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EVALUATING SHORT-TERM CLIMATE VARIABILITY
IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS

PROJECT ACCOMPLISHMENTS

This literature study investigated methods and areas to deduce climate change and climate
patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups
are actively engaged in intensive climate-related research. Ongoing research might be (overly)
simplified into three categories: 1) historic data on weather that can be used for trend analysis and
modeling; 2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon,
etc.) studies covering the last 10,000 years (about since last glaciation); and 3) geological,
paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of
importance is our ultimate ability to join these various lines of inquiry into an effective means of
interpretation. At this point, the process of integration is fraught with methodological troubles and
misconceptions about what each group can contribute. This project has met its goals to the extent
that it provided an opportunity to study resource materials and consider options for future effort
toward the goal of understanding the natural climate variation that has shaped our current
civilization.

A further outcome of this project is a proposed methodology based on “climate sections”
that provides spatial and temporal correlation within a region. The method would integrate
cultural and climate data to establish the climate history of a region with increasing accuracy with
progressive study and scientific advancement (e. g., better integration of regional and global
models).



i

TABLE OF CONTENTS

EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

2.0 GOALS AND OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

3.0 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
3.1 Climate Change Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
3.2 The North American Midcontinent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

3.2.1 Recent Climate Study in North Dakota . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
3.2.2 Summary of Paleosol Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

4.0 SCOPE OF WORK: STUDY EXAMPLES OF METHODS AND RESULTS . . . . . . . .  5

5.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.0 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

SELECTED CLIMATE PAPERS ORGANIZED BY TOPIC . . . . . . . . . . . . . . . . . Appendix A



ii

EVALUATING SHORT-TERM CLIMATE VARIABILITY
IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS

EXECUTIVE SUMMARY

The debate over the importance of anthropogenic effects on the environment cannot be fully
appreciated or resolved until human industrial, agricultural, and domestic impacts are understood
in the context of natural climate change. Arguments over climate trends need to consider the
recent geologic record. Placing events resulting from climatic fluctuations into the context of a
span of time greater than human activity provides a more complete basis upon which to interpret
human effect on the environment. The importance of a thorough understanding of this natural
climate variability is heightened as greater preventive measures are enacted to restrict the release
of greenhouse gases into the environment. Because actions taken on behalf of the environment
will have global economic impacts, it is imperative that we develop a better understanding of
global climate change to determine if modern climate trends are the result of human activity,
natural variability, or some combination of these factors.

Clearly, major changes in climate have occurred over geologic time, as well as significant
changes during preindustrial civilizations. Ongoing studies indicate that variations in climate may
have occurred regularly over the last few thousand years. The debate over the importance of
natural climate variability versus anthropogenic causes of climate change cannot be resolved until
more is understood of this natural variation. The possibility of short-term geological cycles that
indicate significant natural climate variability should be of great interest to the public, relevant
industries, and governing bodies.

Short-term climate cycle research requires interdisciplinary integration of geological,
paleontological/biological, and analytical methods. Precise temporal frameworks, either as single
points that can be tied to larger scenarios or as closely spaced control points where accurate
interpolation is possible, are necessary to deduce the pace of climate change and possible patterns.
Many of the studies done prior to the 1990s can provide only a general framework, with limited
temporal resolution, for interpreting a constantly changing climate. Many useful early studies
showing climate trends or patterns have been conducted, but few have the power to resolve the
minor variations in climate that play such a significant role in culture stability without actually
constituting a major climate shift (e.g., changes in temperature or precipitation that result in
drought or flooding).

In midcontinental areas of generally stable semiarid (badlands processes) to subtemperate
(e.g., lake basin areas) climate, wetting and drying of sediment drastically affect alluvial and eolian
processes, and seasonality is well defined. Investigation of these areas could establish a sound
framework for climate change standards as a basis for regional comparisons. Studies that can
correlate ecological/vegetational boundaries could provide for an intraregional approach to
climate variation and cycle study.



North American Commission on Stratigraphic Nomenclature, 1983, North American stratigraphic code: American1
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As a working idea to be further investigated, I propose that “climate sections” be
established that serve as a standard of reference for a climate history for a region. This idea is
somewhat analogous to concepts of use established in stratigraphy.  In stratigraphic studies,1,2

stratigraphic sections are chosen that represent type, or reference, examples of a particular
formation, range of fossil occurrence, or time boundary. Means of correlation from one area to
another are based on whatever appropriate criteria are available, and with sufficient study, events
in space and time can be placed into coherent histories. Similarly, climate sections can be
established on the basis of criteria that provide the optimum conditions for spatial and temporal
correlation within a region. As a result, the climate history can be established and honed to greater
accuracy with increasing study and technological advances. These climate sections may also
provide an ideal opportunity to integrate cultural data derived from anthropological studies. As
culture and climate are highly correlated, a convincing history of climate change may well be
possible.
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EVALUATING SHORT-TERM CLIMATE VARIABILITY
IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS

1.0 INTRODUCTION

The debate over the importance of anthropogenic effects on the environment cannot be fully
appreciated or resolved until human industrial, agricultural, and domestic impacts are understood
in the context of natural climate change. Arguments concerning trends in climate should be placed
in the context of the geologic record, where events resulting from climatic fluctuations can be
interpreted over a span of time greater than human activity, providing a more meaningful basis
upon which to interpret the human effect on the environment. The importance of a thorough
understanding of this natural variability is heightened as greater preventive measures are enacted
to restrict the release of greenhouse gases into the environment. The debate over the importance
of natural climate variability versus anthropogenic causes of climate change cannot be resolved
until more is understood of the natural variation. The possibility of short-term geological cycles
that indicate the presence of significant natural climate variability should be of great interest to the
public, relevant industries, and governing bodies. Clearly, major changes in climate have occurred
over geologic time, as well as significant changes during preindustrial civilizations. Ongoing
studies indicate that variations in climate may have occurred regularly over the last few thousand
years. Because actions taken on behalf of the environment will have global economic impacts, it is
imperative that we develop a better understanding of global climate change to determine if
modern climate trends are the result of human activity, natural variability, or some combination of
these factors.

2.0 GOALS AND OBJECTIVES

The goal of this project is to better understand natural climatic variations in the recent past
(last 5000 years). The information generated by this work is intended to provide better context
within which to examine global climate change. The ongoing project will help to establish a basis
upon which to interpret late Holocene short-term climate variability as evidenced in various
studies in the northern Great Plains, northern hemisphere, and elsewhere. Finally these data can be
integrated into a history of climate change and predictive climate models. This is not a small
undertaking. The goals of researchers and the methods used vary considerably. The primary task
of this project was literature research to 1) evaluate existing methodologies used in geologic
climate change studies and evidence for short-term cycles produced by these methodologies and
2) evaluate late Holocene climate patterns and their interpretations.
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3.0 BACKGROUND

3.1 Climate Change Overview

Natural climatic variation since the Wisconsinan glaciation (from 10,000 years ago to the
present) has been documented through a variety of environmental indicators. Temperature
changes during this time, known as the Holocene, of 6E or 7EC are documented (Folland and
others, 1991), and their effects on human civilizations cannot be doubted (e.g., Mayans, Anasazi).

3.2 The North American Midcontinent

The midcontinent of North America serves as an important barometer to present weather
conditions and past climate change in the general absence of oceanic buffers (Leon Osborne,
verbal communication, 1999). Climate studies in areas with aquatic reservoirs typically involve
evidence of changes in the biota resulting from fluctuations in precipitation, reflecting periods of
increased aridity followed by times of more equable climate (Bradbury and others, 1993). For
example, variation in the relative percentage of palynomorphs (fossil pollen and spores)
(McAndrews, 1966), indicating changes in vegetational patterns, have been widely used to
interpret climate change in areas with mixed vegetation types, where lakes or other depositional
sinks are relatively common. Diatoms (single-celled plants) and ostracodes (bivalved arthropods)
have been used to indicate variation in the salinity of bodies of water in more arid environments,
but associated again with semipermanent bodies of water (Laird and others, 1996).

In the southwest and elsewhere, variation in the equability of the climate has been
interpreted from the seasonal variations recorded in tree rings. These are some examples of how
organisms track seasonal and general climatic variation as a function of habitability in an already
wet, or conducive to life, environment.

In semiarid settings, as in western North Dakota, only limited effort has been given to
establishing the pattern of climatic variation recorded in cycles of alluvial sedimentation in highly
erodible bedrock (Kuehn, 1995; Hartman and others, 1997, 1998; Hartman and Kuehn, 1999).
The grass- and badlands of the northern plains conserve few permanent bodies of water to record
variation in biotic productivity. These distinctive habitats do, however, record wet and dry periods
by decreasing and increasing rates of cut-and-fill deposition in vast tracks of unconsolidated and
semiunconsolidated bedrock. Unlike changes in the various biotic components of a diverse
ecosystem, which may require substantial lag times to reflect climatic patterns, increased or
decreased erosion and deposition may be a direct reflection of wet and dry cycles. As a corollary,
badlands sedimentation patterns are such a potentially sensitive environmental indicator that they
may be capable of recording short-period cycles and thus provide additional objective information
on correlating cause and effect, such as those effects caused by changes hypothesized to occur
because of solar activity.
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3.2.1 Recent Climate Study in North Dakota

The investigation of climate trends and cycles associated with paleosols (past soils) from
western North Dakota and adjacent areas led to a broader understanding of the potential natural
variability of the climate across the northern plains. The following discussion (Hartman and
others, 1998) on climate and paleosols provides one impetus for further study in this area.

The basic principles concerning the relationship between climate, soils, and geomorphic
processes provide the necessary conceptual framework for using paleosols and related analytical
data for subsequent interpretations. Climate, particularly insolation and moisture, has a direct
influence on vegetation. Together, both climate and vegetation, in the absence of structural,
eustatic changes or cultural modifications, are the major driving forces behind the weathering,
erosion, transportation, and deposition of sediment. Landscape form is, therefore, determined by
the balance between deposition, erosion, and stability (Butzer, 1976; Derbyshire, 1976).

Several basic geomorphic models utilizing the above-mentioned climatic/geomorphic
relationships have been developed within the last several decades. For example, during periods
when landforms are stable, hillslopes are covered by a protective mat of vegetation, and a balance
is established between weathering (soil formation) and valley sedimentation. The weathering of
surface sediments during periods of landscape stability produces soils. During periods of
landscape instability, vegetation is significantly reduced, if not removed completely. This leads to
slope disequilibrium as erosion outpaces soil formation. Disequilibrium results in the total and/or
partial truncation of soils, which, in turn, accelerates the lateral transfer of sediment to lower
slopes and valley bottoms.

Critical to this project, however, is the hypothesis that at the scale of individual geomorphic
landscapes, change can also occur as a result of “complex response” to intrinsic variables
(Schumm, 1973). Complex response is an active process in most landscape settings, especially
fluvial, and is most acute in highly dynamic landscapes, such as badlands, where geomorphic
thresholds are in constant adjustment (Bryan and Yair, 1982). The concept of complex response
as a causal factor behind local geomorphic variability is discussed later in this report.

As demonstrated by Langbein and Schumm (1958), slope erosion and/or runoff is most
directly affected by precipitation, although temperature is also a key factor, as it greatly affects
evapotranspiration. In semiarid regions, including all of western North Dakota, the effects of
temperature and precipitation on runoff and sediment yield are particularly conspicuous (Langbein
and Schumm, 1958; Knox, 1984). In such areas, rather modest changes in mean annual
precipitation (i.e., 10%) and temperature (i.e., 2EC) can result in dramatic changes in mean annual
sediment yield to valley settings in particular (Knox, 1984). Therefore, periods of warm and dry
climate are likely to be associated with episodes of eolian, fluvial, and slopewash aggradation as
hillslopes and uplands are stripped of vegetation and sediment is eroded, transported, and
redeposited. On the other hand, periods of cool and moist climate are likely to result in landscape
stability and soil formation. Under these conditions, sediment yield from slope runoff and wind
deflation is reduced, and streams, denied sediments, begin to downcut.
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This model formed the conceptual framework for the interpretation of depositional and
climatic environments associated with the late Pleistocene/Holocene-age Oahe Formation in
North Dakota (Clayton and others, 1976). Studies in the badlands of western North Dakota and
elsewhere have since verified the usefulness of this pattern, but have also identified the importance
of local geomorphic conditions and, hence, accentuate the need to consider scale when
interpreting soil, climatic, and landform data (Kuehn, 1995).

On the scale of physiographic sections, subsections, and regions, the basic climate/
landscape model of Knox (1984), Langbein and Schumm (1958), Clayton and others (1976), and
others holds great promise. Problems arise at the local level or in attempting to correlate patterns
noticeable at a number of small, isolated localities scattered over a large region. The following
discussion highlights some of the basic concepts of the large-scale model in light of the basic goals
of the project.

In general, episodes of alluvial aggradation, as represented by discrete accumulations of
floodplain and former floodplain sediments at various elevations and ages, suggest that warm and
dry conditions prevailed or were at least more prevalent during the aggradational process.
Episodes of valley downcutting suggest the opposite, that is, that cool and moist conditions
prevailed during periods of alluvial degradation. The aggradation and degradation of windblown
sediments (i.e., eolian or loess deposits) in western North Dakota appear to follow this same basic
pattern (Clayton and others, 1976; Kuehn, 1995).

Paleosols represent periods of landscape stability. Landscape stability can result from a
change in 1) climate, 2) local geomorphic conditions, and/or 3) other factors such as tectonics,
eustatic activity, biologic activity, cultural activity, and fire. Climate is suspected as a causal factor
behind paleosol formation when 1) synchronous soils are widespread and correlated beyond
individual localities or drainage basins, 2) soil formation is occurring at multiple places at the same
time, or 3) stable carbon isotope and other proxy sources indicate that soils are associated with
episodes of cool–moist climate.

In western North Dakota, these climate, soil, and geomorphic relationships strongly suggest
that investigations must focus on the analysis of data at all scales, including 1) intrasite or small
scale (i.e., within a single stratigraphic section), 2) intersite or medium scale (i.e., between
different stratigraphic sections within the same subregion), and 3) large scale (i.e., between
subregions, regions, and provinces). The types of data to be considered in such multiscaled
investigations include 1) geomorphic setting, 2) geomorphic history, 3) soils (including thickness,
level of development, and correlation), 4) unit contacts and general stratigraphy, 5) evidence of
geological unconformities, 6) textural changes and changes in depositional environments, and 7)
proxy climatic data, such as stable carbon, pollen, phytoliths, diatoms, and snails.

In order to draw meaningful inferences concerning the relationships between climate,
geomorphology, and soils, research must initially focus at the intrasite, or locality, level, where
geologic sections are measured and which represents the main emphasis of this project.
Subsequently, however, data concerning intersite correlations and regional phenomena must be
incorporated to weigh the significance of local results and interpretation. The ultimate goal of this
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project is to validate the premise that short-term cycle patterns can be meaningfully interpreted in
geomorphically dynamic terrains to establish regional and, hopefully, global context.

3.2.2 Summary of Paleosol Research

Research completed to date by Hartman and others (1997, 1998) and Hartman and Kuehn
(1999) suggests the potential for significant use of paleosols in sensitive semiarid terrains.
Concerning short-term cycles, we have learned that late Holocene sediments in the badlands of
Theodore Roosevelt National Park, Billings County, and in the prairie settings of the Knife River
Indian Village National Historic Site, Mercer County, and along the north shore of Lake
Sakakawea (Missouri River), McLean County, preserve a record of numerous paleosols buried by
alluvial deposits. Along the headwaters of Knutson Creek in Theodore Roosevelt National Park,
Ab horizons occur in minor sections (<1.6 m) with as many as ten paleosols. Although these have
not been dated directly, a date from a nearby section suggests formation of the paleosols over the
last 1430 years. The Knife River Elbee Bluff Locality contains eight Ab horizons in a 2.4-m
section, the middle portion of which has five thin, evenly spaced paleosols from about 2000 to
2974 years before present (BP). The Lake Sakakawea Douglas Creek Locality consists of a
stacked, apparently conformable sequence of 15 Ab horizons in a 2.8-m section that can be traced
laterally across a small paleovalley. The occurrence of paleosols at this locality can be interpreted
over a span of 2655 years (± analytical error). Landform instability may have resulted in alluvial
deposition on average about once every 170 to 180 years.

The paleosol record preserved at all three localities indicates that soils seem to have been
the result of relatively stable environments interrupted by brief episodes of burial every 140 to 200
years. The regularity of these burial events may stand as possible proxy indicators of minor
climatic variation on an otherwise general record of climate stability. Stable carbon studies of
these paleosols indicate generally cool and moist conditions (!22.6 ± 0.6 * C ‰), except for13

PDB

those forming about 2585 years BP (Douglas Creek) to at least 2165 years BP (Elbee Bluff),
during which warmer and drier conditions (!20.0 ± 0.4 * C ‰) more likely prevailed.13

PDB

4.0 SCOPE OF WORK: STUDY EXAMPLES OF METHODS AND RESULTS

This project represents an analysis of literature on climate change. A large number of papers
on climate change issues were examined. Particular attention was given to methods that provide a
means to interpret climate change patterns, cycles, or trends. Although the project focused on the
recent past (Holocene), methods and interpretations that concerned major shifts or variability in
the Earth's climate were also considered. As mentioned, the general absence of geological
constraints in climate models does not indicate that climate has not changed significantly in the
past, but that it is difficult to derive transform functions directly applicable to the temporal scale
(i.e., short-term phenomena) that is of interest to the public. Examination of evidence of changes
in the biotic and physical histories preserved in the sediment or rock record extends the limited
historical record. Evidence of biotic change includes data derived from palynomorphs, diatoms,
phytoliths, ostracodes, mollusks, and mosses. Evidence of climate-based changes can also be
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found in the physical properties of sediments such as changes in color, texture, mineralogy, trace
metals, varve layering, pedogenic carbonate geochemistry, and stable carbon and oxygen isotopes.

The key element in interpreting these changes is our ability to construct high-resolution time
scales to determine rate and, possibly, extent of climate change. Research on these topics includes
radioactive isotopic geochronometers, paleomagnetic reversal stratigraphy, dendrochronology,
varve time scales, and thermoluminescence.

A.  Palynomorphs

A.1. Baker, R.G., Maher, L.J., Chumbley, C.A., and Van Zant, K.L., 1992, Patterns of
Holocene environmental change in the midwestern United States: Quaternary Research,
v. 37, p. 379–389.

Summary. The movement of the prairie ecozone boundary during the Holocene was
studied from north-central Iowa to southeast Wisconsin using pollen assemblages collected from
four locations. The collection sites included Clear Lake, Iowa; Roberts Creek, Iowa; Devils Lake,
Wisconsin; and Lima Bog, Wisconsin. These sites record climate from 8000 to 3000 yr BP.

In summary:

[f]rom the northern Great Plains east as far as south-central Minnesota and central
Iowa, the sequence of vegetational changes resembles those at Clear Lake: Prairie
elements appeared as early as about 9000 yr BP and were at their peak from 7500 to
about 4000 yr BP. During this time of maximum aridity in these areas, moisture
levels were at their peak and mesic forest was present along Roberts Creek and at
the Wisconsin sites (Figure 5). Prairie invaded eastern Iowa only after 5500 yr BP,
at the same time that xeric forest replaced mesic forest in southern Wisconsin
(p. 386).

Conclusion. This project is useful in that it traces the advance/retreat of prairie across
several different sites. However, it would be a better project if the interpretation were not limited
to only pollen data.

Keywords: Palynomorph analysis

A.2. Sauchyn, M.A., and Sauchyn, D.J., 1991, A continuous record of Holocene pollen from
Harris Lake, southwestern Saskatchewan, Canada: Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 88, p. 13–23.

Background. The northern Great Plains study area of Harris Lake is located on the west
block of the Cypress Hills region of southwestern Saskatchewan and southeastern Alberta. It is at
an elevation of 1310 m in Saskatchewan and 1465 m in Alberta. Harris Lake was formed in a
glacial meltwater channel approximately 12,000 yr BP. The lake has a surface area of 9 ha
(0.09 km ) and a maximum depth of 1.5 m.2
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Analysis of texture and structure indicates a low-energy environment with stable lake levels
since its initial formation, the only exception to this being higher sedimentation rates during the
Altithermal. The mean sedimentation rate was determined to be 1.06 mm/yr. This was further
divided into 1.7 mm/yr from 3450 to 5120 yr BP and 0.28 mm/yr from 1470 yr BP to the present.

The major climate indicator studied at this site is pollen. Chronologic control at this site was
achieved through radiocarbon dating and the identification of the Mazama ash (6800 yr BP). The
first C date of 9120 ± 250 yr BP was obtained from the base of the 9.6-m core. Radiocarbon14

dates of plant macrofossils were taken at three other depths. Pollen samples were taken at 8-cm
intervals along this core. Pollen analyses were divided into five zones, the ages of which were
interpolated from dating methods previously mentioned.

Zone I represents 9120–7700 yr BP. During this period, “the tree–herb ratio is intermediate
compared to the other zones; Populus is the main arboreal taxon and Pinus and Picea are at
lower levels in this zone than anywhere else in the profile” (p. 17). This assemblage represents a
Populus–grassland–shrub complex. The vegetation is transitioning into prairie. Zone II
encompasses the period between 7700 and 5000 yr BP and is considered to represent the
Altithermal. At the Zone I–Zone II boundary, Populus and Araceae pollen percentages decline
drastically and Pinus increases. “Trees and aquatics are at minimum levels, while herbs are at
maximum” (p. 17). Plant taxa indicative of dry, saline, or disturbed areas are at their maximum of
this profile in this zone. Overall, “this vegetation indicates the driest conditions in the profile” (p.
19). Zone III ranges from 5000 to 4500 yr BP and is interpreted to represent conditions
transitional between the [A]ltithermal of Zone II and the climatic deterioration evident in Zone
IV. Levels of Populus and Chenopodiaceae–Amaranthaceae decrease, while Pinus Picea,
Sphagnum, Typha, and Betula increase. Also, Urticaceae levels are at their maximum, indicating
“more stream bank and moist woodlands habitat. These vegetation changes suggest the onset of
cooler and wetter conditions (p. 19). Zone IV bounds the period from 4500 to 3200 yr BP. The
changes that occur here “suggest that forest cover, in particular spruce forest, increased
substantially and rapidly after the [A]ltihermal. Pinus levels of 25–30% indicate that pine was
definitely in the Cypress Hills at this time. Wetter conditions also are indicated by the increase in
aquatic pollen” (p. 19). Zone V includes from 3200 yr BP to the present. Pinus pollen increases
substantially, while Gramineae, Cyperaceae, Chenopodiaceae–Amaranthaceae, Ambrosiinae,
Caryophyllaceae, and herbs decrease only slightly. “There has been little vegetation, and by
inference, climatic change over the last 3200 yrs in the Cypress Hills. The present mosaic of
grassland, Piceae forest, Populus tremuloides forest, Pinus contorta forest, and wetland
vegetation in the Cypress Hills is reflected in the pollen profile of this zone” (p. 19).

Summary. The Altithermal is represented in the section by the time period of 7700–5000 yr
BP. Maximum warmth and aridity occurred around 7700 to 6800 yr BP. A cooling trend began
approximately 5000 yr BP. Finally, the modern vegetation assemblage developed around 3200 yr
BP.

The study of Harris Lake includes a continuous record of the Holocene for the northern
Great Plains. This record has decent chronological control, although more radiocarbon dates
derived through accelerator mass spectrometer (AMS) methods would benefit the interpretations.



8

The data from this location appear to support data from other studies in the region in both type of
climate fluctuation and the timing of these events.

Conclusion. This well done but traditional pollen work could serve as an important
reference standard if additional geochemical and radiometric analyses were conducted. The
temporal span of the stratigraphic section provides an opportunity to correlate other similar
studies.

Keywords: Palynomorph analysis

B.  Phytoliths

B.1. Fredlund, G.G., and Tieszen, L.L., 1997, Phytolith and carbon isotope evidence for late
Quaternary vegetation and climate change in the southern Black Hills, South Dakota:
Quaternary Research, v. 47, p. 206–217.

Background. Identification of phytolith assemblages and analysis of stable carbon isotopes
were coupled to provide a more complete interpretation of climate change in the Wind Cave
National Park of the Black Hills, South Dakota. Paleosols were important to this study in defining
periods of landscape stability. Following an early period of instability between 8000 and 4500 yr
BP, one ancient soil formed across much of the landscape, recording a significant period of
landscape stability from ca. 4500 to 3600 yr BP. This soil was abruptly buried by sediments from
a second period of landscape instability from about 3600 to 1200 yr BP (p. 210).

The phytolith and stable carbon data indicate that the largest change in climate occurred
between 11,000 and 9000 yr BP. During this time, * C values rose from !24.0l‰ to !20.0l‰,13

indicating a transition from C  vegetation to a C –C  mixture. At approximately 8000 years BP,3 3 4

the “erosional unconformity suggests xeric climatic conditions” (p. 215). Following this, the * C13

values were typically !19.0l‰ to !21.‰, with the maximum being !15.8l‰. These values
represent dominance by C vegetation.4 

Summary. In the Wind Cave area, the climate was cool and moist from 11,000 to
9000 yr BP. This was followed by a transition to more xeric conditions, which continued into the
late Holocene.

Conclusion. The phytolith data in this study are used more to support the * C values than13

to identify climatic changes. However, their use does help to create a fuller view of the
environmental change during the Holocene.

Keywords: Phytoliths, stable carbon, paleosols
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C. Diatoms

C.1. Brugam, R.B., 1980, Postglacial diatom stratigraphy of Kirchner Marsh, Minnesota:
Quaternary Research, v. 13, p. 133–146.

Summary. The assemblages of diatoms found were compared by cluster analysis with
modern assemblages identified at 159 lakes in Minnesota and Labrador. The period of time
encompassed by the Kirchner Marsh record, 25 mi south of Minneapolis, is from 13,000 to
5500 yr BP. The ages applied to different positions along the core used for this study are based on
correlations of pollen stratigraphy between this core (K-7) and a previously dated core (K-1). One
problem with the use of diatom assemblages, as stated by the authors, is that there is no a priori
reason “why diatoms should be related in a continuous, linear manner to environmental variables.
The true relationships may be nonlinear or involve discontinuities or threshold effects” (p. 141). It
is for this reason that cluster analysis was used rather than multiple linear regression techniques.

Pollen Zone A contains no planktic species preserved, while epipelic species dominate. This
could indicate a lake of any depth, but clarity is required to support the dominant species if the
lake was of great depth. Zone A-b (13,000–10,200 yr BP) reflects an increase in productivity,
clear water, and relatively deep water. Zone B (10,200–9500 yr BP) provides little definitive
information in that the assemblages identified here do not have a modern analog. Beginning at
9500 yr BP, a short period of eutrophication occurred. Then, “both the rise in spicules and the
dominance of epiphytic species indicate shallowing beginning the middle of zone C-a”
(7500–5500 yr BP) (p. 144). Any assemblages younger than this are difficult to interpret in terms
of water depth in that they do not match any modern lake assemblages.

Conclusion. The timing of events recorded at this site is not made clear in this paper except
for comments made in the abstract. The paper would have been more useful if a discussion of the
ages of pollen zones had been included. Otherwise, this study applies an interesting method, trying
to directly equate the subfossil climate record with modern analogs, drawing from previous
studies to make a more informed interpretation of climate change.

C.2. Laird, K.R., Fritz, S.C., Grimm, E.C., and Mueller, P.G., 1996, Century-scale paleoclimatic
reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains:
Limnology and Oceanography, v. 41, no. 5, p. 890–902.

Background. Moon Lake is located in the northern Great Plains Region, Barnes County,
North Dakota. The features of this lake that make it an excellent candidate for paleoclimate
reconstruction studies include “a small catchment, a topographically closed basin, a continuous
Holocene sediment record, and a hydrological setting in which groundwater recharge is primarily
driven by precipitation.”

An 11.2-m core was taken from the deepest part of the basin and was found to have a basal
date of 11,800 yr BP. Diatom and pollen were analyzed at 4–8-cm intervals through the core,
which resulted in a temporal spacing of 50–200 years. AMS dating of charcoal flakes provided
ages of individual sections of the core. Of the samples collected for identification of diatoms and
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pollen assemblages, nine from the period 4700–2200 yr BP contained less than 50 specimens, and
these were eliminated from the data set. Also, diatom preservation at the base of the core was
limited and therefore did not provide much information.

Summary. A century-scale analysis of the Holocene diatom record indicated four major
hydrological periods: 1) an early Holocene transition from an open lake of low salinity (<2 g/L) to
a closed saline system (salinity >20 g/L) between 10,000 and 7300 yr BP, which corresponds to
the transition from spruce forest to deciduous parkland to prairie and suggests a major shift from
wet to dry climate; 2) a mid-Holocene period (7300–4700 yr BP) of high salinity, indicating low
effective moisture; 3) a transitional period from 4700 to 2200 yr BP of high salinity, characterized
by poor diatom preservation; and 4) a late Holocene period of variable lower salinity (<2200 yr
BP), indicative of fluctuations in effective moisture.

The authors believe that during the early Holocene, Moon Lake was a freshwater lake with
an outlet. During this freshwater stage, the lake would have had a larger surface area and volume
than at present. The shift from fresh to saline conditions occurred in two stages: first, a gradual
transition between ~10,000 and 8100 yr BP from ~1 to 4 g/L (Period 1a); followed by a more
rapid transition from 2 to >20 g/L, culminating by ~7300 yr BP (Period 1b).

These interpretations are further supported by pollen studies, which indicate vegetation at
10,300 yr BP was dominated by spruce (Picea). This was replaced by a deciduous forest
dominated by elm (Ulmus) and oak (Quercus). The presence of elm is important because it
indicates a poorly drained soil. At 8000 yr BP, elm began to be replaced by Ambrosia, and by
~7000 yr BP, oak disappeared and Ruppia appeared. Following this transition, at about 7300 yr
BP, salinity rapidly increased, indicating lower water levels. At ~6600–6300 yr BP, rapid
deposition of sediment occurred. Finally, although high salinity levels have dominated the system,
small fluctuations in lake salinity have occurred from 2200 to 750 yr BP, while from 7500 to 100
yr BP, large-scale fluctuations have occurred.

Conclusion. The Moon Lake study is important, because climate change can be interpreted
at century-scale intervals. The validity of the authors’ approach was proven by comparing their
results for the past 200 years with recorded information from nearby weather stations. Further,
this study is important because it relies on integrating two types of analysis, palynology and
diatoms, to interpret the paleoclimate fluctuations. It is unfortunate that stable carbon studies
could not be included in the sampling procedure.

Keywords: Salinity, ostracodes, diatoms, pollen, AMS radiocarbon dating

D. Ostracodes/Diatoms

D.1. Fritz, S.C., Engstrom, D.R., and Haskell, B.J., 1994, “Little Ice Age” aridity in the North
American Great Plains—a high-resolution reconstruction of salinity fluctuations from Devils
Lake, North Dakota, USA: The Holocene, v. 4, no. 1, p. 69–73.



11

Background. A lake sediment core (84 cm in length) was obtained from Creel Bay, Devils
Lake, North Dakota. The core was analyzed for diatoms, bulk carbonate geochemistry, and trace
element composition of ostracode shells. The combination of the results of these methods was
used to interpret past salinity fluctuations in the lake, thus indicating periods of climatic change.
Chronological control on the variations is based on Pb dating.210

Sediment accumulation rates for the dated intervals of the core range from 50 to 150 mg
cm yr  and show no systematic increase following European settlement in the 1880s (Jacobson–2 –1

and Engstrom, 1989). The results of Pb dating suggest that each sediment sample represents 1210

to 5 years of accumulation in the upper part of the core and above 10–15 years near the base of
the sequence (p. 700).

The diatom-inferred salinity reconstruction suggests that Devils Lake was saline (salinity
>3l) throughout the last 500 years, except during the last decade. Prior to AD 1850, mean salinity
was typically high (>20‰), with only three periods when salinity was somewhat lower
(10‰–20‰), in approximately the AD 1580s, 1640s, and 1720s. The data suggest a shift in lake
water chemistry about AD 1850, with lower mean salinities 10‰–20‰) and less extreme
fluctuations through the 1940s. After 1950 inferred salinity gradually declined, parallel with
modern records of measured salinity (Fritz, 1990) (p. 71).

The salinity variations indicated by diatom analysis are supported by the trace element
composition of ostracode shells and by bulk carbonate geochemistry. One exception to this is “a
period about AD 1810 when ostracode Mg/Ca ratios suggest more dilute conditions during an
interval when diatom-inferred salinity is relatively stable” (p. 71).

Summary. The Devils Lake region was characterized by an arid climate and drought
conditions from the 1500s until the mid-1800s. After this period, there was “an increase in the
frequency of moist intervals as compared to previous centuries” (p. 71). Modern records report a
drought from the 1930s to 1940s followed by increased rain in the 1960s to 1980s. The most
recent low salinities “are unparalleled during the rest of the 500-year record” (p. 72).

Conclusion. The integration of core data in this study serves as a model for future studies
that can employ similar core and microfossil materials.

Keywords: Diatoms, ostracodes, carbonate geochemistry, Pb dating, limnology210

D.2. Haskell, B.J., Engstrom, D.R., and Fritz, S.C., 1996, Late Quaternary paleohydrology in the
North American Great Plains inferred from the geochemistry of endogenic carbonate and
fossil Ostracodes from Devils Lake, North Dakota, USA: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 124, p. 179–193.

Background. Devils Lake, in eastern North Dakota, is in a closed drainage basin of about
9800 km . The lake was formed in a depression resulting from glacial thrusting of the underlying2

Cretaceous shale. This study focuses on the use of ostracodes and bulk carbonate geochemistry as
lake water chemistry recorders. The samples were obtained from a 24-m-long core taken in Creel
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Bay in an area where the water depth was 7.5 m. “Diatom analyses (Fritz, et al., 1991) were
performed on point samples, and the bulk-carbonate geochemistry samples integrated 2-cm
sections of core overlapping with the diatom samples. Ostracode samples came from 8-cm
sections adjacent to the diatom and bulk carbonate samples” (p. 80).

Summary.

Ostracode and bulk-carbonate data from the lowest part of the core representing
12–10.5 k.y. suggest low salinity at this time, corroborating inferences from
sedimentary diatom assemblages (Fritz, et al., 1991). Pollen and geochemical results
indicate that the region was covered by spruce forest, with soil conditions that
favored the leaching of iron and manganese into drainage waters entering the lake.
During this period of cool/moist climate, a fresh and more extensive Devils Lake
overflowed its now-abandoned spillway into the Sheyenne River (Aronow, 1957).
Between 10.5 and 8 k.y. increases in the ostracode and bulk carbonate elemental
ratios suggest the development of a hydrologically closed basin. This interpretation is
supported by diatom-inferred salinity and pore-water concentration which indicate
that maximum salinity of the lake occurred around 8 k.y. The rapid change in climate
is also indicated by the replacement of spruce pollen by prairie taxa (H.A. Jacobson,
unpublished data).

After 8 k.y., there was an overall trend toward lower salinity, although this period
was interspersed with large salinity fluctuations . . . A particularly low salinity interval
from 3.5–4.5 k.y. is apparent in the data (p. 189).

This was followed by a return to higher salinity levels. The magnitude of the salinity
fluctuations was greater during the early Holocene than in the late Holocene. “The diatom record
shows higher mean salinity values during the last 2.5 k.y., but pore-water Na only shows high
concentrations from 0.5–1.3 k.y. These data, coupled with a high-resolution record of the last
500 years (Fritz et al., 1994) suggest that the salinity of Devils Lake during the past 50 years has
been considerably lower than it was throughout most of the Holocene (after 8.5 k.y.)” (p. 190).

In summary, between 10.5 k.y. and 8 k.y., salinity increased in the freshwater glacial
lake. Major fluctuations in salinity occurred until 7.5 k.y. From this point until 4.5 k.y.,
fluctuations became less frequent and of smaller magnitude. The period from 4.5 to 3.5 k.y. was
characterized by relatively fresh conditions. Following this period, small-scale fluctuations in
salinity in the lake returned.

This study combines multiple sources of data to determine the magnitude and degree of
salinity fluctuations in Devils Lake. It also used pollen resources to support that these fluctuations
are the result of local climate variations. The authors note several reasons why some of the data
do not correspond to other data. However, overall, the compilation of the analysis results shows
that the majority of it seems to agree fairly well.
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Key Words: Limnology, palynology, diatoms, ostracodes, carbonate geochemistry,
salinity

E. Eolian Deposition and Dune Migration

E.1. Dean, W.E., Ahlbrandt, T.S., Anderson, R.Y., and Bradbury, J.P., 1996, Regional aridity in
North America during the middle Holocene: The Holocene, v. 6, no. 2, p. 145–155.

Summary. This paper focuses on climatic variations from 8000 to 3800 in northwestern
Minnesota as evidenced by active sand dune migration. Elk Lake and Lake Ann varved sediments
provide excellent documentation of influx of eolian material. The variations in varve thicknesses
are due mainly to input of eolian clastic material. Spectral analysis of varve thicknesses indicate
“[t]he strongest periodicities . . . are for about 200 years, 40–50 years, and 20–25 years” (p. 149),
which indicates that instability in eolian landforms was occurring during these intervals. The
maximum eolian deposition at these locations occurred at 6000 calendar yr BP.

Conclusion. This paper is important in that it provides a reference to contrast other aridity
studies, but would have been improved by placement of all of its data on a standard time scale.

Keywords: Varves, eolian, spectral analysis

E.2. Feng, Z., Johnson, W.C., Lu, Y., and Ward, P.A., 1991, Climatic signals from loess-soil
sequences in the central Great Plains, USA: Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 110, p. 345–358.

Background. The late Quaternary eolian deposition of the Loveland and Peoria loesses and
pedogenesis within these units are excellent examples of periods of landscape instability and
stability in Nebraska and Kansas. This study focuses on these two deposits as well as the
paleosols of the Gilman Canyon Formation. Thermoluminescence age determinations provided
resolution of the timing of these events. “Four cycles of pedogenic carbonate formation occurred
during Loveland time: after 416 ± 35 ka, before 260 ± 25 ka, around 193 ± 22 ka and before
92 ± 7 ka” (p. 355). The presence of pedogenic carbonate reflects a dry, warm climate. The
Barton sand was deposited from 95 to 70 ka. “The magnetic susceptibility suggests that the
slightly reddish eolian sand experienced multiple pedogenic impacts. It might have formed under
relatively warm and probably fluctuating moisture conditions” (p. 355). The period of 70 to 35 ka
is recorded by a reddish pedocomplex that was deposited at a low rate and is strongly weathered.
This soil was developed under stable conditions of a moderate climate. Conditions changed to
moist and cool from 35 to 20 ka as recorded by the Gilman canyon pedocomplex. Following this,
the Peoria Loess was deposited rapidly under cold and dry conditions. From 10.5 to 8.5 ka, the
Brady soil marked a period of system stability. This was covered by the deposition of the Bignell
Loess (8.5 to 5.8 ka), which may mark the Altithermal (warm and dry).

Summary. Dry and warm climates existed after 416 ± 35 ka, before 260 ± 25 ka, around
193 ± 22 ka, and before 92 ± 7 ka. These periods were followed by warm conditions with
fluctuating moisture levels from 90 to 70 ka, and a moderate climate prevailed from 70 to 35 ka.
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Subsequently, the climate became cool and moist until 20 ka. From 20 to 10.5 ka, conditions
remained cool, but aridity increased. From 10.5 to 8.5 ka, landscape stability returned, and this
was followed by a warm dry period from 8.5 to 5.8 ka.

Conclusion. Studies of this type provide useful information on the nature of climate change
over a broad period of time, but have limited value for finely resolved interpretations or
correlation.

Keywords: Thermoluminescence, loess pedogenic carbonate, magnetic susceptibility

E.3. Forman, S.L, Goetz, A.F.H., and Yuhas, R.H., 1992, Large-scale stabilized dunes on the
high plains of Colorado—Understanding the landscape response to Holocene climates with
the aid of images from space: Geology, v. 20, p. 145–148.

Background. This study focuses on the movement of large-scale, parabolic dunes (some
>10 km) located in eastern Colorado. Such dunes are activated during arid periods. The record of
dune movement was based on Landsat Thematic Mapper images, with radiometric dates of
periods of movement based on aquatic pulmonate snails and buried soil horizons sampled from
contact zones. “Field studies indicate that these landforms are sensitive to climate change and that
four periods of dune reactivation have occurred in the Holocene and, most recently, during the
last millennium” (p. 148). These periods are dated to have occurred from 9500 to 5500 yr BP,
from 5500 to >4800 yr BP, from 4800 to >1000 yr BP, and <100 yr BP. These dunes are
currently covered with short-grass vegetation and thus are stable.

Summary. This study utilized a variety of technologies and also some basic fieldwork to
provide information for over a 10,000-year period. Also, the authors were very thorough in
describing the hypotheses behind their methods and interpretation.

Conclusion. One shortfall of the study, however, is that the ages lacked sufficient precision
in dating activation periods to allow for little, if any, time over which stable periods could be
established.

Keywords: Landsat Thematic Mapper, radiometric dating, eolian, pulmonates, paleosols

F. Peat Lands

F.1. Glaser, P.H., Bennett, P.C., Siegel, D.I., and Romanowicz, E.A., 1996, Palaeo-reversals in
groundwater flow and peatland development at Lost River, Minnesota, USA: The
Holocene, v. 6, no. 4, p. 413–421.

Background. The flow of groundwater in a peat bog/fen at Lost River in the Glacial Lake
Agassiz peat lands, northwestern Minnesota, was studied to determine the aridity of the region
during the past 4000 years. “The record of groundwater flow was reconstructed by stratigraphic
studies that utilized both botanical indicators of the surface-water chemistry, and mineral
indicators of the pore-water chemistry and chemical weathering regime” (p. 413).
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Summary. Between 2000 and 1200 yr BP, two peat mounds formed within this peat land
that resulted in a change in the local hydrology, which up to this point was a groundwater
discharge zone. The formation of the peat mounds resulted in recharge cells forming and the
“establishment of two raised bogs dominated by Sphagnum” (p. 418). By 1200 yr BP, the region
had reverted to a discharge zone. One of the bogs became a spring fen (discharge), while the
amount of discharge did not affect the surface of the larger bog (recharge). Model simulations for
similar situations suggest that “the origin of the spring fen at Lost River may therefore represent a
time when extreme droughts first became common within this region” (p. 419). This study
indicates a generally moist climate from 4000 until 1200 yr BP. After 1200 BP, aridity occurred
periodically.

Conclusion. This is an interesting and novel approach to interpreting climate change.
Although it is limited in that it is applicable only to bog/fen areas, it proved to be a sensitive
indicator of change.

Keywords: Wetlands, hydrology, chemical weathering, Sphagnum

5.0 CONCLUSIONS

Short-term cycle research calls for integrated geological, paleontological/biological, and
analytical research methods. The concatenation of research expertise brings together methods that
provide for precise temporal frameworks, either as single points that can be tied to larger
scenarios or as closely spaced control points where accurate interpolation is possible. Many of the
studies done prior to the 1990s provide only a general framework, with limited temporal
resolution, for interpreting a constantly changing climate. Although many useful early studies
showing climate trends or patterns have been conducted, few have the power to resolve the minor
variations in climate that have a significant impact on culture stability without actually constituting
a major climate shift (e.g., changes in temperature or precipitation that result in drought or
flooding).

The geologic record of the earth shows that natural climate variations reach extremes far
beyond the local concerns of today's societies. However, climate variation or cycles influenced by
human culture may produce unforeseen consequences. As a philosophical point, I do not believe
we understand, other than in a general way, where we are on the earth's present climate curve.
Maybe more to the point is where specific regions of the world are on this curve. What may
devastate Manhattan and Texas may be a boon to North Dakota. The shifting of climate patterns
on the globe thus may produce both positive and negative consequences, depending on the
economy and culture of an area.

Research works that establish the rapidity with which climate change can produce
consequences may have significant value even if cycles or long-term trends cannot be established.
Works noted above that include the analysis of the biological and physical properties of a
stratigraphic section (e.g., lake core) can serve as proxy frameworks for climate change by
ultimately interpreting the wetting and drying of an area. Thus studies that include evidence of
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increasing salinity as an indicator of drying should also include other stable isotope and
geochemical data, the trends of which can then be recognized as potentially indicative of specific
climate change.

Paleosol studies in midcontinental areas of generally stable, semiarid climate, where wetting
and drying of sediment drastically affect alluvial and eolian processes, may be good indicators of
rapid climate change. The pros and cons of such work have been noted elsewhere (Hartman and
others, 1998), but such studies under good conditions, correlated with lake basin studies, may
provide for an intraregional approach to climate variation and cycles.

As a working idea to be further investigated, I propose that “climate sections” be
established to serve as a standard of reference for a climate history for a region. This idea is
somewhat analogous to concepts of use established in stratigraphy (North American Commission
on Stratigraphic Nomenclature, 1983; Remane and others, 1996). In stratigraphic studies,
stratigraphic sections are chosen that represent type, or reference, examples of a particular
formation, range of fossil occurrence, or time boundary. Means of correlation from one area to
another are based on whatever appropriate criteria are available, and with sufficient study, events
in space and time can be placed into coherent histories.

Similarly, climate sections can be established on the basis of criteria that provide the
optimum conditions for spatial and temporal correlation within a region. As a result, the climate
history can be established and honed to greater accuracy with increasing study and technological
advances. Working with these climate sections may also provide an ideal opportunity to integrate
cultural data derived from anthropological studies. As culture and climate are highly correlated, a
convincing history of climate change may well be possible.
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