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Modal Testing Repeatability of a Population of Spherical Shells

by

A. Robertson, F. Hemez, |. Salazar, and T. Duffy

Abstract

In this study, we investigated the variability in modal frequencies obtained from testing a
set of hollow, almost spherical marine floats. We investigated four sources of variability:
unit-to-unit variability, operator-to-operator variability, test repetition, and accelerometer
placement. Because we measured the excitation and response of the marine floats, we
were able to estimate impulse response and frequency response functions. Variability is
assessed by measuring the deviation of each frequency response function from the mean
curve for its test group. We ranked unit-to-unit variability the highest, followed by
accelerometer placement, operator-to-operator, and test-to-test. We performed analyses
of the correlation between temporal and spectral moments extracted from the time
responses, impulse responses, auto-spectral densities, and frequency response
functions. We completed the study with a principal component analysis and ARMAX
modeling. With the exception of ARMAX modeling, all analysis techniques led to the
same conclusion. We used an automated eigen extraction technique, the Eigensystem
Realization Algorithm, to study the variability of resonant frequencies and modal damping
ratios. We also investigated the effects of mass and geometry on variability. We found a
strong correlation between the frequency and mass for the fundamental mode only. Our
comparison between the measured frequencies and analytical values obtained from a
purely spherical shell theory indicates that the floats are indeed very close to spherical.
Our main conclusion is that the majority of analysis techniques find the unit-to-unit
variability to be the largest by a significant margin; the second largest is the variability
caused by accelerometer placement, followed by the operator-to-operator variability and
test-to-test variability.

LA-14109 Modal Testing Repeatability of a Population of Spherical Shells



1. Executive Summary

In this study, we investigated the variability in modal frequencies obtained from testing a set of hollow,
almost spherical marine floats. We focused on four sources of variability: unit-to-unit variability (U2U),
operator-to-operator variability (020), test repetition (T2T), and accelerometer placement (Acc). For the
Acc, the test setup had to be reconfigured, thereby encompassing the T2T variability as well. Of course,
U2U tests require a new test setup and Acc for each test performed, so it should encompass the
variability of both T2T and Acc. A summary of the tests performed is given in Table 1.

A more thorough description of the test articles and sources of variability are given in Section 2, and an
explanation of the modal test setup and equipment is given in Section 3. The experimental procedure for
the modal test is summarized in Section 4. Each test measured both the excitation and response of the
float, from which impulse response functions (IR) and their corresponding frequency response functions
(FRF) were calculated. We used all of these functions, with the exception of the input, to assess the
variation between the different data sets. Section 4 also summarizes two other sets of tests that were
performed: a high-bandwidth test to look at higher frequency modes, and a set of noise tests to assess
the noise level in the data.

Section 5 presents the results of the testing and encompasses the majority of this report. In Section 5.1,
we present the results of the noise tests, which are summarized in Table 2. Section 5.2 displays the FRF
plots for all of the tests for the response from accelerometer 2. You can easily assess the variability within
each group of tests performed. We estimated this variability by measuring the deviation of each FRF from
the mean FREF for its test group (see Figure 25). This plot shows the first assessment of which source
provides the highest variability. U2U variability appears to be the highest, then Acc and 020, with T2T
being the lowest. As mentioned before, Acc should be higher than T2T, since it encompasses the T2T
variability as well.

In Section 5.3.1, which discusses the correlation between the responses, we used the IRs, the auto
spectral densities, and the FRFs within each test group to show the variability in the data (see Figure 26
and Figure 27). This approach, however, involves using highly dimensional data. To reduce the
dimensionality of the data, we extracted features that would represent the important characteristics of
each data set. We examined three different types of features: temporal and spectral moments in Section
5.3.2 (see Figure 28 and Figure 29), principal component analysis in Section 5.3.3 (see Figure 31 and
Figure 34), and ARMAX modeling in Section 5.3.4 (see Figure 35 and Figure 36). With the exception of
ARMAX modeling, all features, including the correlation, produced the same conclusion: U2U variability is
the highest by far, with Acc or O20 coming in second, and T2T being the lowest. In some cases T2T
does not differ greatly from Acc and O20, all three having fairly low variability.

The preceding conclusion is partly supported by the results of an analysis of the variability in the
extracted modes themselves. In Section 5.4, we used an eigensystem realization algorithm (ERA) to
extract the first four modes from each of the tests. The first mode showed more change in frequency
caused by T2T over Acc, which violates our previous assumptions (see Figure 42). This is not true in the
other three modes, though for these, Acc variability appears to be as large, or larger, than the U2U
variability.

In the investigation of the four sources of variability, we used only one float in the tests, with the exception
of the U2U tests. Some of the variation in the frequencies could also be caused by differences in the
mass of the floats. Section 5.5 looks at the correlation between the mass of the floats and the
frequencies. Only mode 1 showed a strong correlation between mass and frequency (see Figure 43). We
assumed, therefore, that variations in the geometry are more important than small mass changes for the
other three modes.

Finally, Section 6 presents a method for extracting the analytical frequencies of purely spherical, hollow
shells. We compared these frequencies to the experimental values in Table 6 through Table 9, and found
that they corresponded well. This means that the floats are indeed very close to spherical.

Our conclusions are given in the final section, Section 7. Our main conclusion is that the majority of
analysis techniques find U2U variability in the testing to be the largest by a significant margin. The second
largest is the variability caused by Acc. Next is the O20 variability, with T2T variability being about the
same.
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2. Introduction

The purpose of this study was to quantify sources of variability in the modal response of a population of
“identical” marine floats. The primary sources of variability for this study were the following:

e Unit-to-unit variability (U2U): Variation from conducting the same test on each float in the
population.

o Test-to-test variability (T2T): Variation from one modal test being repeated on the same float.

e Operator-to-operator variability (020): Variation from different operators performing the same
modal test and data analysis on the same float.

The test components are “off-the-shelf,” commercially available marine floats (see Figure 1) commonly
used by the petrochemical industries in large open or closed tanks for liquid level (gage) measurements
[1,2,3]. The marine floats were purchased directly from Quality Float Works in Schaumburg, lllinois [4].
Each float has a 9-inch outside diameter, 16-gage shell thickness, and no optional external piping
connections. Marine floats are made from Type 304L stainless steel in two hemispheres that are welded
together. The float also has a weld at the top, sealing it from outside air.

TR R R R s

Figure 1: Marine float hanging in test apparatus.

The main motivation for the study was to understand the natural variability when performing simple tests
in a well-controlled environment. Understanding the variability and quantifying where it comes from is
important for the development of numerical models that predict the structural response of spherical
geometries. Although the analytical and numerical modeling of spheres has been extensively studied in
the literature, little information is available on the degree of variability that can be expected from a lot of
nominally identical, manufactured spheres. Clearly, such variability needs to be known to guide the level
of accuracy of numerical models.
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3. Experimental Configuration

The test apparatus consisted of a braided rope ring supported by four points on a three-legged frame with
elastic cord, as shown in Figure 2. (Figure 3 shows a close-up of the apparatus.)

Figure 2: Modal float test apparatus.

We placed each float into the rope ring with the equatorial weld horizontal and the polar weld facing up.
We used three accelerometers for the testing, and placed them on each float in the same orientation for
each test. Channel 2 of the data acquisition was for the accelerometer placed near the polar weld and
Channels 3 and 4 were for the accelerometers placed on the equator from left to right respectively, as
shown in Figure 4.

-

Figure 3: Close-up picture of float and accelerometer placement.
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Figure 4: Polar and equatorial welds identified.
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4. Experimental Procedure

We instrumented each float with accelerometers and inserted them into the test apparatus in a similar
manner. We used three accelerometers to measure the modal response: two accelerometers were
placed sixty degrees apart on the equator, and a third accelerometer was placed on the pole beside the
weld. We used a small impact hammer, shown in Figure 5, to excite the high-frequency modes of the
float.

Figure 5: Excitation hammer from PCB piezotronics.

We marked the excitation point on the float at forty-five degrees from the polar axis away from the
accelerometers placed on the equator weld. Figure 6 shows the excitation point being impacted with the
impact hammer.

Figure 6: Impact location.

We recorded a measurement of both the input force and the output acceleration at the three
accelerometer locations for each test. The sampling frequency was 20,480 Hz, with a data-block size of
4,096. We used a Dactron data-acquisition system, which performs antialiasing on the data and
averaging in the frequency domain. The number of averages for each data set was equal to ten. More
information on the settings for the data-acquisition system can be found in Appendix A.

Table 1 summarizes the tests performed, and details are provided in Sections 4.1 to 4.5 below.
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Table 1: Summary of the modal tests performed.

Type of Number of | Number of Bandwidth Number of the
Test Averages | Replicates Float Used
u2u 10 14 0-10.24 kHz | All 14 floats
T2T 10 10 0-10.24 kHz 16
Acc 10 10 0-10.24 kHz 16
020 10 4 0-10.24 kHz 16

High Bandwidth 10 5 0-24.00 kHz | 16,17,18,19,20
Noise 10 5 0-10.24 kHz 16

4.1 Unit-to-Unit (U2U) Variability

We carefully tested the population of fourteen floats using the same procedure to quantify the U2U
variability. Each of the fourteen floats was instrumented with accelerometers and placed in the rope ring
for testing. Each U2U variability data set consists of fourteen replicates, one for each float, and each
replicate consists of ten averaged runs. Once we obtained data for all fourteen floats, we chose a nominal
float (number 16), and conducted three sets of tests: two T2T variability tests, and the O20 variability test.

4.2 Test-to-Test (T2T) Variability

The first T2T test we conducted was the suspension system variability test. Here the float was removed
from the wire rope and carefully replaced with the equatorial weld oriented as close to horizontal as
possible for each test. Each T2T variability data set consists of ten replicates with each replicate
consisting of ten averaged runs.

We used the second T2T test to observe the sensitivity of Acc on the equatorial weld. The
accelerometers were slightly misplaced and the test was repeated. Because the float needed to be
removed from the rope ring, variability obtained from the suspension system placement was included in
the Acc variability test. We used the first eight tests to change the two accelerometers placed on the
equator, and the last two tests examined the effect of the placement of the accelerometer on the pole.
Table 14 in Appendix B lists the particular Accs for each test.

4.3

Finally, we considered O20 variability by repeating the same test with four different operators. Each 020
variability data set consists of four replicates with each replicate consisting of ten averaged runs. We left
the float in the same position for each O20 test, and the accelerometers remained in the same
configuration.

Operator-to-Operator (020) Variability

4.4 High-Bandwidth Test

For a more complete comparison to analytical data, we needed to identify more high-frequency modes.
We conducted the high-bandwidth test to identify modes up to 21,000 Hz by using a sampling rate of
48,000 Hz. We conducted five replicates, with each containing ten averaged runs. We used float numbers
16, 17, 18, 19, and 20 for the high-bandwidth test. After each test, the float was removed from the
suspension system and accelerometers were placed on the next float, which was then suspended.

LA-14109 Modal Testing Repeatability of a Population of Spherical Shells 7



4.5 Noise Tests

We investigated the amount of isolation in the frame/elastic-mounting device by using the tests entitled
“noise tests.” We performed these five tests with the Channel 2 accelerometer at an arbitrary point on the
float, Channel 3 halfway up the yellow leg, and Channel 4 on the upper square tube near the eyelet (see
Figure 7). The tests determined the amount of isolation the float had while seated in the suspension
system. We chose float number 16 for the noise tests. Test numbers 1, 4, and 5 were free run tests,

based on ambient excitation sources solely, while tests 2 and 3 were the average of ten impacts on the
legs.

LS

Channel 3 Channel 2

Figure 7: Measurement points for the noise tests.
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5. Results

We present five different sets of results in this section: noise test data, FRF data, feature extraction, ERA
fit, and mass correlation. We used these results to assess the amount of variation present in the data
caused by the different testing situations presented above.

5.1 Noise Tests

The noise tests are summarized as follows (refer to Figure 7 for a picture of the test setup). The first test
had no excitation and measured the background noise present. The second noise measurement was the
result of an impact on the leg with yellow tape. The third noise measurement was the result of an impact
on one of the green legs. Both excitation points were near the bottom of the frame’s legs, near the floor.
Results of the noise test are presented in tabular form (Table 2) showing the standard deviation of the
acceleration-time history for comparison. The standard deviation of the noise signals is much smaller
when compared to the other tests performed.

Table 2: Noise test results (standard deviation of acceleration [g] time history).

Channel 2 Channel 3 Channel 4

(On Float) | (Half Up Yellow Leg) | (Near eyelet)
P‘Bogii;mun 4 Noise) 0.023 0.037 0.036
er?ql;:czt on Yellow Leg) 0.089 12.63 4625
Z‘;‘;‘;g on Green Leg) 0.066 1.330 2,589
I\IFC;E: éun, Stomping on Floor) 0.024 0.036 0.036
P‘F‘?'js Sun’ No Stomping) 0.023 0.036 0.035

5.2 Frequency Response Data (Channel 2)

In this section, we present the plots of all the FRF and their mean, plus or minus one standard deviation,
for each test (see Appendix C for the definition of the FRF). Also shown are the coherence
measurements for each data set. Data collected from the Channel 2 accelerometer (see Figure 8) are the
signals examined in the following figures because they exhibit the cleanest plots (lowest noise-to-signal
ratios) with the most distinct mode peaks.
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The figures above provide the first indication of how much variability is present in the data. To assess the
level of variability in each of the test groups, a measurement of the deviation of each individual FRF from
the mean FRF for the entire test group was found and is shown in Figure 24. The mean and standard
deviation of these data within each group are then shown in Figure 25. Both indicators show that
changing the test unit is, by far, the largest contributor to variability in the FRFs.
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5.3 Feature Extraction for Variability Assessment

Now that we have collected the data and calculated the frequency response functions, we must form
other methods for assessing the level of variation in the system response. We can make a direct
comparison among the individual data sets by finding the correlation of either the time or frequency
response data, as shown in Section 5.3.1. Another approach is to extract features from the data whose
variation can be used to estimate the variation of the data. These features may also be more meaningful
than the raw data, thus enhancing the interpretability of the data.

We examine three types of features here: Section 5.3.1 examines temporal and spectral moments,
Section 5.3.2 uses principal component analysis, and Section 5.3.3 investigates ARMAX modeling.
5.3.1 Correlation

The correlation coefficient, R(i,j), is a normalized measure of the strength of the linear relationship
between two data sets, x; and x;.

CGi. j) 1
JC@HCG ) ™

where C(i,j) denotes the covariance between x; and x;:

R@, j)=

CG, )= E|(v; — 1 N, — ;)] @)

and E is the mathematical expectation, with 4, = E(x;). Uncorrelated data sets result in a correlation
coefficient of zero, whereas perfectly correlated data sets have a coefficient of one.

Within each test group, a matrix of correlation coefficients is computed, describing the relationship
between each data set and each of the remaining data sets. We then average these values to obtain a
mean estimate of the correlation between data sets in a given test group. Figure 26 shows the mean
correlation coefficient for each of the following data: the acceleration measurements for Channels 2, 3,
and 4, and the impulse response measurements for Channels 2, 3, and 4 (see Appendix C for the
definition of the impulse response). The results show that the lowest level of correlation (or highest level
of variation) occurs between data sets in which the unit is changed (U2U), whereas the best correlation is
found between data sets in which only the operator (O20) or the test setup (T2T) is changed. Also note
that the correlation coefficients for the impulse response are higher than those for the acceleration
response. One would expect this result, because the impulse response data eliminates variations in the
data caused by differences in the system excitation.

These calculations are then repeated for the spectral data, which consists of the auto-spectral density
functions for each channel (G22, G33, and G44), and the FRFs (FRF21, FRF31, and FRF41). Refer to
Appendix C for the definition of these functions. The results from these calculations are very similar to
those obtained for the time histories.
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5.3.2 Temporal and Spectral Moments

Ave. corr. coeff.

Ave. corr. coeff.

Ave. corr. coeff.

o
o
o

Ave. corr. coeff.

o
o
o

Accel. 2

Accel. 3

Accel. 4

0
U2U 020 T2T Acc

Impulse Res. 2

0
U2U 020 T2T Acc

Impulse Res. 3

0
U2U 020 T2T Acc

Impulse Res. 4

0
U2U 020 T2T Acc

0
U2U 020 T2T Acc

0
U2U 020 T2T Acc

Figure 26: Mean correlation of time-response data.
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Figure 27: Mean correlation of frequency-domain data.

Temporal moments are a measure of the time statistics of a signal. They are used here to find another

means for estimating the variability in the data. We focused on only the first three temporal moments,

which are [5]:

e E=Energy, [¢7].

e Tauor T = Delay to the centroid of data, [sec].

e D = Central normalized RMS duration, [sec].
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The features E, Tau, and D are calculated as follows:

E= Y (x()? (3)

0<t<N
1
T = = >t (@) (4)
0<t<N
1
D? = = > (x(e)) - T (5)
0<t<N

where x(t) is the impulse-response-time history for this analysis. We extracted the three temporal
moments for each impulse-response measurement on Channel 2. Then, we assessed the standard
deviation of these indicators inside each test group. As shown in Figure 28, the relative levels of variation
between test groups are the same for each of the three temporal moments. U2U variation far outweighs
the effects of a different operator (020), test setup (T2T), or Acc. However, one would expect the
variation in the test data resulting from Acc to be higher than that for T2T, since the float needs to be
removed from the rope ring to change the location of the accelerometers. There appears to be a slight
increase in variation of the temporal moments for the Acc case over the T2T, but the increase is not
significant. This seems to indicate that the Acc has no significant effect on the response measurement for

the system.

Energy Centroicdl RMS Duration

1 1 1
05m 05m Osm
0 0 0

U200 020 T2T Acc U2U 020 T2T Acc U200 020 T2T Acc

STD of Temporal Moments

Figure 28: Normalized standard deviation of E, Tau, and D for impulse responses from Channel 2.

By substituting frequency for time in equations 3-5, we find the spectral moments of the response data.
The interpretation is the same, with energy being the energy in the frequency domain, and similarly for
the centroid and RMS duration. Figure 29 gives the normalized standard deviation of the spectral
moments for the frequency-response function from Channel 2 for each test group. The results are similar
to the temporal moments, though with a slight increase in the variation caused by Acc.

Spectral Moment 1 Spectral Moment 2 Spectral Moment 3

1 1 1
0.5 m 0.5 m 0-5 m
0 0 0

U2U 020 T2T Acc U2U 020 T2T Acc U2U 020 T2T Acc

STD of Spectral Moments

Figure 29: Normalized standard deviation of spectral moments for FRF21.
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From this analysis we conclude that the most significant effect on the data comes from changing the unit
that is tested. The three remaining sources of variability (operator, test repeatability, Acc) appear to
contribute equally to the variability in both the time and frequency domains.

5.3.3 Principal Component Analysis

The next feature we examined was the principal components of the impulse and frequency-response
functions from Channel 2. Given N samples of data in p dimensions, (xs, X2, ..., Xp), the principal
component analysis (PCA) seeks to project the data into a new p-dimensional set of Cartesian
coordinates (zy, zy, ..., Zp) by a linear transformation [6]. The goal of PCA is to conduct data reduction in
such a way that this linear combination of the original variables contains as much of the total variance as
possible when projected into the reduced space.

The principle coordinates are calculated as follows: Given data x; = [xy;, X2, ..., xp,-]T, where the index /
varies from one to N, the covariance matrix X is formed:

L= (-0 -9 (6)

where X denotes the mean vector of the x;'s. Because it is, by definition, symmetric and positive
semidefinite, the covariance matrix can then be decomposed into a set of eigenvalues and eigenvectors:

Y=VAV' (7)

where A is a diagonal matrix containing the ranked eigenvalues of X, and V is the matrix containing
the corresponding eigenvectors. Note that the singular value decomposition can be used for this step.
The transformation to principal components is then:

z,=V'(x,-X) (8)

This means that the coordinates z; are the projection of the original x; onto the eigenvectors defined by the
columns of matrix V. These eigenvectors are called the principal components, and the coordinates z; are
called the scores.

There are as many principal components as there are data points, but the first principal component
accounts for as much of the variability in the data as possible. Each succeeding component accounts for
as much of the remaining variability as possible, and so on. Therefore, only a few principal components
are needed to represent the data. The coefficients in the eigenvector matrix that relate the original
functions to the principal components are the features of interest here. In other words, the variation of
these coefficients is used to assess the variability of the data sets within a test group.

The first nine principal components of the impulse response at Channel 2 are shown in Figure 30 and
their cumulative variance in Table 3.
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Figure 30: First nine principal components for the impulse responses at Channel 2.

Table 3: Cumulative variance of the principal components for impulse responses.

Principal Cumulative
Component Variance

1 28.25%

45.37%

57.81%

64.20%

70.19%

75.42%

79.87%

83.54%

© | o | N oo oW DN

86.65%

As shown in Table 3, the first nine principal components account for almost 87% of the variability in the
data. Visually, there is little significance in the principal components themselves. The principal component
coefficients are used to assess the variability in the data within each test group by examining the standard
deviation of these coefficients.

Figure 31 shows that the relative variations between the test groups are similar for all but the second
principal component, with U2U variability again being the highest.
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Figure 31: Normalized standard deviation of PCA coefficients for impulse responses at Channel 2.

Upon examination of the Fourier transform of the first two principal components, shown in Figure 32, the
reason for the deviation of principal component 2 is understood. The second principal component has its
highest magnitude in the upper frequencies of the frequency spectrum. Therefore, it is looking for
variations in the upper frequency levels foremost, which will most likely be dominated by noise rather than
modes. The variation of the coefficients pertaining to the second principal component are significant,
because all tests have noise present and do not follow the general patterns of the other principal

components.
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Figure 32: Fourier transform of principal components 1 and 2.
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We repeated the principal component analysis for the frequency response functions from Channel 2. The
first component appears to encompass more of the variability in the data (Table 4) than the first
component of the impulse-response data (Table 3). The resulting principal component vectors are shown
in Figure 33, and the variation between the coefficients within a test group in Figure 34. Note that only the
magnitude of the FRF is used to extract the principal components.

Table 4: Cumulative variance of the principal components for FRF21.

Principal Cumulative
Component Variance
1 35.92%
2 48.59%
3 58.01%
4 65.30%
5 69.62%
6 73.44%
7 76.21%
8 78.49%
9 80.63%
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Figure 33: First nine principal components for FRF21.
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Figure 34: Variability of PCA coefficients for FRF21.

From this analysis, we can draw conclusions similar to the previous sections. In the majority of the
principal components, changing the unit affects the response of the system more than any other factor.
Acc in general comes in second, then changing the operator, and finally test repetition. Not all of the
principal components show the same result, but the majority shows this pattern.

5.3.4 ARMAX Modeling

An autoregressive moving-average model with exogenous inputs, or ARMAX model, is a parametric
representation of time series. It approximates a response y(t) using a linear difference equation [7]:

y@)+ay(t-1)+K +a,,y(t —na)=bju(t —nk)+K +

6

b pu(t —nk —nb+1)+cje(t -1)+K +c,.e(t —nc) ©)
which relates the current output y(t) to a finite number of past outputs y(t-k), inputs u(t-k), and white noise
e(t-k). For this analysis, we formed a model relating the acceleration response of the float from Channel
2, y(t), to past time points in the acceleration, as well as the impulse excitation, u(t). We used the same
model form for each of the data sets, which consists of thirteen a, coefficients, seven b coefficients, one
¢, coefficient, and a zero time delay (nk = 0). We chose the coefficient order based on the general
guideline that the size, and the resulting fitting error, not be too large,.

Once formed, the ARMAX model can be simulated to produce the approximated output. We hypothesized
that the error between the ARMAX estimation of model output and the actual value, which in this case is
the acceleration response from Channel 2, can be used to examine variability for each group of tests
performed. This variation is shown in Figure 35, using the standard deviation of the error vector. We can
also asses variability within the test groups from the coefficients of the model (ax and by). Because there
are so many coefficients to compare, an easy way to examine them is to find their principal components.
Figure 36 shows the standard deviation of the principal components found for both the a, and by
coefficients inside each of the four test groups.
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Figure 35: Variability of the fitting error obtained from ARMAX models.
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Figure 36: Variability of the principal component analysis of ARMAX model coefficients.

Unfortunately, both of these variability assessments seem to contradict the results in all of the previous
sections. Further investigation revealed that changing the model order creates a different relative
relationship between the standard deviations among the groups. These results indicate that ARMAX
modeling is not appropriate for determining variability in the modal response data, because variability and
model-fitting issues are confounded.

5.4 ERA Fit

ERA is an eigensystem realization algorithm [8] that converts time-domain data to modal frequencies,
modal damping ratios, and mode shapes. We used the ERA fit to determine the spread of modal
frequencies obtained for all tests. We restricted our analysis to the first four modes of the system; Figure
37 shows the results, with frequency on the horizontal axis, damping on the vertical axis, and various
symbols representing the results from all data sets collected. A close-up of the data for each mode can be
seen in Figure 38 through Figure 41.

Figure 42 displays the standard deviation for each of the four modes shown in the above plots. As
expected, the standard deviations of the U2U and Acc tests are in general higher than the standard
deviations of the other tests. However, Acc variability is higher than U2U variability for two of the modes,
which contradicts the assumption that U2U variability should encompass Acc variability. Also, T2T
variability is larger than Acc for the first mode, which also contradicts the assumption that Acc variability
should encompass T2T variability.
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Figure 37: ERAfit results showing frequency and damping variability for the first four modes.
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Figure 38: ERA-fit results; frequency and damping variability for the first mode.
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Figure 39: ERA-fit results; frequency and damping variability for the second mode.
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Figure 41: ERA-fit results; frequency and damping variability for the fourth mode.
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Figure 42: ERA-fit results: frequency variability of the first four modes.
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We also used the ERA to automatically identify a specified number of modes in the high-bandwidth data
set. Shown in Table 5, the modes identified for each test are matched, starting at the 5,000-Hz mode and
stopping after 20 identified modes. All resonant frequencies listed in Table 5 are listed in units of hertz,
while the standard deviation values are listed in percents of the mean values (last column). The algorithm
finds the most pronounced resonant peaks up to the model order specified, and a stabilization plot is
generated that shows the model order—or number of modes to be identified—on the y axis and
frequency on the x axis. After studying which modes are consistently identified when an increasingly
higher model order is requested, we eliminated the falsely identified readings. We also included for
comparison in the second column of Table 5 the resonant peaks identified from the FRF plot for Test 1
(using float number 16). Each test examines a different float, so the variability in the frequency
measurements should be similar to the U2U variability observed previously. The ability to consistently find
these higher modes shows that we can also use this region of the frequency response of the system to
assess which factors contribute most to the variability in the data. We believe that not enough tests have
been performed at this point, however, to perform such an analysis with statistical significance.

Table 5: List of modal frequencies (hertz).

Mode Test 1 Test 1 Test 2 Test 3 Test 4 Test 5 Average St_an_dard
Number|(FRF Plot)| (ERA) (ERA) (ERA) (ERA) (ERA) Deviation (%)
1 5,050.0 5,004.7 5,095.3 5,017.2 5,027.7 5,126.5 5,053.6 0.947
2 6,030.0 6,318.1 6,399.5 6,323.3 6,150.8 6,105.3 6,221.2 2.347
3 6,370.0 6,373.8 6,694.9 6,398.6 6,625.9 6,583.7 6,507.8 2.212
4 7,012.0 7,119.6 7,379.7 7,198.8 7,249.1 7,256.5 7,202.6 1.752
5 7,980.0 7,920.8 8,187.1 7,960.7 7,962.9 7,882.9 7,982.4 1.331
6 8,835.0 8,778.3 8,795.21 8,803.7 8,660.3 8,930.7 8,800.5 0.995
7 9,970.0 9,773.5 9,079.7] 9,953.1 9,478.2 8,980.2 9,539.1 4.543
8 10,635.0 10,168.0 9,650.0) 10,314.0 | 10,301.0 9,659.2 | 10,121.2 3.880
9 11,355.00 11,229.0 10,887.0 11,122.0 | 11,188.0 | 10,933.0 | 11,119.0 1.614
10 12,052.0 12,151.00 11,690.00 12,094.0 | 11,344.0 | 11,767.0 | 11,849.7 2.613
11 13,100.0 13,100.00 12,491.00 13,109.0 | 12,148.0 | 12,555.0 | 12,750.5 3.217
12 13,302.00 13,397.0 13,452.0 13,975.0 | 13,108.0 | 13,742.0 | 13,496.0 2.319
13 13,965.0 13,973.00 14,386.00 14,393.0 | 14,239.0 | 14,404.0 | 14,226.7 1.466
14 15,117.0 15,025.0 15,390.00 15,078.0 | 15,030.0 | 15,427.0 | 15,177.8 1.200
15 16,160.0 16,173.0 16,427.0 16,160.0 | 16,098.0 | 16,406.0 | 16,237.3 0.871
16 17,310.00 17,303.0 17,560.0 17,285.0 | 17,225.0 | 17,529.0 | 17,368.7 0.805
17 18,505.0 18,500.00 17,933.0 18,495.0 | 18,193.0 | 17,555.0 | 18,196.8 2.139
18 18,655.0 18,935.00 18,674.0 18,753.0 | 18,411.0 | 18,805.0 | 18,705.5 0.942
19 19,770.00 19,712.0 19,198.0 19,884.0 | 19,223.0 | 19,475.0 | 19,543.7 1.487
20 19,992.0 19,972.0 19,902.0 19,945.0 | 19,663.0 | 19,904.0 | 19,896.3 0.602

5.5 Mass Correlation

We found the nominally identical floats to have slightly different masses. In addition, the measurements
show that the masses of the floats have two distinct groupings. We therefore needed to determine if the
mass affects the identified frequencies. The sample of floats examined includes five floats from the lower
mass group and nine floats from the higher mass group. The mass correlation is illustrated in Figure 43.
This plot of float mass versus identified frequency reveals that the frequency values for the lower-mass
floats are more variable than those for the higher-mass floats. For the first mode, the amount of variability
in the frequency measurements is smaller, and we observed a clear relationship between float mass and
modal frequency. The relationship is negative, as it should be, because an increase in mass decreases
the modal frequency value.
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Figure 44 looks at how much the mass affects the variability of the modal frequencies between floats.
This figure shows that for modes 2—4, the higher-mass floats have more variation in their modal
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Figure 43: Mass correlation for the first four modes.

frequencies. However, the higher-mass floats also have more variation in their mass values, which should
cause more variation in the frequency values if mass and frequency were correlated. Only the first mode
shows a strong correlation to the mass of the float, and this is the one mode that has more variability in

the smaller-mass floats.
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Figure 44: Standard deviation of modal frequencies segregated by low- and high-mass floats.

LA-14109

Modal Testing Repeatability of a Population of Spherical Shells

32



6. Analytical Resonant Frequencies of a Thin Spherical Shell

6.1 Background

Scientists have reported numerous theoretical investigations of the natural frequencies for complete
spherical shells over the past four decades. However, few have attempted to correlate the theoretical
results, both for axisymmetric and nonaxisymmetric modes of response. This report details a series of
modal tests performed on commercially available, stainless steel marine floats. The floats are complete
spherical shells, but they contain imperfections [2].

In this section, we compare the natural frequencies obtained with axisymmetric and nonaxisymmetric
theories of vibration of perfectly spherical shells. Because of the imperfections, we anticipate the
phenomenon known as the “splitting” of frequencies of nonaxisymmetric. We verified the correlation of
natural frequencies with earlier theoretical results for the first few modes, and the presence of the
frequency-splitting phenomenon is suggested. The need for additional related work is indicated.

6.2 Analytical Frequency Results for a Perfect Spherical Shell

The modal frequencies for a thin spherical shell are given by:

/2

A E
" 2R ,u(l—uz) "

where f; is the frequency in hertz, R is the midsurface radius, u is the density, E is the modulus of
elasticity, v is the Poisson’s ratio, and h is the shell thickness. Appendix D lists the material and
geometric parameters for the floats studied in this report. The parameter 4, in equation (7) takes on a
variety of forms depending upon the shell theory used. For purely membrane response (Baker [9]):

1/2

2(1+v)
s 1] (12R*)

Ja-o)E+i-2)]”

"L 245K/ (6R)

/2
A, =%{(iz +i+1+30)+ [(i2 it 1+ 31))2 —4(1-0° )i +z'—2)]q fori=0,1,2,...  (10)

Equation (8) gives the fundamental radial mode, equation (9) is for torsional modes, and equation (10)
gives the radial-tangential modes. This theory ignores bending. For a higher-order shell theory including
the effects of bending, refer to Wilkinson [10].

(8)

fori=1,2,3, ... 9)

A comparison of the frequencies extracted using the various approaches is beyond the scope of the
current analysis. For now, we examine how one set of analytical frequencies (including the effects of
bending) compares to the experimentally extracted values.

6.3 A Comparison of Observed Vibration Frequencies With Predictions

As described in Section 5.4, an ERA fit is performed on the FRF data to determine the natural
frequencies of the first four modes, and the results for these four modes are summarized in Table 5
through Table 8, respectively. The four tables show that U2U variation and Acc are the greatest sources
of frequency variability.
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We also compare the results from the ERA fit to the corresponding analytical results in Tables 5-8. Note
that we compare the identified frequencies to those of a perfect spherical shell. The frequencies lie on the
lower (primarily, bending) branch and correspond to indices i = 2, 3, 4, and 6, respectively. (The first
mode, i =1, is the rigid-body mode of zero frequency. The mode corresponding to i = 5 is not extracted.)
We observed that, in all cases, differences between analytical and experimental results are less than one
percent. In fact, the test-analysis differences are considerably less than one percent in most cases. We
attribute these differences to variations in geometry and mass. In addition, we anticipated variation
because of the splitting of frequencies, although the magnitude of splitting is unknown at this point. We
could evaluate the magnitude of splitting by detailed finite element calculations that include a
representation of the variation in radius and thickness of the spheres.

Table 6: First mode comparisons of measured and predicted frequencies.

Test Analytical Frequency
(Mean) (i = 2, lower branch) | Difference (%)
u2u 5,088.09 5,078.00 0.20
T2T 5,078.22 5,078.00 0.00
Acc 5,074.86 5,078.00 0.06
020 5,068.65 5,078.00 0.18

Table 7: Second mode comparisons of measured and predicted frequencies.

Test Analytical Frequency
(Mean) (i = 3, lower branch) | Difference (%)
u2u 6,028.06 6,005.00 0.38
T2T 6,014.38 6,005.00 0.16
Acc 6,020.45 6,005.00 0.26
020 5,992.98 6,005.00 0.20

Table 8: Third mode comparisons of measured and predicted frequencies.

Test Analytical Frequency
(Mean) (i = 4, lower branch) | Difference (%)
u2u 6,378.63 6,378.00 0.02
T2T 6,373.50 6,378.00 0.07
Acc 6,367.53 6,378.00 0.16
020 6,369.80 6,378.00 0.13
Table 9: Fourth mode comparisons of measured and predicted frequencie
Test Analytical Frequency
(Mean) (i = 6, lower branch) | Difference (%)
u2u 6,679.66 6,729.00 0.73
T2T 6,716.92 6,729.00 0.18
Acc 6,675.03 6,729.00 0.80
020 6,724.51 6,729.00 0.07

S.
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The remarkable correspondence of the analytical and experimental frequencies shows that the theory is
most appropriate, and the floats are almost perfectly spherical. We cannot predict an understanding of the
variability caused by the four sources investigated here (U2U, T2T, Acc, and O20) using the analytical
approach, because these sources of variability are tied to the experimental procedure used to extract the
modal frequencies. However, we have demonstrated that these sources of experimental variability result
in a variation of features, such as the resonant frequencies, which can be one order of magnitude greater
than the test-analysis differences obtained when an idealized theory is used to predict the frequencies of
perfect spheres. This result suggests that it makes no sense to “tune” or adjust the predictions of a model
beyond the level of variability that can be expected, should the tests be repeated.

Other variability exists that we can examine using the analytical equations, namely, frequency variation
caused by small changes in the geometric and material properties of the floats. For the present analysis,
we used average values of these parameters, because we restricted our investigation into the variability
of marine floats to experimental factors. Future work will address the analytical variations.
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7. Conclusion

The purpose of this report is to examine the sources of variability in a series of modal tests performed on
a population of spherical floats. We focused on four areas of variability: the variation in the float itself
(U2U), the variation caused by using different operators to perform the test (020), the variation in the test
setup (T2T), and the variability caused by placing the accelerometers in slightly different positions on the
sphere (Acc).

We used a collection of tools to try to assess the amount of variability caused by each of these sources.
Almost all methods result in the following conclusions: U2U variability is the largest by a significant
margin; second largest is the variability caused by Acc. This variation should be larger than that caused
by the T2T repetition, because the same procedure used in the T2T measurements is performed to move
the accelerometers to different positions. Thus, Acc encompasses two sources of variability. Most
methods find this intuition to be true, with O20 variability contributing about the same as T2T variability.

The methods we used to assess variability in the data that reach the above conclusions include the
following: measurement of the correlation between the individual time and frequency responses (Section
5.3.1), the temporal and spectral moments (Section 5.3.2), the first principal component of the time
response (Section 5.3.3), and the variation of the frequency values for the first four modes (Sections 5.4
and 6.3). Small deviations occurred in the first principal component of the frequency response, which
shows that the Acc variability is only slightly less than the T2T variability, and in the fourth mode, which
shows the Acc to be more significant than the choice of float unit. These exceptions are not significant
and lead us to believe that we have made a robust assessment of the major contributors to the variation
in the modal-response data.

The largest deviation from our main conclusions comes in the modeling of the time response of the
system using ARMAX models (Section 5.3.4). The variability of the model-fitting error shows 020
variability to be the largest. An investigation of the variation of the model coefficients shows inconsistent
results, with the relative variations changing based on the number of coefficients used in the model. Even
though we have no evidence to verify this hypothesis, we suspect that noise in the data and choice of
model order are the dominant factors in preventing the forming of an accurate time model.
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Appendix A: Data-Acquisition Setup

Some of the Dactron data-acquisition settings for data collection are listed below, while a picture of the
laptop connected to the Dactron system is shown in Figure 45.

e Engineering units: Displacement = inch; Velocity = inch/second; Acceleration = g; Force = Ibf;
Pressure = psi; Voltage = Volt.

o Time capture: Enabled for all channels.

e Spectrum: Auto-spectra and cross-spectra requested for all measurements.
e FRF and coherence: Use the H; estimator, H, = Gi/G;.

o Trigger settings: Analog input; auto arm or manual arm.

e Averaging: Type = linear; Domain = frequency.

e Windowing: Force exponential.

Figure 45: Laptop connected to the Dactron data-acquisition system.
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Appendix B: Data Sets Collected

B-1 Time-Domain and Frequency-Domain Data Sets Collected

Tables 10 and 11 list the type of data collected and stored in the time and frequency domains.

Table 10: Frequency-domain data sets collected.

Coherence Coh.(2,1); Coh.(3,1); Coh.(4,1)
Auto- and Cross-Spectrum G(1,1); G(2,1); G(2,2); G(3,1); G(3,3); G(4,1); G(4,4)
Transfer Function H(2,1); H(3,1); H(4,1)

Table 11: Time-domain data sets collected.

Transfer Function h(2,1); h(3,1); h(4,1)

Time History for Each Channel Input(1); Response(2); Response(3); Response(4)

B-2 Data Reference Tables

The measurements collected at each channel of the data-acquisition system are defined below:

e Channel 1: Impact hammer.

e Channel 2: Accelerometer, placed on the pole near the weld.
e Channel 3: Accelerometer, placed on the equator (left side).
e Channel 4: Accelerometer, placed on the equator (right side).

The data sets collected are stored in separate subfolders, one for each test performed. Each subfolder
contains all the measurements (defined in Tables 10 and 11) saved for that particular experiment. The
MATLAB™ data files in the main (top-level) folder contain the data sets for all experiments in that folder.
The MATLAB™ data files in each subfolder contain the data sets for that particular test only. Tables 12
and 13 define the type of variability study, the floats used, and where the corresponding data sets are
stored.
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Table 12: U2U variability data sets and float masses.

™
Folder Subfolder MD':‘ -It-:ﬁli?e Test Type NE::;;_ Wel:;:\att[g]
U2U_Variability U2Udata.mat U2U Variability (All Data)
U2U_Variability | u2u_01 U2U1data.mat U2U Variability 11 1,783.0
U2U_Variability | u2u_02 U2U2data.mat U2U Variability 12 1,891.0
U2U_Variability | u2u_03 | U2U3data.mat U2U Variability 14 1,794.0
U2U_Variability | u2u_04 | U2U4data.mat U2U Variability 15 1,897.0
U2U_Variability | u2u_05 | U2U5data.mat U2U Variability 16 1,889.0
U2U_Variability | u2u_06 U2U6data.mat U2U Variability 17 1,784.0
U2U_Variability | u2u_07 U2U7data.mat U2U Variability 18 1,902.0
U2U_Variability | u2u_08 U2U8data.mat U2U Variability 19 1,880.0
U2U_Variability | u2u_09 U2U9data.mat U2U Variability 20 1,789.0
U2U_Variability | u2u_10 | U2U10data.mat U2U Variability 23 1,895.0
U2U_Variability | u2u_11 | U2U11data.mat U2U Variability 25 1,873.0
U2U_Variability | u2u_12 | U2U12data.mat U2U Variability 27 1,905.0
U2U_Variability | u2u_13 | U2U13data.mat U2U Variability 28 1,789.0
U2U_Variability | u2u_14 | U2U14data.mat U2U Variability 29 1,922.0
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Table 13: Suspension system and 020 variability tests.

MATLAB™ Float Float
Fold Subfold TestT
older UPIOIEeT | pata File est IYPe | Number |Weight [g]
Suspension_System_Variability T2Tdata.mat Suspension Variability (All Data)
Suspension_System_Variability| sfv 01 | T2T1data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability| sfv 02 | T2T2data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability| sfv 03 | T2T3data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability| sfv 04 | T2T4data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability| sfv 05 | T2T5data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability| sfv 06 | T2T6data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability| sfv 07 | T2T7data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability| sfv 08 | T2T8data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability| sfv 09 | T2T9data.mat | SuSPension 16 1,889.0
Variability
Suspension_System_Variability sfv_10 | T2T10data.mat | SuSPension 16 1,889.0
Variability
020 _Variability 020data.mat Operator to Operator Variability
o 020
020 _Variability 020_01 | O201data.mat Variability (IS) 16 1,889.0
o 020
020 _Variability 020_02 | O202data.mat Variability (TF) 16 1,889.0
o 020
020 _Variability 020_03 | O203data.mat Variability (NL) 16 1,889.0
020
020 _Variability 020 04 | O204data.mat | Variability 16 1,889.0
(FH)

(Operators: IS = Isaac Salazar; TF: Tim Fasel; NL: Nathan Limback; FH: Frangois Hemez.)

We conducted the Acc variability tests (Table 14) by placing the equatorial accelerometers slightly off the
indicated mark, either up or down. Placement is indicated in the placement column. For example, “Ch. 3-

up / Ch. 4-up” means that Channel 3 is slightly moved up from the indicated mark, and Channel 4 is also

slightly up moved from the indicated mark. The accelerometers are still in contact with the equatorial weld
during this test.

We conducted the high-bandwidth tests (Table 15) to analyze the high-frequency modes of the system.
Noise tests (Table 15) were performed with the Channel 2 accelerometer on an arbitrary point on the
float, the Channel 3 accelerometer halfway up the yellow leg, and the Channel 4 accelerometer on the
upper square tube near the eyelet.
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Table 14: Acc variability tests.

Folder Subfolder MATLA_BTM Test Description Placement
Data File
Accel_Placement_Variability Adata.mat Acc Variability (All Data)

Accel_Placement_Variability | apv 01 | A1data.mat | Acc Variability |Ch. 3-up/Ch. 4-up
Accel_Placement_Variability | apv_ 02 | A2data.mat | Acc Variability |Ch. 3-up/Ch. 4-down
Accel_Placement_Variability | apv_ 03 | A3data.mat | Acc Variability |Ch. 3-down/Ch. 4-up
Accel_Placement_Variability | apv_04 Addata.mat | Acc Variability |Ch. 3-down/Ch. 4-down
Accel_Placement_Variability | apv 05 | A5data.mat | Acc Variability |Ch. 3-up/Ch. 4-up
Accel_Placement_Variability | apv_06 | A6data.mat | Acc Variability |Ch. 3-up/Ch. 4-down
Accel_Placement_Variability | apv 07 | A7data.mat | Acc Variability |Ch. 3-down/Ch. 4-up
Accel_Placement_Variability | apv_ 08 | A8data.mat | Acc Variability |Ch. 3-down/Ch. 4-down
Accel_Placement_Variability | apv_09 | A9data.mat | Acc Variability |Ch. 2 on left side of pole
Accel_Placement_Variability | apv_10 | A10data.mat | Acc Variability |Ch. 2 on right side of pole

Table 15: High-bandwidth and noise tests.

Float
MATLAB™ Float
Fold Subfold TestD ipti i
older ubfolder Data File est Description Number Wc[a;g];ht
U2U_Variability Hi_Bandwidth Bdata.mat High-Bandwidth Test (All Data)

U2U_Variability Hi_| \h 01 | B1data.mat High-Bandwidth Test 16 1,889.0
Bandwidth

U2U_Variability Hi_| .\, 9> | Bodata.mat High-Bandwidth Test 17 1,784.0
Bandwidth

U2U_Variability Hi_| \\ 03 | B3adata.mat High-Bandwidth Test 18 1,902.0
Bandwidth

U2U_Variability Hi_| 1 04 | Badata.mat High-Bandwidth Test 19 11,880.0
Bandwidth

U2U_Variability Hi_| \\\ 05 | B5data.mat High-Bandwidth Test 20 |1,789.0
Bandwidth

Noise Ndata.mat Noise Tests (All Data)

Noise noise_01 N1data.mat |Background noise 16 1,889.0

Noise noise_02 N2data.mat |Effect of impact on yellow leg 16 1,889.0

Noise noise_03 N3data.mat |Effect of impact on green leg 16 1,889.0

Noise noise_04 N4data.mat |Free run (stomping on ground) 16 1,889.0

Noise noise_05 N5data.mat |Free run (no stomping) 16 1,889.0
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Appendix C: Impulse- and Frequency-Response Functions
C-1 Impulse-Response Function

The dynamic properties of linear, time-invariant systems can be described by the impulse-response
function, h(t), which is defined as the output of a system to a unit impulse input. The impulse-response
function is obtained for any arbitrary input u(t) through the convolution integral:

V() = fooh(r)u(r —7)dr (11)

where y(t) is the response of the system to the arbitrary input u(t), and 7 is a time-translation parameter
used to perform the convolution.

C-2 Frequency-Response Function

The frequency-response function H(f) can be found directly from the impulse-response function by taking
its Fourier transform:

H(f)= jfwh(t)e—ﬂ’?f’ dt (12)

More often, however, the frequency-response function is constructed from the auto-spectral and cross-
spectral density functions of the input and output data:

G
H()= (13)

The cross-spectral density function G, of the input and output data is defined as:

Gyu(f) =Y (U (f) (14)

where Y(f) denotes the Fourier transform of the output, and U*(f) is the complex conjugate of the Fourier
transform of the input. Similarly, the auto-spectral density function G, is defined as:

Guu(f)=U(f)U (f) (15)
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Appendix D: Material and Geometric Properties

Material and geometric properties (English units):

Modulus of elasticity: 28.00 x 10" psi.

Density: 7.51 x 10 slug-in.
Poisson’s ratio: 0.28.

Mid-surface radius:  4.4688 in.
Thickness: 0.0625 in.

Material and geometric properties (Sl units):

Modulus of elasticity: 1.931 x 10" Pa.

Density: 8.026 x 10" kg/m®.
Poisson’s ratio: 0.28.

Midsurface radius:  113.51 x 10° m.
Thickness: 1.588 x 10° m.
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