

TITLE: ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

TYPE OF REPORT: SEMI-ANNUAL

REPORTING PERIOD START DATE: OCTOBER 1, 2000

REPORTING PERIOD END DATE: MARCH 31, 2001

PRINCIPAL AUTHORS: JAMES R. WOOD, MICHIGAN TECHNOLOGICAL UNIVERSITY, HOUGHTON, MI

WILLIAM B. HARRISON, WESTERN MICHIGAN UNIVERSITY, KALAMAZOO, MI.

DATE REPORT WAS ISSUED: APRIL 2001

DOE AWARD NUMBER: DE-AC26-98BC15100

NAME AND ADDRESS OF SUBMITTING ORGANIZATION: MICHIGAN TECHNOLOGICAL UNIVERSITY, 1400 TOWNSEND DRIVE, HOUGHTON, MI 49931

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe on any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation or favoring by the United States Government nor any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government.

ABSTRACT

Among the accomplishments of this past reporting period are obtaining a complete landgrid for the State of Michigan and the digital processing of the high and medium resolution DEM files. We can now extract lineations from the DEMs automatically using machine algorithms. One tentative result that may be very significant is that we may be seeing manifestations of buried structures in the DEM data. We are looking at a set of extracted lineations in the northern lower peninsula that appear to follow the trend of the pinnacle reefs (Silurian) which had relief approaching 300 feet but are now buried to greater than 3000 feet.

We have also extracted the dolomite alteration data from all fields and can show that this is mainly confined to the basin center. It may be related to the paleo-rift suggested by the paleomagnetic and gravity data.

As reported last time, the acquisition of a 3D seismic dataset over Stoney Point Field from Marathon Oil Company, is complete and attention is being devoted to incorporating the data into the project database and utilizing it. The surface lineation study is focussing on Stoney Point Field using the high-resolution DEM data and plotting of subsurface formation top data for the main reservoir, the Trenton (Ordovician) Formation. The fault pattern at Stoney Point is well documented by Marathon and we are looking for any manifestations on the surface.

The main project database is now about as complete as it will be for this project. The main goals have been met, although the scanning of the paper records will have to continue beyond the scheduled end of the project due to the sheer number of records and the increased donations of data from companies as word spread of the project. One of the unanticipated benefits of the project has been the cooperation of gas and oil companies that are or were active in the Michigan Basin in donating material to the project. Both Michigan Tech and Western Michigan continue to receive donations at an accelerating pace.

The data management software developed to handle the data, *Atlas*, is scheduled to undergo a 3rd revision before the project ends. The goals are to streamline access to the data by improving the display and add several new features, including the ability to turn the landgrid on and off. We may also be able to include the capability to calculate or recalculate footage calls as well.

We discovered the reason that some of the 1/24,000 USGS DEM (Digital Elevation Models) for the State of Michigan contain high levels of noise and are making one last attempt to acquire a set of good files before the project ends. This will greatly improve the large-scale map (48 inches x 84 inches) that has been constructed by mosaicing of the high-resolution files. This map shows excellent ground surface detail and has drawn much comment and requests for copies at the venues where it has been displayed. Although it was generated for mapping of surface lineations the map has other uses, particularly analysis of the glacial drift in Michigan.

TABLE OF CONTENTS

DISCLAIMER	2
ABSTRACT	3
TABLE OF CONTENTS	4
LIST OF GRAPHICAL MATERIALS.....	5
EXECUTIVE SUMMARY.....	6
INTRODUCTION.....	7
TASK STATUS	9
Task 1. Project Management	9
Subtask 1.1 Technical Aspects	9
Subtask 1.2 Financial Reports and Accounting	9
Task 2. Basin Analysis	9
Subtask 2.1 Geology	9
Subtask 2.2 Geophysics.....	9
Subtask 2.3 Hydrology	10
Task 3. Quantification and Mapping.....	10
Subtask 3.1 Data Acquisition.....	11
Subtask 3.2 Mapping and Visualization.....	13
Subtask 3.3 Fracture Analysis	13
Task 4 Geochemical Studies	13
Subtask 4.1 Diagenesis.....	13
Subtask 4.2 Fluid Geochemistry	14
Subtask 4.3 Hydrocarbons.....	14
Task 5. Technology Transfer (WBH & JRW)	14
Subtask 5.1 Public Outreach	14
Subtask 5.2 Workshops (WBH)	14
Subtask 5.3 Meetings	14
CONCLUSIONS	16
REFERENCES.....	17
FIGURE CAPTIONS	18
FIGURES	19
Figure 1. Map of Michigan Basin with county outlines showing progress on scanning driller's reports.....	20
Figure 2. Stratigraphic column for central Michigan Basin showing location of Dundee Formation (Middle Devonian)	21
Figure 3. Distribution of dolomite reservoirs in the Michigan Basin	22
Figure 4. Illustration of the Michigan landgrid for Isabella County, Michigan.....	23
TABLES	24
Table 1. List of Project Fields	25
Table 2. Formations with Largest Number of Top Picks in the Michigan Basin	26
APPENDIX 1. Autoplot – A Program to Automate Contour Plots Using Surfer ©.....	27
Automated Plots	27
Michigan Atlas Database	27
Exporting data using ATLAS 3.2.....	27
AutoPlot Program Flow	28
AutoPlot Input	28
Convert Atlas Export Table to Surfer Format.....	30
Create Surfer Plots	30
Surfer Grid and Plot files	31

LIST OF GRAPHICAL MATERIALS

Figure 1. Index map showing progress in scanning driller's reports

Figure 2. Simplified stratigraphic column for central Michigan Basin

Figure 3. Distribution of dolomite reservoirs in the Michigan Basin

Figure 4. Illustration of the Michigan landgrid for Isabella County, Michigan

EXECUTIVE SUMMARY

The main objective of this project is to develop a comprehensive dataset of geologic data for the subsurface of the Michigan Basin and use this data to explain the origin and distribution of the fractured carbonate reservoirs in the Basin. The database is based on the “data cube” concept in which the Michigan Basin is divided into a 3-dimensional grid, which is then populated with appropriate attributes, such as depths of formation tops, and lithology. The basic data used was the latitude – longitude coordinates of gas and/or oil wells coordinated with the appropriate depth for the specific attribute. These data were obtained from existing digital databases supplemented with a database of raster images of the original paper reports, which for Michigan consists of driller’s reports and scout tickets.

To date 6985 driller’s reports (1- 8 pages each) and over 17,000 scout tickets have been scanned and organized in a digital database. These are tiff files organized in subdirectories labeled by county name in a PC (e.g. Microsoft Windows) environment. A digital dataset of formation tops has also been compiled. Presently, this consists of over 700,000 top picks, of which about 50% can be considered public domain. (The rest can still be purchased from vendors.) Work is continuing to expand the public domain database.

To help organize and access the large amount of data compiled in this project, a program was written that allows a user to access all the data via a simple graphical interface. This is the ATLAS program now in version 3 and being updated to a version 4 currently. ATLAS displays the data on a State map in a variety of ways and will also export subsets of the data to MS Access file for use by other programs. A unique feature of ATLAS is that it will also access our database of raster images and allow the user to update or expand the digital database in ATLAS. This is a timesaving feature that can be used for any properly structured database.

The fracture study based on these data has been expanded in the past year from a, detailed mapping of several key fracture-dominated fields (Deep River and N. Adams), to over 2 dozen fields which appear to include all the hydrothermally altered dolomite reservoirs in the Basin. The distribution of these altered fields is discussed in this report.

As reported last time we were successful in obtaining a 3D seismic survey shot by Marathon Oil Company over Stony Point Field. We now have a large data set (>4 Gb) that we are in the process of examining. Adding the Stony Point data approximately doubles our data inventory.

The general fracture picture that is emerging in the Michigan Basin is a dominant NW – SE trend that manifests itself on a field scale and can be mapped in outcrop. The conjugate direction, roughly, a NE – SW trend is also established in some fields. Data (mainly gravity) suggests that this trend is related to a deep basement structural trend coincident with the Michigan Basin Gravity High. This data has been interpreted as evidence for an old rifting episode early in the Proterozoic history of the Basin. The locations and geometry of many gas and oil fields in the central part of the Michigan Basin are consistent with this interpretation: elongated fields oriented NW – SE or SE – NW with many on the margins of the gravity high.

INTRODUCTION

This is a study of the fractures in the Michigan Basin and their relation to hydrocarbon deposits. Michigan has produced nearly a billion barrels of oil from the 1920's to the present, as much as 50% from fractured carbonates. (Much of the rest of the production is from the Silurian pinnacle reef trend in Northern Michigan.) Michigan is a mature petroleum province now and has been extensively drilled for over 80 years. As such it provides a wealth of information in an area where companies are now inclined to release proprietary data. Consequently the two goals of this study were to (1) collect and organize this data, and (2), use it to see if any new light could be shed on the nature and origin of the fractured reservoirs.

There are two types of large-scale fractures in the Michigan Basin: those associated with anticlines and those indicated by hydrothermal dolomitization. The presence of fractures in the Michigan Basin can be inferred by the tight packing of structural contours on most any of the post-Cambrian sediments while the hydrothermal faults are indicated by the presence of long, linear pods of dolomite mapped in the subsurface. The large-scale faults are located in the southeastern quadrant of the Michigan Basin and in the Thumb area while the hydrothermal faults are clustered in the center of the basin. These faults are not always indicated on geologic maps of the Michigan Basin due to lack of surface exposure, but their presence can be inferred by the tight packing of contours on most any of the post-Cambrian sediments. This study has explored the origin and nature of these large-scale faults by analyzing the subsurface data described above and through the use of DEM (Digital Elevation Model) data on the 1:250000 and 1:12000 scales.

The fractured carbonate reservoirs selected for this study are unusual in that the main trapping mechanism is the generation of enhanced porosity caused by hydrothermal dolomitization. They are similar to reservoirs in many basins worldwide where fractured dolomites zones form important oil and gas reservoirs. Termed "dolomite chimneys", in the Michigan Basin, they have long been among the most prolific producers of hydrocarbons in the world. However, key aspects of their origin(s), distribution and architecture have been enigmatic. They have been difficult to find and once found, many have proven difficult to produce efficiently. The Michigan Basin is well suited to serve as a model for fractured reservoirs. It is a mature basin that contains almost 50,000 gas and oil wells with extensive data and rock samples. Over 150 million barrels oil has been produced from fractured carbonate reservoirs in Michigan and adjacent states. The Dundee Formation alone has produced over 350 million barrels, approximately 40-50 million from fractured, dolomitized reservoirs. It has been estimated that nearly this amount of hydrocarbons remains to be recovered.

The data from driller's reports continues to be collected and scanned and results to date are now on the Internet. Several counties are now complete and work is in progress on several others (Figure 1). We are working to make the software packages required to display and manipulate the data available as well. The software will permit visualization and interpretation on both large and small scales. The main deliverable will be a data cube for the Michigan Basin that will include:

- A library of formation tops picks (300,000+)
- digitized well locations (latitude & longitude; 50,000+)
- scanned images of well header records

- digitized and interpreted logs of key wells
- hydrocarbon logs,
- engineering data, and key horizons picked from 2D & 3D seismic data
- a landgrid for the State of Michigan
-

FINAL REPORT – FORMAT AND CONTENT

As this project winds down, it is becoming apparent that reporting the conclusions and making the fruits of the project available to the public constitute separate and special problems. It is clearly impossible to convey the enormous amount of data in a paper report. The only reasonable mechanism is that a summary report be issued and that the data itself be placed in an electronic repository and made available over the World Wide Web (www). It is proposed that the summary final report be organized in chapters along the following lines. That separate chapters cover: (1) the background and history of the petroleum industry in Michigan, (2) the available data and its quality, (3) the nature and distribution of fractures in the Michigan Basin and (4) Conclusions. The suggested chapter headings and suggested lengths are:

Chapter 1. Introduction – History and Background of the Michigan Basin (10 pp)

Chapter 2. Data and Databases (10 pp)

Chapter 3. Fractured Reservoirs in the Michigan Basin (30-50 pp)

Chapter 4. Conclusions (5-10 pp)

Appendix I. Web Content

Thus the final report will be a document 60-80 pages in length, exclusive of figures, and will contain an appendix that will describe the digital data on the Web site. The web site will allow access to the project data via FTP downloads. The *Atlas* software should also be available. In addition a library of figures with captions and all PowerPoint presentations made over the duration of the project will be available.

The present capacity of CD ROMs is only 640 Mb and 4-5 would be required to hold all the (present) project data. Larger formats, DVD, are becoming more prevalent and some thought will be given to creating a 6-8 Gb DVD disk. This should be sufficient capacity to hold all the project data and would be a convenient transfer medium.

TASK STATUS

Task 1. Project Management

Subtask 1.1 Technical Aspects

Project management continues to operate smoothly: links have been established between the main Michigan Tech operations site and the sites in Kalamazoo, Traverse City and Tampa FL. Two face-to-face meetings with all personnel were held, one meeting in Traverse City, and one in Tampa. All senior team members (Wood, Harrison, Luo, Chittick) attended the spring AAPG meeting in New Orleans in 2000 and will attend the Denver meeting in 2001.

We are now in the process of wrapping up this project, which is scheduled to end in October, 2001. We are checking the task list and making sure all goals either have been reached or can be reached in time. So far, everything appears to be on schedule. It may be necessary to ask for a short extension to meet cost-share requirements.

Subtask 1.2 Financial Reports and Accounting

Project expenditures are proceeding according to plan. All necessary reports have been filed with DOE Pittsburgh.

Task 2. Basin Analysis

Subtask 2.1 Geology

Lineation Analysis

The DEM data has been successfully integrated into the project and is now bearing results. Most of the technical problems have been resolved to the extend possible. It appears that the 7 ½ minute quadrangles with obvious noise has been traced to a bad conversion from the DEM format to the SDTS format by a USGS contractor. The USGS is aware of the problem and is moving to correct the files. It does not appear to be a problem that we can fix, or one that the USGS will have fixed in time for the high resolution data to be used in this project. However, it may be possible to purchase good files from vendors at a reasonable price. We are currently looking into that possibility.

Subtask 2.2 Geophysics

2.2.1 Seismic

The 3D seismic data package over Stoney Point field arrived from Marathon Oil Company in December and has been loaded onto MTU computers. Work is in progress to register the data and display it on our hardware. One Ph.D student is employed full-time on this project as part of his thesis. Although the data was received late in the project we plan to make as much use of it as possible in the remaining time. One goal is to image the reservoir zone at Stoney Point with the aim of relating it to fracture patterns.

Three 2D seismic lines were obtained from Marathon Oil Company near the Crystal Field in Montcalm county (MOC), loaded into GeoQuest and processed in an attempt to elucidate Dundee structure. The seismic data was shot targeting deeper plays and thus has low fold and offset to adequately resolve shallower plays such as the Dundee. From structure maps, isopach maps and initial production bubble plots, it is apparent that the Dundee of the Crystal field was faulted and probably karstified. The low fold and offset coupled with unknown static conditions creates a condition of low signal to noise ratio, making it difficult to resolve the shallow structure and fractured nature of the Dundee in the Crystal field (T. Bulloch, 1999). Bay Geophysical of Traverse City, Michigan has however, indicated that they have exclusive processing techniques, which may be able to resolve shallow low fold structure. This project will attempt to acquire data processed by Bay Geophysical, which resolves shallow structure with 2D data.

2.2.2 Borehole

The use of borehole data in this project is continuing, mostly at Western Michigan University.

Subtask 2.3 Hydrology

This task has started with the analysis of the main hydrologic units in the Michigan Basin, the basement configuration, the Traverse and Dundee Formations. Work is continuing on this subtask.

2.3.1 Fluid Pathways

This task is proceeding in tandem with the basin model. It has much the same problems as the mapping of the Top of Porosity in that it is necessary to read each driller's report for mention of hydrocarbon shows.

2.3.2 Flow Model

2.3.3 Gas and Oil Trapping

The show data discussed in 2.3.1 above should point toward known gas and oil fields. Thus the trapping mechanisms may be elucidated as well since we would anticipate that the shows would terminate at seals, which are generally shales, tight limestone or salt in the Michigan Basin. We will plot the oil and gas shows along with producing oil plays in a three dimensional display to show migration routes and oil and gas trapping mechanisms.

Task 3. Quantification and Mapping

This task is approaching completion. Nearly one hundred fields in the Michigan Basin were studied as part of this project (Table 1). Well locations and formation top data (Figure 2) were collected in paper records, scanned into images (tiff raster images), and the translated by hand into digital form. In addition, header information on each well (latitude, longitude, permit number, Kelly bushing, driller, operator, etc) was assembled

in digital format and input into a (MS Access) database. These fields cover virtually the entire Michigan Basin and account for over 90% of the total cumulative production in the State from inception of drilling (~1920) to present. For the most part, these fields are described in the two-volume reference set published by the Michigan Basin Geological Society.

Subtask 3.1 Data Acquisition

Data Cleanup and Digitization

This task is now completed except for scanning the driller's reports, which is on-going. Over 17,000 scout tickets have been digitized as TIF images and added to the Atlas database. These are all of our currently available scout tickets. We have begun work digitizing driller's reports as multiple page TIF images. Digital well logs are being acquired from oil and gas company donations and in house digitizing. Recently, over new 5,400 wells were added to our database, bringing the total number of well locations to approximately 54,000.

Acquisition and digitization of formation top data for the Michigan Basin is essentially complete. Three digital databases, one commercial, one State of Michigan and one from this project, have been examined as well as paper datasheets at Michigan Tech and Western Michigan Universities for subsurface data. Three types of data have been extracted: formation top picks, well headers (including geographical location) and production/lithology data.

Well Headers

This category includes all relevant information about an individual well: name, location, operator, date spudded, drilled, completed, fluids produced, fluid intervals, and so on. In general, these data are the beginning for all subsequent analysis as it containing the surface and bottom hole locations as well as the elevation datum (usually the Kelly bushing). For Michigan in 2000, there are over 53,000 well, gas, oil, disposal and other, in the State.

Formation Top Picks

This type of data is by far the most valuable in reconstructing the subsurface and accordingly more attention has been paid to gathering and verifying it. The three databases yielded nearly 900,000 (880,386 to be exact) top picks for over 140 formations in the Michigan Basin ((Figure 2 and Table 1). Of these, 243,546 were duplicates leaving 636,880 separate top picks.

Some Statistics

The character of this dataset can be appreciated by looking at some statistics. Although there are 146 separate formation names included in the databases, only 12 account for 50% of the picks and 50 account for 99% of the picks (Table 2). In addition, some formation names refer to the same top, but were spelled or indicated differently in the different databases. For example, the Aangstom database refers to the Salina "D" Horizon as the "Salina D Evaporite/Salt" while the State of Michigan refers to it as the "Salina D Unit". In addition, some names are obsolete and have been superceded. When these

issues are resolved, the total number of units in the Basin shrinks to around 75, of which 50 or less are important on a basin-wide scale.

Quality Control

The issue of quality control is important as it relates to the accuracy, absolute and relative, of the top ticks. Generally, the smallest unit of measurement is 1 foot, so in an ideal situation, all top picks would be accurate to within 12 inches. The relative accuracy is the depth reported by the driller to each horizon and refers to each separate top pick in one well. The absolute accuracy is the subsea depth which permits comparison of one well top pick to another and is dependent on both the relative accuracy and the accuracy to which the surface elevation was measured.

Errors are also introduced when measurements are recorded or transcribed. This is not uncommon when dealing with databases this large compiled over decades by different personnel. A common error is to transpose two numbers. The only recourse here is to re-examine the original documents (driller's reports) and hope they do not contain the same error. Finally, errors are introduced when different methods are used to pick a top. For example, the logger at the well site will make picks based on the cutting brought up and later the logger will make picks based on logs. In many cases, the type of log used will make a difference in the pick, sometimes by 10s of feet.

During this reporting period, a student reviewed all the available data for the Dundee Formation (e.g. top picks) by examining large-scale contour plots and then checking any wells that produced "bulls eyes" in the plot with the paper records. In this way he located a number of errors in the database and corrected them and reduced the occurrence of "bulls eyes" to practically zero for the Dundee Formation by correcting about 1500 wells (out of nearly 25,000). We now believe we have the best set to top picks for this important horizon. However, we also now believe that the rest of datasets likely contains similar erroneous data that will have to be similarly corrected. Given the large amount of data (see above) it is clearly a task that is unfortunately beyond the scope of this project. While we will be able to deliver a large number of public domain data on formation tops in the Michigan Basin, we will have to cite the experience with the Dundee formation and caution the user that errors still exist in the database.

3.1.2 Gridding

The 7 ½ minute DEM grid for the entire State of Michigan has been completed. Work is now focussed on upgrading the individual data elements and plotting the large-scale maps.

3.1.3 Database Management

All data associated with this project to date has been placed into an MS Access database as promised. In addition, all documents related to the project (reports, software, etc.) have also been placed in a digital database that consists of the MS Windows normal file structure. The database can be accessed using *Atlas*.

Subtask 3.2 Mapping and Visualization

3.2.1 2D Mapping

This task is now completed with regard to the surface grid. This includes cultural data, as well as hydrologic. Attention is now focussed on mapping the key subsurface horizons now that the database containing the formation tops is available.

As reported last time, basin wide mapping has begun with all Michigan well locations and formation tops input into ArcView. However we now prefer to use Golden Software Surfer © program for contouring because it is easier to use and provides superior results. Part of the reason for Surfer's superiority is the number of gridding algorithms it offers together with a higher degree of user control. However, the main reason is that it can be used in tandem with ATLAS to automatically generate contour plots. As we now have over 100 fields to analyze, automating the plotting save time and dollars and permits changes and refinements that would otherwise not be possible.

3.2.2 3D Mapping

The 3D code for displaying the gridded data described in 3.1.2 above is also finished and has been incorporated into the project software library. The code has been written in Visual Basic (VB) and preliminary plots are being generated.

3.2.3 Reports and Maps

Michigan Atlas – In addition to the DEM data described above, most of the progress for this reporting period has come in the development of the Atlas software. This program is turning out to be a very effective tool for consolidating and displaying the project results. We have begun to release the program to a few selected operators in the Michigan Basin for evaluation and feedback. Atlas can be used effectively to determine if certain data exists for a specific well or a group of wells. Well locations are color-coded indicating which wells have the user-requested data.

Subtask 3.3 Fracture Analysis

Literature data has been compiled on outcrop fractures in the Michigan Basin. Samples for petrographic examination have been collected and are being prepared for petrographic examination. These data will be digitized and plotted.

Task 4 Geochemical Studies

Subtask 4.1 Diagenesis

We now have retrieved diagenetic data for the entire central Michigan Basin (Table 1) These data were retrieved from the database of scanned driller's reports, using the program Atlas 3.0. We took reported "Top of porosity" data indicate diagenetic dolomite and plotted the distribution in the Basin (Figure 3).

Subtask 4.2 Fluid Geochemistry

A database on subsurface fluid chemistry is being compiled for the Michigan Basin as part of a student project. Results will be presented in the annual report. Fluid analyses will be correlated with position in the Basin and plotted according to the formation of origin to see if any significant trends or correlations are present.

Subtask 4.3 Hydrocarbons

2D and 3D maps showing the distribution of hydrocarbons in the Basin are being prepared.

Task 5. Technology Transfer (WBH & JRW)

Subtask 5.1 Public Outreach

5.1.1 Internet (WWW)

A new Internet site for this project has been constructed on the Michigan Tech server. Additional information and reports continue to be placed on this site and the site at Western Michigan.

5.1.2 Newsletter

The newsletter has been incorporated into the Web site to make it more readily available and to ease distribution problems and costs.

Subtask 5.2 Workshops (WBH)

The PTTC workshop reported to being organized by Harrison and Wood and held in Mt. Pleasant this spring has been rescheduled for the Fall Eastern Section AAPG meeting in Kalamazoo. This is a better format and will reach more interested parties. Plans to distribute a project DVD ROM are being considered.

Subtask 5.3 Meetings

5.3.1 DOE Contractor Meetings

None scheduled

5.3.2 National and Regional Meetings

Project personnel will attend the annual AAPG meeting in Denver, CO in June, 2001 and 1 paper will be presented.

Project personnel will also attend and participate in the Eastern Section AAPG meeting this September in Kalamazoo, MI. Harrison is one of the convenors and has scheduled a

section devoted to the Dundee Formation in Michigan. Some results from this study will be presented there. (Also at the included workshop, see above.)

CONCLUSIONS

This is the last report before the final report and the overall status of the project is good. Several projects have produced results that exceed original expectations, notably the DEM task, the databases and the visualization. The fracture study is on track but needs to be pulled together. To achieve this, two meetings, one in June and another in September have been scheduled to bring the team together in a neutral site to focus on the final report. The overall project is still on schedule and is still meeting all major goals. However attention has to be directed toward the geochemical and hydrology goals.

The Atlas program has emerged as a particularly strong contribution from the project and efforts will be made to publicize and distribute it along with the project databases. The DEM data and lineation models have also drawn interest from industry both from the approach and results points of view. We will continue to work on these aspects even after the termination of the project since they have potential to continue to grow. At present the Atlas program does not incorporate the DEM data, but that is technically possible if a suitable display medium can be found. Efforts to write code to do this have been marginally successful but so far are not up to acceptable standards. Work will continue on code development.

The acquisition of a landgrid (Figure 4) for Michigan has greatly contributed to the essentially completed the data cube for the Michigan Basin. The landgrid allows data from the project's digital database to be presented in the standard industry practice of maps keyed to the section-township-range system. Conversion of the landgrid for the entire state of Michigan to latitude-longitude put it in the same units as the rest of the database. It should also be possible to add capability to Atlas that will convert footage calls to lat-long coordinates and visa versa.

Sufficient digital data has been collected to begin analysis of basin scale. In the next period we expect to have structure contour maps completed for all the key horizons in the Michigan Basin. The work done on the Dundee Formation shows "stacked" contours indicative of large-scale faults. We will see if these patterns are present in formations above and/or below the Dundee.

Work is still continuing on mapping the Top of Porosity in the Basin, as well as data for hydrocarbon shows. This is time-consuming since the data have to be read off the driller's reports or scout tickets. Scanning the images and incorporating them into the Atlas program has greatly facilitated this work.

REFERENCES

“Oil and Gas Fields of the Michigan Basin” 1968, Vol. 1, Michigan Basin Geological Society, M. S. Wollensak, Ed., Department of Geological Sciences, Michigan State University, E. Lansing, MI.

“Oil and Gas Fields of the Michigan Basin” 1968, Vol. 2, Michigan Basin Geological Society, M. S. Wollensak, Ed., Department of Geological Sciences, Michigan State University, E. Lansing, MI.

Bullock, T., The Investigation of Fluid Properties and Seismic Attributes for Reservoir Characterization: M.S. thesis, Michigan Technological University, Houghton, Michigan, 113p.

FIGURE CAPTIONS

Figure 1. Map of Michigan Basin with county outlines showing progress on scanning driller's reports. Scanning is complete for Arenac, Isabella, Lapeer, Montcalm, and Tuscola Counties. Other counties are partially scanned.

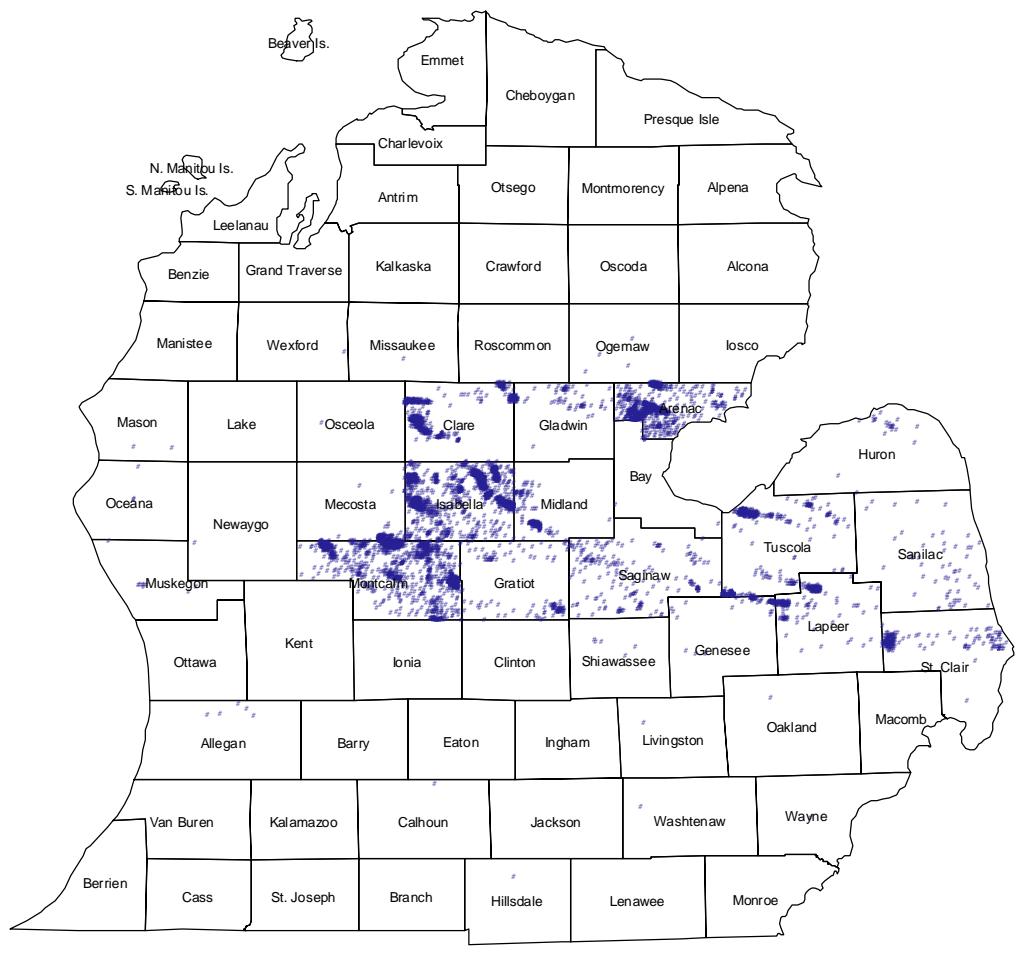

Figure 2. Stratigraphic column for the central Michigan Basin showing location of Dundee Formation (Middle Devonian).

Figure 3. Distribution of dolomite reservoirs in the Michigan Basin

Figure 4. Illustration of the Michigan landgrid for Isabella County, Michigan

Figure 1. Map of Michigan Basin with county outlines showing progress on scanning driller's reports.

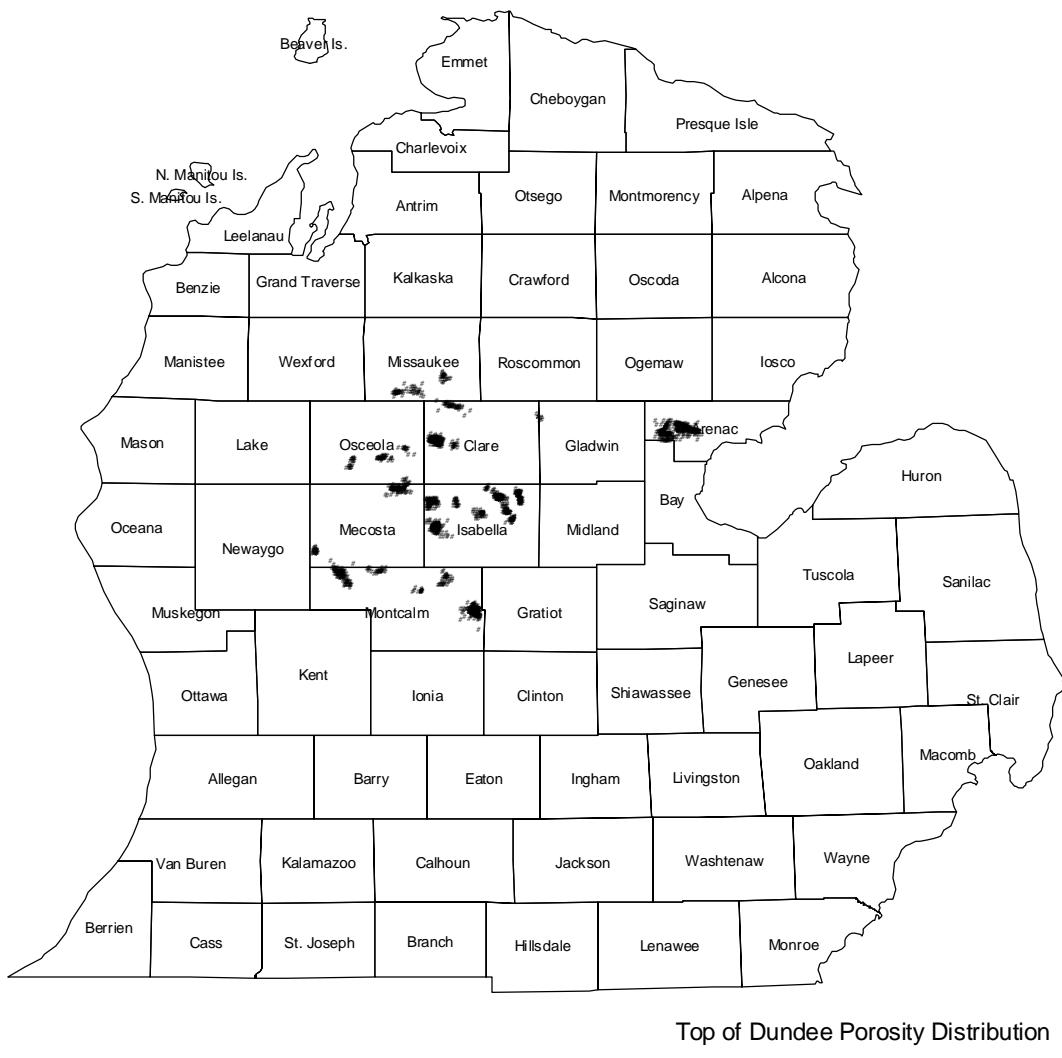

(Scanning is complete for Arenac, Isabella, Lapeer, Montcalm, and Tuscola Counties.
Other counties are partially scanned.)

Figure 2. Stratigraphic column for central Michigan Basin showing location of Dundee Formation (Middle Devonian)

PERIOD	EPOCH	SEQUENCE	Rock Groups	Formations	Lithology
QUATERNARY				Red Beds	
JURASSIC				Grand River Fm.	
PENN.	LATE	ABSAROKA		Saginaw Fm.	
	EARLY			Bayport Ls.	
MISS.	LATE		GRAND RAPIDS	Michigan	
	EARLY			Marshall Fm.	
	LATE			Coldwater Sh.	
	EARLY			Ellsworth Sh (W.)	
MISS./DEV UNDIVIDED	LATE			Antrim Sh. (E.)	
DEVONIAN	MIDDLE	KASKASKIA	TRAVERSE	Squaw Bay Ls	
	LATE			Alpena Ls	
	EARLY			Bell Sh	
	LATE		DETROIT RIVER	Rogers City Ls	
	MIDDLE			Dundee Ls	
	EARLY			Lucas Fm.	
	LATE			Amherstburg Fm.	
	MIDDLE			Bois Blanc Fm.	
	EARLY			Garden Island Fm.	
SILURIAN	LATE	TIPPECANOE	BASS ISLANDS	G Unit	
	MIDDLE			F Evaporites	
	LATE			E Unit	
	EARLY		SALINA	D Evaporite	
	LATE			C Unit	
	MIDDLE			B Evaporite	
	EARLY			A-2 Carbonate	
ORDOVICIAN	LATE			A-2 Evaporite	
	MIDDLE		NIAGARA	A-1 Carbonate	
	LATE			A-1 Evaporite	
	EARLY		CATARACT	Brown Niagaran	
	LATE			Gray Niagaran	
	MIDDLE		RICHMOND	White Niagaran	
	LATE			Clinton Sh.	
	EARLY		EDEN	Cabot Head Sh	
	LATE			Manitoulin Dol.	
	MIDDLE		TRENTON - BLACK RIVER	Queenston Sh	
	LATE			Utica Sh	
	EARLY			Collinwood Sh.	
CAMBRIAN	LATE	SAUK		Trenton Group	
	EARLY & MID.			Glenwood	
	LATE		PRARIE du CHIEN	St. Peter Ss	
	EARLY			Shakopee Dol.	
	LATE			New Richmond Ss.	
	EARLY			Oneota Dol.	
	LATE			Trempealeau Fm.	
	EARLY			Franconia Ss.	
	LATE			Dresbach Ss.	
	EARLY			Eau Claire Fm.	
	LATE			Mt. Simon Ss.	
	EARLY			Jacobsburg Ss.	

Figure 3. Distribution of dolomite reservoirs in the Michigan Basin

Figure 4. Illustration of the Michigan landgrid for Isabella County, Michigan

06	05	04	03	02	01	06	05	04	03	02	01	06	05	04	03	02	01	06	05	04	03	02	01
07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
06	05	04	03	02	01	06	05	04	03	02	01	06	05	04	03	02	01	06	05	04	03	02	01
07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
06	05	04	03	02	01	06	05	04	03	02	01	06	05	04	03	02	01	06	05	04	03	02	01
07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
06	05	04	03	02	01	06	05	04	03	02	01	06	05	04	03	02	01	06	05	04	03	02	01
07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12	07	08	09	10	11	12
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36

Landgrid for Isabella County, Michigan

Table 1. List of Project Fields

MICHIGAN BASIN			
1	AKRON	51	LEROY
2	ALBION-SCPIO	52	LIME LAKE
3	BEAR LAKE 22	53	LYON 34
4	BELLE RIVER MILLS	54	MANISTEE 24
5	BELLY ACHERS	55	MCBAIN
6	BLUE LAKE 18	56	NEW LOTHRUP
7	BROOMFIELD	57	NORTH ADAMS
8	BURDELL	58	NORTH CHESTER 18
9	CALVIN 28	59	NORTHLVILLE
10	CAPAC	60	NORWICH
11	CAT CREEK	61	OIL SPRINGS POOL
12	CATO	62	ONONDAGA 21A
13	CEDAR	63	OVERISEL
14	CHARLTON 19 PROJECT	64	PEACOCK
15	CHATHAM A POOL	65	PENNFIELD 35
16	CHESANING 20	66	PETERS
17	CLAYBANKS 2	67	PETROLIA EAST POOL
18	CLAYTON	68	PORTER
19	COLDWATER	69	PROSPER
20	COLUMBUS	70	PROSPER SOUTH
21	CRANBERRY LAKE	71	RAY
22	CRANBERRY LAKE EAST	72	REDDING
23	CRYSTAL	73	REED CITY
24	CURRIE	74	REYNOLDS
25	DEEP RIVER	75	RIVERSIDE
26	DEERFIELD	76	ROSE CITY
27	DOUGLASS	77	ROSEBUSH
28	EATON RAPIDS 7	78	SALEM
29	ENSLEY	79	SAUBLE
30	ENTERPRISE	80	SHAVER
31	EVART	81	SHERMAN
32	FALMOUTH	82	SIX LAKES
33	FLETCHER POND	83	SKEELS
34	FORK	84	SOUTH BUCKEYE
35	FOWLERVILLE	85	SOUTH BUCKEYE
36	FREEMAN	86	SOUTH CHESTER 21
37	GILMORE	87	SOUTH VIENNA 30
38	GOODWELL	88	STONEY LAKE
39	HANDY 27	89	STONEY POINT
40	HARDWOOD POINT	90	SYLVAN
41	HARDY DAM	91	UNADILLA 2
42	HEADQUARTERS	92	VERNON
43	HILLMAN POOL	93	WAYLAND
44	IOSCO 20	94	WEST BRANCH
45	IOSCO 24	95	WHITE OAK 15
46	ISABELLA	96	WILLIAMS
47	KAWKAWLIN	97	WINTERFIELD
48	KIMBALL-COLLINVILLE POOL	98	WISE
49	LAKE GEORGE	99	WOODVILLE
50	LEATON	100	

Table 2. Formations with Largest Number of Top Picks in the Michigan Basin

Formation Code	Formation Name	Aangstrom	DNR	MTU	Total	w/o Dups
701GCDF	Base of Glacial Drift	38,720	23,870	1,408	63,998	45,623
319ANRM	Antrim Shale	32,599	22,703	818	56,120	38,690
302TRVR	Traverse Formation	27,841	21,842	983	50,666	35,991
302TRVRL	Traverse Limestone	29,599	17,979	760	48,338	35,759
351CLDR	Coldwater Limestone	28,699	15,785	1,016	45,500	32,760
302DNDE	Dundee	23,539	14,791	1,500	39,830	26,114
351SNBR	Sunbury	19,215	13,609	613	33,437	23,168
352MRLL	Marshall Sandstone	17,594	6,495	1,070	25,159	18,481
351CLDRR	Coldwater Redrock	15,443	4,010	264	19,717	17,836
351BERE	Berea	16,705	5,953	386	23,044	17,610
302DRRV	Detroit River	14,271	7,409	83	21,763	15,750
319ELSR	Ellsworth Shale	11,401	7,230	153	18,784	14,736
302BELL	Bell Shale	11,225	8,513	490	20,228	13,441
253SLGU	Salina G Unit	11,052	9,054	67	20,173	13,230
253SLA2	A2 Carbonate	10,452	9,294	100	19,846	12,772
252NGRNB	Brown Niagaran	10,367	9,103	11	19,481	12,710
253BSIL	Bass Island	10,361	8,760	74	19,195	12,498
353MCGN	Michigan	10,294	3,783	950	15,027	11,757
403SGNW	Saginaw	10,413	3,497	1,339	15,249	11,675
302BBLC	Bois Blanc	9,155	7,984	72	17,211	11,343
253SLCU	Saline C Unit	8,965	8,533	80	17,578	11,249
253SLBUS	Salina B Evaporite/Salt	8,935	7,533	103	16,571	11,024
253SLA2E	A2 Evaporite/Salt	8,433	8,221	88	16,742	10,633
253SLA1	A1 Carbonate	8,402	8,287	84	16,773	10,613
252NGRNG	Gray Niagaran	7,574	6,282	3	13,859	9,380
253SLEU	Salina E Unit	5,723	7,822	72	13,617	9,290
353STRY	Stray Sandstone	8,123	2,156	1,409	11,688	8,584
319BDFD	Bedford Shale	5,893	3,732	66	9,691	7,445
253SLBU	Salina B Unit	2,936	5,946	4	8,886	7,208
302AMBG	Amherstburg	4,773	5,929	69	10,771	7,179
353BRLM	Brown Limestone	6,591	1,443	899	8,933	6,936
253SLDU	Salina D Unit	6,917		3	6,920	6,917
253SLDUS	Salina D Evaporite/Salt		6,598	48	6,646	6,615
353BPRT	Bayport Limestone	5,853	1,882	832	8,567	6,548
253SLA1E	A1 Evaporite/Salt	5,214	4,769	74	10,057	6,465
253SLFU	Salina F Unit	3,301	3,809	13	7,123	6,082
BRBD	Berea-Bedford		5,483		5,483	5,483
319ANRMD	Dark Antrim	1,469	4,897	6	6,372	5,430
352MRLLR	Marshall Redrock	4,972		273	5,245	5,091
302SYLN	Sylvania	4,394	1,821	45	6,260	4,945
252CLNN	Clinton Shale	4,191	2,436	84	6,711	4,618
403PARM	Parma Sandstone	3,497	932	511	4,940	3,921
302RCFD	Richfield Zone	3,416	1,727	41	5,184	3,830
202TRNN	Trenton	3,395	2,026	69	5,490	3,715
203CNCN	Cincinnatian	3,199	1,869	85	5,153	3,538
559JRSCR	Red Beds	2,924	425	715	4,064	3,245
302DRRVA	Detroit River Anhydrite		2,999	58	3,057	3,040
202BKRV	Black River	2,696	1,737	69	4,502	3,016
203UTIC	Utica Shale	2,688	1,173	76	3,937	2,948
353TPGP	Triple Gypsum	1,924	1,330	323	3,577	2,352
	TOTALS	495,343	333,461	18,359	847,163	609,284

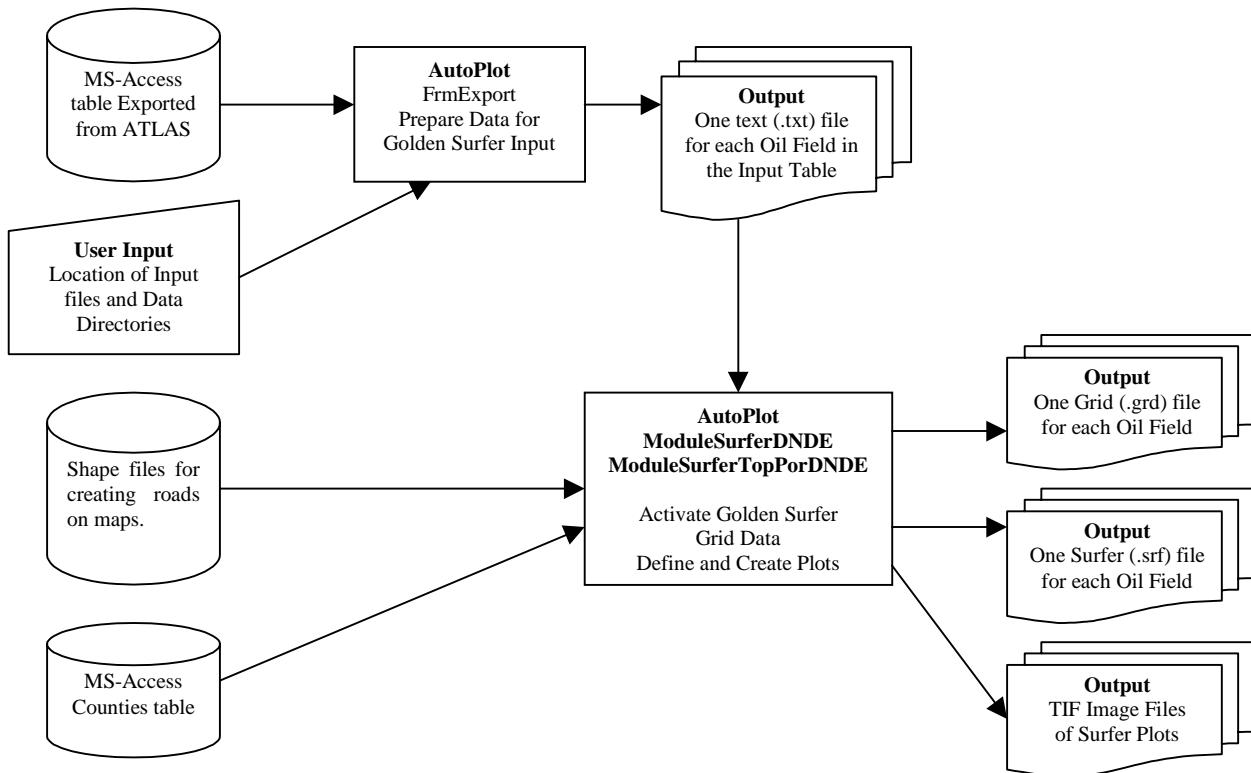
APPENDIX 1. Autoplot – A Program to Automate Contour Plots Using Surfer ©

Automated Plots

This project has reached the point where it has generated data for a large number of oil and gas fields (~100), each with multiple surfaces that need to be contoured in order to be interpreted. This is a daunting task that in the past could only be done once, if at all. Today, however, it is possible to use products such as Surfer©, a 2D and 3D plotting package, to handle the plotting details automatically. AUTOPLOT is a software program that we have written to handle this chore.

Surfer© builds grid files, 2D and 3D plots, contour maps, etc., which are all needed to interpret and model the geologic data in the Atlas Database. Surfer has defined objects, methods, and properties, which can be accessed by MS Visual Basic© to automatically generate plots. AutoPlot has been written to import the MS Access tables exported from another project software product, ATLAS, and create multiple surfer files with the plotting features needed to portray each oil field defined in the Atlas Database. AutoPlot then creates a composite plot of 6 maps involving different aspects of the Top of Dundee and Top of Dundee Porosity. Optionally, it will also create sets of 2D and 3D contour maps of the Top of Dundee for the oil fields that do not have a value for Top of Dundee Porosity.

Michigan Atlas Database


The Atlas Database contains Well Information, including formation tops and some Top of Dundee Porosity picks for oil, gas, and brine disposal wells in the state of Michigan from Permit number 00001 to 52125. This data has been acquired from scout tickets, driller's reports, and well logs to obtain data. It has been compiled into one MS-Access database.

Exporting data using ATLAS 3.2

The ATLAS 3.2 Visual Basic software package accesses the ATLAS Database, maps the wells, and displays information about the wells. ATLAS has an export feature, which outputs data according to user selections. Users plot wells by county, field, or selected area. When one or more formation types are selected, ATLAS outputs a separate MS-Access database table either in a new or existing database. Permit number, Oil field, County, Latitude, Longitude, Kelly Bushing, Top of Dundee Porosity, and the subsea depths of the selected formations are exported.

(Note: ATLAS has been coded so that it does not export records with a null Kelly Bushing value. All other records will have null values (usually -99999) for non-existent data.)

AutoPlot Program Flow

AutoPlot Input

The following items are the AutoPlot user input parameters and the steps to create an input file for AutoPlot using the project ATLAS program.

1. Dundee Formation Table

(MS-Access Database Table is generated in ATLAS using the Export feature with 302DNDE as the selected formation. The table is named by the user.)

Permit

OilField

County

Latitude

Longitude

KB

TopPorosityDNDE (in Subsea Depth)

302DNDE (in Subsea Depth)

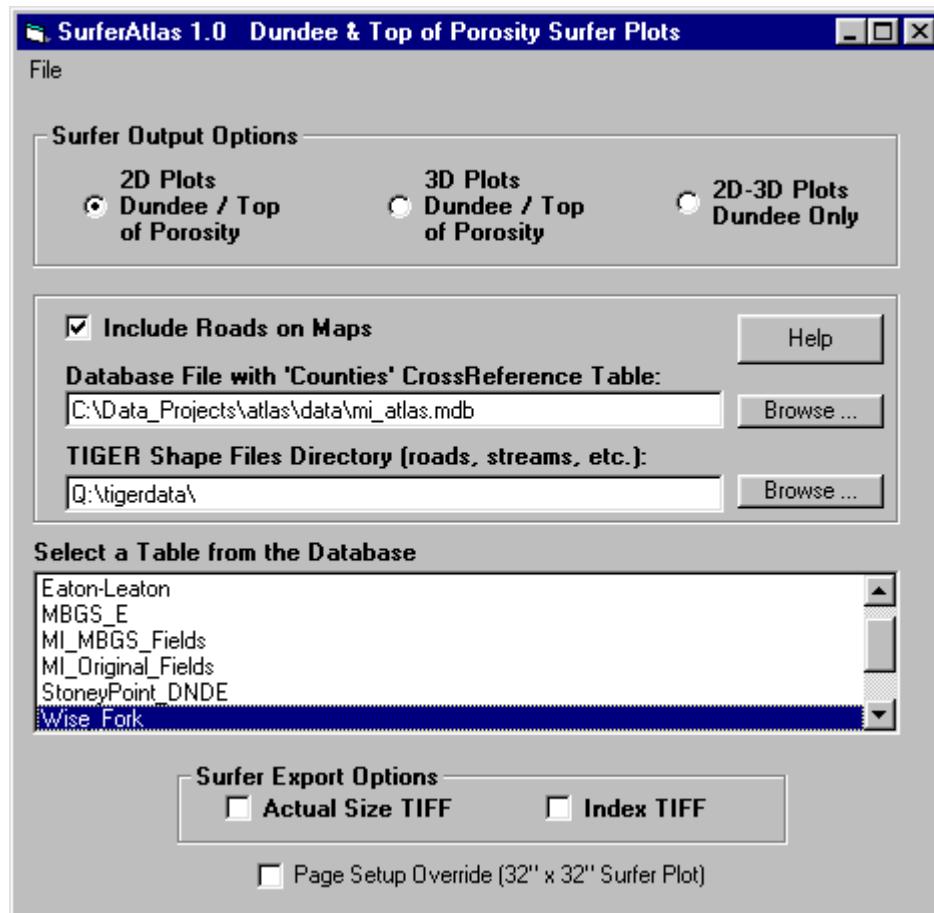
2. Counties Table

(MS-Access Table in Atlas Database; Only required if plotting Roads)

County

FIPSCode

CountyCode


StateAbbr

StateFIPS

3. User Defined Input Parameters

- Option Selection:
 - 2D Plots (Dundee/Top of Porosity)
 - 3D Plots (Dundee /Top of Porosity)
 - 2D-3D Plots (Dundee Only)
- Option to Include Roads on Plot
 - Path to database that holds Counties table for identifying road files
 - Path to Directory that contains TIGER/Census shape files for roads
- Path to database that holds Dundee Formation Table
- Path to Directory where .txt, .grd, .srf files will be written
- Surfer Export Options
 - Actual Size TIF
 - Index TIF
- Page Setup Override Option (Forces page size to 32"x32")

4. County Shape files for roads (point to directory)

Convert Atlas Export Table to Surfer Format

The following steps convert the ATLAS table to a format compatible with Surfer ©.

1. Read the Dundee Formation Table and create a text file for each Oil Field.
2. Save Oil Field Names and County Names in an array
3. Loop through the Oil Fields to create the Surfer Plots

Oil Field Text Files

One Text file for each Oil Field (*.txt)

If 302DNDE or TopPorosityDNDE = -99999 (null value) then

Limestone Cap Thickness = -99999

Column A: Longitude

Column B: Latitude

Column C: 302DNDE

Column D: TopPorosityDNDE

Column E: Limestone Cap Thickness

Column F: Permit

Column G: *Symbol Code for 302DNDE

Column H: *Symbol Code for TopPorosityDNDE

Column I: *Symbol Code for Limestone Cap Thickness

*Symbol Code is a numeric index that indicates a triangle symbol for null values and a circle for a well location with valid data.

Create Surfer Plots

Finally, follow these steps to create the Surfer plots.

For each Oil Field,

1. Import Roads shape file as a Base map

Find County in Counties Table and construct shape file name with State and County FIPS codes

ModuleSurferTopPorDNDE: Import once for roads to be displayed on upper left map (Top of Dundee)

ModuleSurferDNDE: Import twice for roads to be displayed on both the 2D and 3D maps

2. Create a Wireframe map for each map in the plot to define the scale, rotation, tilt, and base shape of the map.

3. Create a Contour map for each map in the plot to define the color levels and contours of the overlying map.

4. Create a Post map for each map in the plot to define Well Locations.

5. Scale the Maps to fit the paper size.

Paper Size must be defined in Page Setup by selecting a printer and page size. This paper size is used to automatically create the correct plot size for the Surfer Plots, even though printing is done from within Surfer and not from AutoPlot. The Page

Setup Override check box was added so that large plots (32"x32") can be created on computers that are not connected to a large plotter.

Longitude and Latitude scaling is done by adjusting the Maps Per Unit for the X and Y axes using the following formula:

$$\text{MapsPerUnitY} = \text{COS}(\text{center Latitude of map}) * \text{MapsPerUnitX}$$

6. Order the layers from bottom to top in this order:

Contour (overlying map)
WireFrame (z contour lines only of base)
Base (Roads)
Post (Well Locations)

Surfer Grid and Plot files

The following files are created by Surfer© and written to the local hard drive.

1. Grid Files (*.grd)

Created by the GridData function in Surfer with the following options:

datafile: Oil Field Text File

zcol: 3 for 302DNDE; 4 for TopPorosityDNDE; 5 for Limestone Cap Thickness

exclusion filter: z=-99999

DupMethod: srfDupMaxZ (Choose the shallowest depth for Z)

Algorithm: srfKriging

2. Surfer Plots (*.srf)

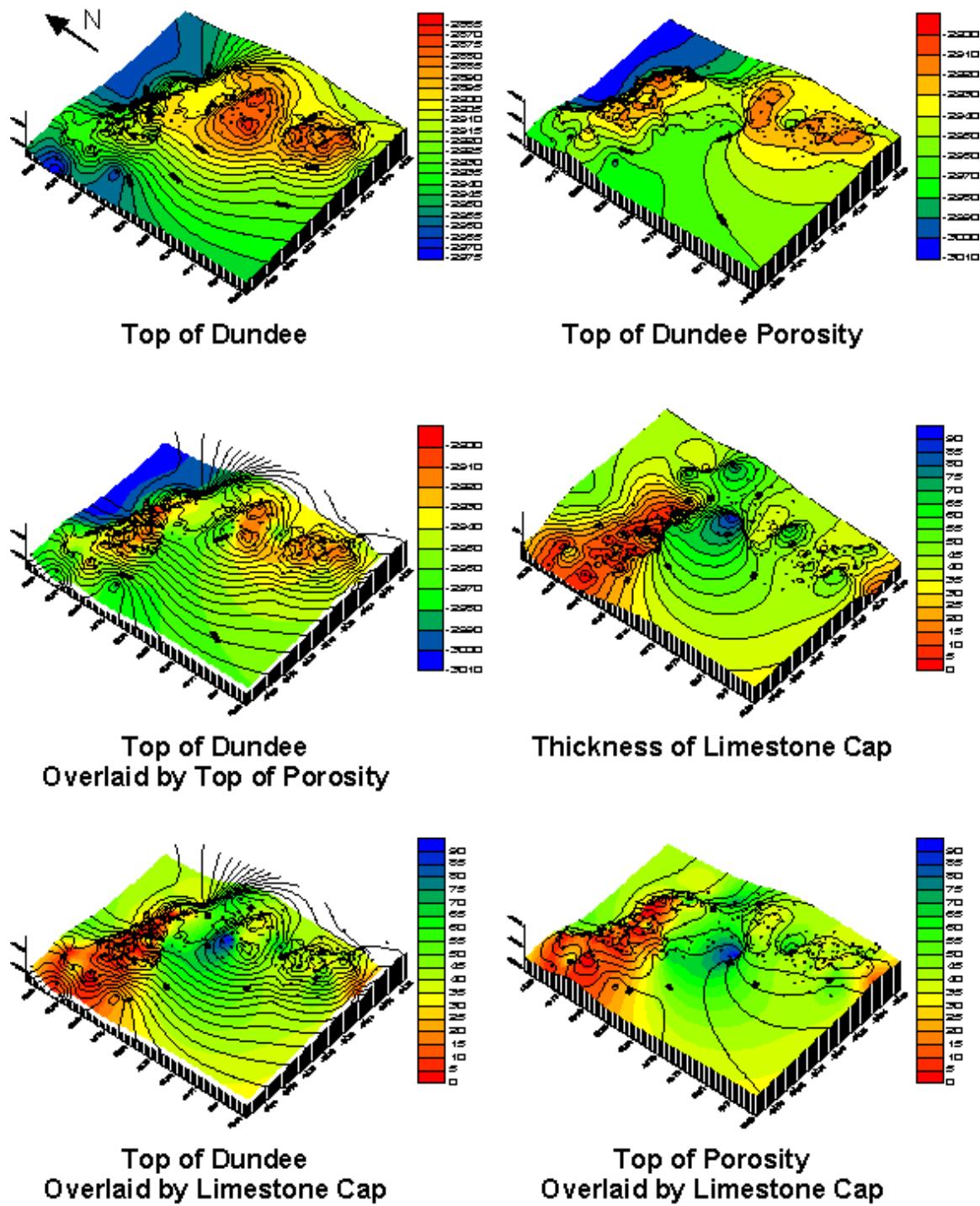
ModuleSurferTopPorDNDE creates a plot of six 2D or 3D contour maps (See

Figure A1.1 for Sample AutoPlot Output)

(For Oil Fields with values for Top of Dundee Porosity)

1. Top of Dundee
2. Top of Porosity
3. Top of Dundee Overlaid by Top of Porosity
4. Limestone Cap Thickness
5. Top of Dundee Overlaid by Limestone Cap Thickness
6. Top of Porosity Overlaid by Limestone Cap Thickness

ModuleSurferDNDE creates a plot of 2 contour maps


(For Oil Fields with no Top of Dundee Porosity values)

1. Top of Dundee (3D)
2. Top of Dundee (2D)

Figure A1.1 Sample 3D Output from AutoPlot.

VERNON/ROSEBUSH FIELD

ISABELLA COUNTY, MICHIGAN

Indicates Well Location With No Valid Map Parameter Data