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Stress Corrosion Crack Growth Rates for Alloy 82H Welds

Background

Findings presented at October Meeting concerning SCC behavior of

82H GTA welds in 360°C water:
Maximum CGRs for 82H welds are similar to CGRs for 182 welds.
Flutter fatigue loading (R = 0.9, f = 1 cpm) does not significantly
accelerate CGRs.

Large unbroken ligaments in wake of advancing crack front
prevented accurate measurement of SCC rates by EPD or crack
mouth opening displacement (CMOD) techniques.

Objective of Current Study

Characterize the SCC behavior of 82H welds at temperatures
between 288° and 360°C.

Experimental Procedures

GTA welds fabricated by 3 vendors (“A”, “B” & “C”).

Tests performed on 0.6T CT specimens with cracks in both

* longitudinal [T-L] direction (ie, cracking direction parallel to
welding direction)

* transverse [T-3] direction (ie, crack grows from root to crown)

Specimens were subjected to active loading
* Most tests were performed under constant load conditions.
* Limited testing was performed with
- Unload-reload cycles (R = 0.65) every 100 minutes
- Unload-reload cycles (R = 0.65) every 10 minutes
- Fatigue flutter loading.
Test environment:
* Room temperature pH = 10.1 — 10.3
* 360°C tests were conducted in water with 150 cc Ha/kg HoO

* 288°-338°C tests were conducted in water with 50 cc Ha/kg H,O*
*except for 338°C flutter test of Weld B-1 which was conducted at 150 cc Ho/kg H20.
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SCC Behavior of “A” & “B” 82H Welds at 338° & 360°C

* Scatter factor for a given weld is about 2X to 5X.

 Scatter factor for multiple welds is about 10X.

* On average, CGRs in transverse (T-S) direction are about twice those in
longitudinal (T-L) direction,

but there is considerable overlap in data.

* Periodic unload-reload cycles every 10 minutes do not appear to have a
significant effect on CGRs for Weld A-1 (longitudinal) at 338°C.

* Fatigue flutter loading does not significantly accelerate CGRs for Weld A-2
(transverse) at 360°C.

Open symbol denotes data points outside LEFM validity range.

Dot inside symbol denotes fatigue flutter loading (R = 0.9, f = 1 cpm).

Cross-hair inside symbol denotes unload-reload cycle every 10 minutes.
82H_WeldsA-B_10.jnb
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SCC Behavior of “C” Alloy 82H Welds at 288° to 360°C

Scatter factor appears to be reduced by periodic unload-reload cycle.
CGRs for longitudinal (T-L) direction [C-1, C-2] are

less than CGRs for transverse (T-S) direction in one weld [C-3], and

comparable to CGRs for transverse direction in another weld [C-4].
Periodic unload-reload cycles every 10 minutes appears to increase CGRs by
factors of 2X to 3X.
Periodic unload-reload cycles every 100 minutes does not significantly affect
CGRs.

Open symbols denote data points outside LEFM validity range.
Dot inside symbol denotes unload-reload cycle every 100 minutes.
Cross-hair inside symbol denotes unload-reload cycle every 10 minutes.
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CGRs for 82H Welds in 316° & 338°C Water & 182 Welds in 320° & 325°C Water
(182 data from Bamford et al, 10" Internatl Conf. on Environmental Degradation, 2001)

* CGRs for 82H & 182 welds appear to be similar at high K values.
* CGRs for 82H welds appear to be less than those for 182 welds in low K
regime.
Dot inside symbol denotes fatigue flutter loading.
Cross-hair inside symbol denotes unload-reload cycle every 100 minutes.
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Comparison of CGRs for Alloy 182 and 82H Welds
(182 data from Le Hong et al, 10™ IntI Conf. on Environmental Degradation, 2001)
182 and 82H welds exhibit comparable CGRs at:

338°/ 350°/ 360°C,
316°/ 320°C,
288°/ 290°C.

182 welds were tested in both as-welded and 10% cold worked conditions
(10% cold work causes 2X increase in CGRs).

Cross-hair inside symbol denotes unload-reload cycle every 10 minutes.
Dot inside symbol denotes unload-reload cycle every 100 minutes.
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Effect of Temperature on Crack Growth Rates for Alloy 82H Welds
(Equivalent CGRs at 40 MPaVm based on Scott model)

* CGRs exhibit an Arrhenius behavior.

* Data are consistent with an activation energy (Q) between 31 & 35 kcal/mole
(130 & 150 kd/mole)

Data points were obtained under constant-load conditions or with an unload-
reload cycle every 100-minutes, except as noted by dot or slash.
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Effect of Temperature on Crack Growth Rates for Alloy 82H & 182 Welds
(182 data from Le Hong et al, 101 Internat’l Conf. on Environmental Degradation, 2001)

* CGRs for Alloy 82H welds are consistent with Arrhenius behavior exhibited
by Alloy 182 welds.
Data are consistent with an activation energy of 31 to 35 kcal/mole
(130 to 150 kd/mole).

(CGRs were based on maximum crack extension values.)
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Alloy 82H Welds
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Average Crack Extension, mm

Maximum Crack Extension (Aayax) v. Average Crack Extension (Aaave)
for Stress Corrosion Cracks in Alloy 82H Welds

* For Aaave < 2 mm, Aamax values are 2X to 4X greater than Aaaye values.
* For Aaave > 3 mm, Aauax values are 1.34 + 0.16 greater than Aaaye values.
* Periodic unload-reload cycles appear to reduce difference between Aasye and
Aapax at Aaave <1 mm,
but has little effect at larger Aaave values.
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Stress Corrosion Crack Growth Rates for Alloy 82H Welds

Conclusions

Maximum CGRs for 82H welds are consistent with data for 182 welds.

Differences in weld metal composition (82H v. 182) and welding
process (GTA v. SMA) do not significantly affect CGRs.

CGRs exhibit an Arrhenius behavior with Q between 31 and 35 kcal/mol
(130 & 150 kd/mol).

CGRs in transverse (T-S) direction tend to be about twice those in
longitudinal direction (T-L), but there is overlap in the data.

Unload-reload cycle (R = 0.65) every 100 minutes does not significantly
affect CGRs.

Unload-reload cycles (R = 0.65) every 10 minutes caused a 2- to 3-fold
increase in CGRs for weld “C”, but had no significant effect on weld “A”.

Scatter factors for individual welds tested under constant load range
from 2X to 5X.

- Periodic unload-reload cycles appear reduce data scatter.

Scatter factor for 82H GTA welds fabricated by three vendors is about
an order of magnitude.

Unbroken ligaments behind crack front promote data scatter and
preclude using EPD and CMOD methods to measure crack extension.

Periodic unload-reload cycles appear to reduce extent of ligaments
at low Aa.
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Appendix

Microstructure and Fracture Surface Appearance for Alloy 82H Welds

A1,
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Fatigue Fracture Surfaces

(a) Alloy 600. Fatigue fracture surface is smooth and planar.

(b) Alloy 82H Weld. Fatigue fracture surface is very rough and non-
planar, reflecting the dendritic nature of as-welded structure.

FCP_A600_82H_1.cdr

A4.
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Microfocus X-ray radiographs showing non-planar nature of fatigue precracks in
bolt-loaded CT specimens of Alloy 82H weld.

Nonplanar nature of fatigue precrack (even when crack front is uniform)
affects incubation of stress corrosion cracks.

BL_CT Weld2.cdr
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(b)

Microfocus X-ray radiographs of stress corrosion crack emanating from fatigue
precrack in bolt-loaded CT specimen of wrought metal.

Note that fatigue precrack has a sharp, planar morphology,

whereas stress corrosion crack appears to be diffuse.



