skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing.

Technical Report ·
DOI:https://doi.org/10.2172/834718· OSTI ID:834718

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Research Organization:
Argonne National Lab., Argonne, IL (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-31-109-ENG-38
OSTI ID:
834718
Report Number(s):
ANL/NE/CTR-03-1; C0201401; TRN: US200433%%216
Resource Relation:
Other Information: PBD: 5 Sep 2003
Country of Publication:
United States
Language:
English