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ABSTRACT  
 
 
We explore the use of efficient streamline-based simulation approaches for modeling partitioning 
interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of 
streamline models to develop an efficient approach for interpretation and history matching of 
field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of 
the associated inverse problems. We have adopted an integrated approach whereby we combine 
data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted 
results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir 
permeability and oil saturation distribution. A novel approach to multiscale data integration 
using Markov Random Fields (MRF) has been developed to integrate static data sources from the 
reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite 
difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning 
interwell tracer tests.  The finite-difference model allows us to include detailed physics 
associated with reactive tracer transport, particularly those related with transverse and cross-
streamline mechanisms. We have investigated the potential use of downhole tracer samplers and 
also the use of natural tracers for the design of partitioning tracer tests.  Finally, the behavior of 
partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-
difference model. 
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EXECUTIVE SUMMARY  
During the first year of the project, we have explored the use of efficient streamline-based 
simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. 
We utilized the unique features of streamline models to develop an efficient approach for 
interpretation and history matching of field tracer response. A critical aspect here is the 
underdetermined and highly ill-posed nature of the associated inverse problems.  As a result, the 
interpretation of the tests can be highly ambiguous and non-unique. To circumvent the problem, 
we have adopted an integrated approach whereby we integrate data from multiple sources to 
minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell 
tracer tests, these are primarily the distribution of reservoir permeability and oil saturation 
distribution. We have also explored the use of a finite difference reservoir simulator, UTCHEM, 
for field-scale design and optimization of partitioning interwell tracer tests.  The finite-difference 
model allows us to include detailed physics associated with reactive tracer transport, particularly 
those related with transverse and cross-streamline mechanisms. We have investigated the 
potential use of downhole tracer samplers and also the use of natural tracers for the design of 
partitioning tracer tests.  Finally, the behavior of partitioning tracer tests in fractured reservoirs is 
investigated using a dual-porosity finite-difference model. 

This report is divided into three major parts.  The first part deals with the interpretation of 
interwell tracer test via inverse modeling. Specifically, we have investigated the relative merits 
of the traditional history matching (‘amplitude inversion’) and a novel travel time inversion in 
terms of robustness of the method and convergence behavior of the solution. We show that the 
traditional amplitude inversion is orders of magnitude more non-linear and the solution here is 
likely to get trapped in local minimum, leading to inadequate history match. The proposed travel 
time inversion is shown to be extremely efficient and robust for practical field applications. 

The second part of the report describes a novel approach to multiscale data integration 
using Markov Random Fields (MRF). A key to proper interpretation of tracer tests is a good 
prior geological model. This prior model should be able to integrate various forms of static data 
such core, logs and 3-D seismic, accounting for the different scale and precision the data types. 
We examined the role of MRF for this purpose through the use of a field application that 
involves the integration of well log and seismic data during geologic modeling. 

The third part of the report is devoted to the field scale design and optimization of tracer 
tests using a finite difference simulator, UTCHEM. This simulator has been widely used 
throughout the industry and its accuracy and ability to model complex physical processes have 
been demonstrated through numerous field applications. During the first year, we have 
investigated the potential use of downhole tracer samplers to measure tracer concentrations in 
real time at multiple depths and their role in improving the test design. Another important idea 
related to test design is the use of water-soluble components of crude oil as partitioning tracers. 
The UTCHEM simulator has been used to explore the validity of this concept. Finally, we have 
started to examine the utility of partitioning tracer tests in fractured reservoirs using a dual 
porosity version of UTCHEM.  
 
The following papers were published based on the work from the first year of this research 
project. 
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1. Cheng, H., Datta-Gupta, A. and He, Zhong., “A Comparison of Travel Time and 
Amplitude Matching for Field-Scale Production Data Integration: Sensitivity, Non-
Linearity and Practical Implications,” SPE 84570 presented at the SPE Annual 
Technical Conference and Exhibition , Denver, CO, October  5-8, 2003.  

2. Malallah, A., Perez, H., Datta-Gupta, A. and Alamody, W., “Multiscale Data 
Integration Using Markov Random Fields and Markov Chain Monte Carlo: A Field 
Application in the Middle East,”SPE 81544 presented at the SPE 13th Middle East 
Oil Show & Conference, Bahrain 2-6 June 2003  

Also, we have developed a 3D streamline simulator for modeling tracer tests in petroleum 
reservoirs. A user-friendly interface with basic graphics capabilities have been added to facilitate 
use of the model by practicing engineers. The program is now available for public distribution 
and a copy is attached with this report. 
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INTRODUCTION 
 
Streamline Modeling of Partitioning Interwell Tracer Tests 
Streamline models approximate 3D fluid flow calculations by a sum of 1D solutions along 
streamlines. The choice of streamline directions for the 1D calculations makes the approach 
extremely effective for modeling convection-dominated flows in the presence of strong 
heterogeneity. Briefly, in this approach we first compute the pressure distribution using a finite 
difference solution to the conservation equations. The velocity field is then obtained using 
Darcy’s law. A key step is streamline simulation is the decoupling of flow and transport by a 
coordinate transformation from the physical space to one following flow directions. This is 
accomplished by defining a streamline ‘time of flight’ as follows: 

∫=
ψ

ψτ dr
v(x)

1)(           (1) 

Thus, the time of flight is simply the travel time of a neutral tracer along a streamline. In Eq.(1), 
r is the distance along the streamline and x refers to the spatial coordinates. We will exploit an 
analogy between streamlines and seismic ray tracing to utilize efficient techniques from 
geophysical inverse theory for analysis of field tracer tests. To facilitate this analogy, we will 
rewrite the time of flight in terms of a ‘slowness’ commonly used in ray theory in seismology. 
The ‘slowness’ is defined as the reciprocal of velocity as follows 
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where we have used Darcy’s law for the interstitial velocity v and φ  is the porosity, k is 
permeability, and P is the pressure. The streamline time of flight can now be written as 
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Consider the convective transport of a neutral tracer. The conservation equation is given by 
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where C represents the tracer concentration. We can rewrite (4) in the streamline time of flight 
coordinates using the operator identity  

τ∂
∂

=∇⋅v .           (5) 

Physically, we have now moved to a coordinate system where all streamlines are straightlines 
and the distance is measured in units of τ. The coordinate transformation reduces the 
multidimensional transport equation into a series of one-dimensional equations along 
streamlines, 
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The tracer response at a producing well can be obtained by simply integrating the contributions 
of individual streamlines reaching the producer, 
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where C0 is the tracer concentration at the injection well. If we include longitudinal dispersion 
along streamlines, then the tracer concentration at the producing well will be given by 
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where α is longitudinal dispersivity and ∫=
ψ

ω
2)(xv

dr . 

During partitioning interwell tracer tests the retardation of partitioning tracers in the presence of 
oil saturation can simply be expressed as an increase in travel time along streamlines. This in 
turn results in an increased slowness as follows  
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where Sw and SN  denote water and oil saturation and KN  is the partitioning coefficient of tracer 
defined as the ratio of tracer concentration in the oil phase to that in the water phase. Notice that 
when the tracer has equal affinity towards water and oil ( 1=NK ), the tracer response will be 
insensitive to oil saturation as one would expect and Eq.(8) reverts back to Eq.(2) for single 
phase tracer transport. If the oil is mobile, the impact of oil saturation on the hydraulic 
conductivity can be accounted for through the use of appropriate relative permeability functions. 
 
 
Fast and Robust History Matching of Field Tracer Tests: A Comparison of Travel 
Time vs. Amplitude Inversion 
Traditional approach to reconciling geologic models to field tracer data involves an “amplitude 
matching”, that is matching the tracer history directly. It is well-known that such amplitude 
matching results in a highly non-linear inverse problem and difficulties in convergence, often 
leading to an inadequate history match. The non-linearity can also aggravate the problem of non-
uniqueness and instability of the solution. Recently, dynamic data integration via ‘travel-time 
matching’ has shown great promise for practical field applications. In this approach the observed 
data and model predictions are lined up at some reference time such as the breakthrough or ‘first 
arrival’ time. Further extensions have included amplitude information via a ‘generalized travel-
time’ inversion. Although the travel-time inversion has been shown to be more robust compared 
to amplitude matching, no systematic study has been done to examine the relative merits of the 
methods in terms of the non-linearities and convergence properties, particularly for field-scale 
applications. In this work we quantitatively investigate the non-linearities in the inverse 
problems related to travel-time, generalized travel-time and amplitude matching during 
production data integration. Our results show that the commonly used amplitude inversion can be 
orders of magnitude more non-linear compared to the travel-time inversion. The travel-time 
matching is extremely robust and the minimization proceeds rapidly even if the prior geologic 
model is not close to the solution. The travel-time sensitivities are more uniform between the 
wells compared to the amplitude sensitivities that tend to be localized near the wells. This 
prevents over-correction near the wells. Also, for field data characterized by multiple peaks, the 
travel-time inversion can prevent the solution from converging to secondary peaks, resulting in a 
better fit to the production response. We have demonstrated our results using a field application 
involving a multiwell, multitracer interwell tracer injection study in the McCleskey sandstone of 
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the Ranger field, Texas. Starting with a prior geologic model, the traditional amplitude matching 
could not reproduce the field tracer response which was characterized by multiple peaks. Both 
travel time and generalized travel time exhibited better convergence properties and could match 
the tracer response at the wells with realistic changes to the geologic model. Our results appear 
to confirm the power and robustness of the travel-time matching for field scale production data 
integration. 
 
 
Multiscale Data Integration for Reservoir Characterization 
Proper characterization of reservoir heterogeneity using available static data sources such as 
geologic data, well log, core and seismic data is a prerequisite to analysis and interpretation of 
field tracer tests. Integrating multi-resolution data sources into high-resolution reservoir models 
for accurate performance forecasting is an outstanding challenge in reservoir characterization. 
Well logs, cores, seismic and production data scan different length scales of heterogeneity and 
have different degrees of precision. Current geostatistical techniques for data integration rely on 
a stationarity assumption that is often not borne out by field data. Geologic processes can vary 
abruptly and systematically over the domain of interest. In addition, geostatistical methods 
require modeling and specification of variograms that can often be difficult to obtain in field 
situations. We present a case study from the Middle East to demonstrate the feasibility of a 
hierarchical approach to spatial modeling based on Markov Random Fields (MRF) and multi-
resolution algorithms in image analysis. Our proposed approach provides an efficient and 
powerful framework for data integration accounting for the scale and precision of different data 
types. Unlike their geostatistical counterparts that simultaneously specify distributions across the 
entire field, the MRF are based on a collection of full conditional distributions that rely on local 
neighborhood of each element. This critical focus on local specification provides several 
advantages: (a) MRFs are far more computationally tractable and are ideally suited to 
simulation-based computation such as MCMC (Markov Chain Monte Carlo) methods, and (b) 
model extensions to account for non-stationarities, discontinuity and varying spatial properties at 
various scales of resolution are accessible in the MRF. We construct fine scale porosity 
distribution from well and seismic data explicitly accounting for the varying scale and precision 
of the data types. First, we derive a relationship between the neutron porosity and the seismic 
amplitudes. Second, we integrate the seismically derived coarse-scale porosity with fine-scale 
well data to generate a 3-D field-wide porosity distribution using MRF. The field application 
demonstrates the feasibility of this emerging technology for practical reservoir characterization. 

 
 
Field-Scale Design Optimization via Numerical Simulation 
 
To complement the streamline-based studies carried out at Texas A&M, a parallel effort has 
been ongoing using a finite difference model, UTCHEM for field-scale design and optimization 
of tracer tests. This work is carried out under the supervision of Dr. Gary A. Pope at the 
University of Texas, a subcontractor to the project. 

The past several years have seen a great increase in the development, deployment and 
application of permanent in-well fiber optic monitoring systems. In-well fiber optic sensors are 
either currently available or under active development for measuring pressure, temperature, flow 
rate, phase fraction, strain, acoustics, and sand production. Potential future sensor developments 
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include measurement of density and fluid chemistry. This study is a preliminary investigation of 
the use of downhole sensors to enhance the value of Partitioning Interwell Tracer Tests (PITTs). 
The idea being investigated is to measure the tracer concentrations in real time at multiple depths 
using downhole sensors. These tracer concentration data could be used to estimate oil saturations 
at the corresponding depths using the method of moments and/or inverse modeling. 

Crude oil is a mixture of organic components of varying water solubility. A novel idea 
being investigated in this research is to use some of the more water-soluble components of crude 
oil as natural partitioning tracers to estimate oil saturations and swept pore volumes, and hence 
as a substitute for injected tracers.  The rate at which these components will dissolve into water 
will depend upon their partition coefficients under reservoir conditions. In this study we have 
identified some of the common components of crude oils that might be used as natural 
partitioning tracers. Equations have been derived to estimate pore volumes and average oil 
saturations in a reservoir for both single-phase and multiphase flow and two simulations used to 
illustrate their validity under the assumed conditions. 

Naturally fractured reservoirs can be modeled as two interconnected media: the matrix which 
contains the bulk of the fluid, but has very less conductive capacity, and the fracture which 
generally has high permeability but very little storage capacity. The dual porosity model is one of 
the oldest and most common approaches for modeling naturally fractured oil reservoirs and is 
available in most reservoir simulators including UTCHEM and ECLIPSE.  The simulation 
domain is divided into two superimposed porous media: one for the fracture system and another 
for the porous rock matrix. A mass balance for each of the media results in two continuity 
equations coupled by a transfer function. This study compares the ECLIPSE and UTCHEM 
results for a series of partitioning tracer simulations as a first step in our research on how to 
optimize the use of tracers in naturally fractured oil reservoirs. 
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EXPERIMENTAL 
 
No experiments were performed during the first year of the project. 
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RESULTS AND DISCUSSION: PART I 
 

Fast and Robust History Matching of Field Tracer Tests: A Comparison of Travel 
Time vs. Amplitude Inversion 
 
Introduction 
Geological models derived from static data alone often fail to reproduce the production history of 
a reservoir. Reconciling geologic models to the dynamic response of the reservoir is critical to 
building reliable reservoir models. In recent years several techniques have been developed for 
integrating production data into reservoir models.1-14 The theoretical basis of these techniques is 
generally rooted in the least-squares inversion theory that attempts to minimize the difference 
between the observed production data and the model predictions. This can be referred to as 
‘amplitude’ matching. The production data can be water-cut observations, tracer response or 
pressure history at the wells. It is well known that such inverse problems are typically ill-posed 
and can result in non-unique and unstable solutions. Proper incorporation of static data in the 
form of a prior model can partially alleviate the problem. However, there are additional 
outstanding challenges that have deterred the routine integration of production data into reservoir 
models. The relationship between the production response and reservoir properties can be highly 
non-linear. The non-linearity can result in multiple local minima in the misfit function. This can 
cause the solution to converge to a local minimum, leading to an inadequate history match. All 
these can make it difficult to obtain a meaningful estimate of the parameter field, particularly if 
the initial model is far from the solution. 

Recently streamline-based methods have shown significant potential for incorporating 
dynamic data into high resolution reservoir models.1-14 A unique feature of the streamline-based 
production data integration has been the concept of a ‘travel-time match’ that is analogous to 
seismic tomography. Instead of matching the production data directly, the observed data and 
model predictions are first ‘line-up’ at the breakthrough time. This is typically followed by a 
conventional ‘amplitude match’ whereby the difference between the observed and calculated 
production response is minimized. A major part of the production data misfit reduction occurs 
during the travel-time inversion and most of the large-scale features of heterogeneity are 
resolved at this stage.2,4-5  

The concept of travel-time inversion is not limited to streamline models. Recently, it has 
been extended for application to finite-difference models via a ‘generalized travel-time’ 
inversion.9 The ‘generalized travel-time’ inversion ensures matching of the entire production 
response rather than just the breakthrough times and at the same time retains most of the 
desirable properties of the travel-time inversion. The concept follows from wave-equation travel-
time tomography and is very general, robust and computationally efficient.12,15 The generalized 
travel-time inversion has been utilized to extend the streamline-based production data integration 
methods to changing field conditions involving rate changes and infill drilling. 

The advantages of the travel-time inversion compared to amplitude inversion mainly 
stems from its quasilinear properties. Unlike conventional ‘amplitude’ matching which can be 
highly non-linear, it has been shown that the travel-time misfit function is quasilinear with 
respect to changes in reservoir properties.2,4-5 As a result, the minimization proceeds rapidly even 
if the initial model is not close to the solution. These advantages of travel-time inversion are 
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well-documented in the context of seismic inversion.15 However, no systematic study has been 
done to examine the benefits of travel-time inversion for production data integration in terms of 
non-linearity and convergence properties. Characterizing the degree of nonlinearity can be as 
important as finding the solutions to the inverse problem itself. However, quantitative measures 
of nonlinearity for the inverse problems related to production data integration haven’t been 
adequately addressed. 

We discuss the mathematical foundation for the measure of nonlinearity and its 
implications on the production data integration. We quantitative investigate the extent of 
nonlinearity in travel-time inversion and amplitude inversion. In particular, we show that the 
nonlinearity in travel-time inversion is orders of magnitude smaller than that of the amplitude 
inversion. This leads to better convergence properties and a robust method for production data 
integration. We illustrate our results using both synthetic and field applications. The field 
application is from the McCleskey sandstone, the Ranger field, Texas and involves a multiwell, 
multitracer interwell tracer injection study. The results clearly demonstrate the benefits of travel-
time inversion for field-scale production data integration. In particular, the generalized travel-
time inversion appears to outperform both travel-time and amplitude inversion in reconciling the 
geologic model to the field tracer response. 
 
 
Background and Approach 
Travel-Time Inversion, Amplitude Inversion and Generalized Travel-Time Inversion. 
Travel-time inversion attempts to match the observed data and model predictions at some 
reference time, for example the breakthrough time or the peak arrival time. Thus, we are lining-
up the production response along the time axis. Fig.1a illustrates the travel-time inversion. On 
the other hand, the amplitude inversion attempts to match the production response directly. This 
is illustrated in Fig.1b whereby we match the observed tracer concentration and model 
predictions at the producing well. Creatively, we can combine the travel-time inversion and 
amplitude inversion into one step while retaining most of the desirable features of a travel-time 
inversion. This is the ‘generalized travel-time inversion’ and follows from the work of Luo and 
Schuster15 in the context of wave equation travel-time tomography. 

A generalized travel-time or travel-time shift is computed by systematically shifting the 
computed production response towards the observed data until the cross-correlation between the 
two is maximized. The approach is illustrated in Figs. 1c and 1d. It preserves the robustness of a 
travel-time inversion and improves computational efficiency by representing the production data 
misfit at a well in terms of a single travel-time shift. It can be shown to reduce to the more 
traditional least-squared misfit functional as we approach the solution.12 

The advantages of travel-time inversion are well documented in the geophysics literature. 
For example, Luo and Schuster15 pointed out that travel-time inversion is quasi-linear as opposed 
to amplitude inversion which can be highly non-linear. Amplitude inversion typically works well 
when the prior model is close to the solution. This was the rationale behind our previously 
proposed two-step approach to production data integration: travel-time match followed by 
amplitude match.2,4 In this paper, we will quantitatively investigate the relative merits of the 
different methods in terms of non-linearity and convergence properties. 
 
Measures of Nonlinearity. Characterizing and assessing the nonlinearity in the parameter 
estimation problem is critical to designing efficient and robust approaches to production data 
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integration. There are several methods for quantifying the degree of non-linearity in inverse 
problems. We will use the measure proposed by Bates and Watts16 to examine the non-linearities 
in travel-time and amplitude inversion. Grimsted and Mannseth17-18 applied this measure to 
examine the relationship between non-linearity, scale and sensitivity in parameter estimation 
problems. If F represents an outcome, for example, the tracer response, then the nonlinearity 
measure is defined as κ=||Fkk||/||Fk||2, where Fk is the vector of the first-order derivatives with 
respect to the parameter vector k, that is, the sensitivity vector, and Fkk is the vector of second-
order derivatives. This measure is based on the geometric concept of curvature and κ represents 
the inverse of a radius of the circle that best approximates the outcome locus F in the direction of 
Fk at k. Smoother and more linear outcome will have smaller curvature (larger radius) and thus 
smaller measure of non-linearity as illustrated in Fig. 2. 

In our application, we evaluate κ=||Fkk||/||Fk||2 for every iteration during inversion. In 
addition, for amplitude inversion, we compute the measure for different observations and choose 
the maximum. The details of the computations, including the derivative calculations for travel-
time, amplitude, and generalized travel-time will be discussed later. In the following section, we 
first illustrate the approach using a synthetic example. 
 
Non-linearity Measure in Production Data Integration: A Simple Illustration. This example 
involves integration of tracer response in a heterogeneous 9-spot pattern as shown in Fig. 3. The 
mesh size is 21×21. The reference permeability distribution consists of a low-permeability trend 
towards north and a high-permeability trend towards south. The tracer responses from the eight 
producers in the 9-spot pattern are shown in Fig. 4a. Also superimposed in Fig. 4a are the tracer 
responses corresponding to our initial model, a homogeneous permeability field that is 
conditioned at the well locations. 

We compare the relative performance of travel-time, amplitude, and generalized travel-
time inversion and also the non-linearities inherent in these approaches. Fig. 4b shows the tracer 
concentration matches after travel-time inversion. All the peak times are now in agreement 
although there are some discrepancies in the details of the tracer responses. Fig. 4c shows the 
tracer concentration matches after generalized travel-time inversion. Not only the peak arrival-
times but also the amplitudes are matched much better compared to the travel-time inversion. 
Fig. 4d shows the tracer-responses match after the amplitude inversion. Although the matches 
are quite good for most wells, they are unsatisfactory for wells 2 and 7. Incidentally, these are the 
two wells that exhibited maximum discrepancy based on the initial model.  

Fig. 5 shows the convergence behavior for the three methods. Both travel-time and 
generalized travel-time inversion reproduce the arrival times perfectly. The generalized travel-
time further reduces the tracer concentration misfit. In contrast, direct amplitude match shows 
high arrival time misfit and is unable to reproduce the tracer response at two wells. Fig. 6a is the 
estimated permeability field after travel-time match. On comparing with Fig. 3, we can identify 
the low-permeability areas and some of the moderate-to-high permeability areas, although the 
high permeability area is not well reproduced. Fig. 6b shows the permeability field derived by 
generalized travel-time inversion.  It reproduces not only the low-permeability area but also the 
high-permeability regions. Fig. 6c shows the estimated permeability field after the amplitude 
inversion. Clearly, the results show signs of instability because of the high non-linearity as 
discussed below. 

Fig. 7 shows the measure of nonlinearity for the three approaches. We can see that both 
the travel-time and the generalized travel-time exhibit the same degrees of non-linearity. In 



15 

contrast, the amplitude inversion is three to four orders of magnitudes more nonlinear than the 
travel-time inversion. This is partly the reason for the failure of the amplitude inversion when the 
initial model is far from the solution. The generalized travel-time inversion appears to retain 
most of the desirable features of a travel-time inversion while obtaining an adequate amplitude 
match. 
 
 
Mathematical Formulation: Sensitivity Computations and Measures of 
Nonlinearity 
We now discuss the mathematical details related to sensitivity computation and measure of non-
linearity for travel-time, generalized travel-time and amplitude inversion. Although the approach 
is generally applicable, we will use a streamline simulator here because of the advantages in 
sensitivity computations. The sensitivities quantify change in production response because of a 
small change in reservoir properties. They are an integral part of most inverse modeling methods. 
We also need the sensitivities to quantify non-linearities in the various inverse methods 
examined in this study. Several approaches can be used to compute sensitivity coefficients of 
model parameters. Most of these methods fall into one of the three categories: perturbation 
method, direct method, and adjoint state method19-21 and can be computationally demanding, 
particularly for large-scale field applications. However, for streamline models, it is possible to 
analytically derive a relationship between perturbations in reservoir properties, such as 
permeability or porosity, and changes in observations such as watercut and tracer response. 
Streamline-based sensitivity computation is very fast and involves quantities computed by a 
single streamline simulation. Hence, we will limit our discussion to streamline models only. 

We use the theory of Bates and Watts16 to measure the nonlinearity in production data 
integration. Bates and Watts16 separate the nonlinearity measures into parameter-effect curvature 
and intrinsic curvature; thus they decompose the second-order derivative Fkk into one component 
parallel to the tangent plane defined by Fk for all directions and another component normal to 
that plane. Here we do not separate the intrinsic curvature and parameter effect curvature; neither 
do we consider the direction in the parameter space since it is not practical to do so for our 
problem. However, the theory we applied is essentially the same as that of Bates and Watts.16 
 
Sensitivity and Nonlinearity of Travel-time. Streamline methods decouple flow and transport 
by a coordinate transformation from the physical space to the time-of-flight along streamlines.22 
The time-of-flight is defined as 

∫=
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where the integral is along the streamline trajectory, Ψ, and s is the slowness defined as the 
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If we assume that the streamlines do not shift because of small perturbations in reservoir 

properties, we can then relate the change in travel time δτ to the change in slowness by 
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The travel-time sensitivity along a single streamline at a producer with respect to 

permeability for a grid block at location x is given by integrating Eq. 3 from the inlet to the outlet 
of the streamline Ψ  within the grid block: 
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The overall travel-time sensitivity is then obtained by summing the sensitivities over all 

streamlines contributing to the arrival time of a particular concentration (for example, the peak 
concentration): 
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The second-order derivative of travel-time along a single streamline is obtained by 
integrating Eq. 4, 
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and then integrating over all streamlines contributing to a producer, 
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The components of the tangent vector Fk and acceleration vector Fkk can now be obtained 

from Eqs. 7 and 9:    
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The 2-norms are used to calculate the vector norms, 
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Now we can calculate the nonlinearity measure of travel-time inversion κtt according to the 

theory of Bates and Watts16 by 
 
κtt=||Fkk||/||Fk||2           (14) 
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Sensitivity and Nonlinearity of Amplitude. Tracer transport can be described by the following 
convection-diffusion equation, 

 
[ ] ),(),()(),( txCutxCxD

t
txC
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∂φ
.        (15) 

Ignoring the dispersion term, Eq. 15 can be rewritten as  

 0),(),(
=∇⋅+

∂
∂ txCu

t
txCφ .          (16) 

Applying a transformation to the time-of-flight coordinate, the tracer transport equation along 
a streamline can be expressed as22 
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For a unit-impulse concentration at (τ, t)=(0,0), the solution is22 
 ( ))(),( xttxC τδ −= ,          (18) 
where δ is the Dirac-delta function. If the input is C0, then 
 )(),( 0 τ−= tCtxC .          (19) 
Summing the contributions of all streamlines reaching a producer, we get the tracer response 

at a producer as 
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From Eq. 19, tracer response at the producer along a single streamline is  
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where we have used the definition of time of flight from Eq.1.  
Now, consider a small perturbation in reservoir properties, say permeability. The resulting 

changes in slowness and concentrations can be written as 
 )()()( 0 xsxsxs δ+= ;          (22) 
 )()()( 0 tCtCtC δ+= ,          (23) 
where s0 and C0 are initial slowness distribution in the reservoir and the associated tracer 

response respectively. Applying Eqs. 21 and 22, the change in concentration response can be 
expressed as 
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Using a Taylor series expansion and assuming 0Ψ=Ψ (stationary streamlines), we get 
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Hence the perturbation in C(t) and s(x) are related by 
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The tracer-concentration sensitivity along a single streamline Ψ is then 
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The second-order derivative of the tracer concentration with respect to permeability is 
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As before, we need to sum over all streamlines reaching a producer to get the final first-order 

and second-order derivatives of the concentration response at the producer. 
Now we need to evaluate the tangent vector Fk, the acceleration vector Fkk, and measure of 

nonlinearity κ at different observation times. The vectors and norms are expressed as follows 
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By definition, the measure of nonlinearity at observation time ti is  
 κ(ti)=||Fkk(ti)||/||Fk(ti)||2.         (33) 
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The final measure of nonlinearity for amplitude inversion κam is given by the maximum over 
all observed data, 

 ( ))(,),(),(max 21 onam ttt κκκκ L= .         (34) 
 

Sensitivity and Nonlinearity of Generalized Travel Time. In generalized travel-time inversion 
we define the misfit between the calculated and observed tracer concentrations in terms of the 
following correlation function:12,15 
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where A is the maximum amplitude of tracer concentration and τ is the shift time between 

calculated and observed tracer concentrations. We seek a τ that shifts the calculated tracer 
response so that it best matches the observed tracer response.  

The criterion for the “best” match is defined as the travel-time residual ∆τ that maximizes the 
correlation function above, that is, 
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where T is the estimated maximum travel-time difference between the observed and 

calculated tracer responses. So the derivative of ),( τxf  with respect to τ should be zero at ∆τ 
unless the maximum is at an end point T or –T, 
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Note that 1/ =∂∂ τt  in this derivation. Eq. 37 is the function that is used to compute the 

sensitivity of the generalized travel time.  
Using Eq. 37 and the rule for the derivative of an implicit function, we get 

 τ

τ

τ

τ

∆∂
∂
∂
∂

−=
∂

∆∂

∆

∆

)(
)(
)(

)( f
xk

f

xk &

&

.          (38) 
Taking the derivatives of τ∆f&  with respect to k(x) and ∆τ, we have 
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In the derivation above, we have applied the relationship 
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Substitution of Eqs. 39 through 41 into Eq. 38 gives  
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The second-order derivative of generalized travel-time with respect to permeability is then 
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where 2
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k∂
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 is calculated by Eq. 8. 
Finally, to calculate measures of nonlinearity, the components of the tangent vector Fk and 

acceleration vector Fkk are obtained from Eqs. 42 and 43 as follows 

 Fk=

T

nb
kkk 











∂
τ∆∂

∂
τ∆∂

∂
τ∆∂ ,,,

21
L

;         (44) 

 Fkk=

T

nb
kkk 











∂
∆∂

∂
∆∂

∂
∆∂

2

2

2
2

2

2
1

2

,,, τττ
L

.         (45) 
The 2-norms of the vectors are calculated by 
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The measure of nonlinearity for the generalized travel-time inversion is evaluated using Eqs. 

46 and 47 
 
 κgt=||Fkk||/||Fk||2,          (48) 
 

Sensitivity Computations: A ¼ Five-spot Example.  We illustrate sensitivity computations for 
the three methods using the tracer response in a heterogeneous quarter 5-spot pattern (Fig. 8). 
Fig. 9a is the sensitivity distribution for the peak travel-time, and Fig. 9b is the sensitivity 
distribution for the generalized travel-time. Figs. 10a, 10b, and 10c show the sensitivity 
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distribution for the amplitude before, at, and after peak time respectively. From Figs. 9 and 10, 
we can see that the sensitivity distribution between the wells for travel-time inversion is more 
uniform than that for amplitude inversion. Also, the magnitude of the amplitude sensitivity is 
much smaller than that of the travel-time sensitivity. This smaller sensitivity contributes to the 
high nonlinearity of amplitude inversion because the nonlinearity is evaluated by ||Fkk||/||Fk||2, 
where Fk is the sensitivity vector. Such relationship between non-linearity and sensitivity for 
inverse modeling has also been observed by Grimstad and Mannseth.17-18 
 
 
Data Inversion 
Our goal is to reconcile high-resolution geologic models to field production history, for example 
tracer response. This typically involves the solution of an underdetermined inverse problem. The 
mathematical formulation behind such streamline-based inverse problems has been discussed 
elsewhere.2,4-5

 Briefly, in our approach we start with a prior static model that already incorporates 
geologic, well log, and seismic data. We then minimize a penalized misfit function consisting of 
the following three terms, 
 RLRRSd δβδβδδ 21 ++− .................................      (49) 
In Eq. 49, δd is the vector of data residuals at the wells, S is the sensitivity matrix containing the 
sensitivities of the observed data with respect to the reservoir parameters. Also, δR corresponds 
to the change in the reservoir property and L is a second-spatial-difference operator. The first 
term ensures that the difference between the observed and calculated production response is 
minimized. The second term, called a norm constraint, penalizes deviations from the initial 
model. This helps preserve geologic realism because our initial or prior model already 
incorporates available geologic and static information related to the reservoir. Finally, the third 
term, a roughness penalty, simply recognizes the fact that production data are an integrated 
response and are thus, best suited to resolve large-scale structures rather than small-scale 
property variations. 

The minimum in Eq. 49 can be obtained by an iterative least-squares solution to the 
augmented linear system 
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The weights β1 and β2 determine the relative strengths of the prior model and the roughness 
term. The selection of these weights can be somewhat subjective although there are guidelines in 
the literature.23

 In general, the inversion results will be sensitive to the choice of these weights. 
In Eq. 50, δd is replaced by δτ for travel-time inversion, δC for amplitude inversion, and δ∆τ 

for generalized travel-time inversion. The sensitivity matrix S is also replaced by the 
corresponding expression. 

Note that one of the major advantages of travel-time and the generalized travel-time 
approach is that the size of the sensitivity matrix S is dependent only on the number of wells 
regardless of the number of data points. This leads to considerable savings in computation time. 
We use an iterative sparse matrix solver, LSQR, for solving this augmented linear system 
efficiently.24

 The LSQR algorithm is well suited for highly ill-conditioned systems and has been 
widely used for large-scale tomographic problems in seismology.25
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Field Application: The Ranger Field, Texas 
Dataset Description. A multiwell, mulitracer, interwell tracer injection study was carried out in 
the McCleskey sandstone of the Ranger field, Texas. The first description of this data set was 
published by Lichtenberger.26 The dataset was also described later by Allison et al.27 The 320-
acre area of interest includes 13 producers and 4 injectors, injecting 7 different tracers. The seven 
tracers injected included 5 conservative tracers consisting of four decaying (Tritium, Cobalt-57, 
Cobalt-58, and Cobalt-60), one chemical (sodium thiocyanate, NaSCN), and two partitioning 
tracers (tertiary butyl alcohol, TBA, and isopropyl alcohol, IPA).  

All tracers were injected in small slugs on the same day except for TBA, which was injected 
in a small slug 20 days later. Tracer sampling continued for 826 days after injection of the first 
set of tracers. The tracer injection pattern is shown in Fig. 11. Detailed information for injection 
locations and the amounts of each tracer injected can be found elsewhere.28 We use averaged 
well-production and injection rates over the life of the project for our work. The average 
production and injection rates for all wells are summarized in Fig. 12.  

We can use the conservative tracers (Tritium and NaSCN) to obtain permeability distribution 
in the study area. However, the Tritium response may be affected by a chromatographic delay 
because of tritium exchange with immobile hydrogen.26 We selected NaSCN as the conservative 
tracer for permeability inversion. Totally 5,655 lbs of NaSCN was injected into Well 38. The 
observed tracer responses are shown in Fig. 13. 

 
Choice of an Initial Model. During inverse modeling, a proper selection of the initial model can 
be critical to ensure a plausible solution. Such an initial model should incorporate all available 
prior information. For our simulation studies, we use a 31×45×6 grid which corresponds to 
100×100 ft gridblocks areally and 2 to 4 ft vertically. A total of 141 core samples were available 
for analysis. We did not have well- and depth-specific data but rather a summary of the core data 
for all wells. A histogram and cumulative distribution of the core permeabilities are shown in 
Fig. 14. The core data indicated a fair degree of permeability heterogeneity in the reservoir but 
only slight variation in porosity. For the initial model, we used a uniform value of porosity and a 
heterogeneous permeability field generated using Sequential Gaussian Simulation29 based on 
well data (Fig. 15).  
 
Estimating permeability. We matched the NaSCN data to obtain the permeability distribution 
in the study area using the three different approaches: travel-time inversion, generalized travel-
time inversion, and amplitude inversion. Fig. 13 shows the NaSCN responses from a streamline 
simulator using the initial permeability field. Also, superimposed are the observed NaSCN 
concentrations. Clearly, there is a large difference between the calculated and observed NaSCN 
response. Fig. 16 shows the NaSCN concentration match after travel-time inversion. The peak 
arrival times are now in agreement with the observed data. The tracer concentration amplitudes 
show improvement but the overall match is still not satisfactory. Fig. 17 is the NaSCN 
concentration match after the generalized travel-time inversion. From Fig. 17 we can see that not 
only are the peak-arrival times well matched, but the calculated concentration amplitudes are 
also in close agreement with the observed data. This shows that generalized travel-time inversion 
is an effective one-step inversion process. Fig. 18 displays the NaSCN concentration match after 
direct amplitude inversion. Clearly the calculated responses have changed very little from the 
initial responses. The results indicate that amplitude inversion may not be as effective as the 
travel-time inversion, particularly when the initial model is far from the solution. Generalized 
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travel-time inversion stands out as the best among the three inversion methods. This is also 
demonstrated by Fig. 19, which shows the convergence behavior for travel-time inversion, 
generalized travel-time inversion, and amplitude inversion for the field case. 

Fig. 20 summarizes nonlinearity for the three inversion methods. The measure of 
nonlinearity for the field example is given by the maximum amongst the three producers. 
Amplitude inversion displays the highest measure of nonlinearity, about 200 to 250, while travel-
time inversion is quasi-linear with a nonlinearity of around 0.2 to 0.4. The generalized travel-
time inversion is between these two cases in terms of non-linearity measure. However, it is one 
order of magnitude larger than the travel-time inversion while two orders of magnitude smaller 
than that of the amplitude inversion.  Generalized travel-time inversion keeps most of the 
favorable features of travel-time inversion and has a much better tracer-concentration amplitude 
match than travel-time inversion. The severe nonlinearity of the amplitude inversion is partly 
responsible for its poor performance for the field case.   

Fig. 21 shows the permeability fields derived by travel-time inversion and generalized travel-
time inversion. Fig. 22 shows the permeability change after travel-time inversion and generalized 
travel-time inversion. Comparing these with the permeability distribution obtained by Allison et 
al.27 by a manual matching of the tracer data using a finite-difference simulator reveals a general 
agreement between the location of the permeability multipliers and the areas with higher and 
lower permeability values. For example, we see that the high-permeability multipliers in the 
upper-right and central-left areas and the low-permeability multipliers in the lower-left areas in 
Fig. 23 agree with the positive and negative changes shown in Fig. 22.  
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Fig. 1Illustration of (a) travel-time inversion, (b) amplitude inversion, (c) generalized travel-time inversion, 

 and (d) best time shift. 
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         Fig. 2 Geometric meaning of the measure of nonlinearity.          Fig. 3Synthetic permeability distribution for the 9-

spot case. 
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Fig. 4Tracer response (a) for uniform initial permeability, (b) after peak arrival-time inversion, (c) after generalized 

travel-time inversion, and (d) after direct amplitude inversion. 
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Fig. 5Travel-time and tracer concentration misfit for (a) travel-time, (b) generalized travel-time, and (c) amplitude 
inversion. 
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Fig. 6Estimated permeability distribution for the 9-spot case (a) after travel-time inversion, (b) after generalized 

travel-time inversion, and (c) after amplitude inversion. 
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Fig. 7Measure of nonlinearity for (a) travel-time inversion, (b) generalized travel-time inversion, and (c) amplitude 

inversion. 
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  Fig. 8Tracer response for a ¼ five-spot heterogeneous case.    Fig. 9Sensitivity for (a) travel-time and (b) 
generalized  travel-  time inversion.  
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Fig. 10Sensitivity distribution for amplitude inversion (a) before peak time, (b) at peak time, and (c) after peak time. 
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1Fig. 11Tracer injection pattern: the Ranger field case. 
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 a                                                                                     b 

Fig. 12 (a) Well production rates and (b) well injection rates. 
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Fig. 13NaSCN tracer response for the initial permeability field at (a) Well 40, (b) Well 37, and (c) Well 39. 
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Fig. 14Core permeability (a) histogram and (b) cumulative distribution. 
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Fig. 15Initial permeability distribution for the Ranger field case. 
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                                              a                                                                 b                                                                   c  
 

Fig. 16NaSCN tracer response after travel-time inversion at (a) Well 40, (b) Well 37, and (c) Well 39. 
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Fig. 17NaSCN tracer response after generalized travel-time inversion at (a) Well 40, (b) Well 37, and (c) Well 39. 
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Fig. 18NaSCN tracer response after direct amplitude inversion at (a) Well 40, (b) Well 37, and (c) Well 39. 
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Fig. 19Travel-time and tracer concentration misfit for (a) travel-time inversion, (b) generalized travel-time inversion, 
and (c) amplitude  inversion. 
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Fig. 20Measure of nonlinearity for (a) travel-time inversion, (b) generalized travel-time inversion, and (c) amplitude 
inversion. 
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Fig. 21Derived permeability field after NaSCN concentration match by (a)generalized travel-time inversion and (b) 

travel-time inversion. 
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        a                                                                             b 

Fig.22Permeability change after (a) gereralized travel-time match and (b) travel-time match. 

 
 

Fig. 23Permeability multipliers for Layers 1, 2, and 3 from the finite-difference history match (Allison et al.26).  
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RESULTS AND DISCUSSION: PART II 

 

Multiscale Data Integration for Reservoir Characterization 

 
Introduction 

The principal goal of reservoir characterization is to provide a reservoir model for accurate 
reservoir performance prediction. Integrating various data sources is an essential task in reservoir 
characterization. In general, we have hard data such as well logs and cores and soft data such as 
seismic traces, production history, a conceptual depositional model, and regional geological 
analysis. Seismic data in particular can play a major role in enhancing the geological model. It 
can be a block constraint when generating property distributions at a finer scale. However, 
integrating such information into the reservoir model is nontrivial. This is because different data 
sources scan different length-scales of heterogeneity and can have different degree of precision.1 
It is essential that reservoir models preserve small-scale property variations observed in well logs 
and core measurements and capture the large-scale structure and continuity observed in global 
measures such as seismic and production data.  

The large coverage area of seismic data has established that such data sources can play a 
major role in characterizing the reservoir. Most applications of seismic data for reservoir 
characterization have focused on the relationship between seismic attributes such as amplitudes 
or impedance and porosity.2,3 Two basic approaches have been adopted for integrating seismic 
data into reservoir models. For high-resolution seismic data, several geostatistical techniques 
such as cokriging and collocated cokriging have been proposed to estimate areal distribution of 
porosity.45,6 On the lower-resolution spectrum, there are methods to combine multiscale data 
where seismic data imposes a block constraint for the finer scale.3,4,6,78,91011 These include 
techniques such as Sequential Gaussian Simulation with Block Kriging (SGSBK)3 and Bayesian 
updating of point kriging.1011 Most kriging-based methods are restricted to multi-Gaussian and 
stationary random fields. They therefore require data transformation and variogram 
construction.3,4,6,78,91011 In practice, variogram modeling with a limited data set can be difficult 
and strongly user dependent. Improper variograms can lead to errors and inaccuracies in the 
estimation. Thus, one might also need to consider the uncertainty in variogram models during 
estimation.12 However, conventional geostatistical methods do not provide an effective 
framework to take into account the uncertainty of the variogram. Furthermore, most of the 
multiscale integration algorithms assume a linear relationship between the scales. 

An alternative approach to traditional geostatistical methods is based on multiscale Markov 
Random Fields (MRF) that can effectively integrate diverse data sources into high-resolution 
reservoir models. MRF has been widely applied in imaging processing1314,15 and spatial 
modeling. In the oil industry, this technique is relatively new. There are limited applications in 
determining the reservoir facies1617 distribution and spatial modeling of reservoir properties 
using synthetic examples.18 However, field-scale application of MRF has remained a challenging 
goal. 

We further investigate our previously proposed method18 with the main objective of gaining 
insight on the practical implementation of this technique by a field application in the Middle 
East. The particular field studied here, the CNR field in Saudi Arabia is located south of Riyadh 
and produces superlight, sweet crude oil from the Unayzah Formation, a late Permian clastic 
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reservoir. Our goal is to generate 3D high-resolution porosity model by integrating seismic and 
well log data via MRF. 
 
Background and Methodology 
The integration of seismic data and well data must account for the difference in scales and 
precision of the data types. Our proposed method is a Bayesian approach to spatial modeling 
based on MRF and multi-resolution algorithms in image analysis. Broadly, the method consists 
of two major parts (i) construction of a posterior distribution for multiscale data integration using 
a hierarchical model and (ii) implementing MCMC to explore the posterior distribution. 
 
Construction of a posterior distribution for multiscale data integration. A multi-resolution 
MRF provides an efficient framework to integrate different scales of data hierarchically, 
provided that the coarse scale resolution is dependent on the next fine scale resolution.13,14,19,20 
In general, a hierarchical conditional model over scales 1,…, N (from fine to coarse) can be 
expressed in terms of the product of conditional distributions 

)|()(),...,( 1
2

11 −
=∏= nnN

n
N xxxxx πππ       (1) 

where )( nxπ , n = 1,…, N, are MRF models at each scale, and the terms )|( 1−nn xxπ express the 
statistical interactions between different scales. This approach links the various scales 
stochastically in a direct Bayesian hierarchical modeling framework (Fig. 1). Knowing the fine 
scale field nx  does not completely determine the field at a coarser scale 1+nx , but depending on 
the extent of the dependence structure modeled and estimated, influences the distribution at the 
coarser scales to a greater or lesser extent. This enables us to address multiscale problems 
accounting for the scale and precision of the data at various levels.  

For clarity of exposition, a hierarchical model for reconciling two different scales of data will 
be considered below.  
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From this equation, the posterior distribution of the fine scale random field indexed by 1 
given a coarse scale random field indexed by 2 can be derived as follows 
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In Eq. 3, )( 1xπ is a prior distribution of the fine-scale represented by an MRF. We can generalize 
Eq. 3 to incorporate uncertainty in the prior spatial model 
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In Eq. 4 we have split 1x  into its two components: 1
nx  represents simulated (unknown) fine scale 

values and 1
ox  are the conditioning points. Also, θ  denotes a parameter in the MRF that controls 

the variance in the fine-scale spatial model.  
Thus, the posterior distribution is proportional to the product of three major terms as follows: 
1. )|( 1 θπ x  represents the joint spatial distribution of 1x  modeled by a MRF with a scale 

parameter, θ . 
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2. )|( 12 xxπ is a stochastic link model for scale to scale transitions. 
 
Spatial modeling using MRF. In the petroleum literature, several MRF models for discrete 

data such as Ising, Potts and Strauss models etc. have been used to model the distribution of rock 
types or sedimentary facies in the reservoir.21,15,22,17 However, the use of MRF for spatial 
modeling of continuous data such as permeability and porosity has been rather limited. By far the 
most prevalent spatial MRF model for continuous data has been the auto-normal 
model21,15,22,17,23, the so called Gaussian Markov Random Fields (GMRF), although extensions to 
non-Gaussian distributions are possible.23  

GMRF specify the conditional probability of 1
ix  to be normally distributed with a mean that 

depends upon the elements of its neighborhood, iN (Fig. 2) 
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where ijw  can be viewed as interaction coefficients and Ni is the neighborhood set of site i. This 
leads to the following joint distribution of ),,,( 11
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where W is the n x n interaction matrix whose diagonal elements are unity and off-diagonal 
elements are –wij. Note the wij must be specified so that W is positive definite.  

The model in Eq. 6 assumes that the conditional variance 211 ),|var( σ=∈ iji Njxx  is a constant. 
This may not be appropriate for heterogeneous environments where the number of neighbors and 
the local conditional variance might vary. We utilize the following pair-wise difference prior 
(PDP) conditional distribution that more effectively captures the local properties of the spatial 
process x 2425,26 
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In Eq. 7 βij are prespecified local spatial parameters with βij=0 unless i and j are neighbors and θ  
is a scale parameter controlling the variance in the fine-scale distribution. Eq. 7 is equivalent to a 
normal local conditional prior distribution of the form 
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where ∑ ∈+ =
iNj iji ββ . Note that in Eq. 8 both the mean and the variance can be locally varying, 

allowing for non-stationary spatial modeling. 
Similarly, Eq.7 leads to the following joint distribution of ),,,( 11
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where B is the nxn precision matrix whose diagonal elements are ∑ ∈+ =
iNj iji ββ  and off-

diagonal elements are -βij. Note the βij must be specified so that B is positive semi-definite and 
symmetric.  

The choice of model parameter, β. The selection of βij in a MRF allows us to incorporate 
prior subjective and geologic knowledge into the model. Unfortunately, the estimation of βij is 
not trivial. Several techniques have been proposed in the literature for the optimal estimation of 
βij.21,2326,27 For example, Devine et al.28 propose forming a matrix of interregional distance. βij is 
then set equal to g(dij) where g is a decreasing function inversely proportional to the distance.  
The simplest choice is βij = 1 if i and j are adjacent locations. 27  

In some cases, one might also choose to specify βij to reflect known local and global spatial 
properties of x1 such as distance between sites.27,29 Rue and Tjelmeland29 demonstrated how to 
fit a GMRF to a known stationary Gaussian Random Field (GRF) on a torus through a 
minimization scheme. Caers30 further utilized this approach for GMRF to reproduce a prior 
covariance. Their approach is briefly discussed below with an illustrative example. 

Suppose we have a stationary GRF with covariance G. In a GMRF, with a certain covariance 
matrix M (which is the inverse of the precision matrix W), an optimization technique is applied 
to find wij that minimizes  
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where  ijM 11  and ijG11  are the covariances between 11 site and ij site in GMRF and GRF 
respectively, ijξ  is user defined weighting factor. For a detailed explanation, refer to Rue and 
Tjelmeland29 and Caers30. To achieve computational efficiency for large lattices, Fast Fourier 
Transform (FFT) algorithm is used.  

To illustrate this approach, let us consider a simple 2D example on a 64x64 grid, using an 
isotropic exponential variogram with range equal to 15 grid-blocks. The neighborhood template 
is comprised of the 25 nodes as shown in Fig. 3 and the w’s calculated using the above scheme 
are given in Fig. 4. The fitted covariance M(W), using the above-mentioned FFT approach is 
shown in Fig. 5. With the chosen template, a good match is obtained.  Fig. 6 shows a single 
simulated realization obtained using the GMRF. When compared to the actual reference 
realization, the simulated realization shows good agreement.  

Once βij which controls the spatial dependence structure of x are specified, the joint spatial 
distribution of 1x  can now be determined by a product of its conditional distributions in Eq. 7 as 
follows 
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where the sum  is over all such pairs of neighbors (i,j) denoted by i~j and 1n denotes total number 
of fine grid sites.  

 
A stochastic link model between different scales. Assume two random fields at different 

scales to be linked so that each component of the coarse field will depend stochastically on the 
components of the finer grids within the coarse grid. For a link between resolution levels, let us 
consider a general Gaussian stochastic transformation model, usually nonlinear:  
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where , nl is the number of fine scale sites in each coarse site indexed by l, ),0(~ 2
2σε Nl  that 

controls the precision of the coarse scale data.  Eq. 12 may be approximated by a generalized 
additive model: 
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where φ , ϕ are transformation functions to account for different averaging schemes (linear or 
non-linear) between coarse scale and fine scale. In the case where uu =)(ϕ  and 

,/)( lsss mvv =φ Eq. 13 reduces to a simple linear averaging model12,13 with Gaussian white noise 
between the different resolution levels. This leads to the following stochastic link model between 
the scales 
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where n2 represents total number of coarse grid sites. If lmuu ωϕ =)( , ωφ sss vv =)( , we have a ω-
power averaging model31 with Gaussian white noise between different resolution levels  
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We can generalize such stochastic link models to incorporate as many scales as necessary.  
 
Simulations using MCMC. The posterior distribution given by Eq. 14 provides a Bayesian 
framework for reconciling two different scales of data. We can generate multiple realizations 
from the posterior distribution using Markov Chain Monte Carlo(MCMC).2425,26,32 MCMC is 
well known to be quite versatile and suitable for multivariate or high dimensional problems. The 
approach can handle non-Gaussian and complex posterior distributions.26,32,33 

The essential idea of MCMC is Monte Carlo simulation utilizing Markov Chains. Two 
practical update algorithms for constructing a Markov Chain with a specified stationary 
distribution, )(xπ are Gibbs sampling and Metropolis-Hasting algorithms. Because MCMC 
methods are most conveniently built upon full conditional distributions, first we need to derive 
the full conditionals denoted by )|( ii xx −π , which is the distribution of the i-th component ix , 
conditioned on all the remaining components }:{ ijxx ji ≠=− , j = 1,…,n. 

The joint posterior distribution determines each of the full conditionals. Thus random 
drawings from the target distribution π(x) can be accomplished by a sequence of draws from full 
conditional distributions. The Gibbs sampling involves sampling from full conditional 
distributions. This algorithm, therefore, can not be used when the full conditionals have non-
standard form or when sampling from the full conditional distribution is computationally 
difficult. On the other hand, Metropolis-Hastings algorithm is more general and does not require 
sampling from the full conditionals. 2425,26,32 

From the posterior distribution Eq. 15, the full conditional for 1
nx   
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where all ,21
ls xx ∈ lmiiis ,,1,,1,,1 LL +−= . 

 
We can now simulate 11

1 ,, nxx L  by updating according to the full conditionals. 
Our MCMC scheme is carried out in practice by updating each 1

ix  using a Metropolis-Hasting 
step and θ  using a Gibbs step. In the single component Metropolis-Hastings algorithm each 
candidate value, *1

ix  is generated from a prespecified proposal distribution. Assuming a 

symmetric proposal distribution, a candidate *1
ix is accepted with a probability ),(

*11
ii xxα where 
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Here ),,|( 211
lii xxx −θπ is the full conditional distribution of 1

ix  given by Eq. 16. 
 
 
Applications 
We illustrate our approach using several examples that demonstrate the power and versatility of 
the method. The first synthetic example involves integration of sparse fine-scale data with coarse 
scale data. This is the situation encountered, for example, when we have well data and seismic 
data. The second example is a field example that involves integration of seismic data and fine-
scale conditioning points representing the well data. The field is located in Saudi Arabia south of 
Riyadh and produces superlight oil from the Unayzah Formation, a late Permian siliclastic 
reservoir.  

 
Synthetic Example: Integrating two different scales of data with anisotropy. This example 
involves generating fine-scale realizations of permeability based on limited fine-scale 
conditioning data and a coarse block constraint.  

The reference permeability field in Fig. 7(a) shows a clear anisotropic structure. The 
permeability data is from a slab of Berea sandstone and has been extensively used in the 
literature.34 This field consists of 40 by 40 air permeameter measurements taken from a 2 by 2 
foot vertical slab of Berea sandstone. Note that the scale of permeability values is in millidarcies. 
We can see a low permeability streak along the North-West direction and high permeability 
regions in the upper right corner. A coarse permeability field is generated by geometric 
averaging of the fine scale reference field and adding Gaussian noise. Fig. 7 (b) shows the coarse 
scale permeability field. To take into account for the anisotropy in the fine scale permeability 
field, we define anisotropic neighborhood system on a lattice of regular sites (Fig. 2 (b)). Based 
on 64 fine scale conditioning data and the coarse scale permeability field, fine scale realizations 
are sampled from the posterior distribution using MCMC. Fig. 7 (c) shows one such realization 
simulated by MCMC.  Fig. 8 shows the cross plot of simulated permeability versus the true 
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permeability. Fig. 9 demonstrates that the coarse scale constraint is preserved by the simulated 
permeability distribution. 
 
 
Field Application: In this field application, our goal is to obtain a high-resolution porosity 
model based on well log and seismic data. The well log data represents the sparse fine-scale 
information and the seismic data are the coarse scale data.  
 

Geological Aspects. The CNR Field is located south of Riyadh in the central Saudi Arabian 
basin. The CNR Field produces superlight, sweet crude oil from the Unayzah Formation, a late 
Permian clastic reservoir.The area under study (Fig. 10) is approximately 100 sq km (38.6 sq 
miles) in size. The seismic data over the area include a 3-D post stack data set. The area includes 
9 wells; A, B, C, D, E, F, G, H, I.  

The Permian Unayzah Formation is a continental clastics consisting of braid-plain and eolian 
sands and floodplain silts. The Unayzah formation is bounded by two major unconformities: the 
Pre-Unayzah Unconformity (PUU) at the formation base eroding into the Qusaiba marine shales, 
the source rock for Central Arabia, and the Pre-Khuff Unconformity (PKU) at the formation top, 
overlain by the Khuff marine clastic sediments. The stratigraphic column of the ‘Unayzah 
Formation is shown in Fig. 12. Three major depositional cycles are recognized within Unayzah 
formation (in descending order): Unayzah A, B, and C (Fig. 12). Unayzah B reservoir falls 
within one of these major cycles. 

Unayzah B reservoir consists of wadi fill and alluvial fan to braided-plain glacio-fluvial 
deposits infilling an irregular topography following the cessation of the Hercynian Orogeny.36 

Unayzah B reservoir well spacing is about 2 km. With such a coarse well spacing, it is 
difficult to characterize the reservoir heterogeneity with well data alone. Integration of the 3-D 
seismic data with petrophysical information has improved the mapping of porosity distribution in 
Unayzah B reservoir. 

Unayzah B  porosity varies from about 30% to less than 10%. A well-to-seismic calibration 
has been carried out to interpret the top and base of Unayzah B reservoir. Maximum acoustic 
seismic amplitudes were extracted on the seismic picked top horizon of the Unayzah B reservoir 
for our study. 

 
Approach. The two major steps involved in the proposed approach can be outlined as follows: 
1) Derive a relationship between the neutron porosity and seismic amplitudes.  
2) Integrate the seismically derived coarse-scale porosity with fine-scale well data to 

generate a 3-D field-wide porosity distribution using the MRF.  
 

Step 1: Correlation between Seismic data and porosity  
Seismic map, which is a source of dense information, is considered as soft data that is related 

to the average porosity within seismic resolution. Well log porosity values, which are sparse yet 
contain high resolution vertical information, are considered as hard data. The seismic map is 
represented by the maximum acoustic seismic amplitudes that were extracted from the seismic 
picked top horizon of the Unayzah B reservoir. The seismic data with a resolution acquisition of 
100mx100m is shown in Fig. 13. Well log data is basically neutron porosity values. Table 1 
shows the location of wells, the formation top and bottom depth. Fig. 14 shows the distribution 
of wells in the field. 
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While well data provide excellent resolution in the vertical direction, they represent a small 
portion of the actual field. On the other hand, seismic data are generally less precise but more 
abundant. We consider in our approach that the average of the cell values in any one vertical 
column of grid cells is constrained by the value of the seismic map over that column. Because 
seismic data resolution deteriorates with depth, we employ inverse distance weighting while 
calculating average porosity values from well logs to give more weights to porosities closest to 
the value of the seismic map as follows: 
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where Zi is the parameter or property that we want to average, di: distance, and ZAverage: is the 
average of parameter Zi according to inverse distance. Table 2 shows the results of the average 
of porosity for each well according to Eq. 18. 

The next step is to define the seismic amplitude values at the top of the formation for each 
well. Table 3 shows these values for each well. With the average values of neutron porosity and 
seismic amplitude, we obtain a correlation between these parameters. Several linear regression 
models were tested e.g. average neutron porosity vs. amplitude and average neutron 
porosity*thickness vs. amplitude. We concluded that the linear regression model that gave the 
best correlation coefficient was for average neutron porosity*thickness vs. amplitude which is 
consistent with models available in the literature.37 Fig. 15 shows the correlation between these 
variables and the correlation coefficient is 0.66. Using this correlation, we obtain a coarse scale 
distribution of porosity in the reservoir based on the seismic resolution. Fig. 16 shows the 
seismically derived porosity distribution. 

 
Step 2: Integration of seismically derived coarse- scale porosity with fine-scale well data 

using MRF. 
The next step is generating fine-scale realizations of porosity based on the well log data and 

the coarse block seismically derived porosity values. The grid size for the 3D high-resolution 
porosity model is 65x69x32. The fine scale well data correspond to 9 wells in the field. The 
coarse scale data (65x69x1) is the seismically derived porosity values generated in step 1. Due to 
the limited numbers of conditioning points, a representative variogram is difficult to construct. 
Hence, we decided against utilizing variograms to calculate the spatial interaction coefficients ijβ  
as discussed before. Instead, we adopted the simplest choice of βij = 1 if i and j are adjacent 
locations. Using a single component Metropolis algorithm we explore the posterior distribution 
(Eq. 14) that incorporates information from the various scales accounting for the precision of the 
data. Fig. 17 shows one of the realizations obtained via the multiscale integration procedure. Fig. 
18 compares the true average porosity versus the simulated average porosity. As expected, the 
fine scale realization reproduces almost perfectly the coarse scale block average. 

 
Sensitivity Analysis: In MRF approach, Eq. 16 expresses the full conditional distribution. In 

this equation, θ  is a scale parameter controlling the variance in the fine-scale distribution. In the 
Bayesian inference for multiscale integration, which is the base of MRF approach, considering 
the uncertainty of θ is trivial. Lee et al.18 have showed that generalizing Eq. 4 by including a 
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prior model forθ , one can easily quantify the uncertainty in the prior spatial model.  Eq. 4 will be 
modified as follows: 
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Another parameter, 2σ  in Eq. 16, controls the precision of information at different scales. The 
value of 2σ will depend on how much weight one want to exert for the coarse scale information. 
The higher the value of 2σ , lesser will be the impact of the seismic data on the fine-scale 
realization. In our field example, a sensitivity analysis for 2σ  was conducted to observe its effect 
on the final high resolution porosity model. By comparing Fig. 18 and Fig. 19, we can see that 
the influence of the coarse-scale constraint is practically non-existent when we change from 

2σ =0.0001 to 2σ =0.1, respectively.  
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Fig. 1-An illustration of hierarchical estimation structure. An example of “link” between two different scales of data 
according to a local stochastic transformation. 
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 (a) Isotropic template    (b) Anisotropic template 

 
Fig. 2-Two neighborhood systems with respect to a generalized Euclidean distance on a two-dimensional lattice. The 
numbers (e.g.,1, …, 5) in the template indicate the order of the neighborhood system. 
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Fig. 3-A 25x25 grid isotropic template used for the calculation and the corresponding w’s. 
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Fig. 4-Estimated w’s using the two-way FFT. 
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64x64 Grids with Exponential Variogram
Range = 15, Sill = 1.0
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Fig. 5-The target (solid) model fitted with the covariance of MRF calculated using the two-way FFT. 

 
 

 

                  
(a)                (b) 

Fig. 6-The reference field (a) compared to simulated realization using GMRF (b) 
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                (c) 

Fig. 7-Synthetic example for multiscale data integration with the consideration of anisotropy. (a) Reference Berea 
Sandstone permeability field on fine scale 40x40 grid (logarithmic scale); (b) Large scale permeability field generated by 
geometric averaging plus correlated error (10x10); (c) One realization of fine scale permeability field generated by MRF and 
MCMC.  
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Fig. 8-Cross plot of true permeability versus simulated permeability from a new approach based on multiscale MRF. 
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Fig. 9-Cross plot of simulated block average of fine scale ln(k) versus large scale block ln(k). Perfect reproduction of large 
scale block values corresponds to the diagonal line. 
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Fig. 10-Location map of the CNR Field in the central basin of Saudi Arabia 
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Fig. 11-Neutron porosity for one of the wells in the area of study. 
 

 

 

 
 
 
 
 
 
 
 

 
 

Fig. 12-Stratigraphic column of the Unayzah Formation37. 
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Fig. 13-Maximum acoustic seismic amplitude-top of the reservoir 100mx100 m. 
 
 

 
 

Table 1-General well information. 

 

Well X(m) Y(m) Top (ft) Base (ft) 
A 731875 2551249 8886 8932 
B 732861 2549953 8900 8950 
C 734375 2550472 8908 9015 
D 732170 2550424 8878 8931 
E 732144 2551997 8912 8950 
F 730700 2547600 8962 9164 
G 734700 2552669 8992 9158 
H 731765 2553556 8955 9014 
I 733025 2552100 8940 8954 
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Fig. 14-Well positions in the study zone. 
 

 
 

Table 2-Average values of neutron porosity for each well. 
 

 
Table 3- Maximum acoustic seismic amplitude for each well at the top of formation. 

 

Well NPHI_Top 
A 0.15371 
B 0.16215 
C 0.13942 
D 0.16366 
E 0.14880 
F 0.11647 
G 0.09678 
H 0.13634 
I 0.15107 

Well Top_100x100 

A 0.0300 
B 0.0500 
C 0.0800 
D 0.0700 
E 0.0500 
F 0.0900 
G 0.0600 
H 0.0200 
I 0.0100 
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Fig. 15-Correlation between neutron porosity*thickness and 100m*100m seismic amplitude parameter. 
 

 

 
 

Fig. 16-Porosity distribution from maximum acoustic seismic amplitude, 100mx100m. 
 
 



 

48 

 
Fig. 17-3D high-resolution model for porosity distribution using 2σ =0.0001, θ =0.5858, and betas=1. 
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Fig. 18- Crossplot of simulated average porosity values  vs coarse scale porosity values, 2σ =0.0001 , θ =0.5858, and 

betas=1. 
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Fig. 19-Crossplot of simulated average porosity values  vs coarse scale porosity values, 2σ =0.1 , θ =0.5858, and betas=1. 
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RESULTS AND DISCUSSION: PART IIIA 
 

Field-Scale Design Optimization via  Numerical Simulation: Use of Downhole 
Samplers for Test Design 

 

Introduction 
The past several years have seen a great increase in the development, deployment and 

application of permanent in-well fiber optic monitoring systems. In-well fiber optic sensors are 
either currently available or under active development for measuring pressure, temperature, flow 
rate, phase fraction, strain, acoustics, and sand production. Potential future sensor developments 
include measurement of density and fluid chemistry (Kragas et al., 2001). This study is a 
preliminary investigation of the use of downhole sensors to enhance the value of Partitioning 
Interwell Tracer Tests (PITTs). The idea being investigated is to measure the tracer 
concentrations in real time at multiple depths using downhole sensors. These tracer concentration 
data could be used to estimate oil saturations at the corresponding depths using the method of 
moments (Zemel, 1995) and/or inverse modeling (Yoon et al., 1999, Wu et al., 2002). 
 

Preliminary Results 
Partitioning interwell tracer tests were simulated for two cases. In each case, a tracer slug 

was injected and the produced tracer concentrations were measured for several layers 
corresponding to several depths in these production wells. Residual oil saturations were 
estimated and a vertical distribution of oil saturation was generated. 

The first case illustrated is based upon a carbonate outcrop called Lawyer Canyon in the 
San Andres formation. The outcrop geology is quite similar to the oilfields of West Texas and 
consists of highly cyclic Permian dolomitized shallow water platform carbonates (Jennings et al., 
2000). Figure 1 shows the location of the outcrop and the associated geology. A vertical cross-
section of 150 feet long by 100 feet wide by 10 feet thick was simulated. The geometrically 
averaged horizontal permeability is 13 md and the porosity is 0.15. Residual oil saturation 
distributions were generated using an exponential relation with the permeability. The average 
residual oil saturation is 0.35. Figures 2 and 3 show the permeability and residual oil saturation 
profiles. The residual oil saturation was averaged for each simulation layer and is shown versus 
depth in figure 6.A tracer slug consisting of a conservative tracer and two partitioning tracers of 
partitioning coefficients 0.5 and 1.0 was injected. The injected volume of the tracer slug was 0.7 
PV. Figures 4 and 5 show the tracer concentration curves for the top and bottom simulation 
layers The.bottom low permeability layers have greater tracer transit times, evident from figure 
5. The method of moments (Zemel, 1995) was used to calculate the residual oil saturation for 
each layer from the simulated tracer concentrations. The major assumptions of the method are 
that the average oil saturation in the reservoir is constant with time and the partition coefficients 
of the tracers do not change during the test.  

The average oil saturation in the swept volume can be calculated from PITT data using 
the following equations.  The partition coefficient for tracer i between the oil phase and the 
mobile water phase is 

i

i
i C

C
K

1

2=
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where C2i is the concentration of tracer i in the oil phase and C1i is the concentration of tracer i 
in the water phase. The mean residence volume for a tracer i in a slug tracer injection is 

2

0

0 slug

Di

Di

i

V

dVC

dVVC
V −=

∫

∫
∞

∞

 
In the above equation slugV  is the volume of the injected tracer slug, DiC  is the normalized 
concentration of tracer i at the producer and V is the cumulative volume of fluid injected. 
The oil saturation can be calculated by 

21

12

)1( VVK
VVSo +−

−
=

 
2V  is the mean residence volume of the partitioning tracer, 1V  is the mean residence volume of 

the conservative tracer and K is the partition coefficient of the partitioning tracer. 
 Figure 6 shows the close match between the estimated and model oil saturations, for 

simulation runs with different vertical permeability values. The accuracy in estimation increases 
with decrease in vertical permeability due to decreased cross flow. 

The second illustration is for a three-dimensional oil reservoir. The simulated field is a 
quarter of a 40 acre five-spot well pattern. For the permeability realization, the standard 
deviation in the natural logarithm of permeability was 1.61, the geometrically averaged 
permeability was 345 md, the correlation length in the vertical z-direction was 10 ft, and the 
correlation lengths in the horizontal directions were 100 ft. An exponential variogram was used 
to generate the permeability data. The permeability and oil saturation distributions have been 
presented in Figures 7 and 8. The injected volume of the tracer slug was 0.9 PV. Figure 9 shows 
the tracer concentration outputs for the first simulation layer. Figure 10 shows the close match 
between the estimated and model oil saturations. The same trend, as in the two-dimensional case 
of higher accuracies with decreasing vertical permeability is observed.  

 
  
 
 



 

52 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 1: Map of geology and carbonate outcrop location of West Texas 

 

 

 
            Log Permeability 

 
                          Figure 2: Horizontal permeability profile of Lawyer Canyon 

 

 
          Residual oil saturation 

 
                             Figure 3: Residual oil saturation profile of Lawyer Canyon 
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Figure 4: Normalized tracer concentrations for simulation layer 1 for Lawyer Canyon 
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Figure 5: Normalized tracer concentrations for simulation layer 30 for Lawyer Canyon 
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Figure 6: Estimated oil saturations for different vertical permeabilities for Lawyer Canyon  

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 7: Permeability profile of the three-dimensional reservoir 
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Figure 8: Residual oil saturation profile of the three-dimensional reservoir  
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Figure 9: Normalized tracer concentrations at the producer for simulation layer 1 of the three-

dimensional reservoir 
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Figure 10: Estimated oil saturation for different vertical permeabilities for the 3 dimensional 

reservoir 
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RESULTS AND DISCUSSION: PART IIIB 
 
Field-Scale Design Optimization via Numerical Simulation: Use of Natural Tracers 
for PITT Design 

 

Introduction 
Crude oil is a mixture of organic components of varying water solubility. A novel idea 

being investigated in this research is to use some of the more water-soluble components of crude 
oil as natural partitioning tracers to estimate oil saturations and swept pore volumes, and hence 
as a substitute for injected tracers.  The rate at which these components will dissolve into water 
will depend upon their partition coefficients under reservoir conditions. In this study we have 
identified some of the common components of crude oils that might be used as natural 
partitioning tracers. Equations have been derived to estimate pore volumes and average oil 
saturations in a reservoir for both single-phase and multiphase flow and two simulations used to 
illustrate their validity under the assumed conditions. 
 
Preliminary Results 

Water-soluble components of crude oil have been studied for various geochemical 
applications (Bennet et al., 1997; Larter et al., 1995; Taylor et al., 1997; Kharaka et al., 2000). 
Some of the most soluble components are phenols, benzoic acids, quinolines and aliphatic acids. 
Table 1 lists some representative partition coefficients (Bennet et al., 1997, Reinsel et al., 1994 
and Taylor et al., 1997) with a wide range of values from 0.009 to 31. 

The mass conservation equations can be integrated under remarkably general reservoir 
conditions to estimate oil saturations and pore volumes. The major assumptions are that the 
partition coefficients are constant and the volume of each component dissolved into the water is 
small compared to total oil volume, so that its dissolution has negligible effect on the saturations. 
In general, the equations can be applied to heterogeneous reservoirs with multiphase flow. 
The first case illustrated is based upon a carbonate outcrop called Lawyer Canyon, reference of 
which has been made in the first part of the report. The field was simulated with single phase 
flow and a uniform residual oil saturation of 0.30. The residual oil was modeled as a mixture of 
four partitioning components. Table 2 outlines the components and their initial concentrations. A 
waterflood was simulated and component concentrations were measured at the producer. Figure 
1 shows the concentration of the crude oil components at the producer. The concentration of 
these compounds decrease with time as they are stripped out of the oil phase in the reservoir. 
Concentration of any two compounds can be used for the estimation of pore volumes and 
average oil saturations. In the cases illustrated, butyric acid and phenol concentrations have been 
used for the estimation. Figures 2 and 3 show the comparison between the estimated and 
reservoir oil saturations and pore volumes. 

The second illustration is a waterflood of a quarter of a 40 acre five spot well pattern. The 
standard deviation in the natural logarithm of permeability was 1.61, the geometrically averaged 
permeability was 277 md, the correlation length in the vertical direction was 10 ft, and the 
correlation lengths in the horizontal directions were 100 ft.  An exponential variogram was used 
to generate the permeability data. Figure 4 shows the permeability profile for the simulation 
field. The field was simulated with a uniform initial oil saturation of 0.7. The oil was modeled as 
four partitioning components as in the previous illustration. Figure 5 shows the fluid production 
rates of the simulated water flood. Figure 6 shows the concentrations of the crude oil compounds 
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at the producer in the water phase. Figures 7 and 8 show the close match between the estimated 
and actual oil saturations and pore volumes. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Partition Coefficient 

Acetic Acid 0.009 

Butyric Acid 0.084 

Phenol 1.3 

p-Cresol 3.6 

o-Cresol 5.2 

2,4 Dimethyl Phenol 15 

3 Isopropyl Phenol 31 

 

Table 1: Partition Coefficients of crude oil compounds 
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Compound Partition Coefficient Initial concentration in 

the oil phase, mg/l 

o-Cresol 5.2 7.5 

Phenol 1.3 1.5 

Butyric Acid 0.084 1 

Acetic Acid 0.009 1 

 

Table 2: Oil compounds modeled in the illustrated simulations 
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Figure 1: Total component concentrations at the producer for Lawyer Canyon  
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Figure 2: Estimated residual oil saturation for Lawyer Canyon using concentrations of Phenol 

and Butyric Acid 
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Figure 3: Estimated pore volume for Lawyer Canyon using concentrations of Phenol and Butyric 

Acid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Permeability Profile for the 3 dimensional simulation 
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Figure 5: Fluid production rates for the 3 dimensional simulation 
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Figure 6: Component concentrations in the water phase at the producer for the 3 dimensional 

simulation 
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Figure 7: Estimated oil saturations using concentrations of Phenol and Butyric Acid for the 3 

dimensional simulation 
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RESULTS AND DISCUSSION: PART IIIC 
 

Numerical Modeling of Partitioning Tracer Tests in Fractured Reservoirs 

 

Introduction 
Naturally fractured reservoirs can be modeled as two interconnected media: the matrix which 

contains the bulk of the fluid, but has very less conductive capacity, and the fracture which 
generally has high permeability but very little storage capacity. The dual porosity model is one of 
the oldest and most common approaches for modeling naturally fractured oil reservoirs and is 
available in most reservoir simulators including UTCHEM and ECLIPSE.  The simulation 
domain is divided into two superimposed porous media: one for the fracture system and another 
for the porous rock matrix. A mass balance for each of the media results in two continuity 
equations coupled by a transfer function. This study compares the ECLIPSE and UTCHEM 
results for a series of partitioning tracer simulations as a first step in our research on how to 
optimize the use of tracers in naturally fractured oil reservoirs. 

 
Simulation Results 

In UTCHEM, each simulation gridblock can be divided into smaller matrix blocks depending 
upon the fracture spacing. In Eclipse, the fracture spacing is the same as the grid spacing, so 
simulating a small fracture spacing will increase the number of gridblocks and hence will 
increase the computational time. Figure 1 compares the oil production rates of a quarter of a five-
spot water flood simulation with a slug tracer injection in a homogeneous fractured reservoir. 
The field simulated was 1000 ft long by 1000 ft wide by 25 ft thick. The porous matrix had an 
initial uniform oil saturation of 0.75 and a porosity of 0.3. The fractures had an initial oil 
saturation of 0.99 and a porosity of 0.01. The permeability of the matrix and the fracture were 
100md and 1 md respectively. The tracer slug consisted of two partitioning tracers of partition 
coefficients 1 and 5, and was injected for 0.018 PV. 

Table 1 shows the CPU times for a series of simulations with different fracture spacings and 
no subgridding of matrix blocks. UTCHEM has the advantage for small fracture spacing because 
of its feature allowing the user to specify more than one matrix block for each gridblock.   

Figure 2 shows the comparison between the produced tracer concentrations for both ECLIPSE 
and UTCHEM. One of the significant processes in oil production in a fractured reservoir is 
capillary imbibition of water into the matrix with the simultaneous expulsion of oil to the 
fracture. Tracers having a higher partition coefficient will have a higher concentration in the oil 
phase, hence produced mass of these tracers will be greater. This phenomenon is evident from 
Figure 2. 82 % of the tracer mass with a high partition coefficient is recovered while only 50% of 
the other tracer is recovered.  

Each matrix block can be subgridded to simulate flow inside a matrix block. In UTCHEM, the 
matrix blocks are subgridded as nested blocks in the horizontal direction and as stacked grids in 
the vertical direction and the size of each subgrid can be specified by the user. In ECLIPSE, the 
matrix blocks can be subgridded as nested blocks in two dimensions or as concentric blocks in 
three dimensions with the thicknesses of the subgrid varying logarithmically away from the 
fracture wall. Figures 3 and 4 show the simulation grids in a dual porosity model for UTCHEM 
and ECLIPSE. Figure 5 compares the oil production rates between ECLIPSE and UTCHEM for 
a homogeneous fractured reservoir with subgridding. The matrix blocks have two subgrids in the 
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horizontal direction. Comparisons with 3 dimensional subgridding are not presented as ECLIPSE 
failed to finish the simulation displaying a lot of convergence errors.  

 ECLIPSE uses a first order finite-difference method to approximate the spatial 
derivatives in the partial differential equations whereas UTCHEM has a third-order TVD finite-
difference method, which is a more accurate approximation with less numerical dispersion. 
Figure 6 compares UTCHEM and ECLIPSE tracer production concentrations. The field 
simulated was a single phase, single porosity reservoir with a slug tracer injection. The slug 
volume injected was 0.02 PV. The field was a quarter of a five spot flood, 165 ft long by 165 ft 
wide by 5 ft thick.  
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CPU Time, seconds 
Fracture Spacing, ft 

ECLIPSE UTCHEM 

100 3 233 

50 18 233 

25 341 233 

10 23369 233 

 

Table 1: Run time comparisons for dual porosity runs with different fracture spacing for 

UTCHEM and ECLIPSE  
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Figure 1: Comparison of oil production rate between UTCHEM and ECLIPSE for a fractured 

reservoir 
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Figure 2: Comparison of total tracer concentrations between ECLIPSE and UTCHEM for a 

fractured reservoir  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: UTCHEM dual porosity simulation grid 
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Figure 4: ECLIPSE dual porosity simulation grid 
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Figure 5: Comparison of oil production rates between ECLIPSE and UTCHEM for a dual 

porosity simulation with two subgrids in the horizontal direction 
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Figure 6: Comparison of tracer production concentrations between UTCHEM and ECLIPSE 
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CONCLUSIONS 
 
Part-I 

We have presented three approaches to production data integration and examined their 
relative merits using quantitative measures of non-linearity. These are travel time, generalized 
travel time and the commonly used amplitude inversion. The travel-time inversion of production 
data is robust and computationally efficient. Unlike conventional amplitude matching that can be 
highly nonlinear, the travel-time inversion has quasilinear properties. This makes the method 
particularly attractive for field-scale applications where the prior geologic model might be far 
from the solution. The generalized travel-time inversion appears to retain most of the desirable 
features of the travel-time inversion and also accomplishes the amplitude match. Some specific 
findings from this study can be summarized as follows: 
1. We have quantitatively investigated the non-linearities associated with travel time and 

amplitude inversion for production data integration. The non-linearity is expressed in terms 
of a simple and intuitive geometric measure of curvature as proposed by Bates and Watts16 
and later used by Grimstad and Mannseth.17 

2. The non-linearity in travel time inversion is found to be orders of magnitude smaller than the 
conventional amplitude inversion. As a result, the travel time inversion has better 
convergence properties and is less likely to be trapped in local minimum. 

3. Travel time sensitivity is more uniform between the wells. In contrast, the amplitude 
sensitivity can be localized near the wells. The higher magnitude of the travel time sensitivity 
also contributes to its quasilinearity and improved convergence properties. 

4. The generalized travel time inversion effectively combines travel time and amplitude 
inversion while retaining most of the desirable properties of the travel time inversion. For the 
field example studied here, the generalized travel time inversion outperformed both travel 
time and amplitude inversion.  

 

Part-II 
 
1. We have shown using a field application that Markov Random Fields provide an efficient 

and powerful framework for data integration accounting for the scale and precision of 
different data types. They are computationally tractable and are ideally suited to simulation-
based computation such as MCMC (Markov Chain Monte Carlo) methods. 

2. In the case study from Middle East presented here, we constructed fine scale porosity 
distribution from well and seismic data explicitly accounting for the varying scale and 
precision of the data types. This demonstrated the practical applicability of MRF for data 
integration. 

3. The most sensitive parameter during spatial modeling using MRF was 2σ . This parameter 
quantifies the precision of the seismic data and controls the relationship between porosity and 
seismic data.  

 
Part-III 
 

1. An initial effort has been made in simulating the use of downhole sensors in tracer tests. 
Fields quite similar in characteristics to common oil fields were considered for the study. 
The initial results are very positive and show that partitioning tracers measured as a 
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function of depth with downhole sensors can in principle be used for estimating the 
vertical distribution of oil saturation during or after a waterflood.   With permanent 
downhole sensors, the potential exists to make these measurements numerous times 
during a waterflood to update the sweep efficiency and consider targeting poorly swept 
oil using profile control, targeted infill drilling and other technologies and/or improved 
oil recovery methods.  

 
2. The concept of natural tracers in oil fields has been introduced as a potentially cost-

effective substitute for injected tracers. Phenols and aliphatic acids have been identified 
as some of the components of crude oil that might be used as natural partitioning tracers. 
Equations to calculate average oil saturations and pore volumes have been derived for 
single as well as multiphase flow and their accuracy has been illustrated with simulations. 

 
3. Comparisons between UTCHEM and ECLIPSE for simulations without subgridding 

show good agreement. ECLIPSE failed to finish most of the simulations with 
subgridding. In addition ECLIPSE’s first-order numerical method makes it quite difficult 
to simulate tracer problems accurately. 
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LIST OF ACRONYMS AND ABBREVIATIONS 
 

d = data vector 
Cc  = calculated tracer concentration 
Co  = observed tracer concentration 
D = dispersion coefficient 
Fk  = tangent vector 
Fkk = acceleration vector 
I = identity matrix 
k = permeability 
L = spatial difference operator 
nb = number of grid blocks 
no = number of dynamic data observations 
s = slowness 
S = sensitivity matrix 
t = time 
u = Darcy velocity 
v = Interstitial velocity 
β = weighting factor 
κam = measure of nonlinearity for amplitude inversion 
κgt = measure of nonlinearity for generalized travel-time  
          inversion   
κtt = measure of nonlinearity for travel-time inversion 
τ = time of flight 
∆τ = generalized travel-time or travel-time shift 

 


