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ABSTRACT

The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous
pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the

presence of I, IC1, PhSeCl, PhSCI and p-O;NCH4SCl to give the corresponding halogen-,

selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively.

Monosubstituted 1soquinolines and naphthyridines have been synthesized by the metal-

catalyzed ring closure of these same iminoalkynes. This methodology accommodates a

variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent
yields.

The Pd(I)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of
various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-
arylisoquinelines in moderate to excellent yields. The introduction of an ortho-methoxy
group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting
Pd(II) intermediate, improving the yields of the isoquinoline products.

Highly substituted naphthalenes have been synthesized by the palladium-catalyzed
annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are
formed 1n a single step under relatively mild reaction conditions. This method has also been
used to synthesize carbazoles, although a higher reaction temperature is necessary. The
process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination
and double bond isomerization. This method accommeodates a variety of functional groups
and affords the anticipated highly substituted naphthalenes and carbazoles in good to

excellent yields.



X

Novel palladium migration/arylation methodology for the synthesis of complex fused
polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular
migration processes involving C-H activation are employed. The chemistry works best with

electron-rich aromatics, which is in agreement with the idea that these palladium-catalyzed

C-H activation reactions parallel electrophilic aromatic substitution.

A relatively efficient synthesis of cyclopropanes has been developed using palladium-
catalyzed C-H activation chemistry, in which two new carbon-carbon bonds are formed in a
single step. This method involves the palladium-catalyzed activation of relatively unreactive £
C-H bonds, and provides a very efficient way to synthesize cyclopropapyrrolof1,2-a]indoles,

analogues of the mitomycin antibiotics.



GENERAL INTRODUCTION "

Transition metal-catalyzed processes have proven to be extremely effective in organic
synthesis. More specifically, palladium-catalyzed methodology has been .extensively utilized
in recent years.' The ability to create multiple carbon-carbon bonds from simple starting
materials, the regio- and stereospeciﬁ;:ity of the reactions, the exceptional tolerance for | i,
functional groups, the insensitivity to air or moisture, and the procedural ease with which the
reactions can be carried out have all contributed to the success of palladium in organic
synthesis.

The Larock group has shown in a series of recent papers that palladium-catalyzed
cyelization or annulation methodology® can be effectively employed for the synthesis of
indoles, isoindolo[2,1-aJindoles, benzofurans, benzopyrans, 1socoumarins, a-pyrones,
isoquinolines, carbolines and polycyclic aromatic hydrocarbons with a wide variety of
substituent patterns. In this dissertation, extension of this approach to the synthesis of
isoquinolines, naphthyridines, naphthalenes, carbazoles, and their derivatives have been
investigated.

The ability of palladium to activate C-H bonds has been used extensively in organic
synthesis.” In recent years, palladium-catalyzed C-H activation has received considerable
attention due to the wide variety of reactions this metal will catalyze. Newly discovered
palladium migration chemistry and the palladium-catalyzed activation of alkyl C-H bonds
interests us as both an opportunity to study the behavior of palladium and an unusual

pathway to construct complicated polycyelic compounds.



Dissertation Organization
This dissertation is divided into five chapters. Each of the chapters presented herein is
written by following the guidelines for a full paper in the Journal of Organic Chemistry and
is composed of the abstract, introduction, results and discussion, conclusion, experimental
section, and references.

Chapter 1 discusses the synthesis of halogen-, selenium- and sulfur-containing
disubstituted isoquinolines and naphthyridines by the electrophilic cyclization of the tert-
butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes under very
mild reaction conditions using I, ICl, PhSeCl, PhSCI and p-O,NCsH,SCl as electrophiles.

Chapter 2 investigates the Pd(Il)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in
the presence of various alkenes as an efficient way to synthesize a variety of 4-(1-alkenyl)-3-
arylisoquinolines in moderate to excellent yields. Various imine substrates and alkenes have
been studied. A mechanism for this transformation is proposed.

Chapter 3 presents a palladium-catalyzed annulation of a variety of internal alkynes to
synthesize highly substituted naphthalenes. The process involves arylpalladation of the
alkyne, followed by intramolecular Heck olefination and double bond isomerization. Highly
substituted carbazoles have also been synthesized in good to excellent yields by this
methodology.

Chapter 4 reports a novel palladium-catalyzed aryl-to-aryl migration. This reaction is
both mechanistically and synthétically interesting, because it involves multiple C-H
activation process and provides an unusual pathway for the synthesis of heterocyclic and

- carbocyclic compounds.



Chapter 5 describes a novel palladium-catalyzed activation of alkyl C-H bonds, which
provides a novel way to synthesize cyclopropapyrrolo1,2-a]indoles, analogues of the
mitomycin antibiotics.

Finally, all of the "H and *C NMR spectra for the starting materials and reaction
products have been compiled in appendices A-E following the general conclusions for this E

dissertation.
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CHAPTER 1. SYNTHESIS OF SUBSTITUTED ISOQUINOLINES BY

ELECTROPHILIC CYCLIZATION OF IMINOALKYNES

A paper published in the Journal of Organic Chemistry
Qinhua Huang, Jack A. Hunter and Richard C. Larock*

Department of Chemistry, lowa State University, Ames, IA 50011

Abstract

The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous
pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the
presence of I, ICl, PhSeCl, PhSCI and p-O,NCsHSCl to give the corresponding halogen-,
selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively.
This methodology accommodates a variety of iminoalkynes and affords the anticipated
heterocycles in moderate to excellent yields. Monosubstituted isoquinolines and
naphthyridines have been synthesized by the metal-catalyzed ring closure of these same
iminoalkynes. The silver-catalyzed ring closure is highly effective in cyclizing aryl, alkenyl,

and alkyl-substituted iminoalkynes at 50 °C.

Introduction
The isoquinoline backbone appears in numerous natural products. Thus, the synthesis
of isoquinolines has received much recent attention.! Although classical methods have been
frequently employed in the total synthesis of isoquinoline alkaloids, these approaches often

have drawbacks. For example, the Bis.chIer-Napierzﬂskj,2 Pictet-Spengler,’ and Pomeranz-



Fritsh® protocol require relatively strong acids to cyclize E-phenethylamines. Also, the
Bischler-Napieralski® and the Pictet-Spengler’ reactions afford dihydro- and
tetrahydroisoquinolines, respectively. An additional step involving dehydrogenation is thus
required to complete the synthesis of the isoquinoline.

Recently, substituted isoquinolines have been synthesized by employing palladium | -
chemistry. Widdowson has published a synthesis of isoquinolines by the reaction of a
cyclopalladated N-tert-butylarylaldimine and acrylonitrile.” His synthesis suffers from the
use of stoichiometric amounts of palladium salts and high reaction temperatures (180-200 °C) "
for the final step. Heck has also reported the formation of 3,4-diphenylisoquinoline by the w
reaction of diphenylacetylene and a cyclopalladated N-fert-butylbenzaldimine :
tetrafluoroborate complex (eq 1).° This synthesis also utilizes a stoichiometric amount of

palladium salts, which is not very practical in organic synthesis.

+

N MeNO,, 100 °C ~N
@jN_f*BU BFy + Ph—=—Ph 2 - P (1)
Pd, A 22% Ph

L
L Ph

We have recently reported the formation of numerous 3,4-disubstituted isoquinolines
by the palladium-catalyzed annulation of internal alkynes (eq 2)’ and carbopalladation of the
tert-butylimines of o-(1-alkynyl)benzaldehydes (eq 3).* 3-Substituted isoquinoline
derivatives can be prepared by the palladium and copper-catalyzed cross coupling of terminal
alkynes and subsequent ring closure by catalytic Cul (eq 4)° or by the reaction of o-(1-

alkynyl)benzaldehydes with NH; (eq 5).'°



/t-BLI

e N

@i\ N + Rl_=— g2 _ catPd(0) N 2)
| base N2

R‘I
oy B \ cat. Pd(0) SN
+ R°X _— (3)
base = 1
_ R
R R?
R? = aryl, allyic, benzylic, 1-alkynyl
1. 2 % PdClx(PPhs)
B 2 3l2
By . 1 % Cul, EtsN, 55 °C =N
+ H——R -~ P (4)
, 2.10 % Cu, DMF, 100 °C R
CHO N
NHg, EtOH @i\/Nk (5)
N R=H, Ph, n-Bu ™
R

During the course of our isoquinoline annulation studies, we were encouraged to
examine the electrophilic cyclization of our iminoalkynes by electrophiles other than
| organopalladium compounds in order to obtain 3,4-disubstituted isoquinolines (Scheme 1).
The requisite iminoalkynes can be easily prepared by the Sonogashira reaction of a 2-
halobenzaldehyde and a terminal alkyne, followed by reaction with ferf-butylamine. We now
wish to report that the electrophilic cyclization of the fer¢-butyl imines of o-(1-
alkynyl)benzaldehydes and analogues provides a very efficient synthesis of a wide variety of

substituted isoquinolines.



Scheme 1
/t‘B
@:CHO 12 =R tBuNHz A Vi E* SN
x 2% PdCIZ(PPh3)2 25 OC S ™
1% Cul S R £
Et3N, 50 °C
X=Br, | E* =1, ICI, H", ArSCI, ArSeCl

R = alkyl, alkenyl, aryl

Results and Discussion
First, we studied the reaction of iminoalkyne 1 with I, in CH3CN at room temperature

in the presence of a variety of bases (eq 6). The results are summarized in Table 1, entries 1-

11.
@]
. FBU N _tBu
N Slz | P \ (6)
R_ 3 base, CH3CN Ph Ph
Ph 25°C | 0
1 2 3
Table 1. Ring Closure of Iminoalkyne 1 by I; (eq 6).”
entry base time (h) % yield of 2" % vield of 3°
1 - 3 17 trace
2 NaHCO; 3 36 24
3 Na;COs 24 30 26
4 K,COs 3 31 28
5 NaOCO,CH; 0.5 68 0
6 -BuOK 3 17 0
7 n—C3H7C02Na 72 20 0
8 EtsN 72 trace 0
9 pyridine® 72 20 0




Me
10 X 72 32 trace
P
Me N Me
Me
11 =% 72 22 0

/
t-Bu N -Bu

Me

128 Me@.\%ppﬁs- 72 30 0
13° 72 trace 0

Me

* All reactions were run under the following conditions, unless otherwise described: 0.25 mmol of 1 and 0.75
mmol of the base in 7 ml of CH;CN were stirred at room temperature under Ar for the specific period of time. b
Isolated yields. © Pyridine (7 ml) were used as both the solvent and the base. 4 No 1, was employed and 7 ml of

CH,Cl, were used as the solvent. © No I, was employed.

When no base was employed, this cyclization reaction only gave 17 % of the desired
isoquinoline product 2 (entry 1). The addition of carbonate bases, such as NaHCOj3, Na;CO;
and K;CO; increased the yields of 2 to 36 %, 30 % and 31 %, respectively (entries 2-4),
while side product 3 was observed in 24 % to 28 % yields. The side product 3 probably
arises from reaction of the intermediate isoquinolinium salt with water, .hydr_oxide or the
carbonate base (see the later mechanistic discussion). Surprisingly, the use of NaOCO,CH;''
as the base (entry 5) produced a 68 % yield of 2 and none of the side product 3 was
produced. This reaction was complete in 0.5 h. The very different results from the reaction
of NaOCOQ,CHj; and the other carbonate bases can be explained by the fact that NaOCO,CHs
reacts with a proton to produce CO, and MeOH, while the reactions of a proton with the
bases NaHCOs, Na2C0.3 or K,CO; generate CO, and H,O. The H,0 generated probably

leads to the formation of side product 3 and thus results in low yields of 2. When a stronger



9

base, KO-#-Bu was employed, only a 17 % yield of 2 was observed (entry 6). The low yield
may be a direct result of the fact that the imine appears to be unstable in the presence of this
strong base. The reactions employing the less basic salt #-C3H;CQO,Na and the organic base
Ef3N were quite slow (entries 7 and 8). These reactions are not complete even in 3 days and
give only a 20 % yield and a trace of 2, respectively. Pyridine and hindered pynidine
derivatives, such as 2,4,6-trimethylpyridine and 2,6-di-tert-butyl-4-methylpyridine, have also
been employed (entries 9-11). Although no side product 3 was produced, all of these
reactions were slow and suffered low yields ranging from 20 % to 32 %. The use of bis-
(2,4,6-trimethylpyridine)iodine(I) hexafluorophosphate, which is both a source of iodine
cation and a potential base, failed to improve the yield of 2. A 30 % yield of 2 was observed
when the reaction was carried out in CH>Cl (entry 12), while only trace amounts of 2 were
produced in CH;CN (entry 13). We have found that using less than 3 equivs of the base and
6 equivs of I results in a lower yield. So we have chosen the following conditions as
optimal for all subsequent experiments: 0.25 mmol of the iminoalkyne, 6 equivs of I, 3
equivs of NaOCO,CH; in 7 ml of CH3CN are stirred at room temperature for an appropriate
amount of time. Most of the reactions are complete in 0.5 h and afford good to excellent
yields of the corresponding iodoisoquinolines and iodonaphthyridines. The results using I
are summarized in Table 2, entries 1, 3, 4, 6, 8, 10, 12 and 13.

The stronger electrophilic reagent ICI has also been employed in these cyclizations and
the corresponding cyclization products have been observed in yields comparable to those
obtained using I, except for iminoalkynes 10 (compare entries 8 and 9) and 16 (compare

entries 13 and 14). The reasons for this are not obvious. The reaction times are also usually
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pretty similar to those of I. The results are summarized in Table 2, entries 2, 5, 7, 9, 11, and
14.

Of all of the electrophilic reagent examined, I; and ICl close the six-membered ring the
fastest. Most of these reactions are complete in 0.5 h. The reactions of 1 with I; and IC1
gave almost identical yields, 67 % and 68 % respectively (entries 1 and 2). When the
iminoalkyne 4 bearing a cyclohexenyl group was allowed to react with I, (entry 3), the yield
was similar to that of 1. This indicates that this electrophilic reaction can tolerate double
bonds.

To further test the scope of this electrophilic ring closure, alkyl-substituted acetylenes,
such as iminoalkynes o-(+-BuN=CH)CsH4C{CR [R = cyclohexyl (38) or CH,CH,OTHP
(40)] have been allowed to react with I and ICl. Cacchi has reported that alkyl-substituted
o-(1-alkynyl)phenols react with I, fo give substitutea iodobenzofurans.!! However, in our
chemistry, I; and ICI do not react with either of the alkyl-substituted iminoalkynes to afford
the desired products and neither do PhSeCl or PhSCI as will be discussed later. The
coordination of iodine to the carbon-carbon triple bonds in these iminoalkynes should result
in a partial postive charge on the carbon next to the aromatic ring, since an aryl group
stabilizes a carbocation better than an alkyl group. Obviously, the formation of isoquinolines

from such an intermediate is impossible.
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While iminoalkyne 21, o-(-BuN=CH)CH4C{ CCsH,4-p-CF3, bearing an electron-
deficient arylethynyl group didn’t react with I, or IC] at all, the introduction of an electron;
rich arylethynyl group, as found in iminoalkynes 6 (entries 4 and 5) and 8 (entries 6 and 7)
rather surprisingly resulted in low yields of the desired’heterocyclic iodides. Similarly, none
of the desired product has been obtained when iminoalkyne 10 with a methylenedioxo
substituent is allowed to react with I, (entry 8), although all of the starting material is gone in
0.5 h. However, a 52 % vield of 11 was observed when IC1 was employed as the electrophile
(entry 9). This is possibly because ICl is a stronger electrophile than I.

From entries 10 and 11 in Table 2, one can see that the introduction of a pyridine ring
into the starting material results in relatively high yields when either I, or IC1 are employed

as electrophiles. This might be explained by an intermediate such as 46. The pyridine

P \N/t—Bu
’ )
\
\
~ Ph
46

o
N
|
I
nitrogen might first coordinate to the electrophile to form a pyridinium cation. Because of
this coordination, electrophilic attack of the triple bond might then occur in an intramolecular
fashion. The intramolecular assistance significantly increases the yields for the reactions of
I, and IC1 from 68 % and 67 % for iminoalkyne 1 (entries 1 and 2) to 90 % and 92 % for
iminoalkyne 12 (entries 10 and 11), respectively.

Alternatively, the presence of the pyridine moiety in iminoalkyne 12 may simply be
directing the cationic charge of the intermediate iodonium ion to the more remote carbon of

~ the alkyne, which should favor formation of the 6-membered ring isoquinoline. Whatever



18

the reason, the result is very encouraging, since it broadens the potential applications of this
cyclization and improves its efficiency.
As described above, iminoalkynes derived from o-iodobenzaldehyde and acetylenes

bearing simple alkyl groups do not react with I, However, iminoalkyne 14 can be cyclized

by I, giving naphthyridine 15 in a 76 % yield (entry 12). Again, we believe that the key is
the coordination of the electrophile to the pyridine nitrogen and formation of an intermediate

like 4.

Tn an attempt to try to confirm this intramolecular assistance, iminoalkyne 16 has been
allowed to react with I, and only a 13 % yield of 17 was obtained (entry 13). Compared to
the reaction of 12 and I, (entry 10), the yield dropped from 90 % to 13 %. This may arise
because 16 geometrically disfavors intramolecular assistance or it may simply be that we
have now further removed the more electron-withdrawing nitrogen from the vicinity of the
carbon-carbon triple bond. However, iminoalkyne 16 reacts with ICI to give naphthyridine
17 in 72 % yicld, although this reaction requires 1 day to reach completion (entry 14). Itis
logical that IC1, a stronger electrophile than I, should work better in this reaction.

The next electrophilic reagent studied was PhSeCl. A variety of reaction conditions
have been examined and the results are summarized in Table 3. Very similar yields, 74 %
and 78 % respectively, of isoquinoline 18 have been obtained from iminoalkyne 1 using one

or two equivs of PhSeCl (Table 3, entries 1 and 2). The concentration of the reactants seems
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to play a minor role in this reaction. From entry 3, one can see that a more concentrated
reaction actually gave a slightly lower yield. The reagent PhSeSePh failed to yield any of the
corresponding isoquinoline (entry 4). Thus, we chose 0.25 mmol of the iminoalkyne, 2
equivs of PhSeCl in 7 ml of CH,Cl, at room temperature as our standard reaction conditions
for the reaction of PhSeCl and our iminoalkynes. In general, the reaction of iminoalkynes
and PhSeCl requires 1-3 days and good to excellent yields of selenium-containing
isoquinolines and naphthyridines are obtained (Table 2, entries 15-22). The major exception

was iminoalkyne 21, which gave only an 18 % yield after 3 days reaction time (entry 18).

Table 3. Optimization of the Cyclization Reaction Employing Se and S Electrophiles.”

entry electrophile equiv of electrophile  temp (°C)  time(d) % yeld

1 PhSeCl 1 25°C 1 74
2 2 1 78
3 1 70°
4 PhSeSePh 1 0

5 P-NO,;CeH4SCl 3 47
6 3 45°
7 60 °C 3 47

? All reactions were run using 0.25 mmol of 1 in 7 ml of CH,Cl,, unless otherwise specified. ® Two ml of

CH.Cl, were used. ° Two equivs of ZnCl, were added.

Cyclizations employing PhSeCl have generally proven quite successful. A 76 % yield
of the isoquinoline product 18 has been obtained, when iminoalkyne 1 is allowed to react

with PhSeCl (entry 15). When employing an iminoalkyne bearing a vinylic group on the
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triple bond, a 96 % yield of selenium-containing isoquinoline 19 has been observed (entry e

16). In contrast to the reactions of I and ICI, the introduction of an electron-rich arylethynyl
group into the iminoalkyne increases the yield from 76 % (entry 15) to 95 % (entry 17).
However, the reaction of PhSeCl and iminoalkyne 21 bearing an electron-deficient
arylethynyl group results in only an 18 % vield of isoquinoline (entry 18). Thus, electron-
rich arylethynyl groups benefit the ring closure by PhSeCl, while an electron-deficient
arylethynyl group disfavors cyclization. Obviously, the presence of an electron-rich
arylethynyl group may be favoring the formation of the positive charge on the carbon
necessary for formation of the six-membered ring. This supposition is confirmed by the
reaction of 10 and PhSeC], where the electron rich methylenedioxy group presumably favors
cation formation on the "wrong" carbon of the alkyne, which results in a lower yield of
selenium-substituted naphthalene (entry 19). Only a 60 % yield of 23 was obtained when 10
was allowed to react with PhSeCl. Although both iminoalkynes 6 (entry 17) and 10 (eniry
19) have relatively electron-rich triple bonds, they afford quite different results. The lower
yield of 23 can be explained as shown in Scheme 2. The positive charge on the alkyne
carbon bearing the trimethoxyphenyl ring in intermediate 48 is better stabilized and therefore
closure to a six-membered ring and formation of the isoquinoline product 20 are favored
(entry 17). In intermediate 49, more of the partial positive charge is located on the alkyne
carbon bearing the methylenedioxyphenyl ring, which disfavors the formation of a six-

membered ring and results in a decrease in the yield from 95 % (entry 17) to 60 % (entry 19).
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Scheme 2

Although the electron density on both the triple bond and the imine nitrogen 1is
decreased by the presence of a pyridine ring in compound 16, we still obtain an 80 % yield
from the reaction of iminoalkyne 16 and PhSeCl (entry 20). This may be explained by the
fact that the partial positive charge in intermediate 50 (Scheme 2) is delocalized better by the
phenyl group. Subsequent endo-6-trig attack apparently proceeds smoothly to form a stable
1soquinoline product.

Iminoalkynes 12 and 14 also react with PhSeCl to give decent yields (entries 21 and
22). The success of these reactions may be the result of intramolecular assistance as
described above. Alternatively, the presence of an electron-deficient pyridine ring may
simply be favoring formation of an intermediate with a positive charge located on the carbon
necessary to close the six-membered ring and disfavoring formation of the "wrong cation" on
the carbon-carbon triple bond.

Unfortunately, when PhSeCl has been allowed to react with alkyl-substituted
iminoalkynes, such as iminoalkynes o-(t-BuN=éH)C6H4C{ CR [R = cyclohexyl (38) or
CH,CH,OTHP (40)], none of the desired product was observed. The results are similar to

those from the reactions of I and iminoalkynes 38 and 40.



22

The electrophile p-O;NC¢H4SCl has been examined under the optimal reaction
conditions developed for PhSeCl. The isoquinoline preduct 27 expected from iminoalkyne 1
was obtained in a rather low yield of 47 % (Table 3, entry 5). The addition of the Lewis acid
ZnCl, (entry 6) or an increase in the reaction temperature (entry 7) in an attempt to induce
cyclization had little effect on the product yield, so the optimal reaction conditions for
PhSeCl have been used in the reactions of p-O,NCgH4SCl and PhSCI" (Table 2, entries 23-
28). In general, the yields of sulfur-containing isoquinolines from p-0,NCgH4SCl and PhSCI
fall in the range of 25-46 %. The reactions producing nitro-containing products generally
proceed in a slightly lower yield and require much longer reaction times.

The electrophile p-0;NCgH4SCl reacts with iminoalkynes 1, 4 and 8 to produce the
corresponding 4-(p-nitrophenylsulfenyl)isoquinoline derivatives in modest yields (entries 23-
25). These yields are lower than those of reactions with I, IC1 or PhSeCl. This is probably
because this reagent is a weaker electrophile. Much better yields of the sulfur-containing
isoquinolines were obtained when PhSCI was employed as the electrophile. As shown in
entries 26-28, iminoalkynes 4, 6 and 14 were allowed to react with PhSCl and the
corresponding sulfide products 30-32 were obtained in yields ranging from 40 % to 45 %.
All of these reactions were complete in 24 h. However, the reactions of PhSCl and the alkyl-
substituted iminoalkynes 38 and 40 afforded none of the desired product. Thus, rather
surprisingly, the pyridine-containing iminoalkyne 32 actually gives better results than the
corresponding alkyl-substituted phenyl analogues. This may be due to intramolecular
assistance by the pyridine as described earlier.

In order to synthesize monosubstituted isoquinolines, 10 mol % of Cul has been

employed to close these same iminoalkynes to heterocycles with a hydrogen in the 4
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position.” The results from these cyclizations are summarized in Table 2, entries 30, 32, 36
and 38. We now wish to report that catalytic amounts of AgNO3 will effect the same
transformation and the reaction occurs under milder reaction conditions, although the yields
are often a bit lower. Thus, 0.25 mmol of iminoalkyne 1 have been allowed to react with 2
equivs of AgNOs in 7 ml of CHCl; at 50 °C (Table 4, entry 1). After 1 day, the
monosubstituted isoquinoline 33 was obtained in a 90 % isolated yield. Further study
indicated that 5 mol % of AgNO; is enough to close the six-membered ring in good yield
(entries 2-4). The reaction failed when only 1 % of AgNQO; was employed as the catalyst.
Both AgNO, and AgOAc gave approximately the same yields for this ring closure (compare
entries 3 and 5). Thus, the following standard conditions have been employed in all
subsequent experiments: 0.25 mmol of the iminoalkyne and 5 mol % of AgNO; were stirred
at 50 °C in 7 ml of CHCI; for the appropriate reaction time. The reaction takes 1-3 days at 50
°C and gives decent yields of the corresponding cyclization products (Table 2, entries 29, 31,

33-35, 37, and 39-42).



24

Table 4. Silver-catalyzed Ring Closure of Iminoalkyne 1.*

entry silver salt solvent product % isolated yield
(equivs)
=N
1 AgNO; CHCl;3 Zpn 90
33
(2.00)
2 (0.10) 80
3 (0.05) 82
4 (0.01) 0b
5 AgOAc 30
(0.05)
6 AgNO; CDClz 69
(2.00)

* Al reactions were run under the following conditions, unless otherwise specified: 0.25 mmol of iminoalkyne
1 and the indicated amount of silver salt in 7 ml of the solvent were stirred at 50 °C for 24 h. ® After 24 h, there

was only a minimal amount of the desired product present by TLC.

The source of the hydrogen atom ending up in the 4 position of the isoquinoline 1s not
obvious. If the hydrogen atom comes from the solvent, the use of DCCIz would have
resulted in a deuterated product (Table 4, entry 6). This was not the case as indicated by 'H
NMR spectroscopic analysis. Thus, we believe that the hydrogen is coming from the feri-

butyl group of the imine or from small amounts of water present in the reaction.
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As described above, alkyl-substituted N-(o-(1-alkynyl)benzylidene)-zerf-butylamines -
failed to afford any of the desired isoquinolines when allowed to react with I, IC1, PhSeCl or
p-0;NCHSCL However, iminoalkyne 38 and 40 do react with AgNO; or Cul to afford
decent yields of the corresponding isoquinolines (Table 2, entries 35-38).

In general, the reactions of I, and ICI form the six-membered ring isoquinolines the
fastest. In most cases, these reactions are complete in 0.5 h. However, the yields are less
than those obtained from the reactions of PhSeCl, AgNO; or Cul. The reagents PhSC] and p-
O;NCeH4SCI are the least efficient electrophilic reagents for this process, and their reactions *
require longer reaction times and result in lower yields. H

For the reactions of I; or IC1 and iminoalkyne 1, we propose the mechanism shown in
Scheme 3. First, the carbon-carbon triple bond of iminoalkyne 1 coordinates to the iodine
cation generated from I, to generate an iodonium intermediate. This is followed by attack of
the imine nitrogen on the activated triple bond to form intermediate 52. Alternatively, the
coordination of the jodine cation to the carbon-carbon triple bond may form a cationic
intermediate like 51, which cyclizes to intermediate 52. The isoquinolininm salt 52 then
presumably ionizes to produce the iodoisoquinoline 2 and a ters-butyl cation, which

generates isobutylene.
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Scheme 3 _
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Conclusions
In conclusion, a procedure for the efficient synthesis of a wide variety of substituted
isoquinolines has been developed which employs very mild reaction conditions. This
methodology accommodates a variety of iminoalkynes and affords the anticipated substituted

isoquinolines in moderate to excellent yields.

Experimental Section
General. The 'H and ?C NMR spectra were recorded at 300 and 75 MHz or 400 and
100 MHz respectively. Thin-layer chromatography was performed using commercially
prepared 60-mesh silica gel plates (Whatman K6F) and visualization was effected with short

wavelength UV light (254 nm) and basic KMnOy solution [3 g of KMnO4 + 20 g of K,CO3 +
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5 ml of NaOH (5 %) + 300 ml of H;O]. All melting points are uncorrected. Low resolution
mass spectra were recorded on a Finnigan TSQ700 triple quadrupole mass spectrometer
(Finnigan MAT, San Jose, CA). High resolution mass spectra were recorded on a Kratos
MSS50TC double focusing magnetic sector mass spectrometer using EI at 70 ¢V. Elemental
analyses were performed at Iowa State University on a Perkin Elmer 2400 CHNS/O Series 11
Analyzer. All reagents were used directly as obtained commercially unless otherwise noted.
2-Bromopyridine-3-carboxaldehyde, * 3-bromopyridine-4-carboxaldehyde'* and PhSCI'
were prepared according to literature procedures. The following starting materials were
prepared as indicated.

2-(2-Propenylethynyl)benzyl alcohol. To a solution of 2-iodobenzyl alcohol (1.40 g,
6.0 mmol) and 2-methyl-1-buten-3-yne (0.47 g, 7.2 mmol) in Et;N (24 ml) were added
PdCly(PPhs), (84 mg, 2 mol %) and Cul (12 mg, 1 mol %). The resulting mixture was then
heated under an Ar atmosphere at 50 °C for 24 h. The mixture was allowed to cool to room
temperature, and the ammonium salt was removed by filtration. The solvent was removed
under reduced pressure and the residue was purified by flash column chromatography using
5:1 hexane/EtOAc to afford 0.97 g (94 %) of the desired compound as a yellow oil: "H NMR
(CDCI3)I'1.99 (dd, /= 0.9, 1.5 Hz, 3H), 2.72 (t, /= 6.0 Hz, 1H), 4.79 (d, /= 6.0 Hz, 2H),
5.31-5.33 (m, 1H), 5.40-5.42 (m, 1H), 7.22-7.33 (m, 2H), 7.40-7.44 (m, 2H); >*C NMR
(CDCl3)I'23.7, 63.9, 86.0, 95.6, 121.3, 122.5, 126.8, 127.2, 127.5, 128.8, 132.2, 142.7.

Aldehydes Prepared

2-(2-Propenylethynyl)benzaldehyde. To a solution of 2-(2-propenylethynyl)benzyl

alcohol (0.86 g, 5 mmol) in 75 ml of CH,Cl; was added MnO, (6.52 g, 75 mmol). The
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resulting mixture was stirred at 25 °C for 12 h. The extra MnQ, was removed by filtration.
The solvent was removed under reduced pressure and the oily residue was purified by flash
column chromatography using 11:1 hexane/EtOAc to afford 0.73 g (86 %) of the desired
compound as yellow oil: '"H NMR (CDClL) I'2.02 (dd, /= 0.9, 1.2 Hz, 3H), 5.38-5.40 (m,
1H), 5.48-5.49 (m, 1H), 7.41-7.44 (m, 1H), 7.54-7.56 (m, 2H), 7.90-7.93 (m, 1H), 10.54 (d, J
=0.9 Hz, 1H); °C NMR (CDCl3) I'23.4, 84.0, 97.7, 123.6, 126.4, 127.1, 127.3, 128.7,
133.4,133.9, 136.0, 191.9.

General procedure for the preparation of other aldehydes. To a solution of the aryl
halide (10.0 mmol) and the terminal alkyne (12.0 mmol, 1.2 equivs) in Et;N (40 ml) were
added PdCly(PPhs), (140 mg, 2 mol %) and Cul (20 mg, 1 mol %). The resulting mixture
was then heated under an Ar atmosphere at 50 °C. The reaction was monitored by TLC to
establish completion. When the reaction was complete, the mixture was allowed to cool to
room temperature, and the ammonium salt was removed by filtration. The solvent was
removed under reduced pressure and the residue was purified by columin chromatography on
silica gel to afford the corresponding arylalkyne.

2-(2-Phenylethynyl)benzaldehyde. 2-Bromobenzaldehyde (1.86 g, 10.0 mmol) and
phenylacetylene (1.23 g, 12.0 mmol) were employed. Column chromatography using 20:1
hexane/EtOAc afforded 1.94 g (94 %) of the desired compound as a yellow oil with spectral
properties identical to those previously reported.

2-(2-Cyclohex-1-enylethynyl)benzaldehyde. 2-Bromobenzaldehyde (1.86 g, 10.0
mmol) and 1-ethynylcyclohexene (1.27 g, 12.0 mmol) were employed. Column

chromatography using 25:1 hexane/EtOAc afforded 2.00 g (95 %) of the desired compound
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as a yellow oil: "H NMR (CDCl3) I'1.57-1.72 (m, 4H), 2.11-2.18 (m, 2H), 2.20-2.25 (m,
2H), 6.27 (m, 1H), 7.33-7.39 (m, 1H), 7.49-7.51 (m, 2H), 7.87 (dt, J=1.2, 7.8 Hz, 1H),
10.52 (d, J=0.9 Hz, 1H); C NMR (CDCl;) ['21.5, 22.3, 25.9, 29.0, 82.5, 98.6, 120.4,
127.1,127.7, 128.1, 133.1, 133.8, 135.7, 136.9, 192.0.

2-(3,4,5-Trimethoxyphenylethynyl)benzaldehyde. 3,4,5-Trimethoxyiodobenzene
(2.94 g, 10.0 mmol) and 2-ethynylbenzaldehyde (1.56 g, 12.0 mmol) were employed.
Column chromatography using 9:1 hexane/EtOAc afforded 2.67 g (90 %) of the desired
compound as a yellow oil: 'H NMR (CDCls) I'3.89 (s, 3H), 3.90 (s, 6H), 6.80 (s, 2H), 7.46
(t, /=72 Hz, 1H), 7.56-7.66 (m, 2H), 7.95 (d, /= 7.8 Hz, 1H), 10.66 (d, /= 0.9 Hz, 1H),
C NMR (CDCl3) T'56.5, 61.2, 84.2, 96.6, 109.1, 117.5, 127.0, 127.5, 128.8, 133.4, 134.0,
136.0, 139.7, 153.4, 191.9.

2-(4-Methoxyphenylethynyl)benzaldehyde. 2-Bromobenzaldehyde (1.86 g, 10.0
mmol) and 4-methoxyphenylacetylene (1.58 g, 12.0 mmol) were employed. Column
chromatography using 11:1 hexane/EtOAc afforded 2.20 g (93 %) of the desired compound
as a yellow solid: mp 50-51 °C; "H NMR (CDCl3) I"3.85 (s, 3H), 6.92 (d, /= 8.7 Hz, 2H),
7.44 (t,J=7.2 Hz, 1H), 7.51 (d, /= 8.7 Hz, 2H), 7.58-7.66 (m, 2H), 7.95 (d, /= 8.1 Hz, 1H),
10.66 (s, 1H); '*C NMR (CDCl;) I55.5, 83.9, 96.7, 114.3, 114.5, 127.3, 127.5, 128.4, 133.2,
133.4,133.9, 135.8, 160.4, 192.1.

4,5-Methylenedioxy-2-(phenylethynyl)benzaldehyde. 2-Bromo-4,5-
(methylenedioxy)benzaldehyde (2.30 g, 10.0 mmol) and phenylacetylene (1.22 g, 12.0
mmol) were employed. Column chromatography using 20:1 hexane/EtOAc afforded 2.40 g

(96 %) of the desired compound as a yellow solid: mp 98-101 °C; "H NMR (CDCl3) I'6.10
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(s, IH), 7.04 (s, 1H), 7.26 (s, 1H), 7.38-7.40 (m, 3H), 7.54-7.56 (m, 21}, 10.50 (s, 1H); '*C
NMR (CDCl3) I"85.0, 95.4, 102.6, 106.3, 112.2, 122.5, 123.9, 128.8, 129.2, 131.8, 132.4,
148.9, 152.6, 190.3.

2-(Phenylethynyl)pyridine-3-carboxaldehyde. 2-Bromopyridine-3-carboxaldehyde'
(1.88 g, 10.0 mmol) and phenylacetylene (1.22 g, 12.0 mmol) were employed. Column
chromatography using 7:1 hexane/EtOAc afforded 1.85 g (96 %) of the desired compound as
a yellow oil with spectral properties identical to those previously reported.’

2-(1-Octyn-1-yl)pyridine-3- carboxaldehyde. 2-Bromopyridine-3-carboxaldehyde'
(1.88 g, 10.0 mmol) and 1-octyne (0.98 g, 12.0 mmol) were employed. Column
chromatography using 7:1 hexane/EtOAc afforded 2.04 g (95 %) of the desired compound as
a yellow oil: "H NMR (CDCl;) '0.89-0.92 (m, 3H), 1.33-1.40 (m, 4H), 1.40-1.57 (m, 2H),
1.66-1.71 (m, 2H), 7.36-7.37 (m, 1H), 8.14-8.17 (m, 1H), 8.75-8.77 (m, 1H), 10.54-10.56 (m,
1H); "CNMR (CDCL;) I'14.2, 19.7,22.7, 28.3, 28.9, 31.5, 76.8, 98.8, 122.9, 131.9, 134.7,
146.8, 154.5, 191.5.

3-(Phenylethynyl)pyridine-4-carboxaldehyde. 3-Bromopyridine-4-carboxaldehyde'”
(1.88 g, 10.0 mmol) and phenylacetylene (1.22 g, 12.0 mmol) were employed. Column
chromatography using 7:1 hexane/EtOAc afforded 1.89 g (95 %) of the desired compound as
a yellow oil with spectral properties identical to those previously reported.'*

2-(4-Trifluoromethylphenylethynyl)benzaldehyde. 4-Iodobenzotrifluoride (2.72 g,
10.0 mmol) and 2-ethynylbenzaldehyde (1.56 g, 12.0 mmol) were employed. Column
chromatography using 9:1 hexane/EtOAc afforded 2.33 g (85 %) of the desired compound as

a yellow oil: 'HNMR (CDCls) 7.49 (t, /= 7.5 Hz, 1H), 7.57-7.67 (m, 6H), 7.96 (d, J=7.2
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Hz, 1H), 10.62 (s, 1H); ’C NMR (CDCls) I'87.4,94.7, 125.7 (g, /= 15 Hz), 126.1, 126.3,
126.3, 127.8,129.4, 132.1, 133.6, 134.0, 136.2, 191 4.

2-(Cyclohexylethynyl)benzaldehyde. 2-Bromobenzaldehyde (1.86 g, 10.0 mmol) and
cyclohexylacetylene (1.30 g, 12.0 mmol) were employed. Column chromatography using
25:1 hexane/EtOAc afforded 2.00 g (94 %) of the desired compound as a yellow oil with
spectral properties identical to those previously reported.'®

2-(4-(Tetrahydropyran-2-yloxy)but-1-ynyl)benzaldehyde. 2-Bromobenzaldehyde
(1.86 g, 10.0 mmol} and 2-(3-butynyloxy)tetrahydro-2H-pyran (1.85 g, 12.0 mmol) were
employed. Column chromatography using 10:1 hexane/EtOAc afforded 2.30 g (90 %) of the
desired compound as a yellow oil with spectral properties identical to those previously
reported.'®

Imines Prepared

N-(2-Phenylethynylbenzylidene)-fert-butylamine (1). To 2-(2-
phenylethynyl)benzaldehyde (1.04 g, 5.0 mmol) in a 4 dram vial was added ~-BuNH; (6
equiv). The mixture was then stirred under an Ar atmosphere at room temperature for 24 h.
The resulting mixture was extracted with ether. The combined organic layers were dried
(Na;SOy) and filtered. Removal of the solvent afforded 1.27 g (98 %) of imine 1 as a yellow
solid: mp 53-54 °C; "H NMR (CDCL) I'1.36 (s, 9H), 7.35-7.41 (m, 5H), 7.54-7.58 (m, 3H),
8.07-8.10 (m, TH), 8.95 (s, 1H); '*C NMR (CDC1:) I'30.0, 58.0, 86.9, 95.1, 123.3, 124.1,
126.6, 128.7, 128.8, 129.9, 131.7, 132.4 , 138.0, 154.4; IR (CHCls, cm™) 3060, 2214, 1637;

HRMS Caled for CioH oN: 261.1518. Found: 261.1518,.
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N-[2-(Cyclohex-1-enylethynyl)benzylidene]-ters-butylamine (4). This imine was
prepared from 2-(2-cyclohex-1-enylethynyl)benzaldehyde (1.06 g, 5.0 mmol) by the method
used to prepare 1. Removal of the solvent afforded 1.22 g (92 %) of the imine 4 as a reddish
oil: "H NMR (CDCly) I 1.32 (s, 9H), 1.59-1.74 (m, 4H), 2.13-2.20 (m, 2H), 2.22-2.27 (m,
2H), 6.23 (dddd, /= 1.8, 1.8, 6.0, 6.0 Hz, 1H), 7.29-7.33 (m, 2H), 7.39-7.45 (m, 1H), 7.98- _
8.05 (m, 1H), 8.82 (s, 1H); *C NMR (CDCl5) I'21.6, 22.5, 25.9, 29.4, 29.9, 57.9, 84.3, 97.0,

120.8, 124.5,125.9, 128.2, 129.7, 132.1, 135.6, 137.6, 154.6; IR (neat, cm™) 3062, 2200,

1637, HRMS Caled for C 9Ha3N: 265.1830. Found: 265.1831.
N-[2~(3,4,5-Trimethoxyphenylethynyl)benzylidene}-tert-butylamine {6). This imine * |
was prepared from 2-(3,4,5-timethoxyphenylethynyl)benzaldehyde (1.48 g, 5.0 mmol) by
the method used to prepare 1. Removal of the solvent afforded 1.47 g (84 %) of the imine 6
a yellow oil: "H NMR (CDCl;3) T'1.36 (s, 9H), 3.89 (s, 9H), 6.77 (s, 2H), 7.35-7.38 {m, 2H),
7.53 (dd, J= 3.0, 6.0 Hz, 1H), 8.05 (dd, J = 3.6, 6.0 Hz, 1H), 8.92 (s, 1H); *C NMR (CDCl;)
1'29.9, 56.3, 58.0, 61.2, 86.1, 95.1, 108.9, 118.3, 124.0, 126.2, 128.8, 129.9, 132.2, 138.0,
139.3, 153.4, 154.3; IR (neat, cm™') 2958, 2206, 1698; HRMS Caled for C,H,sNO;:
351.1834. Found: 351.1839.
N-[2-(4-Methoxyphenylethynyl)benzylidene]-fer¢-butylamine (8). This imine was
prepared from 2-(4-methoxyphenylethynyl)benzaldehyde (1.18 g, 5.0 mmol) by the method
used to prepare 1. Removal of the solvent afforded 1.41 g (97 %) of the imine 8 as a yellow
oil: "H NMR (CDCl;) T"1.34 (s, 9H), 3.84 (s, 3H), 6.90 (td, /= 2.1, 9.0 Hz, 2H), 7.32-7.36
(m, 2H), 7.47 (td, J= 2.1, 9.0 Hz, 2H), 7.50-7.54 (m, 1H), 8.04-8.07 (m, 1H), 8.92 (s, 1H);

BC NMR (CDCl3) I'30.0, 55.6, 58.1, 85.7, 95.2, 114.4, 115.4, 124.5, 126.1, 128.5, 129.9,
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1323, 133.2, 137.7, 154.7, 160.0; IR (neat, cm") 2963, 2836, 1699; HRMS Calcd for
CopHzNO: 291.1623. Found: 291.1626.

N-[(6-Phenylethynyl)benzo[1,3]dioxol-5-yImethylene]-zert-butylamine (10). This
imine was prepared from 4,5-methylenedioxy-2-(phenylethynyl)benzaldehyde (1.25 g, 5.0
mmol) by the method used to prepare 1. Removal of the solvent afforded 1.53 g (100 %) of
the imine 10 as a yellow solid: mp 88-90 °C; '"H NMR (CDCl;3) I'1.32 (s, 9H), 6.02 (s, 2H),
6.97 (s, 1H), 7.36-7.39 (m, 3H), 7.50-7.53 (m, 2H), 7.57 (s, 1H), 8.85 (s, 1H); *C NMR
(CDCi3)T'30.1, 57.8, 86.9, 93.9, 101.9, 105.9, 111.3, 118.6, 123.4, 128.6, 131.6, 134.1,
148.8, 149.2, 153.7; IR (CHCl3, cm™") 3018, 2969, 2904, 1612; HRMS Calcd for CaoH oNO,:
305.1416. Found: 305.1420.

N-[(2-Phenylethynyl)pyridin-3-ylmethylene]-ferz-butylamine (12). This imine was
prepared from 2-(phenylethynyl)pyridine-3-carboxaldehyde (1.04 g, 5.0 mmol) by the
method used to prepare 1. Removal of the solvent afforded 1.31 g (100 %) of the imine 12 as
ayellow oil: 'H NMR (CDCl) I'1.35 (s, 9H), 7.29 (ddd, J=0.3, 3.6, 6.0 Hz, 1H), 7.38-7.41
(m, 3H), 7.59-7.62 (m, 2H), 8.36 (dd, J= 1.5, 6.0 Hz, 1H), 8.63 (dd, /= 1.5, 3.6 Hz, 1H),
8.88 (s, 1H); >C NMR (CDCls) ['29.8, 58.4, 86.3, 94.5, 122.2, 123.3, 128.7, 129.4, 132.1,
133.9. 134.2, 143.5, 151.3, 152.5; IR (neat, cm™) 3057, 2967, 2928, 2218, 1699; HRMS
Calcd for CgH;sN2: 262.1470. Found: 262.1475.

N-[2-(1-Octyn-1-yl)pyridin-3-ylmethylene]-fert-butylamine (14). This imine was
prepared from 2-(1-octyn-1-yD)pyridine-3- carboxaldehyde (1.08 g, 5.0 mmol) by the method
used to prepare 1. Removal of the solvent afforded 1.35 g (100 %) of the imine 14 as a

yellow oil: 'H NMR (CDCl3) '0.87-0.92 (m, 3H), 1.29-1.34 (m, 13H), 1.46-1.52 (m, 2H),
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1.60-1.71 (m, 2H), 2.52 (t, /= 6.9 Hz, 2H), 7.23 (dd, /= 4.8, 7.8 Hz, 1H), 8.30 (dd, /= 1.8,
7.8 Hz, 1H), 8.55 (dd, /= 1.8, 4.8 Hz, 1H), 8.74 (s, 1H); °C NMR (CDCl;) I'14.2, 19.7,
22.77,28.6,2809,298, 31.5,58.2,78.1,96.6, 122.8, 133.7, 133.8, 144.1, 151.1, 152.9; IR
(neat, cm™") 3056, 2961, 2928, 2858, 2227, 1636, 1578; HRMS Calcd for CygHagNy:
270.2096. Found: 270.2099.

N-[3-(Phenylethynyl)pyridin-4-ylmethylene]-ter-butylamine (16). This imine was
prepared from 3-(phenylethynyl)pyridine-4-carboxaldehyde (1.04 g, 5.0 mmol) by the
method used to prepare 1. Removal of the solvent afforded 1.27 g (97 %) of the imine 16 as
a yellow solid: mp 91-92 °C; "H NMR (CDCl;) I'1.35 (s, 9H), 7.38-7.40 (m, 3H), 7.54-7.56
(m, 2H), 7.91 (d, J= 3.9 Hz, 1H), 8.56 (d, /= 3.9 Hz, 1H), 8.81 (s, 2H); ’C NMR (CDCl3) I
29.7,58.9, 83.8,97.7,119.5, 120.3, 122.6, 128.8, 129.3, 131.8, 144.2, 149.0, 152.5, 153.5;
IR (CHCls, cm™) 3016, 2970, 2870, 2217, 1492; HRMS Caled for CgH sN: 262.1470.
Found: 262.1476.

N-[2-(4-Trifluoromethylphenylethynyl)benzylidene]-feré-butylamine (21). This
imine was prepared from 2-(4-triflucromethylphenylethynyl)benzaldehyde (1.37 g, 5.0
mmol) by the method used to prepare 1. Removal of the solvent afforded 1.56 g (95 %) of
the imine 21 as a yellow solid: mp 104-105 °C; '"H NMR (CDCl3) I"1.34 (s, 9H), 7.38-7.42
(m, 2H), 7.55-7.58 (m, 1H), 7.63 (s, 4H), 8.07-8.10 (m, 1H), 8.89 (s, 1H); "*C NMR (CDCl)
1'29.9, 58.2, 89.3,93.4, 123.2, 125.5, 125.6 (q, /= 15.2 Hz), 126.4, 127.1, 129.4, 130.0,
130.2, 131.8, 132.6, 138.2, 153.9; IR (CHCl;, cm™) 3019, 2970, 1755, 1323; HRMS Caled

for CypF3H gN: 329.1391. Found: 329.1397.




35

N-{2-(2-Propenylethynyl)benzylidene]-tert-butylamine (36). This imine was
prepared from 2-(2-propenylethynyl)benzaldehyde (0.85 g, 5.0 mmol) by the method used to
prepare 1. Removal of the solvent afforded 1.07 g (95 %) of the imine 36 as a yellow oil: 'H
NMR (CDCl3) I"'1.30 (s, 9H), 2.03 (4, /= 0.6 Hz, 3H), 5.34 (d, /= 0.6 Hz, 1H), 5.43 (s, 1H),
7.27-7.35 (m, 2H), 7.45-7.47 (m, 1H), 8.03-8.05 (m, 1H), 8.82 (s, 1H); °C NMR (CDClL:) I
23.7,29.9, 58.0, 85.9,96.3,122.4, 124.1, 126.1. 126.8, 128.8, 129.9, 132.3, 137.9, 154.5; IR
(neat, cm']) 2967, 2926, 2867, 1637, HRMS Calcd for C;gHi9N: 225.1517. Found:
225.1522.

- N-[2-(Cyclohexylethynyl)benzylidene]-ters-butylamine (38). This imine was
prepared from 2-(cyclohexylethynyl)benzaldehyde (1.07 g, 5.0 mmol) by the method used to
prepare 1. Removal of the solvent afforded 1.31 g (98 %) of the imine 38 as a yellow oil: 'H
NMR (CDCl3) I'1.31 (s, 9H), 1.35-1.45 (m, 3H), 1.50-1.63 (m, 3H), 1.73-1.81 (m, 2H), 1.85-
1.92 (m, 2H), 2.68 (dddd, /= 3.6, 3.6, 12.3, 12.3 Hz, 1H), 7.26-7.31 (m, 2H), 7.37-7.43 (m,
1H), 7.98-8.03 (m, 1H), 8.83 (s, 1H); °C NMR (CDCls) I"24.8, 26.0, 29.8, 29.9, 32.7, 57.8,
78.0,100.2, 124.9, 125.8, 127.9, 129.7, 132.2, 137.8, 154.8; IR (neat, cm™) 3062, 2224,
1683; HRMS Calcd for CioHasN: 267.1987. Found: 267.1987.

N-[2-(4-(Tetrahydropyran-2-yloxy)but-1-ynyl)benzylidene|-zert-butylamine (40).
This imine was prepared from 2-(4-(tetrahydropyran-2-yloxy)but-1-ynyl)benzaldehyde (1.29
£, 5.0 mmol) by the method used to prepare 1. Removal of the solvent afforded 1.45 g (93
%) of the imine 40 as a yellow oil: 'H NMR (CDCls) I'1.30 (s, 9H), 1.48-1.65 (m, 4H),
1.68-1.89 (m, 2H), 2.78 (t, J= 7.2 Hz, 2H), 3.48-3.56 (m, 1H), 3.67 (ddd, /= 7.2, 7.2, 9.6

Hz, 1H), 3.86-3.97 (m, 2H), 4.68 (t, J= 3.0 Hz, 1H), 7.26-7.31 (m, 2H), 7.37-7.42 (m, 1H),




36

7.97-8.03 (m, 1H), 8.78 (s, 1H); °C NMR (CDCL) I'19.5,21.2,25.5,29.8, 30.7, 57.7, 62.3, -
65.9,78.8,92.7,98.9, 124.4, 125.9, 128.1, 129.7, 132.4, 137.8, 154.5; IR (neat, cm™') 3063,
2229, 1637 HRMS Calcd for CogHz7NO5: 313.2040. Found: 313.2042.

General procedure for the electrophilic cyclization of iminoalkynes by I, ICl,
PhSeCl, PhSCI and p-0,NCsH4SCL The electrophile (6 or 2 equivs), the solvent (5 ml),
and the base, where required (3 equivs), were placed in a 2 dram vial. The iminoalkyne (0.25
mmol) in 2 ml of the solvent was added dropwise to the vial. The vial was flushed with Ar
and the reaction was stirred at room temperature for the indicated period of time. The
reactions were monitored by TLC to establish completion. The reaction mixture was then M
diluted with 25 ml of ether, washed with either 25 ml of saturated Na;S,0; (for the reactions
of I; and ICI) or saturated NaCl, dried (Na,SO4) and filtered. The solvent was evaporated
under reduced pressure and the product was isolated by chromatography on a silica gel
column.

4-1odo-3-phenylisoquinoline (2). Purification by flash chromatography (3:1
hexane/EtOAc) afforded 56 mg (68 %) (Table 2, entry 1} or 55 mg (67 %) (Table 2, entry 2)
of the product from I, or IC], respectively, as a yellow solid: mp 84-85 °C; 'H NMR (CDCl;)

['7.26-7.52 (m, 3H), 7.61-7.70 (m, 3H), 7.70-7.85 (m, 2H), 7.95 (d, /= 8.1 Hz, 1H), 8.22 (d,
J=8.4Hz, 1H); CNMR (CDCl3) I'98.3, 128.1, 128.2, 128.3, 128.5, 130.3, 132.4, 132.6,
138.8, 143.9, 152.2, 157.4 (one sp” carbon missing due to overlap); IR (CHCl;, cm™) 3055,
1630, 1549; HRMS Calced for CsH;0IN: 330.9858. Found: 330.9862.
3-(Cyclohex-1-enyl)-4-iodoisoquineline (5). Purification by flash chromatography

(3:1 hexane/EtOAc) afforded 56 mg (67 %) of the product as a yellow oil: 'H NMR (CDCls)
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I'1.73-1.79 (m, 2H), 1.84-1.92 (m, 2H), 2.25-2.29 (m, 2H), 2.40-2.43 (m, 2H), 5.85 (s, 1H),
7.57-1.60 (m, 1H), 7.73-7.78 (m, 1H), 7.87 (d, /= 8.1 Hz, 1H), 8.14 (d, /= 8.4 Hz, 1H), 9.06
(s, 1H); *C NMR (CDCls) I'22.1, 22.9, 25.3, 28.5, 97.7, 127.6, 128.0, 128.2, 129.5, 132.0,
132.2, 138.7, 141.8, 152.1, 159.7; IR (neat, cm'l) 3019, 2936, 1618; HRMS Calcd for
CysHi4IN: 335.0165. Found: 335.0168.

4-Iodo-3-(3,4,5-trimethoxyphenyl)isoquinoline (7). Purification by flash
chromatography (3:1 hexane/EtOAc) afforded 32 mg (30 %) (Table 2, entry 4) or 25 mg (24
%) (Table 2, entry 5} of the product from I, or ICl, respectively, as a yellow solid: mp 132-
134 °C; "H NMR (CDCls) I'3.92 (s, 6H), 3.93 (s, 3H), 6.86 (s, 2H), 7.69 (dt, /= 1.2, 7.5 Hz,
1H), 7.84 (dt, /= 1.5, 8.4 Hz, 1H), 7.97 (d, J= 8.4 Hz, 1H), 8.24 (dd, /= 0.6, 8.4 Hz, 1H);
C NMR (CDCl;) I'56.4, 61.2, 98.3, 107.5, 128.2, 128.3, 128.3, 132.6, 132.7, 138.3, 138.9,
139.1, 152.0, 152.9, 156.9; IR (CHCls, cm™) 3017, 2939, 2836, 1586; HRMS Calcd for
CigHsIO:N: 421.0175. Found: 421.0182.

4-Todo-3-(3-methoxyphenyl}isoquinoline (9). Purification by flash chromatography
(3:1 hexane/EtOAc) afforded 34 mg (37 %) (Table 2, entry 6) or 36 mg (40 %) (Table 2,
entry 7) of the product from I, or IC], respectively, as a yellow solid: mp 113-115 °C; 'H
NMR (CDCl3) I"3.88 (s, 3H), 7.01 (d, /= 9.0 Hz, 2H), 7.61 (d, /= 9.0 Hz, 2H), 7.65 (dt, J=
0.9,7.5 Hz, 1H), 7.81 (dt, /= 1.8, 8.4 Hz, 1H), 7.93 (d, /= 8.1 Hz, 1H), 8.21 (d, /= 8.4 Hz,
1H); °C NMR (CDCl;) I'55.6, 98.2, 113.5, 128.0, 128.1, 128.1, 131.5, 132.4, 132.6, 136.4,
138.9, 152.2, 156.9, 159.8; IR (CHCls, cm™) 3017, 2958, 2835, 2283, 1608, 1514; HRMS

Calcd for CsH2INO: 360.9964. Found: 360.9970.
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6-lodo-7-phenyl-1,3-dioxolo[4,5-glisoquinoline (11). Punfication by flash
chromatography (3:1 hexane/EtOAc) afforded 48 mg (52 %) of the product as a dark sticky
oil: "H NMR (CDCl3) '6.17 (s, 2H), 7.17 (s, 1H), 7.42-7.49 (m, 3H), 7.56-7.60 (m, 2H),
7.62 (s, 1H), 8.89 (s, 1H); *C NMR (CDCl;) '97.1, 102.4, 103.2, 109.6, 125.4, 128.1,
128.3, 129.9, 137.6, 144.1, 149.1. 149.8, 152.9, 156.6; IR (CHCl3, cm™) 3018, 2926, 2855,
1473; HRMS Calced for CiH;oINO,: 374.9756. Found: 374.9760.

8-Iodo-7-phenyl-1,6-naphthyridine (13). Purification by flash chromatography (2:1
hexane/EtOAc) afforded 75 mg (90 %) (Table 2, entry 10) or 76 mg (92 %) (Table 2, entry
11) of the product from I, or ICl, respectively, as a yellow solid: mp 163-164 °C; "H NMR
(CDCl3) I"7.45-7.52 (m, 3H), 7.59-7.62 (dd, /= 3.3, 6.3 Hz, 1H), 7.69 (dd, /= 1.2, 6.0 Hz,
2H), 8.29 (dd, J= 1.5, 6.0 Hz, 1H), 9.16 (s, 1H), 9.21 (dd, J=1.2, 3.3 Hz, 1H); °C NMR
(CDCl3) I"'101.8, 123.1, 123.74, 128.2,128.9, 130.0, 136.4, 143.0, 151.1, 152.3, 156.0, 161.1;
IR (CHCI;, cm’i) 3048, 1618; HRMS Calcd for C14HolNy: 331.9810. Found: 331.9816.

7- n-Hexyl-8-iodo-1,6-naphthyridine (15). Purification by flash chromatography (2:1
hexane/EtOAc) afforded 65 mg (76 %) of the product as a yellow oil: 'HNMR (CDCL) I’
0.90 (t, J= 7.5 Hz, 3H), 1.31-1.51 (m, 6H), 1.77-1.88 (m, 2H), 3.31-3.36 (m, 2H), 7.53 (dd, J
=42, 8.1 Hz, 1H), 8.22 (dd, /= 1.5, 8.1 Hz, 1H), 9.06 (s, 1H), 9.15 (dd, /= 1.5, 4.2 Hz, 1H);
3C NMR (CDCl;) T'14.2, 22.7, 29.3, 29.5, 31.8, 42.7, 102.3, 122.6, 122.6, 136.2, 150.6,
152.1, 155.5, 163.1; IR (neat, cm'l) 3018, 2955, 2925, 2854, 1603, 1579; HRMS Calcd for
CisH7INz: 340.0436. Found: 340.0441.

4-lodo-3-phenyl-2,6-naphthyridine (17). Purification by flash chromatography (3:1

hexane/EtOAc) afforded 11 mg (13 %) (Table 2, entry 13) or 60 mg (72 %) (Table 2, entry
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14) of the product from I, or ICl, respectively, as a yellow solid: mp 150-151 °C; 'H NMR
(CDCI3) I'7.47-7.54 (m, 3H), 7.62-7.66 (m, 2H), 7.70 (dd, /= 0.9, 5.7 Hz, 1H), 8.82 (d, /=
5.7 Hz, 1H), 9.23 (d, /= 0.6 Hz, 1H), 9.63 (s, 1H); '*C NMR (CDCl;) ['95.5, 118.6, 128.3,
128.9, 130.0, 130.4, 132.4, 142.6, 145.7, 151.5, 157.6, 158.8; IR (CHCl3, cmm™") 3018, 2927,
2854, 1568, 1533; HRMS Caled for Ci4HoIN2: 331.9810. Found: 331.9816.

3-Phenyl-4-(phenylselenyl)isoquinoline (18). Purification by flash chromatography
(3:1 hexane/EtOAc) afforded 69 mg (76 %) of the product as a yellow solid: mp 112-114 °C;
'H NMR (CDCl;) I'7.04-7.08 (m, 5H), 7.39-7.42 (m, 3H), 7.55-7.56 (m, 3H), 7.71 (ddd, J =
1.2,6.9, 8.1 Hz, 1H), 8.02 (d, J= 7.5 Hz, 1H), 8.45 (d, J= 8.1 Hz, 1H), 9.35 (s, 1H); *C
NMR (CDCl13) I'121.8, 126.4, 127.8, 127.9, 128.3, 128.4, 128 .4, 128.9, 129.4, 129.9, 130.1,
132.1, 133.3, 138.9, 142.0, 153.3, 158.4; IR (CHCls, em™) 3056, 2924, 1575; HRMS Calcd
for C21H;sN*°Se: 361.0370. Found: 361.0378.

3-(Cyclohex-1-enyl)-4-(phenylselenyl)isoquinoline (19). Purification by flash
chromatography (3:1 hexane/EtOAc) afforded 88 mg (96 %) of the product as a yellow solid:
mp 103-105 °C; "H NMR (CDCl3) I" 1.69-1.82 (m, 4H), 2.15-2.21 (m, 2H), 2.44-2.48 (m,
2H), 5.67-5.70 (m, 1H), 7.09-7.14 (m, 5H), 7.52-7.65 (m, 2H), 7.94 (d, /= 8.1 Hz, 1H), 8.30
(d, J= 8.4 Hz, 1H), 9.23 (s, 1H); ’C NMR (CDCL;) ['22.0, 22.9, 25.5, 29.1, 120.8, 126.1,
127.0, 128.1, 128.2, 128.4, 129.2, 129.3, 129.9, 131.4, 133.8, 138.4, 140.0, 153.1, 161.2; IR
(CHCl3, cm™) 3019, 2936, 1571; HRMS Caled for CoH oN™Se: 365.0684., Found:
365.0690.

4-Phenylselenyl-3-(3.4,5-trimethoxyphenyl)isoquinoline (20). Purification by flash

chromatography (2:1 hexane/EtQAc) afforded 107 mg (95 %) of the product as a yellow oil:
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'"H NMR (CDCl3) I 3.70 (s, 6H), 3.88 (s, 3H), 6.76 (s, 2H), 7.04-7.11 (m, 5H), 7.65 (dt, J =
0.6, 5.5 Hz, 1H), 7.75 (dt, J= 0.9, 5.8 Hz, 1H), 8.03 (d, J= 5.8 Hz, 1H), 8.49 (d, /= 6.3 Hz,
1H), 9.34 (s, 1H); *C NMR (CDCl;) I'56.0, 61.0, 107.0, 121.0, 126.1, 127.7, 128.2, 128.3,

128.7, 129.4, 129.5, 132.0, 133.8, 137.7, 138.0, 139.1, 152.6, 153.3, 158.4; IR (neat, cm™)

3057, 2936, 2833, 1607; HRMS Caled for Ca4H NO;Se: 451.0687. Found: 451.0695.

4-Phenylselenyl-3-(3-trifluoromethylphenyl)isoquinoline (22). Purification by flash

chromatography (3:1 hexane/EtOAc) afforded 19 mg (18 %) of the product as a yellow solid:
mp 116-117 °C; "H NMR (CDCls) I'6.97-7.02 (m, 2H), 7.04-7.11 (m, 3H), 7.64 (d, J=1.8
Hz, 4H), 7.68 (dt, J=1.2, 8.4 Hz, 2H), 7.74 (dt, /= 1.5, 9.0 Hz, 1H), 8.05 (d, /= 0.84 Hz,
1H), 8.50 (d, J= 8.4 Hz, 1H), 9.35 (s, 1H); "C NMR (CDCl;) ['122.3, 124.8 (q, J=15.6
Hz), 126.6, 128.2, 128.4, 128.5, 128.7, 129.5, 129.9, 130.0, 130.3, 130.4, 132.2, 132.8, 138.8,
145.7, 153.6, 157.1, IR (neat, cm'l) 2952, 2918, 2850, 1476; HRMS Calcd for
CoF3H N*"Se: 429.0244. Found: 429.0250.
6-Phenylselenyl-7-phenyl-1,3-dioxolo[4,5-glisoquinoline (23). Purification by flash
chromatography (3:1 hexane/EtOAc) afforded 53 mg (60 %) of the product as a yellow solid:
mp 140-143 °C; "H NMR (CDCls) T'6.08 (s, 2H), 6.92-7.02 (m, 2H), 7.07-7.11 (m, 3H), 7.22
(s, 1H), 7.36-7.38 (m, 3H), 7.49-7.54 (m, 2H), 7.78 (s, 1H), 9.07 (s, 1H); °C NMR (CDCls)
'102.1,103.6, 105.5, 125.6, 126.3, 127.8, 128.1, 129.4, 129.6, 129.9, 133.2, 135.4, 138.1,

142.5, 148.7, 151.1, 152.6, 158.2; IR (CHCls, cm’) 2958, 2962, 2855, 1516; HRMS Caled

for C1gHisNO,**Se: 405.0268. Found: 405.0273.
3-Phenyl-4-phenylselenyl-2,6-naphthyridine (24). Purification by flash

chromatography (2:1 hexane/EtOAc) afforded 72 mg (80 %) of the product as a yellow solid:
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mp 104-106 °C; '"H NMR (CDCls) I"7.07-7.10 (m, 5H), 7.4(14—7.47 (m, 3H), 7.59-7.62 (m,
2H), 7.78 (d, J= 5.6 Hz, 1H), 8.74 (d, J = 5.6 Hz, 1H), 9.39 (s, 1H), 9.89 (s, 1H); *C NMR
(CDC13)T'119.1, 121.6, 127.1, 128.1, 128.8, 129.6, 130.2, 130.4, 130.8, 132.3, 132.5, 141.1.
145.0, 152.5, 154.2, 159.7; IR (CHCl3, em™") 3061, 3017, 2930, 2360, 1570; HRMS Caled for
CaoH14N;*Se: 364.0324. Found: 364.0330,

7-Phenyl-8-phenylselenyl-1,6-naphthyridine (25). Purification by flash
chromatography (2:1 hexane/EtOAc) afforded 66 mg (72 %) of the product as a yellow solid:
mp 122-124 °C; 'H NMR (CDCls) ["6.95-7.10 (m, 5H), 7.31-7.37 (m, 3H), 7.53-7.57 (m,
3H), 832 (dd, /= 1.8, 8.4 Hz, 1H), 9.17 (dd, /= 1.8, 4.2 Hz, 1H), 9.30 (s, 1H); '°C NMR
(CDCL) IM'122.9,123.0. 125.9, 126.5, 127.9, 128.4, 128.9, 129.9, 131.8, 132.7, 136.4, 141.6,
151.8, 152.7, 155.3, 160.8; IR (CHCl3, cm™) 3017, 2976, 2283 (broad), 1601; HRMS Calcd
for Co0H14N2"Se: 364.0324. Found: 364.0331.

7-n-Hexyl-8-phenylselenyl-1,6-naphthyridine (26). Purification by flash
chromatography (2:1 hexane/EtOAc) afforded 56 mg (61%) of the product as a yellow oil:
'"H NMR (CDCl;) I"0.83-0.87 (m, 3H), 1.24-1.36 (m, 6H), 1.67-1.76 (m, 2H), 3.31-3.36 (m,
2H), 7.09-7.13 (m, 3H), 7.20-7.24 (m, 2H), 7.50 (dd, /= 4.2, 8.4 Hz, 1H), 8.28 (dd, /= 1.8,
8.4 Hz, 1H), 9.14 (dd, /= 1.8, 4.2 Hz, 1H), 9.28 (é, 1H); '*C NMR (CDClL;) I'14.2, 22.7,
29.5,30.4,31.8,39.5,122.2, 122.6, 124.4, 126.3, 129.1, 130.4, 133.0, 136.3, 151.8, 153 .4,
155.4,165.1; IR (neat, cm']).3056, 2954, 2855, 1602; HRMS Caled for CgonzNzgoSe:
370.0948. Found: 370.0952.

3-Phenyl-4-(4-nitrophenylsulfenyl)isoquinoline (27). Purification by flash

chromatography (3:1 hexane/EtOAc) afforded 42 mg (47 %) of the product as a yellow solid:
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mp 193-195 °C; 'H NMR (CDCls) I'6.97-6.99 (m, 2H), 7.40-7.42 (m, 3H), 7.57-7.60 (m,
2H), 7.68-7.80 (m, 2H), 7.97-8.00 (m, 2H), 8.13 (d, J= 8.4 Hz, 1H), 8.27 (d, /= 8.4 Hz, 1H),
9.46 (s, 1H); °C NMR (CDCL) T'119.5, 124.4, 125.6, 126.1, 128.2, 128.3, 128.5, 128.8,
128.9,129.7, 132.7, 138.1, 140.2, 145.4, 147.8, 154.6, 159.0; IR (CHCl;, cm™") 3019, 2926,
1518; HRMS Caled for Cy;H;14N20,S: 358.007. Found: 358.0781.
3-(Cyclohex-1-enyl)-4-(4-nitrophenylsulfenyl)isoquinoline (28). Purification by
flash chromatography (3:1 hexane/EtOAc) afforded 30 mg (33 %) of the product as a yellow
oil: "HNMR (CDCl3) I"1.67-1.77 (m, 4H), 2.13 (d, /=0.5Hz, 2H), 2.41 (d, /= 0.5 Hz,
2H), 5.78 (s, 1H), 6.98-7.01 (m, 2H), 7.59-7.74 (m, 2H), 7.98-8.16 (m, 3H), 8.18-8.20 (m,
1H), 9.35 (s, 1H); °C NMR (CDCl;) ['21.9, 22.8, 25.5, 28.9, 118.8, 124.3, 125.4, 126.1,
126.6,127.8, 128.3, 128.8, 129.8, 132.5, 138.1, 138.4, 148.7, 154.4, 161.9; IR (CHCl3, cm")
3019, 2932, 1517, HRMS Calcd for Cy1H gN20,S: 362.1089. Found: 362.1094.
3-(4-Methoxyphenyl)-4-(4-nitrophenylsulfenylisoquinoline (29). Purification by
flash chromatography (3:1 hexane/EtOAc) afforded 21 mg (25 %) of the product as a yellow
solid: mp 161-163 °C; "H NMR (CDCl3) I"3.86 (s, 3H), 6.96 (d, J = 9.0 Hz, 2H), 7.01 (d, J =
9.0 Hz, 2 H), 7.61 (d, /=9.0 Hz, 2H), 7.69 (dt, J= 1.2, 7.8 Hz, 1H), 7.74 (dt, J=1.2, 9.3 Hz,
1H), 8.01 (d, J= 8.7 Hz, 2H), 8.12 (dd, J= 0.9, 7.8 Hz, 1H), 8.26 (d, J= 8.7 Hz, 1H); *C
NMR (CDCIL3) T'55.5, 113.5, 118.6, 124.3, 125.5, 125.9, 128.0, 128.2, 128.7, 131.3, 132.6,
132.7,138.2, 145.3, 148.0, 154.5, 158.7, 160.1; IR (CHCl;, cm™) 3019, 2971, 2838, 1608,
1578, 1515, HRMS Caled for Cy,H;sN205S: 338.0082. Found: 338.0085.
3-(Cyclohex-1-enyl)-4-(phenylsulfenyl)isoquinoline (30). Purification by flash

chromatography (3:1 hexane/EtOAc) afforded 36 mg (45 %) of the product as a yellow solid:
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mp 130-131 °C; "H NMR (CDCl;) I" 1.68-1.79 (m, 4H), 2.15-2.17 (m, 2H), 2.41-2.43 (m,
2H), 5.77-5.79 (m, 1H), 6.96-6.98 (m, 2H), 7.03-7.07 (m, 1H), 7.11-7.15 (m, 2H), 7.56 (t, J =
5.4 Hz, 1H), 7.65 (t, /= 5.4 Hz, 1H), 7.97(d, /= 6.0 Hz, 1H), 8.31 (d, /= 6.6 Hz, 1H), 9.26
(s, 1H); °C NMR (CDCl3) ['22.0, 23.0, 25.5, 28.9, 121.4, 125.3, 126.0, 127.1, 127.2, 128.2,
128.2,129.0, 129.2, 131.6, 138.3, 138.7, 138.7, 153.2, 161.2; IR (CHCl3, cm™) 3019, 2936,
1630; HRMS Caled for Cy1HoNS: 317.1238. Found: 317.1241.

4-Phenylsulfenyl-3-(3,4,5-trimethoxyphenyl)isoquinoline (31). Purification by flash
chromatography (3:1 hexane/EtOAc) afforded 43 mg (43 %) of the product as a yellow oil:
"H NMR (CDCls) I'3.67 (s, 6H), 3.87 (s, 3H), 6.82 (s, 2H), 6.95 (d, /= 7.2 Hz, 2H), 7.06 (4,
J=172Hz, 1H), 7.16 (t, /=72 Hz, 2H), 7.67 (t, /= 7.2 Hz, 1H), 7.77 (t, /= 7.2 Hz, 1H),
8.07 (d, /= 4.0 Hz, 1H), 8.46 (d, J= 7.6 Hz, 1H), 9.38 (s, IH); *C NMR (CDCl;) I'55.9,
61.0, 106.9, 121.1, 125.3, 126.3, 126.4, 127.8, 128.3, 128.4, 129.2, 132.2, 136.3, 138.1,
138.8,139.0, 152.7, 153.5, 158.4; IR (CHCls, cm™) 3015, 2939, 2860, 1585; HRMS Calced
for CoyHy NO;S: 403.1242. Found: 403.1246.

7- n-Hexyl-8-phenylsulfenyl-1,6-naphthyridine (32). Purification by flash
chromatography (2:1 hexane/EtOAc) afforded 32 mg (40 %) of the product as a yellow oil:
"H NMR (CDCl3) I'0.85 (1, J = 6.9 Hz, 3H), 1.24-1.37 (m, 6H), 1.67-1.76 (m, 2H}, 3.30 (t, J
= 8.4 Hz, 2H), 7.00-7.13 (m, 5H), 7.51 (dd, J=4.2, 8.1 Hz, 1H), 8.30 (dd, /= 1.8, 8.1 Hz,
1H), 9.15 (dd, J= 1.8, 4.2 Hz, 1H), 9.29 (s, 1H); *C NMR (CDCl3) I 14.2, 22.7, 29.5, 30.2,
31.8,37.6,122.3,122.8,124.4,125.4, 127.2,128.9, 136.4, 137.9, 151.8, 153.5, 155.6, 165.7;
IR (neat, cm™') 3056, 2925, 2854, 2221, 1602; HRMS Caled for CoHN,S: 322.1504.

Found: 322.1508.
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General procedure for the silver-catalyzed cyclization of iminoalkynes. 5 Mol % of
AgNOQO; and 5 mi of CHCI; were placed into a 2 dram vial. The iminoalkyne (0.25 mmol) in
2 ml of CHCI; was added dropwise to the vial. The vial was then flushed with Ar and heated
at 50 °C for the indicated period of time. The reaction mixture was cooled, diluted with 25
ml of ether, washed with 25 ml of saturated NaCl, dried (Na;SO4) and filtered. The solvent
was evaporated under reduced pressure and the product was isolated by chromatography on a
silica gel column.

General procedure for the copper-catalyzed cyclization of iminoalkynes. DMF (5
ml), the iminoalkyne (0.25 mmol), and Cul (5 mg, 0.025 mmol) were placed in a 2 dram vial,
The vial was then flushed with Ar and heated in an oil bath at 100 °C for the indicated period
of time. The reaction were monitored by TLC to establish completion. The reaction mixture
was cooled, diluted with 25 ml of ether, washed with 25 m] of saturated NaCl, dried
(Na2S0y) and filtered. The solvent was evaporated under reduced pressure and the product
was 1solated by chromatography on a silica gel column.

3-Phenylisoquinoline (33). Purification by flash chromatography (3:1 hexane/EtOAc)
afforded 42 mg (82 %) (Table 2, entry 29) or 51 mg (100 %) (Table 2, entry 30) of the
product from AgNOj3 or Cul, respectively, as a yellow solid with spectral properties identical
to those previously reported'”: mp 102-103 °C (lit."” mp 101-102 °C).

3-(Cyclohexen-1-yl)isoquinoline (34). Purification by flash chromatography (3:1
hexane/EtOAc) afforded 40 mg (78 %) (Table 2, entry 31) or 43 mg (81 %) (Table 2, entry
32) of the product from AgNQ; or Cul, respectively, as a white solid: mp 114-115 °C; 'H

NMR (CDCl3) I'1.69-1.77 (m, 2H), 1.83-1.91 (m, 2H), 2.30-2.38 (m, 2H), 2.56-2.62 (m,
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2H), 7.04 (it, /= 2.4, 3.6 Hz, 1H), 7.50 (dt, /= 0.6, 14.4 Hz, 1H), 7.59 (s, 1H), 7.65 (dd, J=
1.2, 6.9 Hz, 1H), 7.76 (d, /= 8.1 Hz, 1H), 7.91 (d, /= 8.1 Hz, 1H), 9.20 (s, 1H); *C NMR
(CDCl3)T°22.4,23.2,26.2,26.3,114.3, 126.5, 126.9, 127.7, 127.7, 128.6, 130.4, 135.8,
136.8, 151.7, 152.6; IR (CHCls, cm™) 3060, 2919, 1621, 1574; MS m/z (rel intensity) 209
(100, M™), 208 (89), 194 (42), 180 (51). Anal. Caled for C;sH;sN: C, 86.09; H, 7.23; N,
6.69. Found: C, 86.03; H, 7.30; N, 6.73.

3-(3,4,5-Trimethoxyphenyl)isoquinoline (35). Purification by flash chromatography
(3:1 hexane/EtQAc) afforded 52 mg (71 %) of the product as a yellow solid: mp 122-124 °C;
'"HNMR (CDCl3) I'3.93 (s, 3H), 4.00 (s, 6H), 7.38 (s, 2H), 7.58 (dt, J = 0.9, 7.5 Hz, 1H),
7.70 (dt, J=0.9, 7.6 Hz, 1H), 7.87 (d, /= 7.8 Hz, 1H), 7.98 (d, /= 8.4 Hz, 1H), 8.01 (s, 1H),
9.31 (s, 1H); *C NMR (CDCl3) I'56.4, 61.2, 104.3, 116.3, 126.9, 127.2, 127.7, 127.8, 130.7,
135.4,136.7, 138.8, 151.0, 152.4, 153.7; IR (CHCl3, cm™") 3018, 2968, 2939, 1578; HRMS
Calcd for CigH17NOs: 295.1208. Found: 295.1211.

3-(2-Propenyl)isoquinoline (37). Purification by flash chromatography (3:1
hexane/BtOAc) afforded 23 mg (54 %) of the product as a yellow solid: mp 66-68 °C; 'H
NMR (CDCl3) I'2.32 (d, /= 0.4 Hz, 3H), 5.36 (d, /= 1.6 Hz, 1H), 6.20 (dd, /= 0.4, 1.6 Hz,
1H), 7.56 (dt, J=1.2, 6.8 Hz, 1H), 7.70 (dt, /= 0.8, 7.2 Hz, 1H), 7.81 (d, /= 8.4 Hz, 1H),
7.95 (d, J= 8.0 Hz, 1H); *C NMR (CDCl:) '20.9, 115.8, 115.9, 127.1, 127.2, 127.7, 127.9,
130.5, 136.6, 142.4, 151.8, 151.9; IR (CHCl3, cm™) 3057, 3014, 2976, 1625, 1580; HRMS
Calced for C;»H | N: 169.0892. Found: 169.0894.

3-Cyclohexylisoquinoline (39). Purification by flash chromatography (3:1

hexane/EtOAc) afforded 40 mg (75 %) (Table 2, entry 35) or 49 mg (93 %) (Table 2, entry
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36) of the product from AgNOQ; or Cul, respectively, as a white solid: mp 40-41 °C; '"H NMR
(CDCl3) T'1.25-1.67 (m, 6H), 1.89 (dt, J=2.7, 12.6 Hz, 2H), 2.06 (dd, J= 1.5, 12.9 Hz, 2H),
2.86 (tt, J=3.3,11.7 Hz, 1H), 7.47 (s, 1H), 7.52 (ddd, /= 1.2, 6.9, 8.1 Hz, 1H), 7.64 (td, J =
1.2, 6.9 Hz, 1H), 7.76 (d, J= 8.1 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 9.21 (s, 1H); >C NMR
(CDCl5)T26.4,26.9,33.3,46.3,116.2,126.4, 126.5, 127.4, 127.6, 130.2, 136.8, 152.0,
160.3; IR (CHCls, em™') 3055, 2926, 1628, 1585; HRMS Caled for CsH;7N: 211.1356.
Found: 211.1361.

3-[2-(Tetrahydropyran-2-yloxy)ethyl]isoquinoline (41). Purification by flash
chromatography (3:1 hexane/EtOAc) afforded 39 mg (62 %) (Table 2, entry 37) or 52 mg (83
%) (Table 2, entry 38) of the product from AgINO; or Cul, respectively, as a yellow oil: 'H
NMR (CDCls) I'1.40-1.46 (m, 4H), 1.61-1.82 (m, 2H), 3.23 (t, /= 7.2 Hz, 2H), 3.42-3.48
(m, 1H), 3.76 (ddd, J=3.3, 8.1, 11.7 Hz, 1H), 3.87 (ddd, /= 6.9, 9.6, 16.5 Hz, 1H), 4.18
(ddd, J=6.9, 9.6, 16.8 Hz, 1H), 4.64 (ddd, /=2.7,2.7, 2.7 Hz, 1H), 7.54 (ddd, /= 1.2, 6.9,
9.3 Hz, 1H), 7.57 (s, 1H), 7.65 (ddd, J= 1.2, 6.6, 9.3 Hz, 1H), 7.76 (d, /= 8.1 Hz, IH), 7.93
(d, J=7.8 Hz, 1H), 9.21 (s, 1H); *C NMR (CDCl3) I'19.7, 25.6, 30.8, 38.5, 62.4, 67.1, 99.0,
119.3,126.3, 126.7, 127.4, 127.6, 130.5, 136.6, 152.2, 152.6; IR (CHCl;, cm'l) 3054, 2942,
1628, 1588; HRMS Calcd for CigH oNO;: 257.1416. Found: 257.1415.

3-Phenyl-6,7-(methylenedioxy)isoquinoline (42) Purification by flash
chromatography (3:1 hexane/EtQOAc) afforded 35 mg (56 %) of the product as a yellow oil:
'H NMR (CDCl3) '6.10 (s, 1H), 7.16 (d, J=7.1 Hz), 7.37-7.51 (m, 3H), 7.89 (s, 1H), 8.06

(d, /= 1.8 Hz, 1H), 9.06 (s, 1H); *C NMR (CDCl,) I'101.9, 103.0, 103.4, 116.6, 125.3,
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127.0, 128.5, 129.0, 135.3, 139.9, 148.6, 150.4, 150.8, 151.4; IR (CHCl,, cm™) 3019, 2925,
1600, 1458; HRMS Caled for CigH;(NO;z: 249.0789. Found: 249.0793.

7-Phenyl-1,6-naphthyridine (43). Purification by flash chromatography (2:1
hexane/EtOAc) afforded 47 mg (92 %) of the product as a pale yellow solid: mp 135-137
°C; '"H NMR (CDCls) I' 7.42-7.55 (m, 4H), 8.15-8.21 (m, 2H), 8.29 (ddd, /= 0.6, 1.8, 8.4 Hz,
1H), 8.35 (s, 1H), 9.09 (dd, /= 1.8, 4.2 Hz, 1H), 9.34 (d, /= 0.9 Hz, 1H); ’C NMR (CDCl;)
1'118.0,122.4,122.9,127.4,129.1, 129.4, 135.8, 139.1, 151.6, 152.9, 155.3, 155.4; IR
(CHCIl,, cm'l) 3018, 2980, 1613; HRMS Caled for Cy4HoN2: 206.0844. Found: 206.0848.

7-n-Hexyl-1,6-naphthyridine (44). Purification by flash chromatography (3:1
hexane/EtOAc) afforded 24 hlg (45 %) of the product as a yellow oil: 'H NMR (CDCI;) T
0.88 (t, J=4.2 Hz, 3H), 1.31-1.39 (m, 6H), 1.80-1.87 (m, 2H), 7.47 (dd, J=4.5, 8.1 Hz, 1H),
7.75 (s, 1H), 8.26 (d, /= 8.1 Hz, 1H), 9.06 (dd, J=1.5, 4.5 Hz, 1H), 9.23 (s, 1H); BC NMR
(CDCl3) I'14.3,22.8, 29.2, 29.9,31.9, 38.5, 119.8, 121.9, 122.1, 135.8, 151.3, 152.5, 155.0,
160.6; IR (CHCls, cm™) 2956, 2929, 2857, 1619; HRMS Calcd for C4H;sN: 214.1470.
Found: 214.1472.

3-Phenyl-2,6-naphthyridine (45). Purification by flash chromatography (2:1
hexane/EtOAc) afforded 41 mg (80 %) of the product as a yellow solid: mp 138-140°C; 'H
NMR (CDCly) I'7.45 (t, /= 7.2 Hz, 1H), 7.53 (t, J= 7.6 Hz, 2H), 7.78 (d, /= 5.6, 1H), 8.13
(d, J=7.6 Hz, 2H), 8.16 (s, 1H), 8.69, (d, /= 5.6 Hz, 1H), 9.37 (5, 1H), 9.41 (5, 1H); °C
NMR (CDCl;) T'115.1, 119.4, 127.2,129.2, 129.3, 129.4, 131.4, 138.9, 144.6, 151.8, 152.4,
153.3; IR (CHCl;, cm'l) 3018, 2984, 1572; HRMS Caled for C 4HoN2: 206.0844. Found:

206.0848.
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Characterization of compound 3. A yeliow oil (Ry=0.25, 3:1 hexane/EtOAc): 'H

NMR (CDCls) I"1.42 (s, 9H), 5.73 (s, 1H), 7.17 (dd, J= 0.6, 4.8 Hz, 1H), 7.31 (dt, /= 0.6,
6.0 Hz, 2H), 7.49-7.54 (m, 3H), 7.65 (dd, /= 0.9, 6.3 Hz, 2H), 7.90 (td, J= 0.6, 4.8 Hz, 1H);
*CNMR (CDCly) ['28.4, 57.2, 93.0, 121.5, 124.2, 129.0, 130.1, 130.6, 132.0, 132.5, 133.2,
134.5,145.1, 169.9, 198.2; IR (CHCl;, cm™') 3429, 3018, 2978, 1693; HRMS Calcd for
CioH1gN202: 292.1337. Found: 292.1343.
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CHAPTER 2. SYNTHESIS OF 4-(1-ALKENYL)ISOQUINOLINES BY
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Abstract
A variety of 4-(1-alkenyl)-3-arylisoquinolines have been prepared in moderate to
excellent yields by the Pd(If)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the
presence of various alkenes. The introduction of an ortho-methoxy group on the
arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(1l)
mtermediate, improving the yields of the isoquinoline products. Ketone-containing
isoquinolines 36 and 49-51 have also been prepared by this process when unsaturated

alcohols are employed as the alkenes.

Introduction
The synthesis of isoquinolines has received considerable attention due to the fact that
the isoquinoline ring system is present in numerous naturally-occurring alkaloids." Although
classical methods have frequently been employed in the total synthesis of isoquinoline
alkaloids, these approaches often have drawbacks. For example, the Bischler-Napieralski,”
Pictet-Spengler,’ and Pomeranz-Fritsch® protocols require relatively strong acids to cyclize

E-phenethylamines. Also, the Bischler-Napieralski® and Pictet-Spengler® reactions afford
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dihydro- and tetrahydroisoquinolines, respectively. An additional step involving
dehydrogenation is thus required to complete the synthesis of the isoquineline.

Substituted isoquinoline heterocycles have also been synthesized by employing
palladium methodology. For instance, 3,4-disubstituted isoquinolines have been achieved by
the annulation of internal alkynes by cyclopalladated N,N-dimethylbenzylamine complexes,’
cyclopalladated N-tert-butylbenzaldimine tetrafluoroborates,® cyclopalladated N-fert-
butylarylaldimines,” and N-tert-butyl-o-iodobenzaldimines plus a palladium catalyst.®

The transition metal-catalyzed cyclization of alkynes,” which possess nucleophilic
centers in close proximity to the carbon-carbon triple bond, by in situ coupling/cyclization
reactions,'® and reactions promoted by vinylic, aryl, and alkynylpalladium complexes,'’ have
also been shown to be extremely effective for the synthesis of a wide variety of carbo- and
heterocycles.

The palladium(IT)-catalyzed cyclization/olefination reaction of 2-(1-alkynyl)aniline
derivatives to indoles has been reported by Sakamoto et al.'> They report that the reaction of
N-protected 2-(1-alkynyl)anilines with electron-deficient alkenes in the presence of PdCl;
and CuCl; gives 2-substituted 3-(1-alkenyl)indoles (eq 1). Our interest i 4-(1-
alkenyl)isoquinolines has prompted us to develop a convenient new synthesis of these
1soquinolines by the Pd(I)-promoted cross coupling of a variety of alkenes and 2-(1-
alkynyl)arylaldimines, which can be easily prepared from corresponding 2-

halobenzaldehydes in two steps (eq 2).
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R
NHR’ N
. PdClI 2
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N« cat PdCls{PPhs), cat. Pd(Il) Y
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X=1, R base
2. +BuNH,
R2

Results and Discussion
Our initial studies on the synthesis of 4-(1-alkenyl)isoquinolines focused on the
development of an optimum set of reaction conditions for their formation. A variety of
Pd(I) catalysts, oxidants, bases, solvents and temperatures have been examined on the
reaction of arylaldimine 1 and methyl acrylate (eq 3) and only some representative

optimization reactions are summarized in Tables 1 and 2.

~tBu
SR 5 equiv & “CO,CHs =N \N
N 10 % PdBr,

Ph 2 equiv oxidant
1 2 CO,CH, 4
The optimization reactions shown in Table 1 employed 2 equiv of the oxidant (eq 3).
In entry 1 (Table 1), benzaldimine 1 has been allowed to react with 5 equiv of methyl
acrylate in the presence of 10 mol % of PdBr; under an O; balloon, and a 33 % yield of
isoquinoline 2 was isolated in the absence of a base. However, the use of 2 equiv of CuCl, as

the oxidant afforded none of the desired product, although all starting materials disappeared
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within 20 h (entry 2). The use of CuCl; and the bases Et;N, K2CO; and NaOAc resulted in “ '
10-20 % yields of the desired product 2 (entries 3-5). In entries 4 and 5, 4-chloro-3-

phenylisoquinoline (4) was obtained in 15 % and 20 % yields, respectively.

Table 1. Optimization of the Reaction of Benzaldimine 1 and Methyl Acrylate by

Examination of Different Oxidizing Reagents, Bases and Solvents (eq 3)*

entry  oxidant base  solvent time(h) 2 (%)° 3 (%)° 4 (%)°
1 O, - DMF 24 33 (379 20 0 '
2 CuCl - DMF 20 0 0 0
3 CuCl, Et:N  DMF 36 10 15 trace
4  CuCl,  K,CO; DMF 36 17 frace 15
5 CuCl, NaQAc DMF 36 20 trace 20
6 Cu(OAc); NaOAc DMF 24 35 0 0
7 Cu(OAc); NaOAc CH3CN 12 18 25 0
8§ Cu(OAc); NaOAc DMSO 12 61 5 0
9  Cu(CO;); NaOAc DMSO 24 23 34 0
10 Cu(NOs), NaOAc DMSO 24 37 19 0
11 benzoquinone NaOAc DMSO 24 40 30 0

* All reactions were run under the following reaction conditions: 0.25 mmol of benzaldimine 1, 5 equiv of
methyl acrylate, 10 mol % PdBr, 2 equiv of the oxidant, and 3 equiv of the base were stirred in 3 ml of the
indicated solvent at 70 °C for the specified period of time, ° Isolated yields. ° Yield based on 'H NMR

spectroscopic analysis.

Possible mechanisms for the formation of isoquinolines 2 and 4 are shown in Scheme 1.
The cyclization of benzaldimine 1 by PdBr; presumably forms intermediate A, which is an
electron-deficient arylpalladium bromide. The cis addition of intermediate A to the carbon-

carbon double bond of the olefin affords an alkylpalladium(ll) intermediate, which
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undergoes subsequent E-hydride elimination to afford intermediate C and Pd(0). Further

fragmentation of the fert-butyl group from intermediate C generates the desired 4-(1-

alkenyl)isoquinolines. The Pd(0) generated can be reoxidized back to PdBr; by the oxidant

present in the reaction mixture.

Scheme 1
reductive
elimination
\r:l'/t"Bu O +,t—BU
Z > pn N
B PdClI cl
I or l fragmentation
tB - B it SN
B N/ 1l - . P P
PdBr, Q) Ph Ph
X s PdBr Cl
oxidant
; ZCO,R
0
Pd¥ + HBr .t EBU
P
E-hydride Ph
elimination PdBr
CO,R
+_1-Bu
~N  fragmentation =
“ > ph “ “Ph
S X
COzR c COR

With the presence of excess chloride in the reaction mixture, the intermediate A is

converted into intermediate B by halide exchange, because the Pd-Cl bond is much stronger

than the Pd-Br bond."* Isoquinoline 4 is then generated by the reductive elimination of

intermediate B, followed by fragmentation of the fert-butyl group. This reductive
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elimination is apparently promoted by the presence of the copper salt, since arylpalladium
halides do not normally undergo this process spontaneously. The use of Cu{(OAc), as the
oxidant increased the yield of the desired isoquinoline 2 from 20 % (entry 5) to 35 % (entry
6). Obviously, the use of Cu{OAc); eliminates the formation of intermediate B and eventual
formation of the chloroisoquinoline 4.

When CH3CN was chosen as the solvent, an 18 % yield of isoquinoline 2 was isolated,
alongside a 25 % yield of isoquinoline 3 (entry 7). However, the use of DMSO resulted in a
61 % yield of isoquinoline 2 and only a 5 % yield of 3 in 12 h (entry 8). Obviously, DMSO
is a better solvent than DMF or CH;CN for this isoquinoline olefination process, presumably
due to improved oxidation of Pd(0) to PA(II). Thus, DMSO has been chosen as the solvent
for all subsequent optimization reactions. From entries 9-11, other oxidants Cu(CQ3),,
Cu(NOs),, and 1,4-benzoquinone have been employed and only 23-40 % yields of product 2
have been 1solated. Based on the above results, the following reaction conditions have been
chosen as the standard reaction conditions for procedure A: 0.25 mmol of benzaldimine, 5
equiv of the olefin, 10 mol % of PdBr;, 2 equiv of Cu(OAc),, and 3 equiv of NaOAc are
stirred in 3 mL of DMSO at 70 °C.

The drawback of procedure A is the use of 2 equiv of Cu{(OAc),. We have therefore
tried to develop an alternative procedure using only catalytic amounts of the copper reagent
(eq 4). In this optimization study, it has been found that only catalytic amounts of
PdCl;(PPhs); in the presence of 10 mol % CuCls, 3 equiv of NaOAc and an O; atmosphere
can cyclize benzaldimine 1, affording a 38 % yield of isoquinoline 5 (entry 1, Table 2).
Based on this reaction, various bases and additives have been examined and the results are

summarized in entries 2-11.
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The use of 3 equiv of the organic bases pyridine or Et;N afforded a 48 % (entry 2) or a
46 % (entry 3) yield of isoquinoline 5, respectively. In entries 4-8, the carbonate salts
Cs,C03, K,CO;3, KHCO3, NayCO; and NaHCO; have been examined. The results show that
the more soluble carbonate bases, such as Cs,COs (entry 4), disfavor the reaction and the less
soluble carbonates, such as NaHCOs (entry 8), favor the formation of isoquinoline 5. The
addition of n-BusNCI (TBAC), n-BusNBr (TBAB) or Et4NI (TEAI) resulted in a slight
decrease in the yield of isoquinoline 5 (entries 9-11). Thus, the reaction conditions employed
in entry 8, which are the best reaction conditions shown in entries 2-11, have been chosen for
further optimization reactions employing a variety of Pd(II) catalysts and ligands. The
results for this latter study are summarized in entries 12-19 in Table 2.

When catalytic amounts of PdCly, Pdl,, Pd(O,CCF3)z, Pd(OAc), or PdBr; have been
employed, the desired product, isoquinoline 5, was isolated in 45-56 % yields with PdBr;
giving the best yield (entries 12-16). In entries 17-19, addition of the ligands, PPhs, dppp or
dppe resulted in a slight decrease in the yield of isoquinoline 5. Again, the reaction
conditions in entry 16, which have afforded the best result so far, have been chosen for
further optimization.

Based on the reaction conditions in entry 16, a variety of oxidants have been examined
and the results are summarized in entries 20-25. As mentioned above, a 56 % isolated yield
of isoquinoline § was obtained in the presence of 10 mol % of CuCl; (entry 16). The use of
10 mol % CuF; gave a 54 % yield of isoquinoline 5 (entry 20). Other copper(Il) reagents,
such as Cu(OAc);, Cu(NOs3);, CuCO; and CuQ have also been examined and isoquinoline §

was isolated in 39-45 % yields (entries 21-24). The use of Cul, a copper(I) reagent as the
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oxidant, resuited in a decrease in the yield of isoquinoline 5 from 56 % (entry 16) to 23 %,
while the side product 3 was isolated in a 46 % yield (entry 25)."*

After the above optimization work, we have adopted the following standard reaction
conditions using only a catalytic amount of Cu(ll) reagent as procedure B: 0.25 mmo] of
arylaldimine, 5 equiv of the olefin, 10 mol % of PdBr, 10 mol % of CuCly, 3 equiv of
NaHCOs in 3 mL of DMSO at 70 °C under an O, atmosphere.

By employing procedures A and B, a variety of 4-(1-alkenyl)- and 4-alkyl-3-
arylisoquinolines have been prepared (Table 3). As mentioned above, using procedure A,
1soquinoline 2 was isolated in a 61 % yield from the reaction of benzaldimine 1 and methyl
acrylate (entry 1, Table 3). An identical yield of isoquinoliné 5 was 1solated from the
reaction of benzaldimine 1 and n-butyl acrylate using procedure A (entry 2).

Several olefins, including electron-deficient and electron-rich alkenes, have been
allowed to react with benzaldimine 1 using procedure B (entries 3-7). The use of n-butyl
acrylate and #-butyl acrylate afforded a 56 % yield of isoquinoline 5 (entry 3) and a 50 %
yield of isoquinoline 6 (entry 4), respectively. However, none of the desired isoquinoline
product was observed when phenyl vinyl sulfone, an electron-deficient alkene, was allowed
to react with benzaldimine 1. The relatively electron-rich olefins, styrene and 2-methyl-3-
buten-2-ol have been allowed to react with benzaldimine 1. A 53 % yield of isoquinoline 7
(entry 5) and a 34 % yield of 8 (entry 6) were obtained, respectively. Instead of forming an
internal alkene, the reaction of n-butyl vinyl ether afforded isoquinoline 9 bearing a terminal
double bond, albeit in low overall yield (entry 7)."

Sakamoto et al. have reported that N-protected alky/-substituted o-(1-alkynyl)anilines

react with electron-deficient alkenes in the presence of PACl; and CuCl; producing 2-
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substituted 3-(1-alkenyl)indoles.'> However, in our chemistry, the N-tert-butyl alkyl-
substituted o-(1-alkynyl)benzaldimines 52 and 53 did not react with either electron-deficient
or electron-rich terminal alkenes under either procedures A or B to afford isoquinoline
products. Although N-tert-butyl alkyl-substituted o-(1-alkynyl)benzaldimines do not react
with olefins, benzaldimine 10, which is a N-ters-butyl alkenyl-substituted o-(1-
alkynyl)benzaldimine, did react with #-butyl acrylate affording a 41 % isolated yield of

1soquinoline 11 (entry 8).

\N/i’_BU \N/t"BU / \N/t'Bu
o
A A N"
n-CyHg Ph
52 53 54

The reaction of arylaldimine 54, bearing a pyridine moiety, and olefins gave none of
the desired product. However, when arylaldimine 12 with the alkynyl group attached to C-3
of the pyridine nucleus was allowed to react with #-butyl acrylate, naphthyridine 13 was
isolated in a 51 % yield (entry ).

It 1s known that electron-deficient aryl halides or vinylic halides disfavor the Heck
reaction.”” Thus, electron-donating groups have been introduced into the arylaldimine in
order to increase the electron density in intermediate A (Scheme 1) and hopefully favor
formation of the desired isoquinoline products. However, the experimental results indicate
that the introduction of electron-donating groups into the arylaldimine does not really favor
the isoquinoline olefination process, and instead results in a decrease in the yields of the

desired isoquinoline products in most cases. For example, when benzaldimine 14 bearing a
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methylenedioxo group on the benzylidene moiety was allowed to react with n-butyl acrylate
using procedures A and B, the yield dropped from 61 % (entry 2) to 43 % (entry 10) or from
56 % (entry 3) to 48 % (entry 11), respectively. The reaction of 16, another electron-rich
arylaldimine, and #-butyl acrylate afforded isoquinoline 17 ina 51 % yield (entry 12),
comparable to the 50 % yield from the reaction of benzaldimine 1 and t-butyl acrylate (entry
4). When N,N-dimethylacrylamide or methyl vinyl sulfone were allowed to react with
arylaldimine 16, a 51 % yield of isoquinoline 18 (entry 13) and a 27 % yield of isoquinoline
19 (entry 14) were obtained, respectively. The sulfone result is a bit surprising in view of our
earlier failure to obtain any isoquinoline product from benzaldimine 1 and phenyl vinyl
sulfone. The introduction of a para-methoxy group on the phenyl moiety resulted in the
yield of the desired isoquinoline 21 dropping from 56 % (entry 3) to only 35 % (entry 15).

The presence of electron-donating groups increases the electron density of the carbon-
carbon triple bond, which apparently disfavors cyclization by attack of the imine nitrogen on
the activated triple bond and consequently results in low conversion of the arylaldimine to
intermediate A and eventual formation of the isoquinoline (Scheme 1). Although the
reactivity of intermediate A towards olefins is presumably improved by introducing electron-
donating groups, the low conversion of arylaldimine to intermediate A results in a decrease
in the overall yield of isoquinoline products.

The position of the electron-donating methoxy group in the arylaldimine is critical to
the success of this process. Thus, the introduction of an ortho-methoxy group on the phenyl
moiety facilitates isoquinoline formation. When benzaldimine 22 was allowed to react with
n-butyl acrylate using procedures A and B, the yields increased to 65 % (entry 16) and 64 %

(entry 17) from 61 % (entry 2) and 56 % (entry 3), respectively. Employing procedure B, a
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variety of olefins have been allowed to react with arylaldimine 22 (entries 18-22). The
reactions of 22 with z-butyl acrylate and styrene afforded a 68 % yield of isoquinoline 24
(entry 18) and a 64 % yield of isoguinoline 25 (entry 19), respectively. These yields are
much better than the yields of 50 % and 53 % from the corresponding reactions of
benzaldimine 1 (entries 4 and 5). As mentioned above, the reaction of benzaldimine 1 and
phenyl vinyl sulfone gave none of the desired product. However, a 20 % yield of
isoquinoline 26 was observed when benzaldimine 22 was allowed to react with phenyl vinyl
sulfone (entry 20). When N,N-dimethylacrylamide was allowed to react with arylaldimine
22, isoquinoline 27 was isolated in a 65 % yield (entry 21), much better than the yield of 51
% from the reacﬁon of benzaldimine 16 and N,N-dimethylacrylamide (entry 13). The
reaction of arylaldimine 22 and 2-methyl-3-buten-2-ol afforded isoquinoline 28 ina 25 %
yield (entry 22). For some reason, this yield is lower than the 35 % yield obtained using
benzaldimine 1 (entry 6).

The beneficial effects of an ortho-methoxy group can be explained by Scheme 2.
Basically, the introduction of an ortho-methoxy group helps direct the PdBr; to the vicinity of
the triple bond where attack by the imine nitrogen on the activated triple bond takes place
generating an arylpalladium intermediate, which is stabilized by chelation with the ortho-
methoxy group. Subsequent Heck olefination and fragmentation of the -butyl group affords

the desired isoquinoline olefin.
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Scheme 2

~N  OMe

s
L

COs-n-Bu

The reactions of benzaldimine 29 and #-butyl acrylate or N,N-dimethylacrylamide are
very slow at 70 °C. These reactions were thus run at 90 °C and the corresponding
isoquinolines 30 and 31 have been obtained in 92 % and 97 % vields, respectively (entries 23 S
and 24). Comparing the results from entries 12, 13, 18, 21, 23 and 24, one can see that both s
electronic effects and facilitation by the ortho-methoxy group play a role in forming
isoquinolines 30 and 31 in such high yields. The ortho-methoxy group improves the
conversion of the arylaldimine to intermediate A and the introduction of electron-donating
groups on the arylaldimine moiety presumably increases the reactivity of intermediate A
towards olefins,'* affording mostly improved yields. When methyl vinyl sulfone was
allowed to react with arylaldimine 29, the yield of isoquinoline 32 increased to 52 % (entry
25) from the 27 % obtained without the ortho-methoxy group (entry 14).

Arylaldimine 33, bearihg a methylenedioxo group on the benzylidene moiety and an
ortho-methoxy group on the phenyl moiety, has been allowed to react with several olefins
(entries 26-29). The reactions of arylaldimine 33 with z-butyl acrylate afforded a 61 % (entry
26) or an 82 % (entry 27) yield of isoquinoline 34 using procedures A and B, respectively.
For this specific arylaldimine, procedure A is not as efficient as procedure B. When N,N-

dimethylacrylamide was allowed to react with arylaldimine 33, an 89 % yield of isoquinoline
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35 was isolated as a 73:27 E/Z mixture (entry 28). Comparing entries 23, 24, 27 and 28, one
can see that the introduction of two methoxy groups onto the benzylidene moiety 1s much
more efficient in promoting the Heck reaction than the introduction of a methylenedioxo
group onto the benzaldimine moiety.

Unsaturated alcohols undergo reaction to afford ketone-containing products. Thus, 3-
buten-2-ol has been allowed to react with arylaldimine 33 (entry 29). The corresponding
ketone 36 was isolated in a 48 % yield. The formation of ketone 36 can be explained by the
mechanism shown in Scheme 3. The cyclization of arylaldimine 33 by PdBr; affords an
arylpalladium(Il) intermediate D, which is stabilized by the ortho-methoxy group. The cis
addition of intermediate D to 3-buten-2-ol results in an alkylpalladium bromide intermediate,
which undergoes E hydride elimination to form enol E.'® Subsequent tautomerization and

fragmentation of intermediate E affords the desired ketone 36.

Scheme 3

O O = N/f-BU
=3
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To further test the electronic effects of substituents on the isoquinoline olefination
process, arylaldimines 37 and 40 have been prepared and allowed to react with s-butyl
acrylate and N,N-dimethylacrylamide. The reaction of arylaldimine 37, bearing a
dimethylamino group meta to the alkynyl group, and z-butyl acrylate at 70 °C was complete
in 16 h and afforded isoquinoline 38 in a 69 % yield (entry 30). When the reaction was run
at 90 °C, it was complete in 2 h and gave isoquinoline 38 in a 67 % yield (entry 31). By
employing NV,N-dimethylacrylamide at 90 °C, the reaction was complete in 1.5 h and a 70 %
yield of isoquinoline 39 was isolated as a 91:9 E/Z mixture (entry 32). While the
introduction of a meta-dimethylamino group shortens the reaction time, the introduction of a
dimethylamino group para to the alkynyl moiety slows the reaction down. Thus,
arylaldimine 40 has been allowed to react with ¢-butyl acrylate and N,N-dimethylacrylamide
at 90 °C affording a 71 % yield of isoquinoline 41 in 12 h (entry 33) and a 70 % yield of
isoquinoline 42 in 16 h (entry 34). The reason for the slow reactions is apparently because
the dimethylamino group para to the alkynyl group in arylaldimine 40 significantly increases
the electron density on the carbon-carbon triple bond and has little influence on the electron
density of the imine nitrogen, disfavoring attack of the imine nitrogen on the triple bond.
However, the dimethylamino group in arylaldimine 37 significantly increases the electron
density on the imine nitrogen, favoring attack of the imine nitrogen on the carbon-carbon
triple bond. Thus, the reactions of arylaldimine 37 reach completion in shorter reaction
times.

The reactions of arylaldimine 43 with n-butyl acrylate, ¢-butyl acrylate, N,N-
dimethylacrylamide, and styrene gave the corresponding isoquinolines 44-47 in 51-78 %

yields (entries 35-38). Similar to the reactions of arylaldimine 29, the reactions of
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arylaldimine 43 with olefins also involve electronic effects and facilitation by the ortho-
methoxy group (Scheme 4). However, the reactions of arylaldimine 43, having an ortho-
methoxy group on the benzylidene moiety, are very slow. For example, when benzaldimine
43 was allowed to react with n-butyl acrylate or N,N-dimethylacrylamide, the reactions are
not complete even in 48 h at 90 °C (entries 35 and 37). The reason is probably because the
intermediate F (Scheme 4) is quite hindered, preventing approach of the olefins. Comparing
the results from arylaldimine 29 (entries 23 and 24) with those of arylaldimine 43 (entries 36
and 37), we conclude that the introduction of an ortho-methoxy group onto the phenyl
molety promotes this isoquinoline olefination better than the introduction of an ortho-

methoxy group onto the benzylidene moiety.

Scheme 4

MeO ~t-Bu MeO

N N
MeO S MeO Zpp
MeO--Pd_  “Ph MeO Iy
B Br
F a4 CO,-n-Bu

To further test the effect of oxygen substituents in this isoquinoline olefination process,
arylaldimine 48 has been prepared and allowed to react with olefins. The reaction of
arylaldimine 48 and styrene afforded none of the desired product for reasons which are not
obvious. When 3-buten-2-ol and 1-phenyl-2-propen-1-ol have been allowed to react with

arylaldimine 48, a 50 % yield of ketone 49 (entry 39) and a 36 % yield of ketone 50 were
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obtained, respectively. Using procedure B, the reaction of arylaldimine 48 and 5-hexen-2-ol

afforded compound 51 by palladium migration, albeit in a low yield (entry 41)."7

Conclusions

An efficient and straightforward route to synthesize 4-(1-alkenyl)isoquinolines and 4-
alkyl-3-arylisoquinolines containing a ketone group has been developed using a
palladium(If)-catalyzed cyclization, followed by olefination (Heck reaction). A wide variety
of olefins undergo this process in moderate to excellent yields with high regioselectivity
being observed. The introduction of an ortho-methoxy group on the benzaldimine moiety
promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(Il) intermediate,
mmproving the yields of the desired isoquinoline products. Moreover, the introduction of an
ortho-methoxy group onto the phenyl moiety has been shown to promote this 1soquinoline
olefination more efficiently than the introduction of an ortho-methoxy group onto the
benzylidene moiety. To form isoquinolines in high yields, both electronic effects and

facilitation by an ortho-methoxy group are necessary.

Experimental Section
General. 'H and '*C NMR spectra were recorded at 300 and 75 MHz or 400 and 100
MHz respectively. Thin-layer chromatography was performed using commercially prepared
60-mesh silica gel plates (Whatman K6F), and visualization was effected with short
wavelength UV light (254 nm) and a basic KMnOj, solution [3 g of KMnOQ, + 20 g of K,CO4
+ 5 mL of NaOH (5 %) + 300 mL of H,O]. All melting points are uncorrected. Low

resolution mass spectra were recorded on a Finnigan TSQ700 triple quadrupole mass
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spectrometer (Finnigan MAT, San Jose, CA). High resolution mass spectra were recorded on

a Kratos MSS0TC double focusing magnetic sector mass spectrometer using El at 70 eV. All

reagents were used directly as obtained commercially uniess otherwise noted. All palladium
salts were donated by Johnson Matthey Inc. and Kawaken Fine Chemicals Co. Ltd.
Compounds 1,'* 10,'% 12,'2 14,2 20,'* 52 '2 53 12 54, 4-dimethylamino-2-

iodobenzaldehyde,™® 5-dimethylamino-2-iodobenzaldehyde,* 2-iodo-3,4,5-

trimethoxybenzaldehyde,®® and N-(benzo[1,3]dioxol-5-ylmethylene)-tert-butylamine'® were
prepared according to previous literature procedures. .
2-Methoxyphenyl trimethylsilyl acetylene. To a solution of the 2-iodoanisole (4.68
8, 20 mmol) and trimethylsilylacetylene (24 mmol, 1.2 equiv) in Et;N (60 mL) were added
PdCl(PPhs); (0.281 mg, 2 mol %) and Cul (38.2 mg, 1 mol %). The resulting mixture was
then heated under an Ar atmosphere at 55 °C. The reaction was complete in 2 h. The
mixture was allowed to cool to room temperature, and the ammonium salt was removed by
filtration. The solvent was removed under reduced pressure and the residue was purified by
flash chromatography (15:1 hexane/EtOAc) to afford 4.05 g of the indicated product in 100
% yield as a yellow liquid: 'H NMR (CDCl3) T'0.27 (s, 9H), 3.87 (s, 3H), 6.85 (d, J=8.8
Hz, 1H), 6.89 (dd, /= 0.8, 7.6 Hz, 1H), 7.25-7.30 (m, 1H), 7.44 (dd, J= 1.6, 7.6 Hz, 1H); *C
NMR (CDCl3) I"0.3, 56.0, 98.7, 101.4, 110.8, 112.4, 120.5, 130.2, 134.4, 160.5.
2-Methoxyphenylacetylene. A solution of KOH (5.06 g, 10 mmol) in 4 mL of water
was added dropwise to 2-methoxyphenyl trimethylsilyl acetylene (2.04 g, 10 mmol) in 40
mL of CH30H under an Ar atmosphere at 25 °C. The mixture was stirred for another 0.5 h at g
25 °C, and the CH30H was removed under vacuum. The residue was added to 20 mL of “‘

brine solution, and the mixture was extracted with EtOAc (3 x 20 mL), dried (Na,SOy,),
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filtered, and the solvent removed under vacuum. Purification by flash chromatography (7:1
hexane/EtOAc) afforded 1.15 g (10 mmol) of the indicated compound in a 100 % yield as a
yellow liquid: "HNMR (CDCl3) I"3.31 (s, 1H), 3.88 (s, 3H), 6.86 (d, J= 8.4 Hz, 1H), 6.90
(dd, J=10.8, 7.6 Hz, 1H), 7.28-7.32 (m, 1H), 7.46 (dd, J= 1.6, 7.6 Hz, 1H); '°C NMR
(CDCl3) I'55.9, 80.2, 81.3, 110.7, 111.3, 120.5, 130.4, 134.3, 160.7.
N-[4,5-Dimethoxy-2-(phenylethynyl)benzylidene]-tert-butylamine (16). To a
solution of 2-bromo-4,5-dimethoxybenzaldehyde (1.23 g, 5.0 mmol) and phenylacetylene
(0.62 g, 6.0 mmol) in Et3N (20 mL) were added PdCly(PPhs); (70 mg, 2 mol %) and Cul (10
mg, 1 mol %). The resulting mixture was then heated under an Ar atmosphere at 55 °C. The
reaction was monitored by TLC to establish completion. When the reaction was complete,
the reaction mixture was allowed to cool to 25 °C, and the ammonium salt was removed by
filtration. The solvent was removed under reduced pressure and the residue was purified by
column chromatography on silica gel to afford the corresponding arylalkyne. To the purified
arylalkyne in a 4 dram vial was added ~BuNH; (12 equiv). The mixture was then stirred
under an Ar atmosphere at 25 °C for 24 h. The resulting mixture was extracted with ether.
The combined organic layers were dried (Na;SOQ;) and filtered. Removal of the solvent
afforded 1.32 g of the indicated arylaldimine in a 82 % overall yield as a yellow solid: mp
137-140 °C; 'H NMR (CDCl;) ' 1.35 (s, 9H), 3.95 (s, 3H), 4.00 (s, 3H), 7.01 (s, 1H), 7.36-
7.38 (m, 3H), 7.52-7.55 (m, 2H), 7.63 (s, 1H), 8.86 (s, 1H); '°C NMR (CDCl5) I"30.1, 56.2,
56.3,57.8,86.9,93.8,107.9,113.9, 117.1, 123.5, 128.5, 128.7, 131.5, 132.1, 149.9, 150.5,
153.9; IR (CHCls, em™) 3019, 2969, 1681, 1593, 1507; HRMS Caled for C21H2305N:

321.1729. Found: 321.1735.
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N-[2-(p-Methoxyphenylethynyl)benzylidene]-tert-butylamine (22). Using the
procedure used to prepare arylaldimine 16, 2-bromobenzaldehyde (0.93 g, 5.0 mmol) and -
methoxyphenylacetylene (0.79 g, 6.0 mmol) were employed to afford 1.06 g of the indicated
arylaldimine in a 90 % overall yield as a yellow oil: '"H NMR (CDCl3) I'1.34 (s 9H), 3.84 (s,
3H), 6.90 (1, J= 2.1, 9.0 Hz, 2H), 7.32-7.36 (m, 2H), 7.47 (td, /= 2.1, 9.0 Hz, 2H), 7.50-
7.54 (m, 1H), 8.04-8.07 (m, 1H), 8.92 (s, 1H); °C NMR (CDCl;) I 30.0, 55.6, 58.1, 85.7,
95.2,114.4,115.4,124.5,126.1, 128.5, 129.9, 132.3, 133.2, 137.7, 154.7, 160.0; IR (neat,
cm’™) 2963, 2836, 1699; HRMS Caled for Ca0HzON: 291.1623. Found: 291.1626.

N—[4,5—Dimethoxy-2~(o-methoxypheny]ethynyl)benzylidene]-tert—butylamine (29).
Using the procedure used to prepare arylaldimine 16, 2-bromo-4,5-dimethoxybenzaldehyde
(1.23 g, 5.0 mmol) and o—mefhoxyphenylacetylene (0.79 g, 6.0 mmol) were employed to
afford 1.23 g of the indicated arylaldimine in a 70 % overall yield as a yellow solid: mp 124-
126 °C; 'H NMR (CDCl;) I"1.35 (s, 9H), 3.92 (s, 3H), 3.94 (s, 3H), 3.99 (s, 3H), 6.92-6.98
(m, 2H), 7.03 (s, 1H), 7.33 (t,J = 7.5 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.61 (s, 1H), 8.94 (s,
1H); "C NMR (CDCl3) T'30.2, 55.9, 56.2, 57.6, 90.2, 91.3, 107.8, 110.8, 112.7, 113.9,
117.6,120.7, 129.9, 132.0, 133.4, 149.8, 150.5, 154.6, 160.0 (one methoxy carbon is missing
due to overlap); IR (CHCI;, cm'l) 3019, 2967, 2838, 1634, 1598, 1507; HRMS Calcd for
Ca2Hzs03N: 351.1834. Found: 351.1839.

N—[6—(0-Methoxy)phenylethynylbenzo[1,3]dioxol-S-ylmetherne]—tert-butylamine
(33). Using the procedure used to prepare arylaldimine 16, 6-bromo-1,3-benzodioxole-5-
carboxaldehyde (1.15 g, 5 mmol} and o-methoxyphenylacetylene (0.70 g, 6 mmol) were
employed to afford 1.12 g of the indicated arylaldimine in a 67 % overall yield after

recrystallization (EtOAc/hexane) as a yellow solid: mp 87-89 °C; 'H NMR (CDCl3) I"1.33
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(s, 9H), 3.90 (s, 3H), 5.99 (s, 2H), 6.91 (d, J = 8.8 Hz, 1H), 6.95 (1, J= 7.6 Hz, 1H), 6.98 (s,

1H), 7.32 (t,J = 7.6 Hz, 1H), 7.47 (d, /= 7.6 Hz, 1H), 7.57 (s, 1H), 8.92 (s, 1H); *C NMR
(CDCL)I'30.1, 55.9, 57.7, 90.2, 90.9, 101.8, 105.7, 110.8, 111.3, 112.6, 119.0, 120.7, 129.9,

133.4,133.8, 148.6, 149.1, 154.3, 160.1; IR (CHCl;, cm™) 3017, 2968, 1612, 1476; HRMS

Calcd for C;;H;;03N: 335.1521. Found: 335.1526.
N-[4-Dimethylamino-2-(o-methoxyphenylethynyl)benzylidene]-zer-butylamine

(37). Using the procedure used to prepare arylaldimine 16, 4-dimethylamino-2-

iodobenzaldehyde® (1.38 g, 5 mmol) and o-methoxyphenylacetylene (0.70 g, 6 mmol) were

employed to afford 1.57 g of the indicated arylaldimine in a 94 % overall yield as a yellow

solid: mp 102-104 °C; '"H NMR (CDCl5) T 1.34 (s, 9H), 3.02 (s, 6H), 3.92 (s, 3H), 6.71 (dd,

J=2.4,8.8Hz, 1H), 6.82 (d, /= 2.8 Hz, 1H), 6.91-6.97 (m, 2H), 7.32 (dt, J= 1.6, 8.0 Hz,

1H), 7.51 (dd, J= 1.6, 7.6 Hz, 1H), 8.00 (br s, 1H), 8.90 (s, 1H); *C NMR (CDCl;) '30.2,

40.5,55.9,57.3,90.2,91.8,110.8, 112.6, 113.1, 114.5, 120.7, 125.6, 126.1, 127.2, 130.0,

133.6, 151.4, 155.0, 160.2; IR (CHCls, cm™) 3018, 2968, 2400, 1596; HRMS Calcd for

Ca2H ON3: 3340.2045. Found: 334.2050.
N-[5-Dimethylamino-2-(o-methoxyphenylethynyl)benzylidene]-zert-butylamine

(40). Using the procedure used to prepare arylaldimine 16, 5-dimethylamino-2-

iodobenzaldehyde® (1.38 g, 5 mmol) and o-methoxyphenylacetylene (0.70 g, 6 mmol) were

employed to afford 1.48 g of the indicated arylaldimine in a 89 % overall yield as a yellow

solid: mp 118-120 °C; '"H NMR (CDCl;) I"1.35 (s, 9H), 3.03 (s, 6I1), 3.92 (s, 3H), 6.72 (dd,

J=2.8,84Hz, 1H), 6.90 (d, /= 8.4 Hz, 1H), 6.94 (dd, /= 0.8, 7.6 Hz, 1H), 7.27 (dt, J= 1.6, g

7.6 Hz, 1H), 7.38 (brs, 1H), 7.44 (d, /= 8.8 Hz, 1H), 7.47 (dd, J= 1.6, 7.6 Hz, 1H), 8.98 (s,

1H); °C NMR (CDCl;) I'30.1, 40.6, 55.9, 57.7, 89.1, 92.3, 108.4, 110.8, 112.2, 113.5,
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114.2,120.7, 129.2, 133.2, 133.5, 138.7, 150.4, 155.8, 159.7; IR (CHCls, cm™) 3017, 2969,
1638, 1602; HRMS Calcd for Co;H;60Na2: 334.2045. Found: 334.2050.

N-[2-(Phenylethynyl)-3,4,5-trimethoxybenzylidene]-tert-butylamine (43). Using the
procedure used to prepare arylaldimine 16, 2-iodo-3,4,5-trimethoxybenzaldehyde® (1.61 g,
5.0 mmol) and phenylacetyléne (0.62 g, 6.0 mmol) were employed to afford 1.42 g of the
indicated arylaldimine in a 81 % overall yield as a yellow oil: 'H NMR (CDCl13) I'1.33 (s,
9H), 3.92 (s, 3H), 3.97 (s, 3H), 4.03 (s, 3H), 7.35-7.37 (s, 3H), 7.43 (s, 1H), 7.52-7.55 (m,
2H), 8.85 (s, LH); °C NMR (CDCl5) I'30.1, 56.4, 58.0, 61.4, 61.7, 82.8, 98.1, 104.6, 112.4,
123.7,128.5, 128.7, 131.5, 134.5, 144.1, 153.9, 154.3, 154.6; IR (neat, cm™') 3079, 3056,
2966, 2872, 2837, 1687, 1640, 1585, 1493; HRMS Calcd for C33H,505N: 351.1834. Found:
351.18309.

4-Todo-1,3-benzodioxole-5-carboxaldehyde. To a solution of N-(benzo[1,3]dioxol-5-
ylmethylene)-tert-butylamine'* (1.03 g, 5.0 mmol) in 40 mL of THF at -78 °C was added
5.25 mmol of n-BuLi (2.5 M in hexane) dropwise over a 5 min period. The solution was
stirred for 30 min at -78 °C and a solution of I (2.68 g, 7.5 mmol) in 15 mL of THF was
added dropwise. The resulting solution was warmed to 25 °C and stirred for 2 h. The
reaction mixture was then quenched with water, extracted with ether, washed with satd aq
NayS$,03, dried (NaSQy), filtered, and the solvent was removed under reduced pressure. The
residue was chromatographed using 3:1 hexane/EtOAc to afford 1.01 g of the indicated
compound in a 70 % yield as a white solid: mp 130-132 °C; "H NMR (CDCls) I'6.16 (s, 2H),
6.86 (dd, J= 0.3, 8.1 Hz, 1H), 7.53 (d, /= 8.1 Hz, 1H), 9.90 (d, /= 0.6 Hz, 1H); ’C NMR

(CDCl3) I'76.0, 101.5, 108.3, 127.5, 128.8, 150.3, 150.9, 192.8.
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N-(4-Phenylethynylbenzo[1 ,3]dioxol-5-ylmethylene)-zert-butylamine (48). Using

the procedure used to prepare arylaldimine 16, 4-iodo-1,3-benzodioxole-5-carboxaldehyde
(1.45 g, 5 mmol}) and phenylacetylene (0.61 g, 6 mmol) were employed to afford 1.52 g of
the indicated arylaldimine in a 100 % overall yield as a yellow solid: mp 128-129 °C; 'H

NMR (CDCL;) T"1.34 (s, 9H), 6.10 (s, 2H), 6.84 (d, J = 8.0 Hz, 1H), 7.37-7.38 (m, 3H), 7.55-

7.57 (m, 2H), 7.64 (d, /= 8.0 Hz, 1H), 8.77 (s, 1H); '°C NMR (CDCls) I"30.0, 57.8, 80.8,
98.8,102.1, 106.1, 109.0, 120.6, 122.9, 128.6, 128.9, 131.7, 131.8, 148.9, 153.4 (one sp’

carbon missing due to overlap); IR (CHCl,, cm'l) 3018, 2969, 1644, 1616, 1458; HRMS

Caled for CyoH;9O,N: 305.1416. Found: 305.1420.

General procedure A for the palladium-catalyzed formation of isoquinolines.
Dried DMSO (3 mL}), PdBr;, (6.7 mg, 0.025 mmol), Cu(OAc), (0.091 g, 0.50 mmol), NaOAc
(0.062 g, 0.75 mmol) and the benzaldimine (0.25 mmol) were placed in a 4 dram vial. The
contents were then stirred for 1 min, and the appropriate olefin (1.25 mmol) was added. The
vial was sealed carefuily and heated in an oil bath at 70 °C for the indicated period of time.
The reaction was monitored by TLC to establish completion. The reaction mixture was
cooled to 25 °C, diluted with 20 mL of EtOAc, washed with 20 mL of brine, dried (NazS0y),
and filtered. The solvent was evaporated under reduced pressure, and the product was
1solated by chromatography on a silica gel column,

General procedure B for the palladinm-catalyzed formation of isoquinolines.
Dried DMSO (3 mL), PdBr; (6.7 mg, 0.025 mmol), CuCl, (3.4 mg, 0.025 mmol), NaHCO;
(0.063 g, 0.75 mmol) and the benzaldimine (0.25 mmol) were placed in a 4 dram vial. The k
contents were then stirred for 1 min, and the appropriate olefin (1.25 mmol) was added. The

vial was flushed with O, and heated in an oil bath at 70 °C or 90 °C under an 0, balloon for
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the indicated period of time. The reaction was monitored by TLC to establish completion.
The reaction mixture was cooled to 25 °C, diluted with 20 mL of EtOAc, washed with 20 mL
of brine, dried (Na;S0,), and filtered. The solvent was evaporated under reduced pressure,
and the product was isolated by chromatography on a silica gel column.

Methyl (E)-3-(3-phenylisoquinolin-4-yl)acrylate (2). The reaction mixture was
chromatographed using 3:1 hexane/EtOAc to afford 44 mg of the indicated compound in a 61
% yield as a yellow oil: "H NMR (CDCl;) '3.81 (s, 3H), 6.31 (d, J=16.4 Hz, 1H), 7.41-
1.49 (m, 3H), 7.61-7.63 (m, 2H), 7.67 (dd, J = 1.6, 8.4 Hz, 1H), 7.78 (dt, J= 1.6, 8.4 Hz,
1H), 8.02 (d, /= 16.0 Hz, 1H), 8.05 (d, /= 8.0 Hz, 1H), 8.24 (dd, /= 0.8, 8.8 Hz, 1H), 9.30
(s, 1H); *C NMR (CDCl;) T'52.1, 123.9, 124.4, 126.3, 127.5, 127.6, 128.5, 128.5, 128.6,
130.6, 131.5, 134.5, 140.2, 141.6, 152.0, 152.9, 166.8; IR (CHCLs, cm™) 3018, 2924, 2852,
1717, 1638; HRMS Caled for Ci9H;50,N: 289.1103. Found: 289.1108.

n-Butyl (E)-3-(3-phenylisoquinolin-4-yl)acrylate (5). The reaction mixture was
chromatographed using 3:1 hexane/EtOAc to afford 51 mg (Table 3, entry 2) or 46 mg (entry
3) of the indicated compound as a yellow oil ina 61 % or a 56 % yield using Procedure A or
B, respectively: "H NMR (CDCl;) [0.96 (t, J= 7.2 Hz, 3H), 1.37-1.46 (m, 2H), 1.64-1.72
(m, 2H), 4.43 (t, /= 6.8 Hz, 2H), 6.33 (d, /= 16.4 Hz, 1H), 7.42-7.49 (m, 3H), 7.63 (d, /=
1.2 Hz, 2H), 7.67 (d, J=7.2 Hz, 1H), 7.78 (t, J= 7.6 Hz, 1H), 7.99 (d, J = 16.4 Hz, 1H), 8.05
(d, J=8.4 Hz, 1H), 8.26 (d, J= 8.8 Hz, 1H), 9.31 (s, 1H); *C NMR (CDCl;) ' 13.9, 19.4,
30.9, 64.8, 123.9, 124.4, 126.6, 127.4, 127.6, 128.4, 128.5, 128.5, 130.6, 131.5, 134.4, 140.2,
141.3,152.0, 152.8, 166.4; IR (neat, cm™') 3412, 3058, 2958, 2872, 1716, 1636, 1570; HRMS

Calcd for szHz]OzN: 331.1572. Found: 331.1577.
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-Butyl (E)-3-(3-phenylisoquinolin-4-yl)acrylate (6). The reaction mixture was
chromatographed using 3:1 hexane/EtOAc to afford 41 mg of the indicated compound as a
yellow oil in a 50 % yield: "H NMR (CDCly) I'1.50 (s, 9H), 6.22 (d, J= 16.4 Hz, 1H), 7.38-
749 (m, 3H), 7.62-7.67 (m, 3H), 7.75 (dt, J = 0.8, 6.8 Hz, 1H), 7.86 (d, /= 16.4 Hz, 1H),
8.01 (d, /= 8.0 Hz, 1H), 8.24 (d, /= 8.4 Hz, 1H), 9.27 (s, 1H); '*C NMR (CDCL3) I'28.4,
81.0,124.1,124.6, 1274, 127.6, 128.3, 128.4, 128.5, 130.6, 131.4, 134.4, 140.2, 140.3,
151.9, 152.7, 165.7 (one sp” carbon missing due to overlap); IR (CHCls, cm™) 3400, 3058,
2977,2931, 1708, 1634, 1617, 1572, 1553; HRMS Calcd for C;H,10,N: 331.1572. Found:
331.1577.

3-Phenyl-4-[(E)-2-phenylethen-1-yl]isoquinoline (7). The reaction mixture was
chromatographed using 3:1 hexane/EtOAc to afford 41 mg of the indicated compound as a
yellow oil in a 53 % yield: 'H NMR (CDCl13) '6.89 (d, /= 16.8 Hz, 1H), 7.25-7.47 (m, 9H),
7.62 (dt,J=1.2, 8.1 Hz, 1H), 7.71-7.74 (m, 3H), 8.02 (d, /= 7.8 Hz, 1H), 8.38 (d, /= 8.4
Hz, 1H), 9.27 (s, 1H); >C NMR (CDCl;) ['124.7, 125.2, 126.6, 126.7, 127.1, 127.9, 127.9,
128.2,128.2,128.2, 128.9, 130.6, 130.8, 135.1, 136.8, 137.3, 141.1, 150.8, 151.4; IR
(CHCl3, cm™) 3058, 3024, 2972, 1697, 1666, 1617, 1495; HRMS Caled for Cp3H;7N:
307.1361. Found: 307.1366.

(E)-2-Methyl-4-(3-phenylisoquinolin-4-yl)-3-buten-2-ol (8). The reaction mixture
was chromatographed using 1:1 hexane/EtOAc to afford 26 mg of the indicated compound as
a white solid in a 34 % yield: mp 178-179 °C; '"H NMR (CDCl;) I"'1.34 (s, 6H), 1.60 (br s,
1H), 5.92 (d, /=16.5 Hz, 1H), 6.72 (d, J = 16.2 Hz, 1H), 7.34-7.37 (m, 1H), 7.40-7.45 (m,

2H), 7.59-7.64 (m, 3H), 7.73 (dd, /= 1.2, 6.9 Hz, 1H), 8.01 (d, J= 7.8 Hz, 1H), 8.17 (d, J =
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5.4 Hz, 1H), 9.25 (s, 1H); '*C NMR (CDCl;) I"29.6, 71.5, 121.7,124 8, 126.7, 127.1, 127.6,
127.7,128.1, 128.1, 130.7, 130.7, 135.3, 141.2, 145.9, 150.9, 151.2; IR (CHCls, em™) 3650,
3019, 2975, 2400, 1521; HRMS Caled for CpoHoON: 289.1467. Found: 289.1471.

4-(1-n-Butoxyethen-1-yI)-3-phenylisoquinoline (9). The reaction mixture was
chromatographed using 7:1 hexane/EtOAc to afford 24 mg of the indicated compound as a
yellow oil in a 31 % yield: 'H NMR (CDCL3) I'0.92 (t, J=7.6 Hz, 3H), 1.33-1.43 (m, 2H),
1.64-1.72 (m, 2H), 3.78 (t, J = 2.8 Hz, 2H), 4.12 (d, /= 2.4 Hz, 1H), 4.48 (d, /= 2.4 Hz, 1H),
7.35-7.45 (m, 3H), 7.61 (dt, /= 1.6, 8.4 Hz, 1H), 7.74 (dt, /= 1.6, 8.4 Hz, 1H), 7.78 (it, /=
1.2, 6.8 Hz, 2H), 8.00 (d, /= 8.0 Hz, 1H), 8.08 (dd, /= 0.8, 8.8 Hz, 1H), 9.33 (s, 1H); '*C
NMR (CDClL3) I'14.1, 19.6, 31.2, 67.7, 89.6, 125.5, 127.2, 127.2, 127.4, 127.7, 127.9, 128.1,
129.4,130.9, 135.9, 141.2, 151.4, 152.5, 157.5; IR (CHCl;, cm™) 3060, 3015, 2960, 2873,
1621, 1564, 1497; HRMS Calcd for C;;H2,ON: 303.1623. Found: 303.1627.

n-Butyl (E)-3-(3-cyclohexen-1-ylisoquinolin-d-yl)acrylate (11). The reaction mixture
was chromatographed using 3:1 hexane/EtOAc to afford 34 mg of the indicated compound as
a yellow oil in a 41 % yield: "H NMR (CDCl3) I"0.99 (t, J= 7.2 Hz, 3H), 1.43-1.53 (m, 2H),
1.68-1.76 (m, 4H), 1.83-1.86 (m, 2H), 2.24-2.27 (m, 2H), 2.45-2.50 (m, 2H), 4.27 (t, J=7.2
Hz, 2H), 5.85 (t, J= 1.6 Hz, 1H), 6.39 (d, /= 16.4 Hz, 1H) 7.59 (dt, J= 0.8, 7.2 Hz, 1H),
7.73 (dt,J=12,7.2 Hz, H), 7.98 (d, /= 8.0 Hz, 1H), 8.08 (d, /= 16.4 Hz, 1H), 8.21 (d, J =
8.4 Hz, 1H), 9.19 (s, 1H); *C NMR (CDCL) I'13.9, 19.5,22.2, 23.1, 25.9,28.8,30.9, 64.7,
122.9,124.4,124.9, 126.9, 127.4, 128.4, 131.2, 132.7, 134.4, 138.0, 141.6, 152.5, 155.1,
166.8; IR (neat, cm']) 2932, 2872, 1712, 1632; HRMS Caled for C55H50,N: 335.1885.

Found: 335.1892.
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n-Butyl (E)-3-(3-phenyl-2,6-naphthyridin-4-ylacrylate (13). The reaction mixture
was chromatographed using 2:1 hexane/EtOAc to afford 42 mg of the indicated compound as
ayellow solid in a 51 % yield: mp 86-88 °C; 'H NMR (CDCl3) I'0.96 (t, /= 7.2 Hz, 3H),
1.37-1.46 (m, 2H), 1.57-1.62 (m, 2H), 4.24 (t, /= 6.9 Hz, 2H), 6.43 (d, J = 16.5 Hz, 1H),
744-7.51 (m, 3H), 7.64 (dd, /= 1.5, 8.1 Hz, 2H), 7.85 (d, J= 5.7 Hz, 1H), 7.97 (d, J = 16.5
Hz, 1H), 8.78 (d, /= 5.7 Hz, 1H), 9.39 (s, 1H), 9.74 (s, 1H); *C NMR (CDCl;) "' 13.9, 19.4,
30.8,65.0,119.4, 123.7, 128.1, 128.6, 128.7, 129.0, 129.2, 130.5, 139.2, 139.3, 144.8, 150.0,
152.0, 153.4, 165.9; IR (CHCls, cm™) 3019, 2965, 2874, 1712, 1638; HRMS Caled for
Cy1Hz00;N,: 332.1525. Found: 332.1531.

n-Butyl (E)-3-(7-phenyl-1,3-dioxolo[4,5-g]isoquinolin-8-ylacrylate (15). The
reaction mixtures were chromatographed using 2:1 hexane/EtOAc to afford 40 mg or 45 mg
of the indicated compound as a yellow solid in a 43 % (entry 10) or 48 % {entry 11) yield:
mp 73-76 °C; '"H NMR (CDCl3) [ 0.95 (t, /= 7.2 Hz, 3H), 1.36-1.44 (m, 2H), 1.62-1.70 (m,
2H), 420 (t, J = 6.8 Hz, 2H), 6.14 (s, 2H), 6.22 (d, J= 16.4 Hz, 1H), 7.24 (s, 1H), 7.38-7.47
(m, 3H), 7.51 (s, 1H), 7.56-7.58 (m, 2H), 7.92 (d, J= 16.4 Hz, 1H), 9.02 (s, 1H); *C NMR
(CDCL;) I"13.9, 19.3, 30.8, 64.8, 101.1, 102.1, 103.8, 123.7, 125.1, 126.1, 128.3, 130.4,
132.8, 140.3, 141.8, 148.4, 150.4, 151.3, 152.2, 166.4 (one sp” carbon missing due to
overlap); IR (CHCl;, cm'l) 3018, 2962, 1708, 1615; HRMS Caled for Ca3HyO4N: 375.1471.
Found: 375.1475.

t-Butyl (E)-3-(6,7-dimethoxy-3-phenylisoquinolin-4-yl)acrylate (17). The reaction
mixture was chromatographed using 1:1 hexane/EtOAc to afford 50 mg of the indicated
compound as a yellow solid in a 51 % yield: mp 157-159 °C; '"H NMR (CDCl;) ' 1.51 (s,

9H), 4.04 (s, 3H), 4.06 (s, 3H), 6.20 (d, J= 16.4 Hz, 1H), 7.26 (s, 1H), 7.37-7.47 (m, 4H),
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7.60 (d, /= 6.8 Hz, 2H), 7.86 (d, /= 16.4 Hz, 1H), 9.08 (s, 1H); '*C NMR (CDCl;) ['28.4,
56.3,56.3, 80.9, 103.0, 106.0, 123.0, 123.8, 127.6, 128.2, 130.5, 131.0, 140.5, 140.9, 150.0,
1504, 150.9, 153.8, 165.8 (one sp® carbon missing due to overlap); IR (CHCIs, cm™) 3020,
2972, 2934, 2840, 1700, 1503; HRMS Calcd for Cy4Hzs0Q4N: 391.1784. Found: 391.1792.
N,N-Dimethyl (E)-3-(6,7-dimethoxy-3-phenylisoquinolin-4-yl)acrylamide (18). The
reaction mixture was chromatographed using 1:3 hexane/EtOAc and 50:1 CHCl;/CH,0H to
afford 46 mg of the indicated compound as a yellow solid in a 51 % yield: mp 150-151 °C;
'H NMR (CDCl3) T'2.72 (s, 3H), 3.00 (s, 3H), 4.05 (s, 3H), 4.06 (s, 3H), 6.41 (d, J= 16.0
Hz, 1H), 7.26 (s, 1H), 7.32-7.38 (m, 2H), 7.43 (t, /= 8.0 Hz, 2H), 7.57-7.59 (m, 2H), 8.07 (d,
J=16.0 Hz, 1H), 9.07 (s, 1H); °C NMR (CDCl3) ' 35.9, 37.0, 56.3, 56.4,102.7, 105.8,
123.6,124.0, 126.8, 127.7, 128.3, 130.3, 131.7, 137.9, 141.3, 149.5, 150.4, 150.8, 153.6,
166.2; IR (CHCls, cm’™) 3444, 3006, 2934, 1649, 1618, 1505, 1467; HRMS Caled for
C2H2,0:N;: 362.1630. Found: 362.1635.
6,7-Dimethoxy-3-phenyl-4-[(E)-2-methylsulfonylethen-1-yH isoquinoline (19). The
reaction mixture was chromatographed using 1:3 hexane/EtOAc to afford 25 mg of the
indicated compound as a yellow solid in a 27 % yield: mp 196-198 °C; '"H NMR (CDCL) I’
2.80 (s, 3H), 4.06 (s, 3H), 4.07 (s, 3H), 6.47 (d, J = 15.6 Hz, 1H), 7.24 (s, 1H), 7.28 (s, 1H),
7.39-7.42 (m, 1H), 7.47 (t, /= 8.0 Hz, 2H), 7.53 (dd, J= 1.2, 7.6 Hz, 2H), 8.02 (d, /= 16.0
Hz, 1H), 9.12 (s, 1H); °C NMR (CDCl;) T'42.6, 56.4, 56.5, 101.9, 106.1, 120.8, 123.6,
128.5, 128.6, 130.4, 131.1, 134.4, 140.4, 140.8, 150.7, 150.8, 151.3, 154.3; IR (CHCl;, cm™)
3019, 2974, 2399, 1621, 1508; HRMS Calcd for Cy0H,904SN: 369.1035. Found: 369.1041.
n-Butyl (E)-3-[3-(p-methoxyphenyl)isoquinolin-4-yl]acrylate (21). The reaction

mixture was chromatographed using 2:1 hexane/EtOAc to afford 32 mg of the indicated
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compound as a yellow oil in a 35 % yield: 'H NMR (CDCl;) T'0.96 (t, J= 7.5 Hz, 3H), 1.36-
1.49 (m, 2H), 1.64-1.74 (m, 2H), 3.87 (s, 3H), 4.24 (t, /= 6.6 Hz, 2H), 6.36 (d, J = 16.5 Hz,
1H), 7.00 (it, /= 1.8, 7.8 Hz, 2H), 7.57-7.66 (m, 3H), 7.76 (dt, /= 1.8, 7.8 Hz, 1H), 8.97 (d,
J=16.5Hz, 1H), 8.03 (d, /= 8.1 Hz, 1H), 8.25 (d, J= 8.7 Hz, 1H), 9.28 (s, 1H); °C NMR
(CDCl5)T'14.0, 19.4,30.9, 55.6, 64.8, 113.9, 123.4, 124.4, 126.3, 127.2, 127.4, 128.5, 131.5,
132.1, 132.7, 134.5, 141.7, 151.7, 152.8, 160.0, 166.6; IR (neat, cm™) 3057, 2958, 2872,
2836, 1708, 1633, 1607, 1552, 1463; HRMS Calcd for Co3H,305N: 361.1678. Found:
361.1682.

n-Butyl (E)-3-[3-(o-methoxyphenyl)isoquinolin-4-yljacrylate (23). The reaction
mixtures were chromatographed using 2:1 hexane/EtOAc to afford 59 mg (entry 16) or 58
mg {entry 17) of the indicated compound as a yellow oil in a 65 % or a 64 % yield,
respectively: 'H NMR (CDCl13) I'0.91 (t, J="7.2 Hz, 3H), 1.31-1.36 (m, 2H), 1.57-1.64 (m,
2H), 3.72 (s; 3H), 4.13 (t, /= 6.8 Hz, 2H), 6.07 (d, /= 16.4 Hz, 1H), 6.93 (d, /= 8.0 Hz,
1H), 7.04 (t, /= 7.6 Hz, 1H), 7.35-7.39 (m, 2H), 7.62 (t, /= 8.0 Hz, 1H), 7.73 (t, /= 7.8 Hz,
1H), 7.92 (d, J=16.0 Hz, 1H), 8.00 (d, /= 8.0 Hz, 1H), 8.14 (d, /= 8.8 Hz, 1H), 9.27 (s,
1H); °C NMR (CDCls) I'13.9, 19.3, 30.8, 55.5, 64.6, 111.2, 121.0, 124.3, 125.3, 125.6,
127.4,127.6, 128.3, 129.4, 130.1, 131.2, 131.6, 134.2, 141.2, 149.7, 152.6, 156.4, 166.6; IR
(neat, cm™') 3059, 2958, 2872, 2835, 1716, 1638, 1601, 1494; HRMS Caled for Cp3H,305N:
361.1678. Found: 361.1682.

t-Butyl (E)-3-[3-(o-methoxyphenyl)isoquinolin-4-yl]acrylate (24). The reaction
mixture was chromatographed using 2:1 hexane/EtOAc to afford 61 mg of the indicated
compound as a yellow oil in a 68 % yield: 'H NMR (CDCls) I'1.47 (s, 9H), 3.74 (s, 3H),

6.04 (d, J=16.4 Hz, 1H), 6.96 (d, J= 8.0 Hz, 1H), 7.07 (dt, /= 0.8, 7.4 Hz, 1H), 7.38-7.42
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(m, 2H), 7.63 (dt, J= 0.8, 7.6 Hz, 1H), 7.75 (dt,J= 1.2, 8.4 Hz, 1H), 7.83 (d, /= 16.4 Hz,
1H), 8.02 (d, /= 8.0 Hz, 1H), 8.19 (d, J= 8.4 Hz, 1H), 9.28 (s, 1H); *C NMR (CDCL) I"
28.3,55.5,80.7,111.2,121.0, 124.4, 125.7, 127.0, 127.3, 127.6, 128.3, 129.5, 130.0, 131.1,
131.6, 134.2, 140.1, 149.7, 152.4, 156.4, 165.8; IR (neat, cm™) 3400, 3059, 2977, 2934,

2835, 1708, 1636, 1601, 1494; HRMS Calcd for C»3H»30:N: 361.1678. Found: 361.1682.

3-(o-Methoxyphenyl)-4-[(E)-2-phenylethen-1-yllisoquinoline (25). The reaction

mixture was chromatographed using 2:1 hexane/EtOAc to afford 54 mg of the indicated
compound as a yellow oil in a 64 % vield: '"H NMR (CDCl;) ['3.71 (s,3H),6.71 (d,/J=16.4

Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 7.05 (t, /= 8.4 Hz, 1H), 7.21-7.26 (m, 2H), 7.31-7.35 (m,

5H), 7.40 (dd, J= 1.6, 7.6 Hz, 1H), 7.62 (t, /= 8.4 Hz, 1H), 7.72 (dt, J= 1.2, 8.4 Hz, 1H),
8.01 (d, J=8.4 Hz, 1H), 8.29 (d, J= 8.8 Hz, 1H), 9.25 (s, 1H); °C NMR (CDCL;) I'55.7,
111.3,120.9, 124.3, 124.9, 126.5, 127.0, 127.9, 128.1, 128.2, 128.8, 129.6, 130.4, 130.6,
131.7,134.9, 135.8, 137.6, 149.1, 151.0, 156.6 (one sp2 carbon missing due to overlap); IR
(neat, cm™) 3057, 3025, 2957, 2935, 2833, 2214, 1617, 1494; HRMS Calcd for C24H,oON:
337.1467. Found: 337.1473.
3-(0-Methoxyphenyl)-4-[(E)-2-phenylsulfonylethen-1-yl]isoquinoline (26). The
reaction mixture was chromatographed using 1:1 hexane/EtOAc to afford 20 mg of the
indicated compound as a yellow oil in a 20 % yield: 'H NMR (CDCl13) I"3.58 (s, 3H), 6.45
(d, /=15.6 Hz, 1H), 6.71 (d, /= 8.4 Hz, 1H), 6.98 (t, /= 7.2 Hz, 1H), 7.27-7.31 (m, 2H),
7.50 (t, /= 8.0 Hz, 2H), 7.61-7.70 (m, 4H), 7.80 (dd, /= 0.8, 7.6 Hz, 1H), 8.02-8.08 (m, 3H),
9.30 (s, 1H); C NMR (CDCl3) ['55.5, 111.3, 121.1, 123.6, 123.7, 127.4, 127.7, 127.8, k

128.5,128.9, 129.5, 130.1, 131.3, 131.7, 133.4, 133.8, 134.0, 139.0, 140.4, 149.5, 153.3,
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155.8; IR (neat, cm™) 3060, 2938, 2836, 1619, 1600, 1494; HRMS Caled for Cp4H;50;NS:

401.1086. Found: 401.1093.

N,N-Dimethyl (E)-3-[3-(o-methoxyphenyl)isoquinolin-4-yllacrylamide (27). The
reaction mixture was chromatographed using 1:1 hexane/EtOAc and pure EtQOAc to afford 54
mg of the indicated compound as a yellow oil in a 65 % yield: "H NMR (CDCls) I"2.66 (s, H
3H), 2.96 (s, 3H), 3.74 (s, 3H), 6.33 (d, /= 15.6 Hz, 1H), 6.95 (d, J= 8.0 Hz, 1H), 7.06 {t, J |

=7.2 Hz, 1H), 7.36 (dt, J= 1.6, 8.0 Hz, 1H), 7.41 (dd, J= 1.6, 7.6 Hz, 1H), 7.64 (t, /= 8.0

Hz, 1H), 7.75 (dt, J = 1.2, 7.2 Hz, 1H), 8.01 (d, J = 7.6 Hz, 1H), 8.03 (d, J= 15.6 Hz, 1H),

8.16 (d, /= 8.8 Hz, 1H), 9.28 (s, 1H); °C NMR (CDCl;) I'35.8, 37.0, 55.7, 111.3, 121.0,

1243, 125.3,126.7,127.3, 127.4, 128.1, 129.6, 130.3, 130.9, 131.4, 134.7, 137.3, 148.8,

151.9, 156.3, 166.3; IR (CHCl3, cm™) 3468, 3058, 3004, 2935, 2835, 2234, 1651, 1613;

HRMS Caled for Cy1Hz90;N5: 332.1525. Found: 332.1531.
(E)-2-Methyl-4-[3-(o-methoxyphenyl)isoquinolin-4-yl]-3-buten-2-ol (28). The

reaction mixture was chromatographed using 1:1 hexane/EtOAc to afford 20 mg of the

indicated compound as a yellow oil in a 25 % yield: 'H NMR (CDCl3) I'1.20 (s, 6H), 3.74

(s, 3H), 5.75 (d, /= 16.0 Hz, 1H), 6.77 (d, J=16.0 Hz, 1H), 6.93 (d, /= 8.0 Hz, 1H), 7.02 (t,

J=71.6 Hz, 1H), 7.32-7.37 (m, 2H), 7.60 (d, /= 7.2 Hz, 1H), 7.70 (dt, J= 1.2, 7.6 Hz, 1H),

7.99 (d, J= 8.0 Hz, 1H), 8.08 (d, /= 8.4 Hz, 1H), 9.24 (s, 1H) (the hydrogen from the OH

group is missing); °C NMR (CDCls) I'29.6, 55.6, 71.2, 111.0, 120.7, 121.1, 124.6, 127.0,

127.6,128.1, 128.3, 129.3, 130.5, 130.7, 131.6, 134.9, 144.8, 148.9, 150.9, 156.5; IR

(CHCI;, cm']) 3018, 2973, 1496; HRMS Calcd for C;,H»10,N: 319.1572. Found: 319.1576. g
t-Butyl (E)-3-[6,7-dimethoxy-3-(o-methoxyphenyl)isoquinolin-4-yl]acrylate (30).

The reaction mixture was chromatographed using 1:3 hexane/EtOAc to afford 94 mg of the
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indicated compound as a yellow oil in a 92 % yield: 'H NMR (CDCI3) T"1.46 (s, 9H), 3.74
(s, 3H), 4.04 (s, 6H), 6.00 (d, /= 16.4 Hz, 1H), 6.94 (d, J= 8.8 Hz, 1H), 7.06 (t, /= 7.6 Hz,
1H), 7.25 (s, 1H), 7.36-7.40 (m, 3H), 7.82 (d, J=16.4 Hz, 1H), 9.08 (s, 1H); '*C NMR

(CDCL;) I"14.3, 28.3, 55.4, 56.2, 56.3, 80.6, 102.8, 105.8, 111.0, 120.9, 123.8, 124.5, 126.2,

129.7,130.8, 131.5, 140.6, 148.6, 149.8, 150.3, 153.6, 156.3, 165.9; IR (neat, cm™) 3400, <
3060, 3004, 2975, 2835, 2255, 2211, 1701, 1624, 1578, 1505; HRMS Calcd for CpsH,7QsN:
421.1889. Found: 421.1895.

N,N-Dimethyl (E)-3-6,7-dimethoxy-3-(o-methoxyphenyl)isoquinolin-4- w
yllacrylamide (31). The reaction mixture was chromatographed using pure EtOAc and 50:1 »
CHCl/CH;0H to afford 95 mg of the indicated compound as a yellow solid in a 97 % yield:
mp 124-126 °C; "H NMR (CDCl;) ["2.63 (s, 3H), 2.96 (s, 3H), 3.74 (s, 3H), 4.05 (s, 6H),

6.29 (d, /=15.6 Hz, 1H), 6.93 (d, /= 8.4 Hz, 1H), 7.06 (t,J= 7.6 Hz, 1H), 7.25 (s, 1H),
7.30-7.37 (m, 2H), 7.41 (dd, J = 1.6, 7.2 Hz, 1H), 8.02 (d, J = 15.6 Hz, 1H), 9.07 (s, 1H); 1°C
NMR (CDCl3) I'35.7, 36.9, 55.7, 56.2, 56.4, 102.5, 105.7, 111.2, 121.0, 123.6, 124.7, 125.5,
129.3,130.7, 131.4, 131.4, 137.6, 147.8, 149.4, 150.4, 153.4, 156.2, 166.3; IR (CHCl3, cm™)
3547, 3011, 2937, 2836, 1649, 1618, 1499; HRMS Calcd for Cz3H,404N5: 392.1736. Found:
392.1742.
6,7-Dimethoxy-3-phenyl-4-[(E)-2-methanesulfonylethen-1-yl]isoquinoline (32).
The reaction mixture was chromatographed using 1:3 hexane/EtOAc to afford 51 mg of the
indicated compound as a pale yellow solid in a 52 % yield: mp 212-214 °C; '"H NMR
(CDCl) I'2.66 (s, 3H), 3.77 (s, 3H), 4.06 (s, 3H), 4.06 (s, 3H), 6.34 (d, /= 15.6 Hz, 1H), *

6.96 (d, J=8.0 Hz, 1H), 7.09 (1, /= 7.2 Hz, 1H), 7.14 (s, 1H), 7.27 (s, 1H), 7.37-7.43 (m,
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2H), 8.02 (d, J=15.6 Hz, 1H), 9.12 (s, 1H); °C NMR (CDCl3) I'42.7, 55.8, 56.3, 56.5,
101.9, 105.9, 111.3, 121.3, 122.3, 123.6, 129.6, 130.0, 130.8, 131.6, 132.5, 140.5, 148.1,
150.6, 150.7, 154.0, 156.0; IR (CHCls, cm™) 3020, 2963, 2838, 1622, 1579; HRMS Caled for
C21H2105SN: 399.1140. Found: 399.1148.

t-Butyl (E)-3-{7-(o-methoxyphenyl)-1,3-dioxolo[4,5-g]isoquinolin-8-yl}acrylate
(34). The reaction mixtures were chromatographed using 1:1 hexane/EtQAc to afford 62 mg

or 83 mg of the indicated compound as a yellow oil in 2 61 % (entry 26) or an 82 % (entry

27) yield: 'H NMR (CDCls) I' 1.47 (s, 9H), 3.74 (s, 3H), 5.97 (d, /= 16.4 Hz, 1H), 6.11 (s,
2H), 6.94 (d, J=8.0 Hz, 1H), 7.05 (t, J=7.2 Hz, 1H), 7.23 (s, 1H), 7.36 (d, /=7.6 Hz, 1H), »
7.37(dt,J=1.2, 8.0 Hz, 1H), 7.44 (s, 1H), 7.73 (d, J = 16.4 Hz, 1H), 9.00 (s, 1H); °C NMR
(CDCl3) I'28.3, 55.4, 80.6, 101.0, 101.9, 103.6, 111.1, 120.9, 125.1, 125.4, 126.6, 129.5,
129.9, 131.5, 132.6, 140.5, 148.3, 148.9, 150.1, 151.8, 156.4, 165.8; IR (CHCI;, cm™) 2977,
2835, 1704, 1640; HRMS Calcd for C4H2305N: 405.1576. Found: 405.1584.
N,N-Dimethyl (E)-3-{7-(o-methoxyphenyl)-1,3-dioxolo[4,5-g]isoquinolin-8-
yl}acrylamide (35). The reaction mixture was chromatographed using 1:3 hexane/EtOAc
and pure EtOAc to afford 61 mg of the £ isomer as a yellow oil and 23 mg of the Z isomer as
a yellow oil in a 89 % overall yield. The following characterization data is for the pure major
E isomer: 'HNMR (CDCl;) I'2.64 (s, 3H), 2.95 (s, 3H), 3.74 (s, 3H), 6.12 (s, 2H), 6.26 (d,-J
=15.6 Hz, 1H), 6.93 (d, /= 8.4 Hz, 1H), 7.05 (dt, /= 0.8, 7.6 Hz, 1H), 7.23 (s, 1H), 7.34 (dt,
J=12, 8.0 Hz, 1H), 7.38 (dd, J= 1.6, 7.6 Hz, 1H), 7.41 (s, 1H), 7.90 (d, J= 15.6 Hz, 1H),
9.00 (s, 1H); "*C NMR (CDCl3) '35.8, 37.0, 55.8, 100.9, 102.0, 103.5, 111.3, 121.0, 124.9, g

125.1,126.5,129.5, 130.5, 131.4, 133.3, 137.7, 148.2, 148.5, 149.7, 151.8, 156.3, 166.3; IR
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(CHCls, cm™) 3006, 2937, 2836, 1650, 1614; HRMS Calcd for CaoHz004N5: 376.1423.
Found: 376.1431.
4-{7-(0-Methoxyphenyl)-1,3-dioxolo[4,5-g]isoquinolin-8-yl}butan-2-one (36). The

reaction mixture was chromatographed using 1:3 hexane/EtOAc to afford 42 mg of the

indicated compound as a yellow solid in a 48 % yield: mp 174-175 °C; "H NMR (CDCl3) T
2.02 (s, 3H), 2.58-2.65 (m, 2H), 2.92-3.00 (m, 1H), 3.06-3.13 (m, 1H), 3.75 (s, 3H), 6.12 (s,

2H), 6.99 (d, /= 8.0 Hz, 1H), 7.05 (t, J= 7.6 Hz, 1H), 7.23-7.25 (m, 3H), 7.38 (dt, /= 1.2,

8.0 Hz, 1H), 8.94 (s, 1H); '*C NMR (CDCl3) I"'23.3, 29.8, 43.7, 55.6, 99.8, 101.8, 104.0,
111.2,120.9, 125.4, 128.5, 129.6, 130.3, 130.9, 133.3, 148.0, 148.5, 149.4, 151.6, 156.7,
207.9; IR (CHCl;, cm'l) 3018, 2963, 2837, 1713, 1603; HRMS Calcd for CyH,s04N:
349.1314. Found: 349.1320.

t-Butyl (E)-3-[6-dimethylamino-3-(o-methoxyphenyl)isoquinolin-4-yl]acrylate (38).
The reaction mixtures were chromatographed using pure EtOAc to afford 70 mg or 68 mg of
the indicated compound as a yellow oil in a 69 % (entry 30) or a 67 % (entry 31) yield: 'H
NMR (CDCl3) I"1.45 (s, 9H), 3.14 (s, 6H), 3.74 (s, 3H), 6.02 (d,./=16.4 Hz, 1H), 6.93 (d, J
= 8.8 Hz, 1H), 7.02-7.06 (m, 2H), 7.19 (dd, J = 2.0, 8.8 Hz, 1H), 7.34-7.38 (m, 2H), 7.79 (d,
J=16.4 Hz, 1H), 7.83 (d, J= 9.2 Hz, 1H), 8.99 (s, 1H); *C NMR (CDCl3) ' 28.3, 40.5,
42.8,55.5,80.3,101.0,111.0, 116.2,120.9, 123.5, 125.3, 129.6, 129.6, 130.2, 131.5, 136.2,
141.1, 150.1, 151.3, 151.8, 156.4, 166.3; IR (CHCls, cm™') 2975, 2834, 1698, 1613; HRMS
Caled for Ca5H2503N3: 404.2100. Found: 404.2107.

N,N-Dimethyl 3-[6-dimethylamino-3-(o-methoxyphenyl)isoquinolin-4- k
ylJacrylamide (39). The reaction mixture was chromatographed using pure EtOAc and 10:1 _

CHCI3/CH;0H to afford 65 mg of a 91:9 E/Z mixture as determined by 'H NMR
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spectroscopy of a yellow oil in 89 % overall yield. 'H NMR (CDCls) for the major E isomer:
1'2.63 (s, 3H), 2.95 (s, 3H), 3.13 (s, 6H), 3.72 (s, 3H), 6.28 (d, J=15.6 Hz, 1H), 6.91 (d, /=
8.8 Hz, 1H), 6.93 (s, 1H), 7.04 (t, /= 7.6 Hz, 1H), 7.19 (dd, /= 1.6, 9.2 Hz, 1H), 7.33 (dt, J
=1.2,8.0 Hz, 1H}), 7.38 (dd, /= 1.6, 7.6 Hz, 1H), 7.82 (d, /=9.2 Hz, 1H), 7.98 (d, /= 15.6
Hz, 1H), 8.96 (s, 1H); additional *C NMR (CDCls) for the £/Z mixture I 35.7, 36.9, 40.5,
40.6,41.1,55.7,100.7, 111.3, 116.3, 120.7, 120.8, 120.9, 124.0, 124.5, 129.3, 129.4, 131.3,
136.8, 138.1, 149.1, 150.8, 151.7, 156.3, 166.6 (except for two sp3 carbons from the minor Z
isomer, all other carbons are from the major £ isomer); IR (CHCls, cm™) for the £/Z mixture
3006, 2937, 2836, 1650, 1614; HRMS Calcd for Cy3H250,N3: 375.1947. Found: 375.1953.

t-Butyl (E)-3-|7-dimethylamino-3-(o-methoxyphenyl)isoquinolin-4-yl]acrylate (41).
The reaction mixture was chromatographed using 1:1 hexane/EtOAc to afford 71 mg of the
indicated compound as a yellow solid in a 71 % yield: mp 163-166 °C; "H NMR (CDCl;) T’
1.47 (s, 9H), 3.09 (s, 6H), 3.73 (s, 3H), 6.05 (d, /= 16.4 Hz, 1H), 6.94 (d, /= 8.0 Hz, 1H),
7.00 (s, 1H), 7.05 (t, /= 7.2 Hz, 1H), 7.36-7.38 (m, 3H), 7.78 (d, /= 16.4 Hz, 1H), 8.06 (d, J
=9.2 Hz, 1H), 9.10 (s, 1H); *C NMR (CDCl;) '28.3, 40.7, 55.4, 80.5, 105.4, 111.1, 120.7,
120.9,125.2, 125.3, 126.3, 126.7, 129.6, 129.6, 129.8, 131.8, 140.8, 146.1, 149.1, 150.9,
156.6, 166.1; IR (CHCls, em™) 3018, 2979, 2836, 1702, 1621; HRMS Caled for CasH3O3Na:
404.2100. Found: 404.2107.

N,N-Dimethyl (E)-3-[7-dimethylamino-3-(c-methoxyphenylisoquinolin-4-
ylJacrylamide (42). The reaction mixture was chromatographed using pure EtOAc and 20:1
CHCI;/CH;0H to afford 66 mg of the indicated compound yield as a yellow solid in a 70 %
yield: mp 171-174 °C; '"H NMR (CDCl3) I"3.27 (s, 3H), 2.95 (s, 3H), 3.09 (s, 6H), 3.73 (s,

3H), 6.30 (d, J = 15.6 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.99 (d, J=2.8 Hz, 1H), 7.04 (t, J=
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7.6 Hz, 1H), 7.31-7.40 (m, 3H), 7.98 (s, 1H), 8.02 (t, J= 4.8 Hz, 1H), 9.09 (s, 1H); °C NMR
(CDCl3) 1"35.8, 37.0, 40.7, 55.7, 105.2, 111.2, 120.5, 120.9, 124.7, 125.1, 126.2, 127.3,
129.2, 129.3, 130.7, 131.6, 137.8, 145.1, 149.2, 150.4, 156.4, 166.5; IR (CHCI,, cm™) 3017,
2837, 2399, 1650, 1621, 1581; HRMS Caled for Cp3l,50,N3: 375.1947. Found: 375.1953.

n-Butyl (E)-3-(3-phenyl-5,6,7-trimethoxyisoquinolin-4-ylyacrylate (44). The
reaction mixture was chromatographed using 2:1 hexane/EtOAc to afford 52 mg of the
indicated compound as a yellow oil in a 51 % yield: 'H NMR (CDCl3) T'0.93 (t, J= 7.6 Hz,
3H), 1.32-1.39 (m, 2H), 1.57-1.63 (m, 2H), 3.81 (s, 3H), 4.02 (s, 3H), 4.04 (s, 3H), 4.12 (t, J
= 6.4 Hz, 2H), 5.49 (d, J = 16.0 Hz, 1H), 7.12 (s, 1H), 7.31 (t, /= 6.8 Hz, 1H), 7.38 (, /=
7.2 Hz, 2H), 7.52 (d, J = 7.6 Hz, 2H), 8.57 (d, J = 16.4 Hz, 1H), 9.09 (s, 1H); *C NMR
(CDC13) T 13.9, 19.3, 30.9, 56.3, 61.0, 61.4, 64.3, 102.6, 123.3, 123.7, 125.0, 127.1, 127.7,
128.2, 130.5, 140.8, 145.7, 146.6, 149.0, 150.3, 150.7, 154.0, 166.8; IR (CHCl,, cm’') 3058,
2960, 2871, 1709, 1636, 1612, 1483; HRMS Calcd for CysHj70sN: 421.1889. Found:
421.1897.

t-Butyl (E)-3-(3-phenyl-5,6,7-trimethoxyisoquinolin-4-yhacrylate (45). The
reaction mixture was chromatographed using 1:1 hexane/EtOAc to afford 63 mg of the
indicated compound as a yellow oil in a 62 % yield: "H NMR (CDCl3) I'1.45 (s, 9H), 3.81
(s, 3H), 4.02 (s, 3H), 4.03 (s, 3H), 5.41 (d, /= 16.0 Hz, 1H), 7.11 (s, 1H), 7.31 (t, /=72 Hz,
1H), 7.39 (t, /= 7.6 Hz, 2H), 7.54 (d, J= 7.2 Hz, 2H), 8.46 (d, /= 16.4 Hz, 1H), 9.07 (4,
1H); >C NMR (CDCl;) I"28.3, 56.3, 60.9, 61.3, 80.2, 102.5, 123.8, 124.9, 125.0, 127.2,
127.6, 128.1, 130.6, 140.9, 144.6, 146.5, 149.0, 150.2, 150.6, 154.0, 166.0; IR (neat, cm™)
3392, 3058, 2976, 2937, 2840, 2253, 1698, 1636, 1611, 1484; HRMS Calcd for CasHz70sN:

421.1889. Found: 421.1895.
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N,N-Dimethyl (E)-3-[3-phenyl-5,6,7-trimethoxyisoquinolin-4-yl]acrylamide (46).
The reaction mixture was chromatographed using 1:1 hexane/EtOAc and 20:1
CHCI13/CH;0H to afford 49 mg of the indicated compound as a white solid in a 50 % yield:
mp 169-171 °C; 'H NMR (CDCls) I'2.43 (s, 3H), 2.92 (s, 3H), 3.90 (s, 3H), 4.02 (s, 3H),
4.04 (s, 3H), 5.90 (d, /= 15.6 Hz, 1H), 7.11 (s, 1H), 7.29 (t, /=7.2 Hz, 1H), 7.38 (, /=7.6
Hz, 2H), 7.54 (d, J= 7.2 Hz, 2H), 8.43 (d, J = 15.6 Hz, 1H), 9.07 (s, 1H); *C NMR (CDCls)
I'35.6,36.7, 56.3,61.3, 61.3, 102.4, 124.7, 124.9, 125.1, 127.3, 127.3, 128.2, 130.7, 141.7,
141.8, 146.6, 149.4, 150.0, 150.8, 154.0, 166.8; IR (CHCl3, cm™) 3017, 2941, 1648, 1611,
1580; HRMS Caled for Ca3H404N,: 392.1736. Found: 392.1742.

5,6,7-Trimethoxy-3-phenyl-4-[(E)-2-phenylethen-1-yl]isoquinoline (47). The
reaction mixture was chromatographed using 2:1 hexane/EtQAc to afford 77 mg of the
indicated compound as a yellow solid in a 78 % yield: mp 133-135 °C; '"H NMR (CDCl) T’
3.74 (s, 3H), 4.02 (s, 3H), 4.03 (s, 3H), 6.12 (d, /= 16.4 Hz, 1H), 7.11 (s, 1H), 7.17-7.28 (m,
6H), 7.34 (t,/= 7.2 Hz, 2H), 7.60 (dd, /= 1.2, 8.0 Hz, 2H), 7.86 (d, /= 16.4 Hz, 1H}, 5.06
(s, 1H); *C NMR (CDCl;) I'56.2, 61.4, 61.4, 102.7, 125.4, 126.1, 126.2, 127.1, 127.3, 127.6,
128.0, 128.3, 128.7, 130.6, 133.9, 138.2, 141.9, 146.6, 149.4, 149.7, 151.0, 153.7; IR
(CHCls, cm™) 3018, 2940, 1612, 1482; HRMS Caled for CpsH2303N: 397.1678. Found:
397.1685.

4-{8-Phenyl-1,3-dioxolo[4,5-f]isoquinolin-9-yl}butan-2-one (49). The reaction
mixture was chromatographed using 1:1 hexane/EtOAc to afford 41 mg of the indicated
compound as a yellow solid in a 50 % yield: mp 161-164 °C; "H NMR (CDCl3) T'2.06 (s,

3H), 2.69 (dd, J = 6.0, 8.1 Hz, 2H), 3.31-3.36 (m, 2H), 6.17 (s, 2H), 7.30 (t, J= 7.2 Hz, 1H),
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7.40-7.47 (m, SH), 7.62 (d, J= 8.4 Hz, 1H), 9.04 (s, 1H); °C NMR (CDCl;) I'23.5, 28.6,
44.5,100.6, 110.6, 121.6, 122.9, 123.2, 124.2, 126.8, 127.3, 128.1, 139.6, 139.7, 146.8,
149.5, 151.5, 206.6; IR (CHCIs, em™) 3018, 1709, 1632, 1572, 1503; HRMS Caled for
CyoH,704N: 319.1208. Found: 319.1212 .
1-Phenyl-3-{8-phenyl-1,3-dioxolo[4,5-f]isoquinolin-9-yl} propan-1-one (50). The
reaction mixture was chromatographed using 1:1 hexane/EtOAc to afford 34 mg of the
indicated compound as a yellow solid in a 36 % yield: mp 184-186 °C; 'H NMR (CDCl;) I

3.20-3.34 (m, 2H), 3.50-3.54 (m, 2H), 6.10 (s, 2H), 7.31 (d, /= 8.4 Hz, 1H), 7.37-7.54 (m,

8H), 7.63 (d, J= 8.4 Hz, 1H), 7.81 (dd, /= 1.2, 8.0 Hz, 2H), 9.06 (s, 1H); '*C NMR (CDCl;)
'25.3,40.8,101.9,111.8,122.9, 124.1, 124.7, 125.4, 128.0, 128.2, 128.6, 128.7, 129.3,
133.1, 136.8, 140.9, 140.9, 148.0, 150.7, 152.8, 199.1; IR (CHCl3, cm™') 3018, 1685, 1632,
1598, 1580, 1503; HRMS Calcd for Cy5H;903N: 381.1365. Found: 381.1373.

6-{8-Phenyl-1,3-dioxolo[4,5-flisoquinolin-9-yl}hexan-2-one (51). The reaction
mixture was chromatographed using 1:1 hexane/EtQAc to afford 24 mg of the indicated
compound as a yellow oil in a 27 % yield: 'H NMR (CDCl3) I'1.54-1.58 (m, 4H), 2.06 (s,
3H), 2.29 (t, /= 7.2 Hz, 2H), 3.04 (t, /= 7.6 Hz, 2H), 6.20 (s, 2H), 7.29 {t, /= 8.4 Hz, 1H),
7.41-7.50 (m, 5H), 7.60 (d, J= 8.4 Hz, 1H), 9.02 (s, 1H); *C NMR (CDCl3) I'23.6, 29.7,
29.8,31.4,43.1, 101.5,111.5, 122.8, 123.7, 125.2, 125.7, 127.6, 128.1, 129.3, 140.8, 141.0,
147.7, 150.1, 152.0, 208.9; IR (CHCl3, cm™) 3017, 2959, 1711, 1632, 1571, 1503, 1503;
HRMS Caled for Cy3Hp1OsN: 347.4130. Found: 347.4136.
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Abstract

An efficient synthesis of highly substituted naphthalenes has been developed by the
palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-
carbon bonds are formed in a single step under relatively mild reaction conditions. This
method has also been used to synthesize carbazoles although a higher reaction temperature is
necessary. The process involves arylpalladation of the alkyne, followed by intramolecular
Heck olefination and double bond isomerization. This method accommodates a variety of
functional groups and affords the.anticipated highly substituted naphthalenes and carbazoles

in good to excellent yields.

Introduction
Highly substituted naphthalenes are common structural units in numerous biologically
significant natural products and pharmaceutica]s,1 and improved methods for their
construction are highly desirable.>® Among the most important synthetic routes to such

compounds are annulation via Fischer carbenes (the Dtz reaction)” and the palladium-
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catalyzed cyclization of alkynes by arylsilyl triflates via in sifu generation of highly reactive
benzynes.” Another method of synthesis is based on the cyclopropane-shift reaction of
diaryl(2-halo genocyclopropyl)methanols.5 Very recently, substituted naphthalenes have
been prepared using the gallium-catalyzed cyclization of carbonyl compounds or epoxides
with alkynes.6

Annulation processes have proven quite valuable in organic synthesis because of the
ease with which a variety of complicated hetero- and carbocycles can be rapidly constructed.”
In our own laboratories, it has been demonstrated that palladium-catalyzed annulation® can

be effectively employed for the synthesis of indoles,’ isoindolo[fz,l-a]indoles,10

1 11,12 12,13

benzofurans,11 benzopyrans, ? {socoumarins, ¢-pyrones, indenonﬁ:s,14 isoq1.1ir101ines,15
carbolines,'® and polycyelic aromatic hydrocarbons17 (eq 1). More recently, Takahashi et al.

have reported that pentasubstituted fulvene derivatives can be prepared using the palladium-

catalyzed annulation of disubstituted alkynes (eq 2).18

XH
. R——R2 cat. Pd(0) X =2 )
| base Y,

1
X =NR, 0, CRy0, CO, CO;, R
R’, R? = alkyl, aryl, silyl, alkenyl
, R
R cat. Pd(0) R
/:/ + 2R——R - — (2)
I R =N

Due to our continuing interest in the palladium-catalyzed annulation of internal

alkynes, we have investigated the reaction of internal alkynes and o-(2-alkenyl)aryl halides
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derived from aldehydes and ylides and have fully detailed this new naphthalene synthesis and

its extension to the formation of substituted carbazoles (Scheme 1).

Scheme 1

EI\CHO PhaP=CHY >y R——FR OO Y
X X cat. Pd(0) R2
R1

X=Br,1; Y=H,Ar CN, COEt

m\/\ —FL Q_i/\/ cat. Pd(0)

3

Results and Discussion
Our initial studies focused on achieving optimal reaction conditions for the palladium-
catalyzed annulation employing ethyl (£)-4-(2-iodophenyl)-2-butenoate (1). The reaction of
aryl halide 1 and diphenylacetylene was chosen as the model system for optimization of this

process (eq 3) and the results are summarized in Table 1.

= _
O e Qg™ °
| cat. Pd(0) Ph

base, oDMF Ph
80°C 2

1
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Table 1. Optimization of the Synthesis of Naphthalene 2 (eq 3)*

entry alkyne catalyst ligand base time (h) % yield
{equiv)
1 2 10 % Pd(OAc), -- 3 NaQAc 12h 58
2 2 10 % Pd(OAc), - 3 NayCO3 12h 40
3 2 10 % Pd(OAc), - 3 NaHCO; gh 49
4 2 10 % Pd(PPhs), - 3 Na;CO3 24 h frace
5 2 10 % Pd(OAc), - 3 BusN 10h 71
6 2 10 % Pd(OAc); - 3 EuN 12h 76
7 2 10 % Pd(OAc), - 3 pyridine 24 h trace
8 2 5 % Pd(OAc), - 3 EtsN 10 h 80
9 1.2 5 % Pd(OAc), - 3 EgN 12h 58
10 5 5 % Pd(OAc), -~ 3 EtN 12h 81
11 2 5 % Pd(OAc), -- 3 Et;N 12 h 80°
12 2 5 % Pd(OAc), - 1.5 EtsN 12h 70
13 2 5 % Pd(OAc); - 2 EtsN i2h 79
14 2 5 % Pd(OAc), 10 % PPh; 2 EtsN 12h 86
15 2 5 % Pd(OAc), 10% PPhs 1.5 EtN 12h 78

* All reactions were run under the following reaction conditions, unless otherwise specified: 0.25 mmol of
aryl halide 1 and the indicated amount of diphenylacetylene were stirred in 3 mL of DMF at 80 °C in the
presence of the specified amount of the indicated base, Pd(OAc),, and PPh;. " One equiv of n-Bu;NCl1 was
added.

Using 10 mol % of Pd(OAc), and 3 equiv of NaOAc afforded the desired naphthalene
product 2 in a 58 % yield (entry 1, Table 1). Carbonate bases, such as Na,CO3 and NaHCOs,
gave naphthalene 2 in 40 % and 49 % yields respectively (entries 2 and 3). However, the use
of Pd(PPha); as a catalyst and Na,CO; as a base gave only a trace of the desired product
(entry 4). Our previous work has shown that carbonate bases usually work better for

palladium-catalyzed annulation chemistry than organic bases.”!” However, it turned out that
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organic bases work better than carbonate salts in this annulation chemistry. For example,
when the organic bases #-BusN and Et;N were employed, the reaction of halide 1 gave 71 %
and 76 % yields of naphthalene 2, respectively, in the presence of 10 mol % of Pd(OAc)2
(entries 5 and 6). This is probably because the ester group can be hydrolyzed in the presence
of the carbonate bases and the resulting vield of naphthalene suffers. The use of pyridine
afforded only a trace of the desired product (entry 7). Further optimization work showed that
5 mol % of PA(OAc), and 2 equiv of diphenylacetylene are necessary to achieve decent
yields of naphthalene 2 (entries 8-10). In entry 11, the addition of 1 equiv of n-BusNCl gave
an 80 % yield, which is the same yield as the reaction without #-BuyNCI (entry 8). We have
also explored the effects on the yield of other variables, such as the ligand and the amount of
the base (entries 12-15). The optimal reaction conditions thus far developed employ 0.25
mmol of ary] halide 1, 2 equiv of diphenylacetylene, 5 mol % of Pd(OAc),, 10 mol % of
PPh; and 2 equiv of Et;N as a base in 3 mL of DMF stirred at 80 °C. This afforded an 86 %
yield of naphthalene 2 (entry 14).

Using our optimal reaction conditions, the scope of the annulation process has been
explored using a variety of substrates carefully selected in order to establish the generality of
the process and its applicability to commonly encountered synthetic problems (Table 2).
While the reaction of aryl halide 1 and diphenylacetylene afforded naphthalene 2 in an 86 %
yield (entry 1), only a 61 % yield of naphthalene 3 was obtained from the reaction of aryl
halide 1 and di(p- methoxyphenyl)acetylene (entry 2). The decrease in the yield of the
reaction indicates that electron-rich diarylacetylenes disfavor the annulation chemistry.
However, when an electron-deficient diarylacetylene, such as di(p-

ethoxycarbonylphenyl)acetylene was allowed to react with aryl halide 1, an 83 % yield of
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naphthalene 4 was obtained (entry 3), comparable to the yield obtained from the reaction of
aryl halide 1 and diphenylacetylene (entry 1). When 4-octyne, a dialkylacetylene, was
allowed to react with aryl halide 1, a 60 % yield of naphthalene 5 was obtained (entry 4).

To test the regioselectivity of this annulation process, 1-phenylpropyne was allowed to
react with aryl halide 1 and a 53:47 mixture of two regioisomers 6 and 7 was obtained in a 75
% overall yield (entry 5). According to our previous work,”' the bulkiness of the
substituents on the acetylene plays a major role in determining the regioselectivity of alkyne
insertion. The aryl moiety of the arylpalladium intermediate adds preferentially to the less
hindered end of the carbon-carbon triple bond. In this naphthalene synthesis, the
regioselectivity appears to be significantly lower than we have normally observed in the
annulation of unsymmetrical alkynes. Similarly, the reaction of aryl halide 1 and ethyl
phenylpropiolate afforded a 76:24 mixture of two regioisomers 8 and 9 (entry 6). In this
case, the major product 8 results from aryl addition to the 3-position of the phenylpropiolate.
Electronic effects appear to play a major role here. As in most Heck reactions, the aryl group
of the initial Pd intermediate is more likely to add to the end of the carbon-carbon multiple
bond furthest from the electron-withdrawing ester moiety, which results in naphthalene 8 as
the major product.

The reactions of aryl halide 1 and 2-butyne-1,4-diol or 3-phenyl-2-propyn-1-ol failed to
afford any recognizable product. It appears that the problem may be transesterification of the
ester group by the acetylenic alcohols, which is further supported by the results described
later. No recognizable naphthalene products could be obtained when bulky symmetrical or
unsymmetrical alkynes, like di-z-butylacetylene, phenyl(trimethylsilyl)acetylene and 4,4-

dimethyl-2-pentyne, were allowed to react with aryl halide 1. Presumably, the problem here
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is the difficulty in adding the hindered vinylic palladium intermediate across the relatively
hindered internal alkene to place three bulky substituents in contiguous positions on the
resulting carbocyclic ring.

A synthetically interesting question is whether aryl bromides can also undergo this
palladium-catalyzed annulation chemistry. To answer this question, compound 10 was
prepared and employed in reactions with various alkynes. Generally, compared to the results
from aryl iodide 1, the annulation reactions of aryl bromide 10 with alkynes result in a longer
reaction time and lower yields, although the reactions proceed smoothly (entries 7 and 8). :
The observed lower reactivity of the aryl bromide 10 is consistent with our other annulation :
chemistry.”'” Notice that the reaction of compound 10 and ethyl 2-pentynoate gave a 60:40
mixture of regioisomers 11 and 12 (entry 9).

In order to vary the linkage between the alkene and the iodoarene unit, substrates 13, 18
and 20 have been prepared and employed in this annulation chemistry. The reaction of aryl
1odide 13 and diphenylacetylene afforded a 72 % yield of the expected product (entry10), a
little lower than the yield from the reaction of aryl halide 1 and diphenylacetylene (entry 1).

When ethyl phenylpropiolate was allowed to react with compound 13, a 67:33 mixture of

regioisomers 15 and 16 was obtained in an 86 % overall yield (entry 11). Comparing the

results from entries 6 and 11, it is clear that the introduction of a methyl group into the

starting material decreases the regioselectivity of the annulation chemistry. When aryl halide

13 was allowed to react with 2-butyne-1,4-diol, none of desired product was obtain.

However, the use of a benzyl protected 2-butyne-1,4-diol resulted in a 56 % yield (entry 12). g
While compound 13 underwent the annulation chemistry very well and gave good to ;

excellent yields, the annulation reaction of aryl halides 18 and 20 gave none of the desired
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products (enfries 13 and 14). It is not too surprising that aryl halide 18 was isomerized to the

more stable trisubstituted alkene 19 which was isolated in a 48 % yield after 8 h. Note that
compound 19, which is a possible starting material for this annulation chemistry, is relatively
unstable under the reaction conditions employed. If the reaction of compound 18 is allowed
to proceed for 28 h, compound 19 disappeared and no other significant product was .
observed. The readily prepared aryl halide 20 may also be undergoing double bond
1somerization because no recognizable products could be isolated from its reaction with
diphenylacetylene. -
It is interesting that the reaction of aryl halide 22 and diphenylacetylene afforded »
compound 23 n a 73 % yield (entry 15). A mechanism for the formation of product 23 is
shown in Scheme 2. From the intermediate A that is formed, there are two possible pathways
for palladium $-hydride elimination to occur. Intermediate A can eliminate Hy, on the ring
and eventually generate the naphthalene product after isomerization. The other pathway
mvolves elimination of H, from the methyl group which would afford compound 23 bearing
a disubstituted terminal alkene. The result indicates that the elimination of H, is much faster
than that of Hy. This may be because the methyl group has three hydrogens increasing the
chances of elimination. Alternatively, when the vinylic palladium iodide adds cis to the
alkene, Hy is not sy to the alkylpalladium iodide generated. To undergo S-hydride
elimination, rotation of the C-C bond is necessary before Hy, and Pdl are aligned cis to each
other for elimination. Thus, the elimination of H, may be achieved before this rotation can

actually occur.
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Scheme 2
(I oo
Ph
Ph
23
CO,Et ]
CH3 - CH3 IPd 1
Ph—=——ph Hp A CHa
= "COyEt — . Pd OQ CO,Et
Pdi 7 “Ph Ph
Ph Ph A
iik CHs
CHs

To examine whether the geometry of the carbon-carbon double bond affects the
annulation process, nitriles 24 and 27, which are £/Z isomers, were prepared and allowed to
react with 4-octyne and diphenylacetylene (entries 16-19). When 4-octyne was employed,
both reactions reached completion in 7 h and afforded very similar yields (entries 16 and 17).
The reactions of nitriles 24 and 27 with diphenylacetylene also resulted in very similar yields
(entries 18 and 19), although they gave lower yields than the reactions of 4-octyne. Notice
that the reactions of diphenylacetylene also required a longer reaction time. This is probably

because 4-octyne, which is an electron-rich alkyne, is more reactive than diphenylacetylene.
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These results (entries 16-19) indicate that the geometry of the carbon-carbon double bond has
little effect on this annulation process.

Since aryl halides bearing clectron-deficient olefins work very well in this annulation
chemistry, it was important to determine if the introduction of an electron-withdrawing group
on the alkene is really necessary to achieve success. To answer this question, compound 28
was prepared and allowed to react with diphenylacetylene. Only a 32 % yield of naphthalene
29 was isolated (entry 20). It appears that the presence of an electron-withdrawing group,
which presumably makes the olefin a better acceptor for the Heck reaction, facilitates this
chemistry. In this comparision, however, we cannot rule out the possibility that the terminal
alkene in aryl iodide 28 may be undergoing intermolecular Heck processes resulting in a
~ lower yield.

The reactions of aryl halide 30, bearing two methoxy groups on the aromatic ring, with
symmetrical alkynes, such as diphenylacetylene, 4-octyne and 1,4-di(benzyloxy)-2-butyne
afforded the corresponding naphthalenes 31-33 in 71 %, 73 % and 60 % yields, respectively
(entries 21-23). When aryl halide 30 was allowed to react with ethyl phenylpropiolate, two
regioisomers 34 (73 %) and 35 (8 % yield) were isolated (entry 24). Comparing this result
with that from the reaction of aryl halide 1 and ethyl phenylpropiolate (entry 6), it appears
that the introduction of electron-donating substituents, like methoxy groups, onto the arene
moiety increases the regioselectivity in this annulation process. The use of a diyne afforded
an 83:17 mixture of alkynes 36 and 37 in a 66 % overall yield (entry 25).

The phenyl-substituted aryl iodide 38 has been found to react well with 2-butyne-1,4-
diol to produce naphthalene 39 in a 73 % yield (entry 26). This result confirms our suspicion

that the earlier problem with alkynols had more to do with transesterification of the ester
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group than any inherent problems w’ith the alcohol functionality. Surprisely, only one
regioisomer 40 was isolated, when 3-phenyl-2-propyn-1-ol was allowed to react with aryl
halide 38 (entry 27), although the yield of 31 % was not very good. The reaction of aryl
iodide 38 and ethyl phenylpropiolate afforded two regioisomers 41 (76 %) and 42 (8 %) with
a yield and ratio of the two regioisomers similar to those from the reaction of 30 and ethyl
phenylpropiolate (entry 24).

Carbazoles have attracted much attention due to their biological activity'® and their

potential as functional materials,*

and the synthesis of carbazoles has been extensively
studied.?’ Qur palladium-catalyzed annulation chemistry provides an alternative, very
efficient method to synthesize substituted carbazoles. Iodoindole 43 was first prepared using
iodocyclization chemistry currently under investigation in our group.?? This compound was
allowed to react with a variety of alkynes, including symmetrical and unsymmetrical alkynes.
While the reactions of 4-octyne, 2-butyne-1,4-diol and 1,4-di(benzyloxy)-2-butyne gave
moderate yields ranging from 33 % to 56 %, the use of diphenylacetylene gave only a trace
of the desired product (entries 29-32). The failure of the reaction of diphenylacetylene is
probably a result of the fact that this alkyne appears to be less reactive than most other
alkynes. Notice that for the carbazole synthesis, a higher reaction temperature is also
required. There was no reaction at 80 °C when iodoindole 43 was employed. This may
indicate that 5,6-fused ring systems are more difficult to form than 6,6-fused ring systems
when employing this annulation chemistry. More reactive alkynes, such as ethyl
phenylpropiolate and ethyl 2-butynoate have also been allowed to react with iodoindole 43

and better yields have been obtained (entries 33 and 34). The use of ethyl phenylpropiolate

gave a 60:40 mixture of regioisomers 48 and 49 in a 91 % overall yield, which indicates that
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the electronic effects appear to be more important than steric effects in this system (entry
33). Ethyl 2-butynoate, a less bulky alkyne, was allowed to react with iodoindole 43 and a
82:18 mixture of isomers 50 and 51 was isolated in a 78 % overall yield (entry 34). The
results from entries 33 and 34 indicate that both electronic and steric effects play a role in the
regioselectivity of the alkyne insertion and the electronic effect apparently outweighs the 3.
steric effect.

‘When compound 52 was allowed to react with two alkynes, the reaction of the more
reactive ethyl phenylpropiolate gave a 42 % yield of compound 53 as a single isomer, while ~
use of the less reactive diphenylacetylene results in none of the desired product (entries 35 ﬁ
and 36).

A mechanism for the reaction of aryl halide 1 and diphenylacetylene is proposed in
Scheme 3. First of all, Pd(0) oxidatively inserts into the carbon-iodide bond of the aryl
iodide to generate an arylpalladium species. Addition of the arylpalladium species to the
carbon-carbon triple bond, followed by an intramolecular cis-addition to the carbon-carbon
double bond, generates an alkylpalladium species B. Intermediate B can undergo E-hydride
elimination forming intermediate C, which subsequently isomerizes to naphthalene 2.

Alternatively, the intermediate B may undergo reversible palladium hydride elimination to an
alkene complex D, which undergoes readdition of the palladium hydride to the double bond
with the opposite regiochemistry. Further palladium hydride elimination would produce the

observed aromatic product.
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Scheme 3
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Conclusions

An efficient synthesis of highly substituted naphthalenes and carbazoles has been
developed in which two new carbon-carbon bonds are formed in a single step under
relatively mild reaction conditions. Both electronic and steric effects play a role in the
regioselectivity of this process and the electronic effect predominates over the steric effect
with certain ester-containing alkynes. The introduction of an electron-rich group onto the
aryl halide increases the regioselectivity of this annulation process. When this method was
employed to synthesize carbazoles, a higher reaction temperature was necessary due to the

lower reactivity of the iodoindoles. This method accommodates a variety of functional

I

; Pdl

Ph
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groups and generally affords the anticipated highly substituted naphthalenes and carbazoles

in good to excellent yields.

Experimental Section

General. 'H and *C NMR spectra were recorded at 300 and 75 MHz or 400 and 100
MHz respectively. Thin-layer chromatography was performed using commercially prepared
60-mesh silica gel plates (Whatman K6F), and visualization was effected with short
wavelength UV lLight (254 nm) and a basic KMnQ, solution [3 g of KMnOy + 20 g of K;CO4
+ 5 mL of NaOH (5 %) + 300 mL of H,O]. All melting points are uncorrected. All reagents
were used directly as obtained commercially unless otherwise noted. All reagents were used
directly as obtained commercially unless otherwise noted. Compounds 20,2 28,2 (2-
iodophf:nyl)acetaldehyde,25 N,N-dimethylaniline,”® and 2-iodoindole?” were prepared
according to previous literature procedures. The following starting materials were prepared
as indicated.

Preparation of o-(2-Alkenyl)aryl halides.

Ethyl (£)-4-(2-iodophenyl)-2-butenoate (1). To a suspension solution of
(carboethoxymethylene)triphenylphosphorane (5.22 g, 15.0 mmol) in 100 mL of CH,Cl; was
added dropwise a solution of 2-iodophenylacetaldehyde® (2.46 g, 10.0 mmol) in 20 mL of
CH,Cl, at 0 °C under an Ar atmosphere. The resulting mixture was stirred at 25 °C for 3 h
and the solvent (CH,Cl,) was evaporated under reduced pressure. The solid residue was
dissolved in 50 mL of hexane and the mixture was then stirred at 25 °C for 0.5 h. The PhsPO
was filtered and the solvent (hexane) was removed under the reduced pressure. The oily

residue was purified by flash chromatography (10:1 hexane/EtOAc) to afford 2.65 g of the
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indicated compound as a colorless oil in an 84% yield: 'H NMR (CDCL3) T'1.27 (t,J=7.2
Hz, 3H), 3.65 (dd, /= 1.5, 6.3 Hz, 2H), 4.18 (q, /= 7.2 Hz, 2H), 5.78 (td, /= 1.8, 15.6 Hz,
1H), 6.94 (dt, /= 1.8, 8.4 Hz, 1H), 7.06 (td, /=6.3, 15.9 Hz, 1H), 7.19 (dd, /= 1.5, 7.5 Hz,
1H), 7.31 (dt, J= 1.2, 7.5 Hz, 1H), 7.84 (dd, J = 1.2, 8.4 Hz, 1H); *C NMR (CDCly) " 14.5,
43.5,60.6,100.9, 123.2, 128.8, 128.9, 130.2, 139.9, 140.9, 145.8, 166.6; IR (neat, cm™)
3058, 2978, 2923, 2850, 1717, 1652; HRMS Calcd for C2H;310: 315.9960. Found:
315.9965.

Ethyl (E)-4-(2-bromophenyl)-2-butenoate (10). Using the procedure used to prepare
aryl halide 1, 2-bromophenylacetaldehyde® (2.01 g, 10.0 mmol) and
(carboethoxymethylene)triphenylphosphorane (5.22 g 15.0 mmol) were employed to afford
1.82 g of the indicated compound as a colorless oil in a 68% yield: 'H NMR (CDClLy) I"'1.27
(t, /= 6.8 Hz, 3H), 3.65 (dd, /= 1.2, 6.4 Hz, 2H), 4.17 (¢, J = 7.2 Hz, 2H), 5.78 (td, J= 1.6,
15.6 Hz, 1H), 7.04-7.13 (m, 2H), 7.20 (dd, /= 1.6, 7.6 Hz, 1H), 7.26 (t, J= 7.2 Hz, 1H), 7.56
(d,J=8.0 Hz, 1H); “C NMR (CDCl;) ' 14.4, 38.7, 60.5, 123.1, 127.8, 127.9, 128.7, 130.9,
133.2, 137.5, 145.6, 166.6; IR (neat, cm'l) 3058, 2980, 1719, 1654; HRMS Calcd for
CzH3BrO: 268.0099. Found: 268.0103.

2-(2-Todophenyl)propanal. To a suspension of
(methoxymethyl)triphenylphosphonium chloride (2.87 g, 8.4 mmol) in dry THF (15 mL) was
added KO-#-Bu (0.90 g, 8.0 mmol) portionwise under an Ar atmosphere at 25 °C. The
resulting red suspension was stirred for 30 min at 25 °C and a solution of 2-
iodoacetophenone (0.98 g, 4.0 mmol} in dry THF (5 mL) was added dropwise. After the
reaction mixture was stirred at 25 °C for 1 h, the THF was removed under reduced pressure

and hexane (30 mL) was added to the residue. The resulting suspension was stirred for 20
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min and the PhaPO was removed by filtration. The filtrate was collected, the solvent was

removed under reduced pressure, and the residue was purified by flash chromatography (20:1

hexane/EtOAc) on silica gel to afford 1.10 g of 2-(2-10dophenyl)-1-methoxypropene (£/Z =

90:10) in a 100 % yield as a yellow oil. To a solution of 2-(2-iodophenyl)-1-

methoxypropene (£/Z = 90:10) (0.55 g, 2.0 mmol) in CH,Cl; (10 mL) was added 1.2 mL of :
47 % hydroiodic acid and the mixture was stirred under an Ar atmosphere at 25 °C for 40 l

min. The reaction was then diluted with 30 mL of CH;Cl; and the excess acid was carefully

neutralized by 30 mL of satd aq NaHCO3, during which lots of bubbles were generated. The
organic layer was collected, washed with 20 mL of brine, dried over Na;SO,, and filtered,
and the solvent was removed under reduced pressure. The residue was purified by flash
chromatography (20:1 hexane/EtOAc) on silica gel to afford 0.36 g of 2-(2-
iodophenyl)propanal in a 69 % yield as a colorless liquid: '"H NMR (CDCls) I"1.40 (d, /=
6.8 Hz, 3H), 4.08 (q, /= 6.8 Hz, 1H), 6.99-7.03 (m, 1H), 7.06 (dd, /= 1.6, 8.0 Hz, 1H), 7.35-
7.39 (m, 1H), 7.93 (dd, /= 1.2, 8.0 Hz, 1H), 9.73 (s, 1H); *C NMR (CDCl5) ' 14.7, 56.9,
102.3, 128.6, 129.2, 129.5, 140.3, 141.4, 200.5.

Ethyl (E)-4-(2-iodophenyl)-2-pentenoate (13). To a suspension of
(carboethoxymethylene)triphenylphosphorane (0.69 g, 1.95 mmol) in 5 mL of CH2Cl, was
added dropwise a solution of 2-(2-iodophenyl)propanal (0.34 g, 1.3 mmol) in 5 mL of
CH,CI; at 0 °C under an Ar atmosphere. The resulting mixture was stirred at 25 °C for 3 h
and the solvent (CH,Cl,) was evaporated under reduced pressure. The solid residue was
dissolved in 20 mL of hexane and the mixture was then stirred at 25 °C for 0.5 h. The Ph;PO g
was filtered and the solvent was removed under reduced pressure. The oily residue was |

purified by flash chromatography (20:1 hexane/EtOAc) to afford 0.41 g of the indicated
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compound as a colorless oil in a 95 % yield: 'H NMR (CDCI;) I'1.28 (t, J=17.2 Hz, 3H),
139 (d, J=7.2 Hz, 3H), 3.97-4.04 (m, 1H), 4.19 (g, /= 7.2 Hz, 2H), 5.84 (dd, J= 2.0, 16.0
Hz, 1H), 6.90-6.95 (m, 1H), 9.08 (dd, J= 5.6, 16.0 Hz, 1H), 7.15 (dd, /= 1.6, 8.0 Hz, 1H),
7.30-7.34 (m, 1H), 7.85 (dd, J=1.2, 8.0 Hz, 1H); *C NMR (CDCl3) " 14.5, 19.7, 45.9, 60.6,
101.3, 121.0, 127.9, 128.8, 129.0, 140.0, 145.8, 151.3, 166.9; IR (neat, cm™') 3058, 2976,
2933,2902, 1716, 1465; HRMS Calcd for Cy3H;510,: 330.0117. Found: 330.0123.

(2-Iodophenyl)phenylacetaldehyde. To a suspension of
(methoxymethyl)triphenylphosphonium chloride (5.76 g, 16.8 mmol) in dry THF (25 mL)
was added KO-#Bu (1.80 g, 16.0 mmol) portionwise under an Ar atmosphere at 25 °C. The
resulting reddish suspension was stirred for 30 min at 25 °C and a solution of 2-
iodobenzophenone (2.46 g, 8.0 mmol) in THF (10 mL) was added dropwise. After the
reaction mixture was stitred at 25 °C for 1 h, the solvent was removed under reduced
pressure and hexane (50 mL) was added to the residue. The suspension was stirred for 20
min and the PhsPO was removed by filtration. The filtrate was collected, the solvent was
removed under reduced pressure, and the residue was purified by flash chromatography (10:1
hexane/EtOAc) on silica gel to afford 2.68 g of 1-(2-iodophenyl)-2-methoxy-1-phenylethene
(E/Z=61:39) in 100 % yield as a pale yellow oil. To a solution of 1-(2-iodophenyl)-2-
methoxy-1-phenylethene (E/Z = 61:39) (1.68 g, 5.0 mmol} in CH,Cl; (15 mL) was added 3.0
mL of 47 % hydroiodic acid and the mixture was stirred under an Ar atmosphere at 25 °C for
3 h. Then the excess acid was carefully destroyed by 60 mL of satd aqg NaHCOs3, during
which lots of bubbles were generated. The organic layer was collected, washed with 50 mL
of brine, dried over NaySQOy, and filtered, and the solvent was removed under reduced

pressure. The residue was purified by flash chromatography (15:1 hexane/EtOAc) on silica
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gel to afford 0.91 g of (2-iodophenyl)phenylacetaldehyde in a 57 % yield as a pale yellow

oil: 'HNMR (CDCL) I'5.39 (s, 1H), 6.98-7.02 (m, 1H), 7.12 (dd, J= 1.6, 7.6 Hz, 1H), 7.22-

7.24 (m, 2H), 7.30-7.40 (m, 4H), 7.92 (dd, /= 1.2, 8.0 Hz, 1H), 9.98 (d, /= 1.2 Hz, 1H); *C

NMR (CDCly) I'68.1, 102.7, 128.0, 128.7, 129.2, 129.5, 129.7, 130.3, 135.4, 139.8, 140.4,

198.1.
r4
Ethyl (E)-4-(2-iodophenyl)-4-phenyl-2-butenoate (18). Using the procedure used to

prepare aryl halide 13, (2-iodophenyl)phenylacetaldehyde (0.84 g, 2.6 mmol) and

(carboethoxymethylene)triphenylphosphorane (1.36 g, 3.9 mmol) were employed to afford
1.01 g of the indicated compound in a 100 % yield as a colorless oil: 'H NMR (CDCly)
1128 (t, /=72 Hz, 3H), 4.19 (q, /= 7.2 Hz, 2H), 5.27 (dd, /= 1.6, 6.0 Hz, 1H), 5.64 (dd, J
=1.6, 15.6 Hz, 1H), 6.93-6.97 (m, 1H), 7.11 (dd, /= 1.6, 7.6 Hz, 1H), 7.15-7.17 (m, 2H),
7.23-7.38 (m, SH), 7.87 (dd, J= 1.2, 7.6 Hz, 1H); >C NMR (CDCL) I" 14.5, 57.2, 60.7,
102.1,123.8, 127.2, 128.7, 128.8, 129.0, 129.2, 130.1, 140.2, 140.4, 144 0, 149.2, 166.6; IR
(ncat, cm'l) 3060, 2980, 1716, 1650, 1494; HRMS Calcd for CgH710,: 392.0273. Found:
392.0279.

Ethyl (E)-4-(2-iodophenyl)-2-methyl-2-butenoate (22). Using the procedure used o
prepare aryl halide 13, (2-iodophenyl)acetaldehyde® (0.89 g, 3.6 mmol) and
(carboethoxyethylene)triphenylphosphorane (1.67 g, 4.3 mmol) were employed to afford
1.19 g of the indicated compound in a 100 % yield as a colorless oil: 'H NMR (CDCl;) T
1.29 (t, J=7.2 Hz, 3H), 1.97-1.98 (m, 3H), 3.62 (d, /= 7.5 Hz, 2H), 4.20 (g, /= 7.2 Hz, 2H),
6.78-6.84 (m, 1H), 6.90-6.95 (m, 1H), 7.18 (dd, J=1.5, 7.5 Hz, 1H), 7.27-7.32 (m, 1H), 7.84

(dd, J=1.2, 7.2 Hz, 1H); ?C NMR (CDCl) "' 13.1, 14.5, 40.4, 60.8, 100.8, 128.5, 128.8,
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129.5,129.7, 138.8, 139.8, 142.2, 168.2; IR (neat, cm™) 3054, 2979, 2930, 1708, 1648, 1251;
HRMS Calced for C13H;5102: 330.0117. Found: 330.0123.

(Z2)-4-(2-Iodophenyl)-2-butenenitrile (24). Using the procedure used to prepare aryl
halide 1, 2-iodophenylacetaldehyde® (2.46 g, 10.0 mmol) and
(triphenylphosphoranylidene)acetonitrile (4.52 g 15.0 mmol) were employed to afford 1.02 g
of aryl halide 24 as a colorless oil in a 38 % yield and 1.10 g of aryl halide 27 as a colorless
oilin a 41 % yield. Aryl halide 24: "H NMR (CDCl3) I'3.88 (d, J = 11.2 Hz, 2H), 5.47 (td,
J=1.2,12.0 Hz, 1H), 6.60 (td, /= 7.6, 10.8 Hz, 1H), 6.97 (dt, J= 1.6, 7.6 Hz, 1H), 7.25 (dd,
J=1.2,8.0Hz, 1H), 7.33 (dt,/J=1.2, 8.0 Hz, 1H), 7.85 (d, /= 8.0 Hz, 1H); °C NMR
(CDCl3) I'43.1, 100.3, 100.9, 116.1, 129.1, 129.1, 130.1, 139.9, 140.2, 151.5; IR (neat, cm™)
3062, 2219, 1619; HRMS Calcd for CjoHsIN: 268.9702. Found: 268.9705.

(E)-4-(2-Todophenyl)-2-butenenitrile (27). 'H NMR (CDCL)TI'3.67 (dd, J=2.4,8.0
Hz, 2H), 5.25 (td, J= 2.8, 22.0 Hz, 1H), 6.84 (td, /= 8.4, 29.6 Hz, 1H), 6.98 (dt, J=2.0,
16.0 Hz, 1H), 7.17 (dd, /= 2.0, 10.0 Hz, 1H), 7.34 (dt, /= 1.6, 10.0 Hz, 1H), 7.86 (dd, J =
1.6, 10.8 Hz, 1H); “C NMR (CDCl5) T'44.3 100.7, 101.7, 117.4, 129.1, 129.3, 130.2, 139.4,
140.1, 152.5; IR (CHCI,, cm'l) 3017, 2224, 1631; HRMS Calcd for C gHgIN: 268.9702.
Found: 268.9705.

(2-fodo-4,5-dimethoxyphenyl)acetaldehyde. To a solution of (2-iodo-4,5-
dimethoxyphenyl)acetic acid®® (14.5 mmol) in dried THF (50 mL) was added dropwise 8.0
mL of 2.0 M BHj3-SMe; (16.0 mmol) in THF at 0 °C. Considerable gas was generated during
addition of the BH3-SMe;. The resulting mixture was stirred for 12 h at 25 °C and the solvent

was removed under reduced pressure to afford crude 2-(2-iodo-4,5-dimethoxyphenyl)ethanol.
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DMSO (2.06 mL, 31.9 mmol) was added dropwise into a solution of (COCl,), (1.39
mL, 16.0 mmol) in CH;Cl, (20 mL) at — 60 °C (CHCl; and dry 1ce), in which considerable
gas was generated. The colorless mixture was stirred for 10 min at — 60 °C., Then, a solution
of the crude 2-(2-iodo-4,5-dimethoxyphenyl)ethanol in 10 mL CH,Cl; was added dropwise
to the reaction vessel and the reaction mixture turned a cloudy white. The resulting reaction
mixture was further stirred for 30 min at - 60 °C and Et;N (72.5 mmol) was added. After
being stirred for 10 min, the reaction mixture was then diluted with water (50 mL) at — 60 °C,

warmed up to 25 °C, washed with 1N HCI (50 mL) and extracted with CH,Cl; (3 x 25 mL).

The extracts were combined and dried over Na;SO,4. The solvent was removed and the liquid
chromatographed (3:1 hexane/EtOAc) to afford 1.11 g of the desired compound as a yellow
solid in a 25 % overall yield: mp 53-56 °C; '"H NMR (CDCl3) I'3.82 (s, 2H), 3.85 (s, 3H),
3.87 (s, 3H), 6.71 (s, 1H), 7.28 (s, 1H), 9.74 (s, 1H); *C NMR (CDCl3) I'54.5, 56.2, 56.4,
89.1, 113.6, 122.0, 128.4, 149.2, 149.9, 198.9.

Ethyl (E)-4-(2-iodo-4,5-dimethoxyphenyl)-2-butenoate (30). Using the procedure
used to prepare aryl iodide 1, (2-i0do-4,5-dimethoxyphenyl)acetaldehyde (1.53 g, 5.0 mmol)
and (carboethoxymethylene)triphenylphosphorane (2.61 g, 7.5 mmol) were employed to
afford 1.37 g of the indicated compound as a pale yellow oil in a 73% yield: '"H NMR
(CDCl3) I"'1.28 (t, J= 6.8 Hz, 3H), 3.59 (dd, /= 2.0, 6.0 Hz, 2H), 3.85 (s, 3H), 3.86 (s, 3H),
4.18 (q, /= 7.2 Hz, 2H), 5.76 (td, J= 1.6, 15.6 Hz, 1H), 6.69 (s, 1H), 7.01 (td, /=9.2,21.6
Hz, 1H), 7.23 (s, 1H); "CNMR (CDCl3) I'14.4, 43.1, 56.2, 56.4, 60.5, 88.5, 112.7, 121.9,
122.8,133.1, 146.1, 148.6, 149.8, 166.7; IR (neat, cm™) 2977, 2904, 2839, 1715, 1651,

HRMS Caled for C14H;7104: 376.0171. Found: 376.0177.
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1-(2-Iodo-4,5-dimethoxyphenyl)-3-phenylpropene (38). To a white suspension of
benzyltriphenylphosphonium chloride (2.92 g, 7.5 mmol) in 100 mL of dried THF was added

dropwise 2.5 M of n-BuLi (3.0 mL, 7.5 mmol) at 0 °C. The resulting reddish solution was

then warmed up to 25 °C and stirred for 30 min before use. Using the procedure used to

prepare aryl iodide 1, (2-iodo-4,5-dimethoxyphenyl)acetaldehyde (1.53 g, 5.0 mmol) and
(phenylmethylene)triphenylphosphorane (7.5 mmof) were employed to afford 1.71 gofa

55:45 mixture of E/Z stereoisomers as a colorless oil in a 90 % overall yield: 'H NMR

(CDCL;) I'3.59 (4d, J= 1.2, 6.0 Hz, 2H), 3.69 (dd, J=2.0, 7.2 Hz, 2H), 3.80 (s, 3H), 3.84 (s,

3H), 3.85 (s, 3H), 3.86 (s, 3H), 5.76 (td, J= 6.4, 11.2 Hz, 1H), 6.29 (td, /= 6.4, 16.0 Hz,
1H), 6.44 (d, J=16.0 Hz, 1H), 6.64 (d, J= 11.6 Hz, 1H), 6.73 (s, 1H), 6.77 (s, 1H), 7.18-
7.39 (m, 12H); additional *C NMR (CDCls) I'39.8, 44.0, 56.1, 56.2, 56.4, 88.3, 88.5, 112.2,
112.7,121.8,126.3, 126.3, 126.4, 127.1, 127.4, 128.0, 128.5, 128.7, 128.7, 128.9, 130.0,
130.8, 131.7, 135.3, 136.0, 137.3, 137.6, 148.1, 148.2, 149.6, 149.7 (one sp3 carbon from one
of the methoxy groups is missing due to overlap); IR (neat, em™) 3079, 3055, 3002, 2933,
2905, 2837, 1596, 1567; HRMS Caled for Ci7H17I0,: 380.0273. Found: 380.0280.
(E)-1-Phenyl-1-penten-4-yne. To a stirred mixture of cinnamyl bromide (1.97 g, 10.0
mmol) and CuCl (0.099 g, 1.0 mmol) in dry THF (40 mL) was added dropwise a solution of
cthynylmagnesium bromide in THF (0.5 M, 20 mL) at 25 °C. The resulting mixture was then
stirred at 25 °C for 5 min and at 50 °C for 14 h. It was allowed to cool to room temperature
and washed with 50 mL of brine. The organic layer was collected, dried over NaySQ,, and
filtered, and the solvent was removed under reduced pressure. The oily residue was purified
by flash chromatography (hexane) on silica gel to afford 0.67 g (47 % yield) of the indicated

compound as a colorless liquid: '"H NMR (CDCI3) '2.18 (t, J=2.4 Hz, 1H), 3.13-3.15 (m,
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2H), 6.16 (td, J = 5.6, 16.0 He, 1H), 6.67 (d, J = 16.0 Hz, 1H), 7.22-7.24 (m, 1H), 7.29-7.32
(m, 2H), 7.36-7.38 (m, 2H); °C NMR (CDCl3) ['22.2, 70.9, 81.4, 123.8, 126.5, 127.6, 128.7,
131.8, 137.2,

N,N-Dimethyl-2-(E-5-phenyl-4-penten-1-ynyl)aniline. To a solution of PdCly,(PPh;),
(42.1 mg, 0.06 mmol), N,N-dimethyl-2-iodoaniline™® (0.74 g, 3.0 mmol) and (£)-1-phenyl-1-
penten-4-yne (0.51 g, 3.6 mmol) in E;N (15 mL) was added Cul (5.71 mg, 0.03 mmol). The
resulting mixture was stirred for 10 min under an Ar atmosphere and was heated to 50 °C.
After 6 h, the reaction was allowed to cool to 25 °C. The ammonium salt was removed by
filtration and the filtrate was concentrated under reduced pressure. The residue was purified
by flash chromatography (20:1 hexane/EtOAc) on silica gel to afford 0.64 g (92 % yield) of
the indicated compound as a yellow oil: 'H NMR (CDCl3) I'2.93 (s, 6H), 3.44 (dd, J = 2.0,
5.6 Hz, 2H), 6.27 (td, J= 5.6, 16.0 Hz, 1H), 6.76 (d, J = 16.0 Hz, 1H), 6.86-6.90 {m, 1H),
6.92(d, /= 8.4 Hz, 1H), 7.20-7.25 (m, 2H), 7.29-7.33 (m, 2H), 7.37-7.39 (m, 2H), 7.43 (dd,
J=1.6,7.6 Hz, 1H); C NMR (CDCl;) '23.7, 43.9, 82.1,92.2,116.4,117.3, 121.0, 124.6,
126.4,127.5, 128.7, 128.9, 131.6, 134.6, 137.4, 155.0.

3-Iodo-1-methyl-2-[E-3-phenylpro-2-enyl]-1H-indole (43). To a solution of N,N-
dimethyl-2-(£-5-phenyl-4-penten-1-ynyl)aniline (0.58 g, 2.2 mmol) in CH,Cl; (10 mL) was
added dropwise a solution of I (0.67 g, 1.2 equiv) in CH,Cl, (15 mL) under an Ar
atmosphere at 25 °C. The reaction mixture was stirred at 25 °C for 3 h and diluted with 30
mL of CH,Cl,. The excess I, was destroyed by adding 50 mL of satd aq Na,S,0s. The
organic layer was washed with 50 mL of brine, dried over Na;S0,, and filtered, and the
solvent was removed under reduced pressure. The residue was purified by flash

chromatography (10:1 hexane/EtOAc) to afford 0.73 g of the indicated compound as a
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yellow solid: mp 85-87 °C; 'H NMR (CDCl3) I'3.72 (s, 3H), 3.79 (dd, J= 1.2, 5.6 Hz, 2H),
6.24 (td, /= 5.6, 16.0 Hz, 1H), 6.33 (d, /= 16.0 Hz, 1H), 7.17-7.31 (m, 8H), 7.43 (d, /=8.0
Hz, 1H); °C NMR (CDCl3) T'31.0, 59.0, 109.5, 120.5, 121.0, 122.4, 125.4, 126.3, 127.6,
128.7,130.1, 131.8, 137.1, 137.8, 138.8 (one sp carbon missing due to overlap); IR (CHCls,
em’™') 3055, 3025, 2929, 1674, 1386; HRMS Caled for CysH;6IN: 373.0328. Found:
373.0332.

2-Iodo-1-(E-3-phenyiprop-2-enyl)-1H-indole (52). To a suspension of NaH (0.18 g,
4.5 mmol) in dry DMF (15 mL) was added dropwise a solution of 2-iodoindole?” (0.73g,3.0
mmol) in THF (10 mL) at 0 °C, during which lots of bubbles were generated. The resulting
yellow suspension was stirred at 0 °C for 1 h and a solution of cinnamyl bromide (0.59 g, 3.0
mmol) in dry THF (2 mL) was added dropwise at 0 °C. After the reaction mixture was
stirred at 0 °C for 20 min, it was warmed up to 25 °C, diluted with 50 mL of Et,0, and
washed with 50 mL of brine. The organic layer was collected, dried over NazS0,, and
filtered, and the solvent was removed under reduced pressure. The residue was purified by
flash chromatography (30:1 hexane/EtOAc) on silica gel to afford 0.61 g of the compound 52
as a white solid: mp 99-101 °C; 'H NMR (CDCl3)T"4.95 (d, /= 4.8 Hz, 2H), 6.24 (td, /=
4.8, 16.0 Hz, 1H), 6.36 (d, J=16.0 Hz, 1H), 6.84 (s, 1H), 7.07-7.11 (m, 1H), 7.12-7.16 (m,
1H), 7.21-7.29 (m, SH), 7.35 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 7.6 Hz 1H); '*C NMR (CDCls)
I'49.2, 83.3,110.1, 112.6, 119.8, 120.2, 122.1, 124.3, 126.7, 128.0, 128.7, 130.1, 132.4,
136.4, 137.7; IR (CHCl;, em™) 3077, 3019, 2913, 1455, 1434; HRMS Calcd for Ci7H 4IN:
359.0171. Found: 359.0179.

General procedure for preparation of the naphthalenes and carbazoles. To a

mixture of the alkyne (0.50 mmol), Pd(OAc); (2.8 mg, 0.025 mmol), PPh; (6.6 mg, 0.05
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mmol}), and Et;N (55.0 mg, 0.5 mmol) in 2 mL of DMF was added dropwise a solution of the
aryl halide (0.25 mmol) in 1 mL of DMF. The resulting mixture was then stirred under an Ar
atmosphere at the indicated temperature (see Table 2 in the text). The reaction was
monitored by TLC to establish completion. When the reaction was complete, the reaction
mixture was allowed to cool to 25 °C, poured into brine (25 mL} and extracted with EtOAc
(3 x 10 mL). The combined organic layers were concentrated and the residue was purified
by column chromatography on silica gel to afford the corresponding naphthalene(s) or

carbazole(s).

Ethyl (1,2-diphenylnaphth-3-yl)acetate (2). The reaction mixture was
chromatographed using 10:1 hexane/EtOAc to afford 79 mg or 69 mg of the indicated
product as a white solid in an 86 % (entry 1) or a 75 % (entry 7) yield, respectively: mp 85-
87 °C; 'H NMR (CDCly) I"1.15 (t, /=72 Hz, 3H), 3.61 (s, 2H), 4.02 (q, /= 7.2 Hz, 2H),
7.02 (d, /= 6.8 Hz, 2H), 7.09-7.22 (m, 8H), 7.35 (t, J= 7.6 Hz, 1H), 7.45-7.49 (m, 2H), 7.85
(s, 1H), 7.87 (d, J = 8.8 Hz, 1H); *C NMR (CDCls) I' 14.3, 40.5, 60.9, 126.1, 126.2, 126.6,
126.7,127.0, 127.6, 127.7, 127.8, 128.9, 130.6, 131.2, 132.2, 133.0, 139.4, 139.5, 139.6,
139.8, 172.1 (one sp” carbon is missing due to overlap); IR (CHCls;, cm™) 3056, 3021, 2982,
2933, 1950, 1731, 1601; HRMS Caled for CosH02: 366.1620. Found: 366.1620.

Ethyl {1,2-di(4-methoxyphenyl)naphth-3-yl]acetate (3). The reaction mixture was
chromatographed using 5:1 hexane/EtOAc to afford 65 mg of the indicated compound as a
yellow oil in a 61 % yield: 'H NMR (CDCl5) T'1.15 (t, /= 7.2 Hz, 3H), 3.61 (s, 2H), 3.74 (s,
3H), 3.77 (s, 3H), 4.02 (q, J = 9.6 Hz, 2H), 6.69-6.77 (m, 2H), 6.93 (dd, J=2.8, 8.8 Hz, 2H),
7.00(dd, /=1.6, 11.2 Hz, 2H), 7.34 (dt, /= 1.6, 9.2 Hz, 1H), 7.45-7.51 (m, 2H), 7.82 (s,

1H), 7.86 (d, /= 10.8 Hz, 1H); >C NMR (CDCl3) I' 14.3, 40.6, 55.2, 55.3, 60.7, 113.2,
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113.2,126.0,126.1, 127.1, 127.8, 128.6, 131.6, 131.8, 132.1, 132.3, 132.6, 132.9, 139.4,
139.6, 158.1, 172.2 (two sp’ carbons are missing due to overlap); IR (CHCl;, cm™) 3015,
2958, 2933, 2836, 1893, 1731, 1609; HRMS Calcd for CagHasO4: 426.1831. Found:
426.1837.

Ethyl [1,2-di(4-ethoxycarbonylphenyl)naphth-3-yl]acetate (4). The reaction mixture
was chromatographed using 3:1 hexane/EtOAc to afford 106 mg of the indicated compound
as a yellow oil in an 83 % yield: 'H NMR (CDCl3)T'1.14 (t,J = 7.2 Hz, 3H), 1.38 (t, /= 6.8
Hz, 3H), 1.38 (t, /= 7.2 Hz, 3H), 3.58 (s, 2H), 4.01 (q, / = 7.2 Hz, 2H), 4.32-4.38 (m, 4H),
7.13 (d,J=8.4Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.35-7.40 (m, 2H), 7.48-7.52 (m, 1H),
7.85-7.91 (m, 6H); °C NMR (CDCL;) T'14.3, 14.5, 40.2, 61.0, 61.1, 126.6, 126.6, 126.7,
128.0,129.1, 129.1, 129.6, 130.5, 130.6, 131.1, 131.6, 133.1, 138.3, 138.4, 144.0, 144.3,
166.5, 166.6, 171.7 (two sp carbons from ethoxy groups and two sp? carbons are missing
due to overlap); IR (CHCls, cm™) 3021, 2983, 2937, 2906, 2872, 1716, 7608; HRMS Calcd
for C33H3006: 510.2042. Found: 510.2049.

Ethyl (1,2-di-n-propylnaphth-3-yl)acetate (5). The reaction mixture was
chromatographed using 20:1 hexane/EtOAc to afford 45 mg or 35 mg of the indicated
product as a yellow in a 60 % (entry 4) or a 46 % (entry 8) yield, respectively: 'H NMR
(CDCL) I'1.08 (t,J="7.5 Hz, 3H), 1.11 (t,J=7.5 Hz, 3H), 1.24 (t, /= 7.2 Hz, 3H), 1.48-
1.61 (m, 2H), 1.62-1.75 (m, 2H), 2.74-2.79 (m, 2H), 3.01-3.06 (m, 2H), 3.80 (s, 2H), 4.16 (q,
J=17.2Hz, 2H), 7.35-7.46 (m, 2H), 7.57 (s, 1H), 7.73 (dd, J= 1.5, 8.4 Hz, 1H), 7.97 (d, J =
8.4 Hz, 1H); "C NMR (CDCl;) T 14.4, 15.0, 24.5, 24.7,31.2,32.4,40.1, 61.0, 124.2, 125.0,

125.8,128.3, 128.5, 131.5, 131.9, 132.5, 136.7, 137.0, 172.2 (one sp° carbon is missing due
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to overlap); IR (neat, cm'l) 3069, 2958, 2870, 1735, 1597; HRMS Calcd for CaoH2605:
298.1933. Found: 298.1937.

Ethyl (1-methyl-2-phenylnaphth-3-yl)acetate (6) and ethyl (2-methyl-1-
phenylnaphth-3-yl)acetate (7). The reaction mixture was chromatographed using 20:1
hexane/EtOAc to afford 57 mg of a 53:47 mixture of regioisomers 6/7 as determined by 'H
NMR spectral analysis of the yellow oil in a 75 % overall yield. 'H NMR (CDCls) for the

major regioisomer 6: I"1.26 (t, /= 7.2 Hz, 3H), 2.16 (s, 3H), 3.86 (s, 2H), 4.19(q,J=7.2

Hz, 2H), 7.20-7.52 (m, 8H), 7.73 (s, 1H), 7.79 (d, /= 4.8 Hz, 1H). 'H NMR (CDCl,) for the
minor regioisomer 7: I'1.13 (t,J=7.2 Hz, 3H), 2.37 (s, 3H), 3.51 (s, 2H), 3.99 (q, J= 7.2
Hz, 2H), 7.20-7.52 (m, 7H), 7.67 (s, 1H), 7.83 (dd, J= 1.2, 4.8 Hz, 1H), 8.03 (d,J=8.0Hz, |
1H). ">C NMR (CDCls) for the mixture ' 14.3, 14.4, 16.8, 17.7, 40.6, 40.6, 60.8, 61.1, 124.6,
125.3,125.8,125.9,126.2, 126.5, 127.2, 127.2, 127.3, 127.6, 128 .4, 128.5, 128.6, 128.9,
129.9,130.4,131.2, 131.9, 132.0, 132.2, 132.5, 132.6, 132.9, 132.9, 139.3, 139.8, 140.4,
140.8, 171.9, 172.1; IR (neat, cm™) for the mixutre 3056, 3022, 2981, 2934, 2870, 1731,
1599, 1572; HRMS Caled for Cy1Hag05: 304.1463. Found: 304.1467.

Ethyl (2-ethoxycarbonyl-1-phenylnaphth-3-yl)acetate (8) and ethyl (1-
ethoxycarbonyl-2-phenylnaphth-3-yl)acetate (9). The reaction mixture was
chromatographed using 7:1 hexane/EtOAc to afford 80 mg of a 76:24 mixture of
regioisomers 8/9 as determined by 'H NMR spectroscopy of the yellow oil in an 88 % overall
yield. "H NMR (CDCl;) for the major regioisomer 8: I'0.87 (t,J= 7.2 Hz, 3H), 1.25 (t,J=
6.8 Hz, 3H), 3.94 (s, 2H), 3.95 (q, /= 7.2 Hz, 2H), 4.16 (q, J = 6.8 Hz, 2H), 7.28-7.59 (m,
8H), 7.79-7.87 (m, 2H). 'H NMR (CDCl,) for the minor regioisomer 9: T0.91 (t,J=7.2

Hz, 3H), 1.14 (t, /= 6.8 Hz, 3H), 3.61 (s, 2H), 3.98-4.10 (m, 4H), 7.28-7.59 (m, 8H), 7.79-
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7.87 (m, 2H). ">C NMR (CDCls) for the mixture ['13.6, 13.8, 14.2, 14.3, 39.7, 39.7, 60.9,

61.0,61.1,61.2,125.0, 126.7, 127.0, 127.2, 127.3, 127.7, 127.8, 127.9, 128.0, 128.1, 128.1,

128.5,129.0, 129.6, 129.8, 130.3, 130.8, 130.9, 131.4, 131.8, 132.3, 132.7,133.7,138.3,

138.4, 138.5, 139.2, 169.0, 169.2, 171.3, 171.5 (one sp2 carbon is missing due to overlap); IR

(neat, cm'l) for the mixutre 3057, 2981, 2936, 2903, 2872, 1731, 1622, 1596; HRMS Calcd
for Cp3H»,04: 362.1518. Found: 362.1522.
Ethyl 3-(2-ethoxy-2-oxoethyl)-1-ethyl-2-naphthoate (11) and ethyl 3-(2-ethoxy-2-

oxoethyl)-2-ethyl-1-naphthoate (12). The reaction mixture was chromatographed using 7:1

hexane/EtOAc to afford 41 mg (52 % vield) of a 60:40 mixture of regioisomers 11/12 as
determined by 'H NMR spectroscopic analysis of the yellow oil. 'H NMR (CDCl;) for the
major regioisomer 11: I'1.22-1.27 (m, 3H), 1.34-1.48 (m, 6H), 3.09 {q,/=7.5 Hz, 2H), 3.81
(s, 2H), 4.16 (q, /= 7.2 Hz, 2H), 4.44 (q, /= 7.2 Hz, 2H), 7.41-7.56 (m, 2H), 7.64 (s, 1H),
7.76-7.82 (m, 1H), 8.05-8.09 (m, 1H). 'H NMR (CDCl;) for the minor regioisomer 12: T
1.22-1.27 (m, 6H), 1.34-1.48 (m, 3H), 2.82 (q, J= 7.5 Hz, 2H), 3.83 (s, 2H), 4.17 (q, J= 7.2
Hz, 2H), 4.54 (q, J= 7.2 Hz, 2H), 7.41-7.56 (m, 2H), 7.68-7.71 (m, 1H), 7.76-7.82 (m, 2H).
C NMR (CDCls) for the mixture I 14.4,14.4,14.4, 14.6, 15.5, 15.9, 24.2, 24.7, 39.0, 40.0, :
61.2,61.3,61.5, 61.6, 124.5, 124.6, 126.0, 126.7, 126.9, 127.0, 128.0, 128.2, 128.6, 128.8,
129.6,130.7, 131.0, 131.5, 131.6, 131.8, 132.0, 134.1, 137.9, 138.7, 170.0, 170.2, 171.3,
171.6; IR (neat, cm™) for the mixture 3060, 2579, 2937, 1728, 1449; HRMS Caled for
Ci9H2,04: 314.1518. Found: 314.1522.

Ethyl (1-methyl-3,4-diphenyl-2-naphthyl)acetate (14). The reaction mixture was
chromatographed using 30:1 hexane/EtOAc to afford 68 mg (72 % yleld) of the indicated

compound as a white solid: mp 80-82 °C; 'H NMR (CDCI3)I'1.18 (t,J=7.1 Hz, 3H), 2.72
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(s, 1H), 3.69 (s, 2H), 4.08 (g, J = 7.1 Hz, 2H), 7.01-7.21 (m, 10H), 7.32-7.38 (m, 1H), 7.48-
7.54 (m, 2H), 8.16 (d, /= 8.4 Hz, 1H); ’C NMR (CDCL;) I" 14.4, 15.8, 38.0, 60.8, 124.3,
125.8, 126.0, 126.4, 126.6, 127.6, 127.7, 127.7,129.3, 130.5, 131.3, 132.1, 132.3, 133.0,
137.5,139.9, 140.1, 141.0, 171.9; IR (CHCl3, cm™) 3018, 1729, 1216; HRMS Caled for
C27H2402: 380.1776. Found: 380.1781. Anal. Caled: C, 85.22; H, 6.35. Found: C, 84.83:
H, 6.49.

Ethyl 3-(2-ethoxy-2-oxoethyl)-4-methyl-1-phenyl-2-naphthoate (15) and ethyl 3-(2-

ethoxy-2-oxoethyl)-4-methyl-2-phenyl-1-naphthoate (16). The reaction mixture was

chromatographed using 7:1 hexane/EtOAc to afford 64 mg (86 % yleld) of a 67:33 mixture

O S RSt 3 T

of regioisomers 15/16 as determined by 'H NMR spectroscopic analysis of the yellow oil. 'H
NMR (CDCl;) for the major regioisomer 15: T'0.89 (t, /= 7.2 Hz, 3H), 1.24 (t, /=7.2 Hz,
3H), 3.95 (s, 2H), 3.96 (q, J= 7.2 Hz, 2H), 4.14 (q, J= 7.2 Hz, 2H), 7.26-7.59 (m, 8H), 8.12-
8.14 (m, 1H). 'H NMR (CDCL;) for the minor regioisomer 16: T°0.91 (t, J= 7.2 Hz, 3H),
L18 (t, /=72 Hz, 3H), 3.67 (s, 2H), 4.02 (q, J = 7.2 Hz, 2H), 4.08 (q, J = 7.2 Hz, 2H), 7.26-
7.59 (m, 7H), 7.85-7.87 (m, 1H), 8.12-8.14 (m, 1H). "*C NMR (CDCls) for the mixture T
13.7,13.9, 14.4, 14.4, 15.5, 15.9, 37.1, 37.5, 60.9, 61.1, 61.1, 61.2, 124.5, 124.6, 125.7,
125.9,126.2, 126.6, 126.9, 127.0, 127.7, 127.7, 127.8, 128.1, 128.1, 128.8, 129.1, 129.9,
130.7,130.8, 131.5, 132.1, 133.1, 133.2, 133.9, 135.5, 136.4, 138.5, 138.6, 139.6, 169.5,
169.9, 171.0, 171.5; IR (neat, cm'l) for the mixture 3059, 2980, 2937, 1717, 1228; HRMS
Calced for Cy4H404: 376.1675. Found: 376.1680.

Ethyl {3,4-bis[(benzyloxy)methyl]-1-methyl-2-naphthyl}acetate (17). The reaction
mixture was chromatographed using 10:1 hexane/EtOAc to afford 65 mg of the indicated

compound as a yellow solid in a 56 % yield: mp 82-83 °C; 'H NMR (CDCI;) T'1.18 (t, J=
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7.2 Hz, 3H), 2.64 (s, 3H), 4.01 (s, 2H), 4.05 (q, /= 7.2 Hz, 2H), 4.49 (s, 2H), 4.55 (s, 2H),
4.70 (s, 2H), 4.91 (s, 2H), 7.23-7.36 (m, 10H), 7.47-7.50 (m, 2H), 8.04-8.07 (m, 1H), 8.11-
8.14 (m, 1H); C NMR (CDCl3) I" 14.4, 15.8, 36.2, 60.9, 65.4, 66.6,72.8,72.9,124.7, 125.3,
126.1, 126.2, 128.0, 128.3, 128 4, 128.6, 128.6, 130.4, 131.6, 132.2, 133.2, 134.4, 134.9,
138.2, 138.4, 171.7 (one sp® carbon missing due to overlap); IR (CHCL, cm™) 3065, 3026,
2975,2867, 1728, 1326; HRMS Calcd for C3 H3,04: 468.2301. Found: 468.2312.

Ethyl E-4-(2-iodophenyl)-4-phenyl-3-butenoate (19). The reaction mixture was
chromatographed using 15:1 hexane/EtOAc to afford 47 mg (48 % yield) of the indicated
compound as a yellow oil: 'H NMR (CDCI3) I'1.25 (t, J=7.2 Hz, 3H), 2.92 (dd, J= 8.0,
16.4 Hz, 1H), 3.05 (dd, /= 6.4, 16.4 Hz, 1H), 4.15 (q, /= 7.2 Hz, 2H), 6.44-6.47 (m, 1H),
7.02-7.06 (m, 1H), 7.19 (dd, J=1.6, 7.6 Hz, 1H), 7.24-7.30 (m, 5H), 7.39-7.43 (m, 1H), 7.92
(d, /= 8.0 Hz, 1H); ’C NMR (CDCl;) I'14.5, 35.6, 60.9, 100.0, 121.7, 126.8, 127.7, 128.5,
128.6,129.2, 130.8, 139.4, 139.7, 144.1, 146.0, 171.6; IR (neat, cm™") 3059, 2981, 1717;
HRMS Calced for CigH;710,: 392.0273. Found: 392.0279.

Ethyl 2-(3,4-diphenyl-1,2-dihydronaphthalen-2-yl)acrylate (23). The reaction
mixture was chromatographed using 15:1 hexane/EtOAc to afford 69 mg (73 % yield) of the
indicated compound as a yellow solid: mp 135-137 °C; '"H NMR (CDCl3) T'1.31 (t, J=7.2
Hz, 3H),2.99 (dd, /= 2.4, 16.0 Hz, 1H), 3.47 (dd, J= 7.2, 16.0 Hz, 1H), 4.01 (dd, /= 1.6,
7.2 Hz, 1H), 4.20-4.25 (m, 2H), 5.80-5.81 (m, 1H), 6.28 (d, J= 1.2 Hz, 1H), 6.80 (d, /= 7.6
Hz, 1H), 7.00-7.13 (m, 10H), 7.20-7.22 (m, 3H); *C NMR (CDCl3) ' 14.4, 34.5, 41.3, 61.1,
126.5, 126.5, 126.6, 126.8, 127.0, 127.6, 127.7, 128.3, 128.4, 128.8, 131.2, 133.6, 136.9,
137.2,138.6, 138.9, 139.7, 142.0, 167.1; IR (CH,Cl,, cm™) 3054, 3020, 2981, 2899, 1709,

1264; HRMS Calcd for Cy7H240,: 380.1776. Found: 380.1784.
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(3,4-Di-n-propylnaphthyl)acetonitrile (25). The reaction mixture was
chromatographed using 10:1 hexane/EtOAc to afford 46 mg or 45 mg of the indicated
compound as a yellow solid in a 74 % (entry 16) or a 72 % (entry 17) yield, respectively: mp
76-78 °C; '"H NMR (CDCl;) T'1.10 (t, /=72 Hz, 3H), 1.12 (t, /= 7.2 Hz, 3H), 1.52-1.62 (m,
2H), 1.63-1.72 (m, 2H), 2.71-2.75 (m, 2H), 3.01-3.06 (m, 2H), 3.88 (s, 2H), 7.44 (dt, J=0.8,
7.6 Hz, 1H), 7.50 (dt, J=1.2, 7.6 Hz, 1H), 7.79 (d, /= 8.0 Hz, 1H), 7.79 (s, 1H), 7.99 (d,J=
8.4 Hz, 1H); "C NMR (CDCL) I'15.0, 15.0, 22.8, 24.4, 24.7, 31.1, 32.1, 118.4, 124.2, 125.6,
126.6, 126.8, 126.8, 128.6, 132.2, 132.4, 135.3, 137.6; IR (CHCL3, cm™) 3065, 3019, 2960,
2872, 2251, 1598; HRMS Caled for CigHy N: 251.1674. Found: 251.1679.

(3,4-Diphenyl-2-naphthyl)acetonitrile (26). The reaction mixture was
chromatographed using 10:1 hexane/EtOAc to afford 36 mg or 34 mg of the indicated
compound as a yellow solid in 45 % (entry 18) or 43 % (entry 19) yield: mp 193-195 °C; 'H
NMR (CDCl3) I'3.61 (d, J = 0.9 Hz, 2H), 7.02-7.10 (m, 4H), 7.17-7.25 (m, 6H), 7.38-7.44
(m, 1H), 7.49-7.57 (m, 2H), 7.95 (d, J=8.1 Hz, 1H), 8.11 (s, 1H); '*C NMR (CDCl;) T'23.5,
118.4,126.6, 126.8, 126.9, 127.1, 127.2, 127.3, 127.8, 127.9, 128.4, 130.2, 131.0, 132.4,
132.9,138.2, 138.7, 138.7, 140.1 (one sp2 carbon missing due to overlap); IR (neat, cm™)
3020, 2254, 1487, 1442; HRMS Calcd for CoaH7N: 319.1361. Found: 319.1366.

3-Methyl-1,2-diphenylnaphthalene (29). The reaction mixture was chromatographed
using hexane to afford 24 mg (32 % yield) of the indicated compound as a white solid: mp
147-148 °C; 'H NMR (CDCl;) T"2.26 (d, J= 0.6 Hz, 3H), 7.01-7.05 (m, 2H), 7.08-7.24 (m,
8H), 7.28-7.34 (m, 1H), 7.42-7.48 (m, 2H), 7.77 (s, 1H), 7.82-7.85 (m, 1H); °C NMR

(CDCL3) I'22.1, 125.5,125.9, 126.3, 126.5, 127.0, 127.3, 127.6, 127.6, 127.7,130.3, 131.2,
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131.5, 133.1, 134.6, 138.8, 139.6, 140.1, 140.8; IR (CHCl;, cm’') 3019, 1489, 1442, 1215;

HRMS Caled for Cp3Hig: 294.1408. Found: 294.1413.

Ethyl (6,7-dimethoxy-1,2-diphenylnaphth-3-yl)acetate (31). The reaction mixture

was chromatographed using 3:1 hexane/BtOAc to afford 75 mg of the indicated compound as

a white solid in a 71 % yield: mp 142-145 °C; '"H NMR (CDCL;) I'1.15 (t, J=7.2 Hz, 3H),
3.57 (s, 2H), 3.69 (s, 3H), 4.02 (s, 3H), 4.03 (g, /= 7.2 Hz, 2H), 6.76 (s, 1H), 7.01-7.03 (m,
2H), 7.08-7.21 (m, 9H), 7.71 (s, 1H); *C NMR (CDCl;) I'14.3, 40.3, 55.8, 56.1, 60.8, 105.8,

106.2, 126.5, 126.6, 127.2, 127.6, 127.7, 127.7, 128.9, 129.3, 130.7, 131.0, 138.0, 138.1,

139.7, 140.1, 149.6, 149.7, 172.3; IR (CHCls, cm™) 3057, 3020, 2982, 2956, 2831, 1733,
1623, 1599, 1566; HRMS Calcd for Cp3sHaO4: 426.1831. Found: 426.1837.

Ethyl (6,7-dimethoxy-1,2-dipropyl-3-naphthyl)acetate (32). The reaction mixture
was chromatographed using 3:1 hexane/EtOAc to afford 66 mg (73 % yield) of the indicated
compound as a pale yellow solid: mp 94-96 °C; '"H NMR (CDCl3) I'1.07 (t, J= 7.2 Hz, 3H),
L11(t,J=7.2 Hez, 3H), 1.25 (t, /= 7.2 Hz, 3H), 1.47-1.60 (m, 2H), 1.63-1.77 (m, 2H), 2.71-
2.76 (m, 2H), 2.95-3.01 (m, 2H), 3.76 (s, 2H), 3.96 (s, 3H), 4.00 (s, 3H), 4.17 (q, /= 7.2 Hz,
2H), 7.04 (s, 1H), 7.22 (s, 1H), 7.44 (s, IH); “C NMR (CDCly) I 14.4, 15.0, 15.1, 242,246,
31.5,32.3,40.0, 55.9, 55.9, 61.0, 103.4, 106.9, 126.8, 127.4, 128.3, 129.8, 135.3, 135.3,
148.8, 149.4, 172.5; IR (CHCls, em™) 3020, 2958, 2871, 1729, 1510, 1473; HRMS Calcd for
C22H3p04: 358.2144. Found: 358.2148.

Ethyl [1,2-di(benzyloxy)methyl-6,7-dimethoxy-3-naphthyl]acetate (33). The
reaction mixture was chromatographed using 2:1 hexane/EtOAc to afford 72 mg (60 % yield)
of the indicated compound as a white solid: mp 83-85 °C; 'H NMR (CDCl3) ['1.20 (t, J =

7.2 Hz, 3H), 3.84 (s, 2H), 3.86 (s, 3H), 3.97 (s, 3H), 4.07 (q, J= 7.2 Hz, 2H), 4.52 (s, 2H),
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4.53 (s, 2H), 4.70 (s, 2H), 4.88 (s, 2H), 7.04 (s, 1H), 7.30-7.37 (m, 11H), 7.58 (s, 1H); °C
NMR (CDCl3) I"'14.4, 39.5, 55.9, 56.0, 61.0, 65.6, 66.1, 72.7, 72.8, 103.8, 106.5, 128.0,
128.0,128.2, 128.4, 128.4, 128.6, 128.6, 129.5, 129.7, 130.4, 132.4, 132.5, 138.4, 138.4,
149.8, 149.9, 172.1; IR (CHCl3, cm™') 3019, 2939, 1727, 1509, 1259; HRMS Caled for
C33H3406: 514.2355. Found: 514.2362.

Ethyl (2-ethoxycarbonyl-6,7-dimethoxy-1-phenylnaphth-3-yl)acetate (34). The
reaction mixture was chromatographed using 2:1 hexane/EtQAc to afford 77 mg of
naphthalene 34 as a colorless oil in 73 % yield and 8 mg of naphthalene 35 as a pale yellow
oil in an 8 % yield. Naphthalene 34: 'H NMR (CDCl3) I0.86 (t, J=7.2 Hz, 3H), 1.25 (t, J
=7.2 Hz, 38), 3.72 (s, 3H), 3.89 (s, 2H), 3.93 (q, /= 7.2 Hz, 2H), 4.00 (s, 3H), 4.16 (q, J =
7.2 Hz, 2H), 6.85 (s, 1H), 7.12 (s, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.40-7.46 (m, 3H), 7.64 (s,
1H); °C NMR (CDCl3) I'13.7, 14.4, 39.7, 55.8, 56.1,61.0,61.0,105.7,106.2, 127.1, 127.7,
128.0,128.2, 130.1, 130.2, 130.2, 137.8, 139.1, 150.0, 150.5, 169.6, 171.6 (one sp* carbon is
missing due to overlap); IR (CHCl,, cm']) 3021, 2981, 2937, 1731, 1625; HRMS Calcd for
CasHagOn: 422.1729. Found: 422.1734. Naphthalene 35: "H NMR (CDCl3) T0.89 (dt, J =
1.5,7.2 Hz, 3H), 1.15 (dt, J = 1.5, 7.2 Hz, 3H), 3.56 (s, 2H), 3.96-4.05 (m, 5H), 4.08-4.19
(m, 5H), 7.13 (s, 1H), 7.19 (s, 1H), 7.27-7.47 (m, 5H), 7.73 (s, 1H).

Ethyl [6,7-dimethoxy-2-phenyl-1-(phenylethynyl)-3-naphthyl]acetate (36) and
ethyl [6,7-dimethoxy-1-phenyl-2-(phenylethynyl)-3-naphthyl]acetate (37). The reaction
mixture was chromatographed using 3:1 hexane/EtOAc to afford 74 mg (66 % yield) of a
83:17 mixture of regioisomers 36/37 as determined by '"H NMR spectroscopic analysis of the
yellow oil. '"H NMR (CDCl;) for the major regioisomer 36: I'1.23 (t, J= 7.2 Hz, 3H), 3.74

(s, 2H), 4.00 (s, 3H), 4.04 (s, 3H), 4.18 (g, J = 7.2 Hz, 2H), 6.89 (s, 1H), 7.12 (s, 1H), 7.14-




137

7.55 (m, 10H), 7.63 (s, 1H). 'H NMR (CDCls) for the minor regioisomer 37: I'1.16 (t,J =
7.2 Hz, 3H), 3.59 (s, 2H), 4.00-4.05 (m, 5H), 4.08 (s, 3H), 7.14-7.55 (m, 11H), 7.67 (s, 1H),
7.77 (s, 1H). Additional *C NMR (CDCls) for the mixture ['14.3, 14.4, 39.9, 41.1, 55.8,
36.0, 56.1,60.9, 61.1, 87.9, 88.3, 97.1, 98.2, 105.4, 105.5, 106.5, 106.5, 119.4, 119.5, 123.8,
127.0,127.2, 127.5, 127.6, 128.1, 128.2, 128.3, 128.4, 128.6, 129.1, 129.3, 130.3, 130.8,
131.3,131.3, 131.4, 139.6, 140.3, 142.3, 142.5, 149.8, 150.2, 150.2, 150.7, 171.9, 172.0 (five
sp2 carbons and one sp3 carbon missing due to overlap); IR (CHCI;, cm'l) 3057, 3020, 2980,
1731, 1506, 1255; HRMS Calcd for C3oH604: 450.1831. Found: 450.1839.
3-Benzyl-1,2-di(hydroxylmethyl)-6,7-dimethoxynaphthalene (39). The reaction
mixture was chromatographed using 1:3 hexane/EtOAc to afford 63 mg of the indicated
compound as a white solid in a 73 % yield: mp 170-172 °C; '"H NMR (CDCI3) I"2.28 (br s,
2H), 4.00 (s, 3H), 4.03 (s, 3H), 4.26 (s, 2H), 4.83 (s, 2H), 5.15 (s, 2H), 7.08 (s, 1H), 7.14 (d, J
= 6.8 Hz, 2H), 7.20 (dt, /= 2.0, 7.6 Hz, 1H), 7.27 (d, /= 7.6 Hz, 1H), 7.28 (dt, J=2.0, 8.4
Hz, 1H), 7.49 (s, 1H), 7.54 (s, 1H); >C NMR (CDCl;) " 40.4, 56.1, 56.1, 58.9, 59.8, 103.0,
106.7, 126.6, 127.4, 128.7, 128.9, 129.0, 129.9, 134.9, 135.1, 136.0, 141.4, 150.0, 150.1; IR
(CHCl3, cm™) 3415 (br), 3019, 2972, 2953, 2903, 2829, 1625, 1602; HRMS Calcd for
C2Hz;04: 338.1518. Found: 338.1525.
(3-Benzyl-6,7-dimethoxy-2-phenyl-1-naphthyl)methanol (40). The reaction mixture
was chromatographed using 1:1 hexane/EtOAc to afford 30 mg (31 % yield) of the indicated
compound as a yellow solid: mp 144-146 °C; '"H NMR (CDCl3) I" 1.45 (brs, 1H), 3.80 (s,
2H), 4.00 (s, 3H), 4.04 (s, 3H), 4.75 (s, 2H), 6.88-6.91 (m, 2H), 7.05-7.20 (m, 6H), 7.34-7.38

(m, 3H), 7.48 (s, 1H), 7.54 (s, 1H); °C NMR (CDCl;) I'40.5, 56.1, 56.2, 60.5, 103.7, 106.8,
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125.9, 126.7, 127.3, 127.8, 128.3, 128.3, 129.2, 129.4, 129.9, 132.7, 135.7, 139.4, 139.9,
141.1, 149.7, 150.0; IR (CHCl3, cm™) 3354 (br), 3016, 2940, 1509; HRMS Caled for
Co6H2405: 384.1725. Found: 384.1731.

Ethyl 3-benzyl-6,7-dimethoxy-1-phenyl-2-naphthoate (41) and ethyl 3-benzyl-6,7-
dimethoxy-2-phenyl-1-naphthoate (42). The reaction mixture was chromatographed using
2:1 hexane/EtOAc to afford 81 mg of compound 41 (76 % yield) as a pale yellow solid and 9
mg of compound 42 (8 % yield) as a yellow oil. Naphthalene 41: mp 129-131 °C; 'H NMR
(CDCL3) I'0.77 (t, J= 7.2 Hz, 3H), 3.71 (s, 3H), 3.80 (q, /= 7.2 Hz, 2H), 3.97 (s, 3H), 4.19
(s, 2H), 6.83 (s, 1H), 7.05 (s, 1H), 7.18-7.33 (m, 5H), 7.36-7.47 (m, 6H); NOE: H*-H" *C
NMR (CDCl3) I"13.7, 39.6, 55.8, 56.1, 60.8, 105.5, 106.3, 126.3, 126.4, 126.9, 127.7, 128.2,
128.5, 129.6, 130.0, 130.3, 131.2, 133.5, 136.9, 138.7, 140.4, 149.7, 150.3, 169.9; IR
(CHCls, cm™) 3057, 3024, 2962, 1713, 1507; HRMS Caled for CagHasO4: 426.1831. Found:
426.1831. Anal. Caled: C, 78.85; H, 6.15. Found: C, 78.69; H, 6.18. Naphthalene 42: "H
NMR (CDCly): ['0.89 (t, /=7.2 Hz, 3H), 3.90 (s, 2H), 3.97 (s, 3H), 3.99 (s, 3H), 4.01 (q, J
=17.2 Hz, 2H), 6.91-6.93 (m, 2H), 7.07 (s, 1H), 7.14-7.21 (m, 6H), 7.30-7.34 (m, 3H), 7.55
(s, 1H); C NMR (CDCl3) I'13.9, 39.8, 56.1, 56.1, 61.2, 103.7, 106.4, 124.4, 126.0, 127.4,
128.0, 128.4, 129.0, 129.2, 130.0, 130.5, 135.4, 137.2, 139.4, 141.0, 150.0, 150.4, 169.7 (one
sp2 carbon missing due to overlap); IR (CHCI;, cm"]) 3021, 2937, 1714, 1506; HRMS Calcd
for CogHa604: 426.1831. Found: 426.1831.

2-Benzyl-9-methyl-3,4-dipropyl-9H-carbazole (44). The reaction mixture was
chromatographed using 20:1 hexane/EtOAc to afford 29 mg (33 % yield) of the indicated
compound as a pale yellow solid: mp 113-115 °C; '"H NMR (CDClL;) I'1.02 (t, J = 7.2 Hz,

3H), 1.19 (t, J= 7.2 Hz, 3H), 1.46-1.55 (m, 2H), 1.77-1.84 (m, 2H), 2.70-2.74 (m, 2H), 3.19-
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3.23 (m, 2H), 3.73 (s, 3H), 4.24 (s, 2H), 7.02 (s, 1H), 7.16-7.24 (m, 4H), 7.25-7.30 (i, 21),
7.36 (d, J= 8.0 Hz, 1H), 7.41-7.45 (m, 1H), 8.07 (d, J= 8.0 Hz, 1H); "*C NMR (CDCL) [
15.1,15.1, 23.5, 25.3, 29.1, 31.3, 32.7, 40.7, 108.3, 108.5, 118.9, 120.0, 122.4, 123.0, 124.8,
126.1,128.5, 128.9, 130.3, 136.8, 137.1, 140.0, 141.4, 141.8; IR (CHCIl3;, cm™) 3018, 2957,
2930, 1597, 1216; HRMS Calcd for CogHoN: 355.2300. Found: 355.2310.
2-Benzyl-3,4-bis[(benzyloxy)methyl]-9-methyl-9H-carbazole (45). The reaction
mixture was chromatographed using 10:1 hexane/EtOAc to afford 72 mg (56 % yield) of the
indicated compound as a pale yellow solid: mp 112-114 °C; "H NMR (CDCls) I'3.73 (s,
3H), 4.27 (s, 2H), 4.43 (s, 2H), 4.57 (s, 2H), 4.62 (s, 2H), 5.11 (s, 2H), 7.06 (d, J= 7.2 Hz,
2H), 7.16-7.25 (m, 5H), 7.28-7.35 (m, 10H), 7.42-7.46 (m, 1H), 8.06 (d, J= 8.0 Hz, 1H); '*C
NMR (CDCl3) I'29.2, 40.1, 65.7, 66.4, 72.8, 72.8, 108.4, 110.9, 115.5, 119.3, 121.5, 122.6,
123.3,125.4,126.1, 127.0, 127.9, 127.9, 128.5, 128.5, 128.5, 128.9, 132.7, 138.4, 138.5,
138.6, 141.5, 141.5, 141.7 (one sp2 carbon missing due to overlap); IR (CHCl,, cm'!) 3015,
1597, 1216; HRMS Calcd for C3gH33NO,: 511.2511. Found: 511.2520.
2-Benzyl-3,4-bis(hydroxymethyl)-9-methyl-9H-carbazole (46). The reaction mixture
was chromatographed using 1:1 hexane/EtOAc to afford 34 mg (41 % yield) of the indicated
compound as a yellow solid: mp 191-193 °C; '"H NMR (CD;0D) I'3.31 (s, 1H), 3.31 (s,
1H), 3.75 (s, 3H), 4.35 (s, 2H), 4.84 (s, 2H), 5.30 (s, 2H), 7.12-7.23 (m, 6H), 7.27 (s, 1H),
7.38-7.44 (m, 2H), 8.26 (d, J= 8.0 Hz, 1H); ’C NMR (CD,0D) I"29.2, 40.9, 58.5, 59.6,
109.6,111.7,120.2, 122.1, 123.7, 124.1, 126.5, 127.1, 129.5, 129.8, 130.1, 136.0, 139.7,
142.6, 142.9, 143.1; IR (CHCl3, cm™) 3397 (br), 3060, 3019, 2924, 1598, 1215; HRMS

Caled for C3oHz1NO,: 331.1572. Found: 331.1579.
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Ethyl 2-benzyl-9-methyl-4-phenyl-9H-carbazole-3-carboxylate (48) and ethyl 2-
benzyl-9-methyl-3-phenyl-9H-carbazole-4-carboxylate (49). The reaction mixture was

chromatographed using 20:1 hexane/EtOAc to afford 106 mg (91 % yield) of a 60:40 mixture
of regioisomers 48/49 as determined by "H NMR speciroscopic analysis of the yellow oil.
Carbazole 48: 'H NMR (CDCls) I'0.80 (t, /= 7.2 Hz, 3H), 3.79 (s, 3H), 3.84 (q, /= 7.2 Hz,
2H), 4.30 (s, 2H), 6.91-6.95 (m, 2H), 7.15 (s, 1H), 7.18-7.23 (m, 1H), 7.27-7.40 (m, GH),
7.46-7.50 (m, 5H); *C NMR (CDCl3) I' 13.7, 29.4, 40.3, 60.8, 108.5, 109.0, 119.3, 119.5,
122.3,122.8,125.8, 126.1, 126.3, 127.9, 128 .4, 128.6, 129.5, 129.6, 135.9, 136.6, 139.4,
140.9, 141.5, 141.9, 170.2; IR (CHCls, cm™') 3062, 2981, 1709, 1593; HRMS Caled for
CaoHy50,N: 419.1885. Found: 419.1892. Carbazole 49: 'H NMR (CDCL) I'0.94 (t, J =
7.2 Hz, 3H), 3.81 (s, 3H), 4.01 (s, 2H), 4.11 (dq /= 2.0, 7.2 Hz, 2H), 6.94-6.96 (m, 2H),
7.12-7.25 (m, 6H), 7.29-7.34 (m, 4H), 7.39 (d, J = 8.4 Hz, 1H), 7.46-7.50 (m, 1H), 7.97 (d, J
= 8.0 Hz, 1H). Additional >*C NMR (CDCl;) for the mixture: I'13.8, 13.9, 29.4, 29.4, 40.2,
40.3,60.8,61.3, 108.5, 108.7, 109.0, 111.1, 117.6, 119.2, 119.5, 121.1, 121.9, 122.3, 122.8,
125.8, 126.0, 126.1, 126.3, 127.2, 127.8, 127.9, 127.9, 128.4, 128.4, 128.5, 129.1, 129.5,
130.6, 131.4, 135.8, 136.6, 137.3, 139.3, 139.4, 140.7, 140.9, 141 .4, 141.5, 141.8, 141.9,
169.8, 170.2 (three sp’ carbons missing due to overlap).

Ethyl 2-benzyl-4,9-dimethyl-9 H-carbazole-3-carboxylate (50) and ethyl 2-benzyl-
3,9-dimethyl-9H-carbazole-4-carboxylate (51). The reaction mixture was
chromatographed usingi0:1 hexane/EtOAc to afford 69 mg (78 % yield) of a 82:18 mixture
of regioisomers 50/51 as determined by 'H NMR spectroscopic analysis of the yellow oil.
Carbazole 50: "H NMR (CDCl;) I'1.26 (t, J = 7.2 Hz, 3H), 2.85 (s, 3H), 3.77 (s, 3H), 4.23,

(s, 2H), 4.28 (q, J=7.2 Hz, 2H), 7.03 (s, 1H), 7.20-7.30 (m, 6H), 7.39 (d, J = 8.4 Hz, 1H),
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7.46-7.49 (m, 1H), 8.18 (d, J = 7.6 Hz, IH); NOE: H*-H®;, *C NMR (CDCly) ['14.3, 18.3,
29.3,40.5,61.2,107.9, 108.6, 119.5, 120.0, 122.8, 123.6, 125.5, 126.3, 126 .4, 128.5, 129.3,
131.3,136.1, 141.0, 141.4, 141.7, 171.0; IR (CHCls, cm™) 3057, 3027, 2983, 2901, 1710,
1596; HRMS Caled for Cp4H,30,N: 357.1729. Found: 357.1734. Carbazole 51: 'H NMR
(CDCLy) T'1.45 (t, J= 7.2 Hz, 3H), 2.33 (s, 3H), 3.76 (s, 3H), 4.19 (s, 2H), 4.59 (q, J = 7.2
Hz, 2H), 7.13-7.30 (m, 7H), 7.34-7.39 (m, 1H), 7.42-7.49 (m, 1H), 7.89 (dd, /= 1.2, 10.4 Hz,
1H); °C NMR (CDCly) ['14.6, 16.4, 29.3, 40.8, 61.7, 108.7, 111.6, 117.8, 119.2, 121 .1,
121.4,124.3, 126.0, 126.3, 127.8, 128.7, 128.9, 137.5, 139.8, 140.4, 141.6.

Ethyl 7-benzyl-9-phenylpyrido[1,2-a]indole-8-carboxylate (53). The reaction
mixture was chromatographed using 1:1 hexane/EtOAc to afford 34 mg (41 % yield) of the
indicated compound as a yellow oil: 'H NMR (CD;0OD)TI°0.92 (t, /= 7.2 Hz, 3H), 4.01 (q, J
=7.2 Hz, 2H), 5.28 (d, /= 2.0 Hz, 2H), 6.90 (s, 1H), 7.04-7.08 (m, 1H), 7.20-7.28 (m, 3H),
7.33-7.52 (m, 11 H); *C NMR (CD;OD) I' 13.8, 43.5, 61.4, 104.2, 109.1, 120.6, 121.7,
123.6,128.0, 128.2, 128.4, 128.5, 128.6, 128.8, 129.2, 129.3, 129.6, 132.5, 134.4, 136.3,
136.9, 138.5, 168.3 (one sp? carbon missing due to overlap); IR (neat, cm™) 3056, 3026,
2979,2933, 1717, 1134; HRMS Calcd for C3Hz3NO,: 405.1729. Found: 405.1735.
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Abstract
Novel palladium migration/arylation methodology for the synthesis of complex fused
polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular
mugration processes involving C-H activation are employed. The chemistry works best with
electron-rich aromatics, which is in agreement with the idea that these palladium-catalyzed

C-H activation reactions parallel electrophilic aromatic substitution.

Introduction

The ability of palladium to activate C-H bonds has been used extensively in organic
synthesis.! In recent years, palladium-catalyzed C-H activation has received considerable
attention due to the wide variety of reactions this metal will catalyze. For instance, catalytic
amounts of Pd salts have been used to effect the addition of C-H bonds of electron-rich
arenes to alkenes and alkynes and effect carbonylation.”? We have previously reported the
synthesis of 9-benzylidene-9H-fluorenes by Pd-catalyzed intramolecular C-H activation %
involving the rearrangement of organopalladium intermediates derived from aryl halides and |

internal alkynes.” Similarly, intramolecular C-H activation in organopalladium intermediates
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derived from o-halobiaryls leads to a 1,4-palladium migration (Scheme 1).4 We have already
shown that such intermediates can be trapped by Heck, Suzuki and alkyne annulation
reactions.”” We have recently reported that this aryl-to-aryl palladium migration process,
followed by arylation, provides a novel, new route to a wide variety of carbo- and
heterocycles.® Herein, we now wish to report further details regarding this aryl-aryl

migration and also vinylic-aryl migration chemistry, followed by intramolecular arylation.

Scheme 1
X X X 7 X X
CO,Et
i O 1.4-Pd O O COZEL O
shift Pdl| — ] + |

| cat. Pd(0)

Pdl
g g O g Q-

Our strategy involves palladium C-H activation and 1,4-palladium migration within a
biaryl, which generates key arylpalladium intermediates, which subsequently undergo C-C
bond formation by intramolecular arylation producing fused polycycles (Scheme 2). This
process represents a very powerful new tool for the preparation of complex molecules, which

might be difficult to prepare by any other present methodology.
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Scheme 2
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Results and Discussion

In order to obtain an optimum set of reaction conditions for migration, we have
reinvestigated the palladium-catalyzed transformation of 1-iodo-1,2,2-triphenylethene (1) to
9-benzylidene-9H-fluorene (2) as our model system® (Table 1). While this system may not
be the most obvious for a study of aryl to aryl Pd migrations, we had previously accumulated
substantial data on this system. To begin with, we carried out this reaction using our
previously reported conditions® and obtained a 73 % yield of the desired compound 2, along
with a 15 % yield of triphenylethene (3) (entry 1). The first variable to be examined was the
ligand on palladium. We examined phosphines other than PPhs. Entries 2 and 3 indicate that
P(o-tol); and CH,(PPhy), (dppm) are superior to PPh; in affording higher yields of the
fluorene 2. However, the reactions with all of these phosphine ligands required 3 d to reach
completion. In order to shorten this relatively lengthy reaction time, we eliminated »-
BusNCI (TBAC) and found that the reaction was complete after only 1 d (entry 4).

Unfortunately, this led to a much lower yield of the desired compound 2 (47 %), and the
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yield of reduced product 3 increased to 47 %. In order to investigate whether DMF was the

hydride source for the reduction of 1 to 3, we carried out this reaction using other solvents,

Table 1.  Palladium-catalyzed cyclization of 1-iodo-1,2,2-triphenylethene (1) to 9-
benzylidenefluorene (2).?

Ph. I .
l 5 % Pd(QAc),
base .
solvent .
1 100 °C :

entry ligand base chloride  solvent time %yield2 % yield3
(mol %) source (d) :
1 PPhs (10) NaOAc TBAC’ DMF 3 73 15
2 P(o-tol); NaOAc TBAC DMF 3 75 20
(10)
3 dppm° (5) NaOAc TBAC DMF 3 79 15
4 dppm (5) NaOAc - DMF 1 47 47
5 dppm (5) NaOAc - DMA 15 52 48
6 dppm (5) NaOAc - NMP 1 46 46
7 dppm (5) NaOAc - DMSO 1 - -
8 dppm (5) pyridine - DMF 1 - -
9 dppm (5} i-Pr,NEt - DMF 1 - -
10 dppm (5) N2;CO;, - DMF 1 70 26
11 dppm (5) NaHCO; - DMF 1 65 23
12 dppm (5) Na,CO4° - DMF 1 - 47
13 dppm (5) Cs,CO4 - DMF 1 74 22
14 dppm (5) CsOAc - DMF 2 90 4
15 dppm (5) Cs0,CCMe; - DMF 1 96 4
16 dppm (5) Cs0,CCMe; - DMA 1 59 17°
17 dppe' (5)  CsO,CCMe;y - DMF 1 90 10
18 dppm (5) n-BuyNOAc - DMF 1 <10 -

“The reaction was run using 0.25 mmol of 1-iodo-1,2,2-triphenylethene (1), 5 mol % of Pd(OAc); and 4 mL of
solvent at 100 °C. °TBAC = n-Bu,NCL. ‘Dppm = 1,1-bis(diphenylphosphino)methane. ‘One equiv of Nal was
added. “T'wenty four percent of 1 was recovered. 'Dppe = 1,2-bis(diphenylphosphinc)ethane,

such as DMA, NMP, and DMSO (entries 5-7). DMSO gave none of the desired fluorene 2 or

any reduction product 3. The amount of reduction was more or less the same in the other
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solvents. Thus, we continued our investigation using DMF as the reaction solvent.

We also examined the effect of various bases on the yields of 2 and 3, including organic
bases, such as pyridine and diisopropylethylamiﬁe (entries 8 and 9). These bases were
ineffective in promoting the reaction and TLC analysis of the reaction mixtures indicated
only the presence of the starting vinylic halide 1. The use of Na,CO; as the base provided 2
m a 70 % yield, but we also obtained a 26 % yield of reduced product 3 (entry 10). The base
NaHCO; provided a 65 % yield of 2 and a 23 % yield of 3 (entry 11). We believe that the
solubility of these bases in the reaction mixture may be playing a critical role in determining
the outcome. Thus, once again we used Na,CO; as the base, but this time we added 1 equiv
of Nal, which is completely soluble in DMF, as an additive to promote a sodium common ion
effect intended to make NayCOs less soluble in the reaction mixture. Indeed, this experiment
revealed that under such reaction conditions only the reduced product 3 was produced in a 47
% yield (eniry 12). None of the desired product 2 was observed (compare entries 10 and 12).
Although there may be a number of other effects going on under these reaction conditions, it
seemed logical to assume that the vield of the reaction would improve by using more soluble
inorganic bases. Thus, the use of Cs;COs, which presumably has better solubility than other
alkali carbonates in DMF,” provided a slightly higher 74 % vield of compound 2, along with
a 22 % yield of the reduced product 3. Similarly, the use of very soluble CsOAc as the base
provided a 90 % yield of the desired product 2, along with 4 % of the reduced product 3 after
2 d (entry 14). We subsequently found that cesium pivalate (CsQ,CCMe;), unlike any other
previously studied base, was completely soluble in DMF at 100 °C. In this case, we obtained
an impressive 96 % yield of the desired compound 2, along with only a small amount of the

reduced product 3 (4 %) after only 1 d (entry 15). Clearly, cesium pivalate is far superior as

| i 5 <) SO RO
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a base in this reaction, and its high solubility in DMF seems to explain this phenomena. To
illustrate, we carried out the reaction of 1 under conditions identical to those described in
entry 15, but we used DMA instead of DMF as the solvent, in which cesium pivalate is not
completely soluble. Under these conditions, we obtained a relatively low 59 % yield of the
desired compound 2, along with a 17 % yield of the reduced product 3 (entry 16). Twenty
four percent of the starting vinylic iodide 1 was also obtained. Finally, to test whether dppm
was indeed critical to this reaction, we carried out the transformation using another chelating
phosphine ligand, namely 1,2-bis(diphenylphosphino)ethane (dppe), and we obtained a 90 %
yield of 2, along with a 10 % yield of the reduced product 3 (entry 17). As a result of this
optimization work, our optimal set of reaction conditions for this transformation are those
listed in entry 15 of Table 1. Notice that the newly developed conditions catalyze the
transformation of 1 to 2 in high yield and much shorter reaction time than our earlier reported
procedure (entry 1).> The variable most critical to the success of this process appears to be
the highly soluble cesium pivalate base. Surprisingly, the use of 7-BusNOAc as the base,
which is also completely soluble in DMF under reaction conditions identical to those
described in entry 15, failed to promote this reaction, affording only trace amounts of the
desired product 2 after 1 d (entry 18). Thus, not only the solubility, but also the exact nature
of the base, appears critical in determining the reaction yield. It is interesting to note that the
work of Buchwald, Hartwig and Fu has demonstrated that steric congestion imposed on
palladium by bulky, electron-rich ligands facilitates both the oxidative addition and reductive
elimination steps involving palladium, and gives rise to more effective catalyst systems.®

However, nothing is apparently known about the effects of using a sterically hindered base,
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such as pivalate, in palladium chemistry, and whether or not it may give similar results to
those obtained using bulky ligands.

With an apparently “optimal” set of reaction conditions for palladium migration
chemistry at our disposal, we proceeded to study the sequential Pd-catalyzed
migration/arylation of various 3’-substituted 2-iodobiphenyls (Table 2). We began by
allowing 3’-benzyl-2-iodobiphenyl (4) to react under our standard reaction conditions at 100
°C, but after 2 d this substrate failed to react. However, by simply increasing the reaction
temperature to 110 °C, we were able to obtain the desired compound § in a 40 % yield (entry
1). The disappointingly low yield obtained with this substrate might be explained by the
poor reactivity of the benzyl moiety as an intramolecular trap. To test this idea, we carried
out the reaction with the more electron-rich 2-iodo-3’-phenoxybiphenyl (6) and obtained the
desired 4-phenyldibenzofuran (7) in an impressive 89 % yield (entry 2). Clearly, these
results indicate that the electron-rich oxygen-substituted phenyl ring is superior as an
arylating agent. Our finding that electron-rich arenes are superior to electron-neutral arene
traps 1s consistent with literature reports indicating that the ease of C-H activation by
palladium parallels electrophilic aromatic substitution.’ Similarly, we were able to
selectively obtain 3-chloro-5-phenyldibenzofuran (9} in an 82 % yield from 3-(p-
chlorophenoxy)-2-iodobiphenyl (8) under our standard conditions, while leaving the chloro

functionality intact (entry 3).
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Table 2. Sequential 1,4-Palladium Migration, Followed by Intramolecular Arylation®

entry substrate product(s) time yield®
YRV

QOQ s x4

3 X=Cl g Ph 9 1° 82
4 X=H 10 L) C 11 1 70
O " \
5 X=Me 12 Ph X 13 1 vil
Ph
SAUENNGo N>
6 14 24 75
O 1 O + (60 : 40)

celE
[
X=0Me 22 l 23 2° 71(22)

| ()

X =C0OE1 24 25 2 50(20)
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Table 2 continued
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Table 2 continued

18 2° 0

19 1 o

0.5 78+12

20
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23

24

25

26

27

49

51

53

55

56

50 2° 80
52 2 0
54 5° 0(12)
4 1 88

(<5)

57 14 0(62)

*The reaction was carried out under the following standard conditions employing .25 mmol of the aryl halide,
5 mol % Pd{OAc),, 5 mol % dppm, and 2 equivs of CsO,CCMe; in DMF (4 mL) at 100 °C unless otherwise

noted. °The yield in parentheses corresponds to the GC yield of product in which the C-1 bond has been

reduced to a C-H. “The reaction temperature was increased to 110 °C. ¢ The reaction temperature was

increased to 120 °C. © The yield was determined by 'H NMR spectroscopy.
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Motivated by the ease of preparation of the following starting materials and by the
knowledge that electron-rich arenes are apparently superior as intramolecular traps for our
arylpalladium intermediates, we synthesized the indole derivatives 10 and 12. To our great
satisfaction, compound 10 smoothly underwent the desired reaction, producing the relatively
strained isoindoloindole 11 in a 70 % yield (entry 4). Surprisingly, compound 12 produced
the strained and sterically congested 2-methylisoindoloindole 13 in a comparable 71 % yield
(entry 5). We next examined the possibility of using an intramolecular arylation to form
six-membered rings. Unfortunately, 3-(2-iodophenyl)benzyl phenyl ether (14) failed to

react under our standard reaction conditions. Even at 110 °C, the reaction was sluggish, so

the temperature was increased to 120 °C, in which case the reaction was complete after 2 d.
Unfortunately, a 60:40 inseparable mixture of the desired compound 15 and the reduced
product 16 was obtained in a 75 % overall yield (entry 6). Clearly, the formation of a six- 2
membered ring is not as favorable as five-membered ring formation (compare entries 2 and

6). This might be due to the difficulty in forming a seven-membered ring palladacycle

(Figure 1),

Figure 1. Unfavorable seven-membered ring palladacycle intermediates

L .8
L) e
g QO

We proceeded to investigate the sequential migration/arylation reaction of more
complex polyaromatic compounds. In theory, 2-iodo-1-phenylnaphthalene (17) should
afford fluoranthene (18) using our methodology. Mechanistically, the palladium must first

undergo a 1,4-palladium migration from the 2-position of the naphthalene to the o-position of
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the phenyl substituent, followed by arylation at the 8-position of the naphthalene (Scheme 3).

Although the reaction did not proceed at 100 °C, at 110 °C compound 17 produced the

Scheme 3

5% Pd(OAc),
5% CHa{PPhs),
Pdl
2 CsO,CCMes

|
DMF, 110 °C Pdl
1d, 80 % 5

17

|

desired compound 18 in an 81 % yield (entry 7). Similarly, 2-bromo-1-phenylnaphthalene
{19) produced the desired fluoranthene (18) in a 70 % yield, indicating that this aryl bromide
also undergoes the desired transformation, but in a somewhat lower yield and a longer
reaction time.

Amother interesting example of this migration/arylation chemistry involves the
rearrangement of easily prepared 9-iodo-10-arylphenanthrenes'? to
benzfe]acephenanthrylenes (entries 9-12). In this case, the palladium migrates from the 9
position of the phenanthrene to the ortho position of the aryl substituent, followed by ;
cyclization onto the I position of the phenanthrene. Indeed, the reaction of 9-iodo-10- :

phenylphenanthrene (20) under our standard reaction conditions at 110 °C produced the
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desired benz[e]acephenanthrylene (21) in a 78 % vield (entry 9). We proceeded to
nvestigate electronic effects in this phenanthrene reaction by looking at different substituents
on the phenyl moiety. As expected, the use of an electron-donating methoxy group in
compound 22 gave a good yield (71 %) of the corresponding benz[e]acephenanthrylene 23,
although the yield was slightly lower than that of the parent system (entry 10). As expected,
the introduction of an electron-withdrawing CO,Et group in the para position of the phenyl
substituent was detrimental to the reaction, producing compound 25 in only a 50 % yield.

All of these phenanthrene reactions gave approximately a 20 % yield of the corresponding
reduction product.

We have also studied the regioselectivity of the migration by using an m-tolyl moiety in
the 10-position of the 9-iodophenanthrene (entry 12). Compound 26 has two available
positions for palladium migration, the more sterically-congested neighboring 2 position or
the remote 6 position of the phenyl ring. The palladium-catalyzed cyclization of compound
26 generated compound 27 exclusively in a 56 % yield, alongside a significant amount of
reduction product (37 %). This result indicates that palladium migration occurs exclusively
onto the Jess sterically-congested 6 position of the phenyl moiety and that the presence of a
methyl group apparently completely inhibited migration to the more hindered 2 position or at
least cyclization of that intermediate to the corresponding polycyclic product.

We next tried to prepare the more strained fused thiophene 29 from phenanthrene 28.
Unfortunately, this reaction led to a very complex mixture, which produced none of the
desired compound 29 as far as we could tell. Besides the unfavorable ring strain associated

with the final product 29, intramolecular sulfur chelation of the intermediate 10-(thiophen-2-
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yDphenanthren-9-ylpalladium iodide might be inhibiting the palladium migration step

(Figure 2).

Figure 2. Intramolecular palladium chelation by sulfur.

The relatively electron-rich benzo[e]phenanthrene 30 also underwent the
migration/arylation reaction, producing the highly conjugated hexacyclic compound 31 in a
65 % yield (entry 14). Unfortunately, compound 32 failed to generate the desired hexacycle
33 under our reaction conditions at 110 °C (entry 15). Only reduction product was isolated in
an 80 % yield. This example once again indicates that intramolecular cyclization to form a
six membered ring is apparently rather unfavorable.

Having studied the palladium-catalyzed transformation of a variety of polycyclic
aromatic halides, we switched our attention to heterocyclic aromatic compounds. To begin
with, we carried out the reaction of 3-iodo-4-phenylquinoline (34) under our standard
reaction conditions at 100 °C, but after 2 d this substrate failed to react. Fortunately, by
simply increasing the reaction temperature to 110 °C, we obtained the desired indeno[1,2,3-
de]quinoline (35) in a 54 % yield. Again the modest yield obtained with this electron-
deficient substrate is consistent with our previous observations that electron-deficient
substrates do not perform as well as more electron-rich substrates (compare entries 7 and 16).

We also allowed 2-iodo-1-methyl-3-phenylindole (36) to react under our standard reaction
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conditions at 110 °C, but failed to obtain the desired tricyclic compound 37 (entry 17). A
similar negative result was obtained with iodoindole 38 (entry 18). The poor results obtained
with substrates 36 and 38 can be explained in terms of the unfavorable ring strain of the
corresponding products 37 and 39. In addition, we have previously established, using Heck
trapping experiments, that palladium prefers to reside on the indole moiety in such
substrates.*”

To confirm our suspicion that the palladium prefers to migrate to a more electron-rich
position, because of the relatively easy activation of an electron-rich C-H bond,**”
compound 40 was allowed to react under our migration conditions and indole 41 was
produced in a 92 % yield in 1 d at 100 °C (entry 19). From the results of entries 1 and 19, it
appears that the high efficiency of palladium migration to a relatively electron-rich ring
allows the sequential migration/arylation to proceed smoothly at a lower temperature and in a
shorter reaction time, although the benzyl group is not a particularly good arylating agent.
When a methoxy group was introduced onto the benzyl group, this migration/arylation
reaction afforded a mixture of indoles 43 and 44 in 78 % and 12 % yields, respectively (entry
20). This result is consistent with our previous observation (see entry 12) that the palladium
intermediate is more likely to form the final carbon-carbon bond at the less hindered position
of the aryl terminus. When compound 45, which has an electron-deficient aryl terminus, was
allowed to react under the standard migration conditions, a 33 % yield of product 46 was
isolated (entry 21). This is consistent with electron-deficient termini giving lower yields.

We have also examined the possibility of trapping palladium migration species by
alkynes. Thus, we have carried out the palladium-catalyzed sequential migration/alkyne

insertion/arylation of aryl halide 47 in the hope that the arylpalladium intermediate generated
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by a 1,4-Pd shift via through-space C-H activation could be trapped by alkyne insertion-
annulation chemistry described earlier by us (Scheme 4)."! The reaction was carried out
under our standard migration conditions and carbazole 48 was isolated in a 65 % yield (entry
22). It is'important to note that this reaction was complete in 0.5 d at 100 °C, consistent with
the particularly facile migration of Pd to the electron-rich indole ring system. Although we
cannot rule out the possibility that this reaction is proceeding by direct endocyclic addition of
the mitial arylpalladium species to the alkyne triple bond and subsequent ring closure onto
the indole to give product 48, this seems unlikely since exocyclic addition is more common.
Thus successful alkyne insertion chemistry suggests that there is the exciting possibility of
trapping aryl- and other organopalladium intermediates generated by a 1,4-Pd shift by many
other synthetically useful palladium methodologies, such as amination and annulation. We

are presently examining such possibilities.

Scheme 4
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While our efforts have focused on synthesizing polycyclic compounds in which the key
1,4-palladium shift occurs from an aryl to another aryl position, we wanted to establish that
our methodology could also make use of a vinylic to aryl palladium migration to generate the
key intermediate for the intramolecular arylation step. We have already shown one example
of such a transformation in converting compound 1 to 2 (Table 1). Another illustration of
this process involves the use of 9-iodo-10-phenyldibenz[5 floxepine (49). The reaction of
this relatively electron-rich substrate produced the desired pentacyclic compound 50 in an 80
% yield (entry 23). On the other hand, treating the electron-deficient 3-iodo-4-
phenylisocoumarin (51) under our standard reaction conditions gave a complex mixture, and
we failed to isolate any of the desired tricyclic compound 52 (entry 24). This disappointing
result was not unexpected, since our previous experience with compound 51 has indicated
that palladium easily catalyzes its decomposition. Our last attempt to generate polycycles
from vinylic iodides involved the use of isoquinolone 53 (entry 25). This substrate suffers
the disadvantage that the intramolecular arylation step requires the formation of a six-
membered ring. As expected, the reaction of substrate 53 under our standard reaction
conditions at 110 °C failed to produce the desired pentacyclic product 54. After 5 d of
reaction, we were only able to isolate the reduction product N-phenyl-3-phenylisoquinolone'?
ina 12 % yield.

A mechanistically interesting question is whether the arylpalladium infermediate can
migrate more than once and still effect synthetically useful chemistry. To examine this
possibility, 2-iodo-5-phenoxybiphenyl (55) was allowed to react under our migration

conditions and an 88 % yield of double migration product 4 was isolated (entry 26 and
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Scheme 5). Mechanistically, the palladium first inserts into the aryl iodide bond to form

intermediate A, which migrates to the phenyl unit by through-space C-H activation. The

metal moiety in the first migration intermediate B can return to the original aromatic ring in
cither the position from which it originally migrated (A) or migrate to the position ortho to
the phenoxy group (C), where it can be trapped by arylation. Note that the yield for this
double migration chemistry is very similar to that from the single migration chemistry (entry
2) and the success of this double palladium migration indicates that multiple migration

processes are entirely feasible.

Scheme 5
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One attempt to extend this chemistry to a triple migration process has been
unsuccessful. The reaction of iodonaphthalene 56 under our standard migration conditions
afforded none of the desired triple migration product 57, producing instead a 62 % yield of

the reduction product (entry 27). The reason for this failure to afford compound 57 is
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indicated in Scheme 6. While we would anticipate that intermediates D and E should be
casily formed, we believe that the problem lies in getting the relatively unhindered species E
to migrate the palladium to the more hindered position present in F. Instead the palladium
presumably migrates back to the less hindered position present in intermediate D. This is
consistent with our previous observation in entries 12 and 20 that palladium is more likely to
mugrate to or form a new C-C bond at a less hindered position. Therefore, the palladium

intermediates only equilibrate between D and E, and eventually produce the reduced 1,3-

diphenylnaphthalene,
Scheme 6
s I l O .=j.
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Conclusions

In conclusion, we have developed novel methodology for the synthesis of complex
fused polycycles employing two or more sequential Pd-catalyzed intramolecular processes
involving C-H activation. This methodology exploits relatively facile aryl to aryl and vinylic
to aryl palladium migrations, followed by intramolecular arylation to prepare a wide variety
of carbocycles and heterocycles. This chemistry works best with electron-rich aromatics,
which is in agreement with the idea that these palladium-catalyzed C-H activation reactions
parallel electrophilic aromatic substitution. The success of our double palladium migration
for the conversion of biphenyl 55 to dibenzofuran 4 indicates that multiple migration
processes can be employed to produce novel new routes to a variety of polycycles. Finally,
our demonstration that this chemistry is applicable to alkyne insertion processes as well

opens up still further unique routes to polycylic products.

Experimental Section

General procedures. All 'H and '’C NMR spectra were recorded at 300 and 75.5
MHz or 400 and 100 MHz respectively. Thin-layer chromatography was performed using
commercially prepared 60-mesh silica gel plates (Whatman K6F), and visualization was
effected with short wavelength UV light (254 nm) and a basic KMnOj, solution [3 g of
KMnO4 +20 g of K;CO3 + 5 mL of NaOH (5 %) + 300 mL of H,O]. All melting points are
uncorrected. High resolution mass spectra were recorded on a Kratos MS50TC double
focusing magnetic sector mass spectrometer using EI at 70 eV. Compounds 19," 20, 36,"

and 49" were prepared according to literature procedures.
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benzene |
T,

3’-Benzyl-2-iodobiphenyl (4). This biphenyl was prepared from 3’-bromomethyl-2-

iodobiphenyl (58)" by following a procedure from the literature.'* To a suspension of
AgClO,4 (0.28 g, 1.4 mmol) in benzene (4.0 mL) was added compound 58 (0.261 g, 0.7
mmol) in benzene (4.0 mL) and the resulting mixture was stirred overnight at room

temperature in the dark. The reaction mixture was diluted with diethyl ether (50 mL),

filtered and washed with brine (25 mL). The organic layer was dried (Na;SOy), filtered and
the solvent evaporated under reduced pressure. The residue was purified by silica gel
column chromatography using 50:1 hexane/EtQAc to afford 0.187 g (72 %) of the indicated
compound 4 as a colorless oil: 'H NMR (CDCl3) T'4.03 (s, 3H), 6.97-7.01 (m, 1H), 7.15-
7.34 (m, 11H), 7.92 (dd, J = 1.0, 8.0 Hz, 1H); °C NMR (CDCl3) T 42.0, 98.8, 126.2,127.1,
128.2,128.2,128.3, 128.6, 128.8, 129.1, 130.1, 130.2, 139.6, 140.8, 141.0, 144.3, 146.6; IR
(CH,Clz) 3056, 3025, 2917, 1601, 1583, 1494, 1461 cm™; HRMS m/z 370.0224 (caled for

CioHysT, 370.0218).

MeQO OMe
1 @—MgBr O BBr3 PhB(OH) \©
) | | Cu(OAc),, Et3N
. 2 O molecular sieves
58

2-lodo-3’-methoxybiphenyl (59). Compound 59 was prepared by a procedure

reported by Hart et al.'> A solution of 2-bromoiodobenzene (1.415 g, 5.0 mmol) in THF (10
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mL) was added slowly (90 min) to a solution of 3-methoxyphenylmagnesium bromide
[prepared from 3-bromoanisole (1.87 g, 10 mmol) and Mg (0.246 g, 10 mmol) in THF (30
mL}], and the mixture was stirred under Ar for an additional 14 h at room temperature. The
reaction was quenched by adding I, (3.8 g, 15 mmol), and the mixture was stirred for an
additional 30 min at room temperature. The excess I, was destroyed by adding 10 % aq
NaHSO; (35 mL) and the organic layer was separated and washed with brine (20 mL).
Finally, the organic layer was dried (MgSQ,), filtered, and the solvent removed under
reduced pressure. The residue was chromatographed using 30:1 hexane/EtOAc to afford
0.620 g (40 %) of the desired compound 59 as a clear oil: 'H NMR (CDCl3) T 3.84 (s, 3H),
6.88-6.95 (m, 3H), 7.01-7.05 (m, 1H), 7.29-7.38 (m, 3H), 7.95 (dd, J=1.2, 8.0 Hz, 1H); *C
NMR (CDCLs} I'55.4, 98.5, 113.4, 115.0, 121.8, 128.1, 128.9, 129.1, 130.1, 139.6, 145.5,
146.5, 159.1; HRMS m/z 309.9859 (calcd for Cj3H;,10, 309.9855).
2-Todo-3’-phenoxybiphenyl (6). This biphenyl was prepared in two steps from 2-
iodo-3-methoxybiphenyl (59). To a solution of compound 59 (0.97 g, 3.14 mmol) in CH,Cl,
(20 mL) at -78 °C was added 1.0 M BBr; in CH,Cly (4.1 mL, 4.1 mmol). The resulting
solution was allowed to warm to room temperature and stirred for 2 h. The mixture was
worked up with ice (15 g) and extracted with diethyl ether (7S mL). The organic layer was
dried (Na;S0,), filtered and the solvent evaporated under reduced pressure. The residue was
purified by silica gel column chromatography using 3:1 hexane/EtOAc to afford 0.91 2 (98
%) of 3-(2-iodophenyl)phenol (60) as a clear oil: 'H NMR (CDCl3) I'5.04 (br s, 1H), 6.80-
6.81 (m, 1H), 6.85-6.90 (m, 2H), 7.00-7.05 (m, 1H), 7.25-7.31 (m, 2H), 7.37 (dt, J= 0.8, 7.6
Hz, 1H), 7.94 (dd, /= 0.8, 8.0 Hz, 1H); ’C NMR (CDCl;) I'98.4, 114.7, 116.4, 122.0, 128.1,

128.9,129.3, 130.0, 139.5, 145.8, 146.2, 155.0. 3-(2-Iodophenyl)phenol (60) was phenylated
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by a literature procedure.'® A suspension of 3-(2-iodophenyl)phenol (0.222 g, 0.75 mmol),
phenylboronic acid (0.183 g, 1.5 mmol), Cu(OAc); (0.163 g, 0.90 mmol), Et;N (0.38 g, 3.75
mmol), and 5 Angstrom molecular sieves (0.2 g) in CH,Cl; (6.0 mL) was stirred under O (1
atm) for 2 d at room temperature. The reaction mixture was diluted with diethyl ether (50
mL), filtered, and the solvent evaporated under reduced pressure. The residue was purified
by silica gel column chromatography using 15:1 hexane/EtOAc to afford 0.129 g (46 %) of
the indicated compound 6 as a clear oil: 'H NMR (CDCl;) T'7.00-7.12 (m, 7H), 7.25-7.40
(m, 5H), 7.92 (dd, J= 1.2, 8.0 Hz, 1H); *C NMR (CDCl5) T98.4, 118.2, 119.1, 119.8, 123.4,
124.2,128.2,129.0, 129.4, 129.8, 130.0, 139.6, 145.9, 146.0, 156.8, 157.1; IR (CH,Cl,)

3058, 1578, 1488, 1460, 1222, cm™ ; HRMS m/z 372.0020 (calcd for CisH 310, 372.0011).

OH o
O (IO
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; Cu(OAC),, EtsN |

O molecular sieves O

60 8

2-Iodo-3’-(p-chlorophenoxy)biphenyl (8). This biphenyl was prepared by a
procedure similar to that used for compound 6. A suspension of 3-(2-iodophenyl)phenol (60)
(0.222 g, 0.75 mmol), p-chlorophenylboronic acid (0.235 g, 1.5 mmol), Cu(OAc),; (0.163 g,
0.90 mmol), EtzN (0.38 g, 3.75 mmol), and 5 Angstrom molecular sieves (0.2 g) in CH,Cl,
(6.0 mL) was stirred under O; (1 atm) for 2 d at room temperature. The reaction mixture was
diluted with diethyl ether (50 mL), filtered, and the solvent evaporated under reduced
pressure. The residue was purified by chromatography on a silica gel column using 30:1

hexanes/ethyl acetate to afford 79.5 mg (26 %) of the indicated compound 8 as a clear oil:
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'HNMR (CDCl3) T 6.96-7.09 (m, 6H), 7.27-7.41 (m, 5H), 7.93 (d, J = 8.0 Hz, 1H); 1°C
NMR (CDCL) '98.4, 118.2, 119.9, 120.3, 124.6, 128.2, 128.4, 129.1, 129.6, 129.8, 130.0,
139.6, 145.8, 146.0, 155.8, 156.4; IR (CH,Cl,) 3057, 1576, 1484, 1460, 1228 cm™ ; HRMS

m/z 405.9632 (calcd for Ci3H;,IC10, 405.9621).

O Br + % I;:;AHF N\/>- >
| N
H
; S

1-[3-(2-Iodophenyl)benzyl]indole (10). To a suspension of NaH (0.031 g, 1.30 mmol) =

in DMF (2 mL) at 0 °C was added 1H-indole (0.117 g, 1.0 mmol) in DMF (3 mL) and the
mixture was stirred at room temperature for 30 min. At this point 3’-bromomethyl-2-
iodobiphenyl (58)" (0.347 g, 0.93 mmol) in DMF (3 mL) was added and the reaction
mixture was stirred at 50 °C for 3 h. The reaction mixture was diluted with diethyl ether (50
mlL) and washed with brine (60 mL). The aqueous [ayer was reextracted with diethyl ether
(15 mL) and the organic layers were combined, dried (MgSQy), and the solvent evaporated
under reduced pressure. The residue was purified by column chromatography using 12:1
hexanes/ethyl acetate to afford 0.335 g (88 %) of the desired compound 10 as a clear oil: 'H
NMR (CDCl3) I'5.34 (s, 2H), 6.54 (d, /=2.8 Hz, 1H), 6.98 (td, J= 7.6, 1.6 Hz, 1H), 7.09-
7.23 (m, 7H), 7.30-7.34 (m, 3H), 7.64 (d, J= 7.6 Hz, 1H), 7.90 (dd, J = 8.0, 0.8 Hz, 1H); 1°C
NMR (CDCl3) I'50.1, 98.6, 101.9, 109.9, 119.6, 121.1, 121.8, 126.2, 128.0, 128.2, 128.4,
128.6, 128.6, 128.9, 129.0, 130.1, 136.4, 137.4, 139.6, 144.6, 146.1; IR (CH,Cl,) 3052, 2972, -

2922, 2863, 1462, 1437, 1316 cm™; HRMS m/z 409.0334 (caled for Co HiIN, 409.0328).
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1-[3-(2-1odophenyl)benzyl]-3-methylindole {(12}. To a suspension of NaH (0.031 g,
1.30 mmol) in DMF (2 mL) at 0 °C was added 3-methyl-1/-indole (0.131 g, 1.0 mmol) in
DMF (3 mL) and the mixture was stirred at room temperature for 30 min. At this point 3°-
bromomethyl-2-iodobiphenyl (58)' (0.347 g, 0.93 mmol) in DMF (3 mL) was added and the
reaction mixture was stirred at 50 °C for 3 h. The reaction mixture was diluted with diethyl
ether (50 mL) and washed with brine (60 mL). The aqueous layer was reextracted with
diethyl ether (15 mL) and the organic layers were combined, dried (MgSQOs), and the solvent
evaporated under reduced pressure. The residue was purified by column chromatography
using 12:1 hexanes/ethyl acetate to afford 0.362 g (92 %) of the desired compound 12 as a
clear oil: '"H NMR (CDCl3) T'2.33 (d, J= 0.8 Hz, 3H), 5.29 (s, 2H), 6.92-6.92 (m, 1H), 6.97-
6.99 (m, 1H), 7.10-7.24 (m, 6H}), 7.27-7.34 (m, 3H), 7.56-7.58 (m, 1H), 7.90-7.92 (m, 1H);
CNMR (CDCl;) I' 10.1, 50.1, 98.8, 109.9, 111.2, 119.1, 119.3, 121.9, 126.2, 126.4, 128.2,
128.4,128.7, 128.7, 125.2, 129.3, 130.3, 136.9, 137.9, 139.8, 144.7, 146.4; IR (CH;Cl)
3052, 2914, 1611, 1465, 1330, 1012 cm™'; HRMS m/z 423.0491 (calcd for CzoHisIN,

423.0484).

Br OH O/©
NaH
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3-(2-Iodophenyl)benzyl phenyl ether (14). To a suspension of NaH (0.031 g, 1.30 —
mmol) in DMF (2 mL) at 0 °C was added phenol (0.094 g, 1.0 mmol) in DMF (3 mL) and the
mixture was stirred at room temperature for 30 min. At this point, 3’-bromomethyl-2-
iodobiphenyl (58)'* (0.347 g, 0.93 mmol) in DMF (3 mL) was added and the reaction
mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with
diethyl ether (50 mL) and washed with brine (60 mL). The aqueous layer was reextracted

with diethyl ether (15 mL) and the organic layers were combined, dried (MgSQy), and the

solvent evaporated under reduced pressure. The residue was purified by column :
chromatography using 12:1 hexanes/ethyl acetate to afford 0.359 g (100 %) of the desired
compound 14 as a clear oil: 'H NMR (CDCl;) T'5.13 (s, 2H), 6.96-7.04 (m, 4H), 7.26-7.33
(m, 4H), 7.39-7.46 (m, 4H), 7.94-7.96 (m, 1H); *C NMR (CDCl;) T'69.9, 98.6, 115.0, 121.1,
126.8, 128.3, 128.4, 128.5, 129.0, 129.0, 129.6, 130.2, 137.0, 139.6, 144.5, 146.4, 158.8; IR

(CH:Cl,) 3056, 2919, 1598, 1494, 1238 cm™ ; HRMS m/z 386.0172 (caled for CyoH, 51O,

‘ 1. I, AGOTS ‘

g |

CO = CC '
17 {

2-lodo-1-phenylnaphthalene (17). To a solution of 3,4-dihydro-1-phenylnaphthalene

386.0168).

(1.30 g, 6.3 mmol) and I, (2.24 g, 8.8 mmol) in anhydrous CH;CN (15 mL) was added
dropwise AgOTf (1.75 g, 6.8 mmol) in anhydrous CH3CN (20 mL). The resulting mixture *

was stirred at room temperature in the dark for 1 h. The reaction was diluted with diethyl
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ether (70 mL) and washed with satd aq Na,S,0; (25 mL). The organic layer was dried
(NayS0,), filtered and the solvent removed under reduced pressure. The residue was
dissolved in benzene (25 mL). To this solution was added DDQ (2.86 g, 12.6 mmol) and the
reaction was heated at 65 °C for 2 d. The resulting mixture was filtered and washed with 10
% aq Na;COs (25 mL). The organic layer was filtered, dried (Na,SO4) and the solvent
removed under reduced pressure. The residue was purified by silica gel column
chromatography using 50:1 hexane/EtOAc to afford 1.47 g (70 %) of the indicated
compound 17 as a clear oil: "H NMR (CDCl3) I'7.22-7.26 (m, 2H), 7.32-7.34 (m, 1H), 7.38-
7.56 (m, 6H), 7.80-7.83 (m, 1H), 7.95 (d, J=8.7 Hz, 1H); >C NMR (CDCl;) I 98.7, 126.5,
127.0,127.4,128.1, 128.1, 128.7, 129.3, 130.2, 133.1, 133.6, 135.8, 143.5, 144.7; IR
(CH,Cly) 3053, 1577, 1502, 1442, 1382, 1306 cm™; HRMS m/z 329.9910 (caled for CigHyil,

329.9906).

| R
N\ /
2 cat. PACL{(PPhy),

cat. Cul
Et3N, 55 °C

S

OaW;
3

General procedure for preparation of the 2-(arylethynyl)biphenyls. To a solution
of the corresponding aryl iodide (1.0 mmol) and the terminal alkyne (1.2 mmol, 1.2 equiv) in
Et;N (4.0 mL) were added PdCl,(PPhs); (1.4 mg, 2 mol %) and Cul (2.0 mg, 1 mol %). The
resulting mixture was then heated under an N; atmosphere at 55 8C for 3 h. The mixture was
allowed to cool to room temperature, and the ammonium salt was removed by filtration. The
solvent was removed under reduced pressure and the residue was purified by column

chromatography on silica gel to afford the corresponding product.
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2-[(4-Methoxyphenyl)ethynyl]biphenyl (61). 2-Ethynylbiphenyl'’ and 4-iodoanisole

were employed. Purification by flash chromatography (30:1 hexane/EtOAc) afforded 0.21 g
(74 %) of the product as a clear liquid: 'H NMR (CDCls) I'3.80 (s, 3H), 6.84 (dd, J=2.4,

6.9 Hz, 2H), 7.30 (dd, J= 2.1, 6.9 Hz, 2H), 7.34-7.50 (m, 6H), 7.64-7.73 (m, 3H); °C NMR

(CDCl3) I'55.5, 88.4,92.5,114.2,115.9, 122.2,127.3, 127.6, 128.1, 128.4, 129.6, 129.7,

132.9, 133.1, 140.9, 143.9, 159.8.

2-[(3-Methylphenyl)ethynyl]biphenyl (62). 2-Ethynylbiphenyl'” and 3-iodotoluene
were employed. Purification by flash chromatography (40:1 hexane/EtOAc) afforded 0.26 g —
(95 %) of the product as a clear liquid: 'H NMR (CDCl3) T'2.34 (s, 3H), 7.12-7.22 (m, 4H),
7.33-7.53 (m, 6H), 7.67-7.74 (m, 3H); "C NMR (CDCl5) I' 21.5, 89.3, 92.7, 122.0, 123.5,

127.3,127.7,128.2, 128.4, 128.7, 128.7, 129.3, 125.7, 129.7, 132.2, 133.1, 138.2, 140.9,

144.1.
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Ethyl 4-(biphen-2-ylethynyDbenzoate (63). 2-Ethynylbiphenyl'’ and ethyl 4-
1odobenzoate were employed. Purification by flash chromatography (15:1 hexane/EtOAc)
afforded 0.27 g (84 %) of the product as a white solid: mp 58-60 °C; 'H NMR (CDCl3) T
138 (t, J=6.9 Hz, 3H), 4.36 (q, J= 7.2 Hz, 2H), 7.32-7.48 (m, 8H), 7.64-7.66 (m, 3H), 7.96
(d, J = 8.4 Hz, 2H); °C NMR (CDCL;) T 14.6, 61.3, 91.7, 92.6, 121.3, 127.4,127.9, 128.2,

128.3,129.3, 129.63, 129.64, 129.8, 129.9, 131.4, 133.2, 140.6, 144.5, 166.3.

O B

Z S
O 64
2-(Biphen-2-ylethynyl)thiophene (64). 2-Ethynylbiphenyl'” and 2-iodothiophene
were employed. Purification by flash chromatography (15:1 hexane/EtOAc) afforded 0.22 g
(85 %) of the product as a light yellow liquid: 'H NMR (CDCl3) I 6.98-7.00 (m, 1H), 7.15-
7.17 (m, 1H), 7.25-7.27 (m, 1H), 7.37-7.55 (m, 6H), 7.66-7.75 (m, 3H); *C NMR (CDCl35) T
85.9,93.5,121.6,123.8,127.3,127.4,127.5,127.8, 128.3, 129.0, 129.6, 129.8, 131.8, 132.8,

140.7, 144.0.

O O OMe
=
CXr .,

2-|(4-Methoxyphenyl}ethynyl]-1-phenylnaphthalene (65). 2-Iodo-1-
phenylnaphthalene and 4-ethynylanisole'® were employed. Purification by flash

chromatography (20:1 hexane/EtOAc) afforded 0.27 g (82 %) of the product as a clear oil:
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'"H NMR (CDCls) I'3.81 (s, 3H), 6.82 (dd, J= 6.9, 2.1 Hz, 2H), 7.17 (dd, /= 6.9, 2.1 Hz,

2H), 7.43-7.60 (m, 7H), 7.68-7.72 (m, 2EL), 7.83-7.94 (m, 2H); '*C NMR (CDCl3) ['55.4,
88.9,93.5, 114, 115.7, 120.7, 126.4, 126.6, 126.8, 127.6, 127.6, 128.1, 128.2, 128.4, 130.9,

132.4,133.0, 133.1, 139.3, 142.8, 159.7.

Vi

O 66

2-[2-(Phenylethynyl)phenyljnaphthalene (66). 2-(2-Iodophenyl)naphthalene'” and

phenylacetylene were employed. Purification by flash chromatography (40:1 hexane/EtOAc)
afforded 0.29 g (96 %) of the product as a light yellow liquid: "H NMR (CDCls) T'7.24-7.58
(m, 10H), 7.70-7.72 (m, 1H), 7.86-7.97 (m, 4H), 8.17 (s, 1H); *C NMR (CDCl;) T 89.7,
92.7,122.0, 123.6, 126.2, 126.3, 127.4, 127.5, 127.9, 128.0, 128.3, 128.4, 128.5, 128.9,
130.0, 131.6, 132.9, 133.3, 133.5, 138.3, 144.0 (one sp2 carbon missing due to overlap).
General procedure for synthesis of the phenanthrenes'® |
The following procedure was used to prepare phenanthrenes 22, 24, 26, 28, 30 and
chrysene 32. To a solution of 2-(arylethynyl)biphenyl (0.30 mmeol) in CH,Cl; (3 mL) under
N, was added IC1 (1.2 equiv) in CH,Cl, (0.5 mL) at -78 6C. The reaction mixture was stirred
at -78 6C for 1 h unless otherwise indicated. The reaction mixture was then diluted with
diethyl ether (50 mL), washed with 25 mL of satd aq Na,S;0;, dried (MgS0O,), and filtered.
The solvent was evaporated under reduced pressure and the product was purified by

chromatography on a silica gel column.
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9-Iodo-10-(4-methoxyphenyl)phenanthrene (22). Purification by flash
chromatography (30:1 hexane/EtOAc) afforded 0.122 g (99 %) of the product as a white
solid: mp 170-171 °C; '"H NMR (CDCl;) I' 3.94 (s, 3H), 7.09 (dd, J=2.1, 6.6 Hz, 2H), 7.21
(dd, /=2.1, 6.6 Hz, 2H), 7.40-7.49 (m, 2H), 7.64-7.72 (m, 3H), 8.45-8.49 (m, 1H), 8.67-8.78
(m, 2H); *C NMR (CDCl3) T'55.6, 107.7, 114.0, 122.8, 122.9, 127.2, 127.3, 127.7,128.3,
129.0, 130.5, 130.8, 131.3, 132.7, 132.9, 135.0, 138.2, 145.3, 159.4; IR (neat) 3066, 3024,

2834, 1610 cm’'; HRMS m/z 410.0172 (caled for Cy Hi5I0, 410.0168).

l g
.
24

Ethyl 4-(10-iodophenanthren-9-yl)benzoate (24). The reaction mixture was stirred at
room temperature for 1 h. Purification by flash chromatography (15:1 hexane/EtOAc)
afforded 0.136 g (100 %) of the product as a white solid: mp 152-153 °C; 'H NMR (CDCl3)
I'1.46(t,J=7.2 Hz, 3H), 4.47 (q, /= 7.2 Hz, 2H), 7.30-7.45 (m, 4H), 7.66-7.75 (m, 3H),
8.26 (dd, J= 1.8, 6.6 Hz, 2H), 8.45-8.49 (m, 1H), 8.68-8.78 (m, 2H); °C NMR (CDCL) T
14.6,61.4, 106.0, 122.9, 123.0, 127.4, 127.5, 128.0, 128.4, 128.5, 130.1, 130.3, 130.4, 130.5,
130.8, 132.1, 132.5, 134.9, 144.6, 150.0, 166.7; IR (CH,Cl,) 3069, 2979, 1714 cm™; HRMS

m/z 452.0278 (calcd for Cy3H,710,, 452.0273).
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9-Iodo-10-(3-methylphenyl)phenanthrene (26). Purification by flash

chromatography (30:1 hexane/EtOAc) afforded 0.117 g (99 %) of the product as a white
solid: mp 134-135 °C; '"H NMR (CDCls) I'2.44 (s, 3H), 7.07-7.09 (m, 2H), 7.30-7.32 (m,
1H), 7.41-7.45 (m, 3H), 7.63-7.70 (m, 3H), 8.45-8.48 (m, 1H), 8.67-8.73 (m, 2H); °C NMR
(CDCL)Tr21.7,106.5,122.6,122.7,127.1, 127.1, 127.5, 128.1, 128.4, 128.5, 128.8, 130.3,
130.6, 130.6, 132.5, 132.5, 134.7, 138.1, 145.4, 145.5 (one sp2 carbon missing due to
overlap); IR (CH,Cl,) 3067, 2971, 2921, 1602, 1563 cm’'; HRMS m/z 394.0226 (caled for

CyHisl, 394.0219),

28
9-Iodo-10-(thiophen-2-yl)phenanthrene (28). Purification by flash chromatography
(30:1 hexane/EtOAc) afforded 0.111 g (96 %) of the product as a white solid: mp 140-142
°C; '"H NMR (CDCl3) I' 7.06-7.08 (m, 1H), 7.23-7.26 (m, 1H), 7.45-7.76 (m, 6H), 8.44-8.49
(m, 1H), 8.66-8.75 (m, 2H); 713C NMR (CDCl;) I'110.5,122.7, 122.9, 126.5, 127.2, 127.5,
128.2,128.4, 128.7, 128.8, 130.3, 131.1, 132.6, 133.2, 135.3, 138.4, 146.5; IR (neat) 2925,

1464, 1216 cm™'; HRMS m/z 385.9631 (caled for CigH|1IS, 385.9626).
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6-Iodo-5-(4-methoxyphenyl)benzo[c]phenanthrene (30). Purification by flash

30

chromatography (30:1 hexane/EtOAc) afforded 0.138 g (97 %) of the product as a white
solid: mp 186-187 °C; 'H NMR (CDCl;) T 3.94 (s, 3H), 7.08-7.12 (m, 2H), 7.23-7.26 (m,
2H), 7.42-7.47 (m, 1H), 7.57-7.69 (m, 4H), 7.94 (d, J= 9.0 Hz, 1H), 8.04-8.06 (m, 1H), 8.42
(d, J=9.0 Hz, 1H), 9.01-9.04 (m, 2H); C NMR (CDCl3) T' 55.6, 107.3, 114.1, 126.4, 126.6,
126.7,126.8, 128.4, 128 4, 128.6, 128.6, 128.8, 129.0, 129.7, 130.2, 131.3, 131.5, 132.4,
133.8, 133.8, 138.0, 145.0, 159.4; IR (neat) 2950, 1606, 1506 cm™; HRMS m/z 460.0330

(calcd for Cy5H 710, 460.0324).

OO |

6-lodo-5-phenylchrysene (32). Purification by flash chromatography (40:1
hexane/EtOAc) afforded 98 mg (76%) of the product as a yellow solid: mp 168-169 °C; 'H
NMR (CDCl3) I'7.07 (t, J= 6.9 Hz, 1H), 7.33-7.57 (m, 7H), 7.71-7.76 (m, 2H), 8.89 (d, /=
6.5 Hz, 1H), 8.04 (d, /= 7.6 Hz, 1H), 8.56-8.60 (m, 1H), 8.78 (d, /= 7.0 Hz, 2H); BC NMR
(CDCL) ' 111.5,121.3, 123.7, 125.4, 126.1, 127.7, 128.2, 128.4, 128.6, 128.9, 129.0, 129.2,
129.3, 130.4, 130.7, 130.8, 131.1, 133.5, 133.8, 135.3, 144.3, 150.0; IR (neat) 2922 cm™;

HRMS m/z 430.0025 (calcd for CagHisl, 430.0219).
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soch3
3-Iodo-4-phenylquinoline (34). To a solution of N—phenylmethanesulfonamidel9
(0.513 g, 3.0 mmol), PPhs (1.18 g, 4.5 mmol) and 3-phenylpropargyl alcohel (0.594 g, 4.5
mmol) in anhydrous THF (30 mL) at 0 °C was added DEAD (0.784 g, 4.5 mmol). The
resulting solution was stirred at 0 °C for 1 h and an additional 3 h at room temperature. The
mixture was washed with brine (30 mL) and the organic layer was dried (Na,SOy), filtered,
and the solvent removed under reduced pressure. The residue was purified by
chromatography on a silica gel column using 3:1 hexanes/ethyl acetate to obtain 0.534 g (63
%) of N-phenyl-N-(3-phenyl-2-propyn-1-yl)methanesulfonamide as a white solid: mp 76-77
°C; 'H NMR (CDCl3) T 3.08 (s, 3H), 4.67 (s, 2H), 7.34-7.46 (m, 8H), 7.62-7.66 (m, 2H); '*C
NMR (CDCl;5) T'39.2,42.3, 84,4, 86.3, 122.3, 127.7, 128 4, 128.7, 129.1, 129.7, 131.9,
140.5. To a solution of N-phenyl-N-(3-phenyl-2-propyn-1-yl)methanesulfonamide (71.2 mg,
0.25 mmol) in CH;Cl, (3.0 mL) at -78 °C was added ICI (48.7 mg, 0.3 mmol) in CH,Cl; (0.5
mL) and the resulting solution was stirred at this temperature for 1 h. The reaction mixture
was washed with satd aq Na;S,0; (20 mL) and the organic layer dried (Na;SOy), filtered and
the solvent removed under reduced pressure. The residue was purified by chromatography
on a silica gel column using 5:1 hexanes/ethyl acetate to obtain 82.2 mg (80 %) of 3-iodo-1-
methanesulfonyl-4-phenyl-1,2-dihydroquinoline as a white solid: mp 173-175 °C; "H NMR

(CDCls) T'2.89 (s, 3H), 4.82 (s, 2H), 6.80 (dd, J=7.8, 1.2 Hz, 1H), 7.11-7.16 (m, 3H), 7.30-
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7.33 (m, 1H), 7.44-7.48 (m, 3H), 7.62 (dd, /= 8.1, 0.9 Hz, 1H); '*C NMR (CDCl;) T 38.6,

56.7,92.0, 126.9, 127.2, 127.2, 128.6, 128.8, 129.0, 129.2, 130.7, 134.5, 140.3, 143.9. A

solution of 3-iodo-1-methanesulfonyl-4-phenyl-1,2-dihydroquinoline (0.103 g, 0.25 mmol)
and NaOH (0.10 g, 2.5 mmol) in EtOH (10 mL) was stirred at 50 °C under O, (1 atm) for 12

h. The reaction mixture was diluted with diethyl ether (50 mL) and washed with brine (50

mL). The organic layer was dried (Na;SQOy), filtered, and the solvent removed under reduced

pressure. The residue was purified by column chromatography on a silica gel column using

5:1 hexanes/ethyl acetate to afford 76.1 mg (92 %) of the desired compound 34 as a white
solid: mp 131-132 °C; '"H NMR (CDCls) I' 7.25-7.28 (m, 2H), 7.42-7.48 (m, 2H), 7.52-7.55
(m, 3H), 7.69-7.74 (m, 1H), 8.12 (d, J = 8.8 Hz, 1H), 9.24 (s, 1H); *C NMR (CDCl;) T 96.4,

126.8, 127.4, 128.7, 129.0, 129.1, 129.5, 129.8, 140.4, 147.2, 152.4, 156.6 (one sp” carbon

missing due to overlap); IR (CH,Cl) 3061, 2918, 1566, 1501, 1485 cm™'; HRMS m/z

330.9864 (calcd for CisHioIN, 330.9858).

CHs 1. p-BuLi m OZN@ Q_\S\ _
Q_§ 2.0,

N 3. -Buli
H 4. ICH,CHsl
NO,
CHsg CHs
s s
NHZNHZ, FEC|3 - N | HCHO, H2804 N |
active carbon, MeOH NaBH,
NH; NMe,

38
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2-Todo-3-methylindole. To a solution of 3-methylindole (2.64 g, 20.0 mmol) in 55 mL
of dry THF was added dropwise 8.4 mL of n-BuLi (2.5 M in hexane) at —78 °C under an Ar
atmosphere. The resulting suspension was stirred at —78 °C for 20 min. Carbon dioxide was
bubbled through the reaction mixture for 30 min to form a clear yellow solution. The
reaction mixture was allowed to warm to 25 °C and the solvent was removed under reduced
pressure. To the residue was added 50 rﬁL of dry THF and the suspension was cooled to -78
°C. 12.5 Ml of -BuLi (1.7 M pentane) was added to the suspension and the resulting orange
reaction mixture was stirred at -78 °C for 1 h. A solution of ICH,CHoI (5.64 g, 20.0 mmol)
in 15 mL of dry THF was added dropwise and the resulting yellow solution was stirred at ~78
°C for 1 h. Then the reaction mixture was allowed to warm to 25 °C and washed with 50 mL
of satd aqueous NH4Cl. The organic layer was collected, dried over Na;SOq, and
concentrated under reduced pressure. The residue was purified by column (5:1
hexane/BtOAc) to afford 4.98 g of 2-iodo-3-methylindole as a yellow oil in 97 % yield with
spectral properties identical to those previously reported. 2’

2-Todo-3-methyl-1-(4-nitrophenyl)indole. To a suspension of NaH (5.5 mmol) in 20
mL of DMF was added 1.28 g of 2-iodo-3-methylindole (5.0 mmol) at 0 °C under an Ar
atmosphere and Jots of bubbles were generated. The resulting yellow suspension was stirred
at 0 °C for 40 min and a solution of 1-fluoro-4-nitrobenzene (0.846 g, 6.0 mmol) in 10 mL of
DMF was added dropwise. After 12 h, the reaction was diluted with 30 mL of Et,O and
washed with 30 mL of brine. The organic layer was collected, dried over Na;SOy, and
concentrated under reduced pressure. The residue was purified by column chromatography
(15:1 hexane/EtOAc) to afford 1.07 g of the indicated compound in a 57 % yield as a yellow

solid: mp 123-126 °C; 'H NMR (CDCls) 2.39 (s, 3H), 7.13-7.20 (m, 3H), 7.54-7.60 (m, 3H),
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8.37-8.42 (m, 2H); ®C NMR (CDCl;) ['12.8, 85.2, 110.3, 118.9, 121.1, 121.5, 123.4, 124.9,

129.2,129.5, 139.3, 144.7, 147.0.

1-(4-Aminophenyl)-2-iodo-3-methylindole. To a 6 dram vial was added 0.80 g of 2-
iodo-3-methyl-1-(4-nitrophenyl)indole (2.1 mmol), 17 mL of CH30H, 8.5 mg of FeCl;*6H,0

(0.32 mmol), 4.3 mg of active carbon (3.6 mmol), and 0.21 mL of NH,NH;*H,0 (4.2 mmol).

The resulting mixture was stirred at 25 °C for 5 min and was heated to 70 °C (a sealed tube
reaction). After 7 h, the reaction was allowed to cool to 25 °C and filtered. The colorless
filtrate was concentrated under reduced pressure and the residue was purified by column

chromatography (2:1 hexane/EtQOAc) to afford 0.60 g of the indicated compound in an 82 %

yield as a yellow oil: "H NMR (CDCls) 2.38 (s, 3H), 3.94 (br s, 2H), 6.78-6.80 (m, 2H), 7.06-
7.10 (m, SH), 7.54-7.56 (m, 1H); °C NMR (CDCl;) I"12.7, 88.8, 110.9, 115.4, 118.0, 118.2,
119.7,122.2, 128.5, 130.2, 140.1, 146.7 (one sp® carbon missing due to overlap).
1-(4-Dimethylaminophenyl)-2-iodeo-3-methylindole (38). To a mixture of
formaldehyde (37% of aqueous solution, 0.40 mL, 4.98 mmol) and H,SO,4 (3 M, 0.69 mL,
2.1 mmo)) was added a slurry of NaBH, (0.22 g, 5.8 mmol) and 1-(4-aminophenyl)-2-iodo-3-
methylindole (0.29 g, 0.83 mmol) in 7 mL of THF at 0 °C. Lots of bubbles were generated in
this process and the resulting yellow suspension was stirred at 0 °C for 10 min. The reaction
mixture was diluted with 30 mL of Et,0, and washed with satd ag NaHCQ; (30 mL) and
brine (20 mL). The organic layer was collected, dried over NaSQ,, and filtered. Removal of
solvent under reduced pressure afforded 0.26 g of the indicated compound in an 83 % yield
as a yellow solid: mp 149-150 °C; 'H NMR (CDCl») 2.38 (s, 3H), 3.04 (s, 6H), 6.79 (d, J =
8.8 Hz, 2H), 7.05-7.10 (m, 3H), 7.16 (d, J = 8.8 Hz, 2H), 7.54-7.56 (m, 1H); *C NMR

(CDCl;5)I12.7, 40.7, 89.3,111.0, 112.3, 117.8, 118.2, 119.6, 122.1, 128.1, 128.4, 129.9,
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140.2, 150.3; IR (CH,Cls) 3053, 2986, 1524 cm™; HRMS m/z 376.0441 (caled for Ci7H;7IN,,

376.0437).

1. PANHNH, O
@:\CHO CH3SOH, rt. |1 NeH
!

2. CH3S03H, 85 °C O N\ 2. PACH,CI

N
H

66

3-(2-Iodophenyl)indole (66). To a solution of (2-iodophenyl)acetaldehyde?’ (0.738 g,
3.0 mmol) in 15 mL of absolute ethanol was added 0.356 g of PANHNHo (3.3 mmol) and
57.6 mg of CH3SO;H (0.6 mmol). The resulting yellow solution was then stirred at room
temperature for 1 h. Another 0.519 g of CH3SO3H (5.4 mmol) was then added to the reaction
mixture and the reaction was stirred at 85 °C. After 2 d, the reaction was complete and was
allowed to cool to room temperature. The ethanol was removed under reduced pressure and
the residue was diluted with Et;0 (30 mL), washed with brine (30 mL), dried over Na;SOq,
filtered and concentrated. The residue was purified by flash chromatography (5:1
hexane/EtOAc) to afford 0.41 g of compound 66 (43 % yield) as a yellow oil: 'H NMR
(CDCl13) T'7.01-7.05 (m, 1H), 7.14-7.18 (m, 1H), 7.23-7.27 (m, 1H), 7.38-7.49 (m, 4H), 7.54
(d, J=8.0 Hz, 1H), 8.01 (dd, /= 1.2, 8.0 Hz, 1H), 8.27 (br s, 1H); '*C NMR (CDCly) I”
101.0, 111.5, 120.3, 120.4, 122.6, 123.8, 126.8, 128.2, 128.5, 131.6, 135.8, 140.0, 140.1 (one
sp’ carbon missing due to overlap).

1-Benzyl-3-(2-iodophenyl)indole {40). To a suspension of 30 mg of NaH (0.75 mmol,
60 % in mineral oil) in DMF (2 mL) was added dropwise a solution of compound 66 (0.16 g,

0.5 mmol) in DMF (4 mL) at 0 °C. A lot of bubbles were generated. The resulting brown
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solution was stirred at 0 °C for 45 min and a solution of PhCH,Cl1 (0.127 g, 1.0 mmol) in
DMF (1 mL) was added dropwise at 0 °C. The resulting mixture was stirred at 0 °C for 12 h.
The reaction mixture was diluted with Et,O (30 mL), washed with brine (30 mL), dried over
NayS0Oy, filtered and concentrated under reduced pressure. The residue was purified by flash
chromatography (20:1 hexane/EtOAc) to afford 0.155 g of the indicated compound 40 (76 %
yield) as a colorless oil: 'H NMR (CDCl3) I"5.38 (s, 2H), 6.98-7.02 (m, 1H), 7.12-7.16 (m,
1H), 7.18-7.33 (m, 8H), 7.37-7.41 (m, 1H), 7.49 (dd, J= 1.6, 7.6 Hz, 1H}, 7.54-7.56 (m, 1H),
7.99 (dd, J= 1.2, 8.0 Hz, 1H); >C NMR (CDCl3) '50.4, 101.1, 110.1, 119.2, 120.1, 120.4,
122.3,127.1,127.5, 127.9, 128.1, 128.2, 128.4, 129.0, 131.6, 136.3, 137.5, 140.0, 140.1; IR
(neat) 3055, 3029, 2921, 1613, 1585 cm’; HRMS m/z 409.0335 (caled for Ca1HigIN,

409.0328).

o

UOMG
42

1-(3-Methoxybenzyl)-3-(2-iodophenyl)indole (42). Using the procedure to prepare
compound 40, but employing 0.16 g of 3-methoxybenzyl chloride (1.0 mmol) afforded 0.193
g of the indicated compound 42 in an 88 % yield as a yellow oil: 'H NMR (CDCL;) I"'3.72 (s,
3H), 5.34 (s, 2H), 6.71 (s, 1H), 6.77-6.81 (m, 2H), 6.98-7.02 (m, 1H), 7.12-7.15 (m, 1H),
7.18-7.24 (m, 2H), 7.31-7.33 (m, 2H), 7.37-7.40 (m, 1H), 7.48-7.50 (m, 1H), 7.54 (d, /= 8.0
Hz, 1H), 7.99 (4, J = 8.0 Hz, 1H); *C NMR (CDCl3) ' 50.3, 55.4, 101.1, 110.1, 112.7, 113.2,

119.2, 119.3, 120.1, 120.4, 122.3, 127.5, 128.1, 128.2, 128 4, 130.0, 131.6, 136.2, 139.1,
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140.0, 140.0, 160.2; IR (neat) 3051, 2934, 15806, 1490 cm'l; HRMS m/z 439.0439 (calcd for

CyoHi3ION, 439.0433).

1-Benzoyl-3-(2-iodophenyl)indole (45). Using the procedure to prepare compound 40,
but employing of 0.14 g of benzoyl chloride (1.0 mmol) afforded 0.190 g of the indicated
compound 45 in a 90 % yield as a pale yellow solid: mp 102-103 °C; 'H NMR (CDCl3) T
7.04-7.08 (m, 1H), 7.32-7.36 (m, 1H), 7.40-7.46 (m, 5H), 7.51-7.55 (m, 2H), 7.58-7.63 (m,
1H), 7.81-7.84 (m, 2H), 7.98 (d, J= 7.6 Hz, 1H), 8.49-8.51 (m, 1H); °C NMR (CDCl) T’
100.2, 116.7, 120.5, 124.3, 125.3, 125.5, 126.5, 128.3, 128.8, 129.6, 129.6, 130.1, 131.3,
132.3, 134.6, 136.1, 138.1, 140.1, 168.9; IR (neat) 3051, 1686, 1450, 1364 cm™ ; HRMS m/z

423.0129 (calcd for C;;H;4ION, 423.0120).

f.NaH O \
N

2 ph—=—"Br ‘\/\
a7 Ph

3-(2-Iodophenyl)-1-(5-phenyl-d-pentynyl)indole (47). To a suspension of NaH (45.7

mg, 1.14 mmol, 60 % in mineral oil) in DMF (3 mL) was added dropwise a solution of

compound 66 (0.243 g, 0.76 mmol) in DMF (5 mL) at 0 °C. A lot of bubbles were generated.
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The resulting brown solution was stirred at 0 °C for 45 min and a solution of 5-bromo-1-
phenyl-1-pentyne (0.34 g, 1.52 mmol) in DMF (2 mL) was added dropwise at 0 °C. The
resulting mixture was stirred at 0 °C for 12 h, diluted with Et,O (30 mL), washed with brine
(30 mL), dried over Na;SQy, filtered and concentrated under reduced pressure, The residue
was purified by flash chromatography (20:1 hexane/EtOAc) to afford 0.30 g of the indicated
compound 47 (85 % yield) as a yellow oil: 'H NMR (CDCl3) 1°2.13-2.22 (m, 2H), 2.45 (t, J
= 8.8 Hz, 2H), 4.41 (t, J = 8.8 Hz, 2H), 6.98-7.03 (m, 1H), 7.12-7.23 (m, 1H), 7.23-7.33 (m,
4H), 7.37-7.50 (m, 6H), 7.54-7.56 (m, 1H), 8.00 (dd, J= 1.6, 10.8 Hz, 1H): '*C NMR
(CDCL3)T'17.0,29.1,45.1, 82.3, 88.6, 101.1, 109.8, 118.7, 120.0, 120.4, 122.1, 123.8, 127.5
128.0, 128.1, 128.2, 128.3, 1?8.5, 131.5,131.8, 135.9, 140.1 (one sp2 carbon missing due to

overlap); IR (CH,Clp) 3053, 2985, 1613, 1596, 1548 cm™'; HRMS m/z 461.0647 (calcd for

CasHaolN, 461.0641),

51
3-lTodo-4-phenylisocoumarin (51). A solution of 4-phenyl-3-
(trimethylsilyl)isocoumarin™ (0.435 g, 1.48 mmol), I (1.13 g, 4.45 mmol), and AgOTf (0.76
g, 2.96 mmol) in CH:CN (20 mL) was heated at 55 °C for 5 d. The reaction mixture was
diluted with diethyl ether (100 mL), and washed with satd aq N2,S,0; (30 mL). The organic
layer was dried (Na,SOy), filtered, and the solvent removed under reduced pressure to obtain

0.498 g (97 %) of the indicated compound 51 as a yellow solid. Recrystallization from

H
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hexanes/ethyl acetate afforded the indicated compound 51 as a yellow solid: mp 170-171 °C,

'H NMR (CDCly) T 6.97 (d, J = 8.0 Hz, 1H), 7.26-7.28 (m, 2H), 7.50-7.56 (m, 4H), 7.59-

7.63 (m, 1H), 8.31 (dd, J= 8.0, 0.8 Hz, 1H); °C NMR (CDCl3) T'107.9, 119.6, 125.6, 127.4,
128.7,128.9, 129.1, 129.9, 130.5, 135.2, 137.0, 137.3, 161.2; IR (CH,Cl,) 1736 cm™; HRMS

m/z 347.9652 (calcd for CisHsIO,, 347.9647).

4-lodo-2,3-diphenyl-2 H-isoquinolin-1-one (53). To a solution of N-phenyl-2-
(phenylethynyl)benzamide™ (74.2 mg, 0.25 mmol) in CH>Cl; (3.0 mL) at room temperature
was added ICl (48.7 mg, 0.3 mmol) in CH,CI; (0.5 mL) and the resulting solution was stirred
at this temperature for 1 h. The reaction mixture was washed with satd aq Na;S,03 (20 mL)
and the organic layer dried (Na2SOs), filtered and the solvent removed under reduced
pressure. The residue was purified by chromatography on a silica gel column using 5:1
hexanes/ethyl acetate to obtain 42.3 mg (40 %) of the indicated compound 53 as a yellow
solid: mp 129-130 °C; 'H NMR (CDCly) ' 7.08-7.11 (m, 1H), 7.20-7.30 {m, 3H), 7.33-7.38
(m, 4H), 7.57-7.64 (m, 3H), 7.67-7.72 (m, 1H), 8.03-8.06 (m, 1H), 8.84-8.87 (m, 1H); °C
NMR (CDCl3) T'75.2,124.1, 125.1, 125.1, 125.4, 128.1, 128.7, 128.7, 130.5, 130.9, 132.0,
132.7,135.7, 140.6, 145.0, 147.8, 152.1; IR (CH,Cl,) 2916, 2849, 1642, 1586, 1488, 1445

cm™'; HRMS m/z 423.0131 (calcd for CrsHsTO,, 423.0120), ~
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NH> NHBoc NHBoc -

(Boc)z0 1. +Buli, -78 °C | CF3C0.H O\©

2. ICH,CHyl ©/ H 2N/©/
OPh OPh OPh '
o) o
PhB(OH), O \© 1. HpS0y, Hy0 O ©
KaCO3 N 2. NaNOy, Hz(; !

cat. PdCla(PPhs)e 3. Nal, H-0
DMF / Ho0 55

N-(4-Phenoxyphenyl)-2,2-dimethylpropanamide. To a solution of 4-phenoxyaniline I
(3.33 g, 18.0 mmol) in 70 mL of dried THF was added (Boc),O (4.71 g, 21.6 mmol) and the :
resulting yellow solution was refluxed at 80 °C for 6 h. The solvent was removed under
reduced pressure and the reddish residue was recrystallized using hexane and EtOAc to
afford 4.84 g of the indicated compound (85 % yield) as white needles: mp 109-111 °C; 'H
NMR (CDCl;) I'1.52 (s, 9H), 6.43 (br s, 1H), 6.95-6.98 (m, 4H), 7.06 (t, J= 3.6 Hz, 1H),
7.29-7.34 (m, 4H); "*C NMR (CDCl;) T'28.6, 80.7, 118.3, 120.2, 120.5, 123.0, 129.9, 134.2,
152.6,153.2, 158.1.

N-(2-Iodo-4-phenoxyphenyl)-2,2-dimethylpropanamide. To a solution of N-(4- —
phenoxyphenyl)-2,2-dimethylpropanamide (2.57 g, 9.02 mmol) in 20 mL of dry diethyl ether :
was added dropwise 10.6 mL of #-BuLi (1.7 M in pentane, 18.04 mmol) at -78 °C under Ar.
The pale orange solution turned a pale yellow color when half of the ~-BulLi solution had
been added and eventually to yellow when all of the -BulLi solution was added. The
resulting yellow solution was then stirred at -78 °C for 30 min. A solution of ICH,CH,I
(2.81 g, 9.92 mmol, recrystallized from diethyl ether) in 20 mL of dry ether was added

dropwise to the reaction mixture and the resulting orange solution was stirred at -78 °C for
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another 30 min. The reaction mixture was allowed to warm up to room temperature and
quenched by 50 mL of water. The organic layer was separated and dried over Na; SOy,
filtered, and concentrated. The residue was purified by flash chromatography (15:1
hexane/EtOAc) to afford 2.3 g of the desired compound (62 % yield) as a colorless oil: H
NMR (CDCl3) I'1.53 (s, 9H), 6.68 (br s, 1H), 6.96-6.98 (m, 2H), 7.02 (dd, /=24, 8.8 Hz,
1H), 7.08-7.12 (m, 1H), 7.30-7.35 (m, 2H), 7.42 (d, /= 2.8 Hz, 1H), 7.94 (d, /= 8.8 Hz, 1H);
BCNMR (CDCl3) 1'28.5, 81.3, 89.5, 118.6, 120.2, 121.6, 123.6, 129.3, 130.0, 134.9, 153.0,
153.0, 157.4.

2-Jodo-4-phenoxyaniline. To a solution of N-(2-iodo-4-phenoxyphenyl)-2,2-
dimethylpropanamide (0.82 g, 2.0 mmol) in 10 mL of CH;Cl, was added dropwise 2.0 mL of
TFA at 0 °C and the reaction was allowed to warm up to room temperature. The resulting
colorless mixture was stirred at room temperature for 16 h, diluted with 20 mL of CH,Cl,,
washed with brine (30 mL), dried over Na,SO,, filtered and concentrated. The residue was
purified by flash chromatography (5:1 hexane/EtOAc) to afford 0.56 g of the indicated
compound (91 % yield) as a pale orange solid: mp 54-56 °C; "H NMR (CDCl;) T'4.00 (s,
2H), 6.74 (d, J= 8.7 Hz, 1H), 6.88-6.91 (m, 2H), 6.93-6.95 (m, 1H), 7.01-7.07 (m, 1H), 7.26-
7.32 (m, 2H), 7.36 (d, J=2.7 Hz, 1H); °*C NMR (CDCl;) '83.8, 115.2, 117.6, 121.6, 122.8,
129.9, 130.3, 143.5, 148.8, 158.6.

4-Phenoxy-2-phenylaniline. To a 50 mL round-bottom flask was added PdCl;(PPh;),
{0.103 g, 0.147 mmol), PhB(OH), (0.358 g, 2.94 mmol), K,CO; (0.406 g, 2.94 mmol), 2-
iodo-4-phenoxyaniline (0.457 g, 1.47 mmol), 15 mL of DMF and 3 mL of H,O. The whole
mixture was then stirred at room temperature for 5 min, flushed with Ar and heated to 70 °C

for 3 h. The reaction was allowed to cool to room temperature, diluted with diethyl ether (30
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mL), washed with brine (50 mL), dried over Na;SQ,, filtered and concentrated under reduced
pressure. The residue was purified by flash chromatography (5:1 hexane/EtOAc) to afford
0.342 g of the indicated compound (88 % yield) as a yellow oil: 'H NMR (CDCls) I"3.71 (br
s, 2H), 6.75-6.77 (m, 1H), 6.87-6.90 (m, 2H), 6.97-7.03 (m, 3H), 7.25-7.35 (m, 3H), 7.41-
7.60 (m, 4H); C NMR (CDCl3) I'116.9, 117.5, 120.4, 122.2, 122.3, 127.6, 129.0, 129.1,
129.2,129.7, 139.1, 139.9, 148.9, 159.0.

2-Iodo-5-phenoxybiphenyl (55). To a solution of 4-phenoxy-2-phenylaniline (0.383
g, 1.47 mmol) in DME (4 mL) was added dropwise 3 mL of water containing 0.6 mL of conc
HS0O4 (95 %). The resulting yellow mixture was cooled to 0 °C and a solution of NaNO,
(0.152 g, 2.21 mmol) in water (1 mL) was added over 10 min. The yellow reaction mixture
was stirred at 0 °C for 20 min and a solution of Nal (1.10 g, 7.35 mmol) in water (3 mL) was
added dropwise at 0 °C. The reaction mixture turned black when the Nal solution was added.
After 10 min, the reaction was diluted with Et;O (30 mL), and washed by satd Na,S,05 (30
mL), water (30 mL), and brine (30 mL). The organic layer was collected, dried over Na;SQy,
filtered and concentrated under reduced pressure. The residue was purified by flash
chromatography (30:1 hexane/EtOAc) to afford 0.44 g of the indicated compound 55 (81 %
yield) as a yellow solid: mp 68-70 °C; '"H NMR (CDCl3) I'6.73 (dd, /= 3.0, 8.8 Hz, 1H),
6.97 (d, J=2.8 Hz, 1H), 7.04-7.06 (m, 2H), 7.11-7.15 (m, 1H), 7.31-7.43 (m, 7H), 7.85 (d, J
= 8.8 Hz, 1H); C NMR (CDCL;) T 90.4, 119.4, 119.5, 120.5, 124.1, 128.0, 128.2, 129.4,
130.1, 140.6, 143.9, 148.2, 156.6, 158.0; IR (CH,Cl,) 3056, 2981, 1583, 1561, 1490 cm’’;

HRMS m/z 372.0019 (caled for CisH,510, 372.0011).
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1. PhsP=CH
sl

2. 15, NaHCO, Oe
® A

56

1-Iodo-2,4-diphenylnaphthalene (56). To a yellow suspension of PhsP=CH; (1.5
mmol) in THF (8 mL) [prepared by the reaction of 0.57 g of methyltriphenylphosphonium
bromide (1.6 mmol) in 8 mL of THF and 0.6 mL of #-BuLi (2.5 M in hexane, 1.5 mmol) at 0
°C for 30 min) was added a solution of 2-(phenylethynyl)acetophenone (1.0 mmol) in THF (3
mL). After 1 h, TLC analysis showed that the reaction was not complete and another 1.0
mmol of Ph;P=CH, in THF (5 mL) was added to the reaction mixture. The reaction reached
completion in 10 min. The solvent was removed under reduced pressure and 30 mL of
hexane was added to the residue. After being stirred at 25 °C for 20 min, the mixture was
filtered to remove the phosphonium salt. Removal of the solvent under reduced pressure
afforded a colorless residue. The colorless residue was added to a stirred mixture of
NaHCOs3(0.25 g, 3.0 mmol), I, (1.54 g, 6.0 mmol) and CH3CN (15 mL). The reaction was
complete after 20 min at 25 °C. The reaction mixture was diluted with Et,O (30 mL) and
washed by satd aqueous Na;S,0; (30 mL). The organic layer was collected, dried over
NaSOy, filtered, and the solvent was removed under reduced pressure. The residue was
purified by chromatograph (50:1 hexane/EtOAc) to afford 0.39 g of the indicated compound
56 in a 97 % yield as a yellow oil: 'H NMR (CDClL) I'7.38-7.50 (m, 12H), 7.58-7.63 (m,
1H), 7.88 (d, /= 8.1 Hz, 1H), 8.43 (d, /= 8.1 Hz, 1H); °C NMR (CDCl;) ' 103.6, 126.8,

126.9,127.8, 128.2, 128.2, 128.6, 128.9, 129.8, 130.2, 131.5, 134.1, 135.3, 139.9, 140.9,
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146.0, 146.2 (one sp” carbon missing due to overlap); IR (neat) 3058, 3028, 2927, 1599 em’;
HRMS m/z 406.0225 (calcd for CyoHisI, 406.0218).

Representative procedure for the palladium-catalyzed migration reactions. The
appropriate aryl iodide (0.25 mmol), Pd(OAc); (2.8 mg, 0.0125 mmol), 1,1-
bis(diphenylphosphino)methane (dppm) (4.8 mg, 0.0125 mmol) and CsO,CCMes (CsP1v)
(0.117 g, 0.5 mmol) in DMF (4 mL) were stirred under Ar at 100 °C for the specified period
of time. The reaction mixture was allowed to cool to room temperature, diluted with diethyl
ether (35 mL) and washed with brine (30 mL). The aqueous layer was reextracted with
diethyl ether (15 mL). The organic layers were combined, dried (MgSOy), filtered, and the
solvent removed under reduced pressure. The residue was purified by flash chromatography

on silica gel.

O
Ph 5

1-Phenyl-9H-fluorene (5). Compound 4 (92.5 mg, .25 mmol) was allowed to react
under our standard reaction conditions at 110 °C for 3 d. The reaction mixture was
chromatographed using 30:1 hexane/EtOAc to afford 24.2 mg (40 %) of the indicated
compound 2 as a colorless oil: 'H NMR (CDCls) T'3.95 (s, 2H), 6.94 (d, J = 7.6 Hz, 1H),
7.05 (t,J = 7.6 Hz, 1H), 7.19-7.22 (m, 2H), 7.33 (t, /= 7.6 Hz, 1H), 7.45-7.55 (m, 7TH); Bc
NMR (CDCl3) T'37.0, 122.9, 124.0, 124.8, 126.3, 126.4, 127.5, 128.5, 128.8, 129.2, 137.9,

138.7, 141.3, 141.6, 143.7, 143.9 (one sp* carbon missing due to overlap); IR (CH>Cly) 3056,

3025, 1454, 1417, 1478 cm'l; BRMS mi/z 242.1101 (caled for CioHja, 242.1096).

SUREE R T s
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7

1-Phenyldibenzofuran (7). Compound 6 (93.0 mg, 0.25 mmol) or compound 55 (93.0
mg, 0.25 mmol) was allowed to react under our standard reaction conditions for 1 d. The
reaction mixtures were chromatographed using 30:1 hexane/EtOAc to afford 54.4 mg (89 %)
(entry 2, Table 2) or 54.0 mg (88 %) (entry 8, Table 2) of the indicated compound 7,
respectively, as a white solid: mp 62-63 °C (lit* mp 63-64 °C); '"H NMR (CDCl;) T' 7.10-
7.14 (m, 1H), 7.24-7.26 (m, 1H), 7.37-7.42 (m, 1H), 7.46-7.64 (m, 9H); >’C NMR (CDCl3) T
110.5,111.6, 121.8, 122.3, 122.5, 123.9, 124.0, 127.1, 127.1, 127.9, 128.6, 129.0, 138.0,
140.0, 156.4, 156.5. The other spectral properties were identical to those previously

reported.*

au]

9
7-Chloro-1-phenyldibenzofuran (9). Compound 8 (0.101 g, 0.25 mmol) was allowed
to react under our standard reaction conditions for 1 d. The reaction mixture was
chromatographed using 50:1 hexanes/ethyl acetate to afford 57.1 mg (82 %) of the indicated
compound 9 as a colorless oil: 'H NMR (CDClL:) I' 7.25 (dd, J= 6.8, 1.2 Hz, 1H), 7.34 (ad, J
=8.4, 2.4 Hz, 1H), 7.45-7.60 (m, 9H); *C NMR (CDCl3) I'110.7, 112.5, 121.0, 122.1, 124.3,

125.3,127.1,127.7,127.8, 128.3, 128.8, 128.9, 138.2, 139.4, 154.7, 157.1; IR (CH,CL,)
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3061, 3032, 1444, 1400, 1199, 1243 cm™ ; HRMS m/z 278.0501 (caled for Ci5H,;,CIO,

278.0498).

10-Phenyl-6H-isoindolo[2,1-g]indole (11). Compound 10 (0.102 g, 0.25 mmol) was
allowed to react under our standard reaction conditions for 1 d. The reaction mixture was
chromatographed using 12:1 hexanes/ethyl acetate to afford 49.2 mg (70 %) of the indicated
compound 11 as a white solid: mp 139-140 °C; 'H NMR (CDCl3) T'5.08 (s, 2H), 6.16 (s,
1H), 7.03-7.07 (m, 1H), 7.14-7.18 (m, 1H), 7.32-7.54 (m, 8H), 7.64-7.66 (m, 2H); °C NMR
(CDC1;)T48.2,94.3,109.1, 119.7, 121.7, 122.4, 127.3, 128.0, 128.5, 128.8, 129.3, 131.0,
132.4,133.7, 137.0, 139.9, 142.5, 143.2 (one sp2 carbon missing due to overlap); IR
(CH,Cly) 3053, 2916, 2850, 1471, 1551, 1446 cm™'; HRMS m/z 281.1210 (caled for CoH;sN

3

281.1204).

2-Methyl-10-phenyl-6H-isoindolo[2,1-a]indole (13). Compound 12 (0.106 g, 0.25
mmol) was allowed to react under our standard reaction conditions for 1 d. The reaction
mixture was chromatographed using 12:1 hexanes/ethyl acetate to afford 52.4 mg (71 %) of
the indicated compound 13 as a white solid: mp 143-145 °C (decomposes); 'H NMR

(CDCLs) I 1.41 (s, 3H), 5.06 (s, 2H), 7.03-7.07 (m, 1H), 7.16-7.20 (m, 1H), 7.23-7.31 (m,




195

3H), 7.40-7.50 (m, 7H); *C NMR (CDCl;) I'9.5, 48.1, 104.2, 109.0, 119.1, 120.0, 122.0,
122.4,126.5, 127.9,128.7, 129.9, 130.2, 132.6, 133.8, 134.0, 137.0, 140.0, 142.6, 142.8; IR
(CH,Cl,) 3048, 2976, 2853, 1469, 2976, 2853, 1469, 1411 cm™ ; HRMS m/z 295.1369 (calcd

for szHnN, 295.1361).

o o
Q-
15 16

10-Phenyl-6H-benzo[clchromene (15) and phenyl 3-phenylbenzyl ether (16).

Compound 14 (96.5 mg, 0.25 mmol) was allowed to react under our standard reaction
conditions at 120 °C for 2 d. The reaction mixture was chromatographed using 50:1
hexanes/ethyl acetate to afford 47.8 mg (75 %) of a 60:40 inseparable mixture of compounds
15 and 16 respectively. Major isomer 15: "H NMR (CDCl;) I 5.02 (s, 2H) as a characteristic
peak; HRMS m/z 258.1050 (calcd for Ci9H;40, 258.1045). Minor isomer 16: 'H NMR
(CDCl3) T 5.11 (s, 2H) as a characteristic peak; HRMS m/z 260.1206 (caled for CyoH,60,
260.1201). Mixture: '°C NMR (CDCl3) T 69.9, 70.2, 115.1, 117.6, 121.3, 121.3, 123.6,
124.1, 126.6, 126.7, 127.1, 127.4, 127.4, 127.5,127.5,127.7, 128.4, 128.9, 128.9, 128.9,
129.1,129.1, 129.3,129.4, 129.4, 129.8, 132.0, 135.5, 137.8, 139.3, 141.2, 141.9, 142.5,

156.6, 159.0; IR (neat) 3058, 3029, 1599, 1495, 1453, 1243 cm™.
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18
Fluoranthene (18). Compound 17 (82.5 mg, 0.25 mmol) was allowed to react under
our standard reaction conditions at 110 °C for 1 d. The reaction mixture was
chromatographed using 50:1 hexane/EtOAc to afford 41.0 mg (81 %) of the indicated
compound 6 as a white solid: mp 107-108 °C (lit** mp 106-108 °C). The other spectral

properties were identical to those previously reported.”

O 21

Benzo[elacephenanthrylene (21). Compound 20" (95.0 mg, 0.25 mmol) was allowed
to react under our standard reaction conditions at 110 °C for 2 d. The reaction mixture was
chromatographed using 50:1 hexane/EtOAc to afford 49.2 mg (78 %) of the indicated
compound 8 as a white solid: mp 166-167 °C (1it*’ mp 165-166 °C). The other spectral

properties were identical to those previously reported.”®

l ] OMe
O 23 k
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5-Methoxybenzo[e]acephenanthrylene (23). Compound 22 (0.103 g, 0.25 mmol) was

allowed to react under our standard reaction conditions at 110 °C for 2 d. The reaction

mixture was chromatographed using 30:1 hexanes/ethyl acetate to afford 50.1 mg (71 %) of
the indicated compound 23 as a white solid: mp 188-189 °C (lit*® mp 189-190 °C). The

other spectral properties were identical to those previously reported.®

CO,Et

Ethyl benzo[e]acephenanthrylene-5-carboxylate (25). Compound 24 (0.113 g, 0.25
mmol) was allowed to react under our standard reaction conditions at 110 °C for 2 d. The
reaction mixture was chromatographed using 9:1 hexanes/ethyl acetate to afford 40.5 mg (50
%) of the indicated compound 25 as a white solid: mp 153-154 °C; 'H NMR (CDCL) I' 1.46
(t,/=7.2 Hz, 3H), 4.45 (q, /=7.2 Hz, 2H), 7.63-7.65 (m, 1H), 7.68-7.70 (m, 1H), 7.74-7.78
(m, 1H), 7.98-8.04 (m, 3H), 8.09 (dd, /= 7.6, 1.6 Hz, 1H), 8.24 (s, 1H), 8.45 (d, /= 8.0 Hz,
1H), 8.54 (d, /= 0.8 Hz, 1H), 8.64 (d, J= 8.0 Hz, 1H); >C NMR (CDClL;) I' 14.5, 61.2,
120.1,121.5,122.1, 122.5, 123.2, 123.3, 127.0, 127.6, 127.7, 128.5, 129.0, 129.9, 130.6,
131.1,132.4, 133.8, 134.0, 136.2, 140.7, 142.6, 166.9; IR (CH,Cl;) 2979, 1710, 1240, 1290

cm"; HRMS m/z 324.1157 {calcd for Cy3H 50, 324.1150).

(J
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6-Methylbenzo[e]acephenanthrylene (27). Compound 26 (98.5 mg, 0.25 mmol) was
allowed to react under our standard reaction conditions at 110 °C for 2 d. The reaction
mixture was chromatographed using 50:1 hexane/EtOAc to afford 37.2 mg (56 %) of the
indicated compound 27 as a white solid: mp 149-151 °C; "H NMR (CDCl3) I'2.50 (s, 3H),
7.22 (d, J=7.6 Hz, 1H), 7.59-7.80 (m, 5H), 7.91 (d, /= 7.2 Hz, 1H), 8.01-8.02 (m, 1H), 8.17
(s, LH), 8.40 (d, /= 8.0 Hz, 1H), 8.63 (d, /= 8.4 Hz, 1H); C NMR (CDCl;) T'21.9, 119.2,
121.2,121.3,121.3,122.8, 123.2, 126.8, 127.0, 127.6, 128.3, 129.0, 130.2, 130.8, 132.4,
134.1, 135.3, 137.2, 137.5, 138.2, 138.9; IR (CH,Cl,) 2921, 2852, 1460, 1600, 1374 cm™;

HRMS m/z 266.1099 (calcd for Cy1His, 266.1096).

e
0y,

10-Methoxydibenz[e,/]acephenanthrylene (31). Compound 30 (0.115 g, 0.25 mmol)
was allowed to react under our standard reaction conditions at 110 °C for 2 d. The reaction
mixture was chromatographed using 50:1 hexanes/ethyl acetate to afford 54.0 mg (65 %) of
the indicated compound 31 as a white solid: mp 178-179 °C; "H NMR (CDCls) I'3.95 (s,
3H), 6.93 (dd, J= 8.1, 2.4 Hz, 1H), 7.46 (d, /= 2.1 Hz, 1H}, 7.60-7.66 (m, 1H), 7.70-8.03
(m, 7H), 8.11 (s, 1H), 8.98 (d, /= 8.4 Hz, 1H), 9.19 (d, /J=8.7 Hz, 1H); BC NMR (CDCl;) T
55.9,107.4,113.4,119.6,121.0, 122.8, 122.8, 126.0, 126.8, 127.3, 127.5, 127.8, 128.3,
128.4, 128.6, 128.7, 129.0, 131.5, 131.5, 133.8, 133.8, 136.1, 137.4, 142.6, 160.6; IR
(CH2Cl,) 2921, 2849, 1608, 1461, 1285, 1213 cm™ ; HRMS m/z 332.1209 (calced for Cy5Hi60,

332.1201),
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Indeno[1,2,3-de]quinoline (35). Compound 34 (82.8 mg, 0.25 mmol) was allowed to

react under our standard reaction conditions at 110 °C for 2.5 d. The reaction mixture was

chromatographed using 3:2 hexanes/ethyl acetate to afford 27.4 mg (54 %) of the indicated

compound 35 as a white solid: mp 100-101 °C (1it* mp 102-103 °C); '"H NMR (CDCl;) T
7.35-7.51 (m, 2H), 7.72-7.77 (m, 2H), 7.84-7.91 (m, 3H), 7.99 (d, /=8.4 Hz, 1H), 9.07 (4, J
=4.2 Hz, 1H); PC NMR (CDCL) I'114.4, 121.0, 122.2, 123.7, 128.2, 128.4, 130.4, 131.7,
135.4,138.2, 138.2, 140.5, 145.1, 145.7, 152.9. The other spectral properties were identical

to those previously reported.*®

11-Phenyl-6 H-isoindolo[2,1-a]indole (41). Compound 40 (103 mg, 0.25 mmol) was
allowed to react under our standard reaction conditions for 1 d affording a 92 % yield of the
indicated compound 41, which is unstable on silica gel, as determined by 'H NMR
spectroscopy. To obtained pure compound 41, the crude product was recrystallized
(hexane/EtOAc) to afford a pale purple solid: mp 148-151 °C; 'H NMR (DMSO-dg) I'5.27
(s, 2H), 7.09-7.13 (m, 1H), 7.21-7.25 (m, 1H), 7.36-7.39 (m, 3H), 7.51-7.58 (m, 3H), 7.63-

7.65 (m, 1H), 7.68-7.70 (m, 3H), 7.74-7.76 (m, 1H); '°C NMR (DMSO-d,) '48.2, 108.0,
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110.2,119.5,120.0, 120.2, 122.0, 124.2, 126.2, 127.6, 128.0, 128.7, 128.9, 130.4, 131.9,

133.5,134.4, 139.3, 142.7; IR (CH,Cl,) 3053, 2985, 1616, 1603, 1497 cm™'; HRMS m/z

281.1209 (calcd for C21H15N, 281.1205 )

8-Methoxy-11-phenyl-6H-isoindolof2,1-a]indole (43) and 10-methoxy-11-phenyl-
6H-isoindolo[2,1-a]indole (44). Compound 42 (0.110 g, 0.25 mmol) was allowed to react
under our standard reaction conditions for 12 h. The reaction mixture was chromatographed
using 9:1 hexane/EtOAc to afford 61 mg (78 %) of the compound 43 as a yellow solid and 9
mg (12 %) of the compound 44. Compound 43: mp 196-198 °C; "H NMR (DMSO-ds) T’
3.83 (s, 3H), 5.23 (s, 2H), 6.97 (d, J= 8.4 Hz, 1H), 7.07-7.10 (m, 1H), 7.17-7.21 (m, 1H),
7.27 (s, 1H), 7.34-7.37 (m, 1H), 7.48 (d, /= 8.4 Hz, 1H), 7.53-7.57 (m, 2H), 7.66-7.68 (m,
4H); °C NMR (DMSO-dj) T'48.4, 55.8,108.1, 109.3, 109.8, 113.7, 120.0, 120.3, 121.9,
122.1,126.0, 126.2, 128.9, 129.3, 131.6, 134.1, 135.4, 140.3, 144.2, 159.7; IR (CH,Cl,)

3051, 1686, 1450 cm"; HRMS mi/z 311.1316 (caled for Cy2H7ON, 311.1310).

11-Phenyl-6H-isoindolo[2,1-a]indol-6-one (46). Compound 45 (0.106 g, 0.25 mmol)

was allowed to react under our standard reaction conditions for 1 d. The reaction mixture
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was chromatographed using 10:1 hexane/EtOAc to afford 24 mg (33 %) of the indicated

compound 46 as a yellow solid: mp 222-223 °C; "H NMR (CDCl3) I'7.17-7.21 (m, 1H),

7.31-7.36 (m, 2H), 7.40-7.44 (m, 1H), 7.45-7.49 (m, 1H), 7.54-7.60 (m, 4H), 7.70-7.72 (m,
2H), 7.79 (d, J= 7.6 Hz, 1H), 7.97 (d, J= 7.6 Hz, 1H); *C NMR (CDCL;) ' 113.8, 120.8,

121.4,121.5, 124.3, 125.6, 127.0, 128.6, 129.0, 126.2, 129.3, 132.4, 133.9, 134.0, 134.1,
134.2, 134.4, 134.9, 162.8; IR (CH,Cly) 3053, 2987, 1731, 1264 cm™; HRMS m/z 295.1003

(caled for C31H;30N, 295.0997).

N
43

9-Phenyl-7,8-dihydro-6H-benzo[c]pyrido[1,2,3-Im]carbazole (48). Compound 47
(116 mg, 0.25 mmol) was allowed to react under our standard reaction conditions for 12 h.
The reaction mixture was chromatographed using 20:1 hexane/EtOAc to afford 54 mg (65
%) of the indicated compound 48 as a yellow solid: mp 239-241 °C; '"H NMR (CDCl;) I"
2.21-2.29 (m, 2H), 2.87 (t, /= 6.0 Hz, 2H), 4.31 (t, /= 5.7 Hz, 2H), 7.28-7.34 (m, 1H), 7.35- 7
7.55 (m, 8H), 7.61-7.65 (m, 2H), 8.58 (d, /= 7.8 Hz, 1H), 8.74-8.77 (m, 1H); *C NMR
(CDCl;) I'22.8,24.8,41.3,109.1, 112.5, 119.9, 121.1, 122.3, 122.6, 123.2, 123.7, 123.9,
125.9,127.4, 127.9, 128.5, 129.1, 129.2, 130.8, 135.3, 135.7, 139.1, 139.2; IR (CH,Cl,)
3053, 2986, 1421, 1265 cm™ ; HRMS m/z 333.1523 (caled for CasHioN, 333.1518). Anal.

Calcd for CasHoN: C, 90.06; H, 5.74; N, 4.20. Found: C, 90.27; H, 5.44; N, 4.17.
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Benzo[f]fluorenof1,9-bcloxepine (50). Compound 49 (99.1 mg, 0.25 mmol) was
allowed to react under our standard reaction conditions at 110 °C for 2 d. The reaction
mixture was chromatographed using 18:1 hexanes/ethyl acetate to afford 53.6 mg (80 %) of
the indicated compound 50 as a white solid: mp 106-107 °C; "H NMR (CDCl3) I'6.69 (dd, J
=17.6, 0.8 Hz, 1H), 6.83 (s, 1H), 6.93-6.95 (m, 1H), 6.97-6.99 (m, 1H), 7.05-7.07 (m, 1H),
7.16-7.30 (m, 5H), 7.58-7.59 (m, 1H), 7.62-7.64 (m, 1H); >C NMR (CDCl;) T'115.4, 117.2,
120.4,120.6, 122.3, 124.8, 126.0, 127.2, 128.3, 128.7, 129.1, 131.3, 131.4, 132.4, 137.1,
137.6, 139.9, 141.0, 154.8, 155.6; IR (CH,Cl,) 3050, 1580, 1238, 1450, 1426 cm™; HRMS

m/z 268.0892 (calcd for CyoH;20, 268.0888).
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CHAPTER 5. SYNTHESIS OF CYCLOPROPANES BY A NOVEL PALLADUM-

CATALYZED ACTIVATION OF ALKYL C-H BONDS
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Qinhua Huang and Richard C. Larock*

Department of Chemistry, lowa State University, Ames, IA 50010

Abstract
An efficient synthesis of cyclopropanes has been developed using palladium-catalyzed
C-H activation in which two new carbon-carbon bonds are formed in a single step. This
method involves the palladium-catalyzed activation of unreactive alkyl C-H bonds and
provides an efficient way to synthesize cyclopropapyrrolo[ 1,2-a]indoles, analogues of the

mitomycin antibiotics.

Introduction

The ability of palladium to activate C-H bonds has been used extensively in orgamc
synthesis.' In recent years, palladium-catalyzed C-H activation has received considerable
attention due to the wide variety of reactions this metal will catalyze. For instance, catalytic
amounts of Pd salts have been used to effect the addition of C-H bonds of electron-rich
arenes to alkenes and alkynes, and to effect carbonylation.> We have previously reported the
synthesis of 9-benzylidene-9#-fluorenes by Pd-catalyzed intramolecular C-H activation
involving the rearrangement of organopalladium intermediates derived from aryl halides and
internal alkynes.” Similarly, intramolecular C-H activation in organopalladium intermediates

derived from o-halobiaryls leads to a 1,4-palladium migration (Scheme 1).* We have already
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shown that such intermediates can be trapped by Heck, Suzuki, and alkyne annulation

reactions,™ and intramolecular arylation.’ Herein, we wish to report a novel C-H activation

using palladium chemistry to synthesize cyclopropanes,’ especially cyclopropapyrrolo[1,2-

alindoles, analogues of the mitomycin antibiotics.®

Scheme 1
X X X M X X
CO,Et
O W O 1,4-Pd O O CO,Et O
shift Pl — | + |

| cat. Pd{0}

Results and Discussion

During our investigation of Pd-catalyzed aryl to aryl migration chemistry,’ iodoindole 1
was allowed to react under our standard palladium migration conditions, but only trace
amounts of the desired migration/arylation product 3 were detected (eq 1). Surprisely,
compound 2 was isolated in a 42 % yield. As shown in Scheme 2, the indolylpalladium
iodide A, formed by palladium migration from the 2 position of the phenyl group to the 2
position of the indole ring, apparently reacts with the carbon-carbon double bond to generate
an alkyl intermediate B. Instead of forming a new carbon-carbon bond at the 2 position of
the phenyl group by a seven-membered palladacycle C, the alkylpalladium iodide apparently
forms a cyclopropane ring by activating a relatively unreactive alkyl C-H bond. Due to our
interest in the novel palladium-catalyzed activation of alkyl C-H bonds and the substantial ‘

biological activity of cyclopropapyrrolo[1,2-ajindoles,” we have investigated this novel
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palladium-catalyzed C-H activation and have examined its scope by employing various

substrates.

()
o Ph
/ N 55/ ;Z:?:nc)z % . / \ (1)
2

N
K)J\ 2 CsPiv

N
10°C, D
1 110 °C, DMF 3
42% trace
Scheme 2

/ \ Pd
N
c
!
) () )
/N\ | . /N\ bl T /N\ " N\Ph
I\A)L B 2

Qur initial studies focused on achieving optimal reaction conditions for this novel

palladium-catalyzed C-H activation process employing the isomeric iodoindole 4 (eq 2).

Ph
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While the reaction of compound 1 generated a 42 % vield of the desired cyclopropane 2 (eq

1), the reaction of compound 4 under the same reaction conditions [5 % Pd(OAc),, 5 mol %

bis(diphenylphosphino)methane (dppm), 2 equiv of CsO,CCMe; (CsPiv) and DMF as the

Table 1. Optimization reactions for the synthesis of compound 2.*P

entry catalyst ligand base temperature  time % vield of 2°
('0) ()
I 5%Pd(OAc), 5%dppm 2 CsPiv 110 6 627
2 -- 2 CsPiv 110 12 37
3 -- 2 BusN 110 72 15
4 5%dppm 2 CsPiv 100 24 55° r
5 5%depm 2 CsPiv 110 1.5 47°
6 5%dppm 2 NaOAc 115 24 36°
7 5%dppm 2 Na,CO, 110 72 26°
8 5% dppm 2 Cs,CO; 115 48 52¢
9 5% dppm 2 KO-~Bu 115 0.5 trace
10 5%Pd(PPhs); 5% dppm 2 Na,CO, 110 72 30°
11 5% Pd(PPhs), - 2 Na,CO; 110 72 27°

*All reactions were carried out under the following reaction conditions: 0.25 mmol of compound 4, 5 mo]
% Pd{OAc),, 5 mol % dppm, 2 equiv of CsPiv in 4 mL of DME at the indicated temperature under an Ar
atmosphere. ° Along with cyclopropane 2, another cyclopropane product, generated by having the
palladium intermediate close onto the methyl group, has been obtained in a 5-10 % yield. ©Isolated yield. ¢ -—

Compound 3 was isolated in a 15 % yield. ° The yield is based on gas chromatographic analysis.
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solvent] afforded cyclopropane 2 in a 62 % yield and compound 3 in a 15 % yield (entry 1,
Table 1). Omitting dppm as the ligand, the yield dropped from 62 % (entry 1) to 37 % (entry
2). When BusN was employed as the base, cyclopropane 2 was isolated in only a 15 % vield
(entry 3). When the reaction was carried out at 100 °C, the yield dropped to 55 % (entry 4),
and a longer reaction time was required to reach completion. Compared to the reaction using
dppm as the ligand (entry 4), when bz’s(dicyclohexylphosphino)methane (dcpm), a more
electron-donating ligand, was employed, the C-H activation process was much faster and
reached completion in 1.5 h (entry 5). However, the yield decreased to 47 % from 55 %
(entry 4). There was no reaction when NaOAc wag employed as a base even at 110 °C.
However, the reaction did proceed when the reaction temperature was increased to 115 °C,
although the vield of cyclopropane 2 was low (entry 6). The bases NayCOs, Cs;CO3, and
KO-£-Bu have also been employed and the desired cyclopropane 2 has been obtained in a
yield of 26 %, 52 %, and a trace amount, respectively (entries 7-9). When Pd(PPhj), was
employed as the catalyst with and without the addition of dppm, compound 2 was produced
in 30 % and 27 % yields, respectively (entries 10 and 11). Thus, we chose the following
conditions as our “optimal” reaction conditions: 0.50 mmol of the substrate, 5 mol %
Pd(OAc),, 5 mol % dppm, 2 equiv of CsPiv in DMF (4 mlL) stirred at 110 °C under an Ar
atmosphere.
Using our optimal reaction conditions, the scope of this novel Pd-catalyzed C-H activation
process has been explored using a variety of substrates carefully selected in order to establish
the generality of the process and its applicability to commonly encountered synthetic

problems (Table 2). While the reaction of compound 4 afforded cyclopropane 2 in
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Table 2. Synthesis of cyclopropanes by Pd-catalyzed activation of unreactive C-H bonds*®

entry aryl iodide time (h) product % yield®
! O 18 Q 2 &
o
2 N ! 4 6 /A 2 62
CHy
Q—\S\ CHz
3 N 5 12 R\ 6 40 (46%
by ”
Cr
4 N~ 7 12 7\ 8 trace
by “
CH, CHs
5 % o 16 = 10 31°
Ph Ph ;
6 Qi 11 18 Y 12 4 o
NK/I\K I |
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Table 2 continued

14 <59

Re

|

| CO,Et
CO5Et
8 g\tﬁﬂ 15 12 COEt 16  trace
2

£

Q
9 @[O 17 12 @A 18 0
|
Fh
A Ph
|
10 ;\ 19 12 N\, 20 72
0 N
o] A H
Br v
11 O O 21 24 22  trace
24 88°

12 : O\/\HQ 23 12

4

* All reactions were carried out under the following reaction conditions, unless otherwise specified: 0.5
mmol of the substrate, 5 mol % Pd(OAc),, 5 mol % dppm, 2 equiv of CsPivin4 mL of DMF at 110 °C
under an Ar atmosphere. ° For entries 1-3, 5 and 6, along with the desired cyclopropane derivative, another
cyclopropane product has been detected in 5-10 % yields, in which the palladium closes onto the methyl
group. “Isolated yield. ¢ The yield was determined by gas chromatographic analysis. © The reaction was

carried out at 100 °C,
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a 62 % yield (entry 2), the reaction of iodoindole 5 generated cyclopropane 6 in a 46 % vyield
(entry 3). Iodoindole 7, with no substituent in the 3 position of the indole ring, has been
allowed to react under our optimal reaction conditions, but only a trace amount of the desired
product was detected. It is quite possible that the alkylpailadium intermediate first produced
undergoes palladium migration to the 3 position of the indole ring cirumventing
cyclopropane formation, although we failed to isolate any recognizable products (Scheme 3).
Ths type of alkyl to aryl palladium migration has been observed previously in our research

group under these same reaction conditions.'°

Scheme 3
N

\
N N

To test if the C-H activation process occurs when forming a new 6-membered ring, we

o

have prepared compounds 9 and 11 and carried out the corresponding reactions under our
optimal reaction conditions (entries 5 and 6). Although the vields are a little lower, those
new fused 6-membered ring systems can be generated by this palladium-catalyzed alkyl C-H
activation chemistry.

Is the indole nitrogen essential to this C-H activation process? To clarify this question,
compounds 13 and 15 were employed under our optimal reaction conditions. Unfortunately,

only trace amounts of the desired cyclopropane products 14 and 16 were detected by GC

A PR R e b st D |

T8 I HK B S
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analysis (entries 7 and 8). It appears that the indole Ting system is critical to the formation of
the cyclopropanes by this Pd-catalyzed C-H activation prcocess. Consistent with this
observation is the fact that the reaction of compound 17 afforded none of the desired
cyclopropane product. It is guite possible that compound 17 under our reaction conditions
may generate a z-allylpalladium intermediate, which circumvents cyclopropane formation.
When compound 19 was employed, the reaction again failed to produce any cyclopropane

product. However, 2-iodo-3-phenylindole was isolated in a 72 % yield (entry 10). This £

product probably arises by simple decomposition of the N-(alkoxycarbonyl)indole. When,
aryl bromide 21 was allowed to react under our optimal reaction conditions, none of the
desired cyclopropane product was detected (entry 11).
When compound 23 was allowed to react under our optimal conditions, instead of
obtaining the expected cyclopropane product, compound 24 was isolated in an 88 % vyield
after 12 h at 100 °C (entry 12). Possible mechanisms for the formation of ether 24 are shown
in Scheme 4. Under our reaction conditions, the initial arylpalladium iodide is expected to
react with the carbon-carbon double bond to form an alkylpalladium intermediate D. Instead
of activating a relatively unreactive alkyl C-H bond, the palladium intermediate is more
likely to react with a neighboring aromatic C-H bond to generate intermediate E or F. These
species may arise not only because the aromatic C-H bonds are more acidic and thus more
reactive, but also because formation of five-membered ring palladacycles is more favorable
than formation of four-membered ring palladacycles. Intermediate E or F can then undergo
reductive elimination, followed by intramolecular arylation, to afford the observed product, ;
compound 24, in a good yield. Thus, this process is another example of an alkyl to aryl

pailadium migration, similar to others observed recently in our research group.
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Scheme 4

Conclusion
A novel palladium-catalyzed activation of simple alkyl C-H bonds has been
investigated as a unique new way to form polycyclic cyclopropanes. Our experiments
indicate that the indole ring is apparently critical to this activation process. This method
provides an efficient synthesis of cyclopropapyrrolo[1,2-a]indoles, analogues of the

mitomycin antibiotics.®
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Experimental Section
General. 'H and '*C NMR spectra were recorded at 300 and 75 MHz or 400 and 100

MHz respectively. Thin-layer chromatography was performed using commercially prepared

60-mesh silica gel plates (Whatman K6F), and visualization was effected with short
wavelength UV light (254 nm) and a basic KMnO, solution [3 g of KMnQ, + 20 g of KbCOs 7
+5mL of NaOH (5 %) + 300 mL of H20]. All melting points are uncorrected. All reagents —
were used directly as obtained commercially unless otherwise noted. All reagents were used
directly as obtained commercially unless otherwise noted. (2-Todophenyl)acetaldehyde,'! 2-
iodo-3-phenylindole'? and compounds 13," 15, and 17" were prepared according to
literature procedures.
3-(2-Iodophenyl)indole. To a solution of (2-iodophenyl)acetaldehyde'' (0.738 g, 3.0
mmol) in 15 mL of absolute ethanol was added 0.356 g of PhNHNHj (3.3 mmol) and 57.6
mg of CH3SO3H (0.6 mmol). The resulting yellow solution was stirred at 25 °C for 1 h.
Another 0.519 g of CH,;SO;H (5.4 mmol) was then added to the reaction mixture and the
reaction was stirred at 85 °C for 2 d. The reaction was then allowed to coolto 25 °C. The
ethanol was removed under reduced pressure and the residue was diluted with Et,O (30 mL),
washed with brine (30 mL), dried over NapSO,, filtered and concentrated under reduced
pressure. The residue was purified by flash chromato graphy (5:1 hexane/EtOAc) to afford
0.41 g of the indicated compound (43 % yield) as an yellow oil: 'H NMR (CDCl5) I'7.01-
7.05 (m, 1H), 7.14-7.18 (m, 1H), 7.23-7.27 (m, 1H), 7.38-7.49 (m, 4H), 7.54 (d, /= 8.0 Hz, %

IH), 8.01 (dd, J=1.2, 8.0 Hz, 1H), 8.27 (br s, 1H); *C NMR (CDCL;) ['101.0, 111.5, 120.3,
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120.4,122.6, 123.8, 126.8, 128.2, 128.5, 131.6, 135.8, 140.0, 140.1 (one sp” carbon missing

due to overlap).

3-Methyl-3-butenyl tosylate.'’ To a mixture of Et:N (2.026 g, 20 mmo]l) and 3-

methyl-3-buten-1-0] (0.862 g, 10 mmol) in CH,Cl, at 0 °C was slowly added p-tosyl chloride

(1.909 g, 10 mmol). The reaction mixture was stirred at 0 °C for 3 h, then diluted with
CH,Cly, washed with 10 % aq HCI, 10 % aq NaHCOs, and water and then concentrated, and
dried over anhydrous Na,;SO, to afford the indicated compound (2.015 g, 84 %) as a yellow
oil, which was used without further purification. :
N-(3-Methyl-3-butenyl)-3-(2-iodophenyl)indole (1). To a suspension of NaH (0.75
mmol, 60 % in mineral oil) in dry DMF (2 mL) was added dropwise a solution of 3-(2-
iodophenyl)indole (0.16 g, 0.50 mmol) in dry DMF (2.5 mL) at 0 °C under an Ar
atmosphere. Lots of bubbles were generated. The resulting deep yellow suspension was
stirred at O °C for 30 min. A solution of 3-methyl-3-butenyl tosylate (0.24 g, 1.0 mmol) in
dry DMF (2.5 mL) was added dropwise and the resulting yellow solution was stirred at 0 °C
for 14 h. The reaction was diluted with Et,0 (25 mL), washed with brine (30 mL), and the
organic layer was dried over Na,SO,. The solvent was removed under reduced pressure and
the residue was chromatographed (15:1 hexane/EtOAc) to afford 0.137 g of the indicated
compound in a 71 % yield as a yellow oil: '"H NMR (CDCI3)T1.79 (s, 3H), 2.58 (t, J="7.2
Hz, 2H), 4.27-4.32 (m, 2H), 4.74 (d, J = 0.6 Hz, 1H), 4.82-4.83 (m, 1H), 6.96-7.02 (m, 1H),
7.11-7.16 (m, 1H), 7.22-7.29 (m, 1H), 7.29 (s, IH), 7.35-7.48 (m, 3H), 7.52-7.55 (m, 1H),
7.99 (dd, J=1.2, 7.8 Hz, 1H); ’C NMR (CDCls) I'22.9, 38.4, 45.3, 100.9, 109.7, 113.0, g

118.6, 119.8, 120.5, 122.0, 127.3, 127.5, 128.2, 128.3, 131.6, 135.8, 140.0, 140.2, 142.2; IR
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(neat, cm™) 3048, 29686, 2933, 1649, 1585, 1458; HRMS Calcd for CioHgNI: 387.0484,

Found: 387.0490.

N—(3—Methyl—3-butenyl)-2-iodo-3—phenylindole (4). Using the procedure used to

prepare compound 1, but employing 2-iodo-3-phenylindole'? and 3-methyl-3-butenyl

tosylate, afforded compound 4 in an 88 % yield as a yellow oil: '"H NMR. (CDCI3) I'1.87 (s,
3H), 2.44-2.49 (m, 2H), 4.34-4.39 (m, 2H), 4.84 (d,/=0.9 Hz, 1H), 4.88 (d, /= 0.9 Hz, 1H),

7.06-7.11 (m, 1H), 7.17-7.22 (m, 1H), 7.35-7.40 (m, 2H), 7.47-7.50 (m, 2H), 7.56-7.61 (m,

3H); °C NMR (CDCl;) '23.1, 38.0, 46.8, 85.8, 109.8, 112.7, 119.4, 120.3, 122.5,123.4,
127.0,128.2, 128.6, 130.3, 135.4, 137.9, 142.4; IR (neat, cm™) 3072, 2963, 2936, 1649,
1603, 1530, 1446, HRMS Caled for CioH;sNI: 387.0484. Found: 387.0491.
2-Todo-3-methylindole. This compound was prepared by modifying a reported
procedure.'® To a solution of 3-methylindole (2.64 g, 20 mmol) in dry THF (55 mL) was
added dropwise #-BuLi (2.5 M in hexane, 8.4 mL, 21 mmol} at -78 °C under an Ar
atmosphere. The resulting suspension was stirred at -78 °C for 20 min. Carbor dioxide was
bubbled through the reaction mixture for 30 min. The resulting clear yellow solution was
then warmed to 25 °C. Lots of bubbles were generated. The solvent was removed under
reduced pressure at 25 °C. To the residue was added dry THF (50 mL) and the reaction
mixture was allowed to cool to -78 °C. To the yellow solution was added slowly z-BuLi (1.7
M in pentane, 12.5 mL, 21.3 mmol) and the resulting orange solution was stirred at -78 °C
for 1 h. A solution of ICH,CH,I (recrystallized from MeOH) (5.64 g, 20 mmol) in dry THF
(15 mL) was added at -78 °C. The resulting yellow solution was stirred at -78 °C for another E
1 hour and was then warmed to 25 °C. The reaction mixture was washed with satd ag NH,CI

(50 mL). The organic layer was dried over Na,SO, and the residuc was chromatographed
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(5:1 hexane/EtOAc) to afford 5.15 g of the indicated compound in a 97 % yield with spectra

identical to those previously reported.'®

N-(3-Methyl-3-butenyl)-2-iodo-3-methylindole (5). Using the procedure used to
prepare compound 1, but employing 2-iodo-3-methylindole and 3-methyl-3-butenyl tosylate,
afforded compound 5 in a 71 % yield as a yellow oil: 'H NMR (CDCI3) I"1.84 (s, 3H), 2.31
(s, 3H), 2.36-2.40 (m, 2H), 4.23-4.27 (m, 2H), 4.79 (d, /= 0.8 Hz, 1H), 4.84 (d, /= 0.8 Hz,

1H), 7.05-7.09 (m, 1H), 7.12-7.16 (m, 1H), 7.30 (d, /= 8.0 Hz, 1H), 7.51 (dd, J = 0.4, 8.0

Hz, 1H); "CNMR (CDCL) I'12.6, 23.1, 38.1, 46.4, 86.3, 109.6, 112.5, 117.3, 118.6, 119.3,
121.9, 128.7, 137.7, 142.5; IR (CDCls, cm™) 3074, 3055, 2968, 2912, 1649, 1456; HRMS
Caled for C4HgNI: 325.0328. Found: 325.0334.
N-(3-Methyl-3-butenyl)-2-iodoindole (7). Using the procedure used to prepare
compound 1, but employing 2-iodoindole and 3-methyl-3-butenyl tosylate, afforded
compound 7 in a 68 % yield as a yellow oil: '"H NMR (CDCl3) I"1.83 (s, 3H), 2.38-2.42 (m,
2H), 4.23-4.27 (m, 2H), 4.77-4.78 (m, 1H), 4.84-4.85 (m, 1H), 6.77 (d, /=0.8 Hz, 1H), 7.04-
7.08 (m, 1H), 7.12-7.16 (m, 1H), 7.31-7.33 (dd, J= 0.8, 8.0 Hz, 1H), 7.51-7.54 (m, 1H); *C
NMR (CDCl;) I"23.1, 38.0, 46.3, 82.9, 109.7, 112.3, 112.7, 119.8, 120.0, 121.9, 130.0,
137.3, 142.3; IR (neat, cm™) 3061, 2962, 1649, 1455; HRMS Calcd for C13H4NI: 311.0171.
Found: 311.0178.
4-Methyl-4-penten-1-ol. To 25 mL of dry THF was added slowly #-BuLi (1.7 M in
pentane, 24.7 mL, 42 mmol) at -78 °C under an Ar atmosphere. The resulting yellow
solution was stirred at -78 °C for 5 min, 2-bromopropene (1.86 mL, 21 mmo]) was added g
dropwise, and the resulting suspension was stirred at -78 °C for 30 min. Oxetane (1.30 mL,

20 mmol) was added slowly and the reaction mixture was stirred at -78 °C for another 30
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min. Then BF3-OEt, (2.52 mL, 20 mmol) was added dropwise, and the clear yellow solution
was further stirred at -78 °C for 30 min. The reaction was quenched with brine (25 mL) and
allowed to warm to 25 °C. 10 Ml of 10 % aq HC] was added to the reaction muxture and the
organic layer was dried over NaSO,, and concentrated under reduced pressure. The residue
was chromatographed (3:1 hexane/EtOAc) to afford 0.72 g of the indicated compound in a
36 % yield as an yellow oil with spectra identical to those previously reported.'’
4-Methyl-4-pentenyl tosylate. To a mixture of pyridine (2.3 mL, 28.4 mmol) and 4-
methyl-4-penten-1-01 (0.71 g, 7.1 mmol) in CH,Cl, (10 mL) at 0 °C was slowly added p-tosyl
chloride (1.36 g, 7.1 mmol). The reaction mixture was stirred at 0 °C for 12 h, then diluted
with CH,Cl, washed with 10 % aq HC1 (20 mL), 10 % aq NaHCO; (20 mL), and water (20
mL), dried over anhydrous Na,SQ,, and concentrated under reduced pressure. The residue
was chromatographed (9:1 hexane/EtOAc) to afford 1.30 g of the indicated compound in a
72 % yield as a colorless oil: 'H NMR (CDCI3) I'1.66 (s, 3H), 1.74-1.83 (m, 2H), 2.03 (t, J
=7.5 Hz, 2H), 2.45 (s, 3H), 4.03 (t, /= 6.6 Hz, 2H), 4.59 (d, /= 0.6 Hz, 1H), 4.69 (d, /= 0.6
Hz, 1H), 7.35 (d, J=7.5 Hz, 2H), 7.78-7.80 (m, 2H); '*C NMR (CDCls) I'21.8, 22.4, 26.9,
33.5,70.3, 111.1, 128.1, 130.0, 133.4, 144.0, 144.9.
N-(4-Methyl-4-pentenyl)-2-iodo-3-methylindole (9). Using the procedure used to
prepare compound 1, but employing 2-iodo-3-methylindole and 4-methyl-4-pentenyl
tosylate, afforded compound 9 in an 82 % yield as a yellow oil: 'H NMR (CDCi3) I'1.75 (s,
3H), 1.84-1.91 (m, 2H), 2.10 (t, /= 8.0 Hz, 2H), 2.31 (s, 3H), 4.13-4.16 (m, 2H), 4.74 (s,
1H), 4.78 (s, 1H), 7.04-7.08 (m, 1H), 7.11-7.16 (m, 1H), 7.29 (d, J= 8.0 Hz, 1H), 7.50-7.52

(m, IH); "C NMR (CDCls) ['12.6, 22.7, 27.9, 35.0, 47.0, 86.5, 109.6, 110.7, 117.2, 118.5,
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119.2,121.8, 128.6, 137.9, 144.7. IR (neat, cm™) 3074, 3054, 2964, 1648, 1454, HRMS
Caled for C)sH ) sNI: 339.0484. Found: 339.0491.
N—(Isopropenyloxycarbonyl)-2-iodo-3—phenyiindole (19). Using the procedure used
to prepare compound 1, but employing 2-iodo-3-phenylindole and 1sopropenyl
chloroformate, afforded compound 11 in a 77 % yield as a yellow solid: mp 85-87 °C; 'H
NMR (CDCL;) '2.18 (d, J= 0.4 Hz, 3H), 4.92-4.93 (m, 1H), 5.02 (d, /= 1.6 Hz, 1H), 7.20-
7.24 (m, 1H), 7.28-7.33 (m, 1H), 7.40-7.46 (m, 2H), 7.48-7.53 (m, 4H), 8.15 (d, /= 8.0 Hz,
1H); *C NMR (CDCL3) I'19.9,77.9, 103.6, 115.8, 119.7, 123.8, 125.3, 128.3, 128.8, 130.5,
133.3,134.2, 138.4, 148.9, 152.6 (one sp2 carbon missing due to overlap); IR (CHCl,, em™)
3019, 1746, 1677, 1445; HRMS Caled for C15H40,NI: 403.0069. Found: 403.0076.
2’-(2-Bromophenyl)acetophenone. To a stirred mixture of PdCly(PPhs), (0.702 g,
0.15 mmol), K»CO;3 (4.15 g, 30 mmol), 2’-iodoacetophenone (2.46 g, 10 mmol), DMF (80
mL) and H,O (18 mL) was added slowly a solution of 2-bromoboronic acid (3.01 g, 15
mmol) in DMF (10 mL) at 25 °C under an Ar atmosphere. The resulting mixture was stirred
at 80 °C for 6 h and then allowed to cool to 25 °C, diluted with Et;0 (50 mL), and washed
with brine (2 x 50 mL). The organic layer was dried over Na,SOq, filtered and concentrated
under reduced pressure. The residue was chormatographed (10:1 hexane/EtOAc) to afford
1.4 g of the indicated compound in a 52 % yield as a pale red oil: 'H NMR (CDCl3) 2.02 (d,
J=0.8 Hz, 3H), 7.23-7.28 (m, 3H), 7.35-7.37 (m, 1H), 7.45-7.50 (m, 1H), 7.52-7.56 (m, 1H),
7.64-7.66 (m, 1H), 7.73-7.76 (m, 1H); '°C NMR (CDCls) I"29.4, 123.1, 127.6, 128.3, 128.5,
129.4,131.1, 131.3, 131.3, 132.9, 139.5, 140.3, 142.3, 201.7.
2-Bromo-2’-isopropenylbiphenyl (21). To a suspension of

triphenylmethylphosphonium bromide (1.77 g, 4.95 mmol) in dry THF (25 mL) was added
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slowly n-BuLi (2.5 M in hexane, 2.0 mL, 4.95 mmol) at 0 °C under an Ar atmosphere. The
resulting yellow suspension was stirred at 0 °C for 30 min. A solution of 2’-(2-
bromophenyl)acetophenone (3.3 mmol) in dry THF (5 mL) was added dropwise and the
reaction mixture was stirred at 0 °C for 30 rrﬁn. The solvent was removed under reduced
pressure and hexane (40 mL) was added to the residue. The mixture was stirred at 25 °C for
30 min and the phosphonium salt was removed by filtration. The filtrate was concentrated
under reduced pressure and the residue was chromatographed (30:1 hexane/EtOAc) to afford
0.90 g of the indicated compound in a 50 % yield as a white solid: mp 58-60 °C; 'H NMR
(CDCLy) I'1.77 (s, 3H), 4.82-4.83 (m, 1H), 4.95-4.97 (m, 1H), 7.15-7.23 (m, 2H), 7.24-7.39
(m, 5H), 7.61-7.64 (m, 1H); °C NMR (CDCL;) I"23.7, 116.5, 123.9, 126.7, 127.0, 128.0,
128.5,128.7, 130.7, 131.8, 132.8, 139.0, 142.9, 143.0, 145.1; IR (CHCl;, cm™) 3058, 3011,
2969, 1632, 1463; HRMS Caled for CysH,;3"°Br: 272.0201. Found: 272.0207.

3-Phenyl-3-butenyl tosylate. To a solution of TsCl (0.80 g, 4.2 mmol) in CH,Cl, (3
mL) was added dropwise a solution of 3-bromo-3-buten-1-ol {0.302 g, 2.0 mmol) in CH»Cl,
(4 mL) at 0 °C under an Ar atmosphere. Pyridine (2.56 mL) was added slowly and the
reaction mixture was stirred at 25 °C for 3 h. The reaction was diluted with Et,O (20 mL),
washed with IN HCI (2 x 20 mL) and brine (20 mL), and the organic layer was dried over
NaSQO;. The solvent was removed under reduced pressure and the crude 3-bromo-3-butenyl
tosylate was subjected to the following reaction without further purification. To a mixture of
PdCl(PPhs); (70.1 mg, 0.1 mmol), K,COs (0.83 g, 6.0 mmol), 3-bromo-3-buteny! tosylate
(crude, 2.0 mmol), DMF (5 mL}) and H,0 (3 mL) was added a solution of PhB(OH), (0.36 g,
3.0 mmol) in DMF (10 mL) at 0 °C under an Ar atmosphere. The reaction mixture was

stirred at 25 °C for 12 h. The reaction was diluted with Et,0 (20 mL) and washed with brine
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(2 x20 mL). The organic layer was dried over Na;SO,, filtered, and concentrated under

reduced pressure. The residue was chromatographed (5:1 hexane/EtQAc) to afford 0.29 gof
the indicated compound in a 48 % overall yield as a brown oil: '"H NMR (CDClL3) I'2.44 (s,
3H), 2.86 (dt, J=0.8, 7.2 Hz, 2H), 4.10 (t, /= 7.2 Hz, 2H), 5.08 (s, 1H), 5.34 (s, 1H), 7.25-
7-31 (m, 7H), 7.72-7.74 (m, 2H); ’C NMR (CDCl3) I'21.8, 35.0, 68.9, 115.5, 126.2, 128.0,
128.1, 128.7, 130.0, 133.3, 139.9, 143.0, 144.9. 7
2-lodophenyl 3-phenyl-3-butenyl ether (23). To a suspension of NaH (60 % in —
mineral oil, 44 mg, 1.12 mmol) in dry DMF (1.5 mL) was added a solution of 2-iodopheno!
(0.23 g, 1.02 mmol) in dry DMF (2 mL) at 0 °C under an Ar atmosphere. Lots of bubbles
were generated. After 20 min, a solution of 3-phenyl-3-butenyl tosylate (0.28 g, 0.93 mmol)
in dry DMF (2 mL) was added slowly. The reaction mixture was allowed to warm and
stirred at 25 °C for 1 d to reach completion. The reaction was diluted with Et;0 (20 mL) and
washed with brine (20 mL). The organic layer was dried over NaySQy, filtered, and
concentrated under reduce pressure. The residue was chromato graphed (35:1 hexane/EtOAc)
to afford 0.15 g of the indicated compound in a 46 % yield as an yellow oil: 'H NMR
(CDCl;) I'3.07 (dt, /= 0.9, 6.9 Hz, 2H), 4.10 (t, /= 6.9 Hz, 2H), 5.25-5.27 (m, 1H), 5.43 (d,
J=1.2Hz, 1H), 6.65-6.71 (m, 1H), 6.73 (dd, J=1.2, 8.4 Hz, 1H), 7.21-7.37 (m, 4H), 7.45-
7.48 (m, 2H), 7.76 (dd, J=2.0, 8.4 Hz, 1H); "C NMR (CDCl3) T'35.3, 68.2, 86.9, 112.5,
115.2,122.7,126.4, 127.9, 128.7, 129.6, 139.7, 140.8, 144.5, 157.6; IR (neat, cm™) 3080,
3056, 2946, 1581, 1464; HRMS Calcd for C;6H;sI0: 350.0168. Found: 350.0171.
General procedure for the synthesis of cyclopropanes by Pd-catalyzed C-H %
activation. To a 6 dram vial was added Pd(OAc), (6.0 mg, 0.025 mmol), dppm (9.2 mg, |

0.025 mmol), CsPiv (234 mg, 1.0 mmol), the substrate (0.50 mmol), and dry DMF (4 mL).
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The reaction mixture was stirred at 25 °C under an Ar atmosphere for 5 min, and was then

stirred at 110 °C. Completion of the reaction was monitored by thin-layer chromatography

and GC-mass spectral analysis. When the reaction was complete, the reaction mixture was

allowed to cool to 25 °C, diluted with Et,0 (20 mL), and washed with brine (20 mL). The

organic layer was dried over Na;SOy, and concentrated under reduced pressure. The residue

was subjected to purification by chromatography or gas chromatographic analysis.
8b-Methyl-8-phenyl-1,1 a,2,8b-tetrahydrocyclopropa|3,4]pyrrolo[1,2-ajindole (1).

White solid: mp 158-160 °C; 'H NMR (CDCl3) T'1.01-1.03 (m, 1H), 1.28 (dd, /= 4.8, 8.0

Hz, 1H), 1.46 (s, 3H), 2.08-2.10 (m, 1H), 4.05 (d, J = 6.4 Hz, 1H), 4.24 (dd, J = 5.6, 10.4 Hz,

1H), 7.06-7.17 (m, 3H), 7.25-7.29 (m, 1H), 7.42-7.46 (m, 2H), 7.61 (dd, /=0.8, 8.0 Hz,1H),

7.71 (d, J= 8.0 Hz, 1H); "C NMR (CDCly) T'17.5, 23.6, 24.2, 28.8, 46.5, 108.4, 109.2,

119.3,119.7, 121.2,125.6, 128.4, 129.5, 131.3, 132.8, 135.2, 145.7; IR (CHCl3, cm™) 3018,

2930, 1602, 1478, 1460, 1216; HRMS Caled for C;oH;;N: 259.1361. Found: 259.1365.
7a-Methyl-6,7,7a,7b,8,1 2b-hexahydrobenzo[c|pyrrolo[1,2,3-Im]carbazole 3).

White solid: mp 154-157 °C; '"H NMR (CDClL) I"1.37 (s, 3H), 2.61-2.65 (m, 2H), 2.96-3.05

(m, 2H), 4.14-4.19 (m, 1H), 4.33-4.40 (m, 1H), 7.01-7.05 (m, 1H), 7.15-7.17 (m, 2H), 7.20-

7.22 (m, 1H), 7.25-7.30 (m, 2H), 7.66 (d, J= 7.6 Hz, 1H), 7.85-7.87 (m, 1H); ’C NMR

(CDCL) I'22.5, 35.9, 45.6, 45.9, 46.9, 104.1, 110.6, 119.8, 120.2, 120.7,122.7, 124.3, 127 4,

125.0,129.7, 134.2, 135.0, 136.0, 154.9; IR (CHCls, cm™) 3017, 2959, 1631, 1492, 1433,

1215; HRMS Caled for CoH;7N: 259.1361. Found: 259.1366.
8,8b-Dimethyl-1,1a,2,8b-tetrahydrocyclopropa|3,4] pyrrolo[1,2-g]indole (6). White ;

solid: mp 53-55 °C; '"H NMR (CDCls) I"0.77-0.80 (m, 1H), 1.15 (dd, /= 0.8, 8.0 Hz, 1H), :

1.66 (s, 3H), 1.98-2.01 (m, 1H), 2.34 (s, 3H), 3.94 (d, /= 10.0 Hz, 1H), 4.08-4.12 (m, 1H),
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7.00-7.06 (m, 3H), 7.44 (d, /= 7.2 Hz, 1H); "C NMR (CDCl3) I'8.48, 17.8, 23.2, 23.9, 28.5,

46.4,100.7, 108.7, 118.3, 118.5, 120.5, 132.7, 133.4, 145.1; IR (CHCl3, em™) 3051, 3007,

2962, 2924, 1619, 1478, 1463; HRMS Caled for Ci4H;sN: 197.1205. Found: 197.1208.
10b-Methyl-1,10b-dihydro-2 H-indeno|[1,2,3-de]chromene (24). White solid: mp 51-
53°C; 'H NMR (CDCl5) I'1.46 (s, 3H), 1.63-1.70 (ddd, J = 8.0, 11.2, 11.2 Hz, 1H), 2.29-
2.33(ddd,J=0.8, 8.0, 11.2 Hz, 1H), 4.56 (ddd, /= 0.8, 8.0, 13.2 Hz, 1H), 4.65 (ddd, J = 8.0,
11.2,13.2 Hz, 1H), 6.71-6.75 (m, 1H), 7.22-7.26 (m, 2H), 7.29 (dd, J=1.2, 7.2 Hz, 1H),

7.33-7.37 (m, 1H), 7.42-7.44 (m, 1H), 7.69-7.72 (m, 1H); "*C NMR (CDCls) ['25.7, 31.0,

42.6,65.7, 112.5, 113.8, 121.3, 123.2, 127.1, 127.5, 129.5, 134.9, 140.4, 140.6, 153.0, 153.9;
IR (CHCls, em™) 3053, 3010, 2963, 2919, 1614, 1592, 1486, 1447; HRMS Calcd for

Ci16H140: 222.1045. Found: 222.1048.
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1

GENERAL CONCLUSIONS
In this dissertation, the scope and limitations of todocyclization and several palladium-
catalyzed processes have been presented. A wide variety of isoquinolines, naphthyridines,
naphthalenes, carbazoles, cyclopropanes and other heterocycles and carbocycles have been
synthesized using these new methods. ~ =
Chapter 1 describes an efficient synthesis of a wide variety of halo-, selenium-, sulfur-

containing substituted isoquinolines and naphthyridines, which employs very mild reaction

.E.C!Sili'L A R b D T

conditions. This methodology accommodates a variety of iminoalkynes and affords the
anticipated substituted isoquinolines and naphthyridines in moderate to excellent yields. ,,

Chapter 2 describes an efficient and straightforward route to synthesize 4-(1-
alkenyl)isoquinolines and 4-alkyl-3-arylisoquinolines containing a ketone group, using a
palladium(I)-catalyzed cyclization, followed by olefination (Heck reaction). To form
isoquinolines in high yields, both electronic effects and facilitation by an ortho-methoxy
group are necessary.

Chapter 3 describes an efficient palladium-catalyzed synthesis of highly substituted
naphthalenes and carbazoles, in which two new carbon-carbon bonds are formed in a single
step under relatively mild reaction conditions. This method accommodates a variety of
functional groups and generally affords the anticipated highly substituted naphthalenes and
carbazoles in good to excellent yields.

Chapter 4 presents a novel method for the synthesis of complex fused polycycles
emplqying two sequential Pd-catalyzed intramolecular processes mvolving C-H activation.

This methodology exploits relatively facile aryl to aryl and vinylic to aryl palladium



228

migrations, followed by intramolecular arylation to prepare a wide variety of carbocycles and
heterocycles.

Chapter 5 presents a novel palladium-catalyzed activation of relatively unreactive atkyl
C-H bonds for the synthesis of cyclopropapyrrolo[ 1,2-g]indoles, analogues of the mitomycin
antibiotics. Our experiments have shown that the indole ring 1s critical to this activation

process.
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