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Summary of Results

The focus of this work has been the use of direct numerical simulations of spheres suspended in Stokes
or potential flows to systematically develop closure relations for averaged equations describing the
flow of fluids with suspended particles. Our efforts during the initial part of the project served to
prepare the stage for the results in the last several years, which are the most interesting ones found
in the course of this work. Accordingly, in the description that follows, we will focus on these latter
results referring the reader to the publications listed below for the earlier work.

1. A distinctive feature of our efforts has been the study of spatially non-uniform systems, for which
we had to develop a completely new approach. The reason we believe the study of such systems
is of crucial importance for the development of averaged equations is a result that may be termed
the Stability-Hyperbolicity Theorem (Prosperetti & Jones 1985; Prosperetti & Satrape 1990). This
is a general result applicable to a very broad class of averaged-equations models that essentially
encompasses all the models in current use. It states that, for all the models in this broad class, lack
of hyperbolicity implies linear instability (but not vice versa). The result was originally derived for
models containing only first-order spatial or temporal derivatives. For models with derivatives of
higher order, it still implies that long wavelengths will be unstable unless the model, truncated to
its first-order differential form, is hyperbolic (Jones & Prosperetti 1987).

This result illuminates the crucial importance of differential terms in the averaged equations
which has been recognized by others (see e.g. Batchelor 1988). While some such terms can be found
by considering spatially uniform situations (e.g. the Newtonian part of the suspension stress with
the attendant effective viscosity — see e.g. Batchelor 1970; Mo & Sangani 1994, and also Sangani &
Didwania 1993; Bulthuis et al. 1995) not all can be obtained in this way. A typical simple example
is the spatial part of the acceleration in the added-mass interaction. It is therefore necessary to
consider explicitly spatially non-uniform systems, the study of which is much less developed than
that of uniform ones. Specifically, while standard techniques exist for the numerical approximation of
infinite uniform suspensions or composites (see below), no such technique existed for the non-uniform
case prior to our work.

2. Before continuing, it is useful to demonstrate in a simple example that spatially non-uniform
systems can differ not only quantitatively, but qualitatively from uniform ones, which greatly com-
plicates the task of finding closure relations for them.

Consider a heat conduction problem in a composite consisting of 3 blocks. The gray block has
infinite thermal conductivity while that of the white blocks is equal and finite (Fig. 1). The system
can therefore exists in 3 states. It is required to determine the ensemble-average temperature at the
midpoint. In the state of the system in which the gray block is in the middle, the temperature at the
midpoint is 0.5. If the gray block is on the left or the right, the temperature at the midpoint will be
smaller or greater than 0.5 by the same amount §. Only the configuration with the gray block in the
middle contributes to the ensemble-mean temperature in the gray material, which is therefore 0.5.
Both of the other two configurations contribute, however, to the ensemble-mean temperature in the
other material at the midpoint. If they are equally probable, the phase average temperature for the
other material will clearly be 0.5 as well. This result is in keeping with the well-known fact that, in a
uniform composite, the ensemble-mean temperatures in the two phases are equal, which enables the
mean heat flux to be expressed in terms of the gradient of a single mean temperature. If, however,
the probability distribution of the finite-conductivity material in the ensemble is not uniform so
that, for example, the configuration with the gray block on the left occurs with greater probability
than the other one, the mean temperature will be less than 0.5 and, conversely, it will be greater
than 0.5 if the gray block is more frequently on the right. In this case there will be a difference
between the two mean phase temperatures and, for the more general case of spheres embedded
in a matrix, we have shown that now the average heat flux vector will contain two contributions,
one of which is proportional to the gradient of the phase-mean temperature difference (Marchioro
& Prosperetti 1998). This effect would have been impossible to anticipate solely on the basis of
experience with uniform composites and, indeed, earlier attempts to deal with non-uniform systems
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Figure 1: Tllustration of the fact that non-uniformity in the spatial distribution of the phases can
lead to a difference between the phase-ensemble mean temperatures.

assuming equality of the phase temperatures have yielded questionable results (Buyevich & Ustinov
1995).

3. Let us now return to the fluid mechanics of a disperse flow. In order to be more definite, it is
useful to have a closer look at the closure problem. Consider, for example, the averaged continuous-
phase (index C') momentum equation that may be written (Zhang & Prosperetti 1997; Prosperetti
1998)

e | 5 (Bo < e >) + V- (fo (ucuc))
= V- (=Bc <pc > 1+ 2ucEn + BpLloc]) — fpAloc] + Bopcg- (1)

Here angle brackets denote phase-ensemble averages, B¢, p, with ¢ = 1 — Bp, are the continuous-
and disperse-phase volume fractions, and E,, is the rate-of-strain tensor based on the volumetric
flow rate of the mixture

u, = fc <uc>+fp <up > . (:2)

The crux of the closure problem resides in the quantities denoted by capital cursive letters, for
example

BoAloc](x) = n / dSoo(x+1|N) -n | (3)
|r|=a

where 1 is the particle number density, ¢ is the stress tensor, n is the outward normal to the particle

centered at x, N denotes a generic configuration of the N particles, and the overline denotes the

ensemble average over all the configurations such that one of the particles (all of radius a) is centered

at x. In general, the calculation of such quantities requires a knowledge of the local microscopic



fields in the neighborhood of each particle, and it is here that reliance on direct numerical simulation
proves essential to go beyond the O(8p) dilute-limit validity.

The standard technique to conduct simulations of uniform suspensions is to arrange at random
N particles in a cube, and to fill up space with replicas of this cube, which in practice means solving
the equations subject to periodicity conditions on the cube surface. Due to the assumed spatial
uniformity, ensemble averages equal volume averages, and the latter are readily obtained from the
numerical results. This approach evidently will not work in the non-uniform case.

The method we have developed consists in taking the volume averages with a particular weight
(i.e., a probability distribution) that turns the initial uniform ensemble into a slightly non-uniform
one with a structure particularly suited to the use of Fourier expansions. Since the calculation of
Fourier coefficients involves projections — i.e., volume integrals — this method can effectively use
the machinery developed for uniform ensembles. The price to pay, however, is that only weak non-
uniformities can be considered as the assumed probability distribution is built by subjecting the
particles of an initial uniform one to small displacements. Since the perturbed configurations must
be realizable, in the sense that the particles cannot compenetrate, the displacement can only be
taken to be infinitesimal. This is a limitation but, actually, also a strength as the terms due to
the non-uniformity are explicitly identifiable by the fact that they appear multiplied by a small
parameter, aside from which they are of order one. If one were to simulate directly non-uniform
particle distributions, on the other hand, it would be difficult to isolate the effects of the non-
uniformity from statistical noise.

We have used this basic idea in two different ways:

e To identify qualitative phenomenological features of non-uniform suspensions, and

e To derive in a systematic way closure relations.

4. In order to study some basic phenomenological aspects of non-uniform suspensions we have used
a computer code based on one kindly supplied to us by Prof. Sangani (Syracuse University). The
code (that has been completely rewritten with substantial gains in efficiency) allows the user to
conduct direct numerical simulation of Stokes flow past N spheres in a cubic domain with periodic
boundary conditions. It can be adapted to situations of imposed plane shear, equal forces applied to
the particles (sedimentation), equal torques, equal velocities (flow in a porous medium), and equal
angular velocities. So far we have considered the first 3 cases and have found several interesting
results:

e As mentioned before, the effective viscosity can be calculated by looking at the response of
a uniform suspension to an imposed macroscopic shear. It would be evidently impossible to
calculate this quantity by simulating e.g. the sedimentation of a uniform suspension. Bulk
viscous stresses are not zero in a non-uniform sedimenting suspension, however, and indeed
we have shown how to determine the effective viscosity for such a system as well as for a non-
uniform suspension the particles of which are subject to an equal imposed torque. Remarkably,
the viscosity values obtained in these three different cases all agree with each other (Fig. 2).
This result is of particular importance as it constitutes the first proof that the effective viscosity
is a property of a suspension independent of the flow situation considered. Of course, the
effective viscosity is also dependent on the suspension microstructure, which we have taken
to be that for hard spheres in our simulation. This choice is motivated by the fact that our
ultimate objective is to derive equations of the so-called two-fluid form, which is widely used in
the energy-related disciplines of engineering. These equations do not contain information on
the microstructure, for which some suitably general hypothesis must therefore be introduced.
This circumstance may limit the validity of our results to well below the close-packing volume
fraction (around 65%), but important applications (e.g., to fluidized beds) exist already in the
range below about 40%. Furthermore, even with this limitation, we are opening the way to the
study of non-uniform systems on which, as noted before, little systematic progress has been
made.



Figure 2: Calculated effective viscosity as a function of the particle volume fraction. The different
symbols show values obtained from the simulation of several distinct physical processes: The line is
a fit of the form perr/puc = (1 - Bp/0.79) 1.

e While the stress tensor in a uniform suspension can be reduced to a Newtonian form with
an effective viscosity, we have proven that this is not possible in the non-uniform case. The
modeling of the rheological behavior of a non-uniform suspension necessarily involves additional
terms. This fact had been hypothesized before, but — again for the first time — we give a
quantitative proof of it independent of particular models or assumptions.

e The average mixture pressure in a suspension does not coincide with the average continuous-
phase pressure. The properly defined mixture pressure contains also a contribution of the
near-field pressure disturbance induced by the particles.

e The settling or shearing of a non-uniform suspension causes a non-zero differential particle
rotation with respect to the local mixture angular velocity that contributes to the stress.

It should be explicitly noted that the previous deductions are not based on modeling assumptions,
but are purely the consequence of the particular form of averaging that we have developed and of
our techniques to simulate non-uniform suspensions. They are therefore solid results that cannot
be questioned by future research. We believe that similar techniques can be adapted to the case of
finite Reynolds numbers that is, of course, of particular interest for energy-related problems such as
fluidized beds.

5. Our ability to simulate the behavior of non-uniform suspensions has enabled us also to develop
a systematic approach to the closure problem. In broad outline, the method is the following.

Let a particular flow be characterized by parameters ¢, ¢2,...,qx. In practice these quantities
could specify the size of the fundamental cubic cell, an applied force, and so forth. All the average
quantities that arise in the numerical solution of the problem, such as the mean volumetric flow
velocity u,,, the mean disperse-phase velocity < up >, the stress £, etc. will then also be functions
of the same parameters:

Uy = um(Qlaq2 qK)a (43‘)

<up> = <up>(q,q ---9k), (.4b)

£ = L, ---9K), (-4c)



Choose K quantities as primary (e.g. pressure, velocities, volume fraction, etc.). By eliminating the
g;’s between these K primary quantities and the remaining ones, a series of functional relations is
obtained that are, at least formally, problem independent:

L= L(up,<up >,...). (:5)

If these relations are indeed intrinsic constitutive relations, the particular problem or parameters
used to derive them are of no particular importance and can, therefore, be chosen with convenience
in mind.

To illustrate the concept in a very simple case suppose that, in a molecular dynamics simulation,
one were to set up a temperature distribution

T(x) =To+Asink-x, (.6)
with k, A given and, by conducting the simulation, found that the heat flux has the form
q = —Bkcosk-x, (.7

with B calculated from the simulation. This results — conceptually analogous to (.4) — would
represent only the solution to a particular problem, namely that in which T'(x) is given by (.6). Its
significance can, however, be greatly increased by observing that, by eliminating parameters between
(.6) and (.7) one would find a result conceptually similar to (.5), i.e.

B
1= 77

which has the form of a constitutive relation of broader applicability than (.7) and determines the
thermal conductivity since B has been found numerically. It is by using this general idea that
we have calculated, for non-dilute suspensions, the generalization of the Faxén term, the “volume
viscosity”, the effect of interphase slip on the mixture stress, and other properties, as briefly noted
below.

In spite of its simplicity, the previous example shows a potential difficulty that, indeed, we have
found in our work, namely a possible dependence of the coefficients appearing in the constitutive
relation upon the dimensionless scale a|k|, where a could be, e.g., the mean free path in a molecular
dynamics simulation, or the particle radius in a suspension, and so forth. For practical applications
one would be interested in the macroscopic limit of B/A as a|k| — 0, which requires running several
simulations and extrapolating. Attaining sufficiently small values of alk| requires the ability to
simulate many particles and imposes a heavy computational burden on the method. In spite of this
difficulty, we have been able to take the limit with confidence for some quantities, for which we have
found firm results. Other quantities exhibit a stronger dependence on alk| and the simulation of
larger sphere assemblies is needed.

VT, (.8)

6. Another point that can be made with the previous simple example is that, in order to find
information useful for the closure of the equations, one does not need to choose the flow to be
simulated for practical relevance, but rather with an eye toward its usefulness for the development
of constitutive relations. This remark is of crucial importance in the present situation in which
computers and numerical techniques are not sufficiently developed to carry out direct simulations
of general realistic flows. We believe that, by studying simple flows — which are very definitely
within the range of the possible — one can develop closure relations or, at the very least, one can
perfect closure methods that will permit good closures in a later stage of greater development of
computational capabilities.

7. For the three cases of non-uniform suspensions subject to shear, and applied forces or torques on
the particles, by means of the parameter elimination concept described before, we have developed
closure relations conceptually similar to (.5). For example, we have shown that the total stress
—Bc < pc > 1+ 2ucEn + BpLloc] (see Eq. .1) can be decomposed as

—Bc <pc >1+2ucEn + BpLloc] = —pmI+ gml+2pesiEm +S+ A, (.9)



where p,, is the mixture pressure, ¢, another isotropic part of the stress (akin to the term giving
rise to the volume viscosity in a gas), p.rs the effective viscosity, and S, A additional symmetric
and antisymmetric contributions. For the term ¢, we have found

gm = p1(Bp)V -ua, (-10)

where pr is determined numerically and ua =< up > —u,, is the interphase slip velocity. This
relation was arrived at by exploiting several a priori constraints such as linearity, Galilean invariance,
scalar (as opposed to pseudo-scalar) nature of the result, and so forth. For the term S we have, so
far, the partial result

S = 2ua(Bp)EaA +... (.11)

where pa(8p) is calculated numerically and Ex is the rate-of-strain tensor based on the inter-phase
slip velocity ua. The presence of excessive numerical noise has prevented us until now from getting
reliable closure relations for the remainder of S and A. We need to refine our statistics and to model
other physical situations (e.g., porous medium or an imposed angular velocity) to get a better handle
on these terms.

Similarly, for the inter-phase force f we have found

_67r/,¢caBDv

®(8p)

Here @ is the hindered settling function, for which our results coincide with those of other investi-
gators, and the following term is the generalization to finite volume fractions of the familiar Faxén
term. Note that, in expanded form, this term is

f = ua +2V - [Q(Bp) VE, ]+ ... . (.12)

V- [Q(Bp) VEn] = QV*un + Q" En - Vb, (.13)

and neither term could be found from the simulation of a uniform suspension. Note also that the
relation between the two coeflicients (i.e., that the second one is derivative of the first one with
respect to Bp) was proven on the basis of the numerical results and not imposed a priori. The dots
in Eq. (.12) are other terms that, once again, so far we only know imperfectly due to numerical
difficulties.
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