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EXECUTIVE SUMMARY 

 
A major cause of failure in nuclear steam generators is tube degradation. Tube defects 
are divided into seven categories, one of which is intergranular attack/stress corrosion  
cracking (IGA/SCC). Defects of this type usually begin on the outer surface of the tubes 
and propagate both inward and laterally. In many cases these defects occur at or near 
the tube support plates.  Several different methods exist for the nondestructive 
evaluation of nuclear steam generator tubes for defect characterization. At present, 
multifrequency eddy current testing has emerged as the dominant method in industry but 
requires significant human expertise to accurately identify and classify tube defects. The 
research described in this final report includes a focus on defects characterized as 
intergranular attack/stress corrosion cracking (IGA/SCC) occurring at tube support 
plates. The automated detection software developed as a result of this grant uses a 
sophisticated set of transform algorithms to enable data visualization from the raw eddy 
current data. In addition, the software parameterizes the eddy current data for a second 
stage defect analysis by an artificial neural network architecture.  Although our initial 
plans called for the use of a fuzzy ART neural architecture, after experimentation with 
data sets, we found that a Learning Vector Quantization (LVQ) architecture provided 
better predictive power for the given data sets. 

This project involved the collection of representative Eddy Current data and design of 
damage detection software for the purpose of automated diagnosis and classification of 
tube defects. Artificial neural networks have proven to be a successful method for 
complex pattern detection especially under circumstances of noisy input data. Two 
neural network approaches were investigated in this project: a traditional supervised 
neural network and building on that work, an advanced fuzzy unsupervised neural 
network. Although a fuzzy unsupervised network represents a novel approach for the 
inspection of steam generator tubes, it is an approach that is well tested in many areas 
of pattern recognition. 

To accomplish the design of this new method of diagnosis and classification of steam 
generator tube defects, a complete articulation of many types and forms of tube defects 
were modeled. This step created a training set for the artificial neural network. 

We have developed new software for extraction of feature vectors from raw eddy current 
data files.  The data used was provided to the provided by the Electric Power Research 
Institute and contained data used for training of human experts in reading eddy-current 
signatures.   

Several new techniques were developed for extraction of defect signatures from noisy 
raw data generated by bobbin type eddy current probes.  Damage detection software 
was developed in MATLAB and was tested against data sets for Westinghouse U-Tube 
Steam Generator defect data related to Stress Corrosion Cracking in the area of tube 
supports.  The damage detection software automates the process of extraction of 
damage signatures.  The reduction of the noisy data to feature vectors allows for training 
of an artificial neural network.  However, a limitation was encountered in the amount of 
data available for complete training of the artificial neural network. 

Results from this work formed the basis for a follow on project to develop a more 
advanced analysis technique based on least square vectors.  



 

Project Description 

BACKGROUND AND PROBLEM DEFINITION 

The nuclear power industry would greatly benefit from technological advances 
that decrease the downtime of nuclear plants particularly for maintenance and 
repairs. Detection and mitigation of team generator tube failures can contribute 
significantly to the efficiency and economy of nuclear power. The principal 
problems with steam generators have been reported by EPRI to include: denting 
and tube support corrosion, denting and tubesheet corrosion, tubing corrosion 
(wastage, pitting, ID cracking, OD stress corrosion cracking, intergranular attack), 
mechanical damage (fretting, fatigue cracking, impingement). A significant 
number of the pressurized water reactors (PWRs) are operating with tubing 
defects near or beyond the limits established by regulatory guidelines. Over ten 
steam generator tube ruptures have occurred over the past 25 years at a rate of 
one rupture every two years. In the US and in recent years, tube ruptures have 
occurred at a rate of one per year. “Five different tube degradation mechanisms 
caused ten rupture: three ruptures were caused by outside diameter stress 
corrosion cracking (ODSCC), two ruptures were caused by high-cycle fatigue, 
two ruptures were caused by loose part wear, two ruptures were caused by 
primary water stress corrosion cracking (PWSCC).  

The probability of steam generator tube failures can be reduced through timely 
and effective inspection, diagnosis, and appropriate acceptance (fitness-for-
service) criteria. Eddy-current testing has emerged as a standard procedure for 
inspecting thin-walled steam generator tubes because it offers high scanning 
speed and good accuracy. However, eddy-current detection threshold is high; 
deep cracks can be missed and sizing and resolution are not accurate. 
Furthermore, eddy-current methods are weak for sizing the length and depth of 
circumferential cracks, intergranular attack (IGA) damage, pitting, high-cycle 
fatigue cracking, fretting, and wear. 

Ultrasonic inspections methods have had some success in sizing and resolution 
of ODSCC detected during an eddy-current inspection. Innovative new methods 
are also development and offer the potential for significantly improvements over 
eddy-current methods or complementing eddy-current techniques. These include 
a laser imaging system for inside surfaces of the tubing. 

Nassersharif, et. al are researching and developing a new technique based on a 
continuous wave radar that offers great potential for significant improvements in 
non-destructive testing of steam generator tubes by providing a volumetric scan 
of the tube wall at higher resolution.  

Eddy-current as well as and the continuous-wave radar technique require both 
calibration and personnel training for successful detection of damage in the 
tubes. The EPRI NDE center in Charlotte, North Carolina is a national center of 
excellence for calibrations and personnel training in the use of eddy-current 
devices. Effective and accurate use of the inspection devices requires significant 
personnel training with calibrated samples. While calibrated samples provide 
reference frame for training personnel and comparative data points, accurate, 



effective, and consistent diagnosis of the defect type in the field remains a 
significant challenge.  

RESEARCH OBJECTIVES 

The overall objective of this research is to develop a method and a software 
prototype for automation of the diagnosis of the generated signals that will 
provide a more consistent and faster method for diagnosis of defects based on 
generated signals from either eddy-current or continuous-wave radar.  

Our research and development objectives include: 

I    SIGNAL CHARACTERIZATION. 

The first objective of this research is to characterize the signal generated 
by the continuous-wave radar based on the already established methods 
for eddy-current technology. Signal characterization will be extremely 
important in the diagnosis step. 

II    NEURAL NETWORK DESIGN. 

The design of the neural network system will have to be determined as to 
the appropriateness of either a supervised back-propagation network or 
and unsupervised network. 

III    NEURAL NETWORK TRAINING. 

The neural network will have to be trained by signal data generated from 
calibrated sample signals. The EPRI NDE center has a comprehensive 
calibration set for various types of defects. The principal investigators are 
currently collaborating with the EPRI NDE center on the continuous-wave 
radar project. The training process may generate additional needs for 
calibration samples which will be documented and communicated back to 
EPRI. 

IV    PROOF OF PRINCIPLE. 

The prototype system will have to be tested against the current methods 
with results documented and reported to DOE and EPRI as well as 
published in the open literature. 

SCIENTIFIC SIGNIFICANCE 

The concept for this project arose from the need to classify and “invert” the 
observed signal data in the case of the continuous-wave radar project which is 
funded under the nuclear energy research initiative (NERI) under Department of 
Energy Grant Number (DE-FG-3-99SF21986) [14, 15]. Additionally, after 



investigating the methods currently used for analysis of the eddy-current 
generated signatures revealed that similar issues exist in the diagnosis of 
damage based on an eddy-current signal. This problem has led to our 
preliminary research on the topic of automation of the detection of damage based 
on a noisy signal generated by either the eddy-current or continuous-wave radar 
probe system. Several new contributions are expected as a result of this work 
that have scientific significance well beyond the needs of the project itself, 
namely: 

Design, development, and selection of neural network software to diagnose 
the electronic signal generated from the probe. The new contribution of this 
work will be to focus both on the static signal image as well as the temporal 
signal generated from the probe. 

Develop a classification scheme to identify and diagnose various defect types 
or lack of a diagnosis. The classification scheme should also allow for 
characterization of the defect as to sizing of length and depth as well as type. 

Identification and inclusion of signal features that can improve the speed and 
accuracy of the diagnosis. 

Technical Approach 

DEVELOPMENT OF A BASIS FOR SIGNAL CHARACTERIZATION AND 

CLASSIFICATION. 

Over the past ten years, a great deal of work has been initiated in studying the 
viability of automated testing and diagnosis systems for nuclear steam generator 
tubes. One commonality in this research has been the use of neural network 
architectures for the diagnosis portion of the systems. A sampling of these 
studies is presented next. The Babcock & Wilcox Owners’ Group funded a study 
that focused on the use of  probabilistic neural networks (PNN) with generalized 
regression methods (Yang, 2001). This study demonstrated the feasibility of 
using different training algorithms coupled with the PNN for defect detection. 
Results of this study were very promising. German et al. (2001) compared the 
performance of multilayer perceptron neural networks with PNNs. They found 
that the PNN relied less on training data than did the multilayer perceptron 
architecture. This suggests that the PNN is a better selection in those cases 
where training data is limited. Using the Fourier descriptor method to 
parameterize the eddy current input data, Udpa and Udpa (1990) employed a 
two-layered feed forward architecture with five hidden layers with a back 
propagation algorithm to create their defect detection/classification model. In a 
later work by Udpa and Udpa (1991), they added a feature to the network 
architecture that allowed the network to filter the internal representation of the 
signal based on scale, rotation and translation. This work demonstrated the 
superiority of this method over classical clustering algorithms. 

Those researchers designing complete analysis and characterization systems 
include Spanner (2000). He focused his work on detecting intergranular 
attack/stress corrosion cracking in steam generator tubes with the application of 



a frequency-independent automated system using principal components analysis 
and discrete wavelet transforms. This research used an error back propagation 
training algorithm with a neural net classifier.   

Another fully developed automated system by Xiang et. al. (2001) used a four 
step algorithm consisting of a: 1) data preprocessing stage; 2) decision tree 
system; 3) multilayer perceptron (MLP) neural network; and 4) Richardson Lucy 
blind deconvolution algorithm.  Simone and Morabito (2001) focused on 
addressing signal-to-noise ratio including lift off, probe angle errors, and sensor 
drift. Their neural architecture involved a radial basis function design where 
several different training algorithms were applied. Results showed that the 
Levenberg-Marquardt training algorithm performed especially well. 

Each pattern recognition method requires that a calibration base set be available 
for “inverting” the signal back to a defect type.  The empirical data must be 
correlated with actual defect types and the networks or the algorithm must be 
trained with the calibration results.  The new method must then be compared to 
existing approaches for diagnosis of defects with respect to speed, accuracy, 
robustness, and consistency. 

The study of pattern detection has been, and will continue to be a well-
researched area. Interest in this type of problem is due to the inherent complexity 
associated with the various model inputs, the variety of realistic applications in 
industry, and the value of successful results as measured by cost, performance, 
reliability and maintenance.  

One technique that has been used to study pattern detection problems is artificial 
neural networks (ANN). Researchers have shown that ANN’s are a good method 
for solving a range of pattern detection problems including the identification and 
classification of defects. 

Classical approaches to pattern detection using neural networks involve a 
process of back-propagation. These supervised nets require providing all 
possible detectable patterns to the architecture for training purposes. The 
drawbacks of using supervised neural nets most often involve a very lengthy 
training time and the assumption that all defect patterns are in fact known. 
Furthermore, with ANN’s alone, sometimes a close to optimal solution is 
unreachable. In other scenarios, the ANN training period may require a great 
deal of computing time making the technique unrealistic for dynamic industrial 
applications. 

To overcome the challenges with classical approaches, more recent hybrid 
approaches involve integrating parallel techniques with the ANN implementation. 
These techniques include Lagrangian relaxation, simulated annealing, simulation 
and genetic algorithms. Hybrid approaches have demonstrated a reduction in 
ANN training time and/or the production of more accurate pattern detection. 
Although using these hybrid approaches suggests a promising area for research, 
they still do not guarantee that for large problems especially, training time can be 
reduced or that an optimal solution will be reached. 

In application fields such as control or forecasting, researchers have proven that 
the use of fuzzy logic combined with neural networks has found better solutions 
than by using an ANN alone [Kuo 2001]. The use of fuzzy logic incorporated with 
an ANN architecture seems to improve a model’s performance, especially those 



models with noisy input patterns. This point is particularly appropriate for pattern 
detection problems due to the input parameters.  

ANN’s utilizing fuzzy logic most often make use of a feed-forward architecture 
that reduces training time. This type of neural network is self-organizing resulting 
in an architecture that permits both supervised and unsupervised learning. In an 
unsupervised mode, the ANN has the ability to learn patterns. Yet the 
architecture also permits supervised learning for the purpose of learning and 
predicting patterns that fit the statistics of the input-output environment. The 
advantage of this type of architecture is its capability to learn complex mappings 
and create new pattern defect categories when new information is presented. 
This eliminates the need for a time consuming training process typical in ANN’s 
with only a supervised learning process. 

Therefore, the scope of work proposed for this project is presented in a two-year 
time frame. Year 1 will focus on creating a baseline classical neural network 
architecture of in-tube defect detection using back propagation under a 
supervised mode of learning. Year two will focus on moving to a fuzzy ARTMAP 
neural architecture having the capability to perform in a supervised and 
unsupervised environment. Then, the relative advantages and defect detection 
power of both approaches will be analyzed according to cost, reliability, 
performance and maintenance metrics in conjunction with the Department of 
Energy and EPRI. 

Identification and Documentation of Known Types of Tube 
Defects 

The table below indicates the primary data files that were investigated in this research 
effort.  The damage mechanism and location are the same for all tubes as well as the 
outside diameter and inside diameter of the tube. 

Tape Real Plant Tube Damage 
Mechanism Location 

tape34Wcal01c 727 D.C. Cook 2 R18C77 

tape34W.cal10 728 Farley 1 R20C26 

tape34W.cal15 736 R12C08 

tape34W.cal17 737 

R16C74 

R20C66 

R08C66 

tape34W.cal18 738 R30C64 

tape34W.cal19 739 R29C70 

tape34W.cal20 740 

Trojan 

R08C69 

R12C70 

IGA/SCC Tube Support 
Plate 

 



Mathematical Modeling/Algorithms 

During the past year, we have been analyzing the defect data to identify characteristic 
features in the data that constitutes a defect.  Here we have focused on the following 
forms of the data:  (1) 400/10 frequency mixed data for slope data, (2) 400/10 frequency 
mixed data for r and θ, (3) 400/10 frequency mixed data for the slope of r and θ data, (4) 
400 Hz slope data, (5) 400 Hz r and θ data, (6) 400 Hz slope of r and θ data, (7) 200/10 
frequency mixed data for slope data, (8) 200/10 frequency mixed data for r and θ, (9) 
200/10 frequency mixed data for the slope of r and θ data, (10) 200 Hz slope data, (11) 
200 Hz r and θ data, and (12) 200 Hz slope of r and θ data.  The figure below shows 
what this data looks like for a typical defect. 

 
 

These figures have been generated for all the IGA/SCC types of defects at the tube 
support plates.  We have analyzed these figures to identify characteristics that that can 
be utilized in our neural network algorithm.  So far we have noticed that the defects 
generally occur at the following locations: (1) peak, (2) valley, (3) inflection point, or (4) 
situated within one-to-two points from these points.  To some degree we have been able 
to mathematically model these defects; however, the inconsistency of the data has 
limited the success of these efforts.  The idea here was too identified and model features 
that are indicative of damage and to utilize these features in our neural network 
algorithms to identify actual defects using data from eddy current tests.   

In addition to this work, we identified the portion of the signal generated by the tube 
support plate.  The idea here was to take the signal for a damaged support plate and 
subtract out the signal generated by an undamaged support plate.  Thus, the resulting 
signal would only contain the portion of the signal generated by the damage.  This 
procedure was performed on a number of the data files to determine the successes of 



the method.  After comparing the results with previous methods it was determined that 
the new method did not perform any better than any of the previous methods that had 
been investigated. 

We have also investigated various approaches, including a reflected energy integral to 
analyze the data for automation.  Analysis of the data obtained from EPRI for the MIZ-18 
probe proved to be difficult because of the resolution of the data particularly when the 
defect resides in the tube region inside the tube support plates.   

Over the past year we have investigated a number of methods and algorithms to isolate 
the signal generated by the tube support plate in an effort to identify features that could 
be used in an ANN to identify and localize damage.  Each of these attempts has work to 
some degree.  It is believed that the inconsistency in the resolution of the data is the 
primary reason for our inability to identify a method which works for all damage cases.  

After some time we finally settled on the following approach for the extraction of feature 
vectors.  The signal resulting from the tube support plate was first extracted for each of 
the tubes.  The differential and absolute data was then shifted such that the mean of the 
signal was centered along the x-axis.  Next the slope of the two dimensional curve (this 
is the figure eight shaped curve for the differential data) was calculated for the 
differential and absolute data.  It was determined the slope data for the 200 Hz signal for 
the differential and absolute data had a characteristic shape to it.  As a result we used 
the error associated with a nonparametric curve fitting technique as feature vectors.  In 
addition to this we also used the negative peak associated with the 100 Hz signal for the 
differential data.  It was observed that a negative peak existed in the 100 Hz signal and 
that its location usually indicated the location of the defect.  The figures and the program 
below was used to construct a three dimensional feature vector to used by the neural 
network for the detection of defects. 

 
Differential Data, 200 Hz, No damage 



 
Absolute Data, 200 Hz, No damage 

 

 
Differential Data, 100 Hz, No damage 



 
Differential Data, 200 Hz, Damage 

 

 
Absolute Data, 200 Hz, Damage 

 



 
Differential Data, 100 Hz, Damage 

 

CODE USED TO EXTRACT FEATURE VECTORS 
% This program is used to read in raw data and generate feature vectors 
for 
% the data file.  The raw data is the unfilterd figure 8 data.  Note this 
% is the orginal data unaltered. 
 
% File created: filename.feature_sp_error type.txt => feature vector file 
% #'s are listed below and show the differences in the feature vectors 
 
% sp => smoothing parameter 
% error type =>  see ext1 - ext4 below 
clc 
clear 
 
% Read-in Data File filename.fig8.raw.txt 
openfile 
 
% sp => smoothing parameter  
sp = [0.1 0.3 0.5]'; 
ssp = [1 3 5]'; 
 
for iikk = 1:3 
 
%open file to write figure 8 data to file 
ext1=['.feature_' int2str(ssp(iikk)) '_sse.txt']; % data file for sum of 
squares due to error 
ext2=['.feature_' int2str(ssp(iikk)) '-rsq.txt']; % data file for R-square 
ext3=['.feature_' int2str(ssp(iikk)) '_adr.txt']; % data file for Adjusted 
R-square 
ext4=['.feature_' int2str(ssp(iikk)) '_rms.txt']; % data file for Root 
mean squared error 
 
name1=[name ext1]; 
name2=[name ext2]; 
name3=[name ext3]; 
name4=[name ext4]; 
 
fid1=fopen(name1,'w'); 
fid2=fopen(name2,'w'); 
fid3=fopen(name3,'w'); 



fid4=fopen(name4,'w'); 
 
% Read in raw data file containing blips   
blpc=0;  %used to count the number of blips read in 
for ii=1:100 
    blpc=ii; 
    [dum,count] = fscanf(fid,'%f',[16,1]); % 16 is the number of columns 
of data (there is only one row) 
    if count==0 
        break 
    end 
 
    % The first element in the feature vector indicates if the blip is 
    % damaged or undamaged.  0 => no damage     1 => damage 
    blp=int2str(ii); 
    dam1=['Enter ''1'' if Blip ' blp ' is damaged or ''0'' for no damage: 
']; 
    clc 
    dam=input(dam1); 
     
    if dam == 1 
        fv1(1,ii) = 1; 
        fv2(1,ii) = 1; 
        fv3(1,ii) = 1; 
        fv4(1,ii) = 1; 
    else 
        fv1(1,ii) = 0; 
        fv2(1,ii) = 0; 
        fv3(1,ii) = 0; 
        fv4(1,ii) = 0; 
    end 
 
    dum = dum'; 
    lp = dum(1); %this is the start of the peak (digitized data point) 
    rp = dum(2); %this is the end of the peak (digitized data point) 
    clear dum 
    line = fgetl(fid); 
    nump = rp-lp+1;  %number of points 
    dum = fscanf(fid,'%f',[16,nump]); % 16 is the number of columns of 
data (there is nump digitized data points) 
    dum = dum'; 
     
% Seperate data into differential and absolute sets 
    for i = 1:4 %4 because there are 4 frequencies for the data 
        xdif(:,i)=dum(:,(i-1)*4+1);  %differntial x data 
        ydif(:,i)=dum(:,(i-1)*4+2);  %differntial y data 
        xabs(:,i)=dum(:,(i-1)*4+3);  %absolute x data 
        yabs(:,i)=dum(:,(i-1)*4+4);  %absolute y data 
          
        %Here we find the mean of the signal and adjust the signal such 
that 
        %the signal is centered around 0 in the vertical axis 
        xdifm=mean(xdif(:,i)); 
        ydifm=mean(ydif(:,i)); 
        xabsm=mean(xabs(:,i)); 
        yabsm=mean(yabs(:,i)); 
         
        if xdifm < 0 
            xdif(:,i)=xdif(:,i)+abs(xdifm); 
        else 
            xdif(:,i)=xdif(:,i)-xdifm; 
        end 
 
        if ydifm < 0 
            ydif(:,i)=ydif(:,i)+abs(ydifm); 
        else 
            ydif(:,i)=ydif(:,i)-ydifm; 
        end 
 
        if xabsm < 0 
            xabs(:,i)=xabs(:,i)+abs(xabsm); 
        else 
            xabs(:,i)=xabs(:,i)-xabsm; 
        end 
         
        if yabsm < 0 
            yabs(:,i)=yabs(:,i)+abs(yabsm); 
        else 
            yabs(:,i)=yabs(:,i)-yabsm; 
        end 
    end 



     
     ddp=[lp:rp-1]';  % digitized data point vector one less point because 
we calculate the slope 
%    ddp=[lp:rp]';  % digitized data point vector 
     
% here we calculate the slope associated with the figure 8's.  This is the 
% slope of the figure 8's and not the slope of the x-data or the y-data 
    for i=1:4  %there are 4 frequncies of data 
        for kk=1:nump-1 
            delfxdif=xdif(kk+1,i)-xdif(kk,i); 
            delfxabs=xabs(kk+1,i)-xabs(kk,i); 
            if delfxdif < 0.000001 
                delfxdif=0.001; 
            end 
            if delfxabs < 0.000001 
                delfxabs=0.001; 
            end 
            slfdif(kk,i)=(ydif(kk+1,i)-ydif(kk,i))/(delfxdif); 
            slfabs(kk,i)=(yabs(kk+1,i)-yabs(kk,i))/(delfxabs); 
        end 
 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        % here we extract information and construct the feature vectors % 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
         
        if i==2 % here we use a Smoothing Spline to fit the data 
            % for i = 2 we are looking at the second frequancy. 
            % We are using the Smoothing Spline on the differential and  
            % absolute data 
             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%       Differential Data Picking beginning and ending positive peak      
% 
%    A goodness of fit value will be used as the second feature vector    
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
            fig=figure('Position',[20 20 1250 900],'Color',[0.5 0.25 .5]); 
            plot(ddp,slfdif(:,i),'g','LineWidth',1.5) 
            axis([min(ddp)+1  max(ddp)+1 min(slfdif(:,i))-1000 
max(slfdif(:,i))+1000]) 
            ti=['Select Begining and Ending Positive Peaks (Blip ' blp 
')']; 
            title(ti,'FontSize',15,... 
                'FontWeight','bold','Color',[1 1 0]) 
            hold 
            
plot(ddp,slfdif(:,i),'bo','MarkerFaceColor','y','MarkerEdgeColor','r',... 
                'MarkerSize',5,'LineWidth',.2) 
            h=gca; 
            set(h,'Color',[.7 .7 .7]) 
            dcm_obj = datacursormode(fig); 
            set(dcm_obj,'Enable','on','SnapToDataVertex','on') 
            pause(.5) 
            waitforbuttonpress 
            cursor_info = getCursorInfo(dcm_obj); 
            a=cursor_info(1).Position; 
            pause(.5) 
            waitforbuttonpress 
            cursor_info = getCursorInfo(dcm_obj); 
            b=cursor_info(1).Position; 
            close all 
            nn=length(slfabs(:,i)); 
            % Find right end data point 
            for nl=1:nn 
                if ddp(nl)==a(1) 
                    break 
                end 
            end 
            % Find left end data point 
            for nr=1:nn 
                if ddp(nr)==b(1) 
                    break 
                end 
            end 
 
            % Apply Smoothing Spline 
            x=ddp(nl:nr); 



            y=slfdif(nl:nr,i); 
             
            fo_ = 
fitoptions('method','SmoothingSpline','SmoothingParam',sp(iikk)); 
            ft_ = fittype('smoothingspline' ); 
            % Fit this model using new data 
            [fresult,gof] = fit(x,y,ft_ ,fo_); 
            figure('Position',[20 20 1250 900],'Color',[0.5 0.25 .5]); 
            plot(fresult); 
            hold 
            plot(x,y,'b*') 
            title('Curve Fit (Screen will regenerate in 2 
seconds)','FontSize',15,... 
                'FontWeight','bold','Color',[1 1 0]) 
            pause(2) 
            close 
             
            fv1(2,ii) = gof.sse;         %sum of squares due to error 
            fv2(2,ii) = gof.rsquare;     %R-square 
            fv3(2,ii) = gof.adjrsquare;  %Adjusted R-square 
            fv4(2,ii) = gof.rmse;        %Root mean squared error 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%          Absolute Data Picking beginning and ending of curve            
% 
%    A goodness of fit value will be used as the third feature vector     
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
            fig=figure('Position',[20 20 1250 900],'Color',[0.5 0.25 .5]); 
            plot(ddp,slfabs(:,i),'g','LineWidth',1.5) 
            ti=['Select Begining and Ending of Curve (Blip ' blp ')']; 
            title(ti,'FontSize',15,... 
                'FontWeight','bold','Color',[1 1 0]) 
            hold 
            
plot(ddp,slfabs(:,i),'bo','MarkerFaceColor','y','MarkerEdgeColor','r',... 
                'MarkerSize',5,'LineWidth',.2) 
            h=gca; 
            set(h,'Color',[.7 .7 .7]) 
            dcm_obj = datacursormode(fig); 
            set(dcm_obj,'Enable','on','SnapToDataVertex','on') 
            pause(.5) 
            waitforbuttonpress 
            cursor_info = getCursorInfo(dcm_obj); 
            a=cursor_info(1).Position; 
            pause(.5) 
            waitforbuttonpress 
            cursor_info = getCursorInfo(dcm_obj); 
            b=cursor_info(1).Position; 
            close all 
            nn=length(slfabs(:,i)); 
            % Find right end data point 
            for nl=1:nn 
                if ddp(nl)==a(1) 
                    break 
                end 
            end 
            % Find left end data point 
            for nr=1:nn 
                if ddp(nr)==b(1) 
                    break 
                end 
            end 
 
            % Apply Smoothing Spline 
            x=ddp(nl:nr); 
            y=slfabs(nl:nr,i); 
             
            fo_ = 
fitoptions('method','SmoothingSpline','SmoothingParam',sp(iikk)); 
            ft_ = fittype('smoothingspline' ); 
            % Fit this model using new data 
            [fresult,gof] = fit(x,y,ft_ ,fo_); 
            figure('Position',[20 20 1250 900],'Color',[0.5 0.25 .5]); 
            plot(fresult); 
            hold 
            plot(x,y,'b*') 
            title('Curve Fit (Screen will regenerate in 2 



seconds)','FontSize',15,... 
                'FontWeight','bold','Color',[1 1 0]) 
            pause(2) 
            close 
             
            fv1(3,ii) = gof.sse ;        %sum of squares due to error 
            fv2(3,ii) = gof.rsquare;     %R-square 
            fv3(3,ii) = gof.adjrsquare;  %Adjusted R-square 
            fv4(3,ii) = gof.rmse;        %Root mean squared error 
        end 
 
 
        if i==3 % here we select the the most negative point between  
            % beginning and ending negative peaks 
            % for i = 3 we are looking at the third frequancy. 
             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%   Differential Data Picking Most Negative Point  Between Negative Peaks   
% 
% The value od the negative point will be used as the fourth feature 
vector % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
            fig=figure('Position',[20 20 1250 900],'Color',[0.5 0.25 .5]); 
            plot(ddp,slfdif(:,i),'k','LineWidth',1.5) 
            ti=['Select Negative Peak Between First and Last Peaks (Blip ' 
blp ')']; 
            title(ti,'FontSize',15,... 
                'FontWeight','bold','Color',[1 1 0]) 
            hold 
            
plot(ddp,slfdif(:,i),'bo','MarkerFaceColor','y','MarkerEdgeColor','r',... 
                'MarkerSize',5,'LineWidth',.2) 
            h=gca; 
            set(h,'Color',[.7 .7 .7]) 
            dcm_obj = datacursormode(fig); 
            set(dcm_obj,'Enable','on','SnapToDataVertex','on') 
            pause(.5) 
            waitforbuttonpress 
            cursor_info = getCursorInfo(dcm_obj); 
            a=cursor_info(1).Position; 
            close all 
            fv1(4,ii) = a(2);   %Value of negative peak 
        end 
    end 
end 
 
fvv=min(fv1(4,:)); 
 
fv1(4,:)=fv1(4,:)/fvv; 
fv2(4,:)=fv1(4,:); 
fv3(4,:)=fv1(4,:); 
fv4(4,:)=fv1(4,:); 
 
fprintf(fid1,'  %12.4e  \n',fv1); 
fprintf(fid2,'  %12.4e  \n',fv2); 
fprintf(fid3,'  %12.4e  \n',fv3); 
fprintf(fid4,'  %12.4e  \n',fv4); 
 
fclose(fid1); 
fclose(fid2); 
fclose(fid3); 
fclose(fid4); 
 
frewind(fid) 
 
clear fv1 fv2 fv3 fv4 
 
end 

 

Neural architecture 

A great deal of background research was completed to understand what types of neural 
architectures have been used to analyze signal data. This literature search indicated that 



among the most widely used neural approaches recently are those with less 
dependence on the availability of training data. However, almost all researchers working 
with neural architectures stressed the importance of having an adequate amount of 
training data for the networks. In several studies, researchers noted that the results of 
their efforts could be further improved with more training data. These findings led us to 
investigate candidate architectures that would overcome the drawbacks of networks 
more heavily reliant on training data such as the multi-layer perception architectures. In 
addition, we experimented with simulated data to test candidate networks. After 
researching and testing fuzzy ART , we considered radial basis networks and self-
organizing networks using learning vector quantization (LVQ). Ultimately we moved 
forward with the LVQ network architecture.  

The LVQ architecture is a member of the class of self-organizing models (Kohonen, 
1995). In the learning vector quantization method, a first-step hidden, competitive layer 
is used to refine weights according to a supervised learning approach. Training 
algorithms may vary according to the problem type and desires of the designer. Since 
the LVQ in its basic form uses a training  algorithm where only a single weight is refined 
based on the vector input, a number of alternative training algorithms have been 
introduced for the LVQ. These algorithms work to update multiple weights, rather than 
only the winning weight during each training epoch. As a result, the prediction accuracy 
increases with the introduction of more complex training algorithms.  

The second step of the LVQ method involves classifying the input vector to an output 
target or class. For a detailed background on LVQs see Karayiannis (1997), Hollmen et. 
al (2000) and Kohonen et. al (1996). In our project, as with other researchers’ projects, 
one of the greatest challenges lies in the training phase. Because of the nature of 
defects we are considering, pulled tube training data is limited since we initially focused 
on IGA/SCC at tube support plates for a specific Westinghouse nuclear steam 
generator. 

 

Over 100 different computer programs were written for the manipulation, testing and 
analysis of data.  Three different programs were used in the analysis stage of this 
project:  Excel, SPSS 9.0 and MatLab 7.0. 

Excel was used primarily for basic data analysis, transformation and visualization at the 
beginning stages of the project. 

The fuzzy and neural toolboxes were both used in MatLab for the design and testing of 
defect vector inputs.  Several different programs were written using the radial basis, 
probabilistic and learning vector quantification network architectures.  Program 1 below 
is an example of an LVQ network program that called vector sets consisting of binary 
inputs based on four lissajous characteristics. 
Program 1 
 
%========================================================== 
% Program for creating, training, simulating and testing the damage  
% detection learning vector quantization neural network. 
% 
% Prepared by Automated Diagnosis of Eddy Current Signature Data team 
% Linda Ann Riley on version 1.1 
% 
% Version 1.5 
% September 1, 2003 
% 
% Inputs 
% 
dummy=importdata('vectorbinary.m'); 



rows=size(dummy); 
datavects=dummy(2:rows,:);  % second-last rows comprise input vectors 
classes=dummy(1,:);  % first row in file is classes 
% 
%========================================================== 
% Parameters for creating the LVQ damage detection network.  Passed to newlvq. 
% 
PR = P           % PR = R-by-2 matrix of min. and max. values for R input elements 
S1 = 2           % S1 is the number of first layer hidden neurons. 
PC = [.5 .5]   % PC is an S2 element vector of class percentages. 
LR = .01         % is the learning rate of .01. 
LF = 1    % is the learning function learnlv1 = 1.  
% 
%==========================================================% 
% Conversion and display of the target matrix 
% 
% Conversion of the target matrix to target vectors. 
Targets=full(T) % Displays matrix 
% 
%========================================================== 
% 
% Create the damage detection network.  See above for parameters...damagenet = 
newlvq(PR,S1,PC,LR,LF) 
% 
damagednet = newlvq(minmax(P), 2, [.50 .50], .01); % Creation of the damagenet 
 
 
W = midpoint(2,[0 0; .5 .5])     % Select and display the midpoint of the weights 
damagednet.IW{1,1}  % Check and display the first layer weights 
damagednet.LW{2,1}  % Check and display the second layer weights 
 
% 
%========================================================== 
% 
% Simulate the network to check for initial weight assignments 
% 
Y = sim(damagednet,P); 
%Y = vec2ind(Yb4t) 
% 
%========================================================== 
% 
% Train the damagenet using the LVQ1 1 algorithm 
% 
damagednet.trainParam.epochs = 500;  % Stopping criteria 
damagednet = train(damagednet,P,T);   % Calls newly created damagenet, input vectors and 
target vectors 
% 
%==========================================================% 
% Check and display the first-layer weights 
% 
damagednet.IW{1,1} 
% 
%==========================================================% 
% Simulate the trained network to check for targets 
% 
Y = sim(damagednet,P)   % Simulation of the net to check for target accuracy 
Yc = vec2ind(Y)         
% 
% Vector check 
% 
pchk1 = [1 0 0 1];       % Input vector close to a target 
Y = sim(damagednet,pchk1); % Simulate the check on the input vector 
Yc1 = vec2ind(Y)      % Request and display second layer target 
% 
%========================================================== 

A great deal of experimentation in this project occurred varying two basic parameters: 1) 
the vector inputs; and 2) the neural architecture.  Within the neural architecture, several 
different approaches were used to vary the weights, hidden layers and training 
algorithms.   

 

Validation: 
SPSS was used to further analyze and validate the results of the neural networks.  The 
best performing neural network, (the LVQ), possessed a predictive capacity of 91% 



using binary vector inputs describing the damage incidences.  Applying binary 
regression on the same vector sets by designating the damaged or undamaged vector 
element as the dependent variable, the identical prediction level (91%) was achieved 
using forced stepwise regression.  Thus, no better performance was achieved using 
binary vector inputs with a neural architecture versus a regression approach. 

Project Management and Key Personnel 

The principal investigators for this project were, Dr. Gabe Garcia, Dr. Linda Ann Riley, 
and Dr. Bahram Nassersharif. Dr. Garcia is a professor in the Mechanical Engineering 
Department who has expertise in pattern recognition as related to instrumentation and 
sensor data. He was also a co-investigator on the In Tube Radar project mentioned 
earlier. Dr. Riley has experience in application of neural networks and genetic 
algorithms. Dr. Nassersharif has an extensive track record in research and publications 
related to steam generator tube ruptures, use of expert systems and neural networks. 

John Schaub, a student in Mechanical Engineering and Engineering Physics, performed 
much of the data manipulation, analysis, and laboratory testing of the software.  He has 
also been the main project archivist and data manager.  

Facilities and Resources 

The computational facilities, equipment, and basic software were provided in the 
Mechanical Engineering Department at New Mexico State University. The proposed 
project was leveraged with the In Tube Radar project to provide the necessary test 
equipment and data. We acknowledge the support provided by the EPRI NDE center in 
Charlotte, North Carolina on the generation of training data and calibration and test 
samples with respect to eddy-current data. EPRI support was instrumental to our 
progress and success in obtaining appropriate data sets. 

Relationship to Existing Projects and Other Proposals 

This project will interact closely with a collaborative NERI project between New Mexico 
State University (NMSU), Sandia National Laboratories, and EPRI. The NERI project is a 
three year project funded by DOE under grant number DE-FG-3-99SF21986. The In-
Tube Radar (ITR) project resulted in the creation of a prototype probe, however, the 
project scope and funding did not allow for collection of sample training sets to be used 
in this project. 

 

Publications and Presentations 

L. A. Riley, B. Nassersharif, G. Garcia and J. Schaub. "An Automated Testing and 
Classification System For Identifying Defects in Nuclear Steam Generator Tubes Using a 
Learning Vector Quantization Neural Architecture," Proceedings of the 2003 Advanced 
Simulation Technologies Conference, Society for Computer Simulation International, 
Orlando, Florida (April 2003). 
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