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Abstract: I reconsider the Yokoya-Chen approximate evolution equation

for beamstrahlung and modify it slightly to generate simple, consistent analytic

approximations for the electron and photon energy spectra. I compare these

approximations to previous ones, and to simulation data.

For many purposes, one needs a simple parametrization of the energy distributions of the

colliding electrons and photons at linear colliders. These distributions result from the beam-

beam interaction and thus are complicated to compute directly. In 1989, Kaoru Yokoya

and Pisin Chen [1] introduced a clever approximation scheme which allows one to obtain

a fairly simple parametrization of these distributions. For various reasons, they were not

particularly happy with the results and later introduced a number of elaborations of their

formalism [1, 2, 3]. In this note, I will argue that their original idea, carried out consistently,

produces results which are as good as any other simple parametrization and quite adequate

for a quantitative description.

Let  e(x) and  
(x) represent the electron and photon distributions resulting from beam-

strahlung. Here x is the fraction of the nominal beam energy carried by the electron or

photon, 0 < x � 1. If we disregard electrons from pair creation, the electron distribution

should be normalized to

1 =

Z
dx e(x) : (1)

Since the momentum radiated by the electrons is carried by the photons, the distributions

should also satisfy the sum rule

1 =

Z
dxx( e(x) +  
(x)) : (2)

As the electron and positron bunches pass through each other, the electron distribution

evolves according to an equation

@ e

@t
= ��(x) e(x; t) +

Z 1

x
dx0F (x; x0) e(x

0; t) ; (3)

1



where F(x,x') is determined by the Sokolov-Ternov synchrotron radiation spectrum in an

e�ective magnetic �eld determined by the accelerator parameters. The coe�cient �(x) is the

average number of photons radiated per unit time at the given value of x. Eq. (3) cannot be

solved analytically, and in any case the solution must be averaged over the time-dependence

of the bunch crossing. Clearly a judicious approximation scheme is needed.

Electron Spectrum

Yokoya and Chen [1] suggested replacing (3) by a simpler evolution equation. Let � is

taken to represent the classical radiation probability, let � be the quantum parameter of

synchrotron radiation, and let N
 be the nominal number of photons emitted per electron

in beamstrahlung; I will give formulae for these below. Then Yokoya and Chen wrote

@ e

@t
= �� e(x; t) + �

Z 1

x
dx0

�

xx0
g(� � �0) e(x

0; t) ; (4)

in which � = 2=3� and � = �=x. This choice was supposed to turn the equation into a

translation-invariant equation in �, which could then be solved by Laplace transformation.

The resulting function  (x; t) could then be evaluated for �t = N
 . I will refer to this result

as the YC0 approximation.

Yokoya and Chen were not satis�ed with the comparison between YC0 and simulation

data. They gave an alternative prescription in which the function  (x; t) would be evaluated

for �t equal to a function of x which varied from the classical result for N at large x to the

quantum result at small x. In a later paper [2], Chen introduced an even more elaborate

approximation in which he attempted to take account of the average over the time-dependent

overlap of the bunches. I will refer to these approximations as YC1 and C2, respectively.

Many people who have tried to use these functions have observed that none of the three

approximations satisfy the sum rule (1). This is awkward for Monte Carlo simulations of

physics processes, for which one wishes to normalize event rates to the given luminosity. It

is no surprise that YC1 and C2 should violate the normalization condition, given that they

tamper with  (x) as a function of x. But the failure of the normalization condition for YC0

indicates that something was wrong with the original approximation.

The problem can be �xed simply by replacing (4) by the evolution equation

@ e

@t
= �� e(x; t) + �

Z 1

x
dx0

�

x2
g(� � �0) e(x

0; t) : (5)

It is easy to check that this equation exactly preserves the probability sum rule. This

equation can then be solved by the method of Yokoya and Chen, producing the solution

 (x) = e�N
"
�(x� 1) +

e��(1�x)=x

x(1� x)
h(y)

#
; (6)

where N = �t,

y = N(�(1� x)=x)
1=3

; (7)
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and h(x) is a function that appears in the Yokoya-Chen paper:

h(y) =
1X
n=1

yn

n!�(n=3)
: (8)

This function has the asymptotic expansion

h(y) =

�
3z

8�

�1=2

e4z
�
1�

35

288

1

z
�

1295

16588

1

z2
+ � � �

�
(9)

with z = (y=3)3=4. The function h(x) can be computed quite accurately by using (8) and

(9) in their respective regions. (Yokoya and Chen give a simple approximate expression for

h(y); this misses badly and should not be trusted.)

To compare these various functions to simulation data, let me �rst quote the formulae

which connect accelerator parameters to synchrotron radiation parameters. Here approxi-

mations are also being made. I follow Chen's prescriptions from [3]. Let the horizontal and

vertical disruption parameters Dx and Dy (corresponding to beam sizes �x=�y � 1) be given

by

Da =
2N re�z


�a(�x + �y)
(10)

for a = x; y, 
 = E=me for the beam, N the number of particles per bunch, re the classical

electron radius, and �z the longitudinal beam size. The corresponding luminosity enhance-

ment parameters are

Ha = 1 +D1=4
a

D3
a

1 +D3
a

�
log(

q
Da + 2 log(0:8�a=�z)

�
; (11)

where �a are the horizontal and vertical � functions at the interaction point. Let [sic]

�x = �xH
�1=2
x ; �y = �yH

�1=3
y : (12)

Then the e�ective value of the synchrotron radiation parameter should be given by

� =
5

6

r2e
N
��z(�x + �y)

: (13)

The classical and quantum radiation rates are given by

�cl =
5

2
p
3

�2

re

� ; �
 = �cl[1 + �2=3]�1=2 : (14)

Finally

Ncl =
p
3�z�cl ; N
 =

p
3�z�
 : (15)

For the August 1998 parameter sets, I �nd:
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NLC=500-B N
 = 1:11 � = 0:104

NLC=1000-B N
 = 1:43 � = 0:299

The various approximations above can be compared to the results from computer simula-

tion of beam collision, including beamstrahlung and disruption. The simulations used below

were generated by Kathy Thompson using Daniel Schulte's Guinea Pig simulation program,

with initial state radiation turned o�, and with zero intrinsic beam energy spread.

For the purpose of physics simulations, one is interested in the energies of the electrons

and positrons that collide and annihilate. Therefore, I will compare the various distributions

to the energy distributions for colliding particles. I will not take account of the correla-

tions between the energies of colliding particles; I will simply compare to the basic energy

distribution. In the �gures that follow, the histogram will represent the simulation results,

normalized to an area of 1. The blue curve will be the approximation (6) evaluated with

N = N
 . Henceforth, I will call this approximation P1. The green curve will be the same

approximation with N = N
=2, henceforth, P2. This change re
ects the idea that particles

that collide have not given o� their complete radiation. The red curves are the YC results;

YC1 is always higher than YC0. The magenta curve is the approximation C2 [5]. The

delta function at x = 1 is not shown. The approximations P1 and P2 are guaranteed to be

normalized to 1 when the delta function is included. The approximations YC0, YC1, C2 are

plotted as given in [1, 2] and are not renormalized. In all cases, the total normalization of

YC1 is too high by about 10%, and the of YC0 and C2 is too low.

Figures 1, 2, and 3 show the comparison for the NLC-500B. Figure 1 shows the overall

comparison on a linear scale for  e(x). Figure 2 uses a logarithmic scale to show the low

energy tail. Figure 3 is a blow-up of the highest-energy region. P2 and C2 provide the best

approximation over the broad range, though, in detail, they are low in the highest-energy

bins and high at lower energies. They do reproduce the fallo� at low energies seen in the

simulation data. Changing the value of N used to compute P2 does not noticeably improve

the �t.

Figures 4, 5, and 6 show the same comparison for the NLC-1000B. The various approxi-

mations succeed and fail in a quite similar fashion.

Photon Spectrum

As beamstrahlung degrades the electrons in the energy, it also generates the photon

distribution  
(x). This distributions should be computed from an evolution equation similar

to (3), in such a way that the momentum sum rule (2) is preserved. It is not so obvious

how to generate the photons consistently with the electrons in the approximation schemes

YC1 or C2. A rather complex treatment is given in [2], and the formulae are repeated in a

somewhat simpler form in [3].

But, if we use the equation (5) without further approximations, it is clear how to generate
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a consistent photon spectrum. We simply write the corresponding photon equation

@ 


@t
= �

Z 1

x
dx0

�

(x0 � x)2
g(

�

x0 � x
�
�

x0
) e(x

0; t) ; (16)

and integrate with the known function  e(x; t). It is easy to see that the resulting photon

spectrum is guaranteed to satisfy (2).

There is a problem with this approach, however. The integral with (6) is complicated and

cannot be done analytically. I was not able to �nd an exact representation that is reasonable

to compute. However, one might notice that most of the beamstrahlung radiation actually

comes from the delta function term in (6), for which the integral is trivial. For the rest, the

photons are mainly produced at small x and the approximation that x� x0 is a reasonable

one. A simple treatment is to approximate the whole electron distribution as a normalized

delta function at x = 1. The resulting photon distribution is very simple:

 
(x) = N
�1=3

�(1=3)x2=3(1� x)4=3
e��x=(1�x) ; (17)

with N = �t and � as above. The approximation generates a photon spectrum which is

slightly too hard for consistency; however, the discrepancy is small. For the NLC-500B

design and N = N
, I �nd a discrepancy of less than 0.1%, while for the NLC-1000B design,

I �nd that there is a 1% excess over the sum rule (2). For a 1500 GeV parameter set [6],

which gives N
 = 1:8 and 22% of the total momentum in photons, I �nd a 4% excess. The

more reasonable choice of N = N
=2 gives smaller discrepancies.

I will label the approximation (17) with N = N
 as PG1 and the same approximation

with N = N
=2 as PG2. I will refer to Chen's approximation from [3] as CP2. These

distributions can be compared to the energy distributions for colliding photons produced by

the Guinea Pig simulations described above. The simulation data are normalized to unit

area. For comparison to these data, I have divided the analytic approximations by the factor

q
N(

)=N(e+e�) ; (18)

where N(e+e�) and N(

) are the numbers of events in the �les generated by Guinea Pig

which sample the e+e� and 

 luminosity functions. These two events numbers are expected

to correspond to the physically correct ratio of luminosities.

Figures 7 and 8 show this comparison for the NLC-500B design. The blue and green

curves refer to PG1 and PG2, as before; the magenta curve refers to CP2. The approxi-

mations PG2 and CP2 are actually in good agreement, and both have approximately the

correct normalization, while PG1 is naturally much larger. Figure 8 shows that the analytic

approximations have a longer tail toward high energies than the simulation data. Figures 9

and 10 show the same comparisons for the NLC-1000B design.

Conclusions
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Though none of the various approximations discussed gives an excellent �t to the electron

and photon spectra from beamstrahlung, the approximation which begins from the evolution

equations (5) and (16), and evolves for a time �t = N
=2 gives a plausible representation of

the simulation data and automatically respects the sum rules (1) and (2). I thus recommend

the formulae (6) and (17), with N = N
=2, as a reasonable set of analytic formulae to

approximate beamstrahlung for physics simulations.

I am grateful to Tim Barklow, Pisin Chen, and Tom Markiewicz for helpful conversations,

and to Kathy Thompson for providing the simulation data shown in the �gures.

Appendix: Initial State Radiation

At the same time that we must consider beamstrahlung, we should consider prescriptions

for initial state radiation. In this appendix, I would like to give what I consider the best

compromises between simplicity and accuracy.

The distribution of electrons and photons after initial state radiation may be computed

from the Gribov-Lipatov equations [7], the analogue (and predecessor) for QED of the

Altarelli-Parisi equations. To leading order, the distributions of electron and photon en-

ergies for an electron beam of �xed energy are given by the solution to

De(x; s) = �(x� 1) +

Z s

m2
e

ds0

s0
�(s0)

2�

Z 1

x

dz

z
Pe!e(z)De(

x

z
; s0)

D
(x; s) =

Z s

m2
e

ds0

s0
�(s0)

2�

Z 1

x

dz

z
Pe!
(z)De(

x

z
; s0) (19)

where

Pe!e(z) =
1 + z2

(1� z)

����
+

+
3

2
�(z � 1)

Pe!
(z) =
1 + (1� z)2

z
: (20)

These equations sum up the rates of multiple collinear photon emission from the incoming

electron. A pedagogical derivation of these equations, and the de�nition of j+, can be found

in [8].

Kuraev and Fadin (KF) [9] presented an approximate analytic solution to this equation.

In addition, they argued that, if one modi�es the solution by the substitution

2 log(2Ebeam=me) ! � = 2 log(2Ebeam=me)� 1 ; (21)

the resulting function takes non-logarithmic corrections into account correction to about 1%

accuracy. Some e�ects of � running are omitted. Subsequently, Nicrosini and Trentadue [10]

showed how to introduced additional modi�cations to obtain 0.1% accuracy for the Z0 line

shape.
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To my mind, few-percent accuracy is good enough for the initial linear collider studies.

So the solution of KF is quite acceptable. I would recommend, however, using a simpler

approximate solution of the Gribov-Lipatov equation written down by Skrzypek and Jadach

(SJ) [11]:

De(x) =
1

2
�(1� x)�=2�1

� (1 +
1

2
�)e�(1=8)(�+(�

2=6�1)�2)

�
1

2
(1 + x2)�

�

8
(
1

2
(1 + 3x2) logx + (1� x)2

�
;(22)

where � takes a part of the � running into account,

� = �6 log(1�
1

6
�) : (23)

The KF and SJ formulae are compared in Figure 11. They di�er by 2%; One cannot really

go wrong. The �rst line of (22) is a simple normalized function that does the leading part

of the resummation. This is compared to the other two functions in the �gure.

For a polarized electron beam, the electrons preserve their polarization after radiation (up

to e�ects of size �=� � 0:1%, without any logarithmic enhancement). However, a polarized

electron radiates photons of both polarizations, and it is sometimes necessary to take this

into account. This can be done easily from the Gribov-Lipatov equations, by separating the

kernel in the photon equation (for an e�R beam) into a part which produces right-handed

photons and a part which produces left-handed photons,

P!
R(z) =
1

z
; P!
L(z) =

(1� z)2

z
: (24)

I am not aware of any simple approximate solutions to the Gribov-Lipatov equations for

the photon distribution which have been given in the literature. One very simple approxima-

tion is the analogue of the one made above for beamstrahlung: Take the electron distribution

radiating the photons to be a delta function at x = 1. Then we obtain (`simple GL'):

D
R(x) =
1

4
�
1

x
; D
L(x) =

1

4
�
(1� x)2

x
: (25)

This has the problem (not a very serious one) that D(x) goes to a constant, nonzero value at

x = 1. To cure this problem, consider the e�ect of radiating from the electron distribution

given by the �rst line of (22). The solution for D
R(x) is fairly simple:

D
R(x) =
1

2

(1� (1� x)�=2)

� log(1� x)

1

x
: (26)

For the left-handed photons, the obvious approximation is

D
L(x) =
1

2

(1� (1� x)�=2)

� log(1� x)

(1� x)2

x
: (27)
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I will call (26),(27) the approximation `improved GL'.

For the radiation of a single photon from an electron at x = 1, there is an improvement

of the leading-log formula, due to Brodsky, Kinoshita, and Terazawa (BKT) [12]. Several

authors used the BKT formalism to derive distributions of the W in the electron, which

necessarily brings in polarization. I have used the BKT approximations to generate the

polarized photon distributions from the electron; unfortunately, DL(x) goes very slightly

negative at large x. It is possible to introduce an `improved BKT' which avoids this problem.

These approximations are compared to the solutions of the Gribov Lipatov equation in

Figures 12 and 13. Curiously, the improved-GL and the improved BKT approximations

agree to within about 5% over most of the range of x.

I advocate using SJ, (22), for the electron distribution from initial state radiation, and

using improved-GL, (26) and (27), for the photon distribution.
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Figure 1: Comparison of Guinea Pig simulation data on the electron energy spectrum with

various analytic approximations for the NLC-500B design parameters: blue-P1, green-P2,

red-YC1 over YC0, magenta-C2.
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Figure 2: Figure 1 with a logarithmic scale, showing the low-energy, low-x tail of the distri-

bution.
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Figure 3: Blowup of Figure 1 concentrating on the highest-x bins.
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Figure 4: Comparison of Guinea Pig simulation data on the electron energy spectrum with

various analytic approximations for the NLC-1000B design parameters: blue-P1, green-P2,

red-YC1 over YC0, magenta-C2.
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Figure 5: Figure 4 with a logarithmic scale, showing the low-energy, low-x tail of the distri-

bution.
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Figure 6: Blowup of Figure 4 concentrating on the highest-x bins.
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Figure 7: Comparison of Guinea Pig simulation data on the photon energy spectrum with

various analytic approximations for the NLC-500B design parameters: blue-PG1, green-PG2,

magenta-CP2.
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Figure 8: Figure 7 with a logarithmic scale, showing the high-energy, tail of the distribution.
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Figure 9: Comparison of Guinea Pig simulation data on the photon energy spectrum with

various analytic approximations for the NLC-1000B design parameters: blue-PG1, green-

PG2, magenta-CP2.
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Figure 10: Figure 9 with a logarithmic scale, showing the high-energy, tail of the distribution.
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Figure 11: Comparison of various approximations to the electron spectra resulting from

initial-state radiation: black-KF, blue-SJ, magneta-�rst line of (22).
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Figure 12: Comparison of various approximations to the polarized photon spectra of initial-

state radiation: black-BKT, red-improved BKT, blue-simple GL, green-improved GL.
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Figure 13: Blowup of Figure 12 showing the behavior of the various approximations near

the endpoint.
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