

DEMOGRAPHIC RESPONSES OF AMPHIBIANS TO
WETLAND RESTORATION IN CAROLINA
BAYS ON THE SAVANNAH RIVER SITE

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

Of the Requirements for the Degree

Doctor of Philosophy

Zoology

by

Karen Elizabeth Kinkead

December 2004

Advisor: Dr. David L. Otis

UMI Number: 3150134

Copyright 2005 by
Kinkead, Karen Elizabeth

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

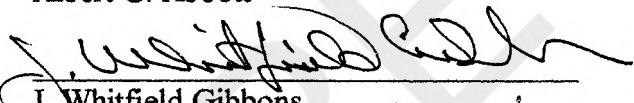
UMI[®]

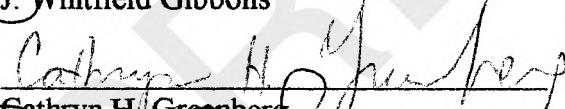
UMI Microform 3150134

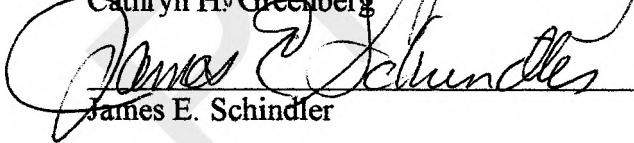
Copyright 2005 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

December 10, 2004

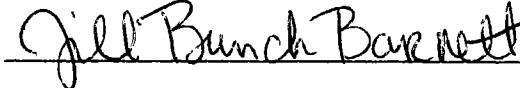

To the Graduate School:


This dissertation entitled "Demographic Responses of Amphibians to Wetland Restoration in Carolina Bays on the Savannah River Site" and written by Karen E. Kinkead is presented to the Graduate School of Clemson University. I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy with a major in Zoology.



David L. Otis, Dissertation Advisor

We have reviewed this dissertation
and recommend its acceptance:



Albert G. Abbott

J. Whitfield Gibbons

Cathryn H. Greenberg

James E. Schindler

Accepted for the Graduate School:

Jill Bunch Barnett

ABSTRACT

This project studied the effects of wetland restoration on amphibian populations. These wetlands were Carolina bays located on the Savannah River Site, located near Aiken, S.C. The Savannah River Site is a National Environmental Research Park owned and operated by the U.S. Department of Energy. The study sites included three reference bays (functionally intact), three control bays (with active drainage ditches), six treatment bays (restored during 2001), and four bays near two of the treatment bays (in effect creating two metapopulations).

Amphibians at each bay were captured, marked, and released between January and July, 2000-2003. 2000 was a pre-restoration year, the bays were restored prior to the trapping season in 2001, and 2002 and 2003 being post-restoration years. Each bay was partially encircled with drift fences and pitfall traps. Amphibians were given batch marks that designated the year and bay of capture.

A total of 43,432 amphibians of 24 species were captured during the study. While I documented a decrease in salamander populations during this study, the restoration appears to have provided additional breeding habitat for several anuran species.

In addition, I present survival estimates for 2 salamander species, *Ambystoma maculatum*, and *A. talpoideum*. These estimates were lower than previously reported for these species, however two years of this study were conducted during drought conditions which may have impacted these results.

In addition, we present information on environmental variables and responses of *A. opacum*, and *A. talpoideum*, as well as 2 species of anurans, *Bufo terrestris*, and *Scaphiopus holbrookii*.

Ambystoma species are believed to be highly philopatric, returning to the natal pond to breed. I examined the genetic structure of two species, *A. talpoideum* (mole salamanders) and *A. opacum* (marbled salamanders) in 16 Carolina bays. Amplified fragment length polymorphisms (AFLP) were used to determine genetic variation within and among populations of salamanders separated by distances of 150 m to 25 km. Although this technique was capable of verifying variation between the species, we were unable to document genetic structure at the population level for either of these species.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Otis, for his support and guidance. I am also grateful to my other committee members, Dr. Abbott and Dr. Gibbons for allowing me to use space in their labs and providing additional support and assistance in learning new techniques, and Dr. Greenberg and Dr. Schindler for great advice and encouragement. I thank Dr. Barton for additional funding, advice, data, and field assistance.

I had amazing help from four wonderful technicians: J.E. Peden, S. Muffelman, H. Bowles, and C. DeYoung, in addition S. Czapka and T. Kuntz provided invaluable field assistance. S. Czapka also created the maps in this manuscript.

This work would not have been possible without help from numerous people, including Drs. Blake, Buhlmann, Gibbons, and Greenberg for comments on the original proposal. J. Singer and Dr. Imm assisted with site selection. The Savannah River drift fence crew: J. Segar, T. Segar, F. Brooks, P. Sommers, R. Williams, and R. Mosley, installed miles of fencing and pitfalls. Volunteers included G. Swensen, M. Mills, D. Andrews, L. Wilkenson, B. Watkins, B. Hyman, and H. Ferguson. Fellow graduate student volunteers included M. Bailey, J. Bock, L. Hawkins, T. Hinkelman, T. Jones, N. Jordan, J. Labram, K. Peters, F. Sanders, J. Slater.

Dr. Abbott's entire lab provided priceless assistance in learning AFLP techniques, especially Dr. A. Westman, who taught me everything possible in such a short time. I thank Dr. T. Zhebentyayeva, Dr. A. Blenda, Dr. L. Zhang, J. Mook, S.

Forrest, and Dr. E. Wang, for additional assistance with the AFLP procedures; and Dr. L. Georgi, and Dr. F. Teule, for teaching me how to extract DNA and check the quality with agarose gels. Dr. A. Westman, along with Drs. L. Gohan and A. Abbott, taught me how to score the AFLP bands, and R. Hardwick was the second scorer for my gels.

Additional assistance with the capture-recapture methods and analysis was provided by Drs. S. Droege and L. Bailey of Patuxent Wildlife Research Center, Laurel, MD.

Finally, I thank Carolyn Wakefield for constant support as well as management of all paperwork and budgets, and my parents, Phil and Judy for their love and support.

TABLE OF CONTENTS

	Page
TITLE PAGE	i
ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	xiii
EFFECTS OF HYDROLOGY RESTORATION ON AMPHIBIANS IN CAROLINA BAYS	1
Introduction	1
Study Design	15
Methods	23
Results	29
Discussion	66
Literature Cited	80
ENVIRONMENTAL ATTRIBUTES OF CAROLINA BAYS SUPPORTING AMPHIBIANS	88
Introduction	88
Site Description	90
Methods	96
Results	103
Discussion	121
Literature Cited	126
MOLE AND SPOTTED SALAMANDER POPULATION DEMOGRAPHICS	129
Introduction	129
Site Description	134
Methods	137
Results	146
Discussion	162

Table of Contents (Continued)

	Page
Conclusion	168
Appendices.....	170
Literature Cited	178
GENETIC VARIATION AMONG <i>Ambystoma</i> POPULATIONS ON THE SAVANNAH RIVER SITE.....	182
Introduction	182
Study Design	189
Methods	195
Results	202
Discussion.....	217
Appendix.....	222
Literature Cited	223

LIST OF TABLES

Table	Page
1.1 Carolina bay treatment assignments and pre-treatment vegetation composition.....	16
1.2 Table of the number of amphibians captured alive or dead within each treatment classification during the entire study	30
1.3 Kruskal-Wallis P-values for the Jaccard's distance dissimilarity index comparisons.....	57
1.4 Kruskal-Wallis P-values for the Bray-Curtis between year distance dissimilarity index comparisons.....	58
1.5 Kruskal-Wallis P-values for the Jaccard within year distance dissimilarity index comparisons.....	60
1.6 Kruskal-Wallis P-values for the Bray-Curtis within year distance dissimilarity index comparisons.....	61
2.1 Rank of models of environmental indicators for temporal variation in adult marbled salamander population size within 6 bays over 4 years.....	104
2.2 Estimates of parameter variables associated with model <i>suld*bay</i> , <i>suld</i> , <i>suwd</i> , <i>aicc</i> , <i>aucc</i> , <i>ldp</i> , <i>strain</i> , <i>auhc</i> for adult marbled salamanders.....	105
2.3 Rank of models of environmental indicators for among bay variation in adult marbled salamander population size at 12 bays averaged over 4 years.....	106
2.4 Estimates of parameter variables associated with model <i>aicc</i> , <i>auhc</i> for adult marbled salamanders.....	107
2.5 Rank of models of environmental indicators for among bay variation in juvenile emigrating marbled salamander numbers at 12 bays averaged over 4 years	108

List of Tables (Continued)

Table	Page
2.6 Estimates of parameter variables associated with model aicc, lpop for juvenile marbled salamanders	109
2.7 Rank of models of environmental indicators for temporal variation in adult mole salamander population size within 6 bays over 4 years.....	110
2.8 Estimates of parameter variables associated with model aucc*bay, aucc for adult mole salamander breeding populations.....	110
2.9 Rank of models of environmental indicators for among bay variation in adult mole salamander population size at 16 bays averaged over 4 years.....	113
2.10 Rank of models of environmental indicators for among bay variation in juvenile emigrating mole salamander numbers at 16 bays averaged over 4 years	114
2.11 Rank of models of environmental indicators for temporal variation in adult southern toad population size within 6 bays over 4 years.....	115
2.12 Estimates of parameter variables associated with model ldp for adult southern toad breeding population size	115
2.13 Rank of models of environmental indicators for among bay variation in adult southern toad population size at 16 bays averaged over 4 years	116
2.14 Estimates of parameter variables associated with model aicc for adult southern toad breeding populations.....	116
2.15 Rank of models of environmental indicators for among bay variation in juvenile emigrating southern toad numbers at 16 bays averaged over 4 years	117
2.16 Estimates of parameter variables associated with model lpop for juvenile southern toads	117

List of Tables (Continued)

Table	Page
2.17 Rank of models of environmental indicators for temporal variation in adult eastern spadefoot toad population size with 6 bays over 4 years.....	118
2.18 Estimates of parameter variables associated with model strain*bay for adult eastern spadefoot toad populations	119
2.19 Rank of models of environmental indicators for among bay variation in adult eastern spadefoot toad population size at 16 bays averaged over 4 years	120
2.20 Estimates of parameter variables associated with model suld, auhc for adult eastern spadefoot toad populations.....	120
2.21 Rank of models of environmental indicators for among bay variation in juvenile emigrating eastern spadefoot toad numbers at 16 bays averaged over 4 years.....	121
3.1 Ranking of the top 5 Program MARK models for the mole salamander data at bays 147, 153, 168, 5048, and 5055	146
3.2 Parameter estimates for model $P(.,t)\Phi(.,t)\gamma''(0)\gamma'(0)N(g*t)$ for mole salamanders.....	149
3.3 Emigration rate estimates for mole salamanders as estimated from the <i>ad hoc</i> method of Kendall et al. (1997).....	150
3.4 Ranking of the top 5 Program MARK models for the mole salamander data with environmental covariates at bays 147, 153, 168, 5048, and 5055	156
3.5 Parameter estimates for model $P(.)\Phi(.)$ without a covariate for mole salamanders.....	156
3.6 Ranking of the top 5 Program MARK models for the spotted salamander data at bays 168 and 5204	158
3.7 Parameter estimates for model $P(g,.)\Phi(g,.)\gamma''(0)\gamma'(0)N(g*t)$ for spotted salamanders	159
3.8 Emigration rates for spotted salamanders estimated from the <i>ad hoc</i> method of Kendall et al. (1997)	159

List of Tables (Continued)

Table	Page
A.1 Parameter estimates for model $P(\cdot)\Phi(\cdot, t)\gamma''(0)\gamma'(0)$ for mole salamanders	171
A.2 Parameter estimates for model $P(\cdot, t)\Phi(\cdot, t)\gamma''(\cdot)\gamma'(\cdot)N(g^*t)$ for mole salamanders.....	172
A.3 Parameter estimates for model $P(\cdot)\Phi(\cdot)\gamma''(0)\gamma'(0)N(g^*t)$ for mole salamanders.....	173
A.4 Parameter estimates for model $P(\cdot)\Phi(g, \cdot)\gamma''(\cdot)\gamma'(\cdot)N(g^*t)$ for mole salamanders.....	173
A.5 Parameter estimates for model $P(\cdot)\Phi(\cdot)$ with upland canopy cover as a covariate for Φ for mole salamanders.....	174
A.6 Parameter estimates for model $P(g)\Phi(\cdot)$ with upland woody debris amount as a covariate for mole salamanders.....	174
A.7 Parameter estimates for model $P(\cdot)\Phi(g)$ with upland woody debris amount as a covariate for mole salamanders.....	174
A.8 Parameter estimates for model $P(g)\Phi(g)$ with upland woody debris amount as a covariate for mole salamanders.....	175
A.9 Parameter estimates for model $P(g, t, \cdot)\Phi(g, \cdot)\gamma''(0)\gamma'(0)N(g^*t)$ for spotted salamanders	176
A.10 Parameter estimates for model $P(g, t, \cdot)\Phi(g, t)\gamma''(0)\gamma'(0)N(g^*t)$ for spotted salamanders	176
A.11 Parameter estimates for model $P(\cdot, t, \cdot)\Phi(\cdot)\gamma''(0)\gamma'(0)N(g^*t)$ for spotted salamanders	177
A.12 Parameter estimates for model $P(g, \cdot)\Phi(g, t)\gamma''(0)\gamma'(0)N(g^*t)$ for spotted salamanders	177
4.1 Number of mole, marbled, and spotted salamander tail tips collected at each Carolina bay and used in the AFLP analysis	203
4.2 AMOVA for differences between species of <i>Ambystoma</i>	205

List of Tables (Continued)

Table	Page
4.3 Table of Nei's genetic distances calculated using AFLP-SUV on the above diagonal and geographic distances in meters on the below diagonal for mole salamanders	209
4.4 Assignment test for mole salamanders.....	210
4.5 AMOVA results for mole salamander populations	212
4.6 Table of Nei's genetic distances calculated using AFLP-SUV on the above diagonal and geographic distance in meters on the below diagonal for marbled salamanders	215
4.7 Assignment test for marbled salamanders.....	216
4.8 AMOVA results for marbled salamander populations in 5 ponds	217

LIST OF FIGURES

Figure	Page
1.1 Map of the Savannah River Site and study bays	17
1.2 Average number of amphibians (no recaptures) caught per trapnight within each bay class.....	31
1.3 Average number of adult anurans (no recaptures) caught per trapnight within each bay class.....	34
1.4 Average number of adult salamanders (no recaptures) caught per trapnight within each bay class.....	35
1.5 Average number of emigrating juvenile amphibians (no recaptures) within each bay class.....	36
1.6 Average breeding population size for spotted salamanders within each bay class.....	38
1.7 Average breeding population size for marbled salamanders within each bay class.....	39
1.8 Average breeding population size for mole salamanders within each bay class	40
1.9 Average breeding population size for southern toads within each bay class	43
1.10 Average breeding population size for eastern narrowmouth toads within each bay class.....	44
1.11 Average breeding population size for eastern spadefoot toads within each bay class.....	46
1.12 Average breeding population size for ornate chorus frogs within each bay class.....	47
1.13 Average number of emigrating juvenile marbled salamanders within each bay class.....	49

List of Figures (Continued)

Figure	Page
1.14 Average number of emigrating juvenile mole salamanders within each bay class.....	50
1.15 Average number of emigrating juvenile southern toads within each bay class	52
1.16 Average number of emigrating juvenile eastern narrowmouth toads within each bay class.....	53
1.17 Average number of emigrating eastern spadefoot toads within each bay class	54
1.18 Average number of emigrating ornate chorus frogs within each bay class	55
1.19 NTSYS non-metric multidimensional scaling graphic representation of species composition in Carolina bays over 4 years of the study based on Jaccard's dissimilarity measures of species presence and absence data.....	62
1.20 NTSYS non-metric multidimensional scaling graphic representation of species composition of Carolina bays during 2000, the pre-treatment year, based on Jaccard's dissimilarity measures of species presence and absence data	63
1.21 NTSYS non-metric multidimensional scaling graphic representation of species composition of Carolina bays during 2001 based on Jaccard's dissimilarity measures of species presence and absence data.....	64
1.22 NTSYS non-metric multidimensional scaling graphic representation of species composition of Carolina bays during 2002 based on Jaccard's dissimilarity measures of species presence and absence data.....	65
1.23 NTSYS non-metric multidimensional scaling graphic representation of species composition of Carolina bays during 2003 based on Jaccard's dissimilarity measures of species presence and absence data.....	66
1.24 Average rainfall, January-July 2000, 2001, 2002, and 2003	68

List of Figures (Continued)

Figure	Page
2.1 Map of the Savannah River Site with study bays numbered.....	91
2.2 Comparison of untransformed average buffer canopy cover and average adult population size for marbled salamanders	107
2.3 Comparison of the untransformed adult breeding population size of mole salamanders compared top buffer canopy cover to show the interaction between bay and the canopy cover	111
2.4 Comparison of the untransformed adult salamander breeding population size of mole salamanders compared to buffer canopy cover to show the interaction between bay and the canopy cover in thinned buffer bays	112
3.1 Map of the Savannah River Site with study bays numbered.....	135
3.2 Estimated temporary emigration probabilities compared to rainfall for each pond	150
3.3 Comparison of population estimates for mole salamanders at bay 147	151
3.4 Comparison of population estimates for mole salamanders at bay 153	152
3.5 Comparison of population estimates for mole salamanders at bay 168	153
3.6 Comparison of population estimates for mole salamanders at bay 5048	154
3.7 Comparison of population estimates for mole salamanders at bay 5055	155
3.8 Estimated spotted salamander temporary emigration probabilities compared to rainfall for each pond	160
3.9 Comparison of population estimates for spotted salamanders at bay 168	161
3.10 Comparison of population estimates for spotted salamanders at bay 5204	162

List of Figures (Continued)

Figure	Page
4.1 Map of the Savannah River Site with study bays numbered.....	190
4.2 NMMDS for <i>Ambystoma</i> salamanders based on Jaccard's similarity coefficient	204
4.3 Unrooted neighbor-joining cluster showing the groupings of the 3 species of <i>Ambystoma</i>	205
4.4 NMMDS graphic of mole salamander populations	207
4.5 Neighnor-joining cluster diagram of 11 populations of mole salamanders	208
4.6 Nei's genetic distances compared to geographic distance in meters for mole salamanders on the SRS.....	210
4.7 NMMDS graphic of marbled salamander populations	213
4.8 Neighbor-joining cluster diagram for marbled salamanders in 5 bays using spotted salamanders as the outgroup	214
4.6 Nei's genetic distances compared to geographic distance in meters for marbled salamanders on the SRS	216
B.1 Example autoradiograph of resulting AFLP gel	222

CHAPTER 1

EFFECTS OF HYDROLOGY RESTORATION

ON AMPHIBIANS IN CAROLINA BAYS

Introduction

By the mid 1980s the United States had lost more than one-half (46.9 of 87 million hectares) of the original (pre-European settlement) wetlands (Mitsch and Gosselink 2000). Fifty percent (18.8 million hectares) of the remaining acreage is located in the southeastern US. Nationwide, wetlands comprise 5 % of the surface area, but in the Southeast, wetlands account for 15 % of the surface area (Hefner and Brown 1985). Nationwide, 81 % of the original bottomland hardwoods had been lost by the mid-1980s. In the southeastern US, 92 % of all lost bottomlands were harvested between 1950 and the mid-1970s (Haynes and Moore 1988).

Following disturbance by farming or other land use practices, an area can partially revert back into a wetland through natural processes (Patchett 1990). Restored sites may often function as if they were disturbed wetlands (Odum 1988). To restore a site is to intervene in the natural recovery process, and move the recovery rate forward (Haskisaki 1996), although some believe that restoration is an “attempt to imitate succession in order to control it” (Ashby 1987). Restored sites may begin to function as a wetland, with respect to animal habitat, more quickly than new, artificially created wetlands. Wetland restoration and creation projects often fail because of a “general lack of understanding of ecosystem development in wetlands” (Odum 1988).

Many authors have recognized the need for improved methods to quantify the successful function of regenerated and restored sites (Parker 1997, Michner 1997), but comprehensive long term monitoring programs that evaluate wetland functions have rarely been conducted (Hammer 1992). Commonly, guidelines set forth by the U.S. Army Corps of Engineers for the assessment of success in created or mitigated wetlands in the southeastern US require only the estimation of the survival of the planted trees and herbaceous wetland species. However, survivorship and growth of vegetation is a measure of structure, not function, and therefore does not necessarily indicate successful function of the site in providing habitat suitable for wetland wildlife species (Berger 1991, Perry et al. 1996). Therefore, more meaningful protocols are needed to define and evaluate success in restored wetland areas. The function of the site in the landscape and the effect of structure and function of the site on the vertebrate communities in the restored site as well as the surrounding landscape should be considered (Kentula 1997), but few restoration studies have attempted to measure the response of the wildlife communities to the restoration efforts. Almost all restoration projects monitor hydrology with respect to ground water levels (Perry et al. 1996) as well as planted vegetation (Perry et al 1996, Odum 1988, Brown 1999). The majority of wildlife community studies have focused on birds, (Zedler and Callaway 1999, Perry et al. 1996, Weller 1995), although a few recent studies have examined amphibians (Pauley and Barron 1995, Lehtiner and Galatowitsch 2001, Perry et al. 1996, and Petranka et al. 2003). Semlitsch (2002) suggested that a restored site should not be considered successful as amphibian habitat until the second generation of the species of interest successfully breeds. He defined initial success as the emergence of metamorphs; intermediate success as the

metamorphs returning as adults for the first breeding; and complete success as 5 years of continuous breeding. Site failure is defined as no adults returning to breed in 5 to 10 years (Semlitsch 2002). However, the entire population of any amphibian species will not migrate to the pond to breed in a given year (Semlitsch et al. 1996), and large population size fluctuations among amphibians are common, in response to environmental conditions such as flooding or drought (Gibbons et al. 1997).

Temporary ponds, including Carolina bay wetlands, are used by many species of amphibians for mating, oviposition, and larval growth. During the non-breeding season most amphibians associated with these wetlands live in the surrounding terrestrial habitat. After hatching, larvae stay in the pond until they metamorphose into juveniles (Beiswenger 1988). Hydroperiod (the length of time an area is flooded by water), food, temperature, predator density, and the length of the larval stage, all influence the success and mortality of offspring.

Philopatry (returning to the natal site to breed) is thought to occur because an individual will be more successful at a site with which it has previous experience (Semlitsch and Ryan 1998). Many amphibians are philopatric and move less than two hundred meters from the breeding area (Semlitsch and Bodie 1998). Due to the higher risks of desiccation and predation associated with looking for additional habitats, natural selection is thought to act against this behavior. However, studies have shown that amphibians can quickly colonize new sites, especially if a new site is between the upland, non-breeding habitat and the natal breeding site (Petranka et al. 2003 a and b, Semlitsch and Ryan 1998). Rainfall is used as a cue by amphibians as to hydroperiod. Temporal time variations in hydroperiod allow different species to be successful in different years

(Semlitsch et al. 1996). The longer the hydroperiod, the more juveniles are produced (Paton and Crouch 2002). If a site dries before the juveniles are capable of leaving, the larvae either desiccate or become more vulnerable to predation. Because many amphibian species return to the same breeding site year after year, the colonization of artificially created sites may be slow (Pechmann et al. 1989) or fast (Semlitsch and Ryan 1998) depending on the location of the new site.

Ephemeral flooded sites often produce more amphibians than permanent water sources because fewer predators, such as fish and invertebrates, are present in the ephemeral ponds (Pechmann et al. 1989). Ephemeral ponds with longer hydroperiods, however, often support a larger number of species (Paton and Crouch 2002, Snodgrass et al. 2000). Some states have wetland protection laws based on the size of a wetland. The hypothesis is that a larger wetland would have the same species present in a smaller wetland as well as additional species. However, hydroperiod is not necessarily correlated with the size of a Carolina bay. Even short hydroperiod wetlands are important as these systems support species adapted for fast metamorphosis which may not be competitive in longer hydroperiod wetlands (Snodgrass et al. 2000). Hydroperiod can directly control the water depth, water volume and water area, but also indirectly influence mean larval densities, and food resources (Pechmann et al 1989). Hydrological variables, genotype, predation, and competition combine to influence nest success in amphibians, along with nest placement and parental care in some species. Eggs may perish due to freezing, predation, and desiccation (Jackson et al. 1989).

Amphibians are the most plentiful vertebrate group in many forests. In the southern Appalachians, salamander biomass can be larger than all other vertebrates

combined (Hairston 1987). Due to several amphibian characteristics (poikilothermy, aquatic/terrestrial phases of the life cycle, small home range, philopatry, moist, permeable eggs and skin) amphibians are more likely to be impacted by changes to the environment before those changes impact other organisms. Many studies have shown that clearcut areas support fewer amphibians than forested areas and that some species are more affected by clearcutting than others (deMaynadier and Hunter 1995, Ash 1988, Johnston and Frid 2002, Bury 1982). Salamanders appear to be impacted to a greater extent than do anurans, possibly due to the ability of anurans to conserve more water and tolerate higher temperatures (Petraska 1994). One large remaining question from these earlier studies is: what happens to the salamanders? Do they die, migrate elsewhere, or move underground for more extended periods where they cannot be captured? Petraska (1994) argues that they die, because even if they migrate elsewhere, they would not be able to competitively establish new home ranges. It is also unknown how amphibians are affected by forest succession. Slimy salamanders are more susceptible to forest management practices than other more migratory species (Grant et al. 1994). Woody debris and litter depth may directly influence the number of all salamander species present in a stand. Young forests and old forests tend to have higher amounts of woody debris than intermediate aged forests. Pine plantations tend to have a lower soil pH, reduced hardwood litter depth, reduced herbaceous and shrub layers resulting in less vertical structure, and less coarse woody debris (deMaynadier and Hunter 1995).

Habitat degradation has been proposed as the primary cause of amphibian declines (deMaynadier and Hunter 1995, Semlitsch 2002). Metapopulations are important for sustainable densities of amphibians because breeding populations can vary

in size among sites and years, and have extreme variation in juvenile recruitment, which make them vulnerable to extinction and reliant upon recolonization (Semlitsch 2002).

Metapopulations are dependent upon habitat quality, both of the breeding pond and the terrestrial environment, and the dispersal and survival rates of the animals. Larval periods vary from as low as 12 days for eastern spadefoot toads (*Scaphiopus holbrookii*) to up to 2 years for bullfrogs (*Rana catesbeiana*). Growth and development is affected by food, temperature, hydroperiod, density, predators, disease and chemical contamination. Variation and timing of rainfall affects the production of metamorphs. Some species including southern cricket frogs (*Acris gryllus*), green treefrogs (*Hyla cinerea*), bullfrogs, and green frogs (*R. clamitans*), will breed in ponds with fish. Amphibians are capable of maintaining high biodiversity because each species is periodically favored with a productive year. The metamorphic juveniles may represent the primary dispersal stage as most adults are believed to return to the same pond each year. Open areas such as roads and powerlines may prevent movement (Semlitsch 2002).

The primary objective of this study is to examine the effects of wetland restoration of Carolina bays on amphibian communities at the Savannah River Site, near Aiken, South Carolina. The study employed a pre- and post-treatment/control/reference experimental design, and I used amphibian species and community parameters as response variables. A secondary objective of the study was to evaluate the feasibility of using amphibians as a metric for the successful function of restored wetlands. The specific questions include: Did the Carolina bay restoration provide suitable habitat for breeding amphibians overall? Was there a relative increase in the post-treatment