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List of Learning Terms 

 
Learning – generally used to mean Technological Learning.   
 
Learning-by-Doing (LBD) – Technological Learning from experience gained from 
capacity growth.   
 
Learning Rate (LR) – Cost reduction per doubling of installed capacity.   
 
Learning Curve – The shape of the Learning Function. 
  
Learning Factor (LF) – A factor used in the calculation of an electricity generating plants’ 
overnight costs.  This value starts at 1.0 and can be reduced every year.  It is calculated in 
two ways and the better or lower value is the one that is used. Method 1 calculates LF as 
a function of capacity growth, and the second method uses a predefined Minimum 
Annual Learning.        
 
Learning Function – Also known as Wright’s Equation, the relationship between 
cumulative production and costs. 
 
Minimum Annual Learning (MAL) – Predefined by NEMS, this value is annually 
subtracted from 1.0 to determine the LF upper bound.  For example, if MAL was defined 
as 0.05 for an ‘XYZ’ plant, then in year 0, the LF for ‘XYZ’ would be 1.0, in year 1 the 
LF would be 0.95, in year 2 LF would be 0.90, and so on.  The MAL defined LF is 
important when the second method of calculating LF, from capacity growth, does not 
lead to as low an LF.   
 
Technological Learning – the production of goods more efficiently (cheaper or more 
quickly) due to learning through experience.  This paper will distinguish two types of 
Technological Learning in NEMS, Technological Optimism Learning and Learning-by-
Doing. 
  
Technological Optimism – The tendency for unproven designs to have unforeseen costs 
for the first few units actually built, i.e. cost expectations are always too optimistic.  
Technological Optimism Factor acts like a pessimistic factor. 
 
Technological Optimism Factor– The actual counterbalancing factor that accounts for the 
uncertainty due to Technological Optimism by adding a premium to overnight costs.   
 
Technological Optimism Learning – The reduction of the Technological Optimism Factor 
as installed capacity grows. 
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Abstract 

 
This report describes how Learning-by-Doing (LBD) is implemented endogenously in the 
National Energy Modeling System (NEMS) for generating plants.  LBD is experiential 
learning that correlates to a generating technology’s capacity growth.  The annual amount 
of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no 
straightforward way to integrate and make sense of all the diffuse information related to 
the endogenous learning calculation in NEMS.  This paper organizes the relevant 
information from the NEMS documentation, source code, input files, and output files, in 
order to make the model’s logic more accessible.  The end results are shown in three 
ways: in a simple spreadsheet containing all the parameters related to endogenous 
learning; by an algorithm that traces how the parameters lead to cost reductions; and by 
examples showing how AEO 2004 forecasts the reduction of overnight costs for 
generating technologies over time.   
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1. Introduction 

The Merriam-Webster dictionary defines the word “learn” as: to gain skill in, by study or 
experience.  This work was motivated in part by an interest in understanding how newer 
technologies become more cost competitive over time.  Technological learning leads to 
the production of goods more inexpensively.  Technological learning as implemented in 
energy forecasting models describes the combined effect of economies of scale and the 
process of gaining manufacturing skill from repetition.  Cost reductions are especially 
important for newer technologies, which are frequently limited in their ability to reach the 
marketplace by high initial costs, and which benefit most rapidly from technological 
learning. 
 
This paper explains how the National Energy Modeling System (NEMS) incorporates 
endogenous learning into its cost calculations for power plants.  The parameters that 
affect the magnitude of the learning for each of 21 electric generating technologies are 
laid out.  Learning in NEMS is expressed as a percent reduction of overnight capital 
costs.   
 
NEMS uses exogenously determined improvements to represent technological learning 
for demand side end-uses, heat rates, and oil and gas supply.  This exogenous learning 
will not be covered in this paper.  However, it should be noted that demand-side and 
supply-side learning are interactive (Laitner & Sanstad, 2003).  Therefore, exogenous 
learning implemented in NEMS inputs reduces endogenous learning. 
 
NEMS is a partial equilibrium energy economy model that projects supply, demand, new 
capacity, price of energy, emissions, and other parameters.  Its forecast yields the 
Department of Energy’s Annual Energy Outlook (AEO), which is frequently used for 
energy policy analyses (EIA, 2000). 
 
A major part of this investigation involves figuring out how NEMS calculates cost 
reductions due to learning for each of 21 power plants types.  Technological learning is 
represented two ways in NEMS, by Learning-by-Doing and by Technological Optimism.  
Technological Optimism is more limited and is only applied for the construction of the 
first 5 plants of any technology type.  The total optimism cost reduction is 10% - 15% 
between the first and fifth units built.  Learning-by-Doing, on the other hand, is applied to 
all incremental installed capacity as an overnight capital cost reduction of between 1% 
and 10% per cumulative installed capacity doubling.  
 
Section 2 describes the origins of the Learning Function.  Section 3 shows the 
relationship between learning and overnight costs for the electricity generating plant 
types represented in NEMS.  Section 4 explains Technological Optimism.  Section 5 
details how Learning-by-Doing works and how the Learning Factor is calculated.  
Section 6 walks the reader through the Learning Factor calculation for a natural gas 
combined cycle plant as well as showing the calculation for an emerging technology, 
photovoltaics.  Section 7 illustrates how Learning Factors and plant costs change 
throughout the AEO.  Section 8 summarizes which parameters relate to technological 
learning.  Section 9 identifies areas for further research.   
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2. What is Learning-by-Doing? 

T. P. Wright, in 1936, was the first to characterize the relationship between increased 
productivity and cumulative production.  He analyzed man-hours required to assemble 
successive airplane bodies.  He suggested the relationship is a log linear function, since 
he observed a constant linear reduction in man-hours every time the total number of 
airplanes assembled was doubled.  The reduction in man-hours is called learning-by-
doing (LBD).  The relationship between number assembled and time to assemble is called 
Wright’s Equation or the learning function (Madsen et al. 2002).  Wright’s Equation, 
shown below, has been shown to be widely applicable in manufacturing.   
 

Learning Function:  CN = C0 * Nb where,   (1) 

 

N   is the cumulative production. 
CN is the cost to produce Nth unit of capcity.   
C0 is estimated cost to produce the first unit. 
b   is the Learning Parameter, equal to ln (1-LR) / ln (2), where,  
LR  is the LBD Rate, or the cost reduction per doubling of capacity. 

 
 
In the technology learning literature the term Progress Ratio is frequently used.  It is the 
complementary value to LR, i.e. 1-LR.   
  
The following hypothetical example, illustrates Wright’s Equation.  If the first two 
airplanes took 1000 and 800 hours to assemble respectively, then the LR for airplane 
assembly could be calculated as 20% and the Progress Ratio would be 80%.  Wright’s 
Equation projects future production time if the LR is known.  Therefore, the fourth 
airplane should take 640 hours to assemble and the eighth, 512 hours.  This learning 
curve is shown in Figures 1 and 2, below.  These figures are based on the same data, but 
Figure 2 is plotted on a log scale to illustrate the log linear nature of the learning function.   
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Figure 1.  The Shape of the Learning Curve 
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Figure 2.  The Shape of Learning Curve on a Log Scale 

 
The learning function described by Wright relates labor input reduction to experience.  
However, capital cost reductions have also been shown to correlate with experience 
(Mackay & Probert, 1998).  Therefore, the learning function applied to electricity 
generating technologies in NEMS governs overall initial capital cost reductions not labor 
reductions. 
 
2.1 Distinct Learning Stages 

There is ample evidence from the literature that electricity generating technologies have 
distinct stages of development that correlate to different LRs.  Colpier & Cornland (2002) 
identified three phases of development with different LRs for natural gas combined cycle 
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plants.  Grubler et al. (1999) described three stages similar to those used by NEMS.  The 
latter authors identified three classifications to categorize different points in any 
technological development.  Mature Technologies are those that have saturated the 
market, have well-known characteristics, and have limited potential for cost reductions 
due to learning.  Incremental Technologies have niche market commercialization and 
have potential for significant cost reductions due to learning.  Radical Technologies have 
almost no market share, and may never reach any significant commercialization, but their 
potential learning cost reductions are high.   
 
The LRs that Grubler et al. (1999) associate with each classification are in Table 1, 
below.  While conceptualizing technological development by three stages is pretty 
consistent in the literature, the LRs associated with each stage are not.  Even the 
definition of maturity level for certain technologies is subject to interpretation.  Unlike 
Grubler et al. (1999), NEMS considers Geothermal an incremental technology and 
Biomass a radical technology.   
 

Table 1.  Learning-by-Doing Rate by Classification 

Technology Classification Learning-by-
Doing Rate 

Examples: Electricity-Generating 
Technologies 

Mature 0% Combustion gas turbine, gas combined-
cycle, conventional coal 

Incremental 10-40% Biomass, coal combined cycle, nuclear, 
and wind 

Radical High, potentially 
> 50% Geothermal, solar-thermal, and solar PV 

Source Grubler et al. 1999. 
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3. Capital Costs for Electric Generating Technologies in NEMS 

In NEMS, technology penetration decisions take place in the Electricity Market Module’s 
Electricity Capacity Planning Submodule (ECP).  The AEO 2003 version of NEMS 
characterizes 21 available electric generating technologies.  Their total overnight costs for 
the year 2002 are shown in the first column of Table 2.  The total overnight cost for each 
technology is the product of four components.  The four components are: the Initial 
Engineering Cost, a Technological Optimism Factor, a Project Contingency Factor, and a 
Learning Factor.   
 
The Technological Optimism and Project Contingency Factors are related to cost 
uncertainty and can have values above 1.0.  Cost reductions over time are driven by the 
reduction of either of the two components related to technological learning, the 
Technological Optimism and the Learning Factors.  Sections 4 and 5 explain how these 
factors change.  These two factors and the total overnight costs are recalculated and 
updated for every subsequent year.  The first three components in Table 2 are predefined 
input values for the ECP.  However, the optimism factor can be reduced over time.   

Table 2.  Total Overnight Costs and Cost Components for 2002, in NEMS 

 
Total Costs 
(01$/kW) 

Initial Engineering Cost 
Estimates (01$/kW) derived  

Technological 
Optimism Factor 

 in 2002 
Project Contingency 

Factor 

 
Learning Factor 

in 2002 

Scrbd Pulverized Coal 1155 1079 1 1.07 1.0 
Integrated Gas CC 1367 1278 1 1.07 1.0 
Gas/Oil Steam Turbine 1051 982 1 1.07 1.0 
Existing CT 347 330 1 1.05 1.0 
Conv CT 409 389 1 1.05 1.0 
Adv CT 461 439 1 1.05 1.0 
Existing Gas/Oil CC 467 444 1 1.05 1.0 
Conv Gas/Oil CC 536 511 1 1.05 1.0 
Adv Gas/Oil CC 608 563 1 1.08 1.0 
Fuel Cells 2138 1851 1.10 1.05 1.0 
Conventional Nuclear 7723 3527 1 2.19 1.0 
Biomass (Wood) 1764 1570 1.05 1.07 1.0 
Geothermala 1531 1604 1 1.05 1.0 
Mun Solid Waste 1461 1365 1 1.07 1.0 
Hydroelectric 1046 951 1 1.10 1.0 
Pumped Storage 2300 2091 1 1.10 1.0 
Wind 1004 938 1 1.07 1.0 
Solar Thermala 2622 2450 1.10 1.07 1.0 
Photovoltaica 3956 3768 1.10 1.05 1.0 
Dist. Gen. Base 804 766 1 1.05 1.0 
Dist. Gen. Peak 966 920 1 1.05 1.0 
 
a  Geothermal, Solar Thermal, and Photovoltaic also receive a 10% capital cost credit.    
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3.1 Engineering Cost Estimates 

The initial engineering cost estimates for overnight costs come from realized costs for 
more mature technologies.  Mature technologies, such as existing combined cycle plants, 
have known costs.  For the youngest technologies, which have no realized costs, EIA 
uses its analysts’ best judgment coupled with engineering cost estimates taken from 
industry and government experts (EIA, 2002; Personal Communication with James 
Hewlett, EIA, Nov. 2002). 
 
3.2 Technological Optimism Factor 

The Technological Optimism Factor (TOF) is a contingency factor applied to the most 
immature generating technologies.  Technologic Optimism is not the typical LBD 
discussed in the literature, but it is still learning through experience.  EIA has identified a 
tendency for unproven designs to have unforeseen cost overruns for the first few units 
(EIA, 2002).  In order to account for this tendency, the first five units have a TOF applied 
to the initial engineering estimates.  This factor represents rapid learning over the course 
of the first few units built. The magnitude of this factor is determined by historical data 
and by econometric estimates originally performed by Ed Merrow at RAND (Personal 
Communication with James Hewlett, EIA, Nov. 2002).  Section 4 explains the 
Technological Optimism in more detail. 
 
3.3 Project Contingency Factor 

The Project Contingency Factor (PCF) is a traditional risk factor applied to all 
technologies, mature or not.  The PCF does not change from year to year. Except for 
nuclear plants, the PCF ranges from a high of 1.10 to a low of 1.05; conventional nuclear 
plants have a PCF of 2.19.  PCF does not relate to learning.  
 
3.4 Learning Factor 

The Learning Factor (LF) is calculated based on each technology’s capacity increase.  
The LF was explained along with Wright’s equation in the previous section.  The LF 
applies to all production and can change every year for every technology.  The LF starts 
at 1.0 in 2002 for all technologies.  A detailed explanation of how LFs are calculated 
follows in Section 5. 
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4. Technological Optimism Learning 

Technological Optimism Learning (TOL), or the reduction of the TOF, is the learning 
associated with initial commercialization of electric generating plants.  It only applies to 
technologies that are just beginning commercialization.  While optimism sounds positive, 
the TOF is used to raise costs to offset unrealistic optimism.   
 
Technological Optimism (TO) represents the difference between initial new technology 
cost estimates and actual first-of–a-kind costs by adding a premium to the first five units 
built of unproven technologies.  TOL is the reduction of this premium to 1.0, and after 
the fifth unit is built, there is no longer any premium associated with TO.  Cost reductions 
associated with TOL are significant but less powerful than the concurrent LBD 
reductions. 
 
There are only four technologies that are young enough to have TO associated with them:  
fuel cells, biomass, solar thermal, and photovoltaic plants.  The initial TOFs are shown in 
Table 3.  In NEMS, the first plant is considered preexisting for uncommercialized 
technologies, so the premium applies to the first four plants built, which are plants 
numbers two through five.  The TOFs decrease linearly to 1.0 as units two through five 
are built. 
 
 

Table 3.  Technological Optimism Factor Applied to Capital Costs when Less than Five of 
any Revolutionary Type Plants Exist 

 
 Plant 

Size 
(MW) 

Technological 
Optimism Factor, 

1st plant 
2nd plant 3rd plant 4th plant 5th plant 

Fuel Cells 10 1.10 1.075 1.05 1.025 1.0 

Biomass 
(Wood) 100 1.05 1.0375 1.025 1.0125 1.0 

Solar Thermal 100 1.10 1.075 1.05 1.025 1.0 

Photovoltaic 5 1.10 1.075 1.05 1.025 1.0 

 
Source:  Data from NEMS AEO 2003 input file ecpdat and source code file ucape 
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5. Learning-By-Doing (LBD) and Learning Factor Calculation 

LBD in NEMS is the process first described by Wright that accounts for cost reductions 
due to manufacturing experience.  LBD illustrates the relationship between cumulative 
production (experience) and the cost of the next unit of production.  In NEMS, cost 
reductions are related to cumulative installed capacity, which is a surrogate for 
experience, and cost reductions are described by percent reduction in capital cost for each 
doubling of cumulative capacity.  Cost reduction per doubling of capacity is based on 
maturity of the technology or vintage. 
 
Equation (1) solves a technology’s current production costs when three parameters are 
known: overnight costs for the first unit, C0, cumulative production, N, and progress ratio 
or LBD rate, LR.  NEMS however, cannot use Equation (1) because the cost data 
available is for current capacity not for first unit of capacity, C0.  Therefore, the learning 
function in NEMS takes on a slightly different form than the classic version, making use 
of current production cost data to calculate current production costs CN.  AEO 2003 has 
collected data for capacity available in year 2002, X, and next unit costs in year 2002, 
CX, for each technology. Therefore, NEMS determines CN, by solving a variation of 
Equation (1).  
 

CN = CX *LFN   where,  (2) 
 

X  is the baseline capacity given in the initial year (2002 for AEO 2003). 
CX   is the cost to produce the next unit, when cumulative capacity is X. 
LFN  is the Learning-by-Doing Factor for capacity N, i.e. the percent reduction of the 
engineering cost estimates and LF is a function of N. 

 
If NEMS can calculate the LF when production equals N, then Equation (2) can be used 
to solve for CN.  LFN can be found by substituting Equation (1), into Equation (2) giving:   
 

C0*Nb   = C0*Xb  * LFN  (3) 
 
Then reducing, rearranging, and solving for LFN gives, 
 

LFN = Nb   /  Xb  or,  (4) 

 

  LFN = a* Nb      where,  (5) 
 

a is the parameter equal to 1/ Xb,  as used in NEMS for simplicity. 
 
X and b are known constants in NEMS, while N is calculated annually.  All the X and b 
values are explained and shown below in the following two sections. 
 
5.1 Baseline Capacity, ‘X’ 

The determination of Baseline Capacity is confusing as is shown in Table 4.  NEMS 
defines X as either the Typical Unit Size or the actual cumulative capacity in 2002.  
Typical Unit Size is the average unit size, defined by NEMS for the purpose of 
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calculating X and should not be confused with the increment by which new plants are 
added in NEMS.  The rule is that if the typical unit size is greater than the 2001 
cumulative capacity then X equals typical unit size.  Otherwise, X is assigned the actual 
2002 cumulative capacity.   
 
 

Table 4.  Vintage & Baseline Capacity, X (all units MW) 

A B C D E F 

PLANT TYPE Vintage Typical Unit 
Size 

Cumulative 
Capacity in 2001 

Cumulative 
Capacity in 

2002 

‘X’, Baseline 
Capacity 

Scrbd Pulverized Coal Con. 600 498 498 600 
Integrated Gas Comb Cycle Evo. 550 1,958 2,022 2,022 
Gas/Oil Steam Turbine Con. 300 9,356 11,870 11,870 
Existing Combustion Turbine Con. 160 20,216 41,097 41,097 
Conv Combustion Turbine Con. 160 29,535 50,306 50,306 
Adv Combustion Turbine Evo. 230 299 299 299 
Existing Gas/Oil Comb Cycle Con. 250 20,908 20,908 20,908 
Conv Gas/Oil Comb Cycle Con. 250 39,389 60,045 60,045 
Adv Gas/Oil Comb Cycle Evo. 400 9,958 10,314 10,314 
Fuel Cells Rev. 10 - - 10 
Conventional Nuclear Con. 1,350 498 4579 1,350 
Biomass (Wood) Rev. 100 9 9 100 
Geothermal Evo. 50 556 567 567 
Mun Solid Waste Con. 30 265 419 419 
Hydroelectric Con. 500 - - 500 
Pumped Storage Con. 250 - 576 250 
Wind Con. 50 2,306 4,153 4,153 
Solar Thermal Rev. 100 - 1 100 
Photovoltaic Rev. 5 1 10 5 
Distributed Generation-Base Evo. 2 - - 2 
Distributed Generation-Peak Evo. 1 - - 1 

 
Note:  The definition of Baseline Capacity follows this logic.  If Column C is greater than Column D, Column F equals 
Column C’s value.  Otherwise Column F equals Column E’s value. 
 
5.2 Learning Parameter, ‘b’ & Vintage 

The Learning Parameter, b, assumes one of three values depending on what vintage the 
electric generating technology has been defined.  These three vintages, revolutionary 
(Rev.), evolutionary (Evo.), or conventional (Con.), roughly correspond to three of the 
stages of technological development described in Grubler et al. (1999), Radical, 
Incremental, and Mature.  Vintage by plant type is shown above in Table 4.  b is defined 
by its relationship with the LR.   
 

LR = 2 b in other words,  (6) 
 

b = ln LR / ln (2)     (7) 
 

b can be calculated when LR is known.   
LR corresponds to vintage.  Both values are shown in Table 5, below.  
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Table 5. NEMS Learning Parameters for Each Technology Classification 

Vintage  
LR 

b,  Learning 
Parameter 

Revolutionary 10% -0.152  
Evolutionary 5% -0.074 
Conventional 1% -0.0145 

 
 Note: There is one exception to this classification, MSW plants have 0% LR.  

 
 
Even though a plant’s initial vintage is predefined, there is one complication related to 
vintage.  Over time, installed capacity increases and eventually a revolutionary plant can 
become evolutionary and an evolutionary plant can become a conventional one.  
Therefore, there must be some point defined when technologies are assumed to pass from 
one vintage to another.   
 
5.3 Breakpoints 

NEMS calls the inflections between vintages, breakpoints and these predefine when 
vintage advances.  A revolutionary technology is redefined as an evolutionary technology 
after three doublings of capacity, i.e. when N = X* 23.  An evolutionary technology is 
redefined as a conventional technology after five doublings of capacity, i.e. when N = X* 
25.  Potentially, even a revolutionary technology could become conventional after eight 
capacity doublings, i.e. when N = X* 28.   
  
The AEO 2003 Reference Case forecasts that five plant types will have sufficient 
installed capacity gains to surpass their breakpoints before 2025.   Photovoltaic and Fuel 
Cell technologies begin as revolutionary and become evolutionary.  The two Distributed 
Generation plant types and the Advanced Combustion Turbine plant type begin as 
evolutionary and become conventional.   
 
5.4 Cumulative Production and Learning Capacity, ‘N’ 

NEMS differentiates between what it considers cumulative production, N for calculating 
capacity doublings, and total installed capacity.  The value of N is not necessarily equal 
to the total installed capacity.  Installed capacity growth is calculated annually in the ECP 
submodule.  N is related to the installed capacity, but will henceforth be called Learning 
Capacity.  There are potentially two adjustments made to actual total installed capacity, 
in order to calculate N, one adjusts higher and one lower.  First, NEMS gives learning 
capacity credit to technologies with international experience.  The capacity growth that 
should count towards international LBD is shown in Table 6.  The second adjustment is 
based on maximum annual learning capacity growth.   
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5.4.1 International Learning  

Manufacturing experience and economies of scale, which lead to learning, are not limited 
to domestic experience.  There are two ways international capacity can impact domestic 
learning, through technology and people’s LBD (Petersik 1997).  First, companies that 
manufacture domestic power plant components may also produce similar components 
internationally.  Second, international experience can lead to industry wide learning.  To 
reflect this interaction, off-shore development is counted, but the amount of international 
capacity growth that NEMS accepts is limited in two ways.  First, only a percent of the 
total international growth counts based on the extent to which the companies which 
manufacture, design, operate, and own the plants compete in the U.S.  Second, no more 
than one standard size plant’s worth of international capacity per year can count towards 
domestic learning (Personal communication with Thomas Petersik, EIA, Dec. 2001).   
 
 

Table 6.  International Capacity Growth Applied to Learning  

Technology Adv. Gas/Oil 
Comb Cycle 

Percent Applied to Learning 75% 
Year  
2002 475 
2003 1425 

Total Int’l Capacity 1900 
Note:  The Percent Applied row indicates what fraction of the International Capacity that counts towards the Learning from capacity 
growth.  For example the 475 MW new capacity of Advanced Combined Cycle in 2002 only counts as 319 MW, (75% of 425) 
towards learning.   

 Source:  NEMS input file, eintlrn. 

 
Table 6 is rather abbreviated because all the other data from the input file is for earlier 
years.   The international capacity file for NEMS was created many AEO versions ago 
and has not been updated.  This component is out of date.     
 
5.4.2 Limits to Learning Capacity, ‘N’, Growth year-to-year 

EIA feels, justifiably, that there should be an upper limit on LBD in any one year no 
matter how dramatic the one-year capacity growth may be; therefore, credited growth is 
limited to 50% beyond the previous year’s installed capacity.  In other words, when a 
technology experiences rapid growth, N has a maximum increase year-to-year of 50%, 
but any growth beyond 50% can count towards N in the following year.   
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5.5 Minimum Annual Learning  

Equation (4) calculates the LF based on capacity growth for each technology, every year 
in order to recalculate the cost to build each plant.  However, NEMS can reduce total 
overnight costs every year even if there is no capacity growth and no learning year-to-
year because NEMS has built in Minimum Annual Learning (MAL).  A minimum LF 
which constantly decreases each year is calculated differently than the LF from equation 
(4).   
 

LF2 = 1 - MALvt,yr      where,  (8) 
 

LF2  is an alternative LF based on MAL not Learning Capacity growth. 
MALvt,yr  based on vintage and year, consult Table 7. 

 
This is not to say that costs are reduced every year.  The minimum LF for all years is 
predefined and correlates to vintage regardless of any or all installed capacity growth.  If 
capacity growth leads to a lower LF than MAL, then the minimum LF is irrelevant.  If, 
however, capacity growth leads to a higher LF than MAL does, the minimum LF is used.   
as a lower bound.  MAL is shown in Table 7 below, and increases in a constant fashion.   
 

Table 7.  Minimum Annual Learning by Vintage by Year  

 Rev Evo Con Wind1 
2003 0.87% 0.43% 0.22% 0.04% 
2004 1.74% 0.87% 0.43% 0.09% 
2005 2.61% 1.30% 0.65% 0.13% 
2006 3.48% 1.74% 0.87% 0.17% 
2007 4.35% 2.17% 1.09% 0.22% 
2008 5.22% 2.61% 1.30% 0.26% 
2009 6.09% 3.04% 1.52% 0.30% 
2010 6.96% 3.48% 1.74% 0.35% 
… … … … … 

2015 11.30% 5.65% 2.83% 0.57% 
… … … … … 

2020 15.65% 7.83% 3.91% 0.78% 
… … … … … 

2025 20.00% 10.00% 5.00% 1.00% 
 

1Wind Plants, though defined as Conventional, have only a 1% Minimum Learning  
by 2025.  Wind plants are treated differently in NEMS because EIA determined that for  
wind plants learning leads to efficiency improvements rather than cost reductions  
(conversation with Chris Namovicz, EIA, March 2003). 

 
5.6 Learning Curve by Vintage 

TO and LBD both apply for production of the first 4 units built, i.e. units two through 
five.  Therefore, the revolutionary technologies have cost reductions beyond 10% per 
doubling up to two and a quarter doublings.  The shape of the learning curve in NEMS is 
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shown in Figure 3, which has a log-log scale.  This figure is an illustration of what the 
learning curve would look like for a technology that passes through all three stages.  
Therefore, the cost axis has no units associated with it as the starting point could be at 
any level.  The shape of the curve is what’s being pointed out and is consistent no matter 
the initial cost.  The ‘y’ axis is where a revolutionary vintage technology begins.  An 
Evolutionary Technology begins at the first vertical line, 23 or eight units built, and 
Conventional Technologies begin at the second vertical line, 28 or 256 units built.    
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Figure 3.  The Shape of NEMS’s Learning Curve through each Vintage regardless of Plant 

Type, (Costs axis values are for scale only)  
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6. Learning Examples:  Advanced Combined Cycle & Photovoltaic 
plants 

In order to verify NEMS’s learning calculation, the learning for each technology was 
calculated for every year and compared to the values calculated by NEMS.  The learning 
factor and most of its related variables are not usually output by NEMS, but the 
ELOPTLC subroutine can output these variables, which made the verification much 
easier.   
 
Using initial values for all the relevant variables, a spreadsheet model replicating the 
ELOPTLC code was written.  Once the algorithm and the spreadsheet were set up, it took 
a little debugging to get the spreadsheet to match the NEMS output.  This algorithm is 
included in the Appendix.  A more simplified example of NEMS’s learning calculation is 
shown below in Table 8, for an evolutionary plant, Advanced Gas/Oil Combined Cycle.  
The calculation of all the relevant variables each year, is included.  Subsequently, a 
revolutionary turned evolutionary plant example, photovoltaic, is shown in Table 9.   
 
This section will explain all steps needed to calculate the Learning Factor in NEMS.  
Then the reader is walked through the steps for an example Combined Cycle plant.   
 
 

1. Identify the Baseline Capacity.  
2. Identify the vintage of plant.  
3. Calculate Learning Parameter, b. 
4. Calculate 1/ Xb term, which is called a for simplicity.   
5. Identify the annual capacity growth from Electricity Capacity Planning Submodule.   
6. Calculate Learning Capacity based on capacity growth.   
7. Learning Factor calculated (a* Nb) based on values from #4 and #6 above. 
8. Learning Factor calculated based on Minimum Annual Learning, Table 7.   
9. Select Learning Factor.   
10. Repeat steps 6 - 9 for years 2003 - 2025.   

 
 
 

Working through the proceeding steps for an advanced natural gas combined cycle plant 
results in the following values.  
 
 
1.  10314 MW from Table 5. 
2.  Given as Evolutionary. 
3.  Table 5 indicates that an Evolutionary plant has a LR of 5%, and that b equals 
negative 0.074. 
4. From #1 and #3 above, a is calculated to be 1.981 / MW.  NEMS calls this quantity 
parameter ‘a’ in order to be able to express the Learning Factor equation (4), more simply 
as   LFN = a* Nb     
5.  In 2003 the growth is 1069 MW, subtraction from the spreadsheet below, column 
Cyear. (11,383 MW – 10,314 MW). 
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6.  Learning Capacity is equal to the actual capacity 11,383 MW, because 1069 MW is 
less than 50% of 10,314 MW. 
7.  LF2003 equals 0.993.   
8.  Minimal annual learning is 0.43%, Table 7, so the minimum learning factor is 0.996.  
(1.000 – 0.0043). 
9.  The lessor of #7 and #8 above, 0.993. 
10.  These values are shown in the following spreadsheet.   

-Step 6 is calculated in Column Learning Capacity.   
-Step 7 is Column LF.   
-Step 8 is Column minimum LF, and  
-Step 9 is Column Final LF
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Table 8.  Learning Factor Calculation for an Advanced Gas/Oil Combined Cycle Plant 

 
 

Given:       Calculated: 
Vintage    Evolutionary  Cbase   10314 MW 
MAL per year   0.0043   b   -0.0740 
Total Capacity   See Table  a   1.981 / MW 
Typical Unit Size   400  MW  Learning Factors  See Table 

 
 
 
 
 

a 

Total 
Capacity 

(MW) 

Learning 
Capacity 

(MW) 
LF 

(Calculated) 
Minimum LF  
(from MAL) Final LF 

      
2002 10314 10314 1.000 1.000 1.000 
2003 11383 11383 0.993 0.996 0.993 
2004 11383 11383 0.993 0.991 0.991 
2005 11383 11383 0.993 0.987 0.987 
2006 14787 14787 0.974 0.983 0.974 
2007 16965 16965 0.964 0.978 0.964 
2008 24079 24079 0.939 0.974 0.939 
2009 29206 29206 0.926 0.970 0.926 
2010 41641 41641 0.902 0.965 0.902 
2011 54850 54850 0.884 0.961 0.884 
2012 69117 69117 0.869 0.957 0.869 
2013 80512 80512 0.859 0.952 0.859 
2014 91546 91546 0.851 0.948 0.851 
2015 103612 103612 0.843 0.943 0.843 
2016 108751 108751 0.840 0.939 0.840 
2017 113699 113699 0.837 0.935 0.837 
2018 120068 120068 0.834 0.930 0.834 
2019 125661 125661 0.831 0.926 0.831 
2020 133506 133506 0.827 0.922 0.827 
2021 138159 138159 0.825 0.917 0.825 
2022 148877 148877 0.821 0.913 0.821 
2023 154798 154798 0.818 0.909 0.818 
2024 167299 167299 0.814 0.904 0.814 
2025 173197 173197 0.812 0.900 0.812 
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Table 9.  Learning Factor Calculation for a Photovoltaic Plant 

 
 

Given:       Calculated: 
Vintage    Revolutionary  Cbase   10 MW 
Vintage (post 2006)  Evolutionary  b   -0.152 
MAL per year   0.0087   b (post 2006)  -0.074 
MAL (post 2006)   0.0043   a   1.277 / MW 
Total Capacity   See Table  a (post 2006)  0.958 / MW 
Typical Unit Size   5  MW    Learning Factors  See Table 

 
 
 
 

a 

Total 
Capacity 

(MW) 

Learning 
Capacity 

(MW) 
LF 

(Calculated) 
Minimum LF  
(from MAL) Final LF 

      
2002 10 10 0.903 1.000 0.903 
2003 14 14 0.857 0.991 0.857 
2004 22 21 0.806 0.983 0.806 
2005 29 28 0.768 0.974 0.768 
2006 37 36 0.740 0.965 0.740 
2007 47 46 0.721 0.961 0.721 
2008 60 59 0.708 0.957 0.708 
2009 70 69 0.700 0.952 0.700 
2010 83 82 0.691 0.948 0.691 
2011 95 94 0.684 0.943 0.684 
2012 110 109 0.677 0.939 0.677 
2013 125 124 0.670 0.935 0.670 
2014 140 139 0.665 0.930 0.665 
2015 158 157 0.659 0.926 0.659 
2016 175 174 0.654 0.922 0.654 
2017 193 192 0.649 0.917 0.649 
2018 210 209 0.645 0.913 0.645 
2019 228 227 0.641 0.909 0.641 
2020 245 244 0.638 0.904 0.638 
2021 263 262 0.634 0.900 0.634 
2022 280 279 0.631 0.896 0.631 
2023 298 297 0.629 0.891 0.629 
2024 315 314 0.626 0.887 0.626 
2025 333 332 0.623 0.883 0.623 

 
 Notes:  

 
In 2007, PV is redefined as an Evolutionary vintage since it passes its breakthrough 

 capacity point of 40 MW.  Therefore, the MAL, ‘b’, and ‘a’ values are all redefined. 
 
 The Total Capacity is higher than the Learning Capacity starting in 2004 because of a 
 minor code inconsistency.  
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7. Effects of Endogenous Learning in the Annual Energy Outlook 
Reference Case 

 
The end result of all the learning calculations in NEMS is shown in Table 9.  The plants 
that learn the most are photovoltaic, fuel cells, distributed generation-peak, biomass, and 
advanced combustion turbine plants.  Three of these are revolutionary plants, wherein 
modest absolute installed capacity growth leads to a significant number of capacity 
doublings.  Many of the 21 plant types only reach their minimum LF.  The values in 
Table 10 that are the minimum LF values have been shaded.  The minimum values can be 
verified by using Equation (8), with the values from Tables 7 & 4 for MAL, year, plant, 
and vintage.   
 

Table 10.  Learning Factors by Plant Type 

 
 

Plant Type      

 2005 2010 2015 2020 2025 

Scrbd Pulverized Coal 0.99 0.98 0.96 0.94 0.94 

Integrated Gas Comb Cycle 0.99 0.97 0.94 0.92 0.90 

Gas/Oil Steam Turbine 0.99 0.98 0.97 0.96 0.95 

Existing Combustion Turbine 0.99 0.98 0.97 0.96 0.95 

Conv Combustion Turbine 0.99 0.98 0.97 0.96 0.95 

Adv Combustion Turbine 0.97 0.84 0.77 0.76 0.76 

Existing Gas/Oil Comb Cycle 0.99 0.98 0.97 0.96 0.95 

Conv Gas/Oil Comb Cycle 0.99 0.98 0.97 0.96 0.95 

Adv Gas/Oil Comb Cycle 0.99 0.90 0.84 0.83 0.81 

Fuel Cells 0.97 0.73 0.69 0.68 0.68 

Conventional Nuclear 0.97 0.95 0.95 0.95 0.95 

Biomass (Wood) 0.97 0.93 0.89 0.84 0.75 

Geothermal 0.99 0.94 0.92 0.90 0.88 

Mun Solid Waste 0.99 0.98 0.97 0.96 0.95 

Hydroelectric 0.99 0.98 0.97 0.96 0.95 

Pumped Storage 0.97 0.97 0.97 0.96 0.95 

Wind 0.99 0.99 0.99 0.99 0.99 

Solar Thermal 0.97 0.93 0.89 0.84 0.80 

Photovoltaic 0.77 0.69 0.66 0.64 0.62 

Distributed Generation-Base 0.99 0.86 0.77 0.77 0.77 

Distributed Generation-Peak 0.97 0.84 0.76 0.74 0.72 
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The total effect over time of technological learning on costs is shown in Table 10.  The 
costs shown in the year 2002 column are identical to those from Table 2.  The last 
column shows the percent cost reduction over the forecast horizon.  The percent 
reduction is identical to the LF for all but six plant types.  The cost reductions for the two 
Distributed Generation plant types are related to both the LF and some learning 
exogenous to NEMS, which reduces the engineering cost estimates over time.  No other 
technology has predefined cost estimate reductions.  The cost reductions for the four 
revolutionary plants, Fuel Cells, Biomass, Solar Thermal, and Photovoltaic result both 
from the LF and from the reduced technological optimism factor.   
 

Table 11.   Overnight Capital Costs by Plant Type (‘01$/kW) 

 
Plant Type      2002 - 2025 

 2002 2010 2015 2020 2025 % cost reduction 

Scrbd Pulverized Coal 1155 1128 1103 1087 1081 6% 

Integrated Gas Comb Cycle 1367 1320 1290 1260 1231 10% 

Gas/Oil Steam Turbine 1051 1032 1021 1009 998 5% 

Existing Combustion Turbine 347 341 337 333 329 5% 

Conv Combustion Turbine 409 402 397 393 388 5% 

Adv Combustion Turbine 461 389 355 351 348 24% 

Existing Gas/Oil Comb Cycle 467 458 453 448 443 5% 

Conv Gas/Oil Comb Cycle 536 527 521 515 509 5% 

Adv Gas/Oil Comb Cycle 608 548 512 503 493 19% 

Fuel Cells 2138 1428 1341 1329 1329 38% 

Conventional Nuclear 7723 7316 7305 7299 7299 5% 

Biomass (Wood) 1764 1602 1509 1435 1272 28% 

Geothermal 1516 1428 1393 1361 1334 12% 

Mun Solid Waste 1461 1436 1420 1404 1388 5% 

Hydroelectric 1046 1028 1016 1005 994 5% 

Pumped Storage 2300 2232 2232 2210 2185 5% 

Wind 1004 994 992 990 989 1% 

Solar Thermal 2596 2360 2260 2149 2039 21% 

Photovoltaic 3917 2462 2346 2270 2220 43% 

Distributed Generation-Basea 804 692 617 617 617 23% 

Distributed Generation-Peaka 966 807 737 715 694 28% 
 
a Note DG capital costs are reduced over time exogenously. 
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8. Summary  

 
This paper has tried to lay bare how NEMS comes up with new Electricity Generating 
plant costs.  Engineering Cost Estimates are the starting point for plant costs.  
Technological Learning is used to forecast cost reductions for all technologies other than 
distributed generation. The cost reductions usually relate to installed capacity growth 
though there is built in minimum cost reductions regardless of growth.   In AEO 2003 
reference case, 2 technologies have no installed capacity growth.    
 
There are six parameters that affect Technological Learning in NEMS.   

 
1. Baseline Capacity, which is the starting point for counting doublings of capacity. 
2. Learning Capacity growth year-to-year.  Which determines the number of 

doublings annually. 
3. Learning Rate, which affects magnitude of cost reduction per doubling of 

capacity. 
4. Minimum Annual Learning, which reflects a minimum cost reduction regardless 

of capacity growth. 
5. Vintage, there are three classes, each class has its own Learning Rate and 

Minimum Annual Learning.   
6. Technological Optimism Factor, which is a premium added to Engineering Cost 

Estimates just for the plant types of the youngest Vintage.  This raises initial costs 
for year 2002 beyond Engineering Cost Estimates.  Beyond 2002, this factor helps 
explain cost reductions, as this premium is phased out.   
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9. Further Research Needs  

As with most studies, new questions have arisen during this analysis.  There are also 
areas where the analysis could be improved.  Three of the key areas requiring additional 
research are highlighted below.   
 

1. Do cost reductions from Technological Learning have a significant effect on new 
installed capacity in NEMS?  Policy studies using NEMS frequently are interested 
in potential fuel switching.  Of course cost is only one parameter evaluated by 
NEMS to determine which technologies are chosen for new installed capacity.  
LBL-NEMS could evaluate scenarios with more and less technological learning to 
better determine how concurrent cost reductions affect the forecast for new 
installed capacity.    
 

2. Why are the learning rate definitions in NEMS, particularly for Revolutionary and 
Evolutionary plants, so different than those found in other studies?  Many studies 
(Colpier & Cornland, 2002; Grubler et al. 1999; Neij, 1997; Mackay and Probert, 
1998), suggest learning rates between 10% and 30% per capacity doubling for 
mass-produced technologies.  The literature seems to show a wide potential range 
for learning rates for the youngest technologies.  A deeper analysis is required to 
understand why this discrepancy exists.  For example, NEMS uses a beginning 
learning rate of 10% for PV, adding in the reduction from Technologic Optimism, 
the effective rate starts at 12.5% and by 2007 the learning rate reaches 5%.  
However, Grumbler et al., Mackay & Probert, and Neij all identify 20% as 
historical learning rates for PV.  This significance of this and other discrepancies 
should be examined further.     

 
3. NEMS is updated annually, so the data in this paper should be updated every few 

years.  Technological Learning for wind plants, for example, is treated differently 
in AEO 2003 than it was in previous versions of AEO.   
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10. Appendix  – Learning Algorithm 

This appendix illustrates NEMS’s learning factor algorithm and follows the logic used in 
the ucape source code.  The first page shows a schematic representation of the algorithm.  
The ten steps are briefly explained on second page.  The third page defines the notations 
or abbreviations used.  The last page shows Step 6 of the algorithm, which is complicated 
enough to warrant it own schematic.   
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Figure A-1 NEMS's Learning Factor Algorithm 

Step 1. Yes
Identify Baseline 

Capacity, X No

Original Vintage is Given, either:
  - Revolutionary  (R),
  - Evolutionary (E), or
  - Conventional  (C)

Step 2.
Identify Vintage &
Breakpoint Capacity, BC

R E C

BC = X * 2^3 BC = X * 2^5

Steps 3 & 4.
Calculate param eters 

"b" and "a"

Steps 5 & 6.
Given Installed Capacity, Cyear

Calculate Learning Capacity, Nyear

Go to Figure A-2.  Calculate
Nyear, Return, and Continue
with Step 7.

Steps 7 & 8. Yes
Calculate the Learning Factor
Two Different Ways LF1 = a*(Nyear)^b No

LF2 = 1-MAL*(year-2002)
Step 9.
Actual Learning Factor is the 
Lesser of the Two. Output No

LF(year) is lesser of LF1 & LF2

Yes
Step 10. Begin Next Year's Iteration
Begin Next Year's Calculation
(Year =Year +1) year = year + 1

If C2001<  TUS
X = TUS

X = C2002

If Vintage =R

BC= X * 2^8
Vintage reset to E

Vintage reset to C

For Vintage  = R, E, C:

b(R)= -0.1520
a(R)=1/( X ^b(R))

b(E)= -0.074
a(E)=1/ ( X ^b(E))

b(C)= -0.0145
a(C)=1/ (X ^b(C))

If Nyear > BC

   



 

 
 
 
 
Notes regarding for Learning Factor Algorithm 
 
Step 1. Identifies the Baseline Capacity, which is needed to calculate parameter 

‘a’ and Breakpoint Capacity. 
 
Step 2. Identifies the vintage, which determines the value for parameter ‘b’ and 

helps determine the Breakpoint Capacity.  Breakpoint Capacity is the 
actual capacity at which a plant’s vintage changes.  Only four plants in 
AEO 2003 surpass their Breakpoint Capacities and change vintage; Fuel 
cells, Photovoltaic, and Biomass plants change from Revolutionary to 
Evolutionary vintage, while the Advanced Combustion Turbine plants 
change from Evolutionary to Conventional vintage.   

 
Steps 3 & 4.   Calculates parameters “a” and “b” which help calculate the Learning 

Factor in Step 7. 
 
Step 5.   Identifies installed capacity for a given year, Cyear.    
 
Step 6. Is the calculation of the Learning Capacity, shown in Figure A-2.  

Learning Capacity is calculated from the actual capacity, the previous 
year’s capacity, previous year’s Learning Capacity, and the typical unit 
size.  This step applies rules about the minimum value for Learning 
Capacity and the maximum year-to-year Learning Capacity increase.  
There are five possible ways to calculate Learning Capacity depending on 
the situation. 

 
Step 7.   Calculate Learning Factor the first way, from Learning Capacity. 
 
Step 8. Calculate Learning Factor the second way, from the minimum annual 

learning. 
 
Step 9.  Choose actual Learning Factor, the lesser of Step 7 and Step 8. 
 
Step 10. Next year starts and the algorithm repeats itself starting at Step 5, unless 

the plant type has surpassed the Breakpoint Capacity.  If so, the vintage is 
redefined and the current year begins at Step 3.   

 
 
Diamonds are decision boxes. 
Ovals are variable definition steps.   
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Variables – known 
 
C2001 2001 Capacity 
C2002 2002 Capacity 
Cyear Capacity for “year” 
MAL Minimum Annual Learning 
TUS Typical Unit Size 
 
Variables – calculated 
 
Nyear Learning Capacity for “year” 
LF1 Learning Factor calculated from Learning Capacity 
LF2 Learning Factor calculated from the MAL 
LFyear Learning Factor for “year”, the lower of LF1 and LF2  
BC Breakpoint Capacity is the capacity which defines when a  
 Revolutionary or Evolutionary plants’ vintage is reclassified. 
 
‘a’ parameter in Learning Function 
‘b’ parameter in Learning Function 
 
X Baseline Capacity used to calculate vintage, Breakpoint  
 Capacity and ‘a’. 
 
The only time values for vintage, BC, ‘b’, and ‘a’ are redefined is when an Evolutionary 
or Revolutionary plants’ vintage is reclassified. 
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Figure A-2 Flowchart to Calculate Learning Capacity.
Step 6 of the Learning Factor Algorithm

Start

Yes

Return to Figure A-1, Step 7.
No

Return to Figure A-1, Step 7.
Yes

No

No

Yes

Yes
No

No

Return to Figure A-1, Step 7.

No
Yes

Return to Figure A-1, Step 7. Return to Figure A-1, Step 7.

If Cyear <  TUS 

If Year = 2002

If Cyear > 1.5*N(year-1)

If C(year-1) > 0

Nyear = N(year-1)*1.5

Nyear = TUS

Nyear = C2002

If C(year-1) < N(year-1)

Nyear = Cyear

Nyear = N(year-1) + 
             Cyear - C(year-1)

Note:  This last decision box reflects a minor code inconsistency, which does not affect the results materially.  The ‘No’ 
and ‘Yes’ should be switched in the source code.  Fuel Cells and Pumped Storage are most affected by this 
inconsistency.  If corrected, the net affect would be an approximately 0.5% reduction in overnight costs.  
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