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Abstract

We present a numerical method for solving
the multifluid equations of gas dynamics using
an operator-split second-order Godunov method
for flow in complex geometries in two and three
dimensions. The multifluid system treats the
fluid components as thermodynamically distinct
entities and correctly models fluids with differ-
ent compressibilities. This treatment allows a
general equation-of-state (EOS) specification and
the method is implemented so that the EOS refer-
ences are minimized. The current method is com-
plementary to volume-of-fluid (VOF) methods in

the sense that a VOF representation is used, but -

no interface reconstruction is performed. The
Godunov integrator captures the interface dur-
ing the solution process. The basic multifluid in-
tegrator is coupled to a Cartesian grid algorithm
that also uses a VOF representation of the fluid-
body interface. This representation of the fluid-
body interface allows the algorithm to easily ac-
commodate arbitrarily complex geometries. The
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resulting single grid multifluid-Cartesian grid in-
tegration scheme is coupled to a local adaptive
mesh refinement algorithm that dynamically re-
fines selected regions of the computational grid
to achieve a desired level of accuracy. The over-
all method is fully conservative with respect to
the total mixture. The method will be used for
a simple nozzle problem in two-dimensional ax-
isymmetric coordinates.

Introduction and Overview

Compressible flows in which the fluid is made
up of a number of thermodynamically distinct
species, an extreme system being liquid-gas, arise
in a wide variety of engineering applications re-
quiring realistic geometries. In this paper we de-
scribe an algorithm for modeling inviscid com-
pressible multifluid flows containing complex ge-
ometries in two and three space dimensions. The
basic algorithm is an operator split second-order
Godunov method used to solve the Euler equa-
tions for multifluid flow. The algorithm cap-
tures rather than tracks the interfaces between
distinct materials while maintaining a volume-
of-fluid (VOF) representation of the constituent
materials. That is, the interface is obtained dur-
ing the coarse of the Godunov solution with-
out recourse to an interface reconstruction. As
such, the present multifluid method provides a
complementary approach to VOF interface track-
ing algorithms. While there are numerous ap-
proaches to tracking interfaces, we shall only
mention those in the class of VOF techniques.
The simplest VOF interface reconstruction algo-
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rithms are those based on the Simple Line Inter-
face Calculation (SLIC) method [12]. There are
numerous other first-order variations on this such
as the center of mass method [16], central differ-
ences [11], and Youngs’ method [17]. To obtain
a second-order reconstruction, there is an algo-
rithm based on a least squares fit to the local
volume fractions profile [15]. In all of the inter-
face tracking methods, a sub-grid scale method of
reconstructing the interface must be used to com-
pute the current location of the material interface
and as a result the interface remains sharp. The
primary disadvantage to using these methods is
the expense. Having to reconstruct the interface
adds extra computation over simply advancing
the flow in time. In addition, the reconstruction
process is performed on a cell by cell basis hence
requiring some coding sophistication so that vec-
torization can be achieved on modern supercom-
puters. However, if the number of cells occupied
by the interface is small, then this cost may be
minimized. When complex geometry is included,
there are added difficulties in coupling a recon-
struction algorithm more complex than SLIC.

Another point of consideration is that interface
tracking techniques may not be appropriate for
all problems. If the interface is initially sharp and
retains its integrity over time then tracking the
interface is appropriate. However, if the fluids
become mixed either by diffusion, by large-scale
motions or are initially mixed, then treating the
interface as a discontinuity gives a representation
that is inconsistent and probably meaningless.
This leads to consideration of the current method
since it does not require tracking the interface,
vet has the ability to distinguish thermodynami-
cally distinct fluid components and compute mix-
ture properties using the VOF formulation. Fur-
thermore, the ability to describe such flows in
arbitrarily complex geometry provides a compu-
tational capability important for real world engi-
neering applications. We refer to the methodol-
ogy for treating complex geometry as a Cartesian
grid method [5].

The basic multifluid method is coupled to a
Cartesian grid algorithm which also uses a VOF
representation of the fluid-body interface. This
representation of the fluid-body interface allows

the algorithm to easily accommodate arbitrarily
complex geometries. The resulting single grid
multifluid-Cartesian grid integration scheme is
coupled to a local Adaptive Mesh Refinement
(AMR) This is a code based on the original ideas
found in [4] and later in [3]. The current ver-
sion [1], [10] is an object-oriented (C++) code
framework for managing a hierarchy of logically
rectangular refined grids that is hybridized with
Fortran routines that provide low level support
and integrator instantiation. In regions where
errors are deemed unacceptable, a grid is locally
refined. This has the two-fold result of increas-
ing accuracy locally where it is required as well
as concentrating the computational effort where
it is needed.

What follows is a description of the multifluid
VOF representation and the predictor-corrector
Godunov solution in one dimension. Then there
is an overview of the previously documented
Cartesian grid method, followed by a discus-
sion of the modifications necessary to couple the
multifluid-Cartesian grid method into AMR. A
simple nozzle problem in axisymmetric coordi-
nates illustrates the adaptive code results.

Multifluid Algorithm
VOF Representation

The basic assumptions of the multifluid for-
mulation are that there is pressure equilibrium
among all fluid components within a cell and
there is a single velocity vector for each cell, in-
dependent of the mixture. A rigorous deriva-
tion of this system is given elsewhere [8] and is
not repeated here. The first assumption says
that p*(x,t) = p(x,t), or that the value of the
pressure is independent of the fluid component.
This is physically reasonable since across a con-
tact discontinuity (material interface) there is no
pressure jump and the partial pressures within a
mixed cell must be equal. Under these assump-
tions, the Fuler equations for a multifiuid system
are
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where f* p® and E® are the volume fraction,
density, and total energy density of fluid com-
ponent «. The volume fraction is defined as
f® = Ay/A where A is the volume of the cell
and A, is the volume of the cell occupied by
fluid . T'* is the sound speed v for fluid «, and
I'=1/%, (f*/I'*) which represents the fraction
weighted sound speed ~ for the mixture.

The pressure that appears in the above system
is defined to be a thermodynamically consistent
pressure given as p = »_ (f*p®), where p is the
partial pressure of component a. Note that the
formulation is sufficiently general to allow real
gas EOS systems described by pressure given as
a function of density and internal energy.

Godunov Implementation

First rewrite the above system of equations in
vector form, in one spatial dimension, in antici-
pation of an operator split implementation, and
for two fluids & and 3.
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Here, the state vectc;r is given as
Q(z,t) = (p*f*, pu, p* f*E*, [, (0.6)
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F(Q) is the flux vector given by
F(Q) = (p* fu, (pu)u, p* f*E%u, f*u, (0.7)
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and the source term on the right hand side is
given by

S(Q,z) = (0, Vp,

(0.8)
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Notice that the fluid components are treated
in a symmetric fashion. In most tracking imple-
mentations, the total densities and energies are
solved for along with partial densities, energies
and volume fractions for only one of the fluids.
The state for the second fluid is obtained by sub-
traction of the partial values from the totals. In
our formulation each component is treated sep-
arately, but the method is designed to have the
multifluid results reduce upon summing over «,
for the case of equal sound speed 7, to the sin-
gle fluid algorithm. With respect to equations
0.5 through 0.8 given above, summing the partial
energy equations, over both fluids, gives conser-
vation of total energy for the mixture.

The operator splitting has the following form
in two-dimensions

Q”+2 = LwLyLyLw(Q") (0.9)
and in three-dimensions as
Q"*?=1rL,L,L,L.L,L.(Q") (0.10)

The operator L. is the sweep in the { coordinate
direction and at the end of the cycle, the solution
is formally second-order accurate.

The scheme used to integrate the above system
of equations is a second-order Godunov method.
The algorithm is based on the general higher-
order Godunov methodology described in [7] and
[2]. In general terms it can be thought of as
a predictor-corrector scheme where cell centered
primitive values are traced along characteristics
to the half-time level at cell edges using a higher
order slope approximation to the local state. The

tracing procedure takes data defined at xj' to
x;jll/; to define the left (L) state. The right

(R) state is obtained by tracing data at xj' to

;jll/; . Then a local Riemann problem is ap-

proximated at each cell edge at the half-time level
given the states L and R. The solution to the Rie-
mann problem is used to compute fluxes at the




half-time level that are finally used to update the
solution as written in conservative form. In gen-
eral, the conservative update can be written as

At
Q?H =Qj - E[F(Q*j—}-l/?)]j

At
+A—$S(Q j+1/2>Tit1/2)

(0.11)

Note that the source term is time centered and
depends on QF, the approximation to the Rie-
mann problem, or Godunov state, which exists
at ty41/2- The notation, [(];, is the flux differ-
ence of ¢ over cell j, i.e. [C]j = (12 = G172
The volume fraction equation and source terms
due to differences in compressibility are dis-
cretized in a special way following the general
form given in [8] and are specified below. Also,
the source terms due to geometric sources are
discretized in a straightforward way as above.
To summarize, the solution procedure for a sin-
gle grid implementation has the following steps:
(1) construct limited central difference approx-
imations to traced state slope, (2) trace along
characteristics to half-time level at cell edges to
obtain L and R-states, (3) solve the local Rie-
mann problem approximately, at the cell edges
{4) perform a conservative update of the solution

using the results generated in the Riemann solu-’

tion.

Characteristic Analysis

For the characteristic tracing step, we need
to perform a characteristic analysis of the
system of equations. To accomplish this,
we rewrite the system in quasilinear form in
terms of the primitive variables, q(z,t) =

, ¢
(p*f%,u,p, p> foe, £, pP fP, pP FPEP, f5)
where e* is the internal energy per unit mass
of fluid a and for an ideal gas is given by e¢* =
ﬁz—m and likewise for fluid 3. It is written
as

dq , ,0q
b — = 1
5% +A8m s(g, ) (0.12)
where A = 0F/dq
Note that the differential compressibility

source terms are absorbed into the quasi-linear

form. The remaining sources contained in,
s(g, x), are due to geometric factors if one is using
general curvilinear coordinates.

The first step in the analysis requires determin-
ing the eigenvalues and corresponding left and
right eigenvectors for the matrix 4. The eigen-
values are given as

A =u+c,A_=u—c (0.13)
and

/\Oi = u,i = 1, 2,3, 4,5,6. (0‘14)
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where mixture sound speed is defined as ¢ =
I'p/p. The former are the right and left propa-
gating acoustic waves moving with the local flow.
The latter eigenvalue has multiplicity 6 instead
of 2 for the single fluid Euler equation. All the
eigenvalues are real so that the system above is
classified as hyperbolic.

The corresponding left eigenvectors, 1;, and
right eigenvectors, r; are computed for i = v +
C, % — C,Up1, .-, g and orthonormalized so that
1 -r; = §;;, where ¢ is the Kronecker delta func-
tion.

Characteristic Tracing

To compute the left state (L) for cell edge j +
% by characteristic tracing, we begin by Taylor
series expanding the solution about the jth cell
center. That is,

At
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Using the partial differential equation for g
gives
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where (-)7 denotes evaluation at (", ;).

The vector, (%%)?Aw, is the slope of the local
primitive variables. A fourth order approxima-
tion to the slope at cell centers is constructed
and then limited in a monotone fashion as given
by [7]. Denote the limited slope as §“*q” such




that 6""q} =~ (g—?)?Ax. Now we represent these
slopes in an expansion in terms of the right-
eigenvectors of the linearized system as

>
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(5“’"q§L = ;r; (0.17)

The «; are the expansion coefficients and are set
according to a; = 1; - (5“mq§l).

The current procedure of limiting the raw
slopes and then defining the expansion coeffi-
cients is in contrast to the method used by [13]
where the expansion coefficients are computed
and then limited by the above procedure.

Since the system is hyperbolic and has a com-
plete set of eigenvectors, one can construct a
similarity transformation so that, A = RAR™!,
where A = [);] is a diagonal eigenvalue matrix
and R is the matrix with columns the right eigen-
vectors. Also, in order to limit the characteristic
tracing to directions that contribute to the left
(L) state at edge j + 1/2 from cell center j, we
introduce a projection operator as

Prlwj)= Y (L -wi)re, (0.18)

k:)\k,j >0

where the notation {j ; means the k" element of
¢ evaluated at cell j.

Now substituting the limited slope approxima-
tion, §'mq; =~ (%)?Am and its expansion in
terms of right eigenvectors into equation (2.26)
and applying the projection operator for left
states gives

n+1 , 1 At :
Gl =ty D (= F ki) te
kidp,; >0

(0.19)
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The projection operator for the right state is
given as

Prlw;) = Y (lj-w)re;

kidg ;<0

(0.20)

and we obtain an expression for the right state

(R) as traced from cell j as
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Riemann Solution

Given the traced states, the predictor step is
completed by solving the local Riemann prob-
lem to obtain the Godunov states. Instead of a
full Riemann solver, we adopt an approximate
solution that meets the design goal of avoiding
EOS evaluations when building the fluxes from
the Godunov states necessary for the conserva-
tive update. The choice of primitive variables, q,
facilitates this design point. The current approx-
imate solver is a simplified version of [9], in the
spirit of [2] and given in [8]. The resulting algo-
rithm requires no EOS calls and is nearly twice
as fast as the one given in [9].

Conservative Update

Having obtained the Godunov states from the
Riemann solution, we can construct the updated
solution. We begin with the update for the vol-
ume fractions. This algorithm is based on the
formulation presented by [8]. The volume frac-
tion update is performed in two steps. The first
satisfies the linear advection equation (neglecting
the source term). The second takes into account
these source terms. The first step is given as

< A
B SEQ 02)
g -im@), 02

The subscript on the flux vectors denotes that
component of it and Q* is the Godunov state.

The next step is to calculate the effects of
the differential compressibility source on fe and
f% in order to obtain fe"t! and f%7*1. To
this end, write the full update (advection plus
sources) as

fontl = fa + Atfal“‘%v - (u)

(0.24)




Summing this equation over the « and 3 fluids
gives an approximation for V - (u), which we de-

. note as Du. Explicitly this is

1 _
Duy= Az 1-— | Z f (0.25)
i=(a,8)

Therefore, we arrive at the final update as

. r
ot = fon (1 + FAt(DU)j) (0.26)

and likewise for fjﬁ "*1 " Note that this approx-
imation has the property that it enforces the
constraints that 3°,_(, 5 f*"™' = 1 and 0 <
fa',n—l—l < 1. .

The remainder of the fluid components are first
updated using standard conservative differenc-
ing for the advective portion. The partial en-
ergy equations have source terms and the discrete
form of these, taken from [8], will be given below.
The conservative update for the partial density is

(P = ()]~ B @) (027)

and likewise for (fPp? );Hl. The momentum
equation update is given as

(o = ()} - o B@Q); (028)
+§—;[P*]j

Finally, the partial energy equation update, with
a similar expression for the second fluid, is

n a T A *
(P B = (720 B — elF(Q)];
(0.29)
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The source term S3 is given as

a  ayntl
[u]—l—%—ﬂ[p] (0.30)
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The term, T, is given by I' = 1/ > ima,p(F/TY)
The overbar denotes averaging of the Godunov

state to obtain a cell centered value at the half-
time level. The update for (f%p®EP );L-H follows
in a similar fashion from the above equation. It is
worth noting that the above discretization upon
summing over the two fluids reduces to the sin-
gle fluid total energy for the case of equal sound
speed T".

Cartesian Grid Overview

The Cartesian grid method used is based on
a VOF representation of the boundary. The
present discussion will serve as an overview; the
details are presented in [14]. With respect to the
Cartesian grid method, there are volume frac-
tions (not to be confused with the above mul-
tifluid volume fractions) that denote the volume
of fluid that is outside of a body, or equivalently,
inside the flowfield region. These together with
aperatures, or area fractions of cell faces that lie
inside the flow domain, complete the description
of the geometry. In [14], the underlying Godunov
integration scheme was an unsplit version. In this
work, the Cartesian grid algorithm was converted
to an operator split one, which significantly in-
creased performance. Also, this facilitated incor-
poration of the multifluid integration algorithm.
. As a setup procedure for the method, extended
states, Qt, must be defined in the body. These
values, Q¢*, define sensible values for cells in the
body near the body surface. This ensures that
the finite difference stencil will compute reason-
able fluxes for the cells near the body surface.

Now the above multifluid integrator is used to
return the fluxes and the discretized form of the
sources terms necessary to update the solution
one timestep. Away from the boundaries, these
fluxes are sufficient to determine the new solu-
tion, but at this point no distinction is made be-
tween cells inside or outside of the body. These
fluxes are used to update the extended states to
yield, Qemt,n+1_

For mixed cells, cells containing both body and
fluid, a local modified Riemann solution is com-
puted. A local approximation to the body nor-
mal is determined and left and right states are
specified by Q™. The Riemann solution yields a
frontal flux across the body. The fluxes returned
from the multifluid integration together with the



frontal flux determine a preliminary solution de-
noted as Q.

Now we define the effect of the body as an in-
cremental change from Q®**" %! by defining

ik ext,n+1 ~
MY = A5 Q = Aijk Quji

o (0.31)

Sufficiently far from the body, it is seen that éM
vanishes. So this leads to the update
SMEk

t,n+1
Qn+1 — Qez s
Ak

ik ik (0.32)

For Cartesian grid mixed cells, A, can be ar-
bitrarily small which would require an excessive
timestep restriction for the method to remain sta-
ble. We use the algebraic redistribution ideas of
[6] to modify its discretization in mixed cell to be
both stable and conservative. In particular, we
perform a preliminary update of the form

Qijr = Q?fkt’nﬂ + sMUk

(0.33)

which does not have a CFL restriction but vio-
lates discrete conservation. Then we redistribute
(1—Ayj%)0M¥% /A, onto the grid in neighboring
cells inside the flow domain and regain conserva-
tion. Note that this simplified procedure is only
correct for reflecting wall boundary conditions.

AMR Considerations

When coupling any integration algorithm to
AMR, we must be concerned with retaining
global conservation [3]. This is an important
issue because as the problem domain is cov-
ered by a hierarchy of refined grid patches, there
will be fluxes across coarse/fine grid boundaries.
In addition, the redistribution procedure out-
lined above provides an additional mechanism
for moving state quantities across the bound-
aries. Also, the multifluid integrator has differ-
ential compressibility source terms which com-
municate across coarse/fine grid boundaries. All
three of these sources of inter-grid-level commu-
nication across grid boundaries must be treated
correctly to maintain conservation.

The basic single fluid AMR implementation
maintains global conservation by using a proce-
dure known as refluxing. Basically, the fluxes

generated in the Godunov solution are saved and
accumulated for fine grid faces that border coarse
grid cells that are not themselves refined. The
difference between these accumulated fluxes and
the coarse grid flux for the face is used to up-
date the coarse grid solution. In this way, the
fluxes into a coarse grid cell, bordering a fine
grid, are consistently approximated, using fluxes
taken from the underlying fine grid rather than
the coarse grid flux.

The refluxing procedure for the multifluid
AMR version is modified to account for the differ-
ential compressibility sources terms. Additional
differential quantities are accumulated including
the average Godunov velocity as represented on
the fine grid. Note that this velocity is normal
to the cell face undergoing refluxing. In addition,
we need access to the current state on the coarse
grid cell so that I’ can be computed. In general,
this is only accessible through the EOS. This im-
plies an added computational expense, but the
result is global conservation with respect to the
mixture.

The additional terms needed to account for the
source terms in the volume fraction, and partial
energy equations are given as

c
(0% FN)C = (0% F2)C + iface 2;0 (6Fy) (0:34)

C
(pu)© = (pu)© + iface iic (6F> + 6p) (0.35)
C
(5 1°E)° = (6° f°E*)C + fface r (0.36)
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(0.37)
The second partial energy equations follows from
above. The factor, §(¢), is the increment of quan-
tity ¢ as computed by taking the difference be-
tween the value computed for the coarse grid and




the sum over the underlying fine grid faces. U is
the average Godunov normal velocity described
above. The unit function iface is positive or
negative depending on whether or not the flux
is oriented in the positive or negative coordinate
direction, respectively.

The procedure to retain global conservation for
the Adaptive Cartesian grid algorithm is called
re-redistribution. In addition to the usual re-
fluxing that occurs at coarse/fine grid boundaries
away from bodies, there is an additional step nec-
essary to account for state movement induced by
the redistribution procedure. This procedure is
documented in [14] and not repeated here.

Test Problems

We consider a simple nozzle problem as a test
of the algorithm. It can be considered as a simple
model for an orifice issuing intc free space, sim-
ilar in design to a rocket exhaust nozzle. This

problem is run in two-dimensions with axisym-

metric geometry. There is a straight tube section
followed by the nozzle section that opens into the
ambient medium. The inlet boundary conditions
are straight flow down the tube with inlet Mach
number, M;, = 2.04, inlet density to ambient

- density ratio, %ﬁ = 0.66, and inlet pressure to-

ambient pressuroecz> ratio, z% = 2. The introduced
fluid is pure fluid «, issuing into ambient fluid 3.
The nozzle is approximated by a parabola with
exponent 3, i.e. inlet is in the z direction and the
nozzle is given as z &~ r3. In the figure, the quan-
tity p®f* is shown. The calculation is adaptive
with two levels of refinement. Each level of re-
finement is a factor of two finer over the previous
level. The refinement is set to tag the multifluid
cells (multifluid mixed cells) as well as flow dis-
continuities such as shocks and contacts. Note
the leading bow shock that is refined by not vi-
sualized as it exists in the fluid 3.
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Figure 1: The evolution of p*f% in a model nozzle problem is shown at six times. The Cartesian
grid body is shown in black. The overlayed grids represent the AMR refined patches with two levels
of refinement over the base grid. Each level is a factor of two finer than the previous level The
inlet flow is supersonic with Mach number 2.04. The flow expands to accomodate the increased
cross-sectional area of the nozzle. Shocks form in the jet core (Mach discs) as the fluid exits the
nozzle.
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