skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: IMPLEMENTING HEAT SEALED BAG RELIEF & HYDROGEN & METANE TESTING TO REDUCE THE NEED TO REPACK HANFORD TRANSURANIC (TRU) WASTE

Conference ·
OSTI ID:836355

The Department of Energy's site at Hanford has a significant quantity of drums containing heat-sealed bags that required repackaging under previous revisions of the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC) before being shipped to the Waste Isolation Pilot Plant (WIPP). Since glovebox repackaging is the most rate-limiting and resource-intensive step for accelerating Hanford waste certification, a cooperative effort between Hanford's TRU Program and the WIPP site significantly reduced the number of drums requiring repackaging. More specifically, recent changes to the TRAMPAC (Revision 19C), allow relief for heat-sealed bags having more than 390 square inches of surface area. This relief is based on data provided by Hanford on typical Hanford heat-sealed bags, but can be applied to other sites generating transuranic waste that have waste packaged in heat-sealed bags. The paper provides data on the number of drums affected, the attendant cost savings, and the time saved. Hanford also has a significant quantity of high-gram drums with multiple layers of confinement including heat-scaled bags. These higher-gram drums are unlikely to meet the decay-heat limits required for analytical category certification under the TRAMPAC. The combination of high-gram drums and accelerated reprocessing/shipping make it even more difficult to meet the decay-heat limits because of necessary aging requirements associated with matrix depletion. Hydrogen/methane sampling of headspace gases can be used to certify waste that does not meet decay-heat limits of the more restrictive analytical category using the test category. The number of drums that can be qualified using the test category is maximized by assuring that the detection limit for hydrogen and methane is as low as possible. Sites desiring to ship higher-gram drums must understand the advantages of using hydrogen/methane sampling and shipping under the test category. Headspace gas sampling, as specified by the WIPP Waste Analysis Plan, provides the sample necessary for hydrogen/methane analysis. Most Hanford drums are not equipped with a filter through which a headspace gas sample can be obtained. A pneumatic system is now used to insert ''dart'' filters. The filters were developed by the vendor and approved for WIPP certification at the request of the Hanford Site. The same pneumatic system is used to install septum-type sample ports to allow the headspace to be sampled. Together, these steps allow the Hanford Site to avoid repackaging a large percentage of drums, and thus accelerate certification of waste destined for WIPP.

Research Organization:
Fluor Hanford, Richland, WA (United States)
Sponsoring Organization:
ENVIRONMENTAL MANAGEMENT (US)
DOE Contract Number:
AC06-96RL13200
OSTI ID:
836355
Report Number(s):
HNF-23784-FP, Rev.0; TRN: US0500584
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 20 Jan 2005
Country of Publication:
United States
Language:
English