

# **CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS**

## **QUARTERLY TECHNICAL PROGRESS REPORT**

Reporting Period: April 1, 2003 to June 30, 2003

by

David A. Green  
Brian S. Turk  
Jeffrey W. Portzer  
Raghbir P. Gupta  
William J. McMichael  
Ya Liang\*  
Tyler Moore\*  
Douglas P. Harrison\*

DOE Cooperative Agreement No. DE-FC26-00NT40923

Submitted by:

Research Triangle Institute  
Post Office Box 12194  
Research Triangle Park, NC 27709-2194

\*Louisiana State University  
Department of Chemical Engineering  
Baton Rouge, LA 70803

August 2003

## **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

## ABSTRACT

This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

## TABLE OF CONTENTS

|                                                                        | Page |
|------------------------------------------------------------------------|------|
| List of Figures .....                                                  | v    |
| List of Tables .....                                                   | vi   |
| 1.0 EXECUTIVE SUMMARY .....                                            | 1    |
| 2.0 INTRODUCTION .....                                                 | 1    |
| 3.0 EXPERIMENTAL .....                                                 | 2    |
| 3.1 Fixed Bed Testing at LSU .....                                     | 2    |
| 3.2 Thermogravimetric Analysis (TGA) at RTI .....                      | 3    |
| 4.0 RESULTS AND DISCUSSION .....                                       | 3    |
| 4.1 Fixed Bed Testing at LSU .....                                     | 3    |
| 4.2 Thermogravimetric Analysis Testing at RTI .....                    | 7    |
| 4.2.1 Testing of Additional Sodium Carbonate and Trona Materials ..... | 7    |
| 4.2.2 Testing of Supported Sodium Carbonate Sample .....               | 10   |
| 4.3 Physical Properties of Supported Materials .....                   | 10   |
| 4.4 Estimation of Process Energy Requirements .....                    | 11   |
| 4.5 Other Project Activities .....                                     | 21   |
| 5.0 CONCLUSIONS AND FUTURE WORK .....                                  | 22   |
| 6.0 REFERENCES .....                                                   | 22   |

## LIST OF FIGURES

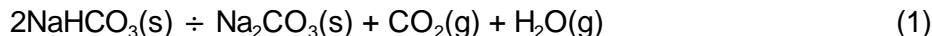
| Figure                                                                                                                                                                                         | Page |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1 CO <sub>2</sub> Concentration Versus Time for Five Carbonation Cycles Using SBC#1 and a Nominal 60EC Carbonation Temperature .....                                                           | 4    |
| 2 Percent CO <sub>2</sub> Removal as a Function of Cycle Number and Carbonation Temperature for SBC#1 and SBC#3 (Based on CO <sub>2</sub> Concentration in the Third Carbonation Sample) ..... | 5    |
| 3 Final Percent Sorbent Conversion to Wegscheider's Salt as a Function of Cycle Number and Temperature Using SBC#1 and SBC#3 .....                                                             | 5    |
| 4 Carbon Dioxide Concentration of Product Gas from 5-cycle Fixed Bed Test Using SBC#3 .....                                                                                                    | 6    |
| 5 TGA of General Chemical Sodium Carbonate (Dense Ash) Lot # E2315177 .....                                                                                                                    | 7    |
| 6 Carbonation of General Chemical Sodium Carbonate (Natural Light Low Density Soda Ash Lot #E3005NL) .....                                                                                     | 8    |
| 7 TGA of FMC "Sesqui"--[Sodium Sesquicarbonate (Lot # 0325032800B)] .....                                                                                                                      | 9    |
| 8 TGA of Church and Dwight SQ-810 Natural Sodium Sesquicarbonate (unrefined trona): Lot # 3020500150 .....                                                                                     | 9    |
| 9 TGA of RTI sample # 050603-2 Supported 40% Sodium Carbonate .....                                                                                                                            | 10   |
| 10 Simplified flow sheet for the RTI Sodium Carbonate based Dry Carbon Dioxide Capture Process .....                                                                                           | 16   |

## LIST OF TABLES

| Table                                                                                                                  | Page |
|------------------------------------------------------------------------------------------------------------------------|------|
| 1 Reaction Conditions For Fixed-bed Test Conducted at LSU .....                                                        | 3    |
| 2 Physical Properties of Supported Sorbents .....                                                                      | 11   |
| 3 Process Energy Requirements for Coal Fired Power Plants with and without CO <sub>2</sub> Removal .....               | 12   |
| 4 Effect of Heat Requirement for Sorbent Regeneration of thermal Efficiency .....                                      | 14   |
| 5 Estimated exit temperature for the carbonizer solids .....                                                           | 19   |
| 6 Enthalpies of formation relative to the elements at standard condition for various components at 184 and 225EF ..... | 20   |

## 1.0 EXECUTIVE SUMMARY

The objective of this project is to develop a simple and inexpensive process to separate CO<sub>2</sub> as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO<sub>2</sub> stream after condensation of water vapor.

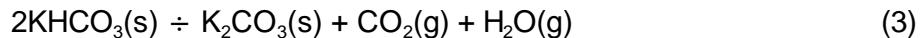

This quarter, 5-cycle fixed bed reactor testing of grade 1 sodium bicarbonate (SBC#1), confirmed results of previous testing with SBC#3, in that carbonation activity in cycles 2 through 5 was superior to that observed in the first cycle, and that activity did not decline over the first five cycles. TGA testing confirmed that sodium carbonate sorbents produced by calcination of sodium bicarbonate are far more reactive than either natural (low density) soda ash or commercial grade dense soda ash. Two sodium sesquicarbonate (trona) materials were also tested and found to be inferior to calcined SBC as a sorbent.

Analysis of two different conceptual amine-based CO<sub>2</sub> removal systems revealed large differences in assumed process energy requirements. Some additional work will be required to refine the economic comparison between a dry carbonate based sorbent system and liquid absorption system, however, for processes involving dry supported sorbents, active material loading has been identified as a critical variable.

## 2.0 INTRODUCTION

Fossil fuels used for power generation, transportation, and by industry are the primary source of anthropogenic CO<sub>2</sub> emissions to the atmosphere. Much of the CO<sub>2</sub> emission reduction effort will focus on large point sources, with fossil fuel fired power plants being a prime target. The CO<sub>2</sub> content of power plant flue gas varies from 4% to 9% (vol), depending on the type of fossil fuel used and on operating conditions. Although new power generation concepts that may result in CO<sub>2</sub> control with minimal economic penalty are under development, these concepts are not generally applicable to the large number of existing power plants.

This study is based on the use of a dry, regenerable sorbent to remove CO<sub>2</sub> from flue gases. Sorbent regeneration produces a gas stream containing only CO<sub>2</sub> and H<sub>2</sub>O. The H<sub>2</sub>O may be separated by condensation to produce a pure CO<sub>2</sub> stream for subsequent use or sequestration. The primary reactions, based upon the use of sodium bicarbonate (SBC) as the sorbent precursor and sodium carbonate as the reaction product are:




and



Reaction (1) releases CO<sub>2</sub> and regenerates the sorbent, while Reaction (2) is used to capture CO<sub>2</sub>. Several other solid products, intermediate between sodium carbonate and sodium bicarbonate, may also be produced under the anticipated reaction conditions. An intermediate compound, Na<sub>2</sub>CO<sub>3</sub>·3NaHCO<sub>3</sub>, known as Wegscheider's salt, forms at the reaction conditions of interest.

Analogous reactions (Reactions 3 and 4) take place within the potassium carbonate system:



and




A compound salt of potassium carbonate and potassium bicarbonate is also thought to be of importance at the conditions of interest.

Trona (sodium sesquicarbonate) can also be used as a sorbent precursor. The following reactions of trona are slightly different from the direct reversible reaction of NaHCO<sub>3</sub> (reaction 1). Trona is initially calcined according to:



Subsequent carbonation and calcination reactions proceed according to:



This report describes activities conducted between April 1, 2003 and June 30, 2003 by RTI and its subcontractors Louisiana State University (LSU) and Church and Dwight (C&D). Activities conducted this quarter include fixed bed reactor studies at LSU and thermogravimetric analysis studies (TGA) at RTI. In addition, RTI continued development of mathematical models, and Church and Dwight began work on sizing and costing of equipment.

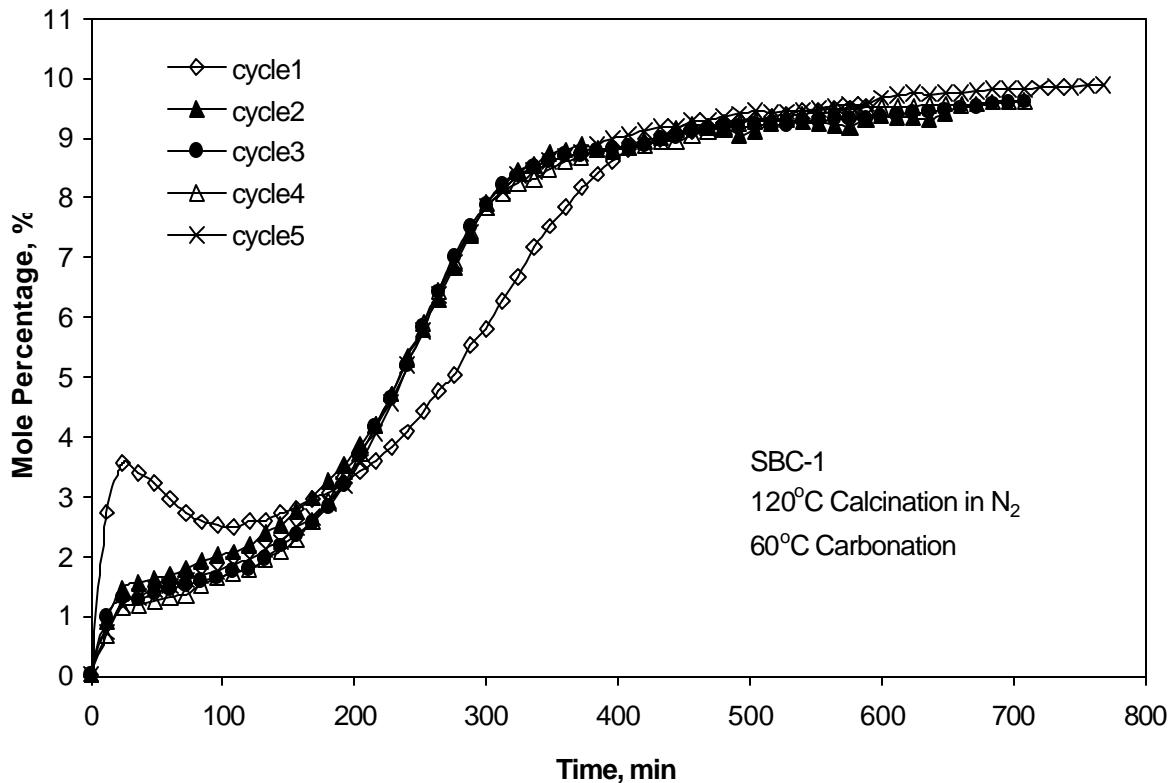
## 3.0 EXPERIMENTAL

### 3.1 Fixed Bed Testing at LSU

One successful 5.5 cycle fixed bed test was completed this quarter using SBC#1 at a nominal carbonation temperature of 60EC. A second 5.5 cycle test was conducted using SBC#3 with calcination in pure CO<sub>2</sub> at 160EC, which produced questionable results in some cases. Test conditions are given in Table 1. Physical properties of these materials were reported previously (Green, et al., 2001).

**Table 1. Reaction Conditions For Fixed-bed Test Conducted at LSU.**

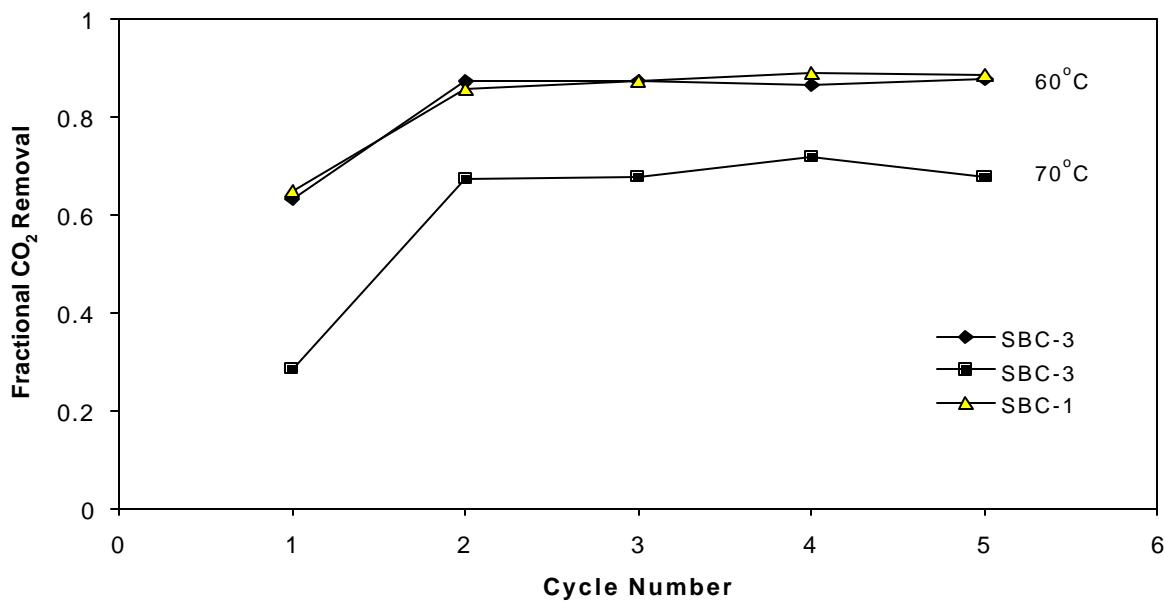
|             |                   | First Test                                                                   | Second Test                                                                  |
|-------------|-------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|             | Sorbent Precursor | SBC#1                                                                        | SBC#3                                                                        |
| Calcination | Temperature       | 120EC                                                                        | 160EC                                                                        |
|             | Pressure          | 1 atm                                                                        | 1 atm                                                                        |
|             | Gas Composition   | 100% N <sub>2</sub>                                                          | 100% CO <sub>2</sub>                                                         |
| Carbonation | Temperature       | 60EC                                                                         | 60EC                                                                         |
|             | Pressure          | 1 atm                                                                        | 1 atm                                                                        |
|             | Gas Composition   | 8 mol% CO <sub>2</sub><br>16 mol% H <sub>2</sub> O<br>76 mol% N <sub>2</sub> | 8 mol% CO <sub>2</sub><br>16 mol% H <sub>2</sub> O<br>76 mol% N <sub>2</sub> |
|             | Gas Flow Rate     | 150 scc/min                                                                  | 150 scc/min                                                                  |


### 3.2 Thermogravimetric Analysis (TGA) at RTI

Five materials were tested for carbonation capacity and activity in the TGA this quarter. Four materials were obtained from Church and Dwight: Natural Light Low Density Soda Ash, Natural Sodium Sesquicarbonate (unrefined trona), Sodium carbonate (dense ash), and Commercial Sodium Sesquicarbonate. An additional batch of 40% supported sodium carbonate prepared at RTI this quarter was also tested.

## 4.0 RESULTS AND DISCUSSION

### 4.1 Fixed Bed Reactor Testing at LSU


A 5.5 cycle test was conducted to compare the performance of SBC#1 with previous data obtained for SBC#3. CO<sub>2</sub> concentrations as a function of time for the carbonation phase of this test are shown in Figure 1. These results are quite similar to those reported in the previous quarter (Green, et al., 2003) for SBC#3 at the same conditions. Once again, the improved performance in cycles 2 through 5 is evident. Initial outlet CO<sub>2</sub> concentrations during cycles 2 through 5 were in the range of 1.0% to 1.5%, compared to 3.5% in cycle 1. For practical purposes, there is no difference in performance in cycles 2 through 5.



**Figure 1. CO<sub>2</sub> concentration versus time for five carbonation cycles using SBC#1 and a nominal 60EC carbonation temperature.**

The performance of SBC#1 and SBC#3 is further compared in Figure 2, where percent CO<sub>2</sub> removal in the third gas chromatography sample is shown as a function of cycle number. Figure 2 is based on Figure 5 from the April 2003 quarterly report, with the SBC#1 results at obtained at 60EC added. The third carbonation sample was chosen for the comparison because of scatter in the first two samples as the carbonation feed gas rates and composition reached steady state. For both SBC#1 and SBC#3, the CO<sub>2</sub> removal increased from above 60% in cycle 1 to almost 90% in the remaining cycles.

Figure 3 compares final sorbent conversion, based on Wegscheider's salt product, as a function of cycle number. Data from Figure 6 of the April, 2003 quarterly report have been added and the results have been restated in terms of percent sorbent conversion (instead of cumulative mols of CO<sub>2</sub> removed). The two quantities are proportional to each other. SBC#3 and SBC#1 results at 60EC both show effectively complete sorbent conversion, and they are effectively equal to each other. In contrast the final sorbent conversion for SBC#3 at 70EC is slightly less than 90%.



**Figure 2.** Percent  $\text{CO}_2$  removal as a function of cycle number and carbonation temperature for SBC#1 and SBC#3 (based on  $\text{CO}_2$  concentration in the third carbonation sample).

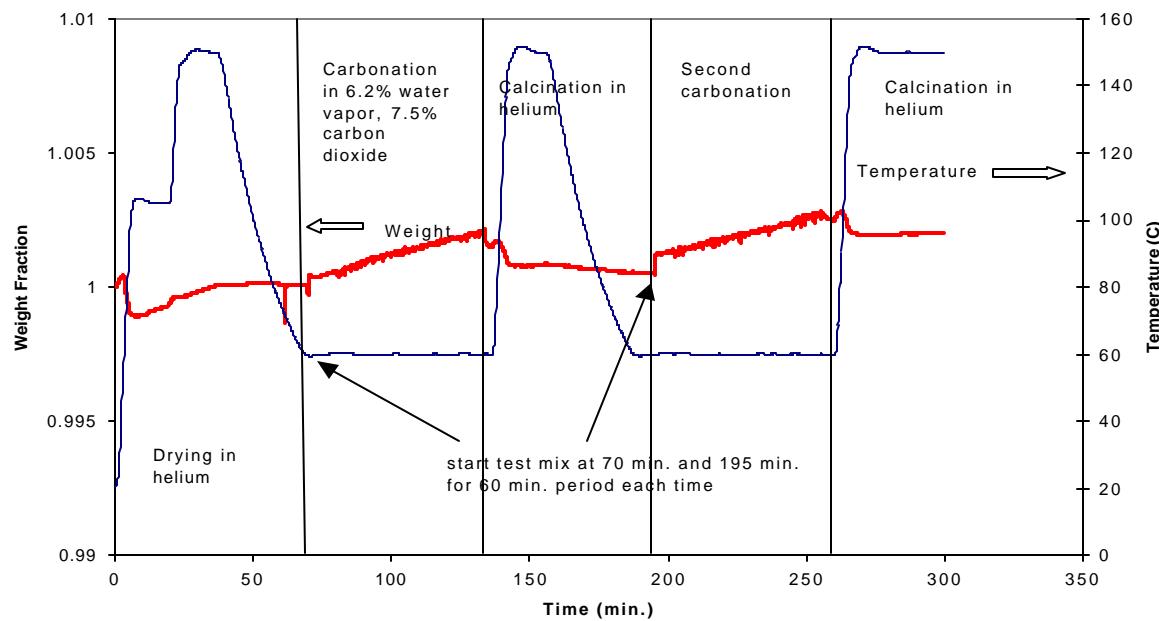


**Figure 3.** Final percent sorbent conversion to Wegscheider's salt as a function of cycle number and temperature using SBC#1 and SBC#3.

A CO<sub>2</sub> calcination atmosphere at 160EC was used in the second 5.5-cycle run. This provides a closer approach to realistic calcination conditions than the lower temperature N<sub>2</sub> calcination conditions. Selected results are presented below even though they are of questionable reliability. Since it is impossible to follow the progress of the calcination phase by monitoring CO<sub>2</sub> in the product gas, the calcination cycle was continued for a fixed time of 6 hours. Carbonation was then carried out using the standard feed composition of 8% CO<sub>2</sub>, 16% H<sub>2</sub>O, balance N<sub>2</sub> at a feed rate of 150 scc/min and a nominal temperature of 60EC. The carbonation cycle was also terminated after 6 hours instead of the 10 to 12 hours used in earlier tests (see Figure 1).

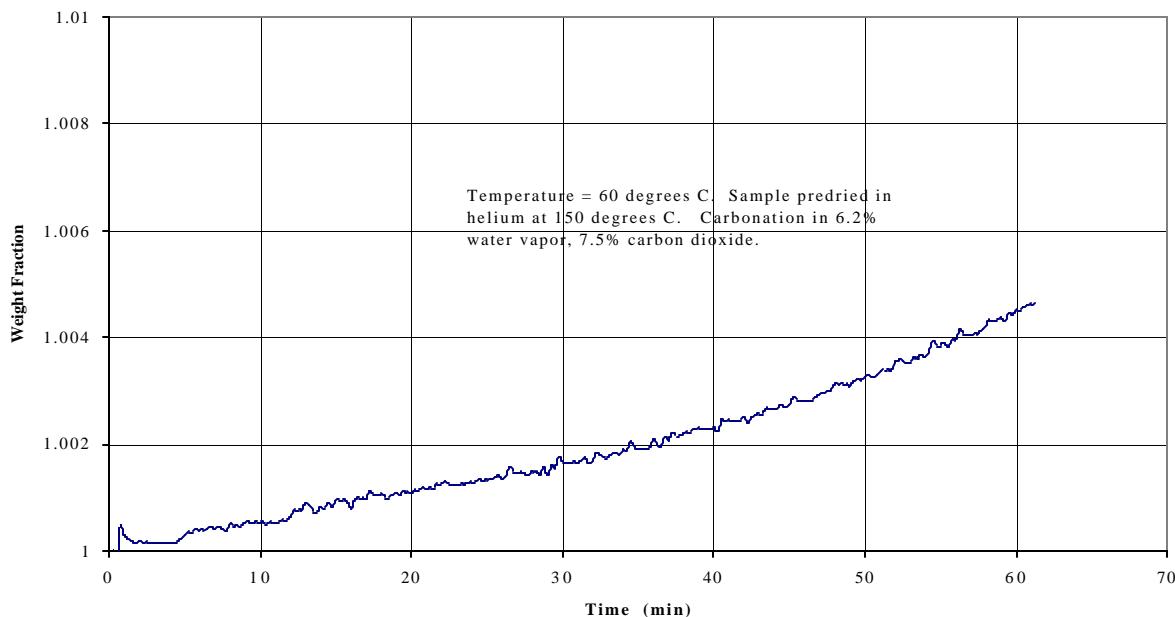
Figure 4 shows the mol percent CO<sub>2</sub> (dry basis) in the carbonation product gas as a function of time for each of the five cycles. Several features, in addition to the decreased carbonation time, are immediately evident when comparing Figures 1 and 4. The initial CO<sub>2</sub> concentrations are considerably larger in Figure 4 and there is a significant increase in the data scatter between cycles compared to Figure 1. There is a noticeable improvement in performance between cycles 1 and 2, but performance in cycles 3 and 4 was much like the cycle 1 performance. Cycle 5 results are obviously erroneous since essentially no CO<sub>2</sub> was found in the product gas. This indicates either a malfunction in the analytical system or a leak so severe that essentially no CO<sub>2</sub> reached the reactor. This problem also calls into question the results from the first four cycles. Finally, it is obvious that carbonation was not complete after 6 hours. This also differs from the data of Figure 1 that show almost complete conversion in that time period.




**Figure 4. Carbon dioxide concentration of product gas from 5-cycle fixed bed test using SBC#3.**

The percent CO<sub>2</sub> removal in the third sample of the first four cycles (based on the questionable data of Figure 4) increased from about 45% in cycle 1 to 65% in cycle 2, then decreased to 50% in cycle 3 and to 45% in cycle 4. The total quantity of CO<sub>2</sub> removed at the end of the 6-hour test ranged from 0.068 mols in cycle 3 to 0.088 mols in cycle 1. These values correspond to from 75% to almost 100% conversion of sorbent based on a product of Wegscheider's salt.

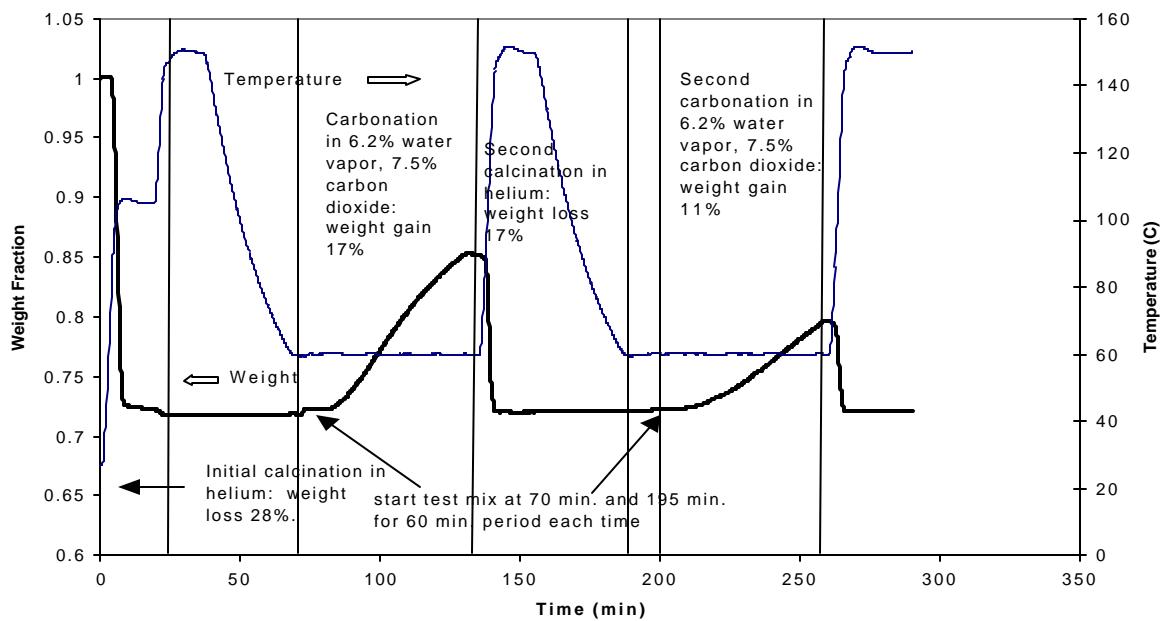
## 4.2 Thermogravimetric Analysis Testing at RTI


### 4.2.1 Testing of Additional Sodium Carbonate and Trona Materials

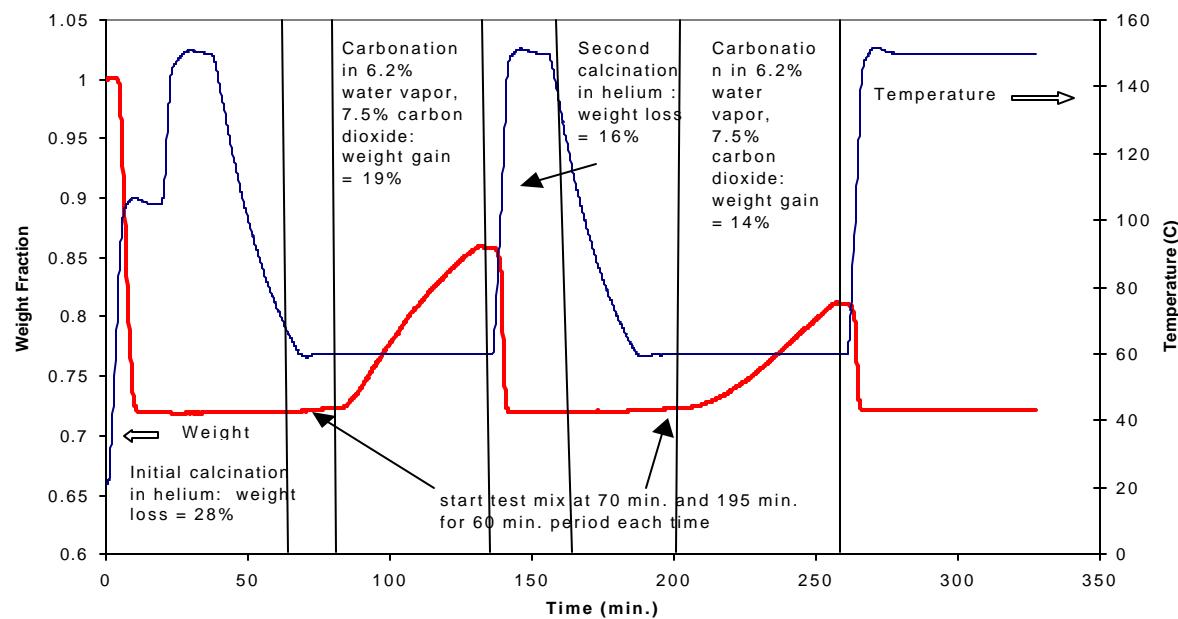
Two sodium carbonate materials were tested this quarter, in an attempt to identify active sorbents with good attrition resistance. A commercial grade dense ash sodium carbonate produced by General Chemical Company was dried in helium at 150EC and then exposed to an atmosphere of 6.2% water vapor and 7.5% carbon dioxide. This material was found to be practically unreactive, gaining only about 0.2% in weight over the course of 60-minutes. Data are shown in Figure 5.



**Figure 5. TGA of general chemical sodium carbonate (dense ash) Lot # E2315177**


A second sodium carbonate material, natural light low density soda ash, also produced by General Chemical Company was predried and tested in a similar carbonation atmosphere. This material was similarly unreactive, gaining less than 0.5% in weight in a 60-minute test. Data are shown in Figure 6.




**Figure 6. Carbonation of general chemical sodium carbonate (Natural Light Low Density Soda Ash Lot #E3005NL).**

Two sodium sesquicarbonate materials were also tested this quarter. A commercial grade sodium sesquicarbonate produced by FMC was subjected to a two cycle test. Data are shown in Figure 7. The material was initially calcined (converted to sodium carbonate) in helium. Calcination was complete at 120EC; this was confirmed by raising the temperature to 150EC. Calcination weight loss was 28% which is approximately equal to the stoichiometric weight loss of 29.6%. The sodium carbonate was then carbonated in an atmosphere of 6.2% water vapor/7.5% carbon dioxide at 60EC and gained 17% in weight in one hour (compared to a weight gain of 58% for stoichiometric conversion to sodium bicarbonate). The material was rapidly and completely calcined to its baseline weight. A second carbonation resulted in a weight gain of 11%, representing a declining carbonation activity.

A second sodium sesquicarbonate material, unrefined trona, produced by Church and Dwight was tested by the same procedure as the FMC material. These data are shown in Figure 8. This material was slightly more active, gaining 19% and 16% in weight in the first and second carbonation cycles. The second calcination did not result in a weight loss to the baseline weight, suggesting that more severe calcination conditions might be needed. While neither of the sesquicarbonate materials tested this quarter resulted in sorbents more active than calcined SBC#3, they may offer advantages in terms of attrition resistance.



**Figure 7. TGA of FMC "Sesqui"--[Sodium Sesquicarbonate (lot # 0325032800B)].**



**Figure 8. TGA of Church and Dwight SQ-810 Natural Sodium Sesquicarbonate (unrefined trona): Lot # 3020500150.**

#### 4.2.2 Testing of Supported Sodium Carbonate Sample

Another batch of spray-dried 40% supported sodium carbonate was prepared this quarter in an attempt obtain improved activity and attrition resistance. This material (sample 050603-2) was predried in helium and subjected to a two-cycle TGA test. In the initial carbonation in 6.2% water vapor/7.5% carbon dioxide, a very rapid weight gain of about 2% was observed and total weight gain over 60 minutes was 9.5% (equivalent to 24% of the active sorbent weight). During subsequent calcination in helium at 150EC, the material released about 90% of the carbonation weight gain. Performance in the second cycle was similar to that observed in the first cycle. Data from this test are shown in Figure 9.

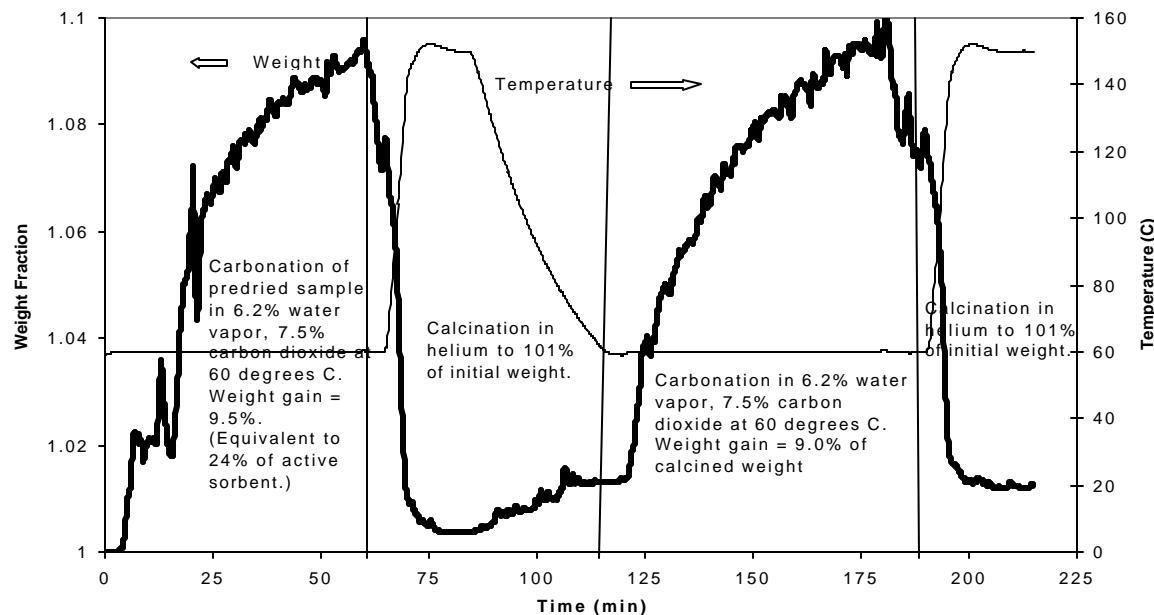



Figure 9. TGA of RTI sample # 050603-2 supported 40% sodium carbonate.

#### 4.3 Physical Properties of Supported Materials

Three spray-dried supported sorbent materials were analyzed this quarter. Results are shown in Table 2.

**Table 2. Physical Properties of Supported Sorbents**

| Sorbent                            | 20% sodium carbonate | 40% sodium carbonate | 40% sodium carbonate |
|------------------------------------|----------------------|----------------------|----------------------|
| Sample Number                      | 042503-2             | 042503-4             | 050603-2             |
| BET Surface Area m <sup>2</sup> /g | 33.02                | 9.38                 | 10.72                |
| Compact Bulk Density g/cc          | 0.56                 | 0.78                 | 0.76                 |
| Total Intrusion Volume ml/g        | n/a                  | 0.3485               | 0.4075               |
| Total Pore Area m <sup>2</sup> /g  | n/a                  | 28.475               | 32.331               |
| Median Pore Diameter (volume) Å    | n/a                  | 5922                 | 5883                 |
| Median Pore Diameter (area) Å      | n/a                  | 74                   | 76                   |
| Median Pore Diameter (4V/A) Å      | n/a                  | 490                  | 504                  |
| Bulk Density g/ml                  | n/a                  | 1.134                | 1.010                |
| Skeletal Density g/ml              | n/a                  | 1.875                | 1.717                |
| Porosity %                         | n/a                  | 39.51                | 41.17                |

n/a = not determined

#### 4.4 Estimation of Process Energy Requirements

One of the most important factors that, in part, determines the increased costs and the loss of power generation efficiency for a coal fired power plant due to incorporating CO<sub>2</sub> removal versus a power plant without CO<sub>2</sub> removal is the energy requirement for CO<sub>2</sub> sorbent regeneration. An idea of the energies involved in CO<sub>2</sub> removal can be obtained by comparing coal fired power plants with and without CO<sub>2</sub> removal. Such a comparison is shown in Table 3. Table 3 was constructed using data from a comprehensive DOE report prepared by EPRI (2000).

Table 3 compares the process energy requirements for Case 7A and 7C from the EPRI Report (2000). Case 7C is a base case for a coal fired power plant without CO<sub>2</sub> removal against which other coal fired power plants using various CO<sub>2</sub> removal alternatives can to be compared. Case 7A is similar to Case 7C except in Case 7A approximately 90% of the CO<sub>2</sub> in the flue gas is removed using an oxygen-inhibited MEA scrubbing process. As shown in Table 3, the gross plant power production is substantially reduced in Case 7A as compared to the base case. The reason for this is that the regeneration of the CO<sub>2</sub>-rich MEA scrubbing solution in Case 7A utilizes low pressure steam that is not available for power generation as it is in the base case, Case 7C. Also, Table 3 reveals several other

**Table 3. Process Energy Requirements for Coal Fired Power Plants with and without CO<sub>2</sub> Removal**

| CASE                                  | EPRI Case 7A<br>Coal Fired Power<br>Plant with MEA CO <sub>2</sub><br>Removal | EPRI Case 7C<br>Coal Fired Power<br>Plant without CO <sub>2</sub><br>Removal |
|---------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <b>GROSS POWER SUMMARY, kWe</b>       |                                                                               |                                                                              |
| Steam Turbine Power                   | 408,089                                                                       | 498,319                                                                      |
| Generator Loss                        | (5,835)                                                                       | (7,211)                                                                      |
| Gross Plant Power                     | 402,254                                                                       | 491,108                                                                      |
| <b>AUXILIARY LOAD SUMMARY, kWe</b>    |                                                                               |                                                                              |
| Coal Handling and Conveying           | 390                                                                           | 390                                                                          |
| Limestone Handling & Reagent          | 920                                                                           | 920                                                                          |
| Preparation                           | 1,860                                                                         | 1,860                                                                        |
| Pulverizers                           | 1,670                                                                         | 1,670                                                                        |
| Ash Handling                          | 1,220                                                                         | 1,220                                                                        |
| Primary Air Fans                      | 970                                                                           | 970                                                                          |
| Forced Draft Fans                     | 19,880                                                                        | 5,050                                                                        |
| Induced Draft Fans                    | 100                                                                           | 100                                                                          |
| SCR                                   | 50                                                                            | 50                                                                           |
| Seal Air Blowers                      | 1,000                                                                         | 1,000                                                                        |
| Precipitators                         | 3,450                                                                         | 3,450                                                                        |
| FGD Pumps and Agitators               | 300                                                                           | 590                                                                          |
| Condensate Pumps and Agitators        | 3,090                                                                         | 2,670                                                                        |
| Boiler Feed Water booster Pumps       | 2,000                                                                         | 2,000                                                                        |
| Miscellaneous Balance of Plant        | 400                                                                           | 400                                                                          |
| Steam Turbine Auxiliaries             | 1,950                                                                         | 3,540                                                                        |
| Circulating Water Pumps               | 1,110                                                                         | 2,030                                                                        |
| Cooling Tower Fans                    | 1,940                                                                         | N/A                                                                          |
| MEA Unit                              | 29,730                                                                        | N/A                                                                          |
| CO <sub>2</sub> Compressor            | 930                                                                           | 1,140                                                                        |
| Transformer Loss                      | 72,730                                                                        | 29,050                                                                       |
| Total Auxiliary Power Requirement     |                                                                               |                                                                              |
| <b>NET PLANT POWER, kWe</b>           | 329,294                                                                       | 462,058                                                                      |
| <b>PLANT EFFICIENCY</b>               |                                                                               |                                                                              |
| Net Efficiency, % HHV                 | 28.9%                                                                         | 40.5%                                                                        |
| Net Heat Rate, kJ/kWh (Btu/kWh) (HHV) | 12,463 (11,816)                                                               | 8,882 (8,421)                                                                |

For Case 7A: 90% CO<sub>2</sub> Removal

For all cases: Heat Input = 1,140,155 kW<sub>heat</sub> (HHV)

power losses for the power plant that incorporates CO<sub>2</sub> removal in comparison to the base case. The major differences in power consumption in the auxiliary unit operations for the base case power plant (in comparison to the plant that incorporates CO<sub>2</sub> removal) are the power consumed in the Induced Draft Fans and the power required for CO<sub>2</sub> compression. The increased power consumption for the Induced Draft Fans in Case 7A over the base case, Case 7C, is due to the power required to overcome the flue gas pressure drop in the MEA scrubber. As shown in Table 3 for Case 7A, the power requirement for CO<sub>2</sub> compression is quite substantial.

Table 3 shows that, by far, the greatest loss of Net Plant Power when comparing the two cases is due to the reduction of power generated by the steam turbines as a result of using low-pressure steam to regenerate the MEA scrubbing solution as described above. Thus the efficiency of a coal fired power plant, which incorporates CO<sub>2</sub> removal by MEA solution, is highly dependent on the energy required to regenerate the MEA scrubbing solution. Unfortunately, in two recently published studies that were sponsored by DOE, there is a large difference in the heat required to regenerate the oxygen-inhibited MEA scrubbing solution. In the EPRI (2000) study the regeneration heat is 71,140 Btu per lbmol CO<sub>2</sub> captured from the flue gas and in the other study, carried out by Alstom Power (2001), the regeneration heat requirement is 103,400 Btu/lbmol CO<sub>2</sub>. The effects of these two regeneration heats on thermal efficiencies of a coal fired power plant are shown in Table 4.

Table 4 shows that regeneration heats of 71,140 and 103,400 Btu/lbmol CO<sub>2</sub> give thermal efficiencies for the power plants of 28.9 and 25.4%, respectively. This is a very significant effect.

In Table 4, the estimated thermal efficiency of a coal fired power plant using RTI's Na<sub>2</sub>CO<sub>3</sub>-based CO<sub>2</sub> capture process is compared to EPRI Case 7A and to Case 7A with the loss of steam turbine power calculated using a MEA regeneration heat duty of 103,400 Btu/lbmol CO<sub>2</sub>. The thermal efficiency of the power plant using RTI's dry CO<sub>2</sub> removal process compares favorably with the power plants using the oxygen inhibited MEA-based CO<sub>2</sub> removal process. Similarly, as in the MEA-based CO<sub>2</sub> removal process, the heat requirement for the regeneration of the Na<sub>2</sub>CO<sub>3</sub> based dry CO<sub>2</sub> sorbent is critical to determining the resulting thermal-efficiency of a power plant using this technology. In Table 4, it was assumed that the heat requirement for regenerating RTI's Na<sub>2</sub>CO<sub>3</sub> based dry CO<sub>2</sub> sorbent was approximately 60,000 Btu/lbmol CO<sub>2</sub>. This figure is very close to the theoretical value that would be expected based on the thermodynamics of the carbonization of sodium carbonate to Wegscheider's salt. As will be shown below, the exact regeneration heat requirement for RTI's Na<sub>2</sub>CO<sub>3</sub>-based dry CO<sub>2</sub> removal process will depend on the operating conditions of the process. Two of the major factors affecting the regeneration heat requirement are the Na<sub>2</sub>CO<sub>3</sub> loading on the sorbent and the Na<sub>2</sub>CO<sub>3</sub> utilization.

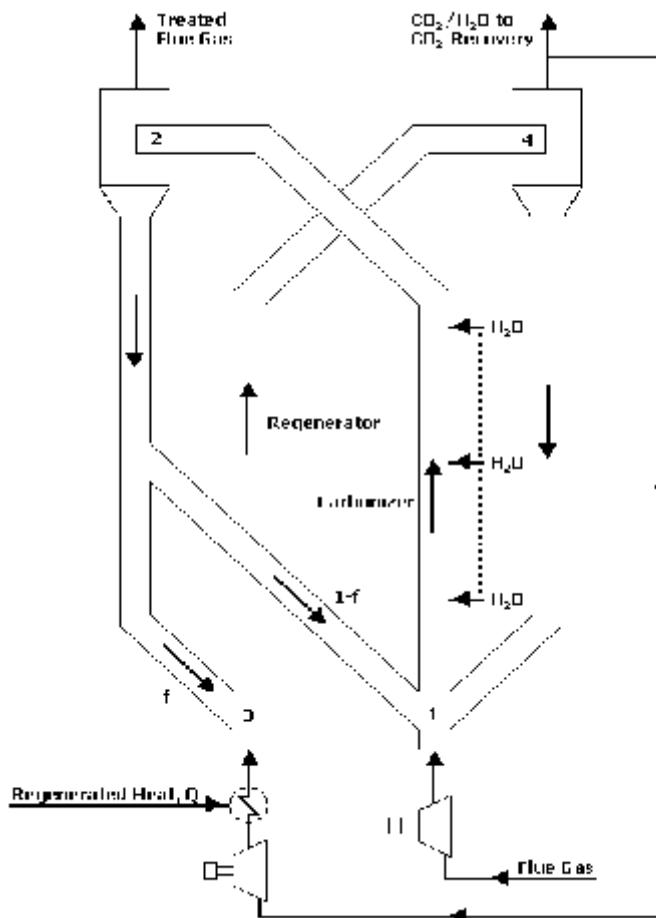
**Table 4. Effect of Heat Requirement for Sorbent Regeneration of Thermal Efficiency**

| CASE                                                                                                  | Heat Requirement for CO <sub>2</sub> Regenerator Btu/lbmol CO <sub>2</sub> | Gross Plant Power kW <sub>e</sub> | Auxiliary Power Requirement kW <sub>e</sub> | Net Plant Power kW <sub>e</sub> | Plant Efficiency (HHV) % |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|---------------------------------|--------------------------|
| EPRI Base Case 7C, Coal Fired Steam Plant without CO <sub>2</sub> Removal                             | Not Applicable                                                             | 491,108                           | 29,050                                      | 462,058                         | 40.5                     |
| EPRI Case 7A, Coal-Fired plant with O <sub>2</sub> inhibited MEA CO <sub>2</sub> Removal              | 71,140 <sup>E</sup>                                                        | 402,254                           | 72,730                                      | 329,524                         | 28.9                     |
| EPRI Case 7A Recalculated, Coal fired plant with O <sub>2</sub> inhibited MEA CO <sub>2</sub> Removal | 103,400 <sup>A</sup>                                                       | 362,178                           | 72,730                                      | 289,448                         | 25.4                     |
| Coal fired plant with Na <sub>2</sub> CO <sub>3</sub> - based dry CO <sub>2</sub> Removal             | 60,000                                                                     | 416,144                           | 72,730                                      | 343,414                         | 30.1                     |

90% CO<sub>2</sub> Removal for Applicable CasesFor all cases: Heat input = 1,140,155 kW<sub>heat</sub> (HHV)<sup>E</sup>EPRI, Evaluation of Innovative Fossil Fuel Power Plants with CO<sub>2</sub> Removal, 2000<sup>A</sup>Alstom Power Engineering Feasibility and Economics of CO<sub>2</sub> Capture on an Existing Coal Fired Power Plant 2001

In Table 4, each power plant alternative was assumed to have the same heat input, and for the power plants which incorporated CO<sub>2</sub> removal, the CO<sub>2</sub> removal efficiency was assumed to be 90%. Thus, for each of these plants the rate of CO<sub>2</sub> removal was the same. Given the regeneration heat requirement for the respective CO<sub>2</sub> removal processes, the rate at which heat is needed for the regeneration of the CO<sub>2</sub> absorbent can be calculated. Based on a thermal efficiency of converting heat from low pressure steam to shaft power in a turbine of 26.7%, the Gross Plant Power of the recalculated EPRI Case 7A shown in Table 4, and the power plant case that uses the RTI dry process for CO<sub>2</sub> removal was calculated. The auxiliary power requirements for these two cases were assumed to be the

same as EPRI's Case 7A (as shown in Table 4). This assumption for the recalculated EPRI Case7A and the power plant using the RTI dry process may not be unreasonable because the major determinants of the auxiliary power requirements, as explained above, are: 1) the CO<sub>2</sub> compression power requirements which are the same for each power plant listed in Table 4 where CO<sub>2</sub> removal is applicable, and 2) the power required by the induced draft fans which might be similar for the MEA-based process and the Na<sub>2</sub>CO<sub>3</sub>-based dry CO<sub>2</sub> removal process, (although, it is anticipated, under more detailed analysis, that the dry process should have a lower pressure drop than the MEA-based CO<sub>2</sub> removal process which involves bubbling the flue gas through a height of liquid in a packed column). The power generation efficiency from low-pressure steam of 26.7% was calculated based on a comparison of EPRI's Cases 7A and 7C.


Based on the rough analysis described above and summarized in Table 4, the RTI Na<sub>2</sub>CO<sub>3</sub>-based dry CO<sub>2</sub> removal process may be capable of yielding an overall thermal efficiency for a power plant utilizing this CO<sub>2</sub> removal technology that is much higher than a power plant using an MEA-based CO<sub>2</sub> removal process.

The thermal efficiency that can be obtained for a power plant, which utilizes the RTI Na<sub>2</sub>CO<sub>3</sub>-based dry CO<sub>2</sub> removal process, is highly dependent on the heat requirement for regenerating the carbonized sorbent. To determine how this requirement depends on the operating conditions of the Carbonizer-Regenerator combination, the following model of the combination is developed.

A simplified flow diagram of the RTI process is shown in Figure 10. The main features of this process are as follows. Flue gas is fed to the bottom of the carbonizer where it is mixed with recycled and regenerated sorbent. The carbonizer and regenerator are both fast fluidized beds. In the carbonizer, CO<sub>2</sub> and water vapor react with Na<sub>2</sub>CO<sub>3</sub> contained in the sorbent to produce Wegscheider's salt. At discrete points along the length of the carbonizer, liquid water is injected into the flue gas/sorbent mixture passing up the carbonizer. The injected water promotes the carbonization reaction by cooling the gas/solid mixture thus increasing the thermodynamic favorability of the carbonization reaction and also promotes the carbonization reaction by increasing the concentration of water vapor in the carbonizer. At the outlet of the carbonizer the treated flue gas and loaded sorbent are separated. At this point a fraction, *f*, of the loaded sorbent is split off to the bottom of the regenerator and the remainder of the loaded sorbent is recycled to the bottom of the carbonizer as shown in Figure 10. In the regenerator, the loaded sorbent is contacted by recycled sweep gas which contains both CO<sub>2</sub> and water vapor. The sorbent and sweep gas are heated. This regeneration heat is labeled "Q" on Figure 10. At the top of the regenerator, the regenerated sorbent and the sweep gas are separated. The regenerated sorbent is recycled to the bottom of the carbonizer. Most of sweep gas is recycled to the bottom of the regenerator and a bleed stream of CO<sub>2</sub> and water vapor is removed from the sweep gas loop for further processing to recover purified CO<sub>2</sub>.

On Figure 10, several of the critical points within the CO<sub>2</sub> capture process have been numbered. These points are the inlet and outlets of the carbonizer and regenerator.

In the present development of a method to determine how the regenerator heat requirement, Q, depends on process operating conditions, total regeneration of the sorbent in the regenerator has been assumed. This implies that  $X_c^{(4)} = 0$  where  $X_c^{(4)}$  is the carbonate conversion at Point 4 on Figure 10.



**Figure 10. Simplified flow sheet for the RTI sodium carbonate based dry carbon dioxide capture process.**

At any point in the process the flows of the various solids can be determined by

$$N_w^{(i)} = \frac{S_o^{(i)} W_c (1 - X_c^{(i)})}{106} \quad (7)$$

$$N_w^{(i)} = \frac{2}{5} \frac{S_o^{(i)} W_c (X_c^{(i)})}{106} \quad (8)$$

$$N_s^{(i)} = \frac{S_o^{(i)} (1 - W_c)}{183} \quad (9)$$

where  $N_j^{(1)}$  is the mass flow rate of component  $j$  at the  $i^{\text{th}}$  point of the flow sheet, lbmol/hr, and  $C = \text{Na}_2\text{CO}_3$ ,  $W = \text{Na}_2\text{CO}_3/3\text{NaHCO}_3$  and  $S = \text{support material}$

$S_o^{(1)}$  is the mass flow rate sorbent flowing at point  $i$  if the conversion  $X_c$  was extrapolated back to zero, lb/hr,

$W_c$  is the weight fraction  $\text{Na}_2\text{CO}_3$  in the fresh sorbent,

and  $X_c^{(1)}$  is the  $\text{Na}_2\text{CO}_3$  conversion at point  $i$ .

Let  $f$  be the fraction of the circulating solids in the carbonizer outlet that are split off from the regenerator, then by material balance,

$$N_c^{(1)} = \underbrace{N_c^{(2)} (1 - f)}_{\text{Na}_2\text{CO}_3 \text{ not sent to Regenerator}} + \underbrace{f N_w^{(2)} \frac{5}{2}}_{\text{Na}_2\text{CO}_3 \text{ produced by Regeneration of Wegsalt}} + \underbrace{f N_c^{(2)}}_{\text{Na}_2\text{CO}_3 \text{ sent to Regenerator}} \quad (10)$$

or

$$N_c^{(i)} = N_c^{(2)} + f N_w^{(2)} \left( \frac{5}{2} \right). \quad (11)$$

Noting that

$$N_c^{(2)} = N_c^{(1)} - \frac{5}{3} M_{\text{CO}_2} \quad (12)$$

where  $M_{\text{CO}_2}$  = moles of  $\text{CO}_2$  absorbed in carbonizer, lbmol/hr. Substituting Equation 12 into Equation 11 and making use of Equation 8 gives

$$N_c^{(1)} = N_c^{(1)} - \frac{5}{3} M_{\text{CO}_2} + f \frac{5}{2} \left( \frac{2}{5} \right) \frac{S_o^{(i)} W_c}{106} X_c^{(2)} \quad (13)$$

Noting that the sorbent support is conserved in the carbonizer, gives, by Equation 8

$$S_o^{(2)} = S_o^{(1)} \quad (14)$$

Simplifying Equation 13 gives

$$X_c^{(2)} = \frac{5}{3} \frac{M_{CO_2}(106)}{S_o^{(1)} w_{c,f}} \quad (15)$$

The carbonate conversion,  $X_c^{(2)}$  could be called the sorbent utilization since this is the highest  $Na_2CO_3$  conversion achieved in the carbonizer-regenerator system.

Based on the above equations, and given 1) the temperature of the solids leaving the carbonizer and regenerator, and 2) the temperature of the gas leaving the regenerator, a heat balance can be carried out around the regenerator section to determine the heat requirement,  $Q$ , for the regenerator.

Based on previous simulations of the regenerator carried out by RTI, it was found that the gas and solids leave the regenerator at approximately the equilibrium temperature,  $T_{eq}$ , for the  $Na_2CO_3$  to Wegscheider's salt reaction based on the bulk gas  $CO_2$  and water vapor partial pressures. Thus, the equilibrium temperature is given by the solution of

$$K[T_{eq}] = P_{CO_2} \cdot P_{H_2O} \quad (16)$$

where  $K[T_{eq}]$  is the equilibrium constant for the  $Na_2CO_3$ -Wegscheider's salt reaction and is a function of temperature only,

and  $P_{CO_2}$  and  $P_{H_2O}$  are the partial pressures of  $CO_2$  and water vapor in the bulk gas, respectively, atm.

Based on minimizing cooling and reheating of the regeneration sweep gas and as a consequence, minimizing the heat exchange equipment needed to do the cooling and reheating, the sweep gas is assumed to be a 50/50 mixture of  $CO_2$  and water vapor. Under this assumption, using Equation 16 and assuming the total pressure in the regenerator is roughly 1 atm, gives an outlet temperature of the regenerator of about 225EF.

The outlet temperature of the solids leaving the carbonizer can be estimated assuming that the solids are in equilibrium with the gas leaving the carbonizer and that the liquid water injection is roughly equal to the amount needed to balance the heat release by the carbonization by the evaporation of the water. Thus the temperature of the solids leaving the carbonizer will be, roughly, those shown in Table 5 for a flue gas containing 12.82%  $CO_2$  and 15.78%  $H_2O$  at the inlet of the carbonizer.

**Table 5. Estimated exit temperature for the carbonizer solids**

| Percent CO <sub>2</sub> Removal | Estimated H <sub>2</sub> O injection<br>lbmol/lbmol flue gas | Estimated Solid<br>temperature at Carbonizer<br>exit, EF |
|---------------------------------|--------------------------------------------------------------|----------------------------------------------------------|
| 0                               | 0                                                            | 186.7                                                    |
| 12.5                            | 0.0529                                                       | 187.2                                                    |
| 25.0                            | 0.1058                                                       | 186.9                                                    |
| 50.0                            | 0.2116                                                       | 184.0                                                    |
| 67.5                            | 0.2645                                                       | 181.1                                                    |
| 75.0                            | 0.3174                                                       | 176.5                                                    |

Since RTI's target CO<sub>2</sub> removal is 50%, and the temperature of the solids leaving the carbonizer (for CO<sub>2</sub> removal less than 50%) is greater than the outlet temperature at the 50% CO<sub>2</sub> removal level as (shown in Table 3), then using an outlet solid temperature of 184EF should yield a conservative estimate of the regenerator heat requirement for CO<sub>2</sub> removal levels of less than or equal to 50%.

Carrying out a heat balance around the regenerator and ignoring work done to compress the sweep gas gives

$$\begin{aligned}
 & N_c^{(2)} f h_c^{184} + N_w^{(2)} f h_w^{184} + f N_s^{(2)} h_s^{184} + Q \\
 & - M_{CO_2} \left[ h_{CO_2}^{225} + h_{H_2O}^{225} \right] - N_c^{(4)} h_c^{225} \\
 & - N_s^{(4)} h_s^{225} = 0
 \end{aligned} \tag{17}$$

where  $h_i^T$  is the enthalpy of component  $i$  at temperature  $T$  (EF) relative to the elements at standard conditions, Btu/lbmol

and

$Q$  is heat added to the Regenerator system, Btu/hr.

Substituting Equations 7, 8, 9 and 14 into Equation 17 and noting, that by the conservation of sorbent support,

$$S_o^{(4)} = f S_o^{(1)} \tag{18}$$

gives

$$\begin{aligned}
& f \frac{S_o^{(1)} W_c (1 - X_c^{(2)})}{106} h_c^{184} + f \frac{S_o^{(1)} W_c}{106} X_c^{(2)} \frac{2}{5} h_w^{184} + f \frac{S_o^{(1)} (1 - W_c)}{183} h_s^{184} \\
& + Q - M_{CO_2} [h_{CO_2}^{225} + h_{H_2O}^{225}] - f \frac{S_o^{(1)} W_c h_c^{225}}{106} \\
& - f \frac{S_o^{(1)} (1 - W_c) h_s^{225}}{183} = 0
\end{aligned} \tag{19}$$

Dividing each term of Equation 19 by the  $CO_2$  absorption rate,  $M_{CO_2}$ , and making use of Equation 15 gives

$$\begin{aligned}
& \frac{5 (1 - X_c^{(2)})}{3 X_c^{(2)}} h_c^{184} + \frac{2}{3} h_w^{184} + \frac{5 (106)}{3} \frac{(1 - W_c)}{183} \frac{1 - W_c}{X_c^{(2)} W_c} h_s^{184} \\
& + Q - [h_{CO_2}^{225} + H_{H_2O}^{225}] - \frac{5}{3 X_c^{(2)}} h_c^{225} \\
& - \frac{5 (106)}{3} \frac{(1 - W_c)}{183} \frac{1 - W_c}{X_c^{(2)} W_c} h_s^{225} = 0
\end{aligned} \tag{20}$$

The enthalpies listed in Equation 20 can be evaluated by standard techniques using the standard enthalpies of formation given by Vanderzee (1982), for every component except the support material (which was taken from Knacke et al. (1991), and using heat capacities given by Knacke et al. (1991), for each component except Wegscheidner's salt which was taken from Vanderzee (1982). The enthalpies used to evaluate Equation 20 are listed in Table 6.

**Table 6. Enthalpies of formation relative to the elements at standard condition for various components at 184 and 225EF**

| Symbol       | Component                   | Enthalpy Btu/lbmole |           |
|--------------|-----------------------------|---------------------|-----------|
|              |                             | T = 184EF           | T = 225EF |
| $h_{CO_2}^T$ | $CO_2$                      |                     | ! 167840  |
| $h_{H_2O}^T$ | $H_2O(g)$                   |                     | ! 102830  |
| $h_c^T$      | $Na_2CO_3$                  | ! 482740            | ! 481570  |
| $h_w^T$      | $Na_2CO_3 \text{C}3NaHCO_3$ | ! 1700400           |           |
| $h_s^T$      | Support                     | ! 887580            | ! 886220  |

Using the data given in Table 4 and evaluating each term in Equation 20 gives

$$\frac{Q}{M_{CO_2}} = 58360 + \frac{637}{X_c^{(2)}} + \frac{1313}{X_c^{(2)} W_c} \quad (21)$$

Equation 21 provides a quick method to determine the heat that must be supplied to the regenerator. For example, using RTI's present target for  $Na_2CO_3$  loading on the sorbent or

$$W_c = 0.4 \quad (22)$$

and expected sorbent utilization,

$$X_c^{(2)} = 0.25 \quad (23)$$

Equation 21 gives the regenerator heat duty as

$$\frac{Q}{M_{CO_2}} = 74040 + \frac{Btu}{lbmol CO_2} \quad (24)$$

The heat duty is roughly 25% greater than the regenerator heat duty assumed in the construction of Table 4 for the case of RTI's  $Na_2CO_3$ -based dry  $CO_2$  capture process. The heat duty of 74040 Btu/lbmol  $CO_2$  calculated using Equation 21 is 75% of the oxygen inhibited MEA scrubbing solution regeneration heat given by Alstom Power (2001) and is about equal to that given by EPRI (2000). Thus, the improvement in power plant performance using the RTI  $Na_2CO_3$ -based dry  $CO_2$  capture process versus a oxygen-inhibited MEA based  $CO_2$  capture process cannot be made until a more detailed engineering design of the RTI process is complete and the discrepancy between the heat required to regenerate oxygen inhibited MEA solution given by EPRI and Alstom Power is resolved.

Without a more detailed engineering design of the RTI  $CO_2$  capture process, Equation 21 makes it clear that areas of research on the RTI process should be the maximization of the  $Na_2CO_3$  loading on the sorbent while maintaining structural integrity and durability and the investigation of methods of sorbent preparation that might lead to enhanced  $Na_2CO_3$  utilization.

#### 4.5 Other Project Activities

RTI and LSU presented a paper at the Second Annual Conference on Carbon Sequestration in Alexandria, Virginia on May 6, 2003. RTI and LSU participated in a program review meeting in June, 2003.

## 5.0 CONCLUSIONS AND FUTURE WORK

Multi-cycle fixed bed tests suggest that SBC#1 behaves similarly to SBC#3, in that carbonation activity increases after the second calcination and does not decline in cycles 2 through 5.

TGA testing indicates that low density sodium carbonate and dense ash sodium carbonate exhibit relatively little carbonation activity. In addition two different sodium sesquicarbonate materials were tested and found to be less active after calcination than calcined SBC.

Different data sources lead to different estimates of energy requirements for liquid absorption processes based on monoethylamine materials. Mathematical modeling of the dry sorbent process indicates that, for supported sorbents, the amount of active sorbent loaded on the support is critical to the energy requirements for the process.

During the next quarter, LSU will improve the fixed bed reactor and gas analysis systems. RTI will conduct fluid bed tests on the most recent batch of supported sorbent. Church and Dwight will complete a preliminary economic analysis of the process.

## 6.0 REFERENCES

Alstom Power Inc., "Engineering Feasibility and Economics of CO<sub>2</sub> Capture on an Existing Coal-Fired Power Plant", Final Report, Volume I, June 2001.

EPRI, "Evaluation of Innovative Fossil Fuel Power Plants with CO<sub>2</sub> Removal", Report Number 1000316. Palo Alto, CA. December, 2000.

Green, D.A., Turk, B.S., Gupta, R., and Lopez Ortiz, A., "Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents", Quarterly Technical Progress Report, Research Triangle Institute, January 2001.

Green, D.A., Turk, B.S., Portzer, J. W., Gupta, R., McMichael, Liang, Y., and Harrison, D.P., "Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents", Quarterly Technical Progress Report, Research Triangle Institute, April 2003.

Knacke, O., Kubaschewski, O., and Hesselmann, K., "Thermochemical Properties of Inorganic Substances", Volume 2. Second Edition. Springer-Verlag. 1991.

Vanderzee, C. E., "Thermodynamic Relations and Equilibria in (Na<sub>2</sub>CO<sub>3</sub> + NaHCO<sub>3</sub> + H<sub>2</sub>O): Standard Gibbs Energies of Formation and Other Properties of Sodium Hydrogen Carbonate, Sodium Carbonate Heptahydrate, Sodium Carbonate Decahydrate, Trona: (Na<sub>2</sub>CO<sub>3</sub>·NaHCO<sub>3</sub>·2H<sub>2</sub>O), and Wegscheider's Salt: (Na<sub>2</sub>CO<sub>3</sub>·3NaHCO<sub>3</sub>)", J. Chem. Thermodynamics, 14, p. 219-238, 1982.