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Abstract—Ground  penetrating radar (GPR) systems have
traditionally been used to image subsurface objects. The main focus
of this paper is to evaluate an advanced signal analysis technique.
Instead of compiling spatial data for the analysis, this technique
conducts object recognition procedures based on spectral statistics.
The identification feature of an object type is formed from the
training vectors by a singular-value decomposition procedure. To
illustrate its capability, this procedure is applied to experimental data
and compared to the performance of the neural-network approach.
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. INTRODUCTION

Ground penetrating radars (GPRs) have proved to be
valuable tools for forensic investigators in search of subsurface
objects [1]. The operation of geophysical tools and the
interpretation of data often require extensive training of
personnel. Therefore, advancing quantitative recognition
techniques will not only improve the accuracy of data analysis
and decrease interpretation time for evidence recovery teams,
but also lessen the need for manpower. Understandably, this is
in the best interest of forensic and evidence recovery teams,
which are frequently confronted with time and manpower
constraints.

In support of the FBI Evidence Response Team, Special
Technologies Laboratory, operated by Bechtel Nevada,
initiated a collaborative forensic-GPR research effort with the
University of California at Santa Barbara, the University of
Florida, and the University of Tennessee [2]. For this project,
GPR advancements in image formation and recognition
techniques are applied to forensic targets, for the objective of
improving the efficiency of evidence recovery.

Object recognition has been an active field in image
processing and computer vision for many years. The standard
recognition process mainly focuses on the object’s spatial
features. This method of reconstruction is based on the object’s
RF reflectivity profile, which does not always resemble its true
surface configuration, especially after decomposition and
degeneration. Thus, recognition based on spatial variations has
not been an effective approach in this application.

One potential method for object recognition by GPR
imaging devices is based on the spectral contents of the target.
Each material type reacts to RF illumination in a unique
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manner, resulting in a unique variation within the operating
frequency band. Given a set of training signals, a correlation
matrix can be constructed. Subsequently, a singular-value
decomposition (SVD) procedure can be conducted. The most
common feature among the training set can be identified by a
linear combination of the training vectors. The elements of the
eigenvector corresponding to the most significant SVD
component produce the coefficients of the combination. This
signal pattern can then be utilized as the identification feature
for object recognition.

The recognition with spectral contents is most suitable to
stepped FM-CW systems because of the structure of the
backward-propagation image formation algorithm, where the
spectral variation of the reconstructed images is readily
available [3]. Therefore, with an identification-feature-pattern, a
probability distribution corresponding to an object type can be
formed for each GPR image with simple modification of the
image reconstruction algorithm.

Typically, GPR object recognition with the use of neural
networks is based on spatial variation and can be used to detect
UXO and utility pipelines [4]. The tasks often involve visual
processing of the image shape in the GPR profiles. Most
recently, automatic target detection algorithms and neural
networks that incorporate pattern recognition have been
applied to GPR profiles for clutter and noise reduction [5] and
edge enhancement and detection [6].

This paper will provide an overview of the application of
advanced signal analysis and neural network techniques to
experimental GPR return signals. In one case, the spectral
content of the GPR return signals is evaluated with the SVD
procedure for a quantitative and statistical result. In the other
case, the statistics of the reflected GPR signal are analyzed and
used as the inputs to a neural network [7]. In both cases, the
raw GPR data are pre-processed using position data with a
synthetic-aperture radar (SAR) algorithm [g].

Il.  BACKGROUND OF STUDY AND EXPERIMENTS

For the initial phase of the research, forensic specimens
were buried at two locations and GPR data were acquired on a
monthly basis over a 24 month period. The Anthropological
Research Facility operated by the Department of Anthropology
at the University of Tennessee at Knoxville used GPR to
collect data from human cadavers covered with soil and



concrete slabs [9, 10]. The Department of Anthropology at the
University of Florida also performed similar data-acquisition
experiments with pig cadavers in Entisol and Ultisol [11]. Data
from the latter were chosen for the first attempt with the object
recognition and neural networks techniques due to the larger
size of the test pits and grid data collected. Additionally, the
larger amount of non-target data at the University of Florida
site would be required for the training sets.

The data were acquired with a stepped-frequency GPR
system over the frequency range of 200-700 MHz with 85
frequency steps [12]. A 6.1 m x 4.9 m grid was constructed
over the test site. Ten transects were taken at each site with the
middle two transects crossing over the width of the target.
Data were acquired with an increment of 15 cm along each
gridline and 60 cm spacing between gridlines. The initial
results successfully demonstrated the feasibility of detecting
the cadavers [13, 14]. GPR depth profiles from a pig cadaver
buried for 4-11 months, 1 m deep in Entisol, is shown in Fig. 1.

I1l.  OBJECT RECOGNITION

One of the important extensions to GPR imaging is to
include the capability of object recognition. The basic
procedure of a recognition task is the matching of the detected
signals against the identification pattern. The identification
pattern is often termed the ID feature, or ID vector for multi-
dimensional cases. The crucial step in object recognition is not
necessarily the matching process. Instead, it is the formulation
and formation of the ID features, which is the key to the
successful execution of the recognition task.

The development of the pattern recognition associated with
imaging systems has been largely in the area of recognizing
objects based on two- or three-dimensional spatial features.
This approach is based on the functions and concepts of the
human visual and perception processes. However, this
technique has limited capability because GPR images are quite
different from typical visual images due to the bandwidth,
resolution, operating configurations of the data-acquisition
systems, as well as the physical interactions between the targets
and RF illumination. Thus, in this paper, an alternative
approach is utilized to facilitate the recognition process, which
is to operate the recognition procedure based on the spectral
statistics at a target position, instead of the spatial features.
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The image reconstruction procedure is implemented based
on the multi-frequency tomographic version of the backward
propagation algorithm [8]. The final image is the superposition
of all coherent sub-images, so that at any target location, the
spectral content of the superposition is readily available [3].

As mentioned earlier, the most crucial step is the formation
of the ID features, which can be conducted in different ways.
One is to formulate the 1D features completely based on
theoretical models. Another approach is to construct the ID
features from a set of training vectors. If feasible, the
collection of the training vectors is typically performed through
laboratory experiments in a controlled manner to ensure high
accuracy. Previous results have shown that when trained
correctly, the SVD method can reach equilibrium in as few as
50 training sets [15]. Yet, when the theoretical model or
laboratory experimental data are not available, field-test data
can be used as the training vectors, which is common practice.

The most common and robust approach to the formation of
an ID vector from a set of training vectors is direct averaging.
In many applications it is adequate in terms of accuracy and
convergence, especially when the training data are obtained in
controlled laboratory experiments and the data set is
sufficiently large. When field-test data are used for training,
this approach is often ineffective due to the phase perturbation
associated in wave propagation and variation of magnitude due
to different range distances. Thus, instead, a SVD technique is
used for the training process for improved accuracy and
consistency.

From a set of training vectors, a cross-correlation matrix R
is formed from data corresponding to one unique target type. R
is an NxN square Hermitian-symmetric matrix and the
elements of the matrix represent the correlation among the
training vectors.

R = E{S5"} )

where S is the vector representing the collection of training
vectors. Subsequently, a SVD is performed and the correlation
matrix R is partitioned in the form of

R=UAU" )
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Depth profiles at 4, 8, and 11 months of a buried pig cadaver. Target is at 3 m along aperture.



where U is the orthonormal matrix, which is the collection of
the eigenvectors, and A is a square matrix and its diagonal
elements are the singular values. The variation of the singular
values provides important information in terms of the quality
of the training vectors. If the training vectors are of good
quality, the singular values will be clustered with one or very
few dominant components. If the training vectors are not well
correlated, the singular values spread. This also means the
magnitude of the most significant singular value

S* = S]/u” + Sg/lzl[g + ...+ SN/L{H\/ (3)

is an indication of the level of commonality among the training
vectors, which represents the degree of confidence as well as
the upper bound of the recognition process.

In (3) uy is the kth element of the eigenvector corresponding to
the most significant singular value. In practice, the elements are
often complex. The magnitude of the elements provides the
normalization factor to equalize the variation among the
training vectors and the phase provides correction of various
phase perturbations in wave propagation and data acquisition.

A GPR image is formed by completing the backward
propagation image formation procedure, and if any particular
location is of interest, it can be selected for the recognition
procedure. Once a target location is selected, the algorithm
traces back to obtain its spectral contents prior to the
superposition process to be used as the test vector. Then the
test vector is normalized and matched against the ID vector by
a simple inner-product operation. Since both the test and ID
vectors are normalized, the magnitude of the inner product is
bounded between 1.0 and zero, which represents the
probability of the match.

It should be noted that the recognition produces a
quantitative indicator as the probability of the match, instead of
the traditional binary outcomes in many recognizers, which
provides the opportunity for further analysis and investigation.
In many GPR field operations, this technique provides 1) the
confidence level of the ID vector from the magnitude of the
most significant singular value, and 2) the numerical result of
the matching process, which is proven to be of great
importance. It should also be pointed out that the computation
of the recognition procedure is the inner product of the
normalized spectral content at a particular location with that of
the 1D feature. Thus, the result of the recognition process is
independent of the variations in the image profiles.

The technical description of this section is focused on the
formation of the ID wvector and matching operation
corresponding to one object type. Yet, with minor
modifications, this concept can be extended to the recognition
tasks for multiple object types by expanding the SVD
procedure to analyze the commonality as well as differences
among the ID vectors corresponding to multiple object types
for further improvement of recognition performance.

IV. NEURAL NETWORKS

Neural networks have been widely utilized as a
classification tool, capable of adapting and generalizing to

perform recognition tasks. Neural networks learn to formulate
complex input and output relationships directly from the data,
and can approximate a function to designated accuracy [16].
These relationships are identified through training, with input
data repeatedly presented to the neural network.

In this study, a back-propagation neural network from
NeuralWare’s NeuralWorks Predict software was selected to
facilitate the training on a data set from field-generated targets
and non-targets. The raw GPR data was utilized for the multi-
frequency image reconstruction, and then analyzed with
statistical functions designed to discriminate between signals
returned from targets and non-targets [17, 18] as explored by
Shihab, et al. [6]. The three functions utilized in the process are
1) the mean absolute deviation, 2) the variance, and 3) the
fourth moment of the signals. Input into the neural network for
training consisted of the three statistical results from five
consecutive returns, establishing change over distance within
the data (Fig. 2). Feeding this data into a back-propagation
neural network results in the ability to differentiate signal
returns from a target versus a non-target.

V. DISCUSSION

Fig. 3 shows a SAR processed image and an image with an
ID feature produced by the SVD method. When SVD
processing is compared to the traditional averaging of the
training vectors, the results show more distinct matches of the
target and less false identification of non-targets. The
recognition process is typically performed subsequent to the
image reconstruction. With the identification feature
formulated by the SVD algorithm from the training vector set,
the recognition procedure produces an image showing only the
profile matched to the spectral statistics, which is a different
profile than the reconstructed image. The quantitative
recognition results provide an accurate numerical indicator
reflecting the confidence level of the match, which is important
to the overall assessment of the images.

The neural network was trained on data collected from
several pits in months 4, 5, and 6, and then tested on different
pits in the following months. In each test in Entisol, the neural
network correctly detected and classified targets within the
GPR return signal. In Ultisol, the clay layer was also detected
as a target because it exhibited similar statistical properties.
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Figure 2. Statistical results of analysis on signal return over a target.
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Figure 3. SAR and SVD processed image of a pig 1 m deep.

VI. CONCLUSION

This paper reports the results of the experiments on the
feasibility of object recognition with step-frequency GPR. Two
methods, the SVD approach and the neural network technique,
are selected for the experiments to formulate the identification
feature of the recognition process. The experiments were based
on data collected at experiment sites over a period of 24
months and both methods demonstrated the feasibility. The
SVD object recognition procedure demonstrated better
accuracy than the neural networks. This is because the SVD
procedure trains and analyzes the specific frequency content,
while the neural network analyzes the total return, which is a
sum of contributions from the entire frequency coverage. The
SVD algorithm can be effectively incorporated into the image
reconstruction process due to the structure of the image
formation algorithm and recognition process. Future plans are
to use the SVD method for object recognition for multiple
object types and compare the performance with respect to that
of the neural network techniques.
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