skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physics at an upgraded proton driver at Fermilab

Conference ·
OSTI ID:826440

The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also supporting a vigorous 8 GeV fixed-target program. In addition, a Proton Driver might also serve as a stepping-stone to future accelerators, both as an R&D test bed and as an injector, with connections to the Linear Collider, Neutrino Factories, and a VLHC. Hence, although neutrino physics would provide the main thrust for the science program at an upgraded Fermilab proton source, the new facility would also offer exciting opportunities for other fixed-target particle physics (kaons, muons, neutrons, antiprotons, etc.) and a path towards new accelerators in the future.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Energy Research (ER) (US)
DOE Contract Number:
AC02-76CH03000
OSTI ID:
826440
Report Number(s):
FERMILAB-Conf-04/124-E; TRN: US0403149
Resource Relation:
Conference: High Intensity Frontier Workshop (HIF 2004), La Biodola, Isola d'Elba (IT), 06/05/2004--06/08/2004; Other Information: PBD: 28 Jul 2004
Country of Publication:
United States
Language:
English

Similar Records

Proton driver
Conference · Tue Sep 12 00:00:00 EDT 2000 · OSTI ID:826440

Project X and a muon facility at Fermilab
Conference · Tue Dec 01 00:00:00 EST 2009 · AIP Conf.Proc.1222:336-338,2010 · OSTI ID:826440

Project X: Accelerator Reference Design
Technical Report · Thu Jun 20 00:00:00 EDT 2013 · OSTI ID:826440