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I. Introduction

We have been engaged in research on the mechanical properties of materials with

nanometer-scale microstructural dimensions.  Our attention has been focused on studying the

mechanical properties of thin films and interfaces and very small volumes of material.  Because

the dimensions of thin film samples are small (typically 1 µm in thickness, or less), specialized

mechanical testing techniques based on nanoindentation,  microbeam bending and dynamic

vibration of micromachined structures have been developed and used.  Here we report briefly on

some of the results we have obtained over the past three years.  We also give a summary of all of

the dissertations, talks and publications completed on this grant during the past 15 years.

Section II of this report includes a brief summary of our now recently published work on

the mechanical properties of Al/Al3Sc multilayers.  Other reports in section II focus mainly on

results that have not yet been published.  Section III of the report is a list of all of the Ph.D.

dissertations that have been supported by this grant.  The list extends over 15 years and is

numbered to reflect the total number of DOE supported Ph.D. students who have studied with

W.D. Nix over the years.  A complete list of oral presentations for the entire 15 year grant period

is given in Section IV of the report.  Finally, Section V of the report provides a complete list of

papers that have been published during the life of the grant.

The revolution in microelectronics and the associated development of high density, data

storage technologies have brought about a great demand for understanding and controlling the

mechanical properties of thin films and their interfaces.  The extraordinary development of the

microprocessor is directly related to the shrinking feature size in integrated circuit technology.

Although the primary functions of these materials are electrical in nature, the mechanical

properties of these materials and their interfaces are of crucial importance to the successful

manufacture and use of these devices.  Thus the mechanical properties of microelectronic thin

films have become as important to the manufacture of integrated circuits as the mechanical

properties of structural materials are to the building of advanced structural systems. Micro-

electro-mechanical systems (MEMS) also make extensive use of thin metal films on substrates.

The mechanical properties of these materials are of crucial importance for both device

performance and reliability.  All of these thin film device developments have provided

technological motivation for our research.  Additionally, understanding the mechanical

properties of materials at the nanometer scale has become an important and challenging scientific

problem.  The effort to understand the mechanical properties of materials at the nanometer-scale
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is contributing to our fundamental understanding of the controlling mechanisms of mechanical

behavior.

One of the major accomplishments of the past three years has been the completion of our

work on the mechanical properties of Al/Al3Sc multilayers.  We have made and studied the

mechanical properties of Al/Al3Sc multilayers consisting of inherently soft Al layers (6–100 nm

in thickness) separated by thin (0.5–5nm) layers of the ordered intermetallic phase Al3Sc, which

is coherent with the Al layers.  These multilayers are perhaps the strongest Al based alloys ever

created.  In addition, they represent a model material system for studying strengthening

processes in multilayers.  The Al3Sc layers are perfectly coherent with the Al layers, making

these alloys analogous to Ni/Ni3Al superalloys of importance for high temperature applications.

Our studies of the mechanical properties of these materials have been conducted using

nanoindentation.  We find that the hardnesses of the multilayers with the thickest Al layers are

well described by a model in which dislocations are confined to the soft Al layers.  But for

thinner Al layers the strength falls below that predicted by the model of dislocation confinement.

This weakening is especially pronounced for the thinnest Al3Sc layers, suggesting that shearing

of the Al3Sc layers is responsible for the weakening.  We have modeled these deformation

processes and have concluded that the weakening effects are caused by the annihilation of

oppositely signed dislocations causing the Al3Sc layers to be sheared.  The models we have

developed for these processes coincide well with the experimental data.

We have also completed our work on the effects of microstructure on the early stages of

nanoindentation of gold thin films.  We find that the microstructure has a huge effect on the

nature of the load-displacement curve at small depths of indention.  When very small

indentations are made near the centers of large grains, single crystal like behavior is observed.

The load-displacement curve is characterized by Hertzian loading up to a critical load, followed

by a displacement burst associated with the nucleation of dislocations.  Very high contact

stresses develop in the early stages of indentation and they are followed by much lower contact

stresses after dislocations are nucleated.  Such indentations are thus characterized by strain

softening.  These observations also allow the theoretical shear strength of the crystal to be

estimated.   The measured shear strengths are close to those predicted by the Frenkel relation.

But the indentation behavior of very thin films of gold having very small grain sizes is quite

different.  For these microstructures we find smooth indentation loading curves indicating

initially “soft” behavior at the smallest depths of indentation.  We have argued that these effects

are caused by the close proximity of grain boundaries, which act as easy sources for dislocations.

Our EAM modeling of these processes confirms that grain boundaries can act as sources of
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dislocations and that this can have profound effects on the nature of the load-displacement curve.

For such fine-grained films the contact pressure gradually increases in the early stages of

indentation, suggesting the expected effects of strain hardening.  These studies clarify the role of

microstructures on the nature of nanoindentation in the early stages of indentation.

We have developed a microbeam bending technique for determining elastic-plastic, stress-

strain relations for thin metal films on silicon substrates.  The method is similar to previous

microbeam bending techniques, except that triangular silicon microbeams are used in place of

rectangular beams.  The triangular beam has the advantage that the entire film on the top surface

of the beam is subjected to a uniform state of plane strain as the beam is deflected, unlike the

standard rectangular geometry where the bending is concentrated at the support.  We have

developed a method of analysis for determining two Ramberg-Osgood parameters describing the

stress-strain relation for the film.  These parameters are obtained by fitting the elastic-plastic

model to the measured load-displacement data, and utilizing the known elastic properties of both

film and substrate.  As a part of the analysis we compute the position of the neutral plane for

bending, which changes as the film deforms plastically.  This knowledge, in turn, allows average

stress-strain relations to be determined accurately without forcing the film to closely follow the

Ramberg-Osgood law.  The method we have developed can be used to determine the elastic-

plastic properties of thin metal films on silicon substrates up to strains of about 1%.  Utilizing

this technique, both yielding and strain hardening of Cu thin films on silicon substrates have

been investigated.  Copper films with dual crystallographic textures and different grain sizes, as

well as others with strong <111> textures have been studied.  Three strongly textured <111>

films were studied to examine the effect of film thickness on the deformation properties of the

film.  These films show very high rates of work hardening, and an increase in the yield stress and

work hardening rate with decreasing film thickness, consistent with current dislocation models.

A new dynamic measurement system has been developed to investigate damping in thin

metal films.  This system includes a vacuum chamber, in which a free-standing bilayer cantilever

sample is vibrated using an electrostatic force, and a laser interferometer to measure the

displacement and velocity of the sample.  With this equipment, internal friction as low as 10-5 in

micrometer thick metal films in a temperature range of 300K to 750K can be measured.  Free-

standing cantilevers with different frequencies have been fabricated using well-established IC

fabrication processes.  The cantilevers consist of thin metal films on thicker Si substrates, which

exhibit low damping.  From measurements of internal friction of Al thin films at various

temperatures and frequencies, it is possible to study relaxation processes associated with grain

boundary diffusion.  The activation energy calculated from the damping data is 0.57eV, which is
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consistent with previous research.  This value suggests that the mechanism of internal friction in

pure Al films involves diffusion-controlled grain boundary sliding.  A model to describe these

damping effects has been developed.  By deriving an expression for the diffusional strain rate

using a two-dimensional Coble creep model and modifying the conventional standard linear solid

model for the case of bending, it is possible to give a good account of the observed damping.



5

II. Research Report

A. Microstructure and nanoindentation hardness
of Al/Al3Sc Multilayers

(Mark A. Phillips)

In the paper describing this work, we discuss the fabrication, characterization and

mechanical properties of a unique multilayer system constructed of aluminum and scandium.

Thin film deposition techniques were used to create high-quality polycrystalline multilayered

films consisting of inherently soft Al layers (6–100 nm in thickness) separated by thin (0.5–5nm)

layers of the ordered intermetallic phase Al3Sc, which is coherent with the Al layers.  We used

X-ray diffraction, transmission electron microscopy and in situ wafer curvature to characterize

the microstructure and intermixing of the Al/Al3Sc multilayer films produced by sputter

deposition.  The characterization work is described in the paper cited below.

Fig. A.1 Transmission electron micrograph showing a coherent Al/Al3Sc multilayer made by
sputter deposition.

To illustrate the multilayer structures created in this research, we show in Fig. A.1 a

transmission electron micrograph of the multilayer structure.  High resolution electron
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microscopy showed that the Al3Sc layers are fully coherent with the Al layers.  The simplicity of

this microstructure makes this a particularly good model system for studying strengthening

processes in metal multilayers.

Fig. A.2 Hardness of Al/ Al3Sc multilayers as a function of Al layer thickness.  The different
groups of data correspond to different Al3Sc layer thicknesses.

The accompanying hardness results show that layering with nanoscale coherent Al3Sc

layers increases the hardness by between 200 and 500% over that of a pure aluminum film.

Figure A.2 shows the measured hardness of various multilayers as a function of the Al layer

thickness.  The data are shown in three groups, with different Al3Sc thicknesses.  While the

strength clearly increases with decreasing Al layer thickness, as expected, the multilayers with
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the thinnest Al3Sc are weakest.  As described in the paper cited below, we believe this

dependence on the thickness of the Al3Sc layers is related to shearing of the coherent barrier

layers by the collapse of dislocation dipoles.

M.A. Phillips, B.M. Clemens and W.D. Nix, "Microstructure and nanoindentation hardness of
Al/Al3Sc multilayers,"  Acta Materialia,  51, 3157-3170 (2003).

B. A model for dislocation behavior during
deformation of Al/Al3Sc (fcc/L12 ) metallic
multilayers

Mark A. Phillips

In the previous paper, we described the microstructure and indentation hardness of

nanoscale Al/Al3Sc multilayers.  In the work described by the second paper, cited below, the

large increases in hardness with decreasing aluminum layer thickness are analyzed in detail and

several simple dislocation mechanisms are proposed to describe the behavior.  Strengthening can

be explained by assuming that yielding occurs first by forming dislocation loops in the aluminum

layers—the dislocations are constrained by layers of Al3Sc. We show that the anti-phase

boundary (APB) energy of the L12, Al3Sc structure can be used to quantify the resistance of the

interfaces in the multilayer structure to dislocation motion and that the thickness of the Al3Sc

layer also plays an important role in determining the strengthening response.

Figure B.1 shows the result of such modeling.  The line shows the strength predictions for

the case in which dislocations are completely confined to the Al layers and not allowed to

penetrate the Al3Sc barrier layers.  We see that for the largest Al layer thickness and for the

thickest Al3Sc layers, the model coincides with the data.  But for thinner Al layers and especially

for very thin Al3Sc layers the model greatly over predicts the observed strengths.  As discussed

in the paper cited below, we believe these “weakening” effects arise because the thinner Al3Sc

layers are cut by collapsing dislocation dipoles.

1. M.A. Phillips, B.M. Clemens and W.D. Nix, "A model for dislocation behavior during
deformation of Al/Al3Sc (fcc/L1(2))metallic multilayers," Acta Materialia,  51, 3171-3184
(2003).
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Fig. B.1 Hardness of Al/ Al3Sc multilayers as a function of Al layer thickness.  The different
groups of data correspond to different Al3Sc layer thicknesses.  The line shows the
strength predicted if dislocations are completely confined to the Al layers.
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C. Microstructural length-scale effects in the
nanoindentation behavior of thin gold films

(Erica T Lilleodden)

Nanoindentation experiments have been conducted on epitaxial and polycrystalline gold

thin films in an effort to study the effects of microstructural length-scales on indentation

plasticity.  We show that the deformation of single-crystalline and coarse-grained films is

characterized by Hertzian elastic loading, followed by discrete displacement bursts and

subsequent softening with increasing depth of indentation.  In contrast, the loading response of

fine-grained films is continuous, and characterized by elastic-plastic behavior from the earliest

stages of indentation, and gradual hardening with increasing indentation depth.  We argue that

these different behaviors are closely related to the mechanisms of initiating plasticity.

Homogeneous dislocation nucleation at theoretical shear stresses is required for indentation into

dislocation-free, single crystalline volumes while grain boundaries provide a ready source for

dislocations in fine-grained films.  This picture of indentation plasticity is additionally supported

by observations of grain boundary proximity effects on the critical load at which plasticity

commences.

Here we show some of the most important results of this study.  Fig. C.1 shows an AFM

image of an epitaxial film of gold that was grown onto a (001) silicon substrate.  The figure

shows flat terraces about 400 nm in width, separated in height from each other by about 3 nm.

This is an ideal sample for study, as the terraces are extremely flat and the epitaxial crystals are

of good quality.  Five different load-displacement curves obtained for this film are shown in Fig.

C.2.  These indentation results were obtained using a Berkovich indenter with a tip radius of

about 50 nm.  We see that the load-displacement relations for the five tests are in almost perfect

agreement up to an indentation depth of about 5 nm.  These load-displacement curves indicate

purely elastic, Hertzian contact between the rounded diamond indenter and the gold surface.  The

elastic loading curves can be accurately predicted using the Hertz theory and the elastic

properties of gold and diamond.  But displacement bursts occur for all of the indentations at

displacements greater than about 5 nm.  These displacement excursions are caused by the

nucleation of dislocations in these highly perfect crystals.  From the critical loads needed to

initiate the displacement bursts, one can estimate the theoretical shear strength of gold.  We find

critical shear strengths close to the Frenkel estimate of th = / 2 .  The different critical loads
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for the different tests are probably related to the proximity of the indentations to the ledges

shown in Fig. C.1.  We assume that the strain bursts will occur at smaller loads if the

indentations are close to the ledges, because of the effects of stress concentrations at the ledges.

Thus the highest critical loads correspond to the best estimates of the theoretical strength.

Fig. C.1 AFM image and corresponding cross-sectional profile across the terraced surface of
the 160 nm (001) Au bi-crystalline film shows steps approximately 3 nm high and
spaced 400 nm apart.
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Fig. C.2 Load vs. displacement response for 5 individual indentations into the 160 nm (001)
epitaxial Au film on Si, showing the pop-in behavior during the initial stages of
loading. The Hertzian prediction (solid line) describes the elastic response
extremely well. Indent to indent variation in the critical load at pop-in is observed.

The effect of microstructure on the initiation of plasticity is shown in Fig. C.3, where the

load-displacement relations for both coarse grained and fine grained Au are compared.  The

indentation for the coarse grained sample of gold (film thickness of1 m) was made in the center

of a large grain.  We see elastic Hertzian loading followed by displacement bursts.  But for the

fine-grained sample (film thickness of 160nm ) the load displacement curve is smooth and

continuous from the very beginning, indicating that plasticity is initiated at a very low contact

stress.   We believe this is caused by grain boundaries which are acting as prolific sources for

dislocations.  In the case of the fine-grained-film, the indentation curve is characterized by strain

hardening while for the large grained sample strain softening occurs as soon as dislocations are

nucleated.
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Fig. C.3 Load-displacement behavior revealing the difference between the coarse-grained 1
m Au/Si sample (open circles) and the fine-grained 160 nm Au/silica(closed

circles).
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D. A microbeam bending method for studying
stress-strain relations for metal thin films on
silicon substrates

 (Jeffrey N. Florando)

1. Introduction

The expanding field of Micro-Electrical Mechanical Systems (MEMS) has led to the

development of many useful engineering devices [1-3].  The decreasing dimensions of these

devices require the development of new test methods for monitoring the mechanical reliability of

these systems.  Many different kinds of tests are available for studying the mechanical properties

of materials in small dimensions [4]; however, there is still need to develop simple test methods

for measuring the isothermal stress-strain relations for thin films still attached to their substrates.

In an effort to devise a simple method for studying the elastic and plastic properties of thin

films on substrates, a microbeam bending technique has been developed.  The method is similar

to previous work done on microbeam bending [5-6], except that triangular silicon microbeams

are used. The triangular beam has the advantage that the entire film on the top surface of the

beam is subjected to a uniform state of strain as the beam is deflected, unlike the standard

rectangular geometry where the bending is concentrated at the support.  We have fabricated

rectangular and triangular silicon beams using micromachining and semiconductor processing

techniques.  Copper films are deposited on top of the Si beams, and the bi-layer beams are

deflected using a nanoindenter.  The sample geometry coupled with the high resolution of the

nanoindenter allows this technique to have high strain resolution.

Typically, the onset of yielding is determined by the first deviation from linearity on the

load-displacement curves; however, due to the relatively thick elastic Si substrate, the deviation

in the load-displacement behavior is very gradual and small in magnitude.  To extract the stress-

strain behavior of the film from the load-displacement relation, a simple numerical model has

been developed.  The yielding behavior of the film can be modeled using a Ramberg-Osgood

constitutive law for the film, which is then used to predict the stress-strain relation for the film

while attached to its elastic substrate.  This model has also been used to show that although there

is a gradient of stress and strain through the thickness of the film during bending, this effect does

not obscure the measurement of the yield stress of the film.
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Utilizing this technique, the yielding and strain hardening behavior of bare Cu thin films

have been investigated.   A Cu film was thermally cycled from room temperature to 500oC, and

the film was tested after each cycle.  The thermal cycles were performed to examine the effect of

thermal processing on the stress-strain behavior of the film.  Cu films with dual, <100>/<111>,

textures, as well as others with strong <111> textures have also been studied.  Strongly textured

<111> films were deposited at three different film thicknesses to examine the effect of texture, as

well as film thickness, on the yield properties of the film.  The <111> textured films show very

high rates of work hardening, an effect that has been predicted by recent modeling of thin film

plasticity.

2. Theory

The advantage of the triangular beam is the constant moment per unit width acting in the

beam during deflection.  As shown in Fig. D.1, the bending moment at any point along the beam

is the product of the load, P and the lever arm, L-x. Using similar triangles, the moment per unit

width at any point in the beam can be expressed as:

M =
M t
w

=
P L − x( )

w
=

P L − x( )

wo
L − x

L
 
 

 
 

=
PL
wo

= cons tan t .       (1)

Thus the triangular beam is subjected to a constant moment (per unit width) and the beam

naturally develops a uniform curvature.  As a consequence, the entire film on the top surface of

the beam is subjected to a uniform state of plane strain and the film can be expected to yield

simultaneously at all points along the beam, unlike the standard rectangular geometry where

yielding first occurs at the support.  In what follows we assume that a bi-layer triangular beam

consisting of a metal film of uniform thickness on top of an elastic beam of uniform thickness is

deflected at its end with a force P  resulting in a displacement u .  The response of the beam is

assumed to be time independent so that any foreword running parameter, such as the load point

deflection, can serve as time.   The incremental load point deflection, u, may then be regarded

as a time derivative for a time-independent process.  Corresponding increments in the load, P,

moment (per unit width), M = (L / wo) P, and curvature, = 2 / L2( ) u , similarly represent

time derivatives for this time-independent bending process.  Using the uniform strain state for

the triangular geometry, the stress-strain properties of the film can be extracted using the

analyses described below.
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Fig. D.1 Top view schematic of a triangular microbeam.

2.1 Elastic-Plastic Analysis

We consider the deflection of a triangular microbeam of thickness ts with a metal film of

thickness t f  bonded to the top surface of the beam.  The length of the beam is L  and the width

of the beam at its base is wo .  For a film on an elastic substrate with known elastic properties, the

deformation properties of the film can be extracted from the bending response of the bi-layer

beam.  Silicon, which behaves in a linear elastic manner in these experiments, is used as the

substrate material, so yielding is limited to the metal film.  We first model the deformation

behavior of the film using the empirical Ramberg-Osgood stress-strain law,

f =
f

E f
+ o

E f

f

o

 

  
 

  

m

,  (2)

where f  is the equivalent strain, f  is the equivalent stress, E f  is Young's modulus, o  is the

uniaxial yield stress, and 1/m is a strain hardening exponent.   This model, in conjunction with

elastic deformation of the substrate, can be used to extract the properties of the film ( o  and m)

from the experimental load-displacement data.  To make this determination we first assume

values for o  and m and calculate the incremental loads and displacements during bending.  We

choose those values of o  and m that provide the best fit to the experimental load-displacement

data.  For a given set of o  and m, the incremental bending loads can be related to the

incremental bending displacements using

P =
2wo

L3
 
  

 
  Bs y − yo( )2

dy + 1− K2 f( ) −
2 xx

f − zz
f

2 zz
f − xx

f

 

 
 

 

 
 K2 − f( )

 

 
 
 

 

 
 
 

−1

E f y − yo( )2
dy

ts

ts+ t f∫0

ts∫
 
 
 

  

 
 
 

  
u

(3)
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where Bs is the plane strain modulus of the substrate  and where the in-plane stresses in the film,

xx
f  and zz

f , are found for each increment of bending using

xx
f = 1− K2 f( ) −

2 xx
f − zz

f

2 zz
f − xx

f

 

 
 

 

 
 K2 − f( )

 

 
 
 

 

 
 
 

−1

E f xx , (4)

and

zz
f = K2 xx

f , (5)

with the strain increment xx  given by

xx(y) = y − yo( ), (6)

where = 2 / L2( ) u.

The parameter K2 in these relations is found using

K2 =
f

f − K1 2 xx
f − zz

f( )( )
f + K1 2 zz

f − xx
f( )( ) , (7)

where

K1 =
m
2

zz
f −

1

2 xx
f

f

 

 

 
 
 

 

 

 
 
 

f

o

 

  
 

  

m−1

. (8)

Finally, the position for the neutral plane for bending, yo , must be computed after each

increment of bending by solving

0 = M = Bs y − yo( )dy + 1− K2 f( ) −
2 xx

f − zz
f

2 zz
f − xx

f

 

 
 

 

 
 K2 − f( )

 

 
 
 

 

 
 
 

−1

E f y − yo( )dy
ts

t s+ t f∫0

t s∫ (9)

Utilizing eqn.(3), a theoretical load-displacement curve can be calculated for a film that follows

the Ramberg-Osgood law.  By changing the yield stress σo, and the strain hardening exponent
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1/m, the theoretical load-displacement curve can be fitted to match the experimental data.  A

match of the model to experimental data is shown in Fig. D.2.  The data used here is for a 1 m

thick Al-1%Si film on a 4.2 m thick Si beam. The model matches the data well using a yield

stress of 280 MPa and an m of 8.

Experimental Data
Ramberg-Osgood Fit

1000 2000 30000

Displacement (nm)

L
oa

d 
(m

N
)

0

1.0

2.0

Fig. D.2 Matching the Ramberg-Osgood model to the experimental load-displacement   data
for a 1 µm Al-1%Si film on a Si substrate using a σo of 280 MPa, and an m of 8.

2.2 Average Stress Model

Although the Ramberg-Osgood model gives a good estimate of the yield stress and the

work hardening exponent, it forces the film to behave in a Ramberg-Osgood manner. A more

flexible description of the yielding behavior of the film can be found by using the following

average stress and strain model.  The average incremental stress in the film on a triangular beam

can be expressed as

< >=
L Pfilm

wo (y − yo)dy
t s

ts +t f∫
=

2L Pfilm

wot f 2ts + tf − 2yo[ ] , (10)

where Pfilm  is the incremental load associated with the film alone, and yo  is the position of the

neutral plane for bending.  For the Ramberg-Osgood analysis described above, the neutral plane

positions are continuously calculated as the film yields.  Since this model is fitted to the

experimental data, it can be used to provide very good estimates of the neutral plane positions

during bending.  Since the other quantities in eqn. (10), are experimentally determined, the
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Ramberg-Osgood analysis is here used only to estimate the position of the neutral plane for

bending.  It does not constrain the film to follow the Ramberg-Osgood law.

The measured load, P ,includes load contributions from the substrate.  Thus Pfilm ,

needed for the implementation of eqn.(10), is found using,

Pfilm = P − Psubstrate , (11)

where Psubstrate  is calculated from the elastic properties and dimensions of the substrate and

knowledge of the current position of the neutral plane,

Psubstrate =
2w0

L3 Bs u y − yo( )2

0

ts∫ dy =
2w0

L3 Bs ts
3 − 3ts

2yo + 3tsyo
2[ ] u . (12)

The average incremental strain in the film can also be expressed as

< xx >=
2 u

t f L2 (y − yo)dy =
u

L2 2ts + t f − 2yo[ ]ts

ts+ tf
∫ . (13)

Thus, using eqns (10) and (13), the average stress and strain the film can be extracted directly

from the beam bending experiment.  These equations are mainly a function of the known

geometry, and the experimental loads and displacements.  The only unknowns are the neutral

plane positions, which can be estimated using the Ramberg-Osgood analysis, as described above.

Knowledge of the movement of the neutral plane position permits a calculation of the average

stress and strain in the film.  The average stress-strain relation obtained using this method is

compared to the corresponding Ramberg-Osgood model in Fig. D.3.  While there is good overall

agreement,  justifying the use of the Ramberg-Osgood model, the average stress-strain relation is

considered more accurate as it is not constrained to follow a particular form.
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Fig. D.3. Comparison of the average stress and strain relation with the Ramberg-Osgood
model. The 1 µm Al-1%Si film is deposited on a 30o 46 µm long triangular Si

beam.

2.3 Verifying the average stress-strain approximation

The model for the average stress-strain relation assumes that there is no variation in stress

through the thickness of the film, and treats the film as if it were subjected to a homogeneous

stress state.  However, in bending there is a linear variation in strain through the thickness of the

film, with the highest strain occurring at the top of the film.  Since the film will yield at the top

of the film first and then through the thickness of the film, the average equations may be

insensitive sharp features in the stress-strain relation.  For example, in the beam bending

experiment the load-displacement data will be inherently gradual even if the film exhibits a sharp

yield point.  Since the average stress and strain in the film is extracted from this load-

displacement data, the stress strain behavior of the film would be predicted to be gradual as well,

even if the film’s “real” stress strain behavior has a sharp yield point.  Therefore the gradual

yielding shown in Fig. D.3 could be an effect of the bending experiment and the average stress

and strain in the film.  This potential error can be checked by assuming that the film behaves in a

manner that will produce a very abrupt yield point, such as in the case of a film characterized by

an elastic-linear strain hardening law.  Assuming that the film behaves in this manner, a

theoretical load-displacement relationship can be derived, using expressions similar to eqn. (3).

The calculated loads and displacements are then treated as “data” and inserted into the average

stress-strain equations to determine if the original linear-hardening law can be recovered.  Figure

D.4 shows that the mean stress-strain equations can reproduce the original linear hardening curve
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quite well.  Therefore, the approximation of treating the film as having a uniform stress state

through the thickness of the film is valid.  All stress-strain plots throughout the remainder of this

report use average stress-strain equations to determine the stress-strain behavior of the film.

3. Description of testing method

Representative Si microbeams of the kind used in this research are shown in Fig. D.5.  The

processing steps needed to create these structures will not be given here.  This information can

be found in the Ph.D. dissertation by J.N. Florando [7] and will appear in a forthcoming paper.

Both Al and Cu metal films were sputter deposited on top of the beams and subsequently tested.

The microbeams were deflected using the Nano II nanoindenter from the MTS Nano Innovation

Center.  This particular instrument has a load resolution of 10 nN, and a displacement resolution

of 0.3 nm, which allows the microbeam bending technique to have a strain resolution on the

order of 0.1 microstrain.  Instead of using the traditional point load, a line load was applied to the

beams using a diamond wedge tip that is 10 µm long and has a 90o-included angle.  The line load

was used to reduce the torsional bending of the beam.

As seen in Fig. D.5, the triangular beams have a rectangular pad at the end to provide a

location for the nanoindenter to bend the beam. This pad makes the beam stiffer than the ideal

triangular geometry.  An analysis performed to account for this effect [7] shows that by using

sufficiently long beams (60 µm or longer), the results converge to the ideal triangular geometry.

The triangular beams used in this paper are longer than 60 µm and were approximated as beams

with an ideal triangular geometry.  The beams were loaded at a constant displacement rate,

which is equivalent to a constant strain rate, held for 100 seconds at the maximum load, and then

unloaded at the same displacement rate as the loading segment.  All the beam tests were

performed at a strain rate on the order of 10-5/sec.
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Fig. D.4. Stress-Strain plots for a theoretical “film” that follows a linear hardening model,
comparing the average stress-strain equations to the stress-strain law.

 

               

Fig. D.5. SEM picture of Si microbeams.

Since a sharp indenter tip is used to deflect the beams, the tip makes an impression in the

surface of the film as the beam is deflected. The indentation displacements can be removed by

assuming that for a given load the indentation displacement into the film will be the same as the

displacement in the film where it is well-supported by the substrate. This indentation response is

then subtracted from the experimental displacement data to obtain the displacement of the beam.

The compliance of the support also adds additional displacements to the end of the beam that
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must be taken into account. The support compliance is calculated using the measured support

compliances for rectangular beams  [6,8] and the assumption that the support compliance varies

linearly with the width of the base of the beam.  Knowledge of the support compliance, the

length of the beam, and the load allows for the displacements at the end of the beam due to the

support compliance to be calculated.   These calculated displacements are then subtracted from

the experimental data to obtain the beam displacements due to bending.

4. Film Characterization

The grain sizes for the Cu films grown on SiO2 and Ta were measured using Focused Ion

Beam (FIB) images and the Heyn intercept method.  The average grain size for the 1 m thick

as-deposited film grown on SiO2 was measured to be 0.75 µm.  To study the effect of grain size,

the as-deposited film was first tested, annealed in vacuum at 500oC, and tested again. After

annealing, the grain size was measured to be 1.0 m.  For the Cu films grown on Ta, the average

grain size was 0.2 m for the 0.5 m thick film, 0.4 m for the 1.0 m thick film, and 0.5 m for

the 1.7 m thick film. Symmetric x-ray diffraction was used to determine the texture of the films.

The results of the scans are shown in Fig D.6.  The film grown on a SiO2 layer (dash line) shows

two peaks, which correspond to the (111) and the (200) reflections.  The film grown on Ta (solid

line) shows a strong (111) peak, and no observable (200) peaks.

The residual stress in the dual textured Cu film was measured using asymmetric x-ray

diffraction and the sin2 ψ method [9].  For the <111> textured Cu films, the residual stress was

measured using the wafer curvature method.  These methods, however, give the residual stress in

the film where it is supported by the massive substrate.  For the bi-layer beam, the relatively thin

substrate layer will accommodate some of the misfit strain.  The residual stress in the film on the

beams can then be calculated using the results from these techniques, and the assumption that the

total misfit strain is the same on the beam as on the well-supported regions.  Using this

assumption, the amount of misfit strain accommodated by the substrate can be determined, and

the residual stress in the film on the beams can be calculated.

5. Results and Discussion

5.1 Grain size effect

Figure D.7 shows a plot of the stress-strain behavior determined for both the as-deposited

and annealed film with the dual texture.  The annealed film has a higher residual tension stress,
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which is expected since the film deforms plastically during heating, and this deformation causes

an increase in the residual tension stress at room temperature.  Even though the annealed film

was initially in a higher state of biaxial tension, it yielded at a lower stress than the as-deposited

film. This behavior is expected since the yield stress is expected to vary inversely with the square

root of the grain size.

Fig. D.6. Symmetric x-ray diffraction scans for a Cu film deposited on SiO2 (dashed) and Ta
(solid line) showing a dual <111>/<200> texture for the film grown on SiO2 and a
strong <111> texture for the film grown on Ta.

5.2 Effect of Film Thickness

To study the effect of film thickness, two additional Cu films with strong <111> texture, in

addition to the 1.0 m film, were deposited. The two additional films have a thickness of 0.5 m,

and 1.7 m. Fig. D.8 shows the stress-strain behavior for the three film thicknesses. It should be

noted that these stress-strain curves are reproducible, and the data shown here are representative

of the samples.

Since the texture should be similar for all three films, the elastic loading slope should be

equal. The slope for the 1.7 m thick film is a little lower than for the other two films, but the
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difference is within the range of experimental variation. The yield stress for the three films is

different, with the thinnest film having the highest yield stress. This result is expected as Freund

[10] and Nix [4] have shown that the yield stress is inversely related to the film thickness.  The

grain size measurements for the three films shows that the thinnest film has the smallest average

grain size.  Since the smaller grain size can also contribute to the increase in the flow stress, is it

difficult to separate the effect of film thickness and grain size in these experiments.

Fig. D.7 Stress-strain behavior for an as-deposited and annealed Cu film.

The most striking feature in Fig. D.8, however, is the large difference in the work

hardening rates between the three films. The 1.7 m thick film has a linear strain-hardening rate

of about E/ 9, while the 1.0 m film has a hardening rate of E/4.  The 0.5 m thick film has an

initial hardening rate for E/2.2, but the slope increases to a hardening slope of E/1.3 at a strain of

about 0.006. The systematic increase in the strain hardening rates for decreasing film thickness,

as well as the bi-linear strain hardening behavior seen in the 0.5 m thick film, has been

predicted by Nicola, Van der Giessen, and Needleman [11] using a 2-D plane strain dislocation

simulation.  In their simulation, dislocations pile up near the film-substrate interface, which

forms a boundary layer that has a much higher dislocation density and in-plane stress than the

rest of the film.  This boundary layer acts as an obstacle for other dislocations to move past, and

the size of the boundary layer is independent of film thickness.  Therefore, the thinner the film,
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the larger the effect of the boundary layer.  This type of argument leads to an increase in the

strain hardening rates for decreasing film thickness.  For films that are sufficiently thin, as the

film yields and more dislocations pile up at the interface, there develops a large enough back-

stress to prevent the nucleation of new mobile dislocations.  This effect leads to a secondary

hardening effect, and an increase in the slope of strain hardening rate or bi-linear strain

hardening, similar to the effect seen in our thinnest textured copper films.

Fig. D.8 Stress-strain behavior for <111> textured Cu films of three different film
thicknesses.
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E. Studies of dynamic mechanical properties of
metallic thin films on substrates

(Dae-han Choi)

1. Introduction

Materials used in microelectromechanical systems (MEMS) and electronic devices often

take the form of thin metal films on rigid substrates; some of these structures are subjected to

dynamic loading, where internal friction and damping may be important.  Many testing methods

have been developed to investigate the mechanical properties of these structures and extensive

studies have been performed in many research groups [1].  However, the study of strength and

plasticity of thin metal films on substrates is dominated by quasi-static and athermal models.

Hence, our understanding of plasticity and other inelastic properties of thin films has been

limited by the absence of information about the dynamic mechanical properties of these

materials.

A new dynamic measurement system has been developed to investigate damping in thin

metal films.  This system includes a vacuum chamber, in which a free-standing bilayer cantilever

sample is vibrated using an electrostatic force, and a laser interferometer to measure the

displacement and velocity of the sample.  With this equipment, internal friction as low as 10-5 in

micrometer thick metal films in a temperature range of 300K to 750K can be measured. Free-

standing cantilevers with different frequencies have been fabricated using well established IC

fabrication processes.  The cantilevers consist of thin metal films on thicker Si substrates, which

exhibit low damping.

2. Measurement System

A schematic of the measurement system developed to study dynamic mechanical properties

of metal thin films on substrates is shown in Fig. E.1. This measurement system consists of a

vacuum chamber with a temperature-controlled heater, a laser interferometer to measure the free-

decay of vibration and a data-acquisition part to record the data.
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Fig. E.1. A schematic of the dynamic mechanical testing system.

A vacuum system was necessary to measure damping in the film; otherwise, air damping

would prevail and the small damping in the film would be washed out.  Thus, a vacuum system

with a base pressure of about 5×10-7 torr was built.  When the temperature inside the chamber

increases, the pressure also increases but is never higher than 10-5 torr.  Samples are placed on a

stage within the chamber where the temperature is controlled by a heater in the temperature

range from room temperature to 800K.

Each cantilever sample on the stage is driven to vibrate by an electrostatic force applied by

an AC voltage of approximately 100V.  This signal is generated by a data acquisition board and

amplified with a current limited amplifier.  Since the electrostatic force produced by the potential

difference is very small, the frequency of an AC signal is controlled to match with the natural

frequency of the cantilever sample to maximize displacement.
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Fig. E.2. Processing steps to fabricate a free-standing cantilever.

After the voltage signal is turned off, the free decay of vibration is measured and recorded

with a Polytec PITM laser Doppler vibrometer pointed at the sample through an anti-reflection

coated view-port from outside the chamber.  This device is capable of measuring displacements

as small as 0.5 µm/V with a resolution of 0.002 µm and velocities as low as 5mm/s/V with a

resolution of 0.5 µm/s.  According to our measurements, the vibration amplitude is on the order

of 1 µm and the maximum strain imposed by this displacement is less than 10-5, ensuring that the

film does not experience any permanent deformation.

With this system, we can measure damping at various temperatures for samples with

different natural frequencies.  The natural frequency of each sample was determined from its

geometry, mainly the size of a plate at the end of the cantilever.  Thus, we can study the
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dependence of damping on temperature and frequency.  We also can study the dependence of

damping on the maximum strain imposed on films by changing the driving voltage.

3. Sample Fabrication

Micromachining techniques have been used to fabricate free-standing cantilevers for the

study of anelasticity.  A schematic diagram of the processing steps to fabricate bi-layer

cantilevers is shown in Fig. E.2. A bonded silicon-on-insulator (SOI) wafer was used to make

free-standing cantilevers.  The SOI wafer consists of a 500 µm bottom Si layer, a 1 µm middle

oxide layer and an 80 µm top Si layer.  The top Si layers were patterned into cantilevers using

standard photolithography processes and a deep reactive ion etcher (DRIE).  The cantilevers

have large plates at the free ends to maximize the electrostatic force applied by AC voltage.  The

straight sides of the mask pattern were aligned parallel to the <110> direction of the substrate to

achieve sharp corners.  The high selectivity of a DRIE between Si and SiO2 made it possible to

use the middle oxide layer as an etch stop.  After patterning the top Si layers, wet-thermal SiO2

layers with a thickness of 0.5 µm were grown on both sides of the wafers to protect the patterned

cantilevers on the front side and to make etch windows for later processing steps on the back

side.  In order to release the cantilevers, etch windows were patterned into the back SiO2 using

standard lithography techniques and dry plasma etching.  Once windows were etched into the

backside oxide layers, the wafers were cut into 1.5 mm by 1.5 mm pieces so that each piece had

one cantilever.  These pieces were then submerged into an anisotropic etchant for the Si, a 25%

tetramethyl ammonium hydroxide (TMAH) solution at 80 °C.  The etch rate for silicon in

TMAH is approximately 25 µm/hour at 80 °C.  In addition, TMAH has a high selectivity with

the oxide (~2000:1), so the middle oxide layer is used as an etch stop.  After about 20 hours, the

bottom Si layer was completely etched through from the backside.  At the end of this etching

process, the middle oxide layer remained intact and could be removed using a Buffered Oxide

Etcher (BOE), after which free-standing cantilevers were obtained.  The final shape and

dimension of a sample are also illustrated in Fig. E.2.

Metal films were deposited onto the Si cantilevers by magnetron sputter deposition in order

to produce structures of thin metal films on Si substrates.  The films were deposited at room

temperature with a base pressure of 10-8 torr and the Ar pressure was maintained at 3 mTorr

during deposition.  The samples were then thermally cycled from room temperature to 500 °C in

vacuum of 10-7 torr in order to stabilize the grain structures in the films.
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4. Research Progress

Aluminum films were chosen for the first study with a dynamic mechanical testing system.

The anelastic properties of Al thin films have been studied by several groups and there is general

agreement on the atomistic mechanism for this behavior [2-4].  Therefore, the internal friction

measurement of Al thin films helped us verify that our measurement system worked properly and

gave a consistent result.  Moreover, there had been few efforts to develop a rigorous model to

explain this mechanism and this measurement helped us develop a physically sensible model.
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Fig. E.3. Internal friction of 2 µm Al films.

Damping of a thin Al film on a thicker Si substrate was measured and the internal friction

of the film was extracted. Samples with three different frequencies were used and the

measurement data for each sample were plotted in Fig. E.3.  The activation energy calculated
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Fig. E.4. A plot of internal friction derived from the model.

from the damping data was 0.57eV, which is consistent with previous research [2-4].  This value

suggested that the mechanism of internal friction in pure Al films involve grain boundary

diffusion controlled grain boundary sliding.  A model to describe these damping effects was

developed.  By deriving an expression for the diffusional strain rate using a two-dimensional

Coble creep model, and modifying the conventional standard linear solid model for the case of

bending, it was possible to give a good account of the observed damping.  The model developed

showed good agreement with experimental data.  A plot of internal friction derived from the

model is shown in Fig. E.4.

5. Future Plans

It is proven that our measurement system gives reliable information on the dynamic

mechanical properties in thin metal films.  Many different mechanisms for anelastic behavior

have been reported in various bulk materials [5, 6].  In the same way, we expect there will be

many different causes for the anelastic behavior of thin metal films; one of these causes was

studied using Al thin films.  Now, we plan to explore various alloy systems to investigate

different mechanisms and to develop models for each mechanism observed.  These material

systems include pure metals such as Cu and Au, as well as alloys.  We hope that future studies of
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anelasticity might benefit from our developed testing system and that eventually a more

complete understanding of the mechanical properties of thin metal films is achieved from this

study.
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