skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS

Abstract

During the past 45 years, one of the most challenging scientific, engineering, socio-economic, and political tasks and obligations of our time has been to site and develop technical, politically acceptable, solutions to the safe disposition of long-lived radioactive materials (LLRMs). However, at the end of the year 2002, the Waste Isolation Pilot Plant (WIPP) site in the United States of America (USA) hosts the world's only operating LLRM-disposal system, which (1) is based on the LLRM-disposal principles recommended by the National Academy of Sciences (NAS) in 1957, i.e., deep geological disposal in a ''stable'' salt vault/repository, (2) complies with the nation's ''Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes'', and (3) may receive 175,584 cubic meters (m3) of transuranic radioactive waste (TRUW)a. Pending the scheduled opening of repositories for once-used nuclear fuel (OUNF) in the USA, Sweden, and Finland in the years 2010, 2015, and 2017, respectively, LLRM-disposal solutions remain the missing link in all national LLRM-disposition programs. Furthermore, for a variety of reasons, many nations with nuclear programs have chosen a ''spectator'' stance in terms of enhancing the global nuclear safety culture and the nuclear renaissance, and have eithermore » ''slow-tracked'' or deferred their LLRM-disposal programs to allow time for an informed national consensus to evolve based on LLRM-disposition experiences and solutions gained elsewhere. In the meantime, LLRMs will continue to amass in different types and levels of safeguarded storage facilities around the world. In an attempt to contribute to the enhancement of the global nuclear safety culture and the nuclear renaissance, the authors developed the sample holistic approach for synergistic disposition of LLRMs comprising LLRM-disposition components considered either ''proven'' or ''promising'' by the authors. The fundamental principles of the holistic approach are: (1) Risk minimization; (2) Minimization of the LLRM volume requiring deep geological disposal; and (3) LLRM-disposition flexibility. An integral element of these principles is to allow time for LLRM-disposition solutions to evolve/mature technically, financially, and politically. Furthermore, contingent upon the desired outcome(s), available financial, scientific, and technical resources, and political will, these components may be implemented separately or in combinations by one or a group of nations.« less

Authors:
; ;
Publication Date:
Research Org.:
GRAM, Inc., 8500 Menaul Boulevard NE, Suite B-335, Albuquerque, New Mexico 87112 (US); Louisiana Energy Systems LLP, 1133 Connecticut Avenue NW, Suite 200, Washington, DC 20036 (US); Vanderbilt University, P.O. Box 1596, Station B, Nashville, Tennessee, 37235 (US)
Sponsoring Org.:
WM Symposia, Inc. (US)
OSTI Identifier:
825652
Resource Type:
Conference
Resource Relation:
Conference: Waste Management 2003 Symposium, Tucson, AZ (US), 02/23/2003--02/27/2003; Other Information: PBD: 27 Feb 2003
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; FLEXIBILITY; MANAGEMENT; METERS; MINIMIZATION; NUCLEAR FUELS; OPENINGS; RADIATION PROTECTION; RADIOACTIVE MATERIALS; RADIOACTIVE WASTES; SAFETY CULTURE; STORAGE FACILITIES; WASTE MANAGEMENT; WASTES; WIPP

Citation Formats

Eriksson, Leif G, Dials, George E, and Parker, Frank L. A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS. United States: N. p., 2003. Web.
Eriksson, Leif G, Dials, George E, & Parker, Frank L. A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS. United States.
Eriksson, Leif G, Dials, George E, and Parker, Frank L. 2003. "A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS". United States. https://www.osti.gov/servlets/purl/825652.
@article{osti_825652,
title = {A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS},
author = {Eriksson, Leif G and Dials, George E and Parker, Frank L},
abstractNote = {During the past 45 years, one of the most challenging scientific, engineering, socio-economic, and political tasks and obligations of our time has been to site and develop technical, politically acceptable, solutions to the safe disposition of long-lived radioactive materials (LLRMs). However, at the end of the year 2002, the Waste Isolation Pilot Plant (WIPP) site in the United States of America (USA) hosts the world's only operating LLRM-disposal system, which (1) is based on the LLRM-disposal principles recommended by the National Academy of Sciences (NAS) in 1957, i.e., deep geological disposal in a ''stable'' salt vault/repository, (2) complies with the nation's ''Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes'', and (3) may receive 175,584 cubic meters (m3) of transuranic radioactive waste (TRUW)a. Pending the scheduled opening of repositories for once-used nuclear fuel (OUNF) in the USA, Sweden, and Finland in the years 2010, 2015, and 2017, respectively, LLRM-disposal solutions remain the missing link in all national LLRM-disposition programs. Furthermore, for a variety of reasons, many nations with nuclear programs have chosen a ''spectator'' stance in terms of enhancing the global nuclear safety culture and the nuclear renaissance, and have either ''slow-tracked'' or deferred their LLRM-disposal programs to allow time for an informed national consensus to evolve based on LLRM-disposition experiences and solutions gained elsewhere. In the meantime, LLRMs will continue to amass in different types and levels of safeguarded storage facilities around the world. In an attempt to contribute to the enhancement of the global nuclear safety culture and the nuclear renaissance, the authors developed the sample holistic approach for synergistic disposition of LLRMs comprising LLRM-disposition components considered either ''proven'' or ''promising'' by the authors. The fundamental principles of the holistic approach are: (1) Risk minimization; (2) Minimization of the LLRM volume requiring deep geological disposal; and (3) LLRM-disposition flexibility. An integral element of these principles is to allow time for LLRM-disposition solutions to evolve/mature technically, financially, and politically. Furthermore, contingent upon the desired outcome(s), available financial, scientific, and technical resources, and political will, these components may be implemented separately or in combinations by one or a group of nations.},
doi = {},
url = {https://www.osti.gov/biblio/825652}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 27 00:00:00 EST 2003},
month = {Thu Feb 27 00:00:00 EST 2003}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: