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ABSTRACT NOMENCLATURE
The capability to obtain limit load solutions of plates P Distance between penetration centers, mm
with triangular penetration patterns using fourth order h Minimum ligament width, mm
functions to represent the collapse surface has been n= h/P Ligament efficiency
presented in previous papers. These papers describe how oi Stress components for i = xx,yy,zz,xy, MPa
equivalent solid plate elastic-perfectly plastic finite So=pS, Effective yield stress of EQS material, MPa
element capabilities are generated and demonstrate how S, Yield stress, MPa
such capabilities can be used to great advantage in the Biis:isBa Coefficients for fourth-order collapse
analysis of tubesheets in large heat exchanger function
applications. However, these papers have pointed out C,,...C; Coefficients for sixth-order collapse function
that although the fourth order functions can produce Y, Z,,Z,,Z5; Qut-of-plane constants for collapse
sufficient accuracy for many practical applications, there function
are situations where improvements in the accuracy of in- E v Young’s modulus and Poisson’s ratio of base
plane and transverse shear are desirable. This paper metal
investigates the use of a sixth order function to represent E*/E, v* Equivalent solid effective elastic constants
the collapse surface for improved accuracy of the in- EQS  Equivalent solid
plane response. Explicit elastic-perfectly plastic finite EPP Elastic perfectly plastic
element solutions are obtained for unit cells representing $1,82,83 Transformed EQS stress components, MPa

an infinite array of circular penetrations arranged in an
equilateral triangular array. These cells are used to

create a numerical representation of the complete INTRODUCTION

collapse surfaces for a number of ligament efficiencies

(h/P where h is the minimum ligament width and P is the References [1, 2, 3, and 4] develop the use of a fourth-
distance between hole centers). Each collapse surface is order function

then fit to a sixth order function that satisfies the

periodicity of the hole pattern. Sixth-order collapse 1 N

functions were developed for h/P values between .05 and Oy = {=[B(C +0, ) + By, =@} =& 41'fy I
.50. Accuracy of the sixth order and the fourth order 4 ’

functions are compared. It was found that the sixth order

function is indeed more accurate, reducing the error from

12.2% for the fourth order function to less than 3% for 2 = 2 2

the sixth order function. = 33 (O.Kx e O-yy) [(G” O-yy) - 410]

+B,(c} -0, )0, -0,)" —12r 1]
+Y[ol -Z,0, (0, +0,)]+3Z1., +3Z,7.}"

(1)
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to describe the plastic collapse of a perforated plate with
a triangular penetration pattern. This collapse function
was used by Jones and Gordon [4] to develop an elastic-
perfectly plastic equivalent solid plate [EPP-EQS] flow
theory that is useful in computing limit loads of
perforated plates using conventional finite element
analyses [FEA] programs. Utilizing comparisons with
three dimensional FEA explicitly modeled perforated
plates, the EPP-EQS solutions based on the fourth order
solutions have been shown [5] to be reasonably accurate
for plates with moderate ligament efficiencies
(0.15<=h/P<=0.5) subjected to equal biaxial loads. For
h/P < 0.15 and/or for situations with in-plane and out-of-
plane shear loads, the accuracy may be less than desired.

Reinhardt [6] has suggested that improved accuracy may
be possible using a sixth order function of the stress
components. Since the out-of-plane (z-direction)
response is treated in the same quadratic fashion in both
the fourth and sixth order functions, it is not considered
in this paper although it was included in the
development.

Using the transformation

5 (ou+0'yy)/2
S, ¢ = (am—ayy)/z
S5 T,

(2)

to simplify the formulation allows the collapse surface in
the plane of the penetrations to be written as

O ={[C,s} +C2514(s§ +55 )+ C3512(s§ +532)2
+C4(s22 +s32)3 +Cssl3s2(s§ —3s32)
+Ce5,5, (55 5 Xs22 - 3s32)
+Colsi(s =353 = silss -3 0™

2 z 2 4,05
+Ylo, -2,6,(0,+0,)]1+3Z7, +3Z,7,}

3)

Reinhardt has demonstrated that Eq. (3) displays the
needed hexagonal symmetry necessary for a triangular
pattern. The purpose of this paper is to evaluate the sixth-
order function to see if improvements are possible
relative to the fourth-order function and to evaluate its
use in developing an EPP-EQS flow theory for
calculating limit loads of perforated plates using FEA.
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GEOMETRY AND LOADING
CONDITIONS

Consider an infinite array of penetrations arranged in an
equilateral pattern as shown in Figure 1. If the
penetrations are very small compared to all other
dimensions of the structure, symmetry of the
deformation of an infinite array of such penetrations
allows the identification of a unit cell that can be used to
analyze the response of the pattern to general far field
loading. The unit cell is shown in Figure 2.

p = (P-d)/P = h/P

Figure 1. Penetration pattern.
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Figure 2. Unit Cell.

Limit load solutions are sought for the unit cell for
various ratios of loading along the x and y axes. By
determining the loads for which any additional increment
of load causes plastic collapse of the unit cell, a collapse
surface is obtained which is appropriate for assessing the



load interaction effects on the limit load of a perforated
plate.

A basic two-dimensional (2D) generalized plane strain
EPP-FEA model is used to obtain the collapse surfaces.
The pitch was held constant and the radius of the
penetration was varied to obtain the various 4/P models.
Ligament efficiencies of 0.05, 0.10, 0.15, 0.20, 0.30, and
0.50 were investigated. Young’s modulus and Poisson’s
ratio were chosen to be 26.0E+6 psi (200E+3 Mpa) and
0.3, respectively. The yield strength was taken to be S, =
0.002E. Since linear geometry assumptions are used, the
limit loads are proportional to yield strength and the
actual value chosen is not important.

FEA MODELS

ABAQUS [7] was used to obtain the 2D-FEA solutions.
An elastic-perfectly plastic stress-strain curve was used.
The collapse load is defined in these analyses as the load
for which a small increase in load produces a very large
increase in deflection, i.e., the load-deflection curve
approaches a slope of zero. Using linear geometry
(small-strain, small deformation formulations), this load
complies with the theoretical definition of a lower bound
limit load.

The FEA mesh is shown in Figure 3. There are a total of
576 eight-node reduced integration generalized plane
strain elements and 1857 nodes in each of the models.
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Figure 3. Explicit FEA Model.
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The boundary conditions for the normal loads or (o 4,
Gyy ) cases are shown in Figure 4. Surfaces A-B and E-
F have symmetry boundary conditions — i.e. the
displacements normal to these surfaces are zero and the
forces tangential to them are zero. Surface D-E has the
displacement components in the x direction constrained
so that they are all equal - i.e. the face can only translate
uniformly in the x direction. Similarly, surface B-C is
constrained such that it can only translate uniformly in
the y direction. The model is loaded by specifying the
total forces, Fy and F,, on faces D-E and B-C
respectively. The loads F, and F, are specified
independently. The equivalent solid stresses acting on
the unit cell are

o, =2F /(\3P)

o, =2F, /P

C))

Figure 4. Boundary Conditions for F, and F, Case.

By varying F, and F,, a sufficient number of load cases
are obtained to develop a full range of load ratios in
quadrants one and four of the collapse surface. Results
in quadrants two and three are obtained by reflection.

The boundary conditions for the shear case are shown in
Figure 5. The surfaces B-C and E-F were constrained to
displace 8, uniformly in the tangential direction while



surfaces D-E and A-B displace §, uniformly in the
tangential direction.

& -—

Figure 5. Boundary Conditions for F,, Case.

Tangential displacements were defined on surfaces A-B
and E-F while tangential forces were defined on surfaces
B-C and D-E. This case allows for the direct solution of
(C4 = C;) from the equation

C,—C,=[uS,/s]°
(5)

where s; is the equivalent solid shear stress that causes
the unit cell to collapse due to the shear loading (Figure
5). If F,y is the tangential load on surface D-E that
causes the unit cell to collapse, then s; in Eq. (5) is

s, =2F, I(\/3P)
(©)

Similarly, surface B-C is constrained such that it can
only translate uniformly in the y direction while keeping
surface D-E straight with F, = 0.0. The equivalent solid
stresses acting on the unit cell are

o,=00
o, =2F,/P
@)
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If Fy is the load on surface D-E that causes the unit cell
to collapse, then using Equation (4), s; is

s, =2F, I(\/3P)
®)

This case allows for the direct evaluation of (C,; + C) by
the equation

_ 6
Cy+C, =[S, /s,]
9
Egs. (5 and 9) allow for the unique solution of C, and C;.

MODEL VERIFICATION

Each of the FEA models was checked by first obtaining
elastic solutions and comparing the equivalent solid plate
effective constants for the various ligament efficiencies
against other published results. Table 1 compares E*/E
and v* as a function of /P with the values given in Slot
[8]. Additionally, the peak elastic stress on the
penetration surface is compared with Slot’s [8] values to
assure mesh adequacy. These values are also given in
Table 1. Since the analysis results are all within 1% of
the published values, it was judged that the mesh was
adequate and the boundary conditions were applied
properly for these models.

RESULTS

Figures 6, 7, and 8 show the collapse surfaces generated
by the FEA results for p = 0.05, 0.2, and 0.50 which are
representative of the ligament efficiencies used in the
study. Tables 2 through 7 provide the data for all of the
collapse surfaces. The MATHEMATICA [9] program
was used to fit Equation (3) to the collapse surface data,
Tables 2 through 7, by first calculating the (C4 + C;) and
(C4 - C;) terms using Egs. (5 and 9) to match the S; and
S, cases given in Table 8 for each ligament efficiency.
Then C4 and C; can be determined. Coefficients C;, C,,
C;, Cs, and Cg were then fit to the data points shown in
the figures. All of the coefficients are given in Table 9.

The goal of this work is to investigate if improved
accuracy is achieved with the sixth-order function over a
wider range of ligament efficients than is possible with
the fourth-order function. An error was calculated as a
percentage for each explicit FEA point of the curve fit
using the equation



e=[l—lppp )/ gy
(10)

In this equation, Igga is the length of a line from the
origin to the FEA point while 1 is the length from the
origin to the intersection point of Igga With the collapse
surface. Both 1 and Iggs are co-linear. The maximum
and the average error for all FEA points are compared
for each ligament efficiency and are provided in Table
10.

OBSERVATIONS

» The sixth order function error is less than 3% for
0.05 < h/P < 0.50.

» The sixth order function reduces the error from
12.2% for the fourth order function to 2.3% for a
ligament efficiency of 0.05.

» Figures 6, 7, and 8 show that the curvature of the
sixth-order function is such that the normal to the
surface is directed outward and the slope is not
multi-valued at any point. Thus, the surface is
always convex. This allows a flow theory to be
developed based on the usual assumptions that strain
increments are normal to the collapse surface. This
is an important property for development of a flow
theory since most commercial FEA plasticity
programs are based on this assumption.

CONCLUSIONS

A sixth-order collapse surface is developed for thick
perforated plates containing a triangular penetration
pattern with ligament efficiencies of 0.05, 0.10, 0.15, 0.2,
0.3, and 0.5 using elastic-perfectly plastic FEA analysis.
The FEA data was fit to a sixth-order collapse function
and the resulting curves were compared to previously
generated fourth-order collapse surfaces. Based on this
work, the following conclusions are drawn:

e  The sixth-order function improves accuracy over the
fourth order function over the entire range of
ligament efficiencies studied (0.05 < h/P < 0.5).

e  Accuracy is improved from 12.2% for the fourth
order function to less that 3% for the sixth order
function.

e The sixth order function is suitable for development
of an EPP-EQS flow theory because the surface is
convex.
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Table 1. Elastic model verification.
/o, @
h/P E*/E v 30°
0.05 FEA 0.0172 0.8078 17.44

0.05Slot 0.0172 0.8078 17.58
0.10 FEA 0.0521 0.6606 1192
0.10 Slot  0.0520 0.6606 11.02
0.15 FEA 0.0994 0.5444 8.782
0.15Slot  0.0994 0.5445 8.790
0.20 FEA 0.1553 0.4574 6.834
0.20 Slot 0.1553 0.4575 6.844
0.30 FEA 0.2805 0.3541 4.639
0.30 Slot  0.2806 0.3540 4.654
0.50 FEA 0.5447 0.2992 2.790
0.50 Slot  0.5446 0.2994 2.841

Table 2. Collapse data for h/P = 0.05.

Case Oxd/lSy oy/USy
1 0.679053 1.176154
2 0 0.681231
3 0.626647 0
4 0.251503 -0.43562
5 0.25963 0.899231
6 0.157084 0.816154
7 1.183568 1.024615
8 0.720355 0.124769
9 0.835826 0.289538
10 0.972169 0.505077
11 1.107624 0.767308
12 1.162695 1.208462
13 0.99704 1.208462
14 0.872243 1.208462
15 0.775426 1.208462
16 1.197336 1.089231
17 1.209327 1.151538
18 1.21288 1.208462
19 0 -0.681231
20 0.154241 -0.534309
21 0.110851 -0.576077
22 0.489859 -0.169692
23 0.398505 -0.276077
24 0.334241 -0.347385
25 0.287121 -0.397846

*Full collapse surface obtained by symmetry.




Table 3. Collapse data for h/P = 0.10.
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Table 5. Collapse data for h/P = 0.20.

Case Oxd/tSy Oy/USy Case Ox/ LSy on/iSy
1 0 0.931154 1 0 1.188077
p 0.810955 0 2 0.940267 0
3 0.709031 1.228077 3 0.786529 1.362308
4 0.345966 -0.61077 4 0.447817 -0.77564
5 1.199112 1.038462 5 1.259956 1.091154
6 0.340193 1.178846 6 0 -1.18808
7 0.210733 1.095 7 0.394967 1.368333
8 1.001037 0.346923 8 0.257217 1.336538
9 1.142487 0.791538 9 0.629534 -0.54526
10 1.181792 1.228077 10 1.094301 0.379103
11 0.886233 1.228077 11 1.254627 0.869231
12 0.212754 -0.73692 12 1.166396 1.212179
13 0.39437 -0.546538 13 0.955589 1.324103
14 0.152976 -0.795 14 0.27624 -0.95705
15 0.655515 -0.22704 15 0.19815 -1.02949
16 0.540933 -0.37481 16 0.800296 -0.27718
17 0.457217 -0.47538 17 0.680459 -0.47141
18 0} -0.931134 18 0.584234 -0.60718
*Full collapse surface obtained by symmetry. 19 0.508142 -0.7041

Table 4. Collapse data for h/P = 0.15.

*Full collapse surface obtained by symmetry.

Table 6. Collapse data for h/P = 0.30.

Case Oxx/ 1Sy on/iSy
1 0 1.061538
2 0.881273 0
3 0.725833 1.257179
4 0.397187 -0.68795
5 1.225907 1.061795
6 0.362842 1.256923
7 0.235233 1.222308
8 1.032865 0.357692
9 1.16758 0.808974
10 1.209623 1.257179
1 0.90718 1.257179
12 0.244412 -0.84692
13 0.175574 -0.91256
14 0.731754 -0.25351
15 0.61288 -0.42462
16 0.521688 -0.54205
17 0.451666 -0.6259
18 1.252554 1.193333
19 0 -1.061538

*Full collapse surface obtained by symmetry.
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Case Ox/ILSy oyw/liSy

1 0 1.188077
2 0.940267 0
3 0.786529 1.362308
4 0.447817 -0.77564
5 1.259956 1.091154
6 0 -1.18808
7 0.394967 1.368333
8 0.257217 1.336538
9 0.629534 -0.54526
10 1.094301 0.379103
11 1.254627 0.869231
12 1.166396 1.212179
13 0.955589 1.324103
14 0.27624 -0.95705
15 0.19815 -1.02949
16 0.800296 -0.27718
17 0.680459 -0.47141
18 0.584234 -0.60718

-0.7041

19 0.508142




Table 7. Collapse data for h/P = 0.50.

Case OxdlUSy on/uSy

1 0.787728 1.364385
2 1.313783 0.910231
3 0.468808 -0.812
4 0 1.243615
5 1.003479 0]
6 0.260607 1.354154
7 0.398238 1.379538
8 0.65929 -0.57092
9 1.098253 0.190231
10 1.203331 0.416846
1 1.314049 0.682769
12 1.245122 1.078308
13 1.147772 1.192769
14 1.045004 1.267
15 0.948942 1.314923
16 0.863005 1.345308
17 0.289297 -1.00215
18 0.20758 -1.07854
19 0.841999 -0.29169
20 0.713028 -0.494
21 0.611769 -0.63577
22 0.532184 -0.73746
23 0 -1.243615
*Full collapse surface obtained by symmetry.
Table 8. Collapse data for shear case.

h/P C4 - C7 C4 + C7
0.05 | 1403.84 | 645.722
0.10 205.85 98.225
0.15 90.08 41.978
0.20 61.40 31.659
0.30 43.02 22.635
0.5 32.51 22.038
Table 9. All collapse coefficients.

h/P C, C, Cs Cs Cs Ce C,
0.05 0.3636 | 18.096 | 72.414 | 1024.78 | 49.583 | 131.213 | -379.06
0.10 0.3527 | 16.798 | 38.587 152.04 | 26.976 34.669 -53.81
0.15 0.2986 | 15.483 | 28.323 67.53 | 24.811 22.379 -22.55
0.20 0.2846 | 12.303 | 28.508 46.53 | 20.956 21.503 -14.87
0.30 0.3409 6.764 | 28.653 32.83 | 15.477 20.158 -10.19
0.50 0.3893 3.272 | 18.373 25.09 | 4.229 17.362 -7.47
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Figure 6. Collapse Surface for h/P = 0.05
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Figure 7. Collapse Surface for h/P = 0.20
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Figure 8. Collapse Surface for h/P = 0.50
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Table 10. Accuracy assessments

Number | Average | Maximum

h/P | EQ | of Points | Error (%) | Error (%)
0.05 | 4" 25 6.63 12.24
6" 25 0.73 2.33

0.10 | 4" 18 6.65 11.56
6" 18 0.96 2.60

0.15 | 4" 19 6.02 11.43
6" 19 0.66 2.56
0.20 | 4" 26 4.28 11.07
6" 26 0.47 1.63
0.30 | 4" 19 5.17 11.08
6" 19 0.27 0.57

0.50 | 4" %) 4.46 10.01
6" 23 0.48 1.51
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