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ABSTRACT

We explore the use of efficient streamline-based simulation approaches for modeling partitioning
interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of
streamline models to develop an efficient approach for interpretation and history matching of
field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of
the associated inverse problems. We have adopted an integrated approach whereby we combine
data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted
results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir
permeability and oil saturation distribution. A novel approach to multiscale data integration
using Markov Random Fields (MRF) has been developed to integrate static data sources from the
reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite
difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning
interwell tracer tests. The finite-difference model allows us to include detailed physics
associated with reactive tracer transport, particularly those related with transverse and cross-
streamline mechanisms. We have investigated the potential use of downhole tracer samplers and
also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of
partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-
difference model.
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EXECUTIVE SUMMARY

During the first year of the project, we have explored the use of efficient streamline-based
simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs.
We utilized the unique features of streamline models to develop an efficient approach for
interpretation and history matching of field tracer response. A critical aspect here is the
underdetermined and highly ill-posed nature of the associated inverse problems. As a result, the
interpretation of the tests can be highly ambiguous and non-unique. To circumvent the problem,
we have adopted an integrated approach whereby we integrate data from multiple sources to
minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell
tracer tests, these are primarily the distribution of reservoir permeability and oil saturation
distribution. We have also explored the use of a finite difference reservoir simulator, UTCHEM,
for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference
model allows us to include detailed physics associated with reactive tracer transport, particularly
those related with transverse and cross-streamline mechanisms. We have investigated the
potential use of downhole tracer samplers and also the use of natural tracers for the design of
partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is
investigated using a dual-porosity finite-difference model.

This report is divided into three major parts. The first part deals with the interpretation of
interwell tracer test via inverse modeling. Specifically, we have investigated the relative merits
of the traditional history matching (‘amplitude inversion’) and a novel travel time inversion in
terms of robustness of the method and convergence behavior of the solution. We show that the
traditional amplitude inversion is orders of magnitude more non-linear and the solution here is
likely to get trapped in local minimum, leading to inadequate history match. The proposed travel
time inversion is shown to be extremely efficient and robust for practical field applications.

The second part of the report describes a novel approach to multiscale data integration
using Markov Random Fields (MRF). A key to proper interpretation of tracer tests is a good
prior geological model. This prior model should be able to integrate various forms of static data
such core, logs and 3-D seismic, accounting for the different scale and precision the data types.
We examined the role of MRF for this purpose through the use of a field application that
involves the integration of well log and seismic data during geologic modeling.

The third part of the report is devoted to the field scale design and optimization of tracer
tests using a finite difference simulator, UTCHEM. This simulator has been widely used
throughout the industry and its accuracy and ability to model complex physical processes have
been demonstrated through numerous field applications. During the first year, we have
investigated the potential use of downhole tracer samplers to measure tracer concentrations in
real time at multiple depths and their role in improving the test design. Another important idea
related to test design is the use of water-soluble components of crude oil as partitioning tracers.
The UTCHEM simulator has been used to explore the validity of this concept. Finally, we have
started to examine the utility of partitioning tracer tests in fractured reservoirs using a dual
porosity version of UTCHEM.

The following papers were published based on the work from the first year of this research
project.



1. Cheng, H., Datta-Gupta, A. and He, Zhong., “A Comparison of Travel Time and
Amplitude Matching for Field-Scale Production Data Integration: Sensitivity, Non-
Linearity and Practical Implications,” SPE 84570 presented at the SPE Annual
Technical Conference and Exhibition , Denver, CO, October 5-8, 2003.

2. Malallah, A., Perez, H., Datta-Gupta, A. and Alamody, W., “Multiscale Data
Integration Using Markov Random Fields and Markov Chain Monte Carlo: A Field
Application in the Middle East,”SPE 81544 presented at the SPE 13th Middle East
Oil Show & Conference, Bahrain 2-6 June 2003

Also, we have developed a 3D streamline simulator for modeling tracer tests in petroleum
reservoirs. A user-friendly interface with basic graphics capabilities have been added to facilitate
use of the model by practicing engineers. The program is now available for public distribution
and a copy is attached with this report.



INTRODUCTION

Streamline Modeling of Partitioning Interwell Tracer Tests

Streamline models approximate 3D fluid flow calculations by a sum of 1D solutions along
streamlines. The choice of streamline directions for the 1D calculations makes the approach
extremely effective for modeling convection-dominated flows in the presence of strong
heterogeneity. Briefly, in this approach we first compute the pressure distribution using a finite
difference solution to the conservation equations. The velocity field is then obtained using
Darcy’s law. A key step is streamline simulation is the decoupling of flow and transport by a
coordinate transformation from the physical space to one following flow directions. This is
accomplished by defining a streamline ‘time of flight” as follows:

1
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Thus, the time of flight is simply the travel time of a neutral tracer along a streamling. In Eq.(1),
r is the distance along the streamline and x refers to the spatial coordinates. We will exploit an
analogy between streamlines and seismic ray tracing to utilize efficient techniques from
geophysical inverse theory for analysis of field tracer tests. To facilitate this analogy, we will
rewrite the time of flight in terms of a ‘slowness’ commonly used in ray theory in seismology.
The ‘slowness’ is defined as the reciprocal of velocity as follows

1 M P(x)
s(x) = = )
V()| k(X)|VP(x)
where we have used Darcy’s law for the interstitial velocity v and ¢ is the porosity, k is
permeability, and P is the pressure. The streamline time of flight can now be written as

(y) = Is(x)dr 3)

Consider the convective transport of a neutral tracer. The conservation equation is given by
XD Ly ve =0 4)
ot
where C represents the tracer concentration. We can rewrite (4) in the streamline time of flight
coordinates using the operator identity

0
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Physically, we have now moved to a coordinate system where all streamlines are straightlines
and the distance is measured in units of 7. The coordinate transformation reduces the
multidimensional transport equation into a series of one-dimensional equations along
streamlines,

oC(z,t) N oC(z,t) 0
ot or

(6)

The tracer response at a producing well can be obtained by simply integrating the contributions
of individual streamlines reaching the producer,
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where Cj is the tracer concentration at the injection well. If we include longitudinal dispersion
along streamlines, then the tracer concentration at the producing well will be given by

2
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where a is longitudinal dispersivity and o= J' Lz .
v [v(x)

During partitioning interwell tracer tests the retardation of partitioning tracers in the presence of
oil saturation can simply be expressed as an increase in travel time along streamlines. This in
turn results in an increased slowness as follows
HP(X)

w+KNSN)_m(SW+KNSN) )
where S,, and Sy denote water and oil saturation and Ky is the partitioning coefficient of tracer
defined as the ratio of tracer concentration in the oil phase to that in the water phase. Notice that
when the tracer has equal affinity towards water and oil (K, =1), the tracer response will be

1
S(X) —w(s

insensitive to oil saturation as one would expect and Eq.(8) reverts back to Eq.(2) for single
phase tracer transport. If the oil is mobile, the impact of oil saturation on the hydraulic
conductivity can be accounted for through the use of appropriate relative permeability functions.

Fast and Robust History Matching of Field Tracer Tests: A Comparison of Travel
Time vs. Amplitude Inversion

Traditional approach to reconciling geologic models to field tracer data involves an “amplitude
matching”, that is matching the tracer history directly. It is well-known that such amplitude
matching results in a highly non-linear inverse problem and difficulties in convergence, often
leading to an inadequate history match. The non-linearity can also aggravate the problem of non-
uniqueness and instability of the solution. Recently, dynamic data integration via ‘travel-time
matching’ has shown great promise for practical field applications. In this approach the observed
data and model predictions are lined up at some reference time such as the breakthrough or ‘first
arrival’ time. Further extensions have included amplitude information via a ‘generalized travel-
time’ inversion. Although the travel-time inversion has been shown to be more robust compared
to amplitude matching, no systematic study has been done to examine the relative merits of the
methods in terms of the non-linearities and convergence properties, particularly for field-scale
applications. In this work we quantitatively investigate the non-linearities in the inverse
problems related to travel-time, generalized travel-time and amplitude matching during
production data integration. Our results show that the commonly used amplitude inversion can be
orders of magnitude more non-linear compared to the travel-time inversion. The travel-time
matching is extremely robust and the minimization proceeds rapidly even if the prior geologic
model is not close to the solution. The travel-time sensitivities are more uniform between the
wells compared to the amplitude sensitivities that tend to be localized near the wells. This
prevents over-correction near the wells. Also, for field data characterized by multiple peaks, the
travel-time inversion can prevent the solution from converging to secondary peaks, resulting in a
better fit to the production response. We have demonstrated our results using a field application
involving a multiwell, multitracer interwell tracer injection study in the McCleskey sandstone of



the Ranger field, Texas. Starting with a prior geologic model, the traditional amplitude matching
could not reproduce the field tracer response which was characterized by multiple peaks. Both
travel time and generalized travel time exhibited better convergence properties and could match
the tracer response at the wells with realistic changes to the geologic model. Our results appear
to confirm the power and robustness of the travel-time matching for field scale production data
integration.

Multiscale Data Integration for Reservoir Characterization

Proper characterization of reservoir heterogeneity using available static data sources such as
geologic data, well log, core and seismic data is a prerequisite to analysis and interpretation of
field tracer tests. Integrating multi-resolution data sources into high-resolution reservoir models
for accurate performance forecasting is an outstanding challenge in reservoir characterization.
Well logs, cores, seismic and production data scan different length scales of heterogeneity and
have different degrees of precision. Current geostatistical techniques for data integration rely on
a stationarity assumption that is often not borne out by field data. Geologic processes can vary
abruptly and systematically over the domain of interest. In addition, geostatistical methods
require modeling and specification of variograms that can often be difficult to obtain in field
situations. We present a case study from the Middle East to demonstrate the feasibility of a
hierarchical approach to spatial modeling based on Markov Random Fields (MRF) and multi-
resolution algorithms in image analysis. Our proposed approach provides an efficient and
powerful framework for data integration accounting for the scale and precision of different data
types. Unlike their geostatistical counterparts that simultaneously specify distributions across the
entire field, the MRF are based on a collection of full conditional distributions that rely on local
neighborhood of each element. This critical focus on local specification provides several
advantages: (a) MRFs are far more computationally tractable and are ideally suited to
simulation-based computation such as MCMC (Markov Chain Monte Carlo) methods, and (b)
model extensions to account for non-stationarities, discontinuity and varying spatial properties at
various scales of resolution are accessible in the MRF. We construct fine scale porosity
distribution from well and seismic data explicitly accounting for the varying scale and precision
of the data types. First, we derive a relationship between the neutron porosity and the seismic
amplitudes. Second, we integrate the seismically derived coarse-scale porosity with fine-scale
well data to generate a 3-D field-wide porosity distribution using MRF. The field application
demonstrates the feasibility of this emerging technology for practical reservoir characterization.

Field-Scale Design Optimization via Numerical Simulation

To complement the streamline-based studies carried out at Texas A&M, a parallel effort has
been ongoing using a finite difference model, UTCHEM for field-scale design and optimization
of tracer tests. This work is carried out under the supervision of Dr. Gary A. Pope at the
University of Texas, a subcontractor to the project.

The past several years have seen a great increase in the development, deployment and
application of permanent in-well fiber optic monitoring systems. In-well fiber optic sensors are
either currently available or under active development for measuring pressure, temperature, flow
rate, phase fraction, strain, acoustics, and sand production. Potential future sensor developments



include measurement of density and fluid chemistry. This study is a preliminary investigation of
the use of downhole sensors to enhance the value of Partitioning Interwell Tracer Tests (PITTs).
The idea being investigated is to measure the tracer concentrations in real time at multiple depths
using downhole sensors. These tracer concentration data could be used to estimate oil saturations
at the corresponding depths using the method of moments and/or inverse modeling.

Crude oil is a mixture of organic components of varying water solubility. A novel idea
being investigated in this research is to use some of the more water-soluble components of crude
oil as natural partitioning tracers to estimate oil saturations and swept pore volumes, and hence
as a substitute for injected tracers. The rate at which these components will dissolve into water
will depend upon their partition coefficients under reservoir conditions. In this study we have
identified some of the common components of crude oils that might be used as natural
partitioning tracers. Equations have been derived to estimate pore volumes and average oil
saturations in a reservoir for both single-phase and multiphase flow and two simulations used to
illustrate their validity under the assumed conditions.

Naturally fractured reservoirs can be modeled as two interconnected media: the matrix which
contains the bulk of the fluid, but has very less conductive capacity, and the fracture which
generally has high permeability but very little storage capacity. The dual porosity model is one of
the oldest and most common approaches for modeling naturally fractured oil reservoirs and is
available in most reservoir simulators including UTCHEM and ECLIPSE. The simulation
domain is divided into two superimposed porous media: one for the fracture system and another
for the porous rock matrix. A mass balance for each of the media results in two continuity
equations coupled by a transfer function. This study compares the ECLIPSE and UTCHEM
results for a series of partitioning tracer simulations as a first step in our research on how to
optimize the use of tracers in naturally fractured oil reservoirs.
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EXPERIMENTAL

No experiments were performed during the first year of the project.
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RESULTS AND DISCUSSION: PART I

Fast and Robust History Matching of Field Tracer Tests: A Comparison of Travel
Time vs. Amplitude Inversion

Introduction

Geological models derived from static data alone often fail to reproduce the production history of
a reservoir. Reconciling geologic models to the dynamic response of the reservoir is critical to
building reliable reservoir models. In recent years several techniques have been developed for
integrating production data into reservoir models.'* The theoretical basis of these techniques is
generally rooted in the least-squares inversion theory that attempts to minimize the difference
between the observed production data and the model predictions. This can be referred to as
‘amplitude’ matching. The production data can be water-cut observations, tracer response or
pressure history at the wells. It is well known that such inverse problems are typically ill-posed
and can result in non-unique and unstable solutions. Proper incorporation of static data in the
form of a prior model can partially alleviate the problem. However, there are additional
outstanding challenges that have deterred the routine integration of production data into reservoir
models. The relationship between the production response and reservoir properties can be highly
non-linear. The non-linearity can result in multiple local minima in the misfit function. This can
cause the solution to converge to a local minimum, leading to an inadequate history match. All
these can make it difficult to obtain a meaningful estimate of the parameter field, particularly if
the initial model is far from the solution.

Recently streamline-based methods have shown significant potential for incorporating
dynamic data into high resolution reservoir models.''* A unique feature of the streamline-based
production data integration has been the concept of a ‘travel-time match’ that is analogous to
seismic tomography. Instead of matching the production data directly, the observed data and
model predictions are first ‘line-up’ at the breakthrough time. This is typically followed by a
conventional ‘amplitude match’ whereby the difference between the observed and calculated
production response is minimized. A major part of the production data misfit reduction occurs
during the travel-time inversion and most of the large-scale features of heterogeneity are
resolved at this stage.>*

The concept of travel-time inversion is not limited to streamline models. Recently, it has
been extended for application to finite-difference models via a ‘generalized travel-time’
inversion.” The ‘generalized travel-time’ inversion ensures matching of the entire production
response rather than just the breakthrough times and at the same time retains most of the
desirable properties of the travel-time inversion. The concept follows from wave-equation travel-
time tomography and is very general, robust and computationally efficient.'*'* The generalized
travel-time inversion has been utilized to extend the streamline-based production data integration
methods to changing field conditions involving rate changes and infill drilling.

The advantages of the travel-time inversion compared to amplitude inversion mainly
stems from its quasilinear properties. Unlike conventional ‘amplitude’ matching which can be
highly non-linear, it has been shown that the travel-time misfit function is quasilinear with
respect to changes in reservoir properties.>*> As a result, the minimization proceeds rapidly even
if the initial model is not close to the solution. These advantages of travel-time inversion are
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well-documented in the context of seismic inversion.'” However, no systematic study has been
done to examine the benefits of travel-time inversion for production data integration in terms of
non-linearity and convergence properties. Characterizing the degree of nonlinearity can be as
important as finding the solutions to the inverse problem itself. However, quantitative measures
of nonlinearity for the inverse problems related to production data integration haven’t been
adequately addressed.

We discuss the mathematical foundation for the measure of nonlinearity and its
implications on the production data integration. We quantitative investigate the extent of
nonlinearity in travel-time inversion and amplitude inversion. In particular, we show that the
nonlinearity in travel-time inversion is orders of magnitude smaller than that of the amplitude
inversion. This leads to better convergence properties and a robust method for production data
integration. We illustrate our results using both synthetic and field applications. The field
application is from the McCleskey sandstone, the Ranger field, Texas and involves a multiwell,
multitracer interwell tracer injection study. The results clearly demonstrate the benefits of travel-
time inversion for field-scale production data integration. In particular, the generalized travel-
time inversion appears to outperform both travel-time and amplitude inversion in reconciling the
geologic model to the field tracer response.

Background and Approach

Travel-Time Inversion, Amplitude Inversion and Generalized Travel-Time Inversion.
Travel-time inversion attempts to match the observed data and model predictions at some
reference time, for example the breakthrough time or the peak arrival time. Thus, we are lining-
up the production response along the time axis. Fig.1a illustrates the travel-time inversion. On
the other hand, the amplitude inversion attempts to match the production response directly. This
is 1illustrated in Fig.1b whereby we match the observed tracer concentration and model
predictions at the producing well. Creatively, we can combine the travel-time inversion and
amplitude inversion into one step while retaining most of the desirable features of a travel-time
inversion. This is the ‘generalized travel-time inversion’ and follows from the work of Luo and
Schuster' in the context of wave equation travel-time tomography.

A generalized travel-time or travel-time shift is computed by systematically shifting the
computed production response towards the observed data until the cross-correlation between the
two is maximized. The approach is illustrated in Figs. 1c and 1d. It preserves the robustness of a
travel-time inversion and improves computational efficiency by representing the production data
misfit at a well in terms of a single travel-time shift. It can be shown to reduce to the more
traditional least-squared misfit functional as we approach the solution.'

The advantages of travel-time inversion are well documented in the geophysics literature.
For example, Luo and Schuster" pointed out that travel-time inversion is quasi-linear as opposed
to amplitude inversion which can be highly non-linear. Amplitude inversion typically works well
when the prior model is close to the solution. This was the rationale behind our previously
proposed two-step approach to production data integration: travel-time match followed by
amplitude match.™* In this paper, we will quantitatively investigate the relative merits of the
different methods in terms of non-linearity and convergence properties.

Measures of Nonlinearity. Characterizing and assessing the nonlinearity in the parameter
estimation problem is critical to designing efficient and robust approaches to production data
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integration. There are several methods for quantifying the degree of non-linearity in inverse
problems. We will use the measure proposed by Bates and Watts'® to examine the non-linearities
in travel-time and amplitude inversion. Grimsted and Mannseth'”'® applied this measure to
examine the relationship between non-linearity, scale and sensitivity in parameter estimation
problems. If F represents an outcome, for example, the tracer response, then the nonlinearity
measure is defined as x=||Fkk||/||Fk||2, where Fy is the vector of the first-order derivatives with
respect to the parameter vector k, that is, the sensitivity vector, and Fy is the vector of second-
order derivatives. This measure is based on the geometric concept of curvature and k represents
the inverse of a radius of the circle that best approximates the outcome locus F in the direction of
Fy at k. Smoother and more linear outcome will have smaller curvature (larger radius) and thus
smaller measure of non-linearity as illustrated in Fig. 2.

In our application, we evaluate k=||Fkk]||/||[Fk||2 for every iteration during inversion. In
addition, for amplitude inversion, we compute the measure for different observations and choose
the maximum. The details of the computations, including the derivative calculations for travel-
time, amplitude, and generalized travel-time will be discussed later. In the following section, we
first illustrate the approach using a synthetic example.

Non-linearity Measure in Production Data Integration: A Simple Illustration. This example
involves integration of tracer response in a heterogeneous 9-spot pattern as shown in Fig. 3. The
mesh size is 21x21. The reference permeability distribution consists of a low-permeability trend
towards north and a high-permeability trend towards south. The tracer responses from the eight
producers in the 9-spot pattern are shown in Fig. 4a. Also superimposed in Fig. 4a are the tracer
responses corresponding to our initial model, a homogeneous permeability field that is
conditioned at the well locations.

We compare the relative performance of travel-time, amplitude, and generalized travel-
time inversion and also the non-linearities inherent in these approaches. Fig. 4b shows the tracer
concentration matches after travel-time inversion. All the peak times are now in agreement
although there are some discrepancies in the details of the tracer responses. Fig. 4c shows the
tracer concentration matches after generalized travel-time inversion. Not only the peak arrival-
times but also the amplitudes are matched much better compared to the travel-time inversion.
Fig. 4d shows the tracer-responses match after the amplitude inversion. Although the matches
are quite good for most wells, they are unsatisfactory for wells 2 and 7. Incidentally, these are the
two wells that exhibited maximum discrepancy based on the initial model.

Fig. 5 shows the convergence behavior for the three methods. Both travel-time and
generalized travel-time inversion reproduce the arrival times perfectly. The generalized travel-
time further reduces the tracer concentration misfit. In contrast, direct amplitude match shows
high arrival time misfit and is unable to reproduce the tracer response at two wells. Fig. 6a is the
estimated permeability field after travel-time match. On comparing with Fig. 3, we can identify
the low-permeability areas and some of the moderate-to-high permeability areas, although the
high permeability area is not well reproduced. Fig. 6b shows the permeability field derived by
generalized travel-time inversion. It reproduces not only the low-permeability area but also the
high-permeability regions. Fig. 6¢ shows the estimated permeability field after the amplitude
inversion. Clearly, the results show signs of instability because of the high non-linearity as
discussed below.

Fig. 7 shows the measure of nonlinearity for the three approaches. We can see that both
the travel-time and the generalized travel-time exhibit the same degrees of non-linearity. In
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contrast, the amplitude inversion is three to four orders of magnitudes more nonlinear than the
travel-time inversion. This is partly the reason for the failure of the amplitude inversion when the
initial model is far from the solution. The generalized travel-time inversion appears to retain
most of the desirable features of a travel-time inversion while obtaining an adequate amplitude
match.

Mathematical Formulation: Sensitivity Computations and Measures of
Nonlinearity

We now discuss the mathematical details related to sensitivity computation and measure of non-
linearity for travel-time, generalized travel-time and amplitude inversion. Although the approach
is generally applicable, we will use a streamline simulator here because of the advantages in
sensitivity computations. The sensitivities quantify change in production response because of a
small change in reservoir properties. They are an integral part of most inverse modeling methods.
We also need the sensitivities to quantify non-linearities in the various inverse methods
examined in this study. Several approaches can be used to compute sensitivity coefficients of
model parameters. Most of these methods fall into one of the three categories: perturbation
method, direct method, and adjoint state method'”?' and can be computationally demanding,
particularly for large-scale field applications. However, for streamline models, it is possible to
analytically derive a relationship between perturbations in reservoir properties, such as
permeability or porosity, and changes in observations such as watercut and tracer response.
Streamline-based sensitivity computation is very fast and involves quantities computed by a
single streamline simulation. Hence, we will limit our discussion to streamline models only.

We use the theory of Bates and Watts'® to measure the nonlinearity in production data
integration. Bates and Watts'® separate the nonlinearity measures into parameter-effect curvature
and intrinsic curvature; thus they decompose the second-order derivative Fy into one component
parallel to the tangent plane defined by Fi for all directions and another component normal to
that plane. Here we do not separate the intrinsic curvature and parameter effect curvature; neither
do we consider the direction in the parameter space since it is not practical to do so for our
problem. However, the theory we applied is essentially the same as that of Bates and Watts.'®

Sensitivity and Nonlinearity of Travel-time. Streamline methods decouple flow and transport
by a coordinate transformation from the physical space to the time-of-flight along streamlines.*
The time-of-flight is defined as
T= I s(x)dr
e (1)
where the integral is along the streamline trajectory, ¥, and s is the slowness defined as the
reciprocal of the interstitial velocity,

_1__ ¢
M kA VP @)
The first-order derivative of slowness with respect to permeability is
o __s
ok  k 3)

and the second-order derivative of slowness is
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If we assume that the streamlines do not shift because of small perturbations in reservoir
properties, we can then relate the change in travel time o7 to the change in slowness by
5t = j 3 (x)dr
v

5(x) 5(x)
= [|-==6k 5p(x) |d
j{ o 50 ¢<x)} g )

The travel-time sensitivity along a single streamline at a producer with respect to
permeability for a grid block at location x is given by integrating Eq. 3 from the inlet to the outlet
of the streamline W within the grid block:

orw) _"T s
o { k(x)}dr('”)

inlet (6)

The overall travel-time sensitivity is then obtained by summing the sensitivities over all
streamlines contributing to the arrival time of a particular concentration (for example, the peak

concentration):
or _ or(y)
ak(x) ally ak(x) . (7)

The second-order derivative of travel-time along a single streamline is obtained by
integrating Eq. 4,

O*r(y) _ f s(x)

ok (x) k(%)

dr(y)
: ®)

and then integrating over all streamlines contributing to a producer,
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The components of the tangent vector Fk and acceleration vector Fkk can now be obtained
from Eqgs. 7 and 9:

{ar or | o ]
Fk= Ok, "ok, ak,,h ; (10)
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The 2-norms are used to calculate the vector norms,
1/2
o5
Ea]
|[Fk|=" , (12)
1/2
n, 02
bty
[[Fkk|[="" (13)

Now we can calculate the nonlinearity measure of travel-time inversion ktt according to the
theory of Bates and Watts16 by

ktt=||Fkk||/||Fk]|2 (14)
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Sensitivity and Nonlinearity of Amplitude. Tracer transport can be described by the following
convection-diffusion equation,

XD _ g Ip(x). —u
p) P V-[D(x)-VC(x,0)]-u-VC(x,0) . (15)
Ignoring the dispersion term, Eq. 15 can be rewritten as
$2CD L vemn =0 (16)

Applying a transformation to the time-of-flight coordinate, the tracer transport equation along

a streamline can be expressed as22
0C(7,t) N 0C(z,t) -0

ot or . (1 7)
For a unit-impulse concentration at (1, t)=(0,0), the solution is22
Clx,t)=6(t— r(x))’ (18)
where 0 is the Dirac-delta function. If the input is CO, then
Cx,0)=Cyt-7) (19)

Summing the contributions of all streamlines reaching a producer, we get the tracer response
at a producer as
Ct) = jco(z —0)dy
a v . (20)
From Eq. 19, tracer response at the producer along a single streamline is

C(r) = c(,[t - s(x)dr)J

¥ . (21)
where we have used the definition of time of flight from Eq.1.
Now, consider a small perturbation in reservoir properties, say permeability. The resulting

changes in slowness and concentrations can be written as
s(x) = 5% (x) + 8s(x) : 22)
C(t)=C (1) +8C(r) , (23)
where s0 and CO are initial slowness distribution in the reservoir and the associated tracer
response respectively. Applying Egs. 21 and 22, the change in concentration response can be

expressed as
85C() =C@)-C°(r)

=C, [l - J‘ [so (x)+8s(x) r) -Cy {t - J‘SO (x)dr)]
4 L)

(24)
Using a Taylor series expansion and assuming ¥ = ¥o(stationary streamlines), we get

co(z - I[so(x) + ss(x)]dr]
v

= Co[t - Iso(x)dr - .[Ss(x)er

Yo WYy
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x Co[t - Iso(x)er + |:[t - J.so(x)dr - j&s(x)dr]

Yo Yo Yo

—|t- j sC(oydr ||cpl £ - j s*(x)dr
¥, ¥,

=Cylt- jso(x)dr - jas(x)dr.c(g ‘- j s*(x)dr
¥y Y ¥ .

(25)
Hence the perturbation in C(t) and s(x) are related by

5C(t) =—C} [r - jso(x)er j 8s(x)dr
%o %o . (26)
The tracer-concentration sensitivity along a single streamline ¥ is then

ocw® _ —C({t - Iso(x)er [ 0s(x) 4,

Ok(x) w Ok (x)
[ s (x)er i
=-C; [t - Iso (x)drj %Z];((l:)) o

The second-order derivative of the tracer concentration with respect to permeability is

’CH) _ . o 0%s(x)
K (x) C{t Js"codr ]jak '

:—Cé{t—jso(x)d Jj kS(EC))d

=-C; [t - J.SO (x)dr} 6212(‘{1)
¥ wx) (28)
As before, we need to sum over all streamlines reaching a producer to get the final first-order
and second-order derivatives of the concentration response at the producer.
Now we need to evaluate the tangent vector Fk, the acceleration vector Fkk, and measure of

nonlinearity k at different observation times. The vectors and norms are expressed as follows

{acm) oc) aca,-)JT
’ © 7 ok
Ry 0 T T (29)
{azcai) o’c) 82C(ti)JT
2 2 2 2 2 2
Fkk(t)y= . T %) (30)
1/2
oC(,
2]
|[Fk(ti)||="" : (31)
1/2
6 C(t,
[Fkk(ti)f}=""" (32)
By definition, the measure of nonlmearlty at observation time ti is
k(ti)=||Fkk(ti)||/|[Fk(ti)||2. (33)
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The final measure of nonlinearity for amplitude inversion kam is given by the maximum over
all observed data,

Kyp = max(l((t] ), k(t,), K‘(t”“ )) (34)
Sensitivity and Nonlinearity of Generalized Travel Time. In generalized travel-time inversion
we define the misfit between the calculated and observed tracer concentrations in terms of the
following correlation function:'>"

feo)=| @ EEI Do iy
A : (35)
where A is the maximum amplitude of tracer concentration and t is the shift time between
calculated and observed tracer concentrations. We seek a t that shifts the calculated tracer
response so that it best matches the observed tracer response.
The criterion for the “best” match is defined as the travel-time residual At that maximizes the
correlation function above, that is,
f(x,AT):max{f(x,r)|re[—T,T]}, (36)
where T is the estimated maximum travel-time difference between the observed and

calculated tracer responses. So the derivative of /(%7 with respect to t should be zero at At
unless the maximum is at an end point T or —T,
I (x,7)

fAr :[ P ]r:AT
T
1 0C(t+AT), . - Ot
- AJ dt or <. ot
:ljdt6C(t+Ar)o ), =0
A ot (37)

Note that @/07=1 in this derivation. Eq. 37 is the function that is used to compute the
sensitivity of the generalized travel time.
Using Eq. 37 and the rule for the derivative of an implicit function, we get

a(f..)
OAT __ Ok(x)
ok(x)  a(f,,)
OAT | (38)

Taking the derivatives of Ji with respect to k(x) and At, we have
ofy) _ i.[dz oC(t+ A7), 6C(1),

ok(x) A ot Ok (x)
1 f O+ AD), 8C(), o _or
4 ot ot Ot ok(x)
1 I ;, OCU+AD), 0C(), ot
A ot ot Ok(x) (39)
and
afAr .[dt ) E
anr A (40)
where
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0C(1+A),

5 0C(+AD), 9CQ), co. Py
ot OAT OAT
_0C(+Ar), 0C(), ot L), P’Ct+Ar), ot
a ot ot OAT o’ OAT
2
_0C(t+A7), 3C(), o), b C(t+2Az')
ot ot ot ) 41)

ot _ ot
o . . . =1
In the derivation above, we have applied the relationship oAz or  at =47,

Substitution of Egs. 39 through 41 into Eq. 38 gives
OAT
ok(x)

| PCUHAD), ), ot
- ot o ok(x)
_j oC(t+ A7), 6C(t)c L), BZC(twLZAr)U]
ot ot (42)
The second-order derlva‘uve of generahzed travel-time with respect to permeability is then
O’ At
k> (x)

Jar (2C+AD), 0CE), ot |

- ot o ok’ (x)

Jai 0C(+A7), CO. °C(t+ A7),
ot ot or’

! (43)

ot
where o is calculated by Eq. 8.
Finally, to calculate measures of nonlinearity, the components of the tangent vector Fk and
acceleration vector Fkk are obtained from Egs. 42 and 43 as follows

T
o ¢ | Ot
Flee ok, "ok, ok, |

(44)
[62AT O’At 82A1JT
Fkk= Ok~ Ok, ok, (45)
The 2-norms of the vectors are calculated by
1/2
OA
)

[[Fk{}=* ; (46)

s
IFkk= “7)

The measure of nonlinearity for the generalized travel-time inversion is evaluated using Egs.
46 and 47

Kgt=|[Fkk|l/||Fk||2, (48)
Sensitivity Computations: A % Five-spot Example. We illustrate sensitivity computations for
the three methods using the tracer response in a heterogeneous quarter 5-spot pattern (Fig. 8).

Fig. 9a is the sensitivity distribution for the peak travel-time, and Fig. 9b is the sensitivity
distribution for the generalized travel-time. Figs. 10a, 10b, and 10c¢ show the sensitivity
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distribution for the amplitude before, at, and after peak time respectively. From Figs. 9 and 10,
we can see that the sensitivity distribution between the wells for travel-time inversion is more
uniform than that for amplitude inversion. Also, the magnitude of the amplitude sensitivity is
much smaller than that of the travel-time sensitivity. This smaller sensitivity contributes to the
high nonlinearity of amplitude inversion because the nonlinearity is evaluated by || Fu||/||F|%,
where Fj is the sensitivity vector. Such relationship between non-linearity and sensitivity for
inverse modeling has also been observed by Grimstad and Mannseth.'”'*

Data Inversion

Our goal is to reconcile high-resolution geologic models to field production history, for example
tracer response. This typically involves the solution of an underdetermined inverse problem. The
mathematical formulation behind such streamline-based inverse problems has been discussed
elsewhere.>*> Briefly, in our approach we start with a prior static model that already incorporates
geologic, well log, and seismic data. We then minimize a penalized misfit function consisting of
the following three terms,

|6 = SR+ B[R + By |LER| -+vverevreevrevseremneinmneanns (49)

In Eq. 49, dd is the vector of data residuals at the wells, S is the sensitivity matrix containing the
sensitivities of the observed data with respect to the reservoir parameters. Also, oR corresponds
to the change in the reservoir property and L is a second-spatial-difference operator. The first
term ensures that the difference between the observed and calculated production response is
minimized. The second term, called a norm constraint, penalizes deviations from the initial
model. This helps preserve geologic realism because our initial or prior model already
incorporates available geologic and static information related to the reservoir. Finally, the third
term, a roughness penalty, simply recognizes the fact that production data are an integrated
response and are thus, best suited to resolve large-scale structures rather than small-scale
property variations.

The minimum in Eq. 49 can be obtained by an iterative least-squares solution to the
augmented linear system

S od
P ) S —— (50)
B.L 0

The weights £ and f, determine the relative strengths of the prior model and the roughness
term. The selection of these weights can be somewhat subjective although there are guidelines in
the literature.” In general, the inversion results will be sensitive to the choice of these weights.

In Eq. 50, &d is replaced by o7 for travel-time inversion, 6C for amplitude inversion, and JAt
for generalized travel-time inversion. The sensitivity matrix S is also replaced by the
corresponding expression.

Note that one of the major advantages of travel-time and the generalized travel-time
approach is that the size of the sensitivity matrix S is dependent only on the number of wells
regardless of the number of data points. This leads to considerable savings in computation time.
We use an iterative sparse matrix solver, LSQR, for solving this augmented linear system
efficiently.* The LSQR algorithm is well suited for highly ill-conditioned systems and has been
widely used for large-scale tomographic problems in seismology.”
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Field Application: The Ranger Field, Texas

Dataset Description. A multiwell, mulitracer, interwell tracer injection study was carried out in
the McCleskey sandstone of the Ranger field, Texas. The first description of this data set was
published by Lichtenberger.”® The dataset was also described later by Allison ez al.”” The 320-
acre area of interest includes 13 producers and 4 injectors, injecting 7 different tracers. The seven
tracers injected included 5 conservative tracers consisting of four decaying (Tritium, Cobalt-57,
Cobalt-58, and Cobalt-60), one chemical (sodium thiocyanate, NaSCN), and two partitioning
tracers (tertiary butyl alcohol, TBA, and isopropyl alcohol, IPA).

All tracers were injected in small slugs on the same day except for TBA, which was injected
in a small slug 20 days later. Tracer sampling continued for 826 days after injection of the first
set of tracers. The tracer injection pattern is shown in Fig. 11. Detailed information for injection
locations and the amounts of each tracer injected can be found elsewhere.”® We use averaged
well-production and injection rates over the life of the project for our work. The average
production and injection rates for all wells are summarized in Fig. 12.

We can use the conservative tracers (Tritium and NaSCN) to obtain permeability distribution
in the study area. However, the Trittum response may be affected by a chromatographic delay
because of tritium exchange with immobile hydrogen.”® We selected NaSCN as the conservative
tracer for permeability inversion. Totally 5,655 Ibs of NaSCN was injected into Well 38. The
observed tracer responses are shown in Fig. 13.

Choice of an Initial Model. During inverse modeling, a proper selection of the initial model can
be critical to ensure a plausible solution. Such an initial model should incorporate all available
prior information. For our simulation studies, we use a 31x45x6 grid which corresponds to
100x100 ft gridblocks areally and 2 to 4 ft vertically. A total of 141 core samples were available
for analysis. We did not have well- and depth-specific data but rather a summary of the core data
for all wells. A histogram and cumulative distribution of the core permeabilities are shown in
Fig. 14. The core data indicated a fair degree of permeability heterogeneity in the reservoir but
only slight variation in porosity. For the initial model, we used a uniform value of porosity and a
heterogeneous permeability field generated using Sequential Gaussian Simulation®” based on
well data (Fig. 15).

Estimating permeability. We matched the NaSCN data to obtain the permeability distribution
in the study area using the three different approaches: travel-time inversion, generalized travel-
time inversion, and amplitude inversion. Fig. 13 shows the NaSCN responses from a streamline
simulator using the initial permeability field. Also, superimposed are the observed NaSCN
concentrations. Clearly, there is a large difference between the calculated and observed NaSCN
response. Fig. 16 shows the NaSCN concentration match after travel-time inversion. The peak
arrival times are now in agreement with the observed data. The tracer concentration amplitudes
show improvement but the overall match is still not satisfactory. Fig. 17 is the NaSCN
concentration match after the generalized travel-time inversion. From Fig. 17 we can see that not
only are the peak-arrival times well matched, but the calculated concentration amplitudes are
also in close agreement with the observed data. This shows that generalized travel-time inversion
is an effective one-step inversion process. Fig. 18 displays the NaSCN concentration match after
direct amplitude inversion. Clearly the calculated responses have changed very little from the
initial responses. The results indicate that amplitude inversion may not be as effective as the
travel-time inversion, particularly when the initial model is far from the solution. Generalized
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travel-time inversion stands out as the best among the three inversion methods. This is also
demonstrated by Fig. 19, which shows the convergence behavior for travel-time inversion,
generalized travel-time inversion, and amplitude inversion for the field case.

Fig. 20 summarizes nonlinearity for the three inversion methods. The measure of
nonlinearity for the field example is given by the maximum amongst the three producers.
Amplitude inversion displays the highest measure of nonlinearity, about 200 to 250, while travel-
time inversion is quasi-linear with a nonlinearity of around 0.2 to 0.4. The generalized travel-
time inversion is between these two cases in terms of non-linearity measure. However, it is one
order of magnitude larger than the travel-time inversion while two orders of magnitude smaller
than that of the amplitude inversion. Generalized travel-time inversion keeps most of the
favorable features of travel-time inversion and has a much better tracer-concentration amplitude
match than travel-time inversion. The severe nonlinearity of the amplitude inversion is partly
responsible for its poor performance for the field case.

Fig. 21 shows the permeability fields derived by travel-time inversion and generalized travel-
time inversion. Fig. 22 shows the permeability change after travel-time inversion and generalized
travel-time inversion. Comparing these with the permeability distribution obtained by Allison et
al.*’ by a manual matching of the tracer data using a finite-difference simulator reveals a general
agreement between the location of the permeability multipliers and the areas with higher and
lower permeability values. For example, we see that the high-permeability multipliers in the
upper-right and central-left areas and the low-permeability multipliers in the lower-left areas in
Fig. 23 agree with the positive and negative changes shown in Fig. 22.
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Fig. 10—Sensitivity distribution for amplitude inversion (a) before peak time, (b) at peak time, and (c) after peak time.
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Fig. 18—NaSCN tracer response after direct amplitude inversion at (a) Well 40, (b) Well 37, and (c) Well 39.
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Fig. 21—Derived permeability field after NaSCN concentration match by (a)generalized travel-time inversion and (b)
travel-time inversion.

28



100 100
Rt 2 e 82
= . o = : 64
45 45
27 27
@ 9 ST , 9
i -9 -9
27 ~ 27
- = h 45 —— = -45
o~ A 64 = ‘ -64
-82 82
100 -100
= — S=_
=5 .
y 0= =
a b
Fig.22—Permeability change after (a) gereralized travel-time match and (b) travel-time match.
Elfaa sasaats T BT ST
TRHE
e g wH B e
: t e H
: f
: 28 . =
. = B =H dnSEas H
3 g 3 3 B 3 T 3 P 5
5t i
} l.l r.l
L 56. jéjé 2
t o] Io] T !
!
o BH :
[ Ky Z2Kx o f Efer-izgsmo] !
FH ¢ BT bR e e

Fig. 23—Permeability multipliers for Layers 1, 2, and 3 from the finite-difference history match (Allison et al.?°).

29



RESULTS AND DISCUSSION: PART Il
Multiscale Data Integration for Reservoir Characterization

Introduction

The principal goal of reservoir characterization is to provide a reservoir model for accurate
reservoir performance prediction. Integrating various data sources is an essential task in reservoir
characterization. In general, we have hard data such as well logs and cores and soft data such as
seismic traces, production history, a conceptual depositional model, and regional geological
analysis. Seismic data in particular can play a major role in enhancing the geological model. It
can be a block constraint when generating property distributions at a finer scale. However,
integrating such information into the reservoir model is nontrivial. This is because different data
sources scan different length-scales of heterogeneity and can have different degree of precision.'
It is essential that reservoir models preserve small-scale property variations observed in well logs
and core measurements and capture the large-scale structure and continuity observed in global
measures such as seismic and production data.

The large coverage area of seismic data has established that such data sources can play a
major role in characterizing the reservoir. Most applications of seismic data for reservoir
characterization have focused on the relationship between seismic attributes such as amplitudes
or impedance and porosity.> Two basic approaches have been adopted for integrating seismic
data into reservoir models. For high-resolution seismic data, several geostatistical techniques
such as cokriging and collocated cokriging have been proposed to estimate areal distribution of
porosity.**® On the lower-resolution spectrum, there are methods to combine multiscale data
where seismic data imposes a block constraint for the finer scale.>**"®!%!! These include
techniques such as Sequential Gaussian Simulation with Block Kriging (SGSBK)® and Bayesian
updating of point kriging.'”'" Most kriging-based methods are restricted to multi-Gaussian and
stationary random fields. They therefore require data transformation and variogram
construction.>**"*1"! In practice, variogram modeling with a limited data set can be difficult
and strongly user dependent. Improper variograms can lead to errors and inaccuracies in the
estimation. Thus, one might also need to consider the uncertainty in variogram models during
estimation.'”” However, conventional geostatistical methods do not provide an effective
framework to take into account the uncertainty of the variogram. Furthermore, most of the
multiscale integration algorithms assume a linear relationship between the scales.

An alternative approach to traditional geostatistical methods is based on multiscale Markov
Random Fields (MRF) that can effectively integrate diverse data sources into high-resolution
reservoir models. MRF has been widely applied in imaging processing®'*!” and spatial
modeling. In the oil industry, this technique is relatively new. There are limited applications in
determining the reservoir facies'®'’ distribution and spatial modeling of reservoir properties
using synthetic examples.'® However, field-scale application of MRF has remained a challenging
goal.

We further investigate our previously proposed method'® with the main objective of gaining
insight on the practical implementation of this technique by a field application in the Middle
East. The particular field studied here, the CNR field in Saudi Arabia is located south of Riyadh
and produces superlight, sweet crude oil from the Unayzah Formation, a late Permian clastic

30



reservoir. Our goal is to generate 3D high-resolution porosity model by integrating seismic and
well log data via MRF.

Background and Methodology

The integration of seismic data and well data must account for the difference in scales and
precision of the data types. Our proposed method is a Bayesian approach to spatial modeling
based on MRF and multi-resolution algorithms in image analysis. Broadly, the method consists
of two major parts (i) construction of a posterior distribution for multiscale data integration using
a hierarchical model and (ii) implementing MCMC to explore the posterior distribution.

Construction of a posterior distribution for multiscale data integration. A multi-resolution

MRF provides an efficient framework to integrate different scales of data hierarchically,
. . . . 13,14,19,20

provided that the coarse scale resolution is dependent on the next fine scale resolution.

In general, a hierarchical conditional model over scales 1,..., N (from fine to coarse) can be

expressed in terms of the product of conditional distributions

2(x' e x™y = 2T, 7(x™ [ x™7h) (1)

where z(x"), n = 1,..., N, are MRF models at each scale, and the terms z(x" |x"") express the

statistical interactions between different scales. This approach links the wvarious scales
stochastically in a direct Bayesian hierarchical modeling framework (Fig. 1). Knowing the fine
scale field x" does not completely determine the field at a coarser scale x"*', but depending on
the extent of the dependence structure modeled and estimated, influences the distribution at the
coarser scales to a greater or lesser extent. This enables us to address multiscale problems
accounting for the scale and precision of the data at various levels.

For clarity of exposition, a hierarchical model for reconciling two different scales of data will
be considered below.

(' x?) =2 |2 = 2 a (x| x7) (2)

From this equation, the posterior distribution of the fine scale random field indexed by 1
given a coarse scale random field indexed by 2 can be derived as follows

ﬂ(xl,xz) _ 7z(x')7z(x2 |x])

m(x%) m(x%) )

z(x'|x3) =
o z(x ) (x? |x1)

In Eq. 3, #(x')is a prior distribution of the fine-scale represented by an MRF. We can generalize
Eq. 3 to incorporate uncertainty in the prior spatial model
(%), 10,%,,%%) ¢ 7(x,,, %, | O)(x* |x) (4)
oc z(x! \9)77()&2 \xl)

1 1

n

In Eq. 4 we have split x' into its two components: x, represents simulated (unknown) fine scale
values and x| are the conditioning points. Also, ¢ denotes a parameter in the MRF that controls

the variance in the fine-scale spatial model.
Thus, the posterior distribution is proportional to the product of three major terms as follows:
1. z(x'|6) represents the joint spatial distribution of x' modeled by a MRF with a scale

parameter, 6.
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2. z(x?|x")is a stochastic link model for scale to scale transitions.

Spatial modeling using MRF. In the petroleum literature, several MRF models for discrete
data such as Ising, Potts and Strauss models etc. have been used to model the distribution of rock
types or sedimentary facies in the reservoir.”’'>**!'" However, the use of MRF for spatial
modeling of continuous data such as permeability and porosity has been rather limited. By far the
most prevalent spatial MRF model for continuous data has been the auto-normal
model*"">#*!"% the so called Gaussian Markov Random Fields (GMRF), although extensions to
non-Gaussian distributions are possible.*®

GMREF specify the conditional probability of x; to be normally distributed with a mean that

depends upon the elements of its neighborhood, », (Fig. 2)

x(x} |x}, jeN;)=

2
Q)
! expy — 12 x}— Zwijx}
2rc? 20 jen,
where w; can be viewed as interaction coefficients and »; is the neighborhood set of site i. This
leads to the following joint distribution of x' = (x!,x},-,x)7,
7r(xl):;|W|”2 exp{— 12 xlTle} (6)
\Qro?)" 20

where W is the » X n interaction matrix whose diagonal elements are unity and off-diagonal
elements are —w;;.. Note the w;; must be specified so that W is positive definite.

The model in Eq. 6 assumes that the conditional variance var(x; |x},je N,) =0’

1S a constant.

This may not be appropriate for heterogeneous environments where the number of neighbors and
the local conditional variance might vary. We utilize the following pair-wise difference prior
(PDP) conditional distribution that more effectively captures the local properties of the spatial
process x 220

ir(x,-1|x},jeNi)ocﬁl/2 exp{—%@ Zﬁij(x}—x;)z} (7)

JEN;

In Eq. 7 B; are prespecified local spatial parameters with £;=0 unless i and j are neighbors and 6
is a scale parameter controlling the variance in the fine-scale distribution. Eq. 7 is equivalent to a
normal local conditional prior distribution of the form

1
i 1
m(x; |x},jeN)~N(Y h—
' JjeN; ﬂH ‘gﬁH

where g, =3, B; . Note that in Eq. 8 both the mean and the variance can be locally varying,

) (8)

allowing for non-stationary spatial modeling.
Similarly, Eq.7 leads to the following joint distribution of x' = (x!,x},-,x))7,

z(x")c 0" |B|'? exp{—%&xlTBxl} 9)
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where B is the nxn precision matrix whose diagonal elements are g, =% ., f; and off-

diagonal elements are -f;. Note the £; must be specified so that B is positive semi-definite and
symmetric.

The choice of model parameter, . The selection of f; in a MRF allows us to incorporate
prior subjective and geologic knowledge into the model. Unfortunately, the estimation of f; is
not trivial. Several techniques have been proposed in the literature for the optimal estimation of
,6’,]-.2 1232627 Bor example, Devine et al.”® propose forming a matrix of interregional distance. B 1s
then set equal to g(dij) where g is a decreasing function inversely proportional to the distance.
The simplest choice is £ = 1 if i and j are adjacent locations. 27

In some cases, one might also choose to specify f; to reflect known local and global spatial
properties of x' such as distance between sites.””” Rue and Tjelmeland® demonstrated how to
fit a GMRF to a known stationary Gaussian Random Field (GRF) on a torus through a
minimization scheme. Caers™ further utilized this approach for GMRF to reproduce a prior
covariance. Their approach is briefly discussed below with an illustrative example.

Suppose we have a stationary GRF with covariance G. In a GMRF, with a certain covariance
matrix M (which is the inverse of the precision matrix W), an optimization technique is applied
to find w;; that minimizes

O(W)ZXZ(MIIg/(W)_Glly)Zézg/ (10)

i=1 j=1
where M,,; and G,; are the covariances between 11 site and ij site in GMRF and GRF

respectively, &, is user defined weighting factor. For a detailed explanation, refer to Rue and

q
Tjelmeland® and Caers®. To achieve computational efficiency for large lattices, Fast Fourier
Transform (FFT) algorithm is used.

To illustrate this approach, let us consider a simple 2D example on a 64x64 grid, using an
isotropic exponential variogram with range equal to 15 grid-blocks. The neighborhood template
is comprised of the 25 nodes as shown in Fig. 3 and the w’s calculated using the above scheme
are given in Fig. 4. The fitted covariance M(W), using the above-mentioned FFT approach is
shown in Fig. 5. With the chosen template, a good match is obtained. Fig. 6 shows a single
simulated realization obtained using the GMRF. When compared to the actual reference
realization, the simulated realization shows good agreement.

Once f; which controls the spatial dependence structure of x are specified, the joint spatial
distribution of x' can now be determined by a product of its conditional distributions in Eq. 7 as
follows

7(x' |9>oce"l”exp{—§92ﬂy<x3—x})z} (1)
i~

where the sum is over all such pairs of neighbors (i,/) denoted by i~j and », denotes total number

of fine grid sites.

A stochastic link model between different scales. Assume two random fields at different
scales to be linked so that each component of the coarse field will depend stochastically on the
components of the finer grids within the coarse grid. For a link between resolution levels, let us
consider a general Gaussian stochastic transformation model, usually nonlinear:
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xlzzf(xllaxéa."axrly)*—gla (12)
where , n; is the number of fine scale sites in each coarse site indexed by /, ¢, ~ N(0,03) that

controls the precision of the coarse scale data. Eq. 12 may be approximated by a generalized
additive model:

¢<x3>:§'l¢i<x3>+ez, (13)

where ¢ , @ are transformation functions to account for different averaging schemes (linear or
non-linear) between coarse scale and fine scale. In the case where ¢u)=u and

12,13
1 5

#,(vy)=v,/m;, Eq. 13 reduces to a simple linear averaging mode with Gaussian white noise

between the different resolution levels. This leads to the following stochastic link model between
the scales

2
i T 1 1 y 1 <G
31 - oxpl - -3 (14)
=1 O2N27 { 2022[1 ng‘ ] J

where n, represents total number of coarse grid sites. If pu)=u“m,, ¢ ,(v,)=v,“, we have a @-

5

power averaging model®' with Gaussian white noise between different resolution levels

2
ny 1 1 w m; a}
w0 ) - @‘”‘p{‘za; [m,ocf) S ] } (15)

We can generalize such stochastic link models to incorporate as many scales as necessary.

Simulations using MCMC. The posterior distribution given by Eq. 14 provides a Bayesian
framework for reconciling two different scales of data. We can generate multiple realizations
from the posterior distribution using Markov Chain Monte Carlo(MCMC).****%** MCMC is
well known to be quite versatile and suitable for multivariate or high dimensional problems. The
approach can handle non-Gaussian and complex posterior distributions.”*****

The essential idea of MCMC is Monte Carlo simulation utilizing Markov Chains. Two
practical update algorithms for constructing a Markov Chain with a specified stationary
distribution, z(x)are Gibbs sampling and Metropolis-Hasting algorithms. Because MCMC

methods are most conveniently built upon full conditional distributions, first we need to derive
the full conditionals denoted by z(x;|x_;), which is the distribution of the i-th component x,,
conditioned on all the remaining components x_, ={x;: j#i},j = 1,...,n.

The joint posterior distribution determines each of the full conditionals. Thus random
drawings from the target distribution 7(x) can be accomplished by a sequence of draws from full
conditional distributions. The Gibbs sampling involves sampling from full conditional
distributions. This algorithm, therefore, can not be used when the full conditionals have non-
standard form or when sampling from the full conditional distribution is computationally
difficult. On the other hand, Metropolis-Hastings algorithm is more general and does not require
sampling from the full conditionals. **°2¢*

From the posterior distribution Eq. 15, the full conditional for x/,
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(16)

2
1 3 1 2 _m’ 1
= ﬂexp{ " (ml) Sz_lqﬁs(xs)j }

where allx; ex,z, s=L-,i=Lii+1,-,m.

We can now simulate x{,---,x! by updating according to the full conditionals.
Our MCMC scheme is carried out in practice by updating each x! using a Metropolis-Hasting

step and ¢ using a Gibbs step. In the single component Metropolis-Hastings algorithm each
1*

candidate value, x; is generated from a prespecified proposal distribution. Assuming a

symmetric proposal distribution, a candidate x}* is accepted with a probability a(x], x}*) where

. I 1T 2
a(x),x] ):min{l, 7 10,3 % )} (17)

1 1 2
7w(x; |6,x2;,x7)

Here z(x; |0,x';,x})is the full conditional distribution of x; given by Eq. 16.

Applications

We illustrate our approach using several examples that demonstrate the power and versatility of
the method. The first synthetic example involves integration of sparse fine-scale data with coarse
scale data. This is the situation encountered, for example, when we have well data and seismic
data. The second example is a field example that involves integration of seismic data and fine-
scale conditioning points representing the well data. The field is located in Saudi Arabia south of
Riyadh and produces superlight oil from the Unayzah Formation, a late Permian siliclastic
reservoir.

Synthetic Example: Integrating two different scales of data with anisotropy. This example
involves generating fine-scale realizations of permeability based on limited fine-scale
conditioning data and a coarse block constraint.

The reference permeability field in Fig. 7(a) shows a clear anisotropic structure. The
permeability data is from a slab of Berea sandstone and has been extensively used in the
literature.** This field consists of 40 by 40 air permeameter measurements taken from a 2 by 2
foot vertical slab of Berea sandstone. Note that the scale of permeability values is in millidarcies.
We can see a low permeability streak along the North-West direction and high permeability
regions in the upper right corner. A coarse permeability field is generated by geometric
averaging of the fine scale reference field and adding Gaussian noise. Fig. 7 (b) shows the coarse
scale permeability field. To take into account for the anisotropy in the fine scale permeability
field, we define anisotropic neighborhood system on a lattice of regular sites (Fig. 2 (b)). Based
on 64 fine scale conditioning data and the coarse scale permeability field, fine scale realizations
are sampled from the posterior distribution using MCMC. Fig. 7 (c¢) shows one such realization
simulated by MCMC. Fig. 8 shows the cross plot of simulated permeability versus the true
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permeability. Fig. 9 demonstrates that the coarse scale constraint is preserved by the simulated
permeability distribution.

Field Application: In this field application, our goal is to obtain a high-resolution porosity
model based on well log and seismic data. The well log data represents the sparse fine-scale
information and the seismic data are the coarse scale data.

Geological Aspects. The CNR Field is located south of Riyadh in the central Saudi Arabian
basin. The CNR Field produces superlight, sweet crude oil from the Unayzah Formation, a late
Permian clastic reservoir.The area under study (Fig. 10) is approximately 100 sq km (38.6 sq
miles) in size. The seismic data over the area include a 3-D post stack data set. The area includes
9wells; A,B,C,D,E, F,G,H, L

The Permian Unayzah Formation is a continental clastics consisting of braid-plain and eolian
sands and floodplain silts. The Unayzah formation is bounded by two major unconformities: the
Pre-Unayzah Unconformity (PUU) at the formation base eroding into the Qusaiba marine shales,
the source rock for Central Arabia, and the Pre-Khuff Unconformity (PKU) at the formation top,
overlain by the Khuff marine clastic sediments. The stratigraphic column of the ‘Unayzah
Formation is shown in Fig. 12. Three major depositional cycles are recognized within Unayzah
formation (in descending order): Unayzah A, B, and C (Fig. 12). Unayzah B reservoir falls
within one of these major cycles.

Unayzah B reservoir consists of wadi fill and alluvial fan to braided-plain glacio-fluvial
deposits infilling an irregular topography following the cessation of the Hercynian Orogeny.*

Unayzah B reservoir well spacing is about 2 km. With such a coarse well spacing, it is
difficult to characterize the reservoir heterogeneity with well data alone. Integration of the 3-D
seismic data with petrophysical information has improved the mapping of porosity distribution in
Unayzah B reservoir.

Unayzah B porosity varies from about 30% to less than 10%. A well-to-seismic calibration
has been carried out to interpret the top and base of Unayzah B reservoir. Maximum acoustic
seismic amplitudes were extracted on the seismic picked top horizon of the Unayzah B reservoir
for our study.

Approach. The two major steps involved in the proposed approach can be outlined as follows:

1) Derive a relationship between the neutron porosity and seismic amplitudes.

2) Integrate the seismically derived coarse-scale porosity with fine-scale well data to
generate a 3-D field-wide porosity distribution using the MRF.

Step 1: Correlation between Seismic data and porosity

Seismic map, which is a source of dense information, is considered as soft data that is related
to the average porosity within seismic resolution. Well log porosity values, which are sparse yet
contain high resolution vertical information, are considered as hard data. The seismic map is
represented by the maximum acoustic seismic amplitudes that were extracted from the seismic
picked top horizon of the Unayzah B reservoir. The seismic data with a resolution acquisition of
100mx100m is shown in Fig. 13. Well log data is basically neutron porosity values. Table 1
shows the location of wells, the formation top and bottom depth. Fig. 14 shows the distribution
of wells in the field.
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While well data provide excellent resolution in the vertical direction, they represent a small
portion of the actual field. On the other hand, seismic data are generally less precise but more
abundant. We consider in our approach that the average of the cell values in any one vertical
column of grid cells is constrained by the value of the seismic map over that column. Because
seismic data resolution deteriorates with depth, we employ inverse distance weighting while
calculating average porosity values from well logs to give more weights to porosities closest to
the value of the seismic map as follows:

>.(/d)*z,
=l (18)
>.(/d)
i=1
where Z; is the parameter or property that we want to average, d;: distance, and Z4,eqge: 1s the

average of parameter Z; according to inverse distance. Table 2 shows the results of the average
of porosity for each well according to Eq. 18.

Average

The next step is to define the seismic amplitude values at the top of the formation for each
well. Table 3 shows these values for each well. With the average values of neutron porosity and
seismic amplitude, we obtain a correlation between these parameters. Several linear regression
models were tested e.g. average neutron porosity vs. amplitude and average neutron
porosity*thickness vs. amplitude. We concluded that the linear regression model that gave the
best correlation coefficient was for average neutron porosity*thickness vs. amplitude which is
consistent with models available in the literature.’” Fig. 15 shows the correlation between these
variables and the correlation coefficient is 0.66. Using this correlation, we obtain a coarse scale
distribution of porosity in the reservoir based on the seismic resolution. Fig. 16 shows the
seismically derived porosity distribution.

Step 2: Integration of seismically derived coarse- scale porosity with fine-scale well data
using MRF.

The next step is generating fine-scale realizations of porosity based on the well log data and
the coarse block seismically derived porosity values. The grid size for the 3D high-resolution
porosity model is 65x69x32. The fine scale well data correspond to 9 wells in the field. The
coarse scale data (65x69x1) is the seismically derived porosity values generated in step 1. Due to
the limited numbers of conditioning points, a representative variogram is difficult to construct.
Hence, we decided against utilizing variograms to calculate the spatial interaction coefficients g,

as discussed before. Instead, we adopted the simplest choice of £; = 1 if i and j are adjacent
locations. Using a single component Metropolis algorithm we explore the posterior distribution
(Eq. 14) that incorporates information from the various scales accounting for the precision of the
data. Fig. 17 shows one of the realizations obtained via the multiscale integration procedure. Fig.
18 compares the true average porosity versus the simulated average porosity. As expected, the
fine scale realization reproduces almost perfectly the coarse scale block average.

Sensitivity Analysis: In MRF approach, Eq. 16 expresses the full conditional distribution. In
this equation, ¢ is a scale parameter controlling the variance in the fine-scale distribution. In the
Bayesian inference for multiscale integration, which is the base of MRF approach, considering
the uncertainty of @is trivial. Lee et al."® have showed that generalizing Eq. 4 by including a
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prior model for &, one can easily quantify the uncertainty in the prior spatial model. Eq. 4 will be
modified as follows:

7(x),0]x},x°) < 7(x),,x, | ) (x> | x")7(0) (18)
o z(x' | O)z(x* | x")7(0)

Another parameter, s, in Eq. 16, controls the precision of information at different scales. The
value of , will depend on how much weight one want to exert for the coarse scale information.
The higher the value of o,, lesser will be the impact of the seismic data on the fine-scale
realization. In our field example, a sensitivity analysis for -, was conducted to observe its effect

on the final high resolution porosity model. By comparing Fig. 18 and Fig. 19, we can see that
the influence of the coarse-scale constraint is practically non-existent when we change from
o,=0.0001 to »,=0.1, respectively.

Level 3 (Large)
7Z-(¢n | ¢n_l)
—_ 1N gl
o =n, Z,-:l o te

Level 2 (Medium)

Level 1 (Fine)

Fig. 1-An illustration of hierarchical estimation structure. An example of “link” between two different scales of data
according to a local stochastic transformation.
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(a) Isotropic template (b) Anisotropic template

Fig. 2-Two neighborhood systems with respect to a generalized Euclidean distance on a two-dimensional lattice. The
numbers (e.g.,1, ..., 5) in the template indicate the order of the neighborhood system.

W22 W21 W20 W21 W22
W1 Wi Wio Wi w21
W Wio Woo Wio Wao
W21 Wi Wio Wi W21
W22 W21 W20 Wy W22

Fig. 3-A 25x25 grid isotropic template used for the calculation and the corresponding w’s.

-0.018 | -0.018 | -0.032 | -0.018 | -0.018

-0.018 | 0.1736 | 0.1650 | 0.1736 | -0.018

-0.032 | 0.1650 1.0 0.1650 | -0.032

-0.018 | 0.1736 | 0.1650 | 0.1736 | -0.018

-0.018 | -0.018 | -0.032 | -0.018 | -0.018

Fig. 4-Estimated w’s using the two-way FFT.
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64x64 Grids with Exponential Variogram
Range = 15, Sill = 1.0

0 10 20 30 40 50
Lag
Fig. 5-The target (solid) model fitted with the covariance of MRF calculated using the two-way FFT.
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Fig. 6-The reference field (a) compared to simulated realization using GMRF (b)
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One realization of Mulliscale MRF
'

195000

19500

Fig. 7-Synthetic example for multiscale data integration with the consideration of anisotropy. (a) Reference Berea
Sandstone permeability field on fine scale 40x40 grid (logarithmic scale); (b) Large scale permeability field generated by

geometric averaging plus correlated error (10x10); (c) One realization of fine scale permeability field generated by MRF and
MCMC.
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Fig. 8-Cross plot of true permeability versus simulated permeability from a new approach based on multiscale MRF.
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scale block values corresponds to the diagonal line.
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Fig. 10-Location map of the CNR Field in the central basin of Saudi Arabia
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Fig. 11-Neutron porosity for one of the wells in the area of study.
Fig. 12-Stratigraphic column of the Unayzah Formation®’.
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Fig. 13-Maximum acoustic seismic amplitude-top of the reservoir 100mx100 m.

Well X(m) Y(m) Top (ft) Base (ft)
A 731875 2551249 8886 8932
B 732861 2549953 8900 8950
C 734375 2550472 8908 9015
D 732170 2550424 8878 8931
E 732144 2551997 8912 8950
F 730700 2547600 8962 9164
G 734700 2552669 8992 9158
H 731765 2553556 8955 9014
I 733025 2552100 8940 8954

Table 1-General well information.
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Fig. 14-Well positions in the study zone.

Well NPHI_Top

0.15371
0.16215
0.13942
0.16366
0.14880
0.11647
0.09678
0.13634
0.15107

—|TlQ|mh|m|g|lalw| >

Table 2-Average values of neutron porosity for each well.

Well Top_100x100

0.0300
0.0500
0.0800
0.0700
0.0500
0.0900
0.0600
0.0200
0.0100

— || Ql|o|g|0|m |

Table 3- Maximum acoustic seismic amplitude for each well at the top of formation.
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Fig. 15-Correlation between neutron porosity*thickness and 100m*100m seismic amplitude parameter.
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Fig. 16-Porosity distribution from maximum acoustic seismic amplitude, 100mx100m.
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Fig. 17-3D high-resolution model for porosity distribution using ¢, =0.0001, £ =0.5858, and betas=1.
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Fig. 18- Crossplot of simulated average porosity values vs coarse scale porosity values, ¢, =0.0001, 6 =0.5858, and

betas=1.
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Fig. 19-Crossplot of simulated average porosity values vs coarse scale porosity values, 0, =0.1, 0 =0.5858, and betas=1.
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RESULTS AND DISCUSSION: PART IIIA

Field-Scale Design Optimization via Numerical Simulation: Use of Downhole
Samplers for Test Design

Introduction

The past several years have seen a great increase in the development, deployment and
application of permanent in-well fiber optic monitoring systems. In-well fiber optic sensors are
either currently available or under active development for measuring pressure, temperature, flow
rate, phase fraction, strain, acoustics, and sand production. Potential future sensor developments
include measurement of density and fluid chemistry (Kragas et al., 2001). This study is a
preliminary investigation of the use of downhole sensors to enhance the value of Partitioning
Interwell Tracer Tests (PITTs). The idea being investigated is to measure the tracer
concentrations in real time at multiple depths using downhole sensors. These tracer concentration
data could be used to estimate oil saturations at the corresponding depths using the method of
moments (Zemel, 1995) and/or inverse modeling (Yoon et al., 1999, Wu et al., 2002).

Preliminary Results

Partitioning interwell tracer tests were simulated for two cases. In each case, a tracer slug
was injected and the produced tracer concentrations were measured for several layers
corresponding to several depths in these production wells. Residual oil saturations were
estimated and a vertical distribution of oil saturation was generated.

The first case illustrated is based upon a carbonate outcrop called Lawyer Canyon in the
San Andres formation. The outcrop geology is quite similar to the oilfields of West Texas and
consists of highly cyclic Permian dolomitized shallow water platform carbonates (Jennings et al.,
2000). Figure 1 shows the location of the outcrop and the associated geology. A vertical cross-
section of 150 feet long by 100 feet wide by 10 feet thick was simulated. The geometrically
averaged horizontal permeability is 13 md and the porosity is 0.15. Residual oil saturation
distributions were generated using an exponential relation with the permeability. The average
residual oil saturation is 0.35. Figures 2 and 3 show the permeability and residual oil saturation
profiles. The residual oil saturation was averaged for each simulation layer and is shown versus
depth in figure 6.A tracer slug consisting of a conservative tracer and two partitioning tracers of
partitioning coefficients 0.5 and 1.0 was injected. The injected volume of the tracer slug was 0.7
PV. Figures 4 and 5 show the tracer concentration curves for the top and bottom simulation
layers The.bottom low permeability layers have greater tracer transit times, evident from figure
5. The method of moments (Zemel, 1995) was used to calculate the residual oil saturation for
each layer from the simulated tracer concentrations. The major assumptions of the method are
that the average oil saturation in the reservoir is constant with time and the partition coefficients
of the tracers do not change during the test.

The average oil saturation in the swept volume can be calculated from PITT data using
the following equations. The partition coefficient for tracer i between the oil phase and the
mobile water phase is

k=&
l Cli
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where C21i is the concentration of tracer i in the oil phase and Cli is the concentration of tracer i
in the water phase. The mean residence volume for a tracer 1 in a slug tracer injection is

Vz!ng@v_nw
[Cpar 2
0

In the above equation Vi is the volume of the injected tracer slug, Co is the normalized
concentration of tracer i at the producer and V is the cumulative volume of fluid injected.
The oil saturation can be calculated by
__n-n
T(K =DV 4,

V3 is the mean residence volume of the partitioning tracer, V1 is the mean residence volume of
the conservative tracer and K is the partition coefficient of the partitioning tracer.

Figure 6 shows the close match between the estimated and model oil saturations, for
simulation runs with different vertical permeability values. The accuracy in estimation increases
with decrease in vertical permeability due to decreased cross flow.

The second illustration is for a three-dimensional oil reservoir. The simulated field is a
quarter of a 40 acre five-spot well pattern. For the permeability realization, the standard
deviation in the natural logarithm of permeability was 1.61, the geometrically averaged
permeability was 345 md, the correlation length in the vertical z-direction was 10 ft, and the
correlation lengths in the horizontal directions were 100 ft. An exponential variogram was used
to generate the permeability data. The permeability and oil saturation distributions have been
presented in Figures 7 and 8. The injected volume of the tracer slug was 0.9 PV. Figure 9 shows
the tracer concentration outputs for the first simulation layer. Figure 10 shows the close match
between the estimated and model oil saturations. The same trend, as in the two-dimensional case
of higher accuracies with decreasing vertical permeability is observed.
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OUTCROP LOCATIONS AND PERMIAN PALEOGEOGRAPHY
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Figure 1: Map of geology and carbonate outcrop location of West Texas

L Pl e kT
1:'::|"-\. |_-':.'_=
LA F o A
D i i

et

e e

Figure 3: Residual oil saturation profile of Lawyer Canyon

52



\\\\\\\\\\\\\\\\\\\

|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
_

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
| |
| |
| |
| |
|
|
| |
| |
| |
1
| |
| |
|
| |
| |
| |
|
|
| |
|
| |
| |
| |
| |
| |
| |
| |
| |
W W
~ ~ ~
o <
o

UOI}BJ}USDUOD 180k} POZI|BWION

0.0001

150 200 250 300
Time, days

100

50

Figure 4: Normalized tracer concentrations for simulation layer 1 for Lawyer Canyon
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Figure 5: Normalized tracer concentrations for simulation layer 30 for Lawyer Canyon
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RESULTS AND DISCUSSION: PART IlIB

Field-Scale Design Optimization via Numerical Simulation: Use of Natural Tracers
for PITT Design

Introduction

Crude oil is a mixture of organic components of varying water solubility. A novel idea
being investigated in this research is to use some of the more water-soluble components of crude
oil as natural partitioning tracers to estimate oil saturations and swept pore volumes, and hence
as a substitute for injected tracers. The rate at which these components will dissolve into water
will depend upon their partition coefficients under reservoir conditions. In this study we have
identified some of the common components of crude oils that might be used as natural
partitioning tracers. Equations have been derived to estimate pore volumes and average oil
saturations in a reservoir for both single-phase and multiphase flow and two simulations used to
illustrate their validity under the assumed conditions.

Preliminary Results

Water-soluble components of crude oil have been studied for various geochemical
applications (Bennet et al., 1997; Larter et al., 1995; Taylor et al., 1997; Kharaka et al., 2000).
Some of the most soluble components are phenols, benzoic acids, quinolines and aliphatic acids.
Table 1 lists some representative partition coefficients (Bennet et al., 1997, Reinsel et al., 1994
and Taylor et al., 1997) with a wide range of values from 0.009 to 31.

The mass conservation equations can be integrated under remarkably general reservoir

conditions to estimate oil saturations and pore volumes. The major assumptions are that the
partition coefficients are constant and the volume of each component dissolved into the water is
small compared to total oil volume, so that its dissolution has negligible effect on the saturations.
In general, the equations can be applied to heterogeneous reservoirs with multiphase flow.
The first case illustrated is based upon a carbonate outcrop called Lawyer Canyon, reference of
which has been made in the first part of the report. The field was simulated with single phase
flow and a uniform residual oil saturation of 0.30. The residual oil was modeled as a mixture of
four partitioning components. Table 2 outlines the components and their initial concentrations. A
waterflood was simulated and component concentrations were measured at the producer. Figure
1 shows the concentration of the crude oil components at the producer. The concentration of
these compounds decrease with time as they are stripped out of the oil phase in the reservoir.
Concentration of any two compounds can be used for the estimation of pore volumes and
average oil saturations. In the cases illustrated, butyric acid and phenol concentrations have been
used for the estimation. Figures 2 and 3 show the comparison between the estimated and
reservoir oil saturations and pore volumes.

The second illustration is a waterflood of a quarter of a 40 acre five spot well pattern. The
standard deviation in the natural logarithm of permeability was 1.61, the geometrically averaged
permeability was 277 md, the correlation length in the vertical direction was 10 ft, and the
correlation lengths in the horizontal directions were 100 ft. An exponential variogram was used
to generate the permeability data. Figure 4 shows the permeability profile for the simulation
field. The field was simulated with a uniform initial oil saturation of 0.7. The oil was modeled as
four partitioning components as in the previous illustration. Figure 5 shows the fluid production
rates of the simulated water flood. Figure 6 shows the concentrations of the crude oil compounds
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at the producer in the water phase. Figures 7 and 8 show the close match between the estimated
and actual oil saturations and pore volumes.

Compound Partition Coefficient
Acetic Acid 0.009

Butyric Acid 0.084

Phenol 1.3

p-Cresol 3.6

0-Cresol 5.2

2,4 Dimethyl Phenol 15

3 Isopropyl Phenol 31

Table 1: Partition Coefficients of crude oil compounds
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Compound Partition Coefficient Initial concentration in
the oil phase, mg/1

o-Cresol 5.2 7.5

Phenol 1.3 1.5

Butyric Acid 0.084 1

Acetic Acid 0.009 1

Table 2: Oil compounds modeled in the illustrated simulations
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RESULTS AND DISCUSSION: PART IlIC

Numerical Modeling of Partitioning Tracer Tests in Fractured Reservoirs

Introduction

Naturally fractured reservoirs can be modeled as two interconnected media: the matrix which
contains the bulk of the fluid, but has very less conductive capacity, and the fracture which
generally has high permeability but very little storage capacity. The dual porosity model is one of
the oldest and most common approaches for modeling naturally fractured oil reservoirs and is
available in most reservoir simulators including UTCHEM and ECLIPSE. The simulation
domain is divided into two superimposed porous media: one for the fracture system and another
for the porous rock matrix. A mass balance for each of the media results in two continuity
equations coupled by a transfer function. This study compares the ECLIPSE and UTCHEM
results for a series of partitioning tracer simulations as a first step in our research on how to
optimize the use of tracers in naturally fractured oil reservoirs.

Simulation Results

In UTCHEM, each simulation gridblock can be divided into smaller matrix blocks depending
upon the fracture spacing. In Eclipse, the fracture spacing is the same as the grid spacing, so
simulating a small fracture spacing will increase the number of gridblocks and hence will
increase the computational time. Figure 1 compares the oil production rates of a quarter of a five-
spot water flood simulation with a slug tracer injection in a homogeneous fractured reservoir.
The field simulated was 1000 ft long by 1000 ft wide by 25 ft thick. The porous matrix had an
initial uniform oil saturation of 0.75 and a porosity of 0.3. The fractures had an initial oil
saturation of 0.99 and a porosity of 0.01. The permeability of the matrix and the fracture were
100md and 1 md respectively. The tracer slug consisted of two partitioning tracers of partition
coefficients 1 and 5, and was injected for 0.018 PV.

Table 1 shows the CPU times for a series of simulations with different fracture spacings and
no subgridding of matrix blocks. UTCHEM has the advantage for small fracture spacing because
of its feature allowing the user to specify more than one matrix block for each gridblock.

Figure 2 shows the comparison between the produced tracer concentrations for both ECLIPSE
and UTCHEM. One of the significant processes in oil production in a fractured reservoir is
capillary imbibition of water into the matrix with the simultaneous expulsion of oil to the
fracture. Tracers having a higher partition coefficient will have a higher concentration in the oil
phase, hence produced mass of these tracers will be greater. This phenomenon is evident from
Figure 2. 82 % of the tracer mass with a high partition coefficient is recovered while only 50% of
the other tracer is recovered.

Each matrix block can be subgridded to simulate flow inside a matrix block. In UTCHEM, the
matrix blocks are subgridded as nested blocks in the horizontal direction and as stacked grids in
the vertical direction and the size of each subgrid can be specified by the user. In ECLIPSE, the
matrix blocks can be subgridded as nested blocks in two dimensions or as concentric blocks in
three dimensions with the thicknesses of the subgrid varying logarithmically away from the
fracture wall. Figures 3 and 4 show the simulation grids in a dual porosity model for UTCHEM
and ECLIPSE. Figure 5 compares the oil production rates between ECLIPSE and UTCHEM for
a homogeneous fractured reservoir with subgridding. The matrix blocks have two subgrids in the
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horizontal direction. Comparisons with 3 dimensional subgridding are not presented as ECLIPSE
failed to finish the simulation displaying a lot of convergence errors.

ECLIPSE wuses a first order finite-difference method to approximate the spatial
derivatives in the partial differential equations whereas UTCHEM has a third-order TVD finite-
difference method, which is a more accurate approximation with less numerical dispersion.
Figure 6 compares UTCHEM and ECLIPSE tracer production concentrations. The field
simulated was a single phase, single porosity reservoir with a slug tracer injection. The slug
volume injected was 0.02 PV. The field was a quarter of a five spot flood, 165 ft long by 165 ft
wide by 5 ft thick.
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' CPU Time, seconds
Fracture Spacing, ft
ECLIPSE UTCHEM
100 3 233
50 18 233
25 341 233
10 23369 233

Table 1: Run time comparisons for dual porosity runs with different fracture spacing for

UTCHEM and ECLIPSE
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Figure 1: Comparison of oil production rate between UTCHEM and ECLIPSE for a fractured

reservoir
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CONCLUSIONS

Part-l

We have presented three approaches to production data integration and examined their
relative merits using quantitative measures of non-linearity. These are travel time, generalized
travel time and the commonly used amplitude inversion. The travel-time inversion of production
data is robust and computationally efficient. Unlike conventional amplitude matching that can be
highly nonlinear, the travel-time inversion has quasilinear properties. This makes the method
particularly attractive for field-scale applications where the prior geologic model might be far
from the solution. The generalized travel-time inversion appears to retain most of the desirable
features of the travel-time inversion and also accomplishes the amplitude match. Some specific
ﬁndmgs from this study can be summarized as follows:

We have quantitatively investigated the non-linearities associated with travel time and

amplitude inversion for production data integration. The non-linearity is expressed in terms

of a simple and intuitive geometric measure of curvature as proposed by Bates and Watts'®

and later used by Grimstad and Mannseth."”’

2. The non-linearity in travel time inversion is found to be orders of magnitude smaller than the
conventional amplitude inversion. As a result, the travel time inversion has better
convergence properties and is less likely to be trapped in local minimum.

3. Travel time sensitivity is more uniform between the wells. In contrast, the amplitude
sensitivity can be localized near the wells. The higher magnitude of the travel time sensitivity
also contributes to its quasilinearity and improved convergence properties.

4. The generalized travel time inversion effectively combines travel time and amplitude
inversion while retaining most of the desirable properties of the travel time inversion. For the
field example studied here, the generalized travel time inversion outperformed both travel
time and amplitude inversion.

Part-I|

1. We have shown using a field application that Markov Random Fields provide an efficient
and powerful framework for data integration accounting for the scale and precision of
different data types. They are computationally tractable and are ideally suited to simulation-
based computation such as MCMC (Markov Chain Monte Carlo) methods.

2. In the case study from Middle East presented here, we constructed fine scale porosity
distribution from well and seismic data explicitly accounting for the varying scale and
precision of the data types. This demonstrated the practical applicability of MRF for data
integration.

3. The most sensitive parameter during spatial modeling using MRF was ©2. This parameter
quantifies the precision of the seismic data and controls the relationship between porosity and
seismic data.

Part-lll
1. An initial effort has been made in simulating the use of downhole sensors in tracer tests.

Fields quite similar in characteristics to common oil fields were considered for the study.
The initial results are very positive and show that partitioning tracers measured as a
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function of depth with downhole sensors can in principle be used for estimating the
vertical distribution of oil saturation during or after a waterflood. = With permanent
downhole sensors, the potential exists to make these measurements numerous times
during a waterflood to update the sweep efficiency and consider targeting poorly swept
oil using profile control, targeted infill drilling and other technologies and/or improved
oil recovery methods.

The concept of natural tracers in oil fields has been introduced as a potentially cost-
effective substitute for injected tracers. Phenols and aliphatic acids have been identified
as some of the components of crude oil that might be used as natural partitioning tracers.
Equations to calculate average oil saturations and pore volumes have been derived for
single as well as multiphase flow and their accuracy has been illustrated with simulations.

Comparisons between UTCHEM and ECLIPSE for simulations without subgridding
show good agreement. ECLIPSE failed to finish most of the simulations with
subgridding. In addition ECLIPSE’s first-order numerical method makes it quite difficult
to simulate tracer problems accurately.
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LIST OF ACRONYMS AND ABBREVIATIONS

d = data vector

C. = calculated tracer concentration
C, = observed tracer concentration
D = dispersion coefficient

Fj = tangent vector

Fi. = acceleration vector

I = identity matrix

k = permeability

L = spatial difference operator

np =number of grid blocks

n, =number of dynamic data observations

s =slowness

S = sensitivity matrix
t =time

u = Darcy velocity

v = Interstitial velocity

f = weighting factor

K,m= measure of nonlinearity for amplitude inversion

Kz = measure of nonlinearity for generalized travel-time
inversion

Ky = measure of nonlinearity for travel-time inversion

7 = time of flight

At = generalized travel-time or travel-time shift
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