k
(−1)q Bk,q Ak,−q, (A.19)

where we have already seen in §A.1 that BT : A =
∑

i,j BjiAij in Cartesian coordinates.

Note that the labels A and B can be exchanged without changing the sum.

A.3 Wigner-Eckart Theorem

The Wigner-Eckart theorem is used to aid in the evaluation of the matrix elements

of spherical tensor operators in the basis of the eigenstates of angular momentum. Let

|α; I,m〉 be an eigenstate of a quantized angular momentum Î, where α denotes all the

quantum numbers that label the state other than those of angular momentum. As usual,

the order-q component of some rank-k spherical tensor operator T̂k is denoted T̂k,q. The

Wigner-Eckart theorem states:

〈α′; I ′,m′|T̂k,q|α; I,m〉 = 〈I ′,m′; k, q|I,m〉〈α′; I ′ ‖ T̂k ‖ α; I〉, (A.20)
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where 〈I ′,m′; k, q|I,m〉 is a Clebsch-Gordan coefficient and and the quantity 〈α′; I ′ ‖ T̂k ‖

α; I〉 is called the reduced matrix element of T̂k.
4 The physical content of the Wigner-

Eckart theorem is as follows. The left side of Eq. A.20 is a matrix element connecting two

(possibly different) angular momentum states via the operator T̂k,q. The right side of the

equation is a product of two terms. The reduced matrix element 〈α′; I ′||T̂k||α; I〉 depends on

α and α′ (and also on I, I ′ and k) and carries the dynamical information of the system, i.e.

one must typically solve the Schrödinger Equation to determine the part of the eigenstate

that depends on the variables α and α′.5 Also, any physical constants that distinguish one

vector operator from another can be included in the definition of T̂k. The reduced matrix

element carries no dependence on m, m′, or q, which bear the geometric information.

Here “geometric information” refers to the components of the angular momenta I and I ′

with respect to a particular direction (e.g., m = 0 specifies the Iz component of angular

momentum, if z is the quantization axis), and also to the directional components of T̂k.

All the geometric information on the right side of Eq. A.20—the information about

the angular distribution—is contained in the Clebsch-Gordan coefficient (which, conversely,

does not depend on α). The Wigner-Eckart theorem that within a particular manifold of

angular momentum states the matrix elements of all operators T̂k,q of a given rank and

order are proportional to each other, where the proportionality constant is determined by

the reduced matrix elements. For instance the angular momentum operator Î and the

magnetic moment operator µ̂ are proportional to each other within some manifold of states

{|α; I,m〉}, because both can be represented by rank k = 1 vector operators. Also, since

4Some statements of the Wigner-Eckart theorem differ in their definition of the reduced matrix element
by a factor of (2I + 1)1/2.

5For instance, α could label the nuclear ground state, which must be found by solving the appropriate
multi-nucleon Schrödinger Equation in an appropriate nuclear potential.
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many Hamiltonian operators can be written simply in terms of Cartesian tensors, a spherical

tensor decomposition of the Hamiltonian (e.g. via Eq. A.19) followed by the application of

the Wigner-Eckart theorem rapidly allows the Hamiltonian to be written in terms of matrix

elements of the angular momentum operator. Some examples are the magnetic dipole-

dipole coupling Hamiltonian, in which the two nuclear magnetic moments may be related

to angular momentum operators; or the electric quadrupolar Hamiltonian, in which the

electric quadrupole moment of the nucleus may be related to its angular momentum.
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Appendix B

Rotations and spherical tensors

The theory of rotations is very important in NMR for several interrelated rea-

sons: the evolution of nuclear polarization in the presence of a static magnetic field is

formally equivalent to a time-dependent rotation about the field at the Larmor frequency;

the rotating and tilted frame transformations that are widely used in calculations involve

time-dependent and static rotations, respectively; rotations are used to write anisotropic

interactions expressed in a molecule-fixed coordinate system in terms of laboratory-fixed co-

ordinates; techniques such as magic angle spinning utilize an experimentally-induced sample

rotation to average away certain spin interactions; etc. The spherical tensor formalism is

truly powerful in two contexts: they provide an elegant means of expressing the geomet-

ric dependence of the matrix elements of operators when used in conjunction with the

Wigner-Eckart theorem (see Appendix A), and their transformations under rotations can

be expressed extremely simply. A brief summary of rotations and their effects on spherical

tensors is presented here. The quantum-mechanical theory of rotations is quite elegant by
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itself, but the emphasis here is on their practical use. Most of the references cites in Ap-

pendix A contain discussions of rotation theory; specialized texts on angular momentum

theory such as the one by Zare [20] typically have the most detailed descriptions.

The angular momentum operator component Î · ñ is the generator of infinitesimal

rotations about ñ in the Hilbert space of the spin I [29, §12],[45, §3.6],[28, §17-3],[20, §§],[499,

§8]. The quantum mechanical operator for a finite rotation by angle θ around ñ may be

written in terms of the angular momentum operator as

R̂ñ(χ) = exp[−iχ(Î · ñ)]. (B.1)

As usual, the angular momentum operator Î has been taken to be dimensionless. All

rotations will be assumed to be counterclockwise about +ñ when χ > 0. For example,

the operator exp(−iπÎx/2) generates a 90◦ counterclockwise rotation about +x̃. Rotations

are assumed to be active, i.e., a system is rotated while the coordinate axes remain fixed;

it is also possible to achieve the same physical result by making a passive rotation of the

coordinate axes while the system is fixed. Rotation operators are unitary:

R̂R̂−1 = 1̂, (B.2)

a property which is related to the fact that the norm of a vector (or of any other operator

that describes the system) is preserved under rotation and a rotation can be undone by a
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subsequent “reverse rotation.” Quantum-mechanical states |ψ〉 are rotated according to

|ψ′〉 = R̂ñ(χ)|ψ〉 (B.3)

and operators are rotated according to

Â′ = R̂ñ(χ)ÂR̂
−1
ñ (χ). (B.4)

For example, the Cartesian components Îx, Îy, and Îz of the angular momentum vector

operator Î transform under rotations as

R̂x(χ)ÎxR̂
−1
x (χ) = Îx

R̂y(χ)ÎxR̂
−1
y (χ) = Îx cosχ− Îz sinχ

R̂z(χ)ÎxR̂
−1
z (χ) = Îx cosχ+ Îy sinχ

R̂x(χ)ÎyR̂
−1
x (χ) = Îy cosχ+ Îz sinχ

R̂y(χ)ÎyR̂
−1
y (χ) = Îy

R̂z(χ)ÎyR̂
−1
z (χ) = Îy cosχ− Îx sinχ

R̂x(χ)ÎzR̂
−1
x (χ) = Îz cosχ− Îy sinχ

R̂y(χ)ÎzR̂
−1
y (χ) = Îz cosχ+ Îx sinχ

R̂z(χ)ÎzR̂
−1
z (χ) = Îz, (B.5)

which are exactly the relations one expects for the transformation of the components of

a vector under rotations. Eq. B.5 can be proven by multiplying the matrix representa-
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tions of these operators or by using a theorem for the rotation of spherical tensor operator

components that will be presented later.

Three coordinates are necessary to specify a rotation in three-dimensional space,

e.g., the rotation angle χ and the polar coordinates (θ, φ) that describe the orientation of

ñ. It is often more convenient to parameterize the rotation operator by the three Euler

rotation angles. Any rotation can be characterized in terms of three successive rotations

that each involve one angular coordinate. These so-called Euler angles may be used to

relate a coordinate system (x,y,z) that is fixed in space (e.g., the laboratory frame) to a

coordinate system (X,Y ,Z) that is fixed to the system that is rotated (i.e., the body-fixed

frame, which for example could be a molecule-fixed frame).1 The three Euler rotations that

carry the space-fixed frame into the body-fixed frame are [20, §3.2]: (1) a rotation by angle

α about x that carries the (x,x,z) frame into a new frame (x′,y′,z′); (2) a rotation by β

about the new coordinate y′ that carries (x′,y′,z′) into (x′′,y′′,z′′); and (3) a rotation by γ

about z′′ that carries (x′′,y′′,z′′) into (X,Y ,Z). Note that z coincides with z′ and that z′′

coincides with Z. Each of the three Euler rotations can be written in the form of Eq. B.1

and the net rotation is their product:

R̂(α, β, γ) = exp(−iγÎz′′) exp(−iβÎy′) exp(−iαÎz), (B.6)

where, as usual, the operations are ordered such that operators that act first go on the right

side of the expression. Eq. B.6 is an alternative parameterization of Eq. B.1. The ordering

of the operators in the product is crucial because in general rotations do not commute with

1Zare [20] uses the opposite convention of (X,Y ,Z) for the space-fixed frame and (x,y,z) for the body-fixed
frame.
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each other. It is often more convenient to write the rotation in terms of space-fixed axes

[20, §3.2]:

R̂(α, β, γ) = exp(−iαÎz) exp(−iβÎy) exp(−iγÎz). (B.7)

This expression can be derived from Eq. B.6 with the aid of an identity involving unitary

rotations of functions of operators:

Ûf(Â)Û−1 = f(Û ÂÛ−1), (B.8)

which can be derived by inserting appropriate factors of Û Û−1 into a power series expansion

of f(Â). This identity may also be used to rewrite Eq. B.1 in terms of the polar angles

(θ, φ) that specify the direction of ñ in a space-fixed coordinate system:

R̂ñ(χ) = R̂x(φ)R̂y(θ)R̂z(χ)R̂
−1
y (θ)R̂−1x (φ)

= e−iφÎze−iθÎye−iχÎze+iθÎye+iφÎz , (B.9)

where the relation ñ = sin θ cosφ x̃ + sin θ sinφ ỹ + cos θ z̃ has been used. Zare’s book [20]

contains useful (φ, θ, χ)-parameterized matrix representations (Eqs. 3.36, 3.37) of the rota-

tion operator which relates the space-fixed coordinate system to the body-fixed coordinate

system in real space (i.e., as opposed to spin space).

The fundamental relation that describes the Euler angle-parameterized rotation



623

of a spherical tensor operator T̂k,q is

R̂(α, β, γ)T̂k,qR̂
−1(α, β, γ) =

k∑

q′=−k
D
(k)
q′,q(α, β, γ)T̂k,q′ , (B.10)

The Wigner rotation matrix element D
(k)
q′,q(α, β, γ) is

D
(k)
q′,q(α, β, γ) = 〈k, q′|R̂(α, β, γ)|k, q〉, (B.11)

where the {|k, q〉} are normalized angular momentum eigenstates. Eq. B.7 may be used to

write Eq. B.11 as

D
(k)
q′,q(α, β, γ) = e−i(q

′α+qγ)d
(k)
q′,q(β), (B.12)

where the reduced Wigner rotation matrix element is

d
(k)
q′,q(β) = 〈k, q′|e−iβÎy |k, q〉. (B.13)

The reduced Wigner rotation matrix elements are tabulated in many sources, e.g., Table

3.1 of Ref. [20].

Eq. B.10 holds for any spherical tensor, although the representations of the spher-

ical tensor and the Wigner rotation matrix will vary according to the dimensionality of the

Hilbert spin space or whether the rotations take place in a Cartesian space (real space)

instead of spin space. In fact, Eq. B.10 may be considered to be the definition of the com-

ponents of a rank-k spherical tensor Tk. This equation is extremely useful because of this
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generality: e.g., the expression for the rotation of a rank-1 spherical tensor is the same no

matter whether that tensor is written in the space of a spin-1/2 particle, a spin-1 particle,

two coupled spin-1/2 particles, or even represents a rank-1 spherical harmonic function.

Only the representations of the spherical tensor and Wigner rotation matrices are needed

to determine the effects of the rotation.

An important result of Eq. B.10 is that the spherical tensor rank k is conserved

under rotations; only the components q are interconverted. This has an important conse-

quence: rank-k polarization of a spin I cannot be converted to any other rank under the

action of a magnetic field alone. This can be appreciated from the following argument.

Imagine that a magnetic field B = Bñ is applied to a spin I that initially possesses rank-k

polarization, i.e., take the difference density operator to be ρ̂I(0) ∝ T̂ Ik,q. The evolution in

the presence of the magnetic field is given by

ρ̂(t) = e−iĤZ t/~ρ̂(0)e−iĤZ t/~

= exp[iγIBt(Î · ñ)] T̂ Ik,q exp[−iγIBt(Î · ñ)]

= R̂ñ(−ωIt) T̂ Ik,q R̂−1ñ (−ωIt), (B.14)

where ĤZ = −~γIB(Î ·ñ) is the Zeeman Hamiltonian and the Larmor frequency is ωI = γIB.

Eq. B.14 corresponds to a time-dependent rotation of the polarization about direction of

the magnetic field ñ at the Larmor frequency ωI . According to Eq. B.10, this evolution

conserves the spherical tensor rank of the polarization. This is a general result for the

angular momentum dynamics of any system subjected to a Hamiltonian that contains only

rank-1 spherical tensor operators (i.e., components of Î). This conservation is exemplified
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by Eq. B.5, where the components Îx, Îy, and Îz of the rank-1 vector operator Î—which can

be written as linear combinations of spherical tensor operators T̂ I1,q—were seen to transform

into each other (and only each other) under rotations. Another consequence of Eq. B.10 is

that rf pulses cannot be used to excite multiple-quantum coherences (MQCs) from initial

magnetization in a spin I system if the only other interactions present are Zeeman/chemical

shift interactions. This is because all the Hamiltonians contain only rank-1 spin operators,

because magnetization is proportional to 〈Î〉 and thus corresponds to rank-1 terms in the

density operator, and because MQCs by definition correspond to T̂k,q polarization terms

with |q| > 1, which in turn implies k > 1. However, the rank of the polarization can be

changed if the spin evolution takes place under a combination of the magnetic field of an

rf pulse and a Hamiltonian that contains spin operators higher than rank 1 such as the

quadrupolar Hamiltonian. This problem is discussed in detail in terms of MQC conversion

and orientation-to-alignment conversion in §5 and in other chapters of this dissertation.

Multiple quantum coherences can also be created in coupled spin systems by the use of rf

pulses in conjunction with dipolar or scalar coupling interactions.

Eq. B.10 results in some other important relations involving z-rotations. For

example,

R̂z(χ) T̂
I
k,q R̂

−1
z (χ) = e−iχÎz T̂ Ik,q e

+iχÎz = e−iχqT̂ Ik,q, (B.15)

where R̂z(χ) = R̂z(χ, 0, 0) = R̂z(0, 0, χ) in the Euler angle parameterization and d
(k)
q′,q(0) = 1

according to Eq. B.13. If T̂ Ik,q represents a density operator element for rank-k, coherence

order q polarization in the Zeeman basis, it can be seen that a z-rotation conserves not



626

only polarization rank but also coherence order. The coherence order-dependent phase

factor exp(−iχq) that is gained upon rotation is what allows coherence pathway selection

to be implemented via phase cycling and pulsed z-gradient selection techniques. Eq. B.15

also holds for a non-selective z-rotation R̂z(χ) = exp(−iχÎZ) acting on a product operator

spherical tensor operator T̂
(1,2)
k,q in the joint spin space of I1 and I2 (see Appendix A.2.2),

where here ÎZ = Îz1 + Îz2 is the z-component of total angular momentum Î = Î1 + Î2. A

special case of Eq. B.10 is the invariance of T̂k,0 spherical tensor components to z-rotations,

i.e.,

R̂z(χ) T̂k,0 R̂
−1
z (χ) = e−iχÎz T̂k,0 e

+iχÎz = T̂k,0. (B.16)

This is a consequence of the relation [Îz, T̂k,0] = 0 (see Eq. A.14). The convenient inter-

pretation is that a T̂k,0 term in the density operator represents a generalized “longitudinal

polarization” that does not evolve in the presence of a z-directed magnetic field.

Eq. B.10 also finds use in NMR when relating the spatial tensors of some interaction

(e.g., electric field gradient tensor for the quadrupolar coupling, chemical shielding tensor,

etc.) in the molecular (crystallite) frame to tensors in the laboratory frame:

ALABk,q =
k∑

m=−k
D(k)m,q(α

′, β′, γ′)AMOLk,m , (B.17)

where the laboratory and molecular frames are related through the Euler angle-parameterized

rotation operator R(α′, β′, γ′). This type of relation is useful in solid state NMR when stud-

ies on random powders or single crystals are performed. The Cartesian spatial tensors may



627

be diagonalized in their own so-called principal axis system (PAS); the spherical compo-

nents in this frame take especially simple forms. If multiple interactions are present per

molecule, e.g., a nucleus that experiences simultaneous chemical shielding and quadrupolar

coupling interactions, it is useful to transform the spatial tensors in the various PAS frames

into a common molecular frame such that

AMOLl,m =
k∑

p=−k
D(k)p,m(α, β, γ)A

PAS
k,p (B.18)

ALABk,q =
k∑

m=−k

k∑

p=−k
D(k)m,q(α

′, β′, γ′)D(k)p,m(α, β, γ)A
PAS
k,p , (B.19)

where Eq. B.17 has been used to write the last line via the two consecutive rotations PAS

(α,β,γ)−−−−→ MOL
(α′,β′,γ′)−−−−−−→ LAB. This type of procedure is reviewed in Mehring’s text [8, §2.3].

The molecular and PAS frames can be taken to be coincident if there is only one relevant

interaction per molecule. Further rotations can be added; e.g., in the case of sample spinning

a third time-dependent rotation can be added: PAS → MOL → ROT → LAB, where ROT

can be written in terms of Euler rotations that relate the molecular frame to the rotor-fixed

frame [8, §2.6]. Similar transformations between frames of spin tensor operators can be

made, although in NMR a frame in which the spin quantization axis is along z is almost

always chosen. Note that some care must be taken when relating spin tensor operators in

different frames to each other; i.e., the components of the angular momentum operator in

a body-fixed frame exhibit anomalous commutation relations [20, §3.4, §5.1].

A few other useful identities involving rotations are included here. The Wigner
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rotation matrix elements satisfy the following relations (see e.g. [45, §3.6]):

d
(l) ∗
m′,m(θ) = d

(l)
m′,m(θ) (B.20)

d
(l)
m′,m(θ) = (−1)m−m′

d
(l)
m,m′(θ) = d

(l)
−m,−m′(θ) (B.21)

D
(l)
m,0(φ, θ, 0) =

√
4π

2l + 1
Y ∗l,m(θ, φ) (B.22)

d
(l)
m,0(θ) =

√
4π

2l + 1
Yl,m(θ, φ)e

−imφ (B.23)

D
(l)
0,0(0, θ, 0) = d

(l)
0,0(θ) = Pl(cos θ), (B.24)

where Yl,m(θ, φ) is a spherical harmonic function and Pl(cos θ) is a Legendre polynomial.

The matrix representation of the I = 1/2 rotation operator in the |I = 1
2 ,m = ±12〉

basis is [45, §3.5]:

D( 12)(α, β, γ) =




e−i(α+γ)/2 cos(β/2) −e−i(α−γ)/2 sin(β/2)

e+i(α−γ)/2 sin(β/2) e+i(α+γ)/2 cos(β/2)


 . (B.25)
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Appendix C

Time-dependent perturbation

theory via a power series expansion

of the time development operator

A common quantum mechanical problem is the solution of the time evolution of

a system subject to a small time-dependent interaction in the presence of a large, time-

independent interaction. This solution can only be approximated if the total Hamiltonian

is homogeneous (§2), and typically a perturbative solution is sought. In some texts the

generation of the expressions for transition amplitudes can be quite mathematical and com-

plicated, involving sets of differential equations for the coefficients of the wavefunction pro-

jected onto a particular basis set [85, XIII.B]. Methods based on the Dyson series of the time

development operator in the interaction frame are more elegant [45, §5.6],[272, XVII.1,2].

The Dyson series is usually obtained by the iterative solution of an integral equation. At the
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beginning of §2.2 it was mentioned that the Dyson series can also be obtained by a power

series expansion of the exponential form of the time development operator.1 Since series

expansions of exponential functions are very familiar to even beginning physics students, it

may be useful to repeat the derivation of some of the standard equations of time-dependent

perturbation theory using the series expansion.

Consider a time-dependent Hamiltonian

Ĥ(t) = Ĥ0 + V̂ (t), (C.1)

where ‖Ĥ0 ‖À ‖ V̂ ‖. The solution of Ĥ0 is presumed to be known:

Ĥ0|n〉 = En|n〉, (C.2)

where the {|n〉} are the eigenstates of Ĥ0 with corresponding eigenvalues En = ~ωn =

〈n|Ĥ0|n〉. We wish to find the probability that the system starts out in some state |i〉 at

time t0 and ends up in some state |f〉 at time t. The transition probability is:

Pf←i = |Af←i|2 = |〈f |Û(t; t0)|i〉|2, (C.3)

where Af←i is the transition amplitude. We will assume that |i〉 and |f〉 are eigenstates of

Ĥ0 with eigenvalues Ei and Ef , respectively. If Ĥ(t) is homogeneous (i.e., [Ĥ(t), Ĥ(t′)] 6=

0, usually due to [Ĥ0, V̂ (t)] 6= 0), then the time development operator Û(t; t0) must be

1Obviously, this is the reverse process of the summation of the Dyson series to form an exponential
operator [506, §17.2].
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approximated. It is advantageous to make a transformation into the interaction frame of

Ĥ0 such that the effective Hamiltonian is shrunk from the size of ‖ Ĥ0 ‖ to the size of ‖ V̂ ‖

and any series approximation of the resulting time development operator will be valid for

longer times. From §2.3.2 we find that:

Û(t; t0) = ÛI(t)
ˆ̃
U(t; t0) = e−iĤ0(t−t0)/~ T{exp[− i

~

∫ t

t0

dt
′ ˆ̃
V (t

′
)]}, (C.4)

where T is the Dyson time-ordering operator, the interaction frame transformation is defined

by ÛI(t) = e−iĤ0(t−t0)/~, and the interaction frame effective Hamiltonian is

ˆ̃
V (t) = Û−1I (t) V̂ (t) ÛI(t) = e+iĤ0(t−t0)/~ V̂ (t) e−iĤ0(t−t0)/~. (C.5)

It can be seen from Eq. C.4 that the exponential operator to be approximated
ˆ̃
U(t; t0) has

an argument involving an integral over
ˆ̃
V (t), which is of the order V̂ , so that the series

expansion of the exponential will involve powers of V̂ . If a interaction frame transformation

was not applied, the expansion would involve powers of Ĥ, which is of the much larger order

of Ĥ0. Eq. C.4 also cleanly separates the time evolution due to Ĥ0 and
ˆ̃
V (t), even if these

operators do not commute with each other.

An exponential function may be expanded in a Maclaurin series as ex ' 1 + x +

1
2!
x2 + 1

3!
x3 + . . . =

∑∞
n=0 x

n/n!. This expansion can be used in operator form on the
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interaction frame time development operator
ˆ̃
U(t; t0) in Eq. C.4, such that:

Û(t; t0) ' e−iĤ0(t−t0)/~ T
{
1̂ +

[(−i
~

)∫ t

t0

dt
′ ˆ̃
V (t

′
)
]
+

1

2!

[(−i
~

)∫ t

t0

dt
′ ˆ̃
V (t

′
)
]2

+

+
1

3!

[(−i
~

)∫ t

t0

dt
′ ˆ̃
V (t

′
)
]3

+ . . .
}

= e−iĤ0(t−t0)/~
{
1̂ +

[(−i
~

)∫ t

t0

dt
′ ˆ̃
V (t

′
)
]
+

1

2!

(−i
~

)2
T
[ ∫ t

t0

dt
′′
∫ t

t0

dt
′ ˆ̃
V (t

′′
)
ˆ̃
V (t

′
)
]

+
1

3!

(−i
~

)3
T
[ ∫ t

t0

dt
′′′
∫ t

t0

dt
′′
∫ t

t0

dt
′ ˆ̃
V (t

′′′
)
ˆ̃
V (t

′′
)
ˆ̃
V (t

′
)
]
+ . . .

}
, (C.6)

where this series was also stated in Eq. 2.17. This equation can be cast into matrix element

form by inserting factors of the identity 1̂ =
∑

n |n〉〈n| appropriately, where the {|n〉} are

chosen to be eigenvectors of Ĥ0.

Af←i = 〈f |Û(t; t0)|i〉

' 〈f |e−iĤ0(t−t0)/~
{
1̂ +

[(−i
~

)∫ t

t0

dt
′ ˆ̃
V (t

′
)
]

+
1

2!

(−i
~

)2∑

n

T
[ ∫ t

t0

dt
′′
∫ t

t0

dt
′ ˆ̃
V (t

′′
)|n〉〈n| ˆ̃V (t

′
)
]

+
1

3!

(−i
~

)3∑

n,n′

T
[ ∫ t

t0

dt
′′′
∫ t

t0

dt
′′
∫ t

t0

dt
′ ˆ̃
V (t

′′′
)|n〉〈n| ˆ̃V (t

′′
)|n′〉〈n′| ˆ̃V (t

′
)
]
+ . . .

}
|i〉

= e−iωf (t−t0)
{
δf,i +

[(−i
~

)∫ t

t0

dt
′
Ṽfi(t

′
)
]
+

+
1

2!

(−i
~

)2∑

n

T
[ ∫ t

t0

dt
′′
∫ t

t0

dt
′
Ṽfn(t

′′
)Ṽni(t

′
)
]

+
1

3!

(−i
~

)3∑

n,n′

T
[ ∫ t

t0

dt
′′′
∫ t

t0

dt
′′
∫ t

t0

dt
′
Ṽfn(t

′′′
)Ṽnn′(t

′′
)Ṽn′f (t

′
)
]
+ . . .

}
(C.7)
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where δf,i = 〈f |i〉 is a Kronecker delta function, and from the definition of
ˆ̃
V (t) in Eq. C.5:

Ṽnn′ ≡ 〈n| ˆ̃V (t)|n′〉 = eiωnn′ (t−t0) Vnn′(t), (C.8)

where ωnn′ ≡ ωn − ωn′ = 〈n|Ĥ0/~|n〉 − 〈n′|Ĥ0/~|n′〉 and Vnn′(t) ≡ 〈n|V̂ (t)|n′〉. Inserting

Eq. C.8 into Eq. C.9 transforms back out of the interaction frame and gives (we take t0 = 0

for more compact notation):

Af←i = e−iωf t
{
δf,i +

[(−i
~

)∫ t

0
dt

′
eiωfit

′
Vfi(t

′
)
]

+
1

2!

(−i
~

)2∑

n

T
[ ∫ t

0
dt

′′
∫ t

0
dt

′
eiωfnt

′′
Vfn(t

′′
) eiωnit

′
Vni(t

′
)
]

+
1

3!

(−i
~

)3∑

n,n′

T
[ ∫ t

0
dt

′′′
∫ t

0
dt

′′
∫ t

0
dt

′
eiωfnt

′′′
Vfn(t

′′′
) eiωnn′ t

′′
Vnn′(t

′′
) eiωn′f t

′
Vn′f (t

′
)
]

+ . . .
}

(C.9)

In principle, this is the final result of the time-dependent perturbation theory. However, it

may be more convenient for computational purposes to eliminate the formal Dyson time-

ordering operator T by building the time ordering directly into the limits of integration. This

approach also recovers the standard result of the Dyson series, which is developed by the

iterative solution of the integral equation for
ˆ̃
U(t; t0). As an example, consider the second-

order term in the expansion of
ˆ̃
U(t; t0), which is 1

2!
(−i~ )2〈f |T{

∫ t
t0
dt

′′∫ t
t0
dt

′ ˆ̃
V (t

′′
)
ˆ̃
V (t

′
)}|i〉.

The integrand is symmetric around t
′
= t

′′
, such that equal contributions are given to the

integral for t
′
> t

′′
and t

′
< t

′′
(where t0 ≤ t

′
, t

′′ ≤ t), and the integral is equal to just twice

the contribution of either part. However, the restrictions t
′
> t

′′
or t

′
< t

′′
imply a time
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ordering. Therefore 1
2!
T{
∫ t
t0
dt

′′∫ t
t0
dt

′
[· · · ]} = 1

2!
× 2

∫ t
t0
dt

′′∫ t′′
t0
dt

′
[· · · ], where the limits of

integration restrict t0 ≤ t
′ ≤ t

′′ ≤ t. It can be demonstrated that for the nth-order term in

the expansion, the time ordering operator can be removed by an appropriate time-ordered

restriction of the integration domain, which happens to be smaller by a factor of 1/n! than

the total integration volume (see e.g. Eq. B-19 of Ref. [123]). Therefore Eq. C.9 can be

written in Dyson series form:

Af←i = e−iωf t
{
δf,i +

[(−i
~

)∫ t

0
dt

′
eiωfit

′
Vfi(t

′
)
]

+
(−i

~

)2∑

n

[ ∫ t

0
dt

′′
∫ t

′′

0
dt

′
eiωfnt

′′
Vfn(t

′′
) eiωnit

′
Vni(t

′
)
]

+
(−i

~

)3∑

n,n′

[ ∫ t

0
dt

′′′
∫ t

′′′

0
dt

′′
∫ t

′′

0
dt

′
eiωfnt

′′′
Vfn(t

′′′
) eiωnn′ t

′′
Vnn′(t

′′
) eiωn′f t

′
Vn′f (t

′
)
]

+ . . .
}
, (C.10)

where 0 ≤ t
′ ≤ t

′′ ≤ t
′′′ ≤ · · · ≤ t for t0 = 0. This is the textbook result for the transition

amplitude via time-dependent perturbation theory, stated up to third order in the pertur-

bation. Note that the time-dependent phase factor e−iωf t is lost upon taking the square

modulus to find the transition probability (Eq. C.3). A truncation of the perturbation se-

ries at any order gives an approximation to the transition amplitude. Unlike the Magnus

expansion (§2.2), this approximation of the time evolution will not be unitary. Eq. C.10

can also be written with some of the time dependence explicitly divided up into intervals
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such that

Af←i =
{
e−iωf (t−t0)δf,i +

[(−i
~

)∫ t

t0

dt
′
e−iωf (t−t

′
)Vfi(t

′
)e−iωi(t

′−t0)
]

+
(−i

~

)2∑

n

[ ∫ t

t0

dt
′′
∫ t

′′

t0

dt
′
e−iωf (t−t

′′
)Vfn(t

′′
) e−iωn(t

′′−t′ )Vni(t
′
) e−iωi(t

′−t0)
]

+
(−i

~

)3∑

n,n′

[ ∫ t

t0

dt
′′′
∫ t

′′′

t0

dt
′′
∫ t

′′

t0

dt
′

× e−iωf (t−t
′′′
)Vfn(t

′′′
) e−iωn(t

′′′−t′′ )Vnn′(t
′′
) e−iωn′ (t

′′−t′ )Vn′f (t
′
) e−iωi(t

′−t0)
]

+ . . .
}
, (C.11)

where the initial condition is now t = t0. Eq. C.11 may be compared to Eq. XVII.24

in §XVII.I.2 of Messiah [272], which contains an intuitive graphical interpretation of this

perturbation series.



636

Appendix D

Dynamics of two J-coupled

spin-1/2 nuclei

This Appendix will present equations for the time evolution of some of the density

operator components in a J-coupled system of two spin-1/2 nuclei in the presence of a

magnetic field. These equations are exact and therefore valid over the full range between

the strong and weak coupling limits. The Hamiltonian for the two-spin I–S system is a

sum of Zeeman and J-coupling contributions:

Ĥ = ĤZ + ĤJ = ~(ωI Îz + ωSŜz + ωJ Î · Ŝ),

where ωJ = 2πJ is the J-coupling constant in angular frequency units (it will be assumed

that ωJ > 0), and ωI and ωS are the Larmor frequencies of spins I and S, respectively. This

Hamiltonian could represent a laboratory-frame spin system in a magnetic field B0 = B0z̃

with ωI = −γB0 and ωI = −γB0, or a homonuclear rotating-frame spin system where ωI
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and ωS represent the resonance offset frequencies of the two spins. The quantization axis

is along z, the direction of the magnetic field.

The Hamiltonian Ĥ can be diagonalized to give the following eigenfrequencies:

ω1 =
1

2
(ωI + ωS) +

1

4
ωJ

ω2 =
1

2

√
(ωI − ωS)2 + ω2J −

1

4
ωJ ,

ω3 = −1

2

√
(ωI − ωS)2 + ω2J −

1

4
ωJ ,

ω4 = −1

2
(ωI + ωS) +

1

4
ωJ

If a mixing angle is defined as θ = 1
2 tan

−1[ωJ/(ωI − ωS)] [7, §2.1.9], the corresponding

eigenstates are |ψ1〉 = |++〉, |ψ2〉 = cos θ|+−〉+sin θ|−+〉, |ψ3〉 = − sin θ|+−〉+cos θ|−+〉, and

|ψ4〉 = |−−〉, where the Zeeman eigenstates are |±±〉 = |I = 1
2 ,mI = ±12 ;S = 1

2 ,mS = ±12〉.

The addition of the J-coupling interaction to the Zeeman interaction mixes the |+−〉 and

|−+〉 Zeeman eigenstates, or alternatively, the addition of the magnetic field to the J-

coupled system breaks the isotropy of spin space and mixes the singlet and triplet total

angular momentum eigenstates with zero projection on the quantization axis. Note that

the individual z-components of angular momentum Îz and Ŝz are constants of the motion

since [Îz, Ĥ] = 0 and [Ŝz, Ĥ] = 0. This implies that the system is invariant to rotations

of either spin about the z-axis. A corollary of these facts is that the z-component of total

angular momentum is also a constant of the motion since [(Îz + Ŝz), Ĥ] = 0. The total

system is therefore axially symmetric about the z-axis and invariant to rotations in the

combined space, i.e., in which both spins are rotated by the same angle about the z-axis.
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The dynamics of the density operator are given by:

ρ̂(t) = e−iĤt/~ρ̂(0)e+iĤt/~. (D.1)

This equation may be solved easily in the eigenbasis of the Hamiltonian. Some expressions

are given for the evolution of the Îx, Îy, Îz, Ŝx, Ŝy, and Ŝz single-spin magnetization

components, e.g. Îx(t) = e−iĤt/~Îxe+iĤt/~.

A. General case:

Îx(t) =
1

2
[sin2 θ(cosω12t+ cosω34t) + cos2 θ(cosω24t+ cosω13t)]Îx

+
1

2
[sin2 θ(sinω12t+ sinω34t) + cos2 θ(sinω24t+ sinω13t)]Îy

+
1

2
cos θ sin θ[cosω12t− cosω34t+ cosω24t− cosω13t]Ŝx

+
1

2
cos θ sin θ[sinω12t− sinω34t+ sinω24t− sinω13t]Ŝy

+
1

2
[sin2 θ(cosω12t− cosω34t)− cos2 θ(cosω24t− cosω13t)]2ÎxŜz

+
1

2
[sin2 θ(sinω12t− sinω34t)− cos2 θ(sinω24t− sinω13t)]2ÎyŜz

+
1

2
cos θ sin θ[cosω12t+ cosω34t− cosω24t− cosω13t]2ÎzŜx

+
1

2
cos θ sin θ[sinω12t+ sinω34t− sinω24t− sinω13t]2ÎzŜy
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Îy(t) =
1

2
[sin2 θ(cosω12t+ cosω34t) + cos2 θ(cosω24t+ cosω13t)]Îy

−1

2
[sin2 θ(sinω12t+ sinω34t) + cos2 θ(sinω24t+ sinω13t)]Îx

+
1

2
cos θ sin θ[cosω12t− cosω34t+ cosω24t− cosω13t]Ŝy

−1

2
cos θ sin θ[sinω12t− sinω34t+ sinω24t− sinω13t]Ŝx

+
1

2
[sin2 θ(cosω12t− cosω34t)− cos2 θ(cosω24t− cosω13t)]2ÎyŜz

−1

2
[sin2 θ(sinω12t− sinω34t)− cos2 θ(sinω24t− sinω13t)]2ÎxŜz

+
1

2
cos θ sin θ[cosω12t+ cosω34t− cosω24t− cosω13t]2ÎzŜy

−1

2
cos θ sin θ[sinω12t+ sinω34t− sinω24t− sinω13t]2ÎzŜx

Îz(t) =
1

4
[3 + (cos2 2θ − sin2 2θ) + 2 sin2 2θ cosω23t]Îz

+
1

4
[1− (cos2 2θ − sin2 2θ)− 2 sin2 2θ cosω23t]Ŝz

+sin θ cos θ[sinω23t]2(ÎxŜy − ÎyŜx)

+
1

2
sin 2θ cos 2θ[1− cosω23t]2(ÎxŜx + ÎyŜy)
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Ŝx(t) =
1

2
[sin2 θ(cosω12t+ cosω34t) + cos2 θ(cosω24t+ cosω13t)]Ŝx

+
1

2
[sin2 θ(sinω12t+ sinω34t) + cos2 θ(sinω24t+ sinω13t)]Ŝy

+
1

2
cos θ sin θ[cosω12t− cosω34t+ cosω24t− cosω13t]Îx

+
1

2
cos θ sin θ[sinω12t− sinω34t+ sinω24t− sinω13t]Îy

+
1

2
[sin2 θ(cosω12t− cosω34t)− cos2 θ(cosω24t− cosω13t)]2ÎzŜx

+
1

2
[sin2 θ(sinω12t− sinω34t)− cos2 θ(sinω24t− sinω13t)]2ÎzŜy

+
1

2
cos θ sin θ[cosω12t+ cosω34t− cosω24t− cosω13t]2ÎxŜz

+
1

2
cos θ sin θ[sinω12t+ sinω34t− sinω24t− sinω13t]2ÎyŜz

Ŝy(t) =
1

2
[sin2 θ(cosω12t+ cosω34t) + cos2 θ(cosω24t+ cosω13t)]Ŝy

−1

2
[sin2 θ(sinω12t+ sinω34t) + cos2 θ(sinω24t+ sinω13t)]Ŝx

+
1

2
cos θ sin θ[cosω12t− cosω34t+ cosω24t− cosω13t]Îy

−1

2
cos θ sin θ[sinω12t− sinω34t+ sinω24t− sinω13t]Îx

+
1

2
[sin2 θ(cosω12t− cosω34t)− cos2 θ(cosω24t− cosω13t)]2ÎzŜy

−1

2
[sin2 θ(sinω12t− sinω34t)− cos2 θ(sinω24t− sinω13t)]2ÎzŜx

+
1

2
cos θ sin θ[cosω12t+ cosω34t− cosω24t− cosω13t]2ÎyŜz

−1

2
cos θ sin θ[sinω12t+ sinω34t− sinω24t− sinω13t]2ÎxŜz
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Ŝz(t) =
1

4
[3 + (cos2 2θ − sin2 2θ) + 2 sin2 2θ cosω23t]Ŝz

+
1

4
[1− (cos2 2θ − sin2 2θ)− 2 sin2 2θ cosω23t]Îz

− sin θ cos θ[sinω23t]2(ÎxŜy − ÎyŜx)

−1

2
sin 2θ cos 2θ[1− cosω23t]2(ÎxŜx + ÎyŜy)

B: Case ωI = ωS ≡ ω0, Ĥ = ~ω0(Îz + Ŝz) + ĤJ :

This case could represent either a chemically-equivalent homonuclear spin pair in

the rotating frame with a resonance offset, or any homonuclear spin pair in the laboratory

frame at a low magnetic field where chemical shifts are negligible. In this case the Zeeman

Hamiltonian is proportional to the z-component of total angular momentum Îz+ Ŝz, which

commutes with the J-coupling Hamiltonian (as do all components of total angular momen-

tum, since ĤJ is isotropic in the combined spin space). Therefore [ĤZ , ĤJ ] = 0, which is

not the case when the spins are inequivalent. Of course, the z-component of total angular

momentum is still conserved.

When the spins are identical the mixing angle reduces to: θ = π/4 ⇒ cos θ =

√
1/2, sin θ =

√
1/2, cos 2θ = 0, sin 2θ = 1. The eigenfrequencies are: ω1 = ω0 + ωJ/4,

ω2 = ωJ/4, ω3 = −3ωJ/4, and ω4 = −ω0 + ωJ/4, such that ω12 = ω0, ω34 = ω0 − ωJ ,

ω24 = ω0, ω13 = ω0 + ωJ , and ω23 = ωJ .
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Îx(t) =
1

4
[2 cosω0t+ cos((ω0 + ωJ)t) + cos((ω0 − ωJ)t)]Îx

+
1

4
[2 sinω0t+ sin((ω0 + ωJ)t) + sin((ω0 − ωJ)t)]Îy

+
1

4
[2 cosω0t− cos((ω0 + ωJ)t)− cos((ω0 − ωJ)t)]Ŝx

+
1

4
[2 sinω0t− sin((ω0 + ωJ)t)− sin((ω0 − ωJ)t)]Ŝy

+
1

4
[cos((ω0 + ωJ)t)− cos((ω0 − ωJ)t)]2ÎxŜz

+
1

4
[sin((ω0 + ωJ)t)− sin((ω0 − ωJ)t)]2ÎyŜz

+
1

4
[− cos((ω0 + ωJ)t) + cos((ω0 − ωJ)t)]2ÎzŜx

+
1

4
[− sin((ω0 + ωJ)t) + sin((ω0 − ωJ)t)]2ÎzŜy

Îy(t) =
1

4
[2 cosω0t+ cos((ω0 + ωJ)t) + cos((ω0 − ωJ)t)]Îy

−1

4
[2 sinω0t+ sin((ω0 + ωJ)t) + sin((ω0 − ωJ)t)]Îx

+
1

4
[2 cosω0t− cos((ω0 + ωJ)t)− cos((ω0 − ωJ)t)]Ŝy

−1

4
[2 sinω0t− sin((ω0 + ωJ)t)− sin((ω0 − ωJ)t)]Ŝx

+
1

4
[cos((ω0 + ωJ)t)− cos((ω0 − ωJ)t)]2ÎyŜz

−1

4
[sin((ω0 + ωJ)t)− sin((ω0 − ωJ)t)]2ÎxŜz

+
1

4
[− cos((ω0 + ωJ)t) + cos((ω0 − ωJ)t)]2ÎzŜy

−1

4
[− sin((ω0 + ωJ)t) + sin((ω0 − ωJ)t)]2ÎzŜx
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Îz(t) =
1

2
[1 + cosωJ t]Îz +

1

2
[1− cosωJ t]Ŝz +

1

2
[sinωJ t]2(ÎxŜy − ÎyŜx)

Ŝx(t) =
1

4
[2 cosω0t+ cos((ω0 + ωJ)t) + cos((ω0 − ωJ)t)]Ŝx

+
1

4
[2 sinω0t+ sin((ω0 + ωJ)t) + sin((ω0 − ωJ)t)]Ŝy

+
1

4
[2 cosω0t− cos((ω0 + ωJ)t)− cos((ω0 − ωJ)t)]Îx

+
1

4
[2 sinω0t− sin((ω0 + ωJ)t)− sin((ω0 − ωJ)t)]Îy

+
1

4
[cos((ω0 + ωJ)t)− cos((ω0 − ωJ)t)]2ÎzŜx

+
1

4
[sin((ω0 + ωJ)t)− sin((ω0 − ωJ)t)]2ÎzŜy

+
1

4
[− cos((ω0 + ωJ)t) + cos((ω0 − ωJ)t)]2ÎxŜz

+
1

4
[− sin((ω0 + ωJ)t) + sin((ω0 − ωJ)t)]2ÎyŜz

Ŝy(t) =
1

4
[2 cosω0t+ cos((ω0 + ωJ)t) + cos((ω0 − ωJ)t)]Ŝy

−1

4
[2 sinω0t+ sin((ω0 + ωJ)t) + sin((ω0 − ωJ)t)]Ŝx

+
1

4
[2 cosω0t− cos((ω0 + ωJ)t)− cos((ω0 − ωJ)t)]Îy

−1

4
[2 sinω0t− sin((ω0 + ωJ)t)− sin((ω0 − ωJ)t)]Îx

+
1

4
[cos((ω0 + ωJ)t)− cos((ω0 − ωJ)t)]2ÎzŜy

−1

4
[sin((ω0 + ωJ)t)− sin((ω0 − ωJ)t)]2ÎzŜx

+
1

4
[− cos((ω0 + ωJ)t) + cos((ω0 − ωJ)t)]2ÎyŜz

−1

4
[− sin((ω0 + ωJ)t) + sin((ω0 − ωJ)t)]2ÎxŜz
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Ŝz(t) =
1

2
[1 + cosωJ t]Ŝz +

1

2
[1− cosωJ t]Îz −

1

2
[sinωJ t]2(ÎxŜy − ÎyŜx)

C: Case ωI = ωS ≡ 0, Ĥ = ĤJ

This is the case in which the two spins are indistinguishable by their chemical

shifts, and only the J-coupling between them remains. It could represent the case of a

chemically-equivalent homonuclear pair in the rotating frame, when the rf frequency is

exactly on resonance. It could also represent any two-spin system in the laboratory frame

at zero field, in which case even heteronuclei become “chemically equivalent” spins (of

course, heteronuclei can be distinguished at zero field when a magnetic pulse is applied).

It could also represent the case of a chemically-equivalent homonuclear pair in the rotating

frame, when the rf is exactly on resonance. The J-coupling Hamiltonian represents a scalar

quantity in the combined two-spin space, so it commutes with all components of the total

angular momentum Î + Ŝ: [(Îx+ Ŝx), ĤJ ] = 0, [(Îy + Ŝy), ĤJ ] = 0, and [(Îz + Ŝz), ĤJ ] = 0.

The components of total angular momentum are therefore constants of the motion in the

absence of a magnetic field, and the eigenstates of the system are the eigenstates of total

angular momentum. It follows that the J-coupled spin system in zero field is isotropic and

therefore invariant to all rotations in which both spins are rotated by the same angle about

the same axis. Evolution under this Hamiltonian is called “isotropic mixing”.

Îx(t) =
1

2
[1 + cosωJ t]Îx +

1

2
[1− cosωJ t]Ŝx +

1

2
[sinωJ t]2(ÎyŜz − ÎzŜy)
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Îy(t) =
1

2
[1 + cosωJ t]Îy +

1

2
[1− cosωJ t]Ŝy +

1

2
[sinωJ t]2(ÎzŜx − ÎxŜz)

Îz(t) =
1

2
[1 + cosωJ t]Îz +

1

2
[1− cosωJ t]Ŝz +

1

2
[sinωJ t]2(ÎxŜy − ÎyŜx)

Ŝx(t) =
1

2
[1 + cosωJ t]Ŝx +

1

2
[1− cosωJ t]Îx +

1

2
[sinωJ t]2(ÎzŜy − ÎyŜz)

Ŝy(t) =
1

2
[1 + cosωJ t]Ŝy +

1

2
[1− cosωJ t]Îy +

1

2
[sinωJ t]2(ÎxŜz − ÎzŜx)

Ŝz(t) =
1

2
[1 + cosωJ t]Ŝz +

1

2
[1− cosωJ t]Îz +

1

2
[sinωJ t]2(ÎyŜx − ÎxŜy)
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Appendix E

Simulation of the distant dipolar

field for cylindrically-symmetric

geometries (Matlab code)

% DDF simulator -- 2D for axial magnetization symmetry

% Jeffry T. Urban

clear all;

close all;

time = clock;

% Initialize simulation volume

Nr = 100; % Number of grid points in radial (cylindrical) direction

Nz = 300; % Number of grid points in z direction

Lr = 1.0; % Length of simulation cell in radial direction (cm)

Lz = 3.0; % Length of simulation cell in z direction (cm)

dr = Lr/Nr; % size of radial grid increment

dz = Lz/Nz; % size of longitudinal grid increment

M0 = 1; % Magnetization prefactor

epsilon = 1e-9; % Small factor to avoid divergences
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% Definition of coaxial cylinders (defined between z = -d/2 and z = +d/2)

R1 = 0.50; % Radius of inner cylinder in cm

R2 = 0.25; % Radius of outer cylinder in cm

d = 1.5; % Length of cylinder in cm

nt = floor(Nz*(1+d/Lz)/2 + 1/2); % z-index for top of cylinder

nb = ceil(Nz*(1-d/Lz)/2 + 1/2); % z-index for bottom of cylinder

kz = 1.0/d; % z-modulation wavenumber

%kz = epsilon; % no modulation (kz = 0)

% Define z-directed magnetization density

% Define grid variables

r = dr/2:dr:Lr-dr/2; % Radial coordinate: center of grid squares

%r = epsilon:dr:Lr; % Radial coordinate: edge of grid squares

z = -Lz/2+dz/2:dz:Lz/2-dz/2; % Longitudinal coordinate

hz = (z>=-d/2) + (z<=d/2) - 1; % Defines cylinder volume in z-direction

hr = (r>=R1) + (r<=R2) - 1; % Defines cylinder volume in radial direction

% Define z-magnetization

psi = 0;

%Mz = (M0*cos(2*pi*kz*z + psi).*hz)’*(ones(1,Nr).*hr);

% Cosine-modulated z-magnetization Mz(z,r)

%DM = (-(2*pi*kz)*M0*sin(2*pi*kz*z + psi).*hz)’*(ones(1,Nr).*hr);

% dMz/dz for cosine-modulated Mz

Mz = (M0*sin(2*pi*kz*(z+d/2) + psi).*hz)’*(ones(1,Nr).*hr);

% Sine-modulated z-magnetization Mz(z,r)

DM = ((2*pi*kz)*M0*cos(2*pi*kz*(z+d/2) + psi).*hz)’*(ones(1,Nr).*hr);

% dMz/dz for sine-modulated Mz

% Define magnetization projections at boundary surfaces

t = Mz(nt,:);

%nMt = (M0*cos(2*pi*kz*(d/2) + psi))’*(ones(1,Nr).*hr);

% n.Mz(zt,r) for cosine-modulated Mz

%nMb = (-M0*cos(2*pi*kz*(-d/2) + psi))’*(ones(1,Nr).*hr);

% n.Mz(zb,r) for cosine-modulated Mz

nMt = (M0*sin(2*pi*kz*(d/2+d/2) + psi))’*(ones(1,Nr).*hr);

% n.Mz(zt,r) for sine-modulated Mz

nMb = (-M0*sin(2*pi*kz*(-d/2+d/2) + psi))’*(ones(1,Nr).*hr);

% n.Mz(zb,r) for sine-modulated Mz

z1 = z;

r1 = r;

z2 = z’*ones(1,Nr);

r2 = ones(Nz,1)*r;
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% Calculate DDF, heteronuclear (z-component only)

% Point 2 = source, point 1 = field

% Calculate volume integral

for(nr1=1:Nr);

for(nz1=1:Nz);

u = sqrt((4*r1(nr1).*r2)./((r1(nr1) + r2).^2 + ...

(z1(nz1) - z2).^2)) - epsilon; % mu

[K,E] = ellipke(u); % Define complete elliptic integrals

F = (z1(nz1)-z2).*(u.^3).*(K + E./(1-u)); % Integrand

Iv(nz1,nr1) = dz*dr*(-1/(4*pi))*(1/(4*r1(nr1)^(3/2)))* ...

sum(sum((1./sqrt(r2)).*F.*DM)); % Riemann sums

end;

end;

% Calculate top and bottom surface integrals

for(nr1=1:Nr);

for(nz1=1:Nz);

ut = sqrt((4*r1(nr1)*r)./((r1(nr1) + r).^2 + ...

(z1(nz1) - d/2)^2)) - epsilon; % mu at top surface

ub = sqrt((4*r1(nr1)*r)./((r1(nr1) + r).^2 + ...

(z1(nz1) + d/2)^2)) - epsilon; % mu at bottom surface

[Kt,Et] = ellipke(ut); % Complete elliptic integrals/top surface

[Kb,Eb] = ellipke(ub); % " " "/bottom surface

Ft = (z1(nz1)-d/2).*(ut.^3).*(Kt + Et./(1-ut));

% Integrand for top surface

Fb = (z1(nz1)+d/2).*(ub.^3).*(Kb + Eb./(1-ub));

% Integrand for bottom surface

Is(nz1,nr1) = dr*(1/(4*pi))*(1/(4*r1(nr1)^(3/2)))* ...

sum((1./sqrt(r)).*(Ft.*nMt + Fb.*nMb)); % Riemann sum

end;

end;

Hz = Iv + Is; % H-field (volume + surface integral); H = -grad(Phi)

Bz = Mz + Hz; % B-field

% Reflect the magnetization/dipolar field across x = 0

Mz_symm = [fliplr(Mz),Mz];

Hz_symm = [fliplr(Hz),Hz];

Bz_symm = [fliplr(Bz),Bz];

r_symm = [-fliplr(r),r];

% Plot



649

figure;

pcolor(r_symm,z,Mz_symm),shading flat;

%colormap(’gray(16)’);

xlabel(’x (cm)’,’Fontsize’,12,’FontWeight’,’bold’);

ylabel(’z (cm)’,’Fontsize’,12,’FontWeight’,’bold’);

figure;

pcolor(r_symm,z,Bz_symm),shading flat;

%colormap(’gray(16)’);

xlabel(’x (cm)’,’Fontsize’,12,’FontWeight’,’bold’);

ylabel(’z (cm)’,’Fontsize’,12,’FontWeight’,’bold’);

figure;

surf(r_symm,z,Bz_symm);

%colormap(’gray(16)’); brighten(-0.25);

xlabel(’x (cm)’,’Fontsize’,12,’FontWeight’,’bold’);

ylabel(’z (cm)’,’Fontsize’,12,’FontWeight’,’bold’);

figure;

mesh(r_symm,z,Bz_symm);

%colormap(’gray(16)’); brighten(-0.25);

xlabel(’x (cm)’,’Fontsize’,12,’FontWeight’,’bold’);

ylabel(’z (cm)’,’Fontsize’,12,’FontWeight’,’bold’);

’done’

etime(clock,time)


