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List of Learning Terms

Learning — generally used to mean Technological Learning.

Learning-by-Doing (LBD) — Technological Learning from experience gained from
capacity growth.

Learning Rate (LR) — Cost reduction per doubling of installed capacity.
Learning Curve — The shape of the Learning Function.

Learning Factor (LF) — A factor used in the calculation of an electricity generating plants’
overnight costs. This value starts at 1.0 and can be reduced every year. It is calculated in
two ways and the better or lower value is the one that is used. Method 1 calculates LF as
a function of capacity growth, and the second method uses a predefined Minimum
Annual Learning.

Learning Function — Also known as Wright’s Equation, the relationship between
cumulative production and costs.

Minimum Annual Learning (MAL) — Predefined by NEMS, this value is annually
subtracted from 1.0 to determine the LF upper bound. For example, if MAL was defined
as 0.05 for an ‘XYZ’ plant, then in year 0, the LF for ‘XYZ’ would be 1.0, in year 1 the
LF would be 0.95, in year 2 LF would be 0.90, and so on. The MAL defined LF is
important when the second method of calculating LF, from capacity growth, does not
lead to as low an LF.

Technological Learning — the production of goods more efficiently (cheaper or more
quickly) due to learning through experience. This paper will distinguish two types of
Technological Learning in NEMS, Technological Optimism Learning and Learning-by-
Doing.

Technological Optimism — The tendency for unproven designs to have unforeseen costs
for the first few units actually built, i.e. cost expectations are always too optimistic.

Technological Optimism Factor acts like a pessimistic factor.

Technological Optimism Factor— The actual counterbalancing factor that accounts for the
uncertainty due to Technological Optimism by adding a premium to overnight costs.

Technological Optimism Learning — The reduction of the Technological Optimism Factor
as installed capacity grows.
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Abstract

This report describes how Learning-by-Doing (LBD) is implemented endogenously in the
National Energy Modeling System (NEMS) for generating plants. LBD is experiential
learning that correlates to a generating technology’s capacity growth. The annual amount
of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no
straightforward way to integrate and make sense of all the diffuse information related to
the endogenous learning calculation in NEMS. This paper organizes the relevant
information from the NEMS documentation, source code, input files, and output files, in
order to make the model’s logic more accessible. The end results are shown in three
ways: in a simple spreadsheet containing all the parameters related to endogenous
learning; by an algorithm that traces how the parameters lead to cost reductions; and by
examples showing how AEO 2004 forecasts the reduction of overnight costs for
generating technologies over time.
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1. Introduction

The Merriam-Webster dictionary defines the word “learn” as: to gain skill in, by study or
experience. This work was motivated in part by an interest in understanding how newer
technologies become more cost competitive over time. Technological learning leads to
the production of goods more inexpensively. Technological learning as implemented in
energy forecasting models describes the combined effect of economies of scale and the
process of gaining manufacturing skill from repetition. Cost reductions are especially
important for newer technologies, which are frequently limited in their ability to reach the
marketplace by high initial costs, and which benefit most rapidly from technological
learning.

This paper explains how the National Energy Modeling System (NEMS) incorporates
endogenous learning into its cost calculations for power plants. The parameters that
affect the magnitude of the learning for each of 21 electric generating technologies are
laid out. Learning in NEMS is expressed as a percent reduction of overnight capital
costs.

NEMS uses exogenously determined improvements to represent technological learning
for demand side end-uses, heat rates, and oil and gas supply. This exogenous learning
will not be covered in this paper. However, it should be noted that demand-side and
supply-side learning are interactive (Laitner & Sanstad, 2003). Therefore, exogenous
learning implemented in NEMS inputs reduces endogenous learning.

NEMS is a partial equilibrium energy economy model that projects supply, demand, new
capacity, price of energy, emissions, and other parameters. Its forecast yields the
Department of Energy’s Annual Energy Outlook (AEO), which is frequently used for
energy policy analyses (EIA, 2000).

A major part of this investigation involves figuring out how NEMS calculates cost
reductions due to learning for each of 21 power plants types. Technological learning is
represented two ways in NEMS, by Learning-by-Doing and by Technological Optimism.
Technological Optimism is more limited and is only applied for the construction of the
first 5 plants of any technology type. The total optimism cost reduction is 10% - 15%
between the first and fifth units built. Learning-by-Doing, on the other hand, is applied to
all incremental installed capacity as an overnight capital cost reduction of between 1%
and 10% per cumulative installed capacity doubling.

Section 2 describes the origins of the Learning Function. Section 3 shows the
relationship between learning and overnight costs for the electricity generating plant
types represented in NEMS. Section 4 explains Technological Optimism. Section 5
details how Learning-by-Doing works and how the Learning Factor is calculated.
Section 6 walks the reader through the Learning Factor calculation for a natural gas
combined cycle plant as well as showing the calculation for an emerging technology,
photovoltaics. Section 7 illustrates how Learning Factors and plant costs change
throughout the AEO. Section 8 summarizes which parameters relate to technological
learning. Section 9 identifies areas for further research.



2. What is Learning-by-Doing?

T. P. Wright, in 1936, was the first to characterize the relationship between increased
productivity and cumulative production. He analyzed man-hours required to assemble
successive airplane bodies. He suggested the relationship is a log linear function, since
he observed a constant linear reduction in man-hours every time the total number of
airplanes assembled was doubled. The reduction in man-hours is called learning-by-
doing (LBD). The relationship between number assembled and time to assemble is called
Wright’s Equation or the learning function (Madsen et al. 2002). Wright’s Equation,
shown below, has been shown to be widely applicable in manufacturing.

Learning Function: Cy=Co* N°  where, (1)

N is the cumulative production.

Ch is the cost to produce N™ unit of capcity.

Cy is estimated cost to produce the first unit.

b is the Learning Parameter, equal to In (1-LR) / In (2), where,
LR is the LBD Rate, or the cost reduction per doubling of capacity.

In the technology learning literature the term Progress Ratio is frequently used. It is the
complementary value to LR, i.e. I-LR.

The following hypothetical example, illustrates Wright’s Equation. If the first two
airplanes took 1000 and 800 hours to assemble respectively, then the LR for airplane
assembly could be calculated as 20% and the Progress Ratio would be 80%. Wright’s
Equation projects future production time if the LR is known. Therefore, the fourth
airplane should take 640 hours to assemble and the eighth, 512 hours. This learning
curve is shown in Figures 1 and 2, below. These figures are based on the same data, but
Figure 2 is plotted on a log scale to illustrate the log linear nature of the learning function.
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Figure 2. The Shape of Learning Curve on a Log Scale

The learning function described by Wright relates labor input reduction to experience.
However, capital cost reductions have also been shown to correlate with experience
(Mackay & Probert, 1998). Therefore, the learning function applied to electricity
generating technologies in NEMS governs overall initial capital cost reductions not labor
reductions.

2.1 Distinct Learning Stages

There is ample evidence from the literature that electricity generating technologies have
distinct stages of development that correlate to different LRs. Colpier & Cornland (2002)
identified three phases of development with different LRs for natural gas combined cycle
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plants. Grubler et al. (1999) described three stages similar to those used by NEMS. The
latter authors identified three classifications to categorize different points in any
technological development. Mature Technologies are those that have saturated the
market, have well-known characteristics, and have limited potential for cost reductions
due to learning. Incremental Technologies have niche market commercialization and
have potential for significant cost reductions due to learning. Radical Technologies have
almost no market share, and may never reach any significant commercialization, but their
potential learning cost reductions are high.

The LRs that Grubler ez al. (1999) associate with each classification are in Table 1,
below. While conceptualizing technological development by three stages is pretty
consistent in the literature, the LRs associated with each stage are not. Even the
definition of maturity level for certain technologies is subject to interpretation. Unlike
Grubler et al. (1999), NEMS considers Geothermal an incremental technology and
Biomass a radical technology.

Table 1. Learning-by-Doing Rate by Classification

. . Learning-by- Examples: Electricity-Generating
Technology Classification Doing Rate Technologies
Mature 0% Combustion gas turbmp, gas combined-
cycle, conventional coal
Incremental 10-40% Biomass, coal combn.led cycle, nuclear,
and wind
Radical High, potentially Geothermal, solar-thermal, and solar PV

> 50%
Source Grubler et al. 1999.



3. Capital Costs for Electric Generating Technologies in NEMS

In NEMS, technology penetration decisions take place in the Electricity Market Module’s
Electricity Capacity Planning Submodule (ECP). The AEO 2003 version of NEMS
characterizes 21 available electric generating technologies. Their total overnight costs for
the year 2002 are shown in the first column of Table 2. The total overnight cost for each
technology is the product of four components. The four components are: the Initial
Engineering Cost, a Technological Optimism Factor, a Project Contingency Factor, and a

Learning Factor.

The Technological Optimism and Project Contingency Factors are related to cost
uncertainty and can have values above 1.0. Cost reductions over time are driven by the

reduction of either of the two components related to technological learning, the

Technological Optimism and the Learning Factors. Sections 4 and 5 explain how these
factors change. These two factors and the total overnight costs are recalculated and
updated for every subsequent year. The first three components in Table 2 are predefined
input values for the ECP. However, the optimism factor can be reduced over time.

Table 2. Total Overnight Costs and Cost Components for 2002, in NEMS

Scrbd Pulverized Coal
Integrated Gas CC
Gas/Oil Steam Turbine
Existing CT

Conv CT

Adv CT

Existing Gas/Oil CC
Conv Gas/QOil CC
Adv Gas/Oil CC

Fuel Cells
Conventional Nuclear
Biomass (Wood)
Geothermal®

Mun Solid Waste
Hydroelectric
Pumped Storage
Wind

Solar Thermal®
Photovoltaic®

Dist. Gen. Base

Dist. Gen. Peak

? Geothermal, Solar Thermal, and Photovoltaic also receive a 10% capital cost credit.

Technological
Total Costs Initial Engineering Cost Optimism Factor | Project Contingency |Learning Factor
(01$/kW) Estimates (01$/kW) derived in 2002 Factor in 2002
1155 1079 1 1.07 1.0
1367 1278 1 1.07 1.0
1051 982 1 1.07 1.0
347 330 1 1.05 1.0
409 389 1 1.05 1.0
461 439 1 1.05 1.0
467 444 1 1.05 1.0
536 511 1 1.05 1.0
608 563 1 1.08 1.0
2138 1851 1.10 1.05 1.0
7723 3527 1 2.19 1.0
1764 1570 1.05 1.07 1.0
1531 1604 1 1.05 1.0
1461 1365 1 1.07 1.0
1046 951 1 1.10 1.0
2300 2091 1 1.10 1.0
1004 938 1 1.07 1.0
2622 2450 1.10 1.07 1.0
3956 3768 1.10 1.05 1.0
804 766 1 1.05 1.0
966 920 1 1.05 1.0




3.1 Engineering Cost Estimates

The initial engineering cost estimates for overnight costs come from realized costs for
more mature technologies. Mature technologies, such as existing combined cycle plants,
have known costs. For the youngest technologies, which have no realized costs, EIA
uses its analysts’ best judgment coupled with engineering cost estimates taken from
industry and government experts (EIA, 2002; Personal Communication with James
Hewlett, EIA, Nov. 2002).

3.2 Technological Optimism Factor

The Technological Optimism Factor (TOF) is a contingency factor applied to the most
immature generating technologies. Technologic Optimism is not the typical LBD
discussed in the literature, but it is still learning through experience. EIA has identified a
tendency for unproven designs to have unforeseen cost overruns for the first few units
(EIA, 2002). In order to account for this tendency, the first five units have a TOF applied
to the initial engineering estimates. This factor represents rapid learning over the course
of the first few units built. The magnitude of this factor is determined by historical data
and by econometric estimates originally performed by Ed Merrow at RAND (Personal
Communication with James Hewlett, EIA, Nov. 2002). Section 4 explains the
Technological Optimism in more detail.

3.3 Project Contingency Factor

The Project Contingency Factor (PCF) is a traditional risk factor applied to all
technologies, mature or not. The PCF does not change from year to year. Except for
nuclear plants, the PCF ranges from a high of 1.10 to a low of 1.05; conventional nuclear
plants have a PCF of 2.19. PCF does not relate to learning.

3.4 Learning Factor

The Learning Factor (LF) is calculated based on each technology’s capacity increase.
The LF was explained along with Wright’s equation in the previous section. The LF
applies to all production and can change every year for every technology. The LF starts
at 1.0 in 2002 for all technologies. A detailed explanation of how LFs are calculated
follows in Section 5.



4. Technological Optimism Learning

Technological Optimism Learning (TOL), or the reduction of the TOF, is the learning
associated with initial commercialization of electric generating plants. It only applies to
technologies that are just beginning commercialization. While optimism sounds positive,
the TOF is used to raise costs to offset unrealistic optimism.

Technological Optimism (TO) represents the difference between initial new technology
cost estimates and actual first-of—a-kind costs by adding a premium to the first five units
built of unproven technologies. TOL is the reduction of this premium to 1.0, and after
the fifth unit is built, there is no longer any premium associated with TO. Cost reductions
associated with TOL are significant but less powerful than the concurrent LBD
reductions.

There are only four technologies that are young enough to have TO associated with them:
fuel cells, biomass, solar thermal, and photovoltaic plants. The initial TOFs are shown in
Table 3. In NEMS, the first plant is considered preexisting for uncommercialized
technologies, so the premium applies to the first four plants built, which are plants
numbers two through five. The TOFs decrease linearly to 1.0 as units two through five
are built.

Table 3. Technological Optimism Factor Applied to Capital Costs when Less than Five of
any Revolutionary Type Plants Exist

Plant Technological
Size | Optimism Factor, 2" plant 3" plant 4" plant 5" plant
(MW) 1* plant
Fuel Cells 10 1.10 1.075 1.05 1.025 1.0
Biomass
(Wood) 100 1.05 1.0375 1.025 1.0125 1.0
Solar Thermal 100 1.10 1.075 1.05 1.025 1.0
Photovoltaic 5 1.10 1.075 1.05 1.025 1.0

Source: Data from NEMS AEO 2003 input file ecpdat and source code file ucape



5. Learning-By-Doing (LBD) and Learning Factor Calculation

LBD in NEMS is the process first described by Wright that accounts for cost reductions
due to manufacturing experience. LBD illustrates the relationship between cumulative
production (experience) and the cost of the next unit of production. In NEMS, cost
reductions are related to cumulative installed capacity, which is a surrogate for
experience, and cost reductions are described by percent reduction in capital cost for each
doubling of cumulative capacity. Cost reduction per doubling of capacity is based on
maturity of the technology or vintage.

Equation (1) solves a technology’s current production costs when three parameters are
known: overnight costs for the first unit, Cy, cumulative production, N, and progress ratio
or LBD rate, LR. NEMS however, cannot use Equation (1) because the cost data
available is for current capacity not for first unit of capacity, Cy. Therefore, the learning
function in NEMS takes on a slightly different form than the classic version, making use
of current production cost data to calculate current production costs Cy. AEO 2003 has
collected data for capacity available in year 2002, X, and next unit costs in year 2002,
Cx, for each technology. Therefore, NEMS determines Cx, by solving a variation of
Equation (1).

CN = Cx >kLFN where, (2)
X is the baseline capacity given in the initial year (2002 for AEO 2003).
Cx is the cost to produce the next unit, when cumulative capacity is X.

LFy is the Learning-by-Doing Factor for capacity N, i.e. the percent reduction of the
engineering cost estimates and LF is a function of N.

If NEMS can calculate the LF when production equals N, then Equation (2) can be used
to solve for Cn. LFy can be found by substituting Equation (1), into Equation (2) giving:

Co*N° =Co*X® * LFy (3)
Then reducing, rearranging, and solving for LFy gives,
LFy=N" / X° or, (4)
LFy=a* N where, (5)
a is the parameter equal to 1/ X", as used in NEMS for simplicity.

X and b are known constants in NEMS, while N is calculated annually. All the X and b
values are explained and shown below in the following two sections.

5.1 Baseline Capacity, ‘X’

The determination of Baseline Capacity is confusing as is shown in Table 4. NEMS
defines X as either the Typical Unit Size or the actual cumulative capacity in 2002.
Typical Unit Size is the average unit size, defined by NEMS for the purpose of



calculating X and should not be confused with the increment by which new plants are
added in NEMS. The rule is that if the typical unit size is greater than the 2001
cumulative capacity then X equals typical unit size. Otherwise, X is assigned the actual
2002 cumulative capacity.

Table 4. Vintage & Baseline Capacity, X (all units MW)

A B C D E F

. Typical Unit Cumulative Cumul'atlye ‘X’, Baseline
PLANT TYPE Vintage ypIc: . Capacity in ; .

Size Capacity in 2001 2002 Capacity

Scrbd Pulverized Coal Con. 600 498 498 600
Integrated Gas Comb Cycle Evo. 550 1,958 2,022 2,022
Gas/Oil Steam Turbine Con. 300 9,356 11,870 11,870
Existing Combustion Turbine Con. 160 20,216 41,097 41,097
Conv Combustion Turbine Con. 160 29,535 50,306 50,306
Adv Combustion Turbine Evo. 230 299 299 299
Existing Gas/Oil Comb Cycle Con. 250 20,908 20,908 20,908
Conv Gas/Oil Comb Cycle Con. 250 39,389 60,045 60,045
Adv Gas/Oil Comb Cycle Evo. 400 9,958 10,314 10,314
Fuel Cells Rev. 10 - - 10
Conventional Nuclear Con. 1,350 498 4579 1,350
Biomass (Wood) Rev. 100 9 9 100
Geothermal Evo. 50 556 567 567
Mun Solid Waste Con. 30 265 419 419
Hydroelectric Con. 500 - - 500
Pumped Storage Con. 250 - 576 250
Wind Con. 50 2,306 4,153 4,153
Solar Thermal Rev. 100 - 1 100
Photovoltaic Rev. 5 1 10 5
Distributed Generation-Base Evo. 2 - - 2
Distributed Generation-Peak Evo. 1 - - 1

Note: The definition of Baseline Capacity follows this logic. If Column C is greater than Column D, Column F equals
Column C’s value. Otherwise Column F equals Column E’s value.

5.2 Learning Parameter, ‘b’ & Vintage

The Learning Parameter, b, assumes one of three values depending on what vintage the
electric generating technology has been defined. These three vintages, revolutionary
(Rev.), evolutionary (Evo.), or conventional (Con.), roughly correspond to three of the
stages of technological development described in Grubler et al. (1999), Radical,
Incremental, and Mature. Vintage by plant type is shown above in Table 4. b is defined

by its relationship with the LR.

LR=2"

b=InLR/In (2)

b can be calculated when LR is known.
LR corresponds to vintage. Both values are shown in Table 5, below.

in other words,

9
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Table 5. NEMS Learning Parameters for Each Technology Classification

Vintage b, Learning
LR Parameter
Revolutionary 10% -0.152
Evolutionary 5% -0.074
Conventional 1% -0.0145

Note: There is one exception to this classification, MSW plants have 0% LR.

Even though a plant’s initial vintage is predefined, there is one complication related to
vintage. Over time, installed capacity increases and eventually a revolutionary plant can
become evolutionary and an evolutionary plant can become a conventional one.
Therefore, there must be some point defined when technologies are assumed to pass from
one vintage to another.

5.3 Breakpoints

NEMS calls the inflections between vintages, breakpoints and these predefine when
vintage advances. A revolutionary technology is redefined as an evolutionary technology
after three doublings of capacity, i.e. when N = X* 2°. An evolutionary technology is
redefined as a conventional technology after five doublings of capacity, i.e. when N = X*
2°. Potentially, even a revolutionary technology could become conventional after eight
capacity doublings, i.e. when N = X* 2,

The AEO 2003 Reference Case forecasts that five plant types will have sufficient
installed capacity gains to surpass their breakpoints before 2025. Photovoltaic and Fuel
Cell technologies begin as revolutionary and become evolutionary. The two Distributed
Generation plant types and the Advanced Combustion Turbine plant type begin as
evolutionary and become conventional.

5.4 Cumulative Production and Learning Capacity, ‘N’

NEMS differentiates between what it considers cumulative production, N for calculating
capacity doublings, and total installed capacity. The value of N is not necessarily equal
to the total installed capacity. Installed capacity growth is calculated annually in the ECP
submodule. N is related to the installed capacity, but will henceforth be called Learning
Capacity. There are potentially two adjustments made to actual total installed capacity,
in order to calculate N, one adjusts higher and one lower. First, NEMS gives learning
capacity credit to technologies with international experience. The capacity growth that
should count towards international LBD is shown in Table 6. The second adjustment is
based on maximum annual learning capacity growth.

10



5.4.1 International Learning

Manufacturing experience and economies of scale, which lead to learning, are not limited
to domestic experience. There are two ways international capacity can impact domestic
learning, through technology and people’s LBD (Petersik 1997). First, companies that
manufacture domestic power plant components may also produce similar components
internationally. Second, international experience can lead to industry wide learning. To
reflect this interaction, off-shore development is counted, but the amount of international
capacity growth that NEMS accepts is limited in two ways. First, only a percent of the
total international growth counts based on the extent to which the companies which
manufacture, design, operate, and own the plants compete in the U.S. Second, no more
than one standard size plant’s worth of international capacity per year can count towards
domestic learning (Personal communication with Thomas Petersik, EIA, Dec. 2001).

Table 6. International Capacity Growth Applied to Learning

Technology Adv. Gas/Oil
Comb Cycle
Percent Applied to Learning 75%
Year
2002 475
2003 1425
Total Int’l Capacity 1900

Note: The Percent Applied row indicates what fraction of the International Capacity that counts towards the Learning from capacity
growth. For example the 475 MW new capacity of Advanced Combined Cycle in 2002 only counts as 319 MW, (75% of 425)
towards learning.

Source: NEMS input file, eintlrn.

Table 6 is rather abbreviated because all the other data from the input file is for earlier
years. The international capacity file for NEMS was created many AEO versions ago
and has not been updated. This component is out of date.

5.4.2 Limits to Learning Capacity, ‘N’, Growth year-to-year

EIA feels, justifiably, that there should be an upper limit on LBD in any one year no
matter how dramatic the one-year capacity growth may be; therefore, credited growth is
limited to 50% beyond the previous year’s installed capacity. In other words, when a
technology experiences rapid growth, N has a maximum increase year-to-year of 50%,
but any growth beyond 50% can count towards N in the following year.

11



5.5 Minimum Annual Learning

Equation (4) calculates the LF based on capacity growth for each technology, every year
in order to recalculate the cost to build each plant. However, NEMS can reduce total
overnight costs every year even if there is no capacity growth and no learning year-to-
year because NEMS has built in Minimum Annual Learning (MAL). A minimum LF
which constantly decreases each year is calculated differently than the LF from equation

(4).
LF>=1-MALyy where, (8)

LF; is an alternative LF based on MAL not Learning Capacity growth.
MAL,,, based on vintage and year, consult Table 7.

This is not to say that costs are reduced every year. The minimum LF for all years is
predefined and correlates to vintage regardless of any or all installed capacity growth. If
capacity growth leads to a lower LF than MAL, then the minimum LF is irrelevant. If,
however, capacity growth leads to a higher LF than MAL does, the minimum LF is used.
as a lower bound. MAL is shown in Table 7 below, and increases in a constant fashion.

Table 7. Minimum Annual Learning by Vintage by Year

Rev Evo Con Wind'
2003 0.87% 0.43% 0.22% 0.04%
2004 1.74% 0.87% 0.43% 0.09%
2005 2.61% 1.30% 0.65% 0.13%
2006 3.48% 1.74% 0.87% 0.17%
2007 4.35% 2.17% 1.09% 0.22%
2008 5.22% 2.61% 1.30% 0.26%
2009 6.09% 3.04% 1.52% 0.30%
2010 6.96% 3.48% 1.74% 0.35%
2015 11.30% 5.65% 2.83% 0.57%
2020 15.65% 7.83% 3.91% 0.78%
2025 20.00% 10.00% 5.00% 1.00%

'Wind Plants, though defined as Conventional, have only a 1% Minimum Learning

by 2025. Wind plants are treated differently in NEMS because EIA determined that for
wind plants learning leads to efficiency improvements rather than cost reductions
(conversation with Chris Namovicz, EIA, March 2003).

5.6 Learning Curve by Vintage

TO and LBD both apply for production of the first 4 units built, i.e. units two through
five. Therefore, the revolutionary technologies have cost reductions beyond 10% per
doubling up to two and a quarter doublings. The shape of the learning curve in NEMS is

12



shown in Figure 3, which has a log-log scale. This figure is an illustration of what the
learning curve would look like for a technology that passes through all three stages.
Therefore, the cost axis has no units associated with it as the starting point could be at
any level. The shape of the curve is what’s being pointed out and is consistent no matter
the initial cost. The ‘y’ axis is where a revolutionary vintage technology begins. An
Evolutionary Technology begins at the first vertical line, 2° or eight units built, and
Conventional Technologies begin at the second vertical line, 2* or 256 units built.

Learning Curve including Different Learning Rates for
Each Stage

10000

Revolutionary Learning Rate 5%
Stage

Learning Rate Conventional Stage

10% &
. —n L |
Technological

Optimism Stage Learning Rate 1%

Evolutionary

Cost per next unit
)
o
o

100 - ‘ : ‘
1 10 100 1000 10000
Units Built

Figure 3. The Shape of NEMS’s Learning Curve through each Vintage regardless of Plant
Type, (Costs axis values are for scale only)
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6. Learning Examples: Advanced Combined Cycle & Photovoltaic
plants

In order to verify NEMS’s learning calculation, the learning for each technology was
calculated for every year and compared to the values calculated by NEMS. The learning
factor and most of its related variables are not usually output by NEMS, but the
ELOPTLC subroutine can output these variables, which made the verification much
easier.

Using initial values for all the relevant variables, a spreadsheet model replicating the
ELOPTLC code was written. Once the algorithm and the spreadsheet were set up, it took
a little debugging to get the spreadsheet to match the NEMS output. This algorithm is
included in the Appendix. A more simplified example of NEMS’s learning calculation is
shown below in Table 8, for an evolutionary plant, Advanced Gas/Oil Combined Cycle.
The calculation of all the relevant variables each year, is included. Subsequently, a
revolutionary turned evolutionary plant example, photovoltaic, is shown in Table 9.

This section will explain all steps needed to calculate the Learning Factor in NEMS.
Then the reader is walked through the steps for an example Combined Cycle plant.

Identify the Baseline Capacity.

Identify the vintage of plant.

Calculate Learning Parameter, b.

Calculate 1/ X" term, which is called a for simplicity.

Identify the annual capacity growth from Electricity Capacity Planning Submodule.
Calculate Learning Capacity based on capacity growth.

Learning Factor calculated (a* N°) based on values from #4 and #6 above.
Learning Factor calculated based on Minimum Annual Learning, Table 7.

. Select Learning Factor.

0. Repeat steps 6 - 9 for years 2003 - 2025.

=00 NNk =

Working through the proceeding steps for an advanced natural gas combined cycle plant
results in the following values.

1. 10314 MW from Table 5.

2. Given as Evolutionary.

3. Table 5 indicates that an Evolutionary plant has a LR of 5%, and that b equals
negative 0.074.

4. From #1 and #3 above, a is calculated to be 1.981 / MW. NEMS calls this quantity
parameter ‘a’ in order to be able to express the Learning Factor equation (4), more simply
as LFy=a* NP

5. In 2003 the growth is 1069 MW, subtraction from the spreadsheet below, column
Cyear. (11,383 MW — 10,314 MW).



6. Learning Capacity is equal to the actual capacity 11,383 MW, because 1069 MW is
less than 50% of 10,314 MW.
7. LF2003 equals 0.993.
8. Minimal annual learning is 0.43%, Table 7, so the minimum learning factor is 0.996.
(1.000 — 0.0043).
9. The lessor of #7 and #8 above, 0.993.
10. These values are shown in the following spreadsheet.
-Step 6 is calculated in Column Learning Capacity.
-Step 7 is Column LF.
-Step 8 is Column minimum LF, and
-Step 9 is Column Final LF
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Table 8. Learning Factor Calculation for an Advanced Gas/Oil Combined Cycle Plant

Given: Calculated:

Vintage Evolutionary Chrase 10314 MW

MAL per year 0.0043 b -0.0740

Total Capacity See Table a 1.981 / MW

Typical Unit Size 400 MW Learning Factors See Table

Total Learning
Capacity Capacity LF Minimum LF
(MW) (MW) (Calculated) (from MAL) Final LF

2002 10314 10314 1.000 1.000 1.000
2003 11383 11383 0.993 0.996 0.993
2004 11383 11383 0.993 0.991 0.991
2005 11383 11383 0.993 0.987 0.987
2006 14787 14787 0.974 0.983 0.974
2007 16965 16965 0.964 0.978 0.964
2008 24079 24079 0.939 0.974 0.939
2009 29206 29206 0.926 0.970 0.926
2010 41641 41641 0.902 0.965 0.902
2011 54850 54850 0.884 0.961 0.884
2012 69117 69117 0.869 0.957 0.869
2013 80512 80512 0.859 0.952 0.859
2014 91546 91546 0.851 0.948 0.851
2015 103612 103612 0.843 0.943 0.843
2016 108751 108751 0.840 0.939 0.840
2017 113699 113699 0.837 0.935 0.837
2018 120068 120068 0.834 0.930 0.834
2019 125661 125661 0.831 0.926 0.831
2020 133506 133506 0.827 0.922 0.827
2021 138159 138159 0.825 0.917 0.825
2022 148877 148877 0.821 0.913 0.821
2023 154798 154798 0.818 0.909 0.818
2024 167299 167299 0.814 0.904 0.814
2025 173197 173197 0.812 0.900 0.812
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Table 9. Learning Factor Calculation for a Photovoltaic Plant

Given:

Vintage

Vintage (post 2006)
MAL per year
MAL (post 2006)
Total Capacity
Typical Unit Size

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

Notes:

Total
Capacity
(Mw)

10
14
22
29

228
245
263
280
208
315
333

Revolutionary
Evolutionary
0.0087

0.0043

See Table

5 MW

Learning
Capacity
(Mw)

10
14
21
28

227
244
262
279
297
314
332

(Calculated)

Calculated:

Cbase
b

b (post 2006)

a

a (post 2006)
Learning Factors

LF

0.903
0.857
0.806
0.768
0.740
0.721
0.708
0.700
0.691
0.684
0.677
0.670
0.665
0.659
0.654
0.649
0.645
0.641
0.638
0.634
0.631
0.629
0.626
0.623

Minimum LF
(from MAL)

1.000
0.991
0.983
0.974
0.965
0.961
0.957
0.952
0.948
0.943
0.939
0.935
0.930
0.926
0.922
0.917
0.913
0.909
0.904
0.900
0.896
0.891
0.887
0.883

10 MW
-0.152
-0.074
1.277 /| MW
0.958 / MW
See Table

Final LF

0.903
0.857
0.806
0.768
0.740
0.721
0.708
0.700
0.691
0.684
0.677
0.670
0.665
0.659
0.654
0.649
0.645
0.641
0.638
0.634
0.631
0.629
0.626
0.623

In 2007, PV is redefined as an Evolutionary vintage since it passes its breakthrough
capacity point of 40 MW. Therefore, the MAL, ‘b’, and ‘a’ values are all redefined.

The Total Capacity is higher than the Learning Capacity starting in 2004 because of a
minor code inconsistency.
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7. Effects of Endogenous Learning in the Annual Energy Outlook
Reference Case

The end result of all the learning calculations in NEMS is shown in Table 9. The plants
that learn the most are photovoltaic, fuel cells, distributed generation-peak, biomass, and
advanced combustion turbine plants. Three of these are revolutionary plants, wherein
modest absolute installed capacity growth leads to a significant number of capacity
doublings. Many of the 21 plant types only reach their minimum LF. The values in
Table 10 that are the minimum LF values have been shaded. The minimum values can be
verified by using Equation (8), with the values from Tables 7 & 4 for MAL, year, plant,
and vintage.

Table 10. Learning Factors by Plant Type

Plant Type

2005 2010 2015 2020 2025
Scrbd Pulverized Coal 0.99 0.98 0.96 0.94 0.94
Integrated Gas Comb Cycle 0.99 0.97 0.94 0.92 0.90
Gas/Oil Steam Turbine 0.99 0.98 0.97 0.96 0.95
Existing Combustion Turbine 0.99 0.98 0.97 0.96 0.95
Conv Combustion Turbine 0.99 0.98 0.97 0.96 0.95
Adv Combustion Turbine 0.97 0.84 0.77 0.76 0.76
Existing Gas/Oil Comb Cycle 0.99 0.98 0.97 0.96 0.95
Conv Gas/Oil Comb Cycle 0.99 0.98 0.97 0.96 0.95
Adv Gas/Oil Comb Cycle 0.99 0.90 0.84 0.83 0.81
Fuel Cells 0.97 0.73 0.69 0.68 0.68
Conventional Nuclear 0.97 0.95 0.95 0.95 0.95
Biomass (Wood) 0.97 0.93 0.89 0.84 0.75
Geothermal 0.99 0.94 0.92 0.90 0.88
Mun Solid Waste 0.99 0.98 0.97 0.96 0.95
Hydroelectric 0.99 0.98 0.97 0.96 0.95
Pumped Storage 0.97 0.97 0.97 0.96 0.95
Wind 0.99 0.99 0.99 0.99 0.99
Solar Thermal 0.97 0.93 0.89 0.84 0.80
Photovoltaic 0.77 0.69 0.66 0.64 0.62
Distributed Generation-Base 0.99 0.86 0.77 0.77 0.77
Distributed Generation-Peak 0.97 0.84 0.76 0.74 0.72
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The total effect over time of technological learning on costs is shown in Table 10. The
costs shown in the year 2002 column are identical to those from Table 2. The last
column shows the percent cost reduction over the forecast horizon. The percent
reduction is identical to the LF for all but six plant types. The cost reductions for the two
Distributed Generation plant types are related to both the LF and some learning
exogenous to NEMS, which reduces the engineering cost estimates over time. No other
technology has predefined cost estimate reductions. The cost reductions for the four
revolutionary plants, Fuel Cells, Biomass, Solar Thermal, and Photovoltaic result both
from the LF and from the reduced technological optimism factor.

Table 11. Overnight Capital Costs by Plant Type (‘01$/kW)

Plant Type 2002 - 2025
2002 2010 2015 2020 2025 % cost reduction
Scrbd Pulverized Coal 1155 1128 1103 1087 1081 6%
Integrated Gas Comb Cycle 1367 1320 1290 1260 1231 10%
Gas/Oil Steam Turbine 1051 1032 1021 1009 998 5%
Existing Combustion Turbine 347 341 337 333 329 5%
Conv Combustion Turbine 409 402 397 393 388 5%
Adv Combustion Turbine 461 389 355 351 348 24%
Existing Gas/Oil Comb Cycle 467 458 453 448 443 5%
Conv Gas/Oil Comb Cycle 536 527 521 515 509 5%
Adv Gas/Oil Comb Cycle 608 548 512 503 493 19%
Fuel Cells 2138 1428 1341 1329 1329 38%
Conventional Nuclear 7723 7316 7305 7299 7299 5%
Biomass (Wood) 1764 1602 1509 1435 1272 28%
Geothermal 1516 1428 1393 1361 1334 12%
Mun Solid Waste 1461 1436 1420 1404 1388 5%
Hydroelectric 1046 1028 1016 1005 994 5%
Pumped Storage 2300 2232 2232 2210 2185 5%
Wind 1004 994 992 990 989 1%
Solar Thermal 2596 2360 2260 2149 2039 21%
Photovoltaic 3917 2462 2346 2270 2220 43%
Distributed Generation-Base® 804 692 617 617 617 23%
Distributed Generation-Peak® 966 807 737 715 694 28%

? Note DG capital costs are reduced over time exogenously.
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8. Summary

This paper has tried to lay bare how NEMS comes up with new Electricity Generating
plant costs. Engineering Cost Estimates are the starting point for plant costs.
Technological Learning is used to forecast cost reductions for all technologies other than
distributed generation. The cost reductions usually relate to installed capacity growth
though there is built in minimum cost reductions regardless of growth. In AEO 2003
reference case, 2 technologies have no installed capacity growth.

There are six parameters that affect Technological Learning in NEMS.

1.

Baseline Capacity, which is the starting point for counting doublings of capacity.
Learning Capacity growth year-to-year. Which determines the number of
doublings annually.

Learning Rate, which affects magnitude of cost reduction per doubling of
capacity.

Minimum Annual Learning, which reflects a minimum cost reduction regardless
of capacity growth.

Vintage, there are three classes, each class has its own Learning Rate and
Minimum Annual Learning.

Technological Optimism Factor, which is a premium added to Engineering Cost
Estimates just for the plant types of the youngest Vintage. This raises initial costs
for year 2002 beyond Engineering Cost Estimates. Beyond 2002, this factor helps
explain cost reductions, as this premium is phased out.
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9. Further Research Needs

As with most studies, new questions have arisen during this analysis. There are also
areas where the analysis could be improved. Three of the key areas requiring additional
research are highlighted below.

1.

3.

Do cost reductions from Technological Learning have a significant effect on new
installed capacity in NEMS? Policy studies using NEMS frequently are interested
in potential fuel switching. Of course cost is only one parameter evaluated by
NEMS to determine which technologies are chosen for new installed capacity.
LBL-NEMS could evaluate scenarios with more and less technological learning to
better determine how concurrent cost reductions affect the forecast for new
installed capacity.

Why are the learning rate definitions in NEMS, particularly for Revolutionary and
Evolutionary plants, so different than those found in other studies? Many studies
(Colpier & Cornland, 2002; Grubler et al. 1999; Neij, 1997; Mackay and Probert,
1998), suggest learning rates between 10% and 30% per capacity doubling for
mass-produced technologies. The literature seems to show a wide potential range
for learning rates for the youngest technologies. A deeper analysis is required to
understand why this discrepancy exists. For example, NEMS uses a beginning
learning rate of 10% for PV, adding in the reduction from Technologic Optimism,
the effective rate starts at 12.5% and by 2007 the learning rate reaches 5%.
However, Grumbler et al., Mackay & Probert, and Neij all identify 20% as
historical learning rates for PV. This significance of this and other discrepancies
should be examined further.

NEMS is updated annually, so the data in this paper should be updated every few

years. Technological Learning for wind plants, for example, is treated differently
in AEO 2003 than it was in previous versions of AEO.
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10. Appendix — Learning Algorithm

This appendix illustrates NEMS’s learning factor algorithm and follows the logic used in
the ucape source code. The first page shows a schematic representation of the algorithm.
The ten steps are briefly explained on second page. The third page defines the notations
or abbreviations used. The last page shows Step 6 of the algorithm, which is complicated
enough to warrant it own schematic.
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Figure A-1

NEMS's Learning Factor Algorithm
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Notes regarding for Learning Factor Algorithm

Step 1. Identifies the Baseline Capacity, which is needed to calculate parameter
‘a’ and Breakpoint Capacity.

Step 2. Identifies the vintage, which determines the value for parameter ‘b’ and
helps determine the Breakpoint Capacity. Breakpoint Capacity is the
actual capacity at which a plant’s vintage changes. Only four plants in
AEO 2003 surpass their Breakpoint Capacities and change vintage; Fuel
cells, Photovoltaic, and Biomass plants change from Revolutionary to
Evolutionary vintage, while the Advanced Combustion Turbine plants
change from Evolutionary to Conventional vintage.

Steps 3 & 4. Calculates parameters “a” and “b” which help calculate the Learning
Factor in Step 7.

Step 5. Identifies installed capacity for a given year, Cycar.

Step 6. Is the calculation of the Learning Capacity, shown in Figure A-2.
Learning Capacity is calculated from the actual capacity, the previous
year’s capacity, previous year’s Learning Capacity, and the typical unit
size. This step applies rules about the minimum value for Learning
Capacity and the maximum year-to-year Learning Capacity increase.
There are five possible ways to calculate Learning Capacity depending on
the situation.

Step 7. Calculate Learning Factor the first way, from Learning Capacity.

Step 8. Calculate Learning Factor the second way, from the minimum annual
learning.

Step 9. Choose actual Learning Factor, the lesser of Step 7 and Step 8.

Step 10. Next year starts and the algorithm repeats itself starting at Step 5, unless

the plant type has surpassed the Breakpoint Capacity. If so, the vintage is
redefined and the current year begins at Step 3.

Diamonds are decision boxes.
Ovals are variable definition steps.
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Variables — known

Ca01 2001 Capacity

Coo02 2002 Capacity

Cyear  Capacity for “year”

MAL Minimum Annual Learning
TUS Typical Unit Size

Variables — calculated

Nyear  Learning Capacity for “year”

LF, Learning Factor calculated from Learning Capacity

LF, Learning Factor calculated from the MAL

LFycar Learning Factor for “year”, the lower of LF; and LF,

BC  Breakpoint Capacity is the capacity which defines when a
Revolutionary or Evolutionary plants’ vintage is reclassified.

‘a’ parameter in Learning Function
‘b’ parameter in Learning Function
X Baseline Capacity used to calculate vintage, Breakpoint

Capacity and ‘a’.

The only time values for vintage, BC, ‘b’, and ‘a’ are redefined is when an Evolutionary
or Revolutionary plants’ vintage is reclassified.
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Figure A-2 Flowchart to Calculate Learning Capacity.
Step 6 of the Learning Factor Algorithm

Start
ves | @year =TUS )
Return to Figure A-1, Step 7.
No
Return to Figure A-1, Step 7.
— Yes
If Year = 2002
> @year = Coo02 >
No
If Cyear >1 5*N (year-1)
If C (year-1)
No
No

@ear N(year1) 1.5

Return to Figure A-1, Step 7.

Yes
Nyear = N(year 1 >

Cyear C(year 1)
@year = Cyear )

Return to Figure A-1, Step 7. Return to Figure A-1, Step 7.

If C(year-1) < N(year-1)

Note: This last decision box reflects a minor code inconsistency, which does not affect the results materially. The ‘No’
and “Yes’ should be switched in the source code. Fuel Cells and Pumped Storage are most affected by this
inconsistency. If corrected, the net affect would be an approximately 0.5% reduction in overnight costs.

26




11. References

Colpier, U.C. and Cornland D. 2002. The economics of the combined cycle gas turbine
- an experience curve analysis. Energy Policy. 30(4):309-316, 2002 Mar.

Energy Information Administration (EIA) 2000. The National Energy Modeling System:
An Overview 2000. DOE/EIA-0581(2000). Washington D.C.
www.eia.doe.gov/oiaf/aeco/overview/index.htm

Energy Information Administration (EIA) 2001. Assumptions to the Annual Energy
Outlook 2001. Report#:DOE/EIA-0554(2002 ) Washington D.C. December.
www.eia.doe.gov/oiaf/aco/assumption/contents.html

Energy Information Administration (EIA) 2002. Model Documentation Report: The
Electricity Market Model of the National Enegy Modeling Systems. Report#:DOE/EIA-
M068(2002) Washington D.C. April.
http://tonto.eia.doe.gov/FTPROOT/modeldoc/m068(2002).pdf

Grubler, A. N. Nakicenovic, and D. G. Victor, 1999. Dynamics of Energy Technologies
and Global Change. Energy Policy 27 (1999) 247-280.

Kydes, A. S. 1999. Modeling Technology Learning in the National Energy Modeling
System. In Issues of Midterm Analysis and Forecasting 1999. Report#:EIA/DOE-
0607(99), pp 31-45 August, or www.eia.doe.gov/oiaf/issues/acoissues.html.

Laitner, J. A. "Skip," and A. H. Sanstad. "Learning-by-Doing on Both the
Demand and the Supply Sides: Implications for Electric Utility Investments
in a Heuristic Model." Forthcoming, International Journal of Energy
Technology and Policy.

Mackay, R.M. and S.D. Probert 1998. Likely Market-Penetrations Of Renewable-
Energy Technologies. Applied Energy. 59(1):1-38, 1998 Jan.

Madsen, E.S., C. Jensen, and J.D.Hansen. 2002. Scale in Technology and Learning-By-
Doing in the Windmill Industry. Working Papers 2002-02, Department of Economics,
Aarhus School of Business, 2002. pp. 1-18.

NASA. Learning Curve Calculator. www.jsc.nasa.gov/bu2/learn.html

Neij, L 1999. Cost dynamics of wind power. Energy. 24(5):375-389, 1999 May.
Neij, L 1997. Use Of Experience Curves To Analyse The Prospects For Diffusion And

Adoption Of Renewable Energy Technology. Energy Policy. 25(13):1099-1107, 1997
Nov.

27


http://www.eia.doe.gov/oiaf/aeo/overview/index.htm
http://www.eia.doe.gov/oiaf/issues/aeoissues.html
http://www.jsc.nasa.gov/bu2/learn.html

Petersik, T. W. 1997. The Impact of International Learning on Technology Cost. In
Issues of Midterm Analysis and Forecasting 1997. Report#:DOE/EIA-0607(97), pp 57-
65 July.

Williams, R.H. and G. Terzian 1993. A Benefit/Cost Analysis of Accelerated
Devolopment of Photovoltaic Technology. Princeton University Center for Energy and
Environmental Studies Report No. 281 October 1993.

28



	Table of Contents
	List of Figures and Tables
	List of Learning Terms
	Abstract
	Introduction
	What is Learning-by-Doing?
	Distinct Learning Stages

	Capital Costs for Electric Generating Technologies in NEMS
	Engineering Cost Estimates
	Technological Optimism Factor
	Project Contingency Factor
	Learning Factor

	Technological Optimism Learning
	Learning-By-Doing (LBD) and Learning Factor Calculation
	Baseline Capacity, ‘X’
	Learning Parameter, ‘b’ & Vintage
	Breakpoints
	Cumulative Production and Learning Capacity, ‘N’
	International Learning
	Limits to Learning Capacity, ‘N’, Growth year-to-

	Minimum Annual Learning
	Learning Curve by Vintage

	Learning Examples:  Advanced Combined Cycle & Photovoltaic plants
	Effects of Endogenous Learning in the Annual Energy Outlook Reference Case
	Summary
	Further Research Needs
	Appendix  – Learning Algorithm
	References

