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Abstract—Ground penetrating radar (GPR) systems have 
traditionally been used to image subsurface objects. The main focus 
of this paper is to evaluate an advanced signal analysis technique. 
Instead of compiling spatial data for the analysis, this technique 
conducts object recognition procedures based on spectral statistics. 
The identification feature of an object type is formed from the 
training vectors by a singular-value decomposition procedure. To 
illustrate its capability, this procedure is applied to experimental data 
and compared to the performance of the neural-network approach. 
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I.  INTRODUCTION  
Ground penetrating radars (GPRs) have proved to be 

valuable tools for forensic investigators in search of subsurface 
objects [1]. The operation of geophysical tools and the 
interpretation of data often require extensive training of 
personnel. Therefore, advancing quantitative recognition 
techniques will not only improve the accuracy of data analysis 
and decrease interpretation time for evidence recovery teams, 
but also lessen the need for manpower. Understandably, this is 
in the best interest of forensic and evidence recovery teams, 
which are frequently confronted with time and manpower 
constraints. 

In support of the FBI Evidence Response Team, Special 
Technologies Laboratory, operated by Bechtel Nevada, 
initiated a collaborative forensic-GPR research effort with the 
University of California at Santa Barbara, the University of 
Florida, and the University of Tennessee [2].  For this project, 
GPR advancements in image formation and recognition 
techniques are applied to forensic targets, for the objective of 
improving the efficiency of evidence recovery.  

Object recognition has been an active field in image 
processing and computer vision for many years. The standard 
recognition process mainly focuses on the object’s spatial 
features. This method of reconstruction is based on the object’s 
RF reflectivity profile, which does not always resemble its true 
surface configuration, especially after decomposition and 
degeneration. Thus, recognition based on spatial variations has 
not been an effective approach in this application.   

One potential method for object recognition by GPR 
imaging devices is based on the spectral contents of the target. 
Each material type reacts to RF illumination in a unique 

manner, resulting in a unique variation within the operating 
frequency band. Given a set of training signals, a correlation 
matrix can be constructed. Subsequently, a singular-value 
decomposition (SVD) procedure can be conducted. The most 
common feature among the training set can be identified by a 
linear combination of the training vectors. The elements of the 
eigenvector corresponding to the most significant SVD 
component produce the coefficients of the combination. This 
signal pattern can then be utilized as the identification feature 
for object recognition.  

The recognition with spectral contents is most suitable to 
stepped FM-CW systems because of the structure of the 
backward-propagation image formation algorithm, where the 
spectral variation of the reconstructed images is readily 
available [3]. Therefore, with an identification-feature-pattern, a 
probability distribution corresponding to an object type can be 
formed for each GPR image with simple modification of the 
image reconstruction algorithm.   

Typically, GPR object recognition with the use of neural 
networks is based on spatial variation and can be used to detect 
UXO and utility pipelines [4].  The tasks often involve visual 
processing of the image shape in the GPR profiles.  Most 
recently, automatic target detection algorithms and neural 
networks that incorporate pattern recognition have been 
applied to GPR profiles for clutter and noise reduction [5] and 
edge enhancement and detection [6]. 

This paper will provide an overview of the application of 
advanced signal analysis and neural network techniques to 
experimental GPR return signals.  In one case, the spectral 
content of the GPR return signals is evaluated with the SVD 
procedure for a quantitative and statistical result.  In the other 
case, the statistics of the reflected GPR signal are analyzed and 
used as the inputs to a neural network [7].  In both cases, the 
raw GPR data are pre-processed using position data with a 
synthetic-aperture radar (SAR) algorithm [8]. 

II. BACKGROUND OF STUDY AND EXPERIMENTS 
For the initial phase of the research, forensic specimens 

were buried at two locations and GPR data were acquired on a 
monthly basis over a 24 month period.  The Anthropological 
Research Facility operated by the Department of Anthropology 
at the University of Tennessee at Knoxville used GPR to 
collect data from human cadavers covered with soil and 
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concrete slabs [9, 10].  The Department of Anthropology at the 
University of Florida also performed similar data-acquisition 
experiments with pig cadavers in Entisol and Ultisol [11].  Data 
from the latter were chosen for the first attempt with the object 
recognition and neural networks techniques due to the larger 
size of the test pits and grid data collected.  Additionally, the 
larger amount of non-target data at the University of Florida 
site would be required for the training sets.  

The data were acquired with a stepped-frequency GPR 
system over the frequency range of 200-700 MHz with 85 
frequency steps [12].  A 6.1 m x 4.9 m grid was constructed 
over the test site.  Ten transects were taken at each site with the 
middle two transects crossing over the width of the target.  
Data were acquired with an increment of 15 cm along each 
gridline and 60 cm spacing between gridlines. The initial 
results successfully demonstrated the feasibility of detecting 
the cadavers [13, 14]. GPR depth profiles from a pig cadaver 
buried for 4-11 months, 1 m deep in Entisol, is shown in Fig. 1.  

III. OBJECT RECOGNITION 
One of the important extensions to GPR imaging is to 

include the capability of object recognition. The basic 
procedure of a recognition task is the matching of the detected 
signals against the identification pattern. The identification 
pattern is often termed the ID feature, or ID vector for multi-
dimensional cases. The crucial step in object recognition is not 
necessarily the matching process. Instead, it is the formulation 
and formation of the ID features, which is the key to the 
successful execution of the recognition task.  

The development of the pattern recognition associated with 
imaging systems has been largely in the area of recognizing 
objects based on two- or three-dimensional spatial features. 
This approach is based on the functions and concepts of the 
human visual and perception processes. However, this 
technique has limited capability because GPR images are quite 
different from typical visual images due to the bandwidth, 
resolution, operating configurations of the data-acquisition 
systems, as well as the physical interactions between the targets 
and RF illumination. Thus, in this paper, an alternative 
approach is utilized to facilitate the recognition process, which 
is to operate the recognition procedure based on the spectral 
statistics at a target position, instead of the spatial features.   

The image reconstruction procedure is implemented based 
on the multi-frequency tomographic version of the backward 
propagation algorithm [8]. The final image is the superposition 
of all coherent sub-images, so that at any target location, the 
spectral content of the superposition is readily available [3].   

As mentioned earlier, the most crucial step is the formation 
of the ID features, which can be conducted in different ways. 
One is to formulate the ID features completely based on 
theoretical models. Another approach is to construct the ID 
features from a set of training vectors.  If feasible, the 
collection of the training vectors is typically performed through 
laboratory experiments in a controlled manner to ensure high 
accuracy.  Previous results have shown that when trained 
correctly, the SVD method can reach equilibrium in as few as 
50 training sets [15]. Yet, when the theoretical model or 
laboratory experimental data are not available, field-test data 
can be used as the training vectors, which is common practice. 

The most common and robust approach to the formation of 
an ID vector from a set of training vectors is direct averaging. 
In many applications it is adequate in terms of accuracy and 
convergence, especially when the training data are obtained in 
controlled laboratory experiments and the data set is 
sufficiently large. When field-test data are used for training, 
this approach is often ineffective due to the phase perturbation 
associated in wave propagation and variation of magnitude due 
to different range distances. Thus, instead, a SVD technique is 
used for the training process for improved accuracy and 
consistency. 

From a set of training vectors, a cross-correlation matrix R 
is formed from data corresponding to one unique target type. R 
is an NxN square Hermitian-symmetric matrix and the 
elements of the matrix represent the correlation among the 
training vectors. 

 R = E{SSH} (1) 

where S is the vector representing the collection of training 
vectors. Subsequently, a SVD is performed and the correlation 
matrix R is partitioned in the form of 

 R = U Λ UH (2) 

Figure 1.  Depth profiles at 4, 8, and 11 months of a buried pig cadaver.  Target is at 3 m along aperture. 



where U is the orthonormal matrix, which is the collection of 
the eigenvectors, and Λ is a square matrix and its diagonal 
elements are the singular values. The variation of the singular 
values provides important information in terms of the quality 
of the training vectors. If the training vectors are of good 
quality, the singular values will be clustered with one or very 
few dominant components. If the training vectors are not well 
correlated, the singular values spread. This also means the 
magnitude of the most significant singular value  

 s* = s1/u11 + s2/u12 + … + sN/u1N (3) 

is an indication of the level of commonality among the training 
vectors, which represents the degree of confidence as well as 
the upper bound of the recognition process. 

In (3) u1k is the kth element of the eigenvector corresponding to 
the most significant singular value. In practice, the elements are 
often complex. The magnitude of the elements provides the 
normalization factor to equalize the variation among the 
training vectors and the phase provides correction of various 
phase perturbations in wave propagation and data acquisition.  

A GPR image is formed by completing the backward 
propagation image formation procedure, and if any particular 
location is of interest, it can be selected for the recognition 
procedure. Once a target location is selected, the algorithm 
traces back to obtain its spectral contents prior to the 
superposition process to be used as the test vector. Then the 
test vector is normalized and matched against the ID vector by 
a simple inner-product operation. Since both the test and ID 
vectors are normalized, the magnitude of the inner product is 
bounded between 1.0 and zero, which represents the 
probability of the match.  

It should be noted that the recognition produces a 
quantitative indicator as the probability of the match, instead of 
the traditional binary outcomes in many recognizers, which 
provides the opportunity for further analysis and investigation. 
In many GPR field operations, this technique provides 1) the 
confidence level of the ID vector from the magnitude of the 
most significant singular value, and 2) the numerical result of 
the matching process, which is proven to be of great 
importance. It should also be pointed out that the computation 
of the recognition procedure is the inner product of the 
normalized spectral content at a particular location with that of 
the ID feature. Thus, the result of the recognition process is 
independent of the variations in the image profiles.  

The technical description of this section is focused on the 
formation of the ID vector and matching operation 
corresponding to one object type. Yet, with minor 
modifications, this concept can be extended to the recognition 
tasks for multiple object types by expanding the SVD 
procedure to analyze the commonality as well as differences 
among the ID vectors corresponding to multiple object types 
for further improvement of recognition performance.  

IV. NEURAL NETWORKS 
Neural networks have been widely utilized as a 

classification tool, capable of adapting and generalizing to 

perform recognition tasks.  Neural networks learn to formulate 
complex input and output relationships directly from the data, 
and can approximate a function to designated accuracy [16].  
These relationships are identified through training, with input 
data repeatedly presented to the neural network.   

In this study, a back-propagation neural network from 
NeuralWare’s NeuralWorks Predict software was selected to 
facilitate the training on a data set from field-generated targets 
and non-targets.  The raw GPR data was utilized for the multi-
frequency image reconstruction, and then analyzed with 
statistical functions designed to discriminate between signals 
returned from targets and non-targets [17, 18] as explored by 
Shihab, et al. [6].  The three functions utilized in the process are 
1) the mean absolute deviation, 2) the variance, and 3) the 
fourth moment of the signals. Input into the neural network for 
training consisted of the three statistical results from five 
consecutive returns, establishing change over distance within 
the data (Fig. 2).  Feeding this data into a back-propagation 
neural network results in the ability to differentiate signal 
returns from a target versus a non-target.  

V. DISCUSSION 
Fig. 3 shows a SAR processed image and an image with an 

ID feature produced by the SVD method. When SVD 
processing is compared to the traditional averaging of the 
training vectors, the results show more distinct matches of the 
target and less false identification of non-targets. The 
recognition process is typically performed subsequent to the 
image reconstruction.  With the identification feature 
formulated by the SVD algorithm from the training vector set, 
the recognition procedure produces an image showing only the 
profile matched to the spectral statistics, which is a different 
profile than the reconstructed image. The quantitative 
recognition results provide an accurate numerical indicator 
reflecting the confidence level of the match, which is important 
to the overall assessment of the images.  

The neural network was trained on data collected from 
several pits in months 4, 5, and 6, and then tested on different 
pits in the following months.  In each test in Entisol, the neural 
network correctly detected and classified targets within the 
GPR return signal.  In Ultisol, the clay layer was also detected 
as a target because it exhibited similar statistical properties.  

Mean Absolute Deviation
Variance
4th Moment

Figure 2.  Statistical results of analysis on signal return over a target. 



VI. CONCLUSION 
This paper reports the results of the experiments on the 

feasibility of object recognition with step-frequency GPR. Two 
methods, the SVD approach and the neural network technique, 
are selected for the experiments to formulate the identification 
feature of the recognition process. The experiments were based 
on data collected at experiment sites over a period of 24 
months and both methods demonstrated the feasibility. The 
SVD object recognition procedure demonstrated better 
accuracy than the neural networks. This is because the SVD 
procedure trains and analyzes the specific frequency content, 
while the neural network analyzes the total return, which is a 
sum of contributions from the entire frequency coverage. The 
SVD algorithm can be effectively incorporated into the image 
reconstruction process due to the structure of the image 
formation algorithm and recognition process. Future plans are 
to use the SVD method for object recognition for multiple 
object types and compare the performance with respect to that 
of the neural network techniques. 
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