skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

Technical Report ·
DOI:https://doi.org/10.2172/836171· OSTI ID:836171

The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods presented during the workshop apply equally to both types of nuclear energy systems. The primary factor that differentiates the materials development path for the two systems is that nearly prototypical irradiation environments for Gen-IV materials can be found or built in existing fission reactors. This is not the case for fusion. The only fusion-relevant, 14 MeV neutron sources ever built (such as the rotating target neutron sources, RTNS-I and -II at LLNL) were relatively low-power accelerator based systems. The RTNS-II ''high'' flux irradiation volume was quite small, less than 1 cm{sup 3}, and only low doses could be achieved. The maximum dose data obtained was much less than 0.1 dpa. Thus, RTNS-II, which last operated in 1986, provided only a limited opportunity for fundamental investigations of the effects of 14 MeV neutrons characteristic of DT fusion.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
836171
Report Number(s):
ORNL/TM-2004/132; TRN: US0500513
Resource Relation:
Other Information: PBD: 15 Jul 2004
Country of Publication:
United States
Language:
English