GRID INDEPENDENT FUEL CELL OPERATED SMART HOME
(GIFCOSH)

Final Report
For period June 15, 2002 — December 15, 2003

Dr. M.S. Alam

University of South Alabama,
Mobile, Al 36688

December, 2003

Prepared for

THE U.S. DEPARTMENT OF ENERGY

AWARD NO. DE-FG02-02ER63376

NOTICE

This Report was prepared as an account of work sponsored by the United States
Government. Neither the United States nor the United States Department of Energy, nor
any of their employees, nor any of their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product or
process disclosed or represents its use would not infringe privately-owned rights.

UNIVERSITY OF SOUTH ALABAMA
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

GRID INDEPENDENT FUEL CELL OPERATED SMART HOME
(GIFCOSH)

Submitted by:

Dr. Mohammad S. Alam (PI/PD)
University of South Alabama
College of Engineering
ECE Department, EEB 75
Mobile, AL 36688-0002

Phone: 251-460-6117
Fax: 251-460-6028

Email: malam@usouthal.edu

December 7, 2003

CONTENTS

page
(0] 11730 il
System Design Study........oooiiiiiiiii e 1
Laboratory Development.o.uiueii it 1
Physical HOme/Sit€ DeSIZN.......uiiiii i e 2
Systems DeVelOPMENt.iueii it 2
Load Profile Data.o 2
System Transient ANalYSiS.o.ieuiiitiitiit e 2
Energy Supply System......cooiiiii e 2
Fuel Cell/Reformer System Selection...........o.oviiiiiiiiiiiiiiiei e 3
Intermediate Storage SySteIM.........oiiiiii i e 3
Backup Energy SOUICe.oviiiii i 3
System Modeling and Simulation...............oooiiiii i 3
Control System Hardware..............oiiiiiiiiii e 4
Control Architecture Design, Hardware and Software Selection............................... 4
Control Algorithm Development...........c.ooiiiiiiii e, 4
SO EWATE TS N ...ttt e et et e e e e e e 5
Diagnostic System DeSi@N.ottt e 5
Data Recording, Data mining and Reporting System................coooviiiiiiiiiiiiiiinnn 5
Control System SOTtWATe.ointii e 5
Architecture Design, Platform and Language Selection................cooviiiiiiiiiiiiinnn.n, 5
IMOAEIS. . e e 5
Load Profiles.o 5
Energy Supply SYStemL......oouiuiii i 5
Meetings with Strategic Players...........cooiiiiiiiiii e 5
Academic IMPaCt.......oonii e 6
PUDLICAtIONS.t 6
Floor Plan of the Laboratory “Test Home”.............oooiiiiiiiiieee 7
AP ONAIX Ao e Al
APPENdiX B ... B1
APPENAIX €ttt e C1
APPENIX Do e Dl
APPENdixX B .o e El

i

Project Title: Grid Independent Fuel Cell Powered Home Using Smart Energy
Management Control System

PI/PD: Dr. M. S. Alam
Period: June 15, 2002 — September 15, 2003

Recipient Organization:
University of South Alabama, College of Engineering,
ECE Department, EEB #75, Mobile, AL 36688-0002

DOE Award Number: DE-FG02-02ER63376
Unexpended Funds: $197.52

YEAR | PROJECT FINAL REPORT

Year I funding supports the design, development and demonstration of the efficiency, utility and
reliability of a fuel cell power plant (FCPP) supplying the power needs of a laboratory based
‘home’ that utilizes a Smart Energy Management Control (SEMaC) system.

1. System Design Study

Requirements Definition:

The following requirements were defined: vision of the demonstration, safety, reliability
and redundancy, the economic target, lab connectivity, the technology time target, the data
needs, and the performance metrics. The report has been submitted.

1.1. Energy Supply System Options have been determined. Natural gas has been chosen as
the energy supply. The Plug Power FCPP can be run on either natural gas or propane.
Natural gas was chosen since it is available on campus.

1.2. Control System Options have been determined. See Appendix A (SEMaC) and
Appendix B (System Hardware Controller).

1.3. A Diagnostic Suite has been defined. See Appendix C (DAQ).

2. Laboratory Development

A 10,000 sq. ft. laboratory has been constructed in the existing Laboratory Building of the
College of Engineering at the University of South Alabama. Inside the laboratory a 500 sq. ft.
test home, consisting of two rooms, has been constructed (Fig. 1). One room is fitted with
appliances normally found in the kitchen area of a home, while the other room has an
entertainment system, a computer and a plasma display. Power is supplied by a natural gas
FCPP, located outside the Laboratory Building, which is connected in parallel with the local
grid. All appliances and outlets will be under the control of the SEMaC system.

. Physical Home/Site Design

This task has been cancelled due to insufficient funding received for Year II of the project.
Systems Development
4.1. An appliance suite was chosen based on:

e Consumer Reports
e Internet surveys

The suite consists of a washer, dryer, stove, refrigerator, dishwasher, water heater,
microwave, iron, vacuum cleaner, blow dryer, an entertainment system, computer
equipment and a plasma monitor.

4.1.1. Load Profile Data

In order to obtain representative user power consumption data, load measuring
equipment was purchased. A dedicated weather-proof cabinet has been
constructed to hold the load measuring equipment. Load profiles of a number of
all electric homes have been recorded over a two-day period at fifteen second
intervals. The average power consumed has been less than 2 kW in most cases.
Peak power consumption greater than SkW has been observed in all cases. The
data collection exercise is ongoing.

4.1.2. System Transient Analysis

Transient data related to air conditioning start-up have been obtained from the Co-
operative Rural Network (CRN) Residential Fuel Cell Users Group. These results
show a start-up transient current of about 7.5 times the steady-state or run current.
There are negligible changes in the grid supply voltage and hence the power surge
is also about 7.5 times the steady-state or run power. This extra power is required
for about 0.75 seconds and can be supplied by the grid in the grid-parallel
arrangement. This reduces the stress on the intermediate energy storage system,
with the grid effectively acting as an infinite storage device.

4.2. Energy Supply System
This is an extremely important area of the project. Considerable investigative effort has

been directed towards understanding and planning of the energy supply system. The
energy supply system can be broadly categorized as:

. Primary energy source.
. Intermediate energy source.
. Backup energy source.

4.2.1. Fuel Cell/Reformer System Selection

The fuel cell/reformer system, namely the FCPP, is the primary energy source of
the project. There are currently six different types of fuel cells in use in industry.
Each type of fuel cell has its advantages and disadvantages. For instance, some
are less efficient but operate at reasonably low temperatures (50 — 80°C), (25%
electrical efficiency), while others are more efficient but operate at moderate
temperatures (200°C), (50% electrical efficiency), while others are even more
efficient but operate at extremely high temperatures (800 — 1000°C), (70%
electrical efficiency). After careful analysis of the marketplace a natural gas
driven 5kW unit with waste heat utilization capability from Plug Power has been
chosen. There are three fixed outputs available, namely, 2.5 kW, 4.0 kW and 5.0
kW, with electrical efficiencies of 26%, 25% and 23.5%, respectively. With waste
heat utilization, the efficiency of the unit increases to 60%, 65% and 55%, at set
points of 2.5 kW, 4.0 kW and 5kW, respectively.

The FCPP is grid parallel but is unable to load follow, except in the standalone
mode. Hence, the local grid must meet all demands, both transient and steady
state, above the set level. Based on available data, this unit should easily meet the
needs of the laboratory ‘home’.

An agreement has been being entered into between the University of South
Alabama and Plug Power Inc to share operational data on the FCPP.

4.2.2. Intermediate Storage System

Intermediate storage is supplied by a battery bank, consisting of four 12 V deep
cycle batteries. Their main use is to stabilize the 48 V DC bus and to supply
energy for transients when the local grid is down. Their energy storage capacity,
when fully charged, is about 4,000 Wh or 4 kW for 1 hour.

4.2.3. Backup Energy Source

A back-up system using a natural gas generator may be employed in the event that
the local grid is down.

4.3 System Modeling and Simulation

A comprehensive literature search was undertaken and based on the results of this
search, a Proton Exchange Membrane (PEM) fuel cell stack was modeled using
MATLAB. Two models have been developed to study operational performance under
steady-state and transient conditions. Using characteristic curves obtained from the
steady-state model, a theoretical 5 kW FCPP was designed. It consists of 100
individual stacks, connected in series, each with a membrane area of 100 cm®. Each
stack supplies 100 A at 0.55 V. Hence, 100 stacks in series will nominally supply 100 A
at 55 V or 5.5kW of power. Losses of 0.5 kW in the DC/DC converter and the inverter

are assumed. Then, the efficiency and consumption of hydrogen and natural gas versus
power were obtained from the model, using the design parameters chosen. A
consumption rate of 1.3 ft’/min of natural gas was obtained from the theoretical design,
operating at a nominal 5 kW load output. The transient model includes the methanol
reformer, the PEM stack and the power conditioning unit. The model is then used to
predict the output voltage and study the transient response of a PEM power plant when
subjected to rapid changes in a residential load connected to it. The results show the fast
response capabilities of the PEM power plant in following changes in the load. A third
model has been developed to investigate strategies for active and reactive power
control of a PEM fuel cell. The model gives a scenario for controlling both active and
reactive power output from the fuel cell power plant. The model is then used to predict
the output voltage, the active power and the current when the fuel cell power plant is
subjected to rapid changes in a load connected to it. The results show quick response
and effectiveness of the proposed scheme to control the active and reactive output
power.

4.4 Control System Hardware
4.4.1 Control Architecture Design, Hardware and Software Selection

Hardware was developed to monitor the current in each load and to switch off such
loads if the need arises (for example, if the grid is down or a room is unoccupied).
The monitoring hardware consists of current sensing coils attached to each load
circuit, a multiplexer and an ultra-fast analog-to-digital (A/D) converter board. The
A/D board resides inside a host computer. The controller hardware consists of a
Motorola ColdFire processor reading switch positions, switching loads on or off,
and sending and receiving information over an Ethernet connection to the host
computer. Over-ride and reset switches are available at each load, which allows
the user to cancel the computer command and return power to the load or
appliance. The controller has the ability to phase control a load, such as
incandescent lights, so as to dim them to the extent desired.

Also, hardware has been developed to monitor occupancy of each room, so that
power can be cut off to this room, depending on the length of time the room
remains unoccupied. Temperature and humidity sensors, connected to the host
computer, are also present in each room.

4.4.2. Control Algorithm Development

Algorithms have been developed that utilize the data being collected from, firstly,
the ‘house’ and, secondly, from the energy supply system, and when coupled with
the predicted usage data, results in the most efficient use of the energy supply
system. These algorithms are critical to the efficient use of the FCPP, maintaining
the batteries in good condition, as well as providing reliable energy to serve the
needs of the house dwellers.

4.4.3. Software Testing

Software testing is being carried out as each new module is developed. All
possible scenarios are currently being investigated.

4.4.4. Diagnostic System Design

The Plug Power unit comes with built in diagnostic software that allows test
personnel to safely start and shutdown the system.

4.4.5. Data Recording, Data Mining and Reporting System

FCPP data is recorded on hard disc. Since large streams of data are generated,
data mining techniques are being employed to extract trends and statistical
information.

4.5 Control System Software
4.5.1 Architecture Design, Platform and Language Selection

The Motorola ColdFire microprocessor’s and host computer’s software have been
developed using C++. Decisions made by the host computer are displayed, by
means of a plasma display, using a Graphical User Interface (GUI). The GUI
software is written in C++. The GUI also allows control of appliances from the
host computer. See Appendix D (GUI).

4.5.2 Models

4.5.2.1 Load Profiles

Load profiles, available from existing databases, were judged inadequate
because of their coarse granularity. Hardware and software have been
purchased and power surveys have been conducted over a number of days,
on a number of homes, using a 15 second time stamp.

4.5.2.2 Energy Supply System
A grid connection and/or backup generator is present to supply power to the
instrumentation. This enables continuous data acquisition and activation of
safety shut down procedures in the event of a problem developing in the
system.

5. Meetings with Strategic Players

In any development project, it is critical to understand the market for the end product.
The CRN and the Residential Fuel Cell Owner’s Group were involved from the outset of

the project. Meetings were also held during the course of Year 1 with the Houston Area
Research Center (HARC) and the Fuel Cell Testing Center, (FCTC), Johnstown. We
gratefully acknowledge their support and help.

6. Academic Impact
Six faculty members, three post-docs and six graduate students are being trained and
supported through this project. Currently, six Masters theses are in progress and one
Masters project is completed.
PUBLICATIONS

1. M. El-Sharkh, A. Rahman, M. Alam, P. Byrne, A. Sakla, T. Thomas, “Proton
Exchange Membrane Fuel Cell Dynamic Model for Residential Use," submitted to
IEEE Transactions on Energy Conversion.

2. M. Y. El-Sharkh. A. Rahman, M. S. Alam, A. A. Sakla, P. C. Byrne and T. Thomas,
“Strategies for Active and Reactive Power Control for PEM Fuel Cell Power Plants,”
submitted to Journal of Power Sources.

3. P. Byrne, T. Thomas, M. Alam, A. Rahman, M. El-Shark, A. Sakla, “Proton Exchange

Membrane Fuel Cell Steady-State Model for Residential Use," submitted to the
Journal of Power Sources.

Fig 1. Floor Plan of the Laboratory ‘Test Home’.

East

APPENDIX A

SEMaC

63,4 DIANCE
TECHNOLOGIES

10/27/2003

SEMaC Overview
Ali Mehrabi

1. SEMaC

SEMacC refers to the Host PC and the Energy Management Control System Smart
Software residing inside the Host PC. The following components make up the entire
SEMaC system:

= High-Speed Pentium IV PC
= High-Speed 12-Bit A/D board
= Compiled Smart Code residing inside the Host PC

SEMacC is designed as a modular system with the following modules built in it:

Buffer

Data History

Generator Read/Write

Digital I/O

Conversion Read/Write

Fig. A2 SEMaC Modules

Company Proprietary Information — Use Restricted

A3

SEMacC Overview, revision 9, printed on 11/26/2003 10:32 AM by dli

ADIANCE [SX
TECHNOLOGIES

UNCLASSIFIED
G FC@(?m
SEMaC Control Layout "

Data In

Current Sensors

'_‘\

J Multiplexer A/D

Converter
Occupancy Sensors

&,

Environmental Sensors

T

Ethernet

Data Acquisition and Connection
Smart Control

Hardware Controller

Erc. Computer Regulated Appliances Water
Fan Lightin:
HVAC Heater 8 8
A D A N .
% UNCLASSIFIED RT(M)0602.0006 1

Fig. A1 SEMaC Control Layout

Company Proprietary Information — Use Restricted

A2
SEMacC Overview, revision 9, printed on 11/26/2003 10:32 AM by dli

63,4 DIANCE
TECHNOLOGIES

2. A Typical SEMaC Sequence

Read device priorities.

Read Power Source Specifications.

Read device override status.

Read the status of the auxiliary batteries.

Monitor the battery charge condition and charge batteries when needed.

Input instantaneous load profile (from all sensors).

Add up instantaneous power consumption and compare it with the total available
power.

Is it less? Perform efficient energy management.

9. Isit more? Turn the lowest priority devices off, place them on a schedule, and go
back to step 3.

Nk W=

*

3. System Hardware Controller (SHC)

System Hardware Controller (SHC) is referred to a smart hardware controller
powered by a Motorola ColdFire MCF5272 microcontroller. The job of the SHC is to
receive and execute smart decisons made by the SEMaC and report the status of the
loads back to the SEMaC.

Company Proprietary Information — Use Restricted

SEMacC Overview, revision 9, printed on 11/26/2003 10:32 AM by dli

EADM NCE -
TECHNCLOGIES [g

System Design Notes
For

Smart Energy Management Control (SEMaC) Software

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES PROPRIETARY

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

d 3,4 DIANCE
TECHNOLOGIES

ACRONYM LIST ..iciiiinnnnnnnnniiiccsssnssssssssssccsssssssssssssssscsss A7
1 MISSION NEEDccciiiineniiiiciiiinnnmsnssiiccssasssss A8
2 OVERALL MISSION AREA ...uuuiiiiiiniiicinnnniccssssnsicsssssscsssssssssssssssssssssssssssssssssssssssaass A8
3 THE PROPOSED SYSTEM.uuuiiiininniicnssnniccssssnsecsssssssssssssssssssssssess A8
4 SEMAC OVERVIEW. ...iiinnnicnnnnnnnicssssnssessssssseees A8
4.1 SCAN DIAQ ... e e e e e et e e e e e ette e e e e taeaeenaraeas A8
4.2 Run Energy Management AIOTithmsc.covviiiiieeiieiiiicciee e A8
4.3 Issue Commands t0 SHCcc.oiiiiiiiiiiiiecce ettt et ae e ree e A9
4.4 Send Messages t0 GUL........oociviiieiieieciecie ettt re et sse e s e sssesssesnseas A
4.5 Take Commands from GUIc.cocvieiiiiiiiieieieee e reas A9
5 SOFTWARE ...uuuiiiiiinniiininnniicissnsiisssssssissssssssesssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssss A9
5.1 GENETAL DESIGN ..oeivviiiiiieciie ettt ete et e st e et e e st e e e teeesebeeestaeessseesssaeessaeessseesssaens A9
5.2 DAQ MOAUIC.......eiieiiieiiiieeeeee ettt ettt et e et e e tee e s be e etbeentbeeebeeenareens A9
5.3 COTE MOAUIC.vviiirieeiie ettt ettt e et e e st e e e teeesereeebaeesaseeenseeesaseeenreeas A10
54 Control MOAUIEc.vveeiiiiiiieeieee ettt e et e e taesaeesaaesnbesnseanseenseenens Al0
5.5 GUI MOQUIEccviiiiiiieiiecieete ettt e bttt te e taestbesrbeesbeesbeesaesaessnessnensnas A10
5.6 PerfOIMANCEccvviiiiiieiee ettt e et e et e et e e s sbeeebaeessbeeensseesabeeenens Al2
6 MANAGEMENT ALGORITHMS ...uuuuiiiiinnnniccnnssnnicsses Al2
6.1 OCCUPANCY/PIIOTILY ...eevieitieiiesiiesiie ettt et ettt ettt et ettt e bt e sbeesatesateeabeebeeseesneesaes Al2
6.2 OVEITIAC ..ottt ettt ettt e et e et e e e vt e e etbeeeataeetbeesasesesseesaseeesseesaseeennean Al2

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES PROPRIETARY A g

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

d 3,4 DIANCE
TECHNOLOGIES

ACRONYM LIST
DAQ Data Acquisition
GIFCO Grid Independent Fuel Cell Operated Smart Home
GUI Graphical User Interface
SEMaC Smart Energy Management Control
SHC System Hardware Controller
USA University of South Alabama

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES PROPRIETARY A7

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

d 3,4 LHANCE
TECHNOLOGIES

1 MISSION NEED

For the purposes of the GIFCO project, we will need a smart controller that is
capable of making energy management decisions based upon various factors relating to
current electrical demand and the historical pattern' of load usage by a particular occupant
or set of occupants. The controller must be able to interpret the data acquired from the
DAQ and then be able to issue commands to the SHC to actually manage the loads. It
must also be able to show the user what management decisions have been made by
sending a message to any GUI clients that are connected and also process commands that
the GUI has issued to the controller.

2 OVERALL MISSION AREA

The mission area of the SEMaC covers all decisions relating to energy
management in a home. The DAQ will provide energy usage data to the SEMaC and the
SEMaC’s responsibility will be to decide what, if anything, to do. The SEMaC will
house any intelligent algorithms required for the energy management and all relevant
historical data' that has been gathered by the DAQ for use in future management
decisions. If management is required, the SEMaC will send commands to the SHC.

3 THE PROPOSED SYSTEM

The SEMaC will consist of the appropriate hardware and software needed to
receive data from the DAQ and commands from the GUI, make smart energy
management decisions, issue those decisions to the SHC, and display the results of those
decisions to the user via the GUI.

4 SEMAC OVERVIEW.

The SEMaC software will fulfill the following missions. For the purposes of the
first year demonstration, some features will not be available yet, or are being
implemented by alternate methods. These will be footnoted in the text.

4.1 Scan DAQ
The SEMaC software will scan the DAQ for all load, environmental, and
override/reset" data.

4.2 Run Energy Management Algorithms

The SEMaC software will compare the data of the current scan with that of the
last scan and decisions shall be made based on the current loads, as well as any
environmental or override/reset status changes. The SEMaC will use various algorithms
to determine if management is necessary, based on the target load and if energy saving
algorithms are to be also applied to the home. These core algorithms may be based on
historical load profile data, predictive analysis, fuzzy logic and/or neural networks, and
user entered management routines.™

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES A4
PROPRIETARY

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

d 3,4 LHANCE
TECHNOLOGIES

4.3 Issue Commands to SHC
Once decisions have been made that management is necessary, a command will
be sent to the SHC" to turn off a load or loads, depending on how much power is needed.

4.4 Send Messages to GUI
Once any decisions have been made and commands have been issued, the SEMaC
will send a message to any GUI clients that may be connected.

4.5 Take Commands from GUI

During normal operations, GUI clients may also issue commands to turn on or off
appliances. The SEMaC will considered these commands as overrides, and treat them
just as if they came from a physical override switch.

5 SOFTWARE
5.1 General Design

5.1.1 The SEMaC software uses a modular approach and contains the following
modules: DAQ, Core, Control, and GUI.

5.1.2 The SEMaC software is a multi-threaded application, due to low-latency
hardware interface requirements.

5.1.3 The SEMaC software is being developed on the Microsoft .NET platform. The
NET platform offers many features that will provide several benefits over other
development environments. Web services, Multilanguage development, and
XML support are three .NET features that will form the basis for several SEMaC
features.

5.2 DAQ module

5.2.1 The DAQ module interfaces to the DAQ multiplexer hardware to receive
information from the various sensors in the home.

5.2.2 The DAQ module will run in a separate thread to avoid any latency that could
occur while processing data that is collected.

5.2.3 The communication interface to the DAQ multiplexer is via I/O ports available on
the A/D card installed in the SEMaC PC.

5.2.4 The DAQ module will receive sensor data and reset/override” switch data via an
A/D card. The SEMaC will scan the DAQ multiplexer for sensor data. This data
is converted to digital and received via the SEMaC PC’s A/D card.

5.2.5 The received DAQ data is then placed in an array indexed according to the
number of DAQ channels, and provided to the main program thread and the Core
Module, described in the next section.

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES A5
PROPRIETARY

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

d 3,4 LHANCE
TECHNOLOGIES

5.3 Core module

5.3.1 The core module provides all decision making logic based on current sensor data,
analysis of past data', and user input data. Algorithms developed as a result of
preliminary data gathering and analysis shall be implemented in the core module.

5.4 Control module

5.4.1 The Control module interfaces to the System Hardware Controller (SHC) via a
TCP connection over Ethernet”.

5.4.2 Based on input from the Core Module, the SHC module shall issue commands
and receive acknowledgements from the SHC, using a simple predefined control
language.

5.4.3 Interface - The SHC communicates with the SEMaC software via the following
defined message set.

5.4.3.1 Load Management Message - contains the following fields: Message ID, Task

ID, and Load Command (0-1024, indicating desired load level. 0=OFF,
512=%>50, 1024=%100, etc.)

5.4.3.2 Task Complete Message - contains the following fields: Message ID and Task

ID. The receipt of this message confirms to SEMaC that the requested
Management Task has been accomplished.

5.5 GUI Module

5.5.1 The GUI module connects to the GUI application via a TCP network connection.

5.5.2 The GUI module implements a TCP Server, listening on TCP port 8989. The
GUI module accepts multiple GUI client connections, allowing multiple clients to
run at once.

5.5.3 Upon completing any control decisions and issuing SHC commands, a network
packet is constructed, showing the status of all loads, environment sensors, and
override/reset switch status.

5.5.4 The GUI module also receives any requests from the GUI for control of loads.
These commands are treated like overrides in the Core module.

5.5.5 GUI Network Packet Definitions. The following items define the network packets
between the SEMaC and the GUI client.

5.5.5.1 Load Profile Packet. The Load Profile Packet is sent to the GUI on each DAQ

scan, after any management decisions have been made. The packet contains
load/environmental and override switch data for all DAQ channels:

(SEMaC to GUI)

<STX>
Field:Packet Type
Type:Integer
Use: Defines the type of message as 0l=Load Profile or
02=Management Message

<FS>
Field:Device ID
Type:Integer
Use:Defines the ID of the device being reported

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES A6
PROPRIETARY

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

63,4 LDIANCE
TECHNOLOGIES [SX

<FS>
Field:Status
Type:Integer
Use: The Status of the load. 0=0ff, 1=0On
Note:if the device has no status, as in an environment sensor,
this will be 0
<FS>
Field:Load
Type:Single
Use: Specifies the load (in amps) of the appliance
Note: if the device does not represent a load, this will be 0
<FS>
Field:Override
Type:Integer
Use: Reports the override state of the load. l=device is in an
override state 0O=device not in override state
<FS>
Field:Temperature
Type:Single
Use: If the Device ID represents a Temperature sensor, this is
the temperature in Degrees Fahrenheit.
<FS>
Field: Relative Humidity
Type:Integer
Use: If the device ID represents a humidity sensor, this is the
%RH of the space being monitored
<FS>
Field:Occupancy
Type:Integer
Use:If the Device ID represents an Occupancy sensor, the
occupancy state of the room being monitored by the Device ID
O=unoccupied l=occupied

<RS>
Same packet as above, starting at Device ID
<RS>

<RS>

<ETX>

5.5.5.2 Request Packet. A request packet is sent from the GUI to SEMaC in response
to a user requesting that a load be turned on or off. Note: This will only turn off
the supply to the load, not the device or appliance attached to the supply:

(GUI to SEMAC)
<STX>
Field:Packet Type
Type:Integer
Use:The type of message. 1=Request Packet
<FS>
Field:Device ID
Type:Integer

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES A7
PROPRIETARY

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

d 3,4 LHANCE
TECHNOLOGIES

Use:The device ID of the control request.
<FS>

Field:Command

Type:Integer

Use:The requested action 0=Turn Off Load 1=Turn On Load
<ETX>

5.5.5.3 Management Message. A Management Message is sent to the GUI each time a
SEMaC management decision is made.

(SEMAC to GUI)
<STX>
Field:Packet Type
Type:Integer
USE: The type of message. 0=Management Message
<FS>
Field:Message
Type:String (review the data type for the .NET System.String
class to determine the data type in C++)
Use: A 0-512 byte message for the GUI to display.
<ETX>

5.6 Performance

5.6.1 System performance will be determined by the number of DAQ channels that can
be processed per second. The system performance target is to scan and make
decisions on ~32 channels per second™".

6 MANAGEMENT ALGORITHMS
This section describes the energy management algorithms that will be used for the demo.
6.1 Occupancy/Priority

6.1.1 When the SEMaC Control module determines that the level of power demand is
above the pre-defined management threshold™, the active loads in all un-
occupied and occupied spaces are collected and sorted into a list based on un-
occupied and occupied states, respectively.

6.1.2 The list of loads is then evaluated and sorted according to the load’s management
priority. This priority is defined when the load is entered into the system™. A
lower priority means the load is more susceptible to management than a higher
priority load.

6.1.3 The list of loads is then evaluated to determine how many loads must be managed
to bring the load of the system back under the management threshold.

6.1.4 The command to turn off the list of loads is then sent to the SHC.

6.2 Override
6.2.1 During the course of normal operations, it is possible that the number of loads in

un-occupied spaces is insufficient to bring the power usage below the
management threshold. The result is that low priority loads in occupied spaces,

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES AS
PROPRIETARY

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

d;ﬁl LHANCE '[g

TECHNOLOGIES
and higher priority loads in un-occupied spaces are subject to being managed by
the SEMaC.

6.2.2 Override is a mechanism by which the priority of a load may be temporarily
increased by a home occupant by means of hardware switches near the load’s
power source (outlet or near the appliance), and via the GUI interface.

6.2.3 During normal DAQ scans, if a load currently being managed by SEMaC is
overridden, the load’s priority is temporarily increased. During the
Occupancy/Priority algorithm, managed loads with higher priorities than un-
managed loads are evaluated and resorted. This results in other loads with lower
priorities than the overridden now being subject to management by SEMaC.

6.2.4 The period by which a load may be overridden is configurable, but typically is
considered overridden until the load becomes un-used (current consumption
reduces to a level defined as “off” for that load).

" Historical Data will not be used to determine management needs in the demo.

" In the demonstration, device override and reset data is acquired from the Centralite Elegance controller.

il For the demonstration, much simpler algorithms are to be used based on a load/priority/occupancy basis.
¥ For the demonstration, the commands are sent as commands to the Centralite Elegance controller.

¥ In the demonstration, device override and reset data is acquired from the Centralite Elegance controller in
a polled fashion, after each DAQ scan.

¥ For the demo, the SHC is the Centralite Elegance Controller. The connection to this device is via a
19kbps serial connection.

vil Factors limiting performance include the bottleneck of a serial connection to the Centralite Elegance
board at 19.2 kbps. The SHC design calls for an Ethernet connection at 100 Mbps. Also, the DAQ spec
includes switch/override status as part of the DAQ scan, eliminating this polling interval from the DAQ
scan application thread.

Vil For the demo, the management threshold will be pre-defined at SkW.

X For the demo, the list of loads is built into the SEMaC, based on the model home design. A typical
system would store these in a database table for ease of configuration.

THE UNIVERSITY OF SOUTH ALABAMA AND RADIANCE TECHNOLOGIES A9
PROPRIETARY

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal.

APPENDIX B

SYSTEM HARDWARE CONTROLLER

Switch Concentrator (STARS) boards along with their wall switches, several Relay Driver
(RLYDRVR) boards along with their solid-state relays, and a Fan Speed Controller board.

The control system can be connected to a host PC through an Ethernet, a USB, or an RS232
interface. The host PC can send commands to the System Controller to program different
parameters, inquire about status of loads and switches, or control power to loads. In addition, the
System Controller can be connected to a phone line through a modem for remote access.

The System Controller samples switch states and control power to loads as programmed.
Load power control can be either a simple on/off, or phase-control to allow any power level
between 0 and 100%.

Switch states are sensed through STARS, and information is sent serially to the System
Controller. In addition, each switch has an associated LED that provides a feedback to the user
regarding the state of the corresponding load. LED information is also sent serially by the System
Controller to the STARS.

The System Controller sends commands serially to the RLYDRVR to control power delivered to
loads. The RLYDRVR controls power delivered to loads through solid-state relays. The
RLYDRVR utilizes phase-control (through an FPGA) to control amount of power delivered to
dimmable loads.

The System Controller sends commands serially to the Fan Speed Controller to control speed of
ceiling fans connected to it. The Fan Speed Controller controls the speed of fans attached to it
through voltage amplitude control.

All the above mentioned boards are microprocessor-based systems. The System Controller uses
the Motorola ColdFire MCF5272 micro-controller along with two Microchip PIC (16C622A)
micro-controllers. The STARS uses a Microchip PIC (16C622A) micro-controller. The
RLYDRVR and the Fan Speed Controller use the Motorola MC68HC11 micro-controller.

B2

F

peol

peol

E

I

| # J0}eJjusdU0D SBUD)IMS

E!_w

peo

peo

A_IE

L# vt
JaAuq JaAuq
Kejay Kejoy
e By (i
=] SR =
[__temod peon | Lzreon | Lepeon | Lzreon | soepsiU|
_W asn
B
N
LR
o HaU|
g 00[8 | /WaPO
s
Q
3
T seoes)U|
[ANAN]
Q
g
E
B soepoU|
[speo1 | [opeo1 | [zpeo1 | [speo1 | NI
Ch IS =
= e =i | (=
o# 8#
J8AUQ J8AUQ
Kejey Kejoy

11/18/2003 04:07:12p C:/EAGLE-4.X/projects/Control_System.sch (Sheet: 1/1)

FC CONTROLLER

Introduction:

The FC CONTROLLER (or SYSTEM CONTROLLER) board is the main controller (see
associated schematics) that interfaces to up to sixteen STARS boards and up to eight
RLYDRVR/LVRB boards. Thus, it is capable of interfacing to as much as 384 switches and
controlling as much as 192 load relays. This board is based on the ColdFire MCF5272 micro-
controller (providing an EtherNet, USB, an RS232, and an RS232 debug ports) along with Flash,
SDRAM and battery-backed SRAM with real-time clock (RTC), one DUARTS (one RS232
interface and a modem), and some I/O ports. It also contains two PIC micro-controllers
(PIC16C622A). One PIC micro-controller (Chain PIC) communicates with 16 STARS boards
serially using 16 bi-directional lines (one line for each STARS board). The other PIC micro-
controller (Load PIC) communicates with § RELAY DRIVER (RLYDRVR) and/or LOW
VOLTAGE RELAY (LVRB) boards serially using 8 unidirectional lines (one line for each
RLYDRVR/LVRB board). In addition, this board provides 8 reset lines to and receives 8§ error
lines from the RLYDRVR/LVRB boards. The Chain PIC communicates with the ColdFire
MCF5272 (CPU) using an 8-bit bi-directional one-level deep FIFO with handshaking. The Load
PIC communicates with the CPU using an 8-bit unidirectional one-level deep FIFO with
handshaking. This board receives AC power, which is rectified and regulated to provide power.
In addition, separate AC power is rectified and fed unregulated to the STARS boards.

Hardware Description:

The FC CONTROLLER board is based on the ColdFire MCF5272 micro-controller operating at
66 MHz. One serial port (URTO) of the CPU is used as an RS232 debug port. Either the
EtherNet port, the USB port, or the other serial port (URT1) of the CPU can be used to
communicate with the host. The hardware provides for a 2MB of Flash for code and
configuration storage, a 4MB of SDRAM, and an 8KB of battery-backed SRAM with real time
clock (Time Keeper). There is one DUART (16552) that provides one RS232 serial port and a
modem (SF224ATFHI1 or CH1786) connection to a phone line. Eight DIP switches provide
configuration settings.

In addition to the main CPU, there are two PIC micro-controllers (PIC16C622A) along with their
circuitry. One PIC micro-controller (Chain PIC) interfaces to the STARS boards through four
Chain connectors, where each Chain connector can connect to four STARS boards. This Chain
PIC communicates with the CPU through two 8-bit registers (one for each direction) along with
two simple handshake lines. The other PIC micro-controller (Load PIC) interfaces to the
RLYDRVR/LVRB boards through eight Load connectors, where each Load connector connects
to one RLYDRVR/LVRB board. This Load PIC communicates with the CPU through one 8-bit
register (one direction from CPU to PIC) along with one simple handshake line. The CPU
provides 8 latched reset lines, one for each Load connector, and receives 8 error lines, one from
each Load connector.

B4

The following describes the memory map in terms of used chip selects, and offsets relative to
those used chip selects. Software should initialize the different chip select registers properly to
conform to this mapping.

Address Range Device

$0000 0000 - $O03F FFFF SDRAM (4MB, 32 bits wide, using -CS7)

$0040 0000 - $0040 0000 CPU _to Chain PIC Data Register Write (1B, 8 bits wide, using
-CS1)

$0040 0100 - $0040 0100 CPU to Load PIC data Register Write (1B, 8 bits wide, using -

CS1)

$0040 0200 - $0040 0200 Load Reset Register Write (1B, 8 bits wide, using -CS1)

$0040 0300 - $0040 0300 Chain_PIC to CPU Data Register Read (1B, 8 bits wide, using
-CS1)

$0040 0400 - $0040 0400 Load Error Register Read (1B, 8 bits wide, using -CS1)

$0040 0500 - $0040 0500 1O Registerl Read (1B, 8 bits wide, using -CS1)

$0040 0600 - $0040 0600 IO _Register2 Read (1B, 8 bits wide, using -CS1)

$0040 0700 - $0040 073C External DUART Registers (16B, 8 bits wide, each byte is placed
ona
32-bit long word boundary, using -CS1)

$0080 0000 - $0080 1FFF External SRAM (8KB, 8 bits wide, using -CS2)

$0100 0000 - $0100 0000 CPU Error LED Write (1B, 8 bits wide, write $01 to turn LED ON,
and $00 to turn LED OFF, using -CS4)

$FFE00 0000 - SFFFF FFFF Flash (2MB, using -CS0)

The I0_Registerl and IO_Register2 are as follows.
(1) IO_Registerl is used as input connected to 8 DIP switches for configuration settings.

(2) IO _Regiser?2 is used as follows.
Bit #0: signal CH2CP_FF.
Bit #1: signal CP2CH_FF.
Bit #2: signal CP2LD FF.
Bit3 #7-3: not used.

Either the Ethernet interface or the USB interface of the CPU may be used to connect to a host.
In addition, URTO serial interface of the CPU can be used as a debug port, while URT1 serial
interface of the CPU can be used to connect to a host or to a third-party device.

Channel A of the external DUART provides RS232-1 port, which may be used to connect to a
host or to a third-party device. Channel B of the external DUART provides a serial port for the
modem. Channel A interrupt output signal (INTRA) is connected to —-INT1 of the CPU through
an inverter, and channel B interrupt output signal (INTRB) is connected to -INT3 of the CPU
through an inverter.

The Chain PIC micro-controller has 5 RA I/O lines (RA[4:0]) and 8 RB 1/O lines (RB[7:0]).
These lines are assigned different signal according to the following table.

B5

Line Signal Name Description

RA[1:0] Address Bits [1:0] Address bits to select 1 out of 4 registers (output).
RA[2] CHPICWD* Chain PIC write data signal (output).

RA[3] CHPICRD* Chain PIC read data signal (output).

RA[4] Not used

RBJ[7:0] CHPICRBJ[7:0] Chain PIC data bus (input/output).

The Chain PIC circuitry contains the following registers/buffers.

Register Description
Chain_12 Data Out Register Contains 8 data bits to drive Chains 1 and 2 data lines, write
only.
Chain 34 Data Out Register Contains 8 data bits to drive Chains 3 and 4 data lines, write
only.

Chain PIC to CPU Data Register Contains 8 data bits from the Chain PIC to the ColdFire
MCF5272 CPU, write only.

Chain 12 Data In Buffer Contains 8§ data bits from Chains 1 and 2 data lines, read
only.

Chain 34 Data In Buffer Contains 8§ data bits from Chains 3 and 4 data lines, read
only.

CPU to Chain PIC Data Register Contains 8 data bits from the ColdFire MCF5272 CPU to
the Chain PIC, read only.
Chain_PIC_ Status Register Contains 2 data bits, bits 0 provides signal CH2CP_FF and
bitl
provides signal CP2CH_FF, read only.

The Load PIC micro-controller has 5 RA I/O lines (RA[4:0]) and 8 RB I/O lines (RB[7:0]).
These lines are assigned different signal according to the following table.

Line Signal Name Description

RA[0] CP2LD FF CPU to Load PIC data Register Full Flag (input).
RA[1] RCP2LDD* CPU to Load PIC read data signal (output).

RA[2] WLDOD* Load PIC to load relay write data signal (output).
RA[4:3] Not used

RBJ[7:0] LDPICRBJ[7:0] Load PIC data bus (input/output).

The Load PIC circuitry contains the following registers/buffers.

Register Description
Load PIC Data Out Register Contains 8 data bits to drive load relay data lines, write
only.

CPU to Load PIC data Register Contains 8 data bits from the ColdFire MCF5272 CPU to
the
Load PIC, read only.

B6

Initialization:

- For the ColdFire MCF5272 CPU:

(1) All internal CPU registers should be initialized properly.

(2) The CPU interfaces should be initialized.

(3) The external DUART should be enabled, and initialized to the proper parameters.

(4) IO _Registerl should be read to determine configuration DIP switch settings.

(5) The Chain_PIC to CPU Data Register should be read to clear the CH2CP_FF flag.

(6) CPU to Chain PIC Reset Register may be cleared by writing “0” to it (it is also cleared
during reset).

(7) CPU Error LED flip-flop Register may be cleared by writing “0” to it (it is also cleared during
reset).

- For the Chain PIC:

(1) RA[3:2] lines should be initialized to “1” level. RA[3:0] are outputs.

(2) The CPU _to Chain PIC Data Register should be read to clear the CP2CH_FF flag.

(3) The Chain_12 Data Out Register and Chain_34 Data Out Register may be cleared by
writing “0°” to them (they are also cleared during reset).

- For the Load PIC:

(1) All RA[2:1] lines should be initialized to “1” level. RA[0] is input.

(2) The CPU to Load PIC data Register should be read to clear the CP2LD _FF flag.

(3) The Load PIC Data Out Register may be cleared writing “0” to it (it is also cleared during
reset).

Operation:

The CPU activities include the following.

(1) Getting switch states from the Chain PIC, and providing load states to the Chain PIC.

(2) Processing switch states information, and providing necessary action(s) to the Load PIC by
sending proper commands.

(3) Monitoring all interfaces from the CPU and taking proper actions.

(4) Monitoring all serial interfaces from the external DUART and taking proper actions.

(5) Monitoring any error condition(s) from the RLYDRVR/LVRB boards and taking proper
action(s).

Jumper Selections:

TBD.

B7

The Chain PIC micro-controller communicates with 16 STARS boards, simultaneously, through
16 bi-directional lines, one line for each STARS board. Each four lines are connected to a Chain
connector. Accordingly, there are four chains (Chainl, Chain2, Chain3 and Chain4) along with
their connectors. The baud rate is 10,000 bits/s. The data format is one start bit (“1”), and 24
data bits (least significant bit first). The start bit is always sent by the FC CONTROLLER board
as a means of synchronization for the STARS boards. The protocol is as follows.

(1) The Chain PIC sends “0” (to all 16 STARS) by writing $00 to the
Chain 12 Data Out Register and Chain 34 Data Out Register. It waits for at least 5000
us. This is used as a means of synchronization prior to every data exchange.

(2) The Chain PIC sends “1” (to all 16 STARS) by writing $FF to the
Chain_12 Data Out Register and Chain_34 Data Out_Register for one bit period (100 us).

(3) The Chain PIC sends all 24 bits of load states to all STARS simultaneously, one bit at a time
(100 us/bit) and starting with least significant bit, by writing proper data to both registers.

(4) The Chain PIC sends another start bit, similar to what was done in step (2). It, then, removes
it by sending a "0".

(5) The Chain PIC should sample all 16 STARS at % bit time (50 us) past the high to low
transition of the start bit sent in previous step by reading the Chain_12 Data In_Buffer and
the Chain 34 Data In Buffer. The Chain PIC should sample the rest of the 24 data bits for
each STARS board at the rate of 100 us/bit. Necessary bit unpacking, shifting and packing
operations should be performed to yield 48 bytes of information (3 bytes for each STARS
board). This information represents the switch states of each STARS board, and should be
saved in memory for later transfer to the ColdFire MCF5272 CPU.

(6) The Chain PIC repeats steps (1) — (5) continuously.

Communications between the FC CONTROLLER and the STARS:

The Chain PIC can write to the Chain_12 Data Out Register as follows.
- Set RA[1:0] to “00”, and RB[7:0] to desired data byte.
- Set RA[2] to “0”, then set it to “1”.

The Chain PIC can write to the Chain_34 Data Out Register as follows.
- Set RA[1:0] to “01”, and RB[7:0] to desired data byte.
- Set RA[2] to “0”, then set it to “1”.

The Chain PIC can read from the Chain_12 Data In Buffer as follows.
- Set RA[1:0] to “00”.

- Set RA[3] to “0”.

- Read desired data from RB[7:0].

- Set RA[3] to “1".

The Chain PIC can read from the Chain_34 Data In Buffer as follows.
- Set RA[1:0] to “01”".

- Set RA[3] to “0”.

- Read desired data from RB[7:0].

- Set RA[3] to “1".

B8

Communications between the ColdFire MCF5272 CPU and the Chain PIC:

The ColdFire MCF5272 CPU communicates with the Chain PIC through the

CPU to Chain PIC Data Register and the Chain PIC to CPU Data Register along with their

full flag status bits CP2CH_FF and CH2CP_FF. The CPU always initiates the data transfer, and

whenever it needs to get switch states/send load states. The process has three phases, as follows.

(1) In the first phase, the CPU sends a command ($01 for bit transfer mode, or $02 for byte
transfer mode for switch states data).

(2) In the second phase, the CPU receives either 384 bytes (in bit transfer mode, only least
significant bit is pertinent), or 48 bytes (byte transfer mode) from the STARS board
containing the switch states.

(3) In the third phase, the CPU sends out 48 bytes to the STARS containing the relay states.

Whenever the CPU needs to send a byte to the Chain PIC, the following protocol should be

followed.

(1) The CPU waits for the CP2CH_FF signal to be “0”, then it writes that byte to the
CPU to Chain PIC Data Register. This write action sets the CP2CH_FF to “1”.

(2) When the Chain PIC detects that the CP2CH_FF is “1” by reading the
Chain_PIC Status Register (bit 1), it reads the CPU to Chain PIC Data Register to get the
sent byte. This read action clears the CP2CH_FF flag.

Whenever, the Chain PIC needs to send a byte to the CPU, the following protocol should be

followed.

(1) The Chain PIC waits for the CH2CP_FF to be “0” (bit 0 of the Chain_PIC_Status Register),
then it writes that byte to the Chain PIC to CPU Data Register. This write action sets the
CH2CP_FF to “1”.

(2) When the CPU detects that the CH2CP_FF signal is “1”, it reads the
Chain_PIC to CPU Data Register to get the sent byte. This read action clears the
CH2CP _FF flag.

Additional commands may be added later, such as a command to get a particular switch
state/send corresponding load state, etc., if needed.

The Chain PIC can write to the Chain_ PIC to CPU_Data Register as follows.
- Set RA[1:0] to “10”, and RB[7:0] to desired data byte.
- Set RA[2] to “0”, then set it to “1”.

The Chain PIC can read from the CPU_to Chain PIC Data Register as follows.
- Set RA[1:0] to “10”.

- Set RA[3] to “0”.

- Read desired data from RB[7:0].

- Set RA[3] to “1".

The Chain PIC can read from the Chain PIC Status Register as follows.
- Set RA[1:0] to “11”.

B9

- Set RA[3] to “0”.
- Read desired data from RB[7:0].
- Set RA[3] to “I°.

Communications between the ColdFire MCF5272 CPU and the Load PIC:

The ColdFire MCF5272 CPU communicates with the Load PIC through the

CPU to Load PIC Data Register along with its full flag status bits CP2LD FF. The CPU

always initiates the data transfer, and whenever it needs to send commands to the Load PIC. The

CPU sends a command string, which consists of 5 bytes. The first byte is a mask byte, where a 1-

bit indicates that the command is to be sent to the corresponding RLYDRVR/LVRB board. The

second byte is a synchronization byte ($FC, $FD, or $FE) to be sent to the assigned

RLYDRVR/LVRB board(s) as specified in the mask byte. The other three bytes are the

command bytes to be sent following the synchronization byte. The Load PIC always receives

commands from the CPU. The protocol for sending one byte is as follows.

(1) The CPU waits for the CP2LD_FF signal to be “0”, then it sends a byte to the Load PIC, by
writing that byte to the CPU to Load PIC Data Register. This write action sets the
CP2LD FF to “I1”.

(2) When the Load PIC detects that the CP2LD_FF (RA[0]) is “1, it reads the
CPU to Load PIC Data Register . This read action clears the CP2LD_FF flag.

(3) Steps (1) and (2) are repeated every time the CPU needs to send a byte to the Load PIC.

The Load PIC can read from the CPU to Load PIC Data Register as follows.
- Set RA[1] to “0”.

- Read desired data from RB[7:0].

- Set RA[1] to “I".

Communications between the FC CONTROLLER and the RLYDRVR/LVRB:

The Load PIC micro-controller communicates with 8 RLYDRVR/LVRB boards, simultaneously,
through 8 unidirectional lines, one line for each RLYDRVR/LVRB board. Each line is connected
to a Load connector. Accordingly, there are eight load connectors (Loadl, Load2, Load3, Load4,
Load5, Load6, Load7 and Load8). The baud rate is 19.6 K bits/s. The data format is one start
(“17), 8 data bits (least significant bit first), no parity bit, and one stop bit (“0”). The Load PIC
can send a command (4 bytes) to either one RLYDRVR/LVRB board or several boards
simultaneously as indicated by the mask byte. When the Load PIC needs to send a byte a
RLYDRVR/LVRB board, it follows the following steps.
(1) The Load PIC sends a start bit (“1”) to that RLYDRVR/LVRB board by writing the proper
byte value to the Load PIC Data Out Register for one bit time (51 us).
(2) The Load PIC sends the bits of the desired byte (least significant bit first) one bit at a time to
that RLYDRVR/LVRB (each bit lasts for 51 us) by writing the proper byte value to the
Load PIC Data Out Register.
(3) The Load PIC sends a stop bit (“0”) to that RLYDRVR/LVRB board by writing the proper
byte value to the Load PIC Data Out Register for one bit time (51 us).

B10

The above steps can be repeated whenever the Load PIC needs to send a byte to a
RLYDRVR/LVRB board.

Each command sent to the RLYDRVR board has 4 bytes. The first byte is a synchronization byte
($FC, $ED, or $FE). The other 3 bytes are as follows.

- The first byte has a format of “cccr rrrr”.

- The second byte has format of “lllI Ixxx”.

- The third byte has a format of “yyyy yyyy”.

Where “ccc” (most significant 3 bits of the first byte) indicates the command code.

The “rrrrr” (least significant 5 bits of the first byte) represents a particular transition rate
(maximum 32 different rates), if any.

The “lllII” (most significant 5 bits of the second byte) represents a load relay number between
“00000” and 101117, inclusively.

The “xxx yyyy yyyy” (least significant 3 bits of the second byte concatenated with the third byte)
represents a particular dim level. A binary value of “000 0000 0000 corresponds to always/fully
ON, a binary value of “111 1111 1111” corresponds to always/fully OFF, a binary value in
between corresponds to that dimming level.

The command codes are as follows.

- “000” = Not used.

- “001” = Single load transition.

- “010” = Not used.

- “011” = Not used.

- “100” = Not used.

- “101” = All loads transition.

- “110” = Not used.

- “111” = Not used.

The following table provides the values of the transition rate.

“rrrrr” Value “rrrrr” Value “rrrrr” Value “rrrrr” Value
00 Immediate 08 9 seconds 16 41 seconds 24 210 seconds
01 1 second 09 11 seconds 17 49 seconds 25 250 seconds
02 2 seconds 10 13 seconds 18 60 seconds 26 300seconds
03 3 seconds 11 16 seconds 19 75 seconds 27 380 seconds
04 4 seconds 12 19 seconds 20 90 seconds 28 450 seconds
05 5 seconds 13 23 seconds 21 110 seconds 29 550 seconds
06 6 seconds 14 28 seconds 22 140 seconds 30 675 seconds
07 7 seconds 15 34 seconds 23 175 seconds 31 800 seconds

Each command sent to the LVRB board has 4 bytes. The first byte is a synchronization byte
($FC, $ED, or $FE). The other 3 bytes are as follows.

- The first byte has a format of “cccr rrrr”.

- The second byte has format of “lllI Ixxx”.

- The third byte has a format of “yyyy yyyy”.

Where “ccc” (most significant 3 bits of the first byte) indicates the command code.

Bl11

The “rrrrr” (least significant 5 bits of the first byte) represents a particular transition time period
code (maximum 32 different rates), if any.

The “lllII” (most significant 5 bits of the second byte) represents a load relay number between
“00000” and 101117, inclusively.

The “xxx yyyy yyyy” (least significant 3 bits of the second byte concatenated with the third byte)
represents the desired state of the relay (only binary values “000 0000 00007, i.e., fully ON, and
“I11 1111 11117, 1.e., fully OFF, are allowed).

The command codes are as follows.

- “000” = Not used.

- “001” = Single transition of a single relay.

- “010” = Not used.

- “011” = Not used.

- “100” = Not used.

- “101” = Single transition of all relays.

- “110” = Not used.

- “111” = Not used.

The following table provides the values of the transition time period.

99 13 99 13 99

“rrrrr” Value “rrrrr Value rrrrer Value rrrrer Value

00 Indefinite 08 3.00 seconds 16 14.0seconds 24 90.0 seconds
01 0.25seconds 09 4.00 seconds 17 16.0seconds 25 120 seconds
02 0.50 seconds 10 5.00 seconds 18 18.0seconds 26 300 seconds
03 0.75 second 11 6.00 seconds 19 20.0seconds 27 600 seconds
04 1.00 seconds 12 7.00seconds 20 25.0seconds 28 900 seconds
05 1.50 seconds 13 8.00seconds 21 30.0seconds 29 1200 seconds
06 2.00 seconds 14 10.0seconds 22 45.0seconds 30 1800 seconds
07 2.50 seconds 15 12.0seconds 23 60.0seconds 31 2700 seconds

The Load PIC can write to the Load PIC Data Out Register as follows.
- Set RB[7:0] to desired data byte.
- Set RA[2] to “0”, then set it to “1”.

DIP Switches Configuration Settings:

There are 8 DIP switches for configuration settings, as follows.

Switch 1 : ON: Load default switches/loads/scenes configurations in EEPROM.
OFF: Do not load default configurations.

Switch 2 : ON: Load refresh is enabled.
OFF: Load refresh is disabled.

Switch 3 : ON: Third-party communication RS232-1 baud rate is 9.6 K.

OFF: Third-party communication RS232-1 baud rate is 19.2 K.

B12

Switch 4 : ON: Third-party communication RS232-2 baud rate is 9.6 K.
OFF: Third-party communication RS232-2 baud rate is 19.2 K.

Switch 5 : Not used

Switch 6 : Not used

Switch 7 : Not used

Switch 8 : Not used

Communications between a PC (Personal Computer) and the FC CONTROLLER:

The FC CONTROLLER may communicate with a PC through either Ethernet port of CPU, USB

port of CPU, or an RS232 (channel A of DUART or URT1 of CPU) port. RS232
communications parameters are 19200 baud rate, 8 data bits, 1 stop bit and no parity. This
communications link may be used by a PC to either program the FC CONTROLLER with

different configurations, retrieve status information from the FC CONTROLLER, or command
the FC CONTROLLER to perform a certain task. The FC CONTROLLER always acts as a slave
to a PC, i.e., it always responds to commands from a PC.

Communications from a PC to the FC CONTROLLER is always using ASCII code, while
communications from the FC CONTROLLER to a PC is always using binary code. All

commands are started with ASCII “~” (ASCII code $5E), followed by a 2-byte command code
(ASCII “00” - “FF”), and a 4-byte number. The 2-byte command code may have a value from
the following table. The 4-byte number following the command is only meaningful for certain
commands, as indicated in the following table. For other commands, this 4-byte number is not

meaningful, but must be sent (e.g. zeros may be sent). The table below lists the supported

commands.

Command Code
and Format

MOxxXXX
1xxxx
NO2XXXX

MI3XXXX
04xxxx
MSxxxx
M)6XXXX
MYTXXXX
M8XXXX

)9xxXX

N)AXXXX

Meaning Number meaningful
or not
Send code version No
Send customer number No
Send real-time clock settings No
Send all switch configurations (parameters) No
Send all load configurations (parameters) No
Send all scene configurations (parameters) No
Send all switch status (states) No
Send all load status (states) No
Send all scene status (states) No
Send customer options No
Send all instant switch values (ON/OFF) No

B13

ABxxxx Send all instant load values (ON/OFF)

MCxxxx Send miscellaneous parameters

ADxxxx Send error status of all RLYDRVR/LVRB boards

AOxxxx Send sunrise/sunset table

A23nnnn Send single switch configurations (parameters)

A24nnnn Send single load configurations (parameters)

A81xxXX Receive customer number

A82xXXX Receive real-time clock settings

A83xxXX Receive all switch configurations (parameters)

A84xxxX Receive all load configurations (parameters)

A85xxXX Receive all scene configurations (parameters)

~89xxXX Receive customer options

90X XXX Receive sunrise/sunset table

~A3nnnn Receive single switch configurations (parameters)

~A4nnnn Receive single load configurations (parameters)

~EOlrr Set temporary load/relay level and rate/pulse width

AElnnnn Activate single load/relay using temporary level
and rate

~E4nnnn Activate single load/relay

AESnnnn Activate single scene

AF4nnnn De-activate single load/relay

AF5nnnn De-activate single scene

No
No

No

Yes
Yes

No
No

No
No
No
No
No

Yes
Yes

Yes

Yes

Yes
Yes

Yes
Yes

xxxx is a 4-digit ASCII number that is not meaningful, but must be sent (e.g. zeros may be sent,

ASCII “00007).

nnnn is a 4-digit ASCII number specifying either a switch number (ASCII “0000” - “017F”), a

load number (ASCII “0000” - “00BF”), or a scene number (ASCII “0000” - “00FF”).

Il is a 2-digit ASCII number specifying load level value (from 00 to 99, where 00 is fully OFF,

and 99 is fully ON).

rr is a 2-digit number specifying a code for rate (RLYDRVR) (from 00 to 31) at which a load is

activated to the specified level, according to the following table.

29 (13 29 (13 29

“rr”’ Value “rr Value rr Value rr

Value

00 Immediate 08 9 seconds 16 41 seconds 24

210 seconds

B14

01 1 second 09 11 seconds 17 49 seconds 25 250 seconds
02 2 seconds 10 13 seconds 18 60 seconds 26 300seconds
03 3 seconds 11 16 seconds 19 75 seconds 27 380 seconds
04 4 seconds 12 19 seconds 20 90 seconds 28 450 seconds
05 5 seconds 13 23 seconds 21 110 seconds 29 550 seconds
06 6 seconds 14 28 seconds 22 140 seconds 30 675 seconds
07 7 seconds 15 34 seconds 23 175 seconds 31 800 seconds

rr is a 2-digit number specifying a code for rate (LVRB) (from 00 to 31) at which a relay is
activated for a specified pulse width, according to the following table.

“rrrrr” Value “rrrrr” Value “rrrrr” Value “rrrrr” Value

00 Indefinite 08 3.00 seconds 16 14.0seconds 24 90.0 seconds
01 0.25seconds 09 4.00 seconds 17 16.0seconds 25 120 seconds
02 0.50 seconds 10 5.00 seconds 18 18.0seconds 26 300 seconds
03 0.75 second 11 6.00 seconds 19 20.0seconds 27 600 seconds
04 1.00 seconds 12 7.00seconds 20 25.0seconds 28 900 seconds
05 1.50 seconds 13 8.00seconds 21 30.0seconds 29 1200 seconds
06 2.00 seconds 14 10.0seconds 22 45.0seconds 30 1800 seconds
07 2.50 seconds 15 12.0seconds 23 60.0seconds 31 2700 seconds

After the FC CONTROLLER receives a command and a number, it should reply with either an
ASCII ACK (ASCII code $06) if it supports that command, or an ASCII NAK (ACSII code $15)
if it does not support that command.

If the command is a "send" command, the FC CONTROLLER should send a binary 2-byte
block length (upper byte first), followed by the block data bytes (binary form). The PC should
respond by sending an ACK indicating that it received the entire data block.

If the command is a "receive" command, the PC should send an ASCII 4-byte block length
(upper byte first), after which the FC CONTROLLER will send an ACK. After receiving an
ACK, the PC should send the block data bytes (ASCII form). The block of data should be sent in
packets of 64 ASCII bytes long, if its length is more than 64. The last packet should contain the
remaining bytes. After each packet, the FC CONTROLLER will send and ACK to the PC
indicating that it has received and processed that packet. The PC should not attempt to send the
next packet prior to receiving the ACK of the current packet. This regulation mechanism is
needed due to buffer size limitations in the memory subsystem of the FC CONTROLLER board.

If the command is an "activate/de-activate', no further action is necessary. The ACK sent by
the FC CONTROLLER indicates that the task is executed.

The following describes the details of the code version, customer number, real-time clock
settings, switch configurations (parameters), load configurations (parameters), scene
configurations (parameters), switch status (states), load status (states), scene status (states), and
sunrise/sunset table.

B15

Code version has 4 digits and occupies 2 bytes (abcd), and refers to version Vab.cd of the current
code.

Code Version:

Customer Number:

Customer number has 8 digits and occupies 4 bytes (abcdefgh), and refers to a unique number
assigned by a dealer to a customer.

Real-time Clock Settings:

Real-time settings consist of 7 bytes (BCD format) according to the following order.

Byte # Contents BCD Format
1 Seconds 00 - 59
2 Minutes 00 - 59
3 Hours (24 hour format) 00-23
4 Day of Week (1:Sunday, 2:Monday, .. , 7:Saturday) 01 - 07
5 Date (Day of Month) 01-31
6 Month 01-12
7 Year 00 - 99

Switch Configurations (Parameters):

There are 384 entries, each entry has 2 bytes, as follows.

Ist byte: bit 7 Load (0) or a scene (1) switch
bit 6 Normal (0) or simple (1) switch if (Non-Contact and Non-Ramp),
Normally Open (0) or Normally Closed (1) (if Contact and Non-
Ramp), or
Up/Raise (0) or Down/Lower (1) (if Ramp)
bit 5 Non-Contact (0) or Contact (1)
bit 4 Non-Ramp (0) or Ramp (1)

Bit #6 Bit #5 Bit #4 Function

0 0 0 Normal, Non-Contact, Non-Ramp

1 0 0 Simple, Non-Contact, Non-Ramp

0 1 0 Normally-Open, Contact, Non-Ramp

1 1 0 Normally-Closed, Contact, Non-Ramp
0 0 1 Up/Raise, Ramp

1 0 1 Down/Lower, Ramp

0 1 1 Not used

1 1 1 Not used

Bl16

bit 3 Don’t send switch action (0), or send switch action (1) to third-
party
RS232 channels
bit 2 Switch controls load/scene on same (0) or different (1) HOME
CONTROLLER board
bits 1:0 FC CONTROLLER board number to control (0 to 3) if bit 2 is 1
2nd byte: bits 7:0 Load number (0 to 191) or Scene number (0 to 255)

The order of the switch entries is as follows:

SW1 for STARS 1A,1B,1C,1D, 2A,2B.,2C,2D, 3A,3B,3C,3D, 4A.,4B,4C.,4D (16 entries, 32
bytes)

SW2 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A.,4B,4C.,4D (16 entries, 32
bytes)

SW24 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C,4D (16 entries, 32
bytes)

Load Configurations (Parameters):

There are 192 entries, each entry has 5 bytes, as follows.

Ist byte: bit 7 Dim (1) or not (0) for RLYDRVR, Push-Hold (1) or Tap (0) for
LVRB
bit 6 All ON (1) or not (0) for RLYDRVR and LVRB
bit 5 All OFF (1) or not (0) for RLYDRVR and LVRB
bit 4 Vacation mode (1) or not (0) for RLYDRVR and LVRB
bit 3 Soft ON (1) or not (0) for RLYDRVR only, ignored for LVRB
(should be 0)
bit 2 Soft OFF (1) or not (0) for RLYDRVR only, ignored for LVRB
(should be 0)
bit 1 Alarm Flash (1) or not (0) for RLYDRVR only, ignored for LVRB
(should be 0)
bit 0 LVRB (1) or RLYDRVR (0)
2nd byte: bit 7 Not used for RLYDRVR, interlocked (1) or separate (0) for LVRB
Note that relays 8 & 9, 10 & 11, 12 & 13, and 14 & 15 may be
interlocked.
bit 6 Not used for RLYDRVR, Flip-flop if interlocked (1) or not (0) for
LVRB.
Note that Flip-flop has no effect if Push-hold type (only Tap type).
bits 5 Fan Speed Control (1) or not (0) for RLYDRVR only, ignored for
LVRB (should be 0)
bits 4:0 Dimming (ramp) rate for RLYDRVR (0 to 31, should be 0 for non-
dimmer), pulse width ticks code for LVRB (must be 0 for Push-
hold type, indefinite)
3rd byte: bits 7:6 Phase Number for 3-phase system for RLYDRVR and LVRB
(““00” for phase 1, “01” for phase 2, and “10” for phase 3).
bits 5 Not used

B17

bits 4:0 Soft (ON/OFF) rate (0 to 31, should be 0 for non-dimmer) for
RLYDRVR only, ignored for LVRB (should be zeros)
4th & 5th bytes: bits 15:11 Relay number in its RLYDRVR/LVRB Board (0 to 23) for
RLYDRVR, (0 to 15) for LVRB as follows:
0 to 7 are for separate relays,
8 to 15 are for separate/interlocked relays
bits 10:0 Soft ON level ("000 0000 0000" always ON, ...,
"I11 1111 1111" always OFF,
should be "000 0000 0000" for non-dimmer) for RLYDRVR only,
ignored (should be zeros) for LVRB.
For a fan speed control, use the following:
"000 xxxx xxxx" for 100% speed, "010 xxxx xxxx" for 75% speed,
"100 xxxx xxxx" for 50% speed, "110 xxxx xxxx" for 25% speed,
and "111 xxxx xxxx" for 0% speed.)

The order of the load entries is as follows:
LDI1,LD2,LD3, ..., LD24 for RLYDRVR/LVRB 1 (24 entries, 96 bytes)
LDI1, LD2, LD3, ..., LD24 for RLYDRVR/LVRB 2 (24 entries, 96 bytes)

LDI1, LD2,LD3, ..., LD24 for RLYDRVR/LVRB 8 (24 entries, 96 bytes)
Scene Configurations (Parameters):

Scene configurations contain 3 blocks. Note that some scenes may be either global only, local
only or global/local.

The first block has 2 bytes, and it contains a pointer for the first available location to add a new
scene.

The second block has 256 entries. Each entry has 2 bytes, and contains a pointer to scene that
scene's parameters.

The third block has up to 8,192 bytes, and contains scene parameters. Each scene will contain a
variable number of bytes (minimum 1 byte) as follows.

1st byte: bits 7:0 Action code as follows:
$00 No action (no scene) (always global)
$01 Transition load(s) (global or local)
$02 All ON/OFF (always global)
$03 Alarm flash (always global)
$04 Vacation mode (always global)
$05 Protected transition load(s) (global or local)
$06 Power-up (global or local)
$07 Timed (always local)
$08 ASCII string (always local)

$09-$FF Not used
If action code is $00: no more bytes following (always global).

If action code is $01: 4 more bytes as follows:

B18

Ist byte: bit 7 Last load in scene (1) or not last load in scene (0)
bit 6 Scene data following last load (1) or not (0)
Note that this bit may be 1 only if bit #7 is 1.
bit 5 Global (1) or local (0)
bits 4:0 Transition rate (if load is a dimmer) for RLYDRVR,
pulse width ticks code for LVRB (0 for indefinite)
2nd byte: bits 7:0 Load number (0 to 191)

3rd & 4th bytes: bits 15:11 Relay number in its RLYDRVR/LVRB Board (0 to 23)
bits 10:0 Transition level ("000 0000 0000" fully ON, ...,

"I11 1111 1111" fully OFF for RLYDRVR,
"0Oxx xxxx xxxx" for ON, or "1xx xxxx xxxx" for OFF for LVRB.
For a fan speed control, use the following:
"000 xxxx xxxx" for 100% speed, "010 xxxx xxxx" for 75% speed,
"100 xxxx xxxx" for 50% speed, "110 xxxx xxxx" for 25% speed,
and "111 xxxx xxxx" for 0% speed.)

If scene data following last load (bit 6 of 1st byte is 1): more scene bytes as follows:

Ist byte: bit 7 Last scene data (1) or not last scene data (0)
bit 6 Turn scene ON (1) or OFF (0)
bits 5:0 Not used

2nd byte: bits 7:0 Scene number to trigger (0 to 255)

3rd & 4th bytes: bits 15:0 Delay time to trigger scene in seconds
If action code is $02: no more bytes following (always global).
If action code is $03: no more bytes following (always global).

If action code is $04: no more bytes following (always global). Vacation mode has a fixed time
window of operation between 5:00 p.m. and midnight.

If action code is $05: 4 more bytes as follows (similar to action code $01 for Transition loads):

1st byte: bit 7 Last load in scene (1) or not last load in scene (0)
bit 6 Scene data following last load (1) or not (0)
Note that this bit may be 1 only if bit #7 is 1.
bit 5 Global (1) or local (0)
bits 4:0 Transition rate (if load is a dimmer) for RLYDRVR,
pulse width ticks code for LVRB (0 for indefinite)
2nd byte: bits 7:0 Load number (0 to 191)

3rd & 4th bytes: bits 15:11 Relay number in its RLYDRVR/LVRB Board (0 to 23)
bits 10:0 Transition level ("000 0000 0000" fully ON, ...,

"I11 1111 1111" fully OFF for RLYDRVR,
"0xx xxxx xxxx" for ON, or "1xx xxxx xxxx" for OFF for LVRB.
For a fan speed control, use the following:
"000 xxxx xxxx" for 100% speed, "010 xxxx xxxx" for 75% speed,
"100 xxxx xxxx" for 50% speed, "110 xxxx xxxx" for 25% speed,
and "111 xxxx xxxx" for 0% speed.)

B19

If scene data following last load (bit 6 of 1st byte is 1): more scene bytes as follows:

Ist byte: bit 7 Last scene data (1) or not last scene data (0)
bit 6 Turn scene ON (1) or OFF (0)
bits 5:0 Not used

2nd byte: bits 7:0 Scene number to trigger (0 to 255)

3rd & 4th bytes: bits 15:0 Delay time to trigger scene in seconds

If action code is $06: 4 more bytes as follows (similar to action code $01 for Transition loads):

Ist byte: bit 7 Last load in scene (1) or not last load in scene (0)
bit 6 Scene data following last load (1) or not (0)
Note that this bit may be 1 only if bit #7 is 1.
bit 5 Global (1) or local (0)
bits 4:0 Transition rate (if load is a dimmer) for RLYDRVR,
pulse width ticks code for LVRB (0 for indefinite)
2nd byte: bits 7:0 Load number (0 to 191)

3rd & 4th bytes: bits 15:11 Relay number in its RLYDRVR/LVRB Board (0 to 23)
bits 10:0 Transition level ("000 0000 0000" fully ON, ...,

"I11 1111 1111" fully OFF for RLYDRVR,
"0xx xxxx xxxx" for ON, or "I1xx xxxx xxxx" for OFF for LVRB.
For a fan speed control, use the following:
"000 xxxx xxxx" for 100% speed, "010 xxxx xxxx" for 75% speed,
"100 xxxx xxxx" for 50% speed, "110 xxxx xxxx" for 25% speed,
and "111 xxxx xxxx" for 0% speed.)

If scene data following last load (bit 6 of 1st byte is 1): more scene bytes as follows:

Ist byte: bit 7 Last scene data (1) or not last scene data (0)
bit 6 Turn scene ON (1) or OFF (0)
bits 5:0 Not used

2nd byte: bits 7:0 Scene number to trigger (0 to 255)

3rd & 4th bytes: bits 15:0 Delay time to trigger scene in seconds

If action code is $07: 5 more bytes as follows (always local).

Ist byte: bit 7 Absolute time (0) or relative time (1)
bit 6 Sunrise (0) or sunset (1) (only for relative time)
bit 5 Before (0) or after (1) (only for relative time)
bit 4 Turn scene OFF (0) or ON (1)
bit 3 Month data not available (0) or available (1)
bits 2:0 Not used
2nd byte: bits 7:0 Scene number (0 to 255) to be triggered
3rd byte: bit 7 Not used
bits 6:0 Days of week to trigger scene (bit 0 for Sunday, bit 1 for Monday,
bit 2 for Tuesday, bit 3 for Wednesday, bit 4 for Thursday, bit 5 for
Friday, and bit 6 for Saturday)
4th byte: bits 7:6 Not used
bits 5:4 10 Hours (Absolute or relative time)

B20

bits 3:0 Hours (24 Hour Format) (Absolute or relative time)
5th byte: bit 7 Not used

bits 6:4 10 Minutes (Absolute or relative time)

bits 3:0 Minutes (Absolute or relative time)

If month data is available (bit 3 of 1st byte is 1): two more bytes as follows:
6th & 7th bytes: bits 15:12 Not used
bits 11:0 Months of the year to trigger scene (bit 0 for Jan, bit 1 for Feb, bit 2
for Mar, bit 3 for Apr, bit 4 for May, bit 5 for Jun, bit 6 for Jul, bit 7
for Aug, bit 8 for Sep, bit 9 for Oct, bit 10 for Nov, and bit 11 for

Dec)
If action code is $08: more bytes as follows (always local).
Ist byte: bit 7 Send ASCII string to third-party interface RS232-3, channel A of
UART?2 (1) or not (0)
bit 6 Send ASCII string to third-party interface RS232-2, channel B of
UARTI (1) or not (0)
bits 5:0 Not used

Next bytes: contain the ASCII string ended with $00
Switch Status (States):

There are 384 entries, each has 3 bytes, as follows.

Ist byte: bit 7 Not used
bit 6 Short ON Flag (1: ON Counter reached max Short ON value)
bit 5 Long ON Flag (1: ON Counter reached max Long ON value)
bit 4 Stuck ON Flag (1: ON Counter reached max Stuck ON value)
bits 3:0 De-bounce Counter

2nd & 3rd bytes: ON Counter

The order of the switch entries is as follows:

SW1 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C.,4D (16 entries, 48
bytes)

SW2 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C.,4D (16 entries, 48
bytes)

SW24 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C,4D (16 entries, 48
bytes)

Load Status (States):

There are 192 entries, each has 3 bytes, as follows.
Ist & 2nd bytes: bit 15 Load state (0:OFF , 1:ON)

bit 14 Ramp direction (0:from OFF to ON, 1:from ON to OFF)
bit 13 Protected (0:not protected, 1:protected)

bits 12:11 Not used

bits 10:0 11-bit integer part of current level for RLYDRVR

B21

("000 0000 0000" always ON, ..., "111 1111 1111" always OFF),
3-bit current level ("000" ON and "111" OFF) + upper 8 bits of
pulse
width ticks for LVRB
3rd byte: bits 7:0 8-bit fractional part of current level for RLYDRVR,
lower 8 bits of pulse width ticks for LVRB

The order of the load entries is as follows:
LDI1,LD2,LD3, ..., LD24 for RLYDRVR/LVRB 1 (24 entries, 72 bytes)
LDI1, LD2, LD3, ..., LD24 for RLYDRVR/LVRB 2 (24 entries, 72 bytes)
LDI1, LD2, LD3, ..., LD24 for RLYDRVR/LVRB 8 (24 entries, 72 bytes)
Scene Status (States):

There are 256 entries, each has 5 bytes, as follows.

Ist byte: bit 7 Scene ON or OFF activated (1:ON/OFF invoked, 0:ON/OFF not
invoked)
bit 6 Scene ON activated (1:ON invoked, 0:ON not invoked)
bit 5 Scene OFF activated (1:OFF invoked, 0:OFF not invoked)
bit 4 Scene progress state (0:done, 1:in progress)
bit 3 Protected (0:not protected, 1:protected)
bit 2 Delayed (0:not delayed, 1:delayed)
bit 1 Last action done to scene (0:OFF, 1:0N)
bit 0 Ramp direction (0:from OFF to ON, 1:from ON to OFF)

2nd byte: bits 7:0 Scene load counter

3rd & 4th bytes: bits 15:0 Scene trigger time in minutes past mid-night (if timed scenes), or
delay time to trigger scene in seconds (if delayed).

5th byte: bits 7:0 Display (LED) delay counter

Sunrise/Sunset Table:

There are 12 entries, one entry for each month (January, February, march, April, May, June, July,
August, September, October, November and December). Each entry has 4 bytes. The first two
bytes represent sunrise time (24 hour format) for the first day of that month, and the next two
bytes represent sunset time (24 hour format) for the same day, as follows.

Ist byte: bits 7:6 Not used

bits 5:4 10 Hours (Absolute time for sunrise)

bits 3:0 Hours (24 Hour Format) (Absolute time for sunrise)
2nd byte: bit 7 Not used

bits 6:4 10 Minutes (Absolute time for sunrise)

bits 3:0 Minutes (Absolute time for sunrise)
3rd byte: bits 7:6 Not used

bits 5:4 10 Hours (Absolute time for sunset)

bits 3:0 Hours (24 Hour Format) (Absolute time for sunset)
4th byte: bit 7 Not used

B22

bits 6:4 10 Minutes (Absolute time for sunset)
bits 3:0 Minutes (Absolute time for sunset)

Customer Options:

There are two bytes that contain customer options, as follows.
Ist byte: bit 7 Disable daylight saving/standard time adjustment (1:disable,
0:enable)
bit 6 Enable sending a CR after data for third-party get commands (0:
disable, 1: enable), or after sending switch action
bits 5:0 Not used
2nd byte: bits 7:0 Number of rings required before modem automatically answers a
call
(0: disables auto-answer mode, 01-99: range of rings, BCD format)

All Instant Switch Values (ON/OFF):

There are 24 entries, each has 2 bytes. Each two-byte entry holds the ON/OFF state of 16
switches (0 for OFF and 1 for ON), as follows.

1st byte bit 0 STARS 1A
bit 1 STARS 1B
bit 2 STARS 1C
bit 3 STARS 1D
bit 4 STARS 2A
bit 5 STARS 2B
bit 6 STARS 2C
bit 7 STARS 2D
2nd byte bit 0 STARS 3A
bit 1 STARS 3B
bit 2 STARS 3C
bit 3 STARS 3D
bit 4 STARS 4A
bit 5 STARS 4B
bit 6 STARS 4C
bit 7 STARS 4D

The order of the switch entries is as follows:

SW1 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C,4D (2 bytes)

SW2 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C,4D (2 bytes)

SW24 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C,4D (2 bytes)

All Instant Load Values (ON/OFF):

There are 8 entries, each has 3 bytes. Each 3-byte entry holds the ON/OFF state of 24 loads (0

for OFF and 1 for ON), as follows.
Ist byte bit 0 Load 1

B23

bit
bit
2nd byte bit
bit
bit
3rd byte bit
bit

bit

S

7

1

7

Load 2

Load 8
Load 9
Load 10

Load 16
Load 17
Load 18

Load 24

The order of the load entries is as follows:
LDI1,LD2,LD3, ..., LD24 for RLYDRVR/LVRB 1 (3 bytes)
LDI1, LD2, LD3, ..., LD24 for RLYDRVR/LVRB 2 (3 bytes)

LD1, LD2,LD3, ..., LD24 for RLYDRVR/LVRB 8 (3 bytes)

Miscellaneous Parameters:

There are two bytes that contain miscellaneous parameters, as follows.

Ist byte: bits 7:0

2nd byte: bits 7:4
bits 3:0

bytes,

bytes,

bytes

Not used

Not used

Size of buffer for that channel as follows:

0001: 64 bytes, 0010: 128 bytes, 0011: 192 bytes, 0100: 256 bytes,
0101: 320 bytes, 0110: 384 bytes, 0111: 448 bytes, 1000: 512

1001: 576 bytes, 1010: 640 bytes, 1011: 704 bytes, 1100: 768

1101: 832 bytes, 1110: 896 bytes, 1111: 960 bytes, 0000: 1024

Error Status of all RLYDRVR/LVRB Boards:

There is one byte that contains instant error status for all § RLYDRVR/LVRB boards, one bit for
each board, as follows.

1st byte: bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

For RLYDRVR/LVRB board #0 (0:no error, 1:error)
For RLYDRVR/LVRB board #1 (0:no error, 1:error)
For RLYDRVR/LVRB board #2 (0:no error, 1:error)
For RLYDRVR/LVRB board #3 (0:no error, 1:error)
For RLYDRVR/LVRB board #4 (0:no error, 1:error)
For RLYDRVR/LVRB board #5 (0:no error, 1:error)
For RLYDRVR/LVRB board #6 (0:no error, 1:error)
For RLYDRVR/LVRB board #7 (0:no error, 1:error)

B24

Communications between a Remote PC (Personal Computer) and the FC CONTROLLER:

The FC CONTROLLER can communicate with a remote PC over the phone lines through a
modem and an RS232 (channel B of DUART). Communications parameters are 2400 baud, 8
data bits, 1 stop bit and no parity. This communications link may be used by a remote PC to
either program the FC CONTROLLER with different configurations, retrieve status information
from the FC CONTROLLER, or command the FC CONTROLLER to perform a certain task.
The FC CONTROLLER always acts as a slave to a remote PC, i.e., it always responds to
commands from that remote PC. Upon power up, the modem is initialized by software and
configured to answer automatically incoming calls after the number of rings programmed in the
2nd byte of Customer Options (0: disables auto-answer mode, 01-99: range of rings, BCD
format). The modems answers an incoming call after the programmed number of rings (if
enabled), and establishes communication with the above parameters. A remote PC can then
proceed to communicate with the FC CONTROLLER in exactly the same manner as described
under "Communications between a PC (Personal Computer) and the FC CONTROLLER". When
the calling PC is done, it should hang up the phone line, after which the FC CONTROLLER will
terminate its answer session.

Communications between a Third-Party Device and the FC CONTROLLER:

The FC CONTROLLER can communicate with a third-party device through two RS232
interfaces (channel A of DUART using connector RS232-1, and channel URT1 of the CPU using
connector RS232-2). Communications parameters for connector RS232-1 are either 19.2 K baud
(if DIP Switch 3 is OFF), or 9.6 K baud (if DIP Switch 3 is ON), 8 data bits, 1 stop bit and no
parity. Communications parameters for connector RS232-2 are either 19.2 K baud (if DIP Switch
4 is OFF), or 9.6 K baud (if DIP Switch 4 is ON), 8 data bits, 1 stop bit and no parity. This
communications link may be used by a third-party device to either send some control commands
or receive some status information regarding both loads and scenes. The FC CONTROLLER
always acts as a slave to a third-party device, i.e., the FC CONTROLLER always responds to
commands from that third-party device. In addition, the FC CONTROLLER can send an ASCII
string to both third-party channels indicating when a switch is pressed and when that switch is
released (if that switch is programmed to do so). The ASCII string format is “Psnnn” for a
pressed switch, and “Rsnnn” for a released switch, where s is a 1-digit ASCII number specifying
FC CONTROLLER board number (0 for a single-system), and nnn is a 3-digit ASCII number
specifying that switch number (from 001 to 384). In a single-system configuration (one FC
CONTROLLER board), up to two third-party devices can be connected through connectors
RS232-1 and RS232-2 on that FC CONTROLLER board.

Communications between a third-party device and the FC CONTROLLER in a single-system
(one FC CONTROLLER board) configuration is always using ASCII code (both directions). All
commands are started with ASCII “~” (ASCII code $5E), followed by a 1-byte command code.
For a single-system configuration, command codes are upper-case ASCII “A” - “L” only. The
command may be followed by a number of ASCII digits that varies according to the command
used. The following table shows the currently supported commands in a single-system

B25

configuration, their formats as well as response expected if any. Note that each response may be
followed (if enabled in Customer Options) by an ASCII carriage return byte (ASCII code $0D).

Command Code Meaning Response
and Format
AAnnn Activate load/relay number nnn. None
~Bnnn De-activate load/relay number nnn. None
ACnnn Activate scene number nnn. None
ADnnn De-activate scene number nnn. None
AEnnnllrr Activate load/relay number nnn to level 11

at rate/pulse width rr. None
AFnnn Get level of load/relay number nnn. 11
rG Get instant ON/OFF status of all

loads/relays. ddd ... d
"H Get instant ON/OFF status of all switches. sss ... s
Alnnn Press switch number nnn. None
AJnnn Release switch number nnn. None
K Get instant real-time clock settings. ssmmhhwwddmmyy
ALssmmhhwwddmmyy Set real-time clock settings. None

If enable sending a CR after data for third-party get commands option is chosen (bit #6 of 1% byte
in the Customer Options is set), then a CR will be sent after data sent as a response to every get
command (e.g., “F, *G, “H, and "K).

nnn is a 3-digit ASCII number specifying either a load/relay number (from 001 to 192), a scene
number (from 001 to 256), or a switch number (from 001 to 384). Note that, since an LVRB has
only 16 relays, relay numbers range from 001 to 016 (1st LVRB), 025 to 040 (2nd LVRB), 049 to
064 (3rd LVRB), 073 to 088 (4th LVRB), 097 to 112 (5th LVRB), 121 to 136 (6th LVRB), 145
to 160 (7th LVRB), and 169 to 184 (8th LVRB).

Il is a 2-digit ASCII number specifying load/relay level value (from 00 to 99, where 00 is fully
OFF, and 99 is fully ON). For a relay in an LVRB, only levels allowed are 00 (OFF) or 99 (ON).
rr is a 2-digit number specifying a code for rate (from 00 to 31) at which a load in an RLYDRVR
board is activated to the specified level, according to the following table.

“rr”’ Value “rr” Value “rr” Value “rr” Value
00 Immediate 08 9 seconds 16 41 seconds 24 210 seconds
01 1 second 09 11 seconds 17 49 seconds 25 250 seconds

02 2 seconds 10 13 seconds 18 60 seconds 26 300seconds
03 3 seconds 11 16 seconds 19 75 seconds 27 380 seconds
04 4 seconds 12 19 seconds 20 90 seconds 28 450 seconds
05 5 seconds 13 23 seconds 21 110 seconds 29 550 seconds
06 6 seconds 14 28 seconds 22 140 seconds 30 675 seconds
07 7 seconds 15 34 seconds 23 175 seconds 31 800 seconds

rr is a 2-digit number specifying a code for rate (from 00 to 31) at which a relay in an LVRB
board is activated for a specified pulse width, according to the following table.

B26

“rr” Value “rr” Value “rr” Value “rr” Value
7 00 INDEFINITE 08 3.00 SECONDS 16 14.0 SECONDS 24
45.0 SECONDS

01 0.25seconds 09 4.00 seconds 17 16.0 seconds 25 50.0 seconds
02 0.50seconds 10 5.00 seconds 18 18.0 seconds 26 60.0 seconds
03 0.75second 11 6.00 seconds 19 20.0 seconds 27 70.0 seconds
04 1.00 seconds 12 7.00 seconds 20 25.0 seconds 28 80.0 seconds
05 1.50seconds 13 8.00 seconds 21 30.0 seconds 29 90.0 seconds
06 2.00 seconds 14 10.0 seconds 22 35.0 seconds 30 100 seconds
07 2.50seconds 15 12.0 seconds 23 40.0 seconds 31 120 seconds

ddd ... d is a 48-digit ASCII hex number, where every 6-digit entry holds the ON/OFF state of
24 loads or 16 relays (0 for OFF and 1 for ON), as follows.
Ist 2 digits (least significant) bit 0 Load 1

bit 1 Load 2

bit 7 Load 8
2nd 2 digits (middle significant) bit 0 Load 9
bit 1 Load 10

bit 7 Load 16
3rd 2 digits (most significant) bit 0 Load 17
bit 1 Load 18

bit 7 Load 24
The order of the 8 load entries is as follows:
LDI1,LD2,LD3, ..., LD24 for RLYDRVR/LVRB 1 (6 digits)
LDI1, LD2, LD3, ..., LD24 for RLYDRVR/LVRB 2 (6 digits)

LDI1,LD2,LD3,...,LD24 for RLYDRVR/LVRB 8 (6 digits)
Note that for an LVRB, the last 8 bits (most significant 2 digits) are meaningless, since an LVRB
board has only 16 relays.

sss ... s is a 96-digit ASCII hex number, where every 4-digit entry holds the ON/OFF state of 16
switches (0 for OFF and 1 for ON), as follows.

Ist 2 digits (least significant) bit 0 STARS 1A
bit 1 STARS 1B
bit 2 STARS 1C
bit 3 STARS 1D
bit 4 STARS 2A
bit 5 STARS 2B
bit 6 STARS 2C
bit 7 STARS 2D

2nd 2 digits (most significant) bit 0 STARS 3A
bit 1 STARS 3B

B27

bit
bit
bit
bit
bit
bit

The order of the 24 switch entries is as follows:
SW1 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C.4D (4 digits)
SW2 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C,4D (4 digits)

SW24 for STARS 1A,1B,1C,1D, 2A,2B,2C,2D, 3A,3B,3C,3D, 4A,4B,4C,4D (4 digits)

~N N kW

STARS 3C
STARS 3D
STARS 4A
STARS 4B
STARS 4C
STARS 4D

Note that any combination for nnn, Il and rr outside the specified ranges will cause the command
to be ignored. In addition, command *Ennnllrr will be ignored if it specifies a level other than

00 or 99, or a transition rate other than 00 for non-dimmer loads.

ssmmhhwwddmmyy are the real-time clock settings consisting of 14 bytes (BCD format) as

follows.
Two Bytes Contents BCD Format
ss Seconds
mm Minutes
hh Hours (24 hour format)
WW Day of Week (1:Sunday, 2:Monday, .., 7:Saturday) 01 - 07
dd Date (Day of Month)
mm Month
Yy Year

B28

G1/1 f188ys]| ©QCi8Z @1 £@BC/9C/2 i81BQ

0l R
T 00104-vsSN303 $JoqUNN 3USWN20(Q

4811043400704 :F1LIL

eweqge|y Yyinos Jo AlsiaAiun

¥ uleyo

€ ueyo

L-cezsy

=]

Z ueyo

| ureyp —— “—

ceesy
bngaq

10}08uu0)
nas

old
ueyo

[+

Cs]

old
peo

CTLZS40I 8114pj0d

C_1

RS
JEETNE|

o1y yum
paxoeq Kispeg | WVES
| HSV 14 :

o]

g peo

L peo]

9 peo’

S peon

v peon

€ peo

2 peo

| peo

10/13/2003 04:05:27p f=0.62 C:/EAGLE-4.X/projects/project1/FC_Controller.sch (Sheet: 1/15)

S1/2 Ewmcw_ eQZ:8Z:AT €0BZ/92/9 9180 w_.m_m_%vw,\mw:
R vl-/58d dY asn/Lvd
ot 00104-v¥SN303 SSYAABIOL i Bshzvd
N3 i42qunN uswnDo(Q v TN
ZIHpiova dSns @snivvd
J217043U0)~ . N3XL 8sn/svd
11 J 34 3TLIL NS BB 521 U S 8 AL 310 axygsnievd
eweqge nog Jo AlISIaAIu X S R HaNnach
OHOTYd 0LY
. . Lvaas gl RELNRER)]
2i2540m 30 0 531 @50
ovaas z e 0GA @5 sd o1 aod 85 50758 90
(IS o o 70 20 o om BN poue
08V MM d INVL, [dnoL
3IMas- T
3100S "
ol Lzl [zEzE
Hoas T Bz 22 EEE [z Bl= ERE BRE
o0l 0TROE UIT T Q00Q0Q0QQQQQQ0QRQ CC cC IVIIVIIIIC 33 IIT
90e>>003 5§ 2 ZEPEETZ o
08928885 wmw i §556655565656565665 ,m_% _m,% ﬁ@wmﬂmm_m a83 ,z,mm
=5&F 33 >o a4 o< 9o GcS5GG55m = I3
[ezolv < | —— fm 4 ge > 25 7 3588838% S mmm
g D ity 2 S
= 5 ° mnmmwaum s ,m,mo
| v 2% = %55
o A moNg
5TV sty 22
TV 8LY zQ
TV & LV Bl _
A 9Ly S¥0 3 5y S¥03
v Slv 010N 3 forg olana
2574 Z\vas/elvasiviy OaW 3/siad Ta oan3
v | Livasrzivasiely 1003 |57 Snm\ﬂ
— LLVASIZLY OCETC = = Eoloxas
T 6vas/ /Ly zaxy_3rziad N FTE]
3 q| Svasievasiony e Y7 R
Lvas/gvas/ey 00xy_3
4nLo ° =| 9vas/Lvas/ey I “‘ el Aaxe3
=] svasrevasiLy HHIXY Iviad = wiaai
1% $Vas/Syas/ov 10Xy 3 = oxze —
£VaS/PVas/ey £axL_3/88d S 1 IGREIE]
2vas/evasvy zax.L 3/6ad OIS 1
Lvas/zvasiey Lax1 3/oi8d — 1
0vas/vasszy 0ax13 —
TV ovas/iy ¥y3X1 3 EEEE]
- ov NIXL 3 ._._HW N3XL3
Leveaa gen o a S10XL 73 < ¥10x13
= 134 3: sianea
iz 7l C —
LA o oz o T \cmm ol sianca _NIOL g
AOR eV €8 T4l | 62T 3T €lLa/eea 1N0 oviad oW
woova v % 5| 2-aeea
= Y s =] ‘laizza 98d 5
m M. v og MMM M m 9 oraza _ o
— P — # 3] saisza 10 0LINY8d |5
TEq g 8Y k:ic) Tea | rea 8aveza S1¥_0Ldn/ead SL¥oL¥SN
L1areza _ S1070LMN/Zad sLooLsn
T dia < a 9areza @m _w<mvmn_<_>_ NNNmH_O_\‘ DXKHDFKD\E& axyoLysn
BT 9 (o} sanza WND ax.i oLdn/ogad axtorysn
¥0/02a
dOSSLsveSTvrL 150~ &F 75 €aia PINVENIQ/ 72 TH PINHENIG
<180 oT = zaeia INIG
< Elly Yaze 5q| La/Lia ____ _knoa
\mﬂﬂHmd\— oamsia 1NO 17100 N39/L700
et 51| Sodisia 10S4Q/L¥S 31084
Faze Tra| rhodivia aXL_LLAN/0LNOT/Z_IH aXLLLI¥SN01N0a
Per 5] £rodela _GINIT/SLY LN /ZTIH /S181LMN
Ta :w ziodreia 2SO IdSO/SLO LN //Z_ H 2S71dS/SLOLLYESN
Ta T Lod/Lia axy_LLYN/ONIQ/Z_IH aX¥LLYSN/ONIO
ot TTH oLodiora M10LLEN/0TOQ/Z 1H
&0 =ir| 60460 _ _
T > 80dia 9LNITLINOQ/OLNI §1Vd aINKLINOD
- o el LOIAIY LY
oa 92d/9a €0s4areivd
- $0d/Sa 20S4arzLvd
6] ¥2d/iva LSO 1dSO/LIvd
= £0d/ea 003A/0LYd
T 20diea 2 o 0LNOQ/6Yd
Ta = ‘odna 22 % 2 04S4/00S4/8Vd
T > 00400 o 25 B , 9 £1N0Q/ESD 1dSDILYd
el < S — 822 L by 22,9 < S 9e
| = gogo 337549 2008 3323 22 2 m'm
20 3 9999,2%509 ¢R=g 223z 23 @ 'p_ 9%
cm 2100323229248 2 5858 GG =2 Blpma
53 054929453 722938 5888 2928 9m329888 %8m2
O J0dRI3BREB>xx-420 =22z 53z7 GzQREB2S ozzx
TE EERRREEEREERRERE HEEH
dogg 4dogg 4408 6Buiidnooaq Alddns z2z540W . .-
A1s3L- osa
4dogg 4up| dup| dup| dul BnodnLoEniof4ni o GOWIN Tasm
= I = = = e 'sa lz7olso-
2437 6G0[280 290] SZ0] 090] 9801 940990 190]G80[8/0] Lave- feolso-
4\ - . poLsanioL
AE'E+ [e"olisd friosa
vala-
leolvivaa

2/15)

Controller.sch (Sheet:

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

GI/€ 199ys]| °QZ 87 @1 £00Z/5Z/9 9180
ol 00104-¥SN303
iN3d iJ9quny usawnooqg

4811043400704 :F1LIL

10 uo uid Jamod yoes o) asop

uL | dul| 4ul(dnLo (4N AN dul N0

paoeld siojoeded Juj pue 4n|°0 aney o} (g pue O/) 90A oed ;310N C0LD |0CLD [CLLD [LOLD [6LLD |ELLD| 060 L6D

J

ewege|y Yinos Jo AjsieAiun
- szld
ZOZNYL LbX808L O £loso3d
SIU0JJ0B[T 001V -Nd 808l Sx X
E Lo wudio04 AMZ L1LD 10N 65d 95d 1£-0JaxL jo 20n0s oy ‘sz uo
LD SToxy doxy 0¥ 8 6¢ ‘8¢ ‘¢ Suid 0} 3500 S 0ZNY 29€ld ILON
0010 010 A\ 88d 28d
- - 05_0ZNY
sdly G & 22 |52 orsa | S ¥ d ¥ ogg g— P
- (] 05_0ZNY
= 9 g zax13
&6 [T e 05_0ZNY
il L XL 5 |om_“Nm o
LBEESHIY - -
_|.zmo Trsa | S d X g " 0013
N et e | SOX 4O g le"olax.3
Qe - .
o] s XL g <] Naxu3
e — Ll <]¥y3xI3
\ sjeubis
NE'E+ AE'E+ 253U} JO 80IN0S 3U} '8EN UO E€ B 'LE '0¢ '6Z Uid 0} 850P0 SE 6LNY 90€ld “ILON
—= — [>ox3
+13 XL
7 R vI806LNV <3
lby o) 6r [—>>1oxy3
I~ TNuD lelaxL.
[zlaxL [Aax¥3
" [HaxL
iy axiou/iolaxt
- 2aan
zaNed
_ N3XLOHNI XL
ASE+ M107dESOdMTOXLOMMTO XL
AC'SH [ylax¥3™xL
%L [plaxXei3 X
Mol MTOXHOLMTO XS
AQX
9Ly 2 zisa Lanea
79| rxdnisaL Laan
_ go| “xdioLsaL axdot/lolaxd oa
4 anNoD3 [Laxy [e-olaxy
5 x [zlaxy Y
I) =) J0 30108 8} ‘gEN U0 92 0}
uonesado pajenobeu-oine xeldna JeH/In4 e 5 X [elaxy a) £2 uid 0} 8500 81NY 89€Id ‘JLON
1 8S2GO00L/0} SIOBIBS SIUL PN Jou BJ8 0Ldr Pue = MOl 2y +1as/eLsaL San
- 6 ‘8df ‘Zdf 10} SBUNSs JdWN Nejp 3LON o -«.qu ww uldy olan e olaxua
w B oo 0003 sz1dL/10Ido
59| mm.wnn__mn_.u [.mm,zmmm__wﬂ_w__mﬁnw W3 Jo 22205 aU) ‘821 U0 0} Uid 0} 250 S2 6124 2081d FLON
MW k] pmeilos 05 ppp B
o 0/vX 10311 adsaa +0X101/[LIaVAHd oaw3
WW STV SENE WW >
i g 081 Ly J&_p — H_u.mn; X voany ++0X10MZIaVAHd
e} MLY_SENYH adr] [o113s_HoaL +aXHOL/EIAYAHd <__> oan3
]fuﬂl_ﬂe S T H_l_ Edmw:om» -axdoLIYIaYAHd AG'L
M7 SENY — _ Z113s HO3L 1aan0
——Jc TUo5T <l _fn:. OOAAHD LANDO
MY SENY ———joLdr ANOAYO aNOT1d
p T 3 2AN9O Q0ATId
= ~ 200N0 _ NQuMd
QS d8SOdaIINTOL AFVHNIATT .18
e P -
Ly AITTED Eed = 9160371031 NITNaNg
zedqT TS 13803 1,Xda31 5210
g Plyza N3 WY40S:100031 310434
T = omr.-. W L = .13s X4/v18a31.loladsazn LANDL
Sk HINI osl
SHO0L/SHD 4300s!
e 10904100 dgsod
/080 110 Nid ¥} PUE 8 4O
CINK 8en o | o LNHLOOS LNOAV1 1¥NA 9SO L3NIHL3
3 ZHWSZ
N
S¥03 om mm BN - T
1 N0 T
1003 05 Lahyd
7—7 5 =
s|eubls asay) J0 22IN0S By} ‘gEN UO 20N
2Zb pUe L suid 0} 8500 Se EZNY 20Bld 'ILON v L
N 4nLo
ZHNSZ
NS+ 245
1n0 AN
- =
AS'E+ g
€vn
Aee+

3/15)

Controller.sch (Sheet:

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

ST/ uuwmcw_ eQZ:8Z:AT €0BZ/92/9 9180
¥0103§ 1008 WOLO8
o'l 00104-¥SN303 - ‘AMOWZW HSY4 LS¥NE JAIM LI8-9}
N3 T4SqunN »uswndoqg
0094 1d6ZWY QWY
4811043U0] 734 3TLIL
] tssh am ENS
eweqge|y Yinog Jo AjisisAlu -1
| 1 30 by 089~ _
7] 09N IR0 55 3LAE-HSY14 Nd
LY HSV14 Nd
[eeesssse— sidr
7 N o 51V A 7
dup anLo AE'E* o [1A — |
TV 2% 1 SNId SSOMOV O3TIVISNI
PRI 1008 Usel vgoL
1z2Ld 121D 1ed MM »100 iy M|m.wM| QINOHS £1 ¥IJANF - ONILLIS 11NV430
R ST
57 z1oa [432 Ioe
39 1roa ny
] oo o fr— T
e °09 VAN Ea—
800 v
ASE+ v o oa w5
3 ooa o f——v—
— s0a v f———g—
+0a ka4
TV
e £0a oy f———Fv
zoa v S O\ A
i > roa w p——
LS 57| 0 R n v
lie7ola ovn lez olv
Leol p) ——— | 7\
ELIN) dup| 4o E
anvo| dup| anvo| dup
[amo SOLD] 960] S6D[€0iD
vOLO] . 863] 90L3] /63
260 €63
el AEE+
—_ PIOM }G-GL J3MOT NVHAS —_ PIOM ¥G-91 Joddn WvHas
2Y9LNKFOTBYLIN 2V9LNpO I8yl
9SCNVHES 25| YOSSA z5| 7OSsA
_ E£0SSA €OSSA
oz Efa 2 zossn L
o= 280 | rossn | ossa
0 Y H10as 210 | 3M10as
v \|_ Lidr 5] voaan o >10as s voaon od—¢ 3¥100s
ey b o 152 £0aan T £00aan
v i o9 [5 20aan .svO <] 0SVO- 5 20adn .svo <] 0SYO-
Ly Z (124 Z, T Loaan T Loaan B
o HUN cﬁ“m cidr el R SV <] 0SW¥- SV <] 0SVy-
A r o0 bee 5 essa . 5 essa
o 22 7 3 | ssA AN <] IMas 5] ZSSA AN <] IMas-
PP VAN -\ A 23 s rssn s 1ssA
Teq 160 oy £ A € 80 fgr———————————<_] 180 80 o] 48D
o F oo o [g 7| a9 7z | 99
L vO W) i 2
ks 0 7 i I e — R o - e —
49 wm w« [NS+ o0 Woa 7 osg- Ac'e+ on Woa |7 zsa-
lie"ola 4 o T < ing o 2 von e |z Lvaas o1 v wva |z 1vaas
Z4s T T (4 ove ovaas vV ova oveas
6en STg s§iod 8 OHOIUd OLY TEQ stoa 8 p— e Wl ENE NN
S = B i e
i = 200 v
T 7 voa 8v
lez 0l e i [P o
\ o o
i 00 w o
— 900 ev =
ST soa v vl
— ¥0a W -
Ta €0a ov T rA
—~o—+ @0a
~a— ‘o [ez olv
06 IE— ooa
Zen
ledla <—> L L /
lie"ola
TV 7V

4/15)

Controller.sch (Sheet:

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

G1/G f198ys|

©®QZ:8CiA1 €0BC/92/9 i=1BQ

(U 00104-vSN303

1JagunN uawndoQg

4911043400704 FLIL

eweqge|y Yinog Jo AlsiaAiun

LMSNE
omsng
RESY

4nL’o
820
AE'E+
ALY OLNY
§—7
ALY]
9—%
1d1L¥SXdpLD ALy m_..wm
T
MLy 9LNY
5 aN9© 230 |7 T <> 0lsy 9
5] 9oM 130 |7 \
/—\ AE
ASEH o a@
<] % e
o s
iz R zdr
< ¢ —
20z T
14
o1
00 oa b I
[i—]
8n
sLg ek = b
sugze = o
HLaIm SN v1va 13sm
- IS = L '
82N~ 2LZS4ON FHL A8 ATLOFHHOD A3HOLYT 38 OL STYNDIS IMSNE ® OMSNE “T3SM 3HL MOTTV OL - 0 i
8N 40 SNId 318YN3 LNdLNO JHL 3AA OL A3SN 38 LSNIN TYNDIS OLSH- 3HL ‘310N LNV.LHOJNI = I3 0
= 0 0
ousna msng

=

V310~ 2 1383y ‘080 IS0
51080 ‘Lig- SIEUBIS U0 pasn aJe sJ0isisa) dn [Ind .7 :3LON

2dr ¥04 11NY430
2dr ¥04 11Nv43a
2dr ¥04 1INv43a

(0)a3LLIE S TESW (9

[e olvivaa
Sy -
vELD LNOO_
vaLa- ° o
M101SdOL 1 7 z
s ol
o o OVIVaT
TVIvaad 2vIvaa
vIvaa ° o OIS
115d 1Sd
© O
0sa BALSE 1o ofx
1sa <> 13sT]
—to o
3108a
Ldye- 1o of—
JopesH mag

NE'E+

[e-olLsd

<] le"olvivaa

10553001 2425 4D BU) UM PaSN q UED
3lqeo BuibBngap Wag AE'€ 8 ATNO “3LON LNV.LHOCII

[e-olLsd

300W Wag-Z % | SNId N33wL3g
NOLLISOd ¥3dWNr [1NV430

i

a8 171Nv43a - 300N 9N83a €
vdr{z

AE'E+

NOLLYY3dO
TVINHON - 2% | SNId NII138
NOILISOd ¥3dWNF 11N¥430

€
4
T

i

300W 1831 222830Ng 4o

AE'E+

2% L SNId N33ML38
NOLLISOd ¥3dWNF 11NY430

N3L3SIHa-

AS'e+

|

5/15)

|

Controller.sch (Sheet

z
€

QOWLW

1831

9dMl 3530 nvuas

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

G1/9 199ys]| ©QCiBZ @1 £@AC/9C/2 i81BQ

0l R
T 00104-vsSN303 sJoquUNN 3USWN20(Q

4811043400704 :F1LIL

ewege|y Yinosg Jo AlsieAlun

ANNOYD

0ldL

Y2070 Nvdds

mH|AH_ 51008

2193738 dIHO

NT. JASIo

010373S dIHO

vH|AH_ 0s0-

318VYN3 1nd1NO

9LNI/LINDA

VLNI/ENI

vala-
osa
olsy-

SINI/SLdlldsn

L 10373SdIHO

mWnﬁ|AH_ bsor

%0010 NdD

mTQu 1X3 NdO

2 19313S dIHD

QT. [Aon

378VN3 3L1EM

edl <7 aw

MOV HOHY3 ¥IASNVSL

—TO vala-

180~
980~
G680~
¥SO-

osg-

Lsa-

88
€sg-

T

= NEE

|| o] o}

4nLof 4nLo
= ==
S¥0 9€0
dOSS1¥yesST
1 =] °
W bA
m" & EA
i AR
o A
gern
dOSS.1¥r2s
— o
W pA
2z B
—— — v e
[E2N
BOT [4
veln
dOSS1¥yesST
1 =] °
W bA
m_— &Y eA
] v e
o A
aeLn
dOSS1¥yesST
—d o
— v A
] v A
— v e
oo = B

(610101 [Se— V6L

v1-/58d
LINI-
ELNI-

CINI

€80~
280
1SO-
080~

zo1ay-

< Lolay-

D B (P

JLAG-HSY14 Nd

6/15)

Controller.sch (Sheet

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C

:05

10/13/2003 04

G1/Z 119943] ®0Z 18201 £002/92/5 to3eq
0l i
bl oorosvsna03 C JoqUIN USWND0G

4971043U007 04 :3TILIL

eweqge|y Yinosg Jo AlsieAiun

ZNIVHO
Og]
Om
Ot
O——l—
o——
o——
9l

vZ_<Iou|
Og]

ONIZHHO INIZLHO ZNIZIHO ENIZIHO INIZIHO SNIZLHO ONIZIHO INIZIHO
——
0SNAZIHO (1SNBZIHD ZSNAZIHO [esnaziHo [rsnaziHo SSNAZIHO 9SNAZIHO 1SNAZIHO [£0INIZLHD
/
N > lcn [~ N s n S
2| »ou 21| o 21| »ou 21| ot m oL M oL M oL M oL
3 m 5 m 5 m 5 m 2 m 2 m 2 m 2 m
> @ T~ O o O T > @ Ts O To O T
| £ E £ E £ £ E
o O 0] (e} O
N [4424\14 V2ezeNe V2ezeNe \{2424\14 V2ezeNe V2zeeNe V2ezeNT N [4444\14
6101 *z0 210t %560 siot 750 Bs) o) o0 seot szof™ [kds
g g g §90 30 6¥0
HnLoo'0 HnLoo'0 HNL000 HnLo0'0 HnLoo'0 lnLoo0 linLooo lnLoo0
——
and
(=}
<
V4N
@
)
3
S
=
0LNOZIHD 1LNOZIHD ZLNOZIHD £1NOZLHD ¥ 1NOZLHD S1NOZLHO 91N0ZIHD £1N0ZIHD 1
—
\ 0SN8ZIHO (1SN8ZLHO ZSNAZIHO [esnaziHo [ysnaziHo [ssnaziHo 93N8ZLHD £SNEZIHO [2701LNOZIHD
. ele] P dle] l» |€LQ /.H 0zd o pLa P A8Ld i _p1a
2 ol | 2 sor[| 2 o g o= ok IE
g m & I g m g m B3 iy o)
o > [0 o0 i e [~ o
g g
(<] =) O (=] (=] o
V2ZCZNT YZTTINT| V2ZeeN YZTTINT (444414 VZTTINT| \ (444414
"ged Jco “7€0 440 " 720 J'0 "g10 110 “elo P "£90 §e0 "250 10 .
4nL00°0 4nL00°0 4nL00°0 4nL00°0 4NL000 4NL000 401000 4729
4nL000
N
oNY
<1
OOANZLHD

10/13/2003 04:05:27p f=0.62 C:/EAGLE-4.X/projects/project1/FC_Controller.sch (Sheet: 7/15)

G1/8 :199ys]| ©QCiBZ @1 £@AC/9C/2 i81BQ

ol 00104-¥SN303
iN3d iJ9quny usawnooqg

4811043400704 :F1LIL

eweqge|y Yyinos Jo AlsiaAiun

ONIYEHD INIVEHO ZNIPEHO ENIPEHO INIPEHO SNIVEHO ONIVEHO INIVEHO
f——
0SNAYEHD 1SNAYEHD [2snaveHo (esnaveHo ySnaveHO [ssnaveHo [esnaveno [zsnaveHo [£0INIFPEHD
/
209 a0 Bl 2 B BNl B
vz_<Iou| z || »or z || »or z[| »o F4 z || »or Z || »or z[| o
O5 > m @ mi ok _Jm o @M m ok m ok Jm
E g g E g E
Og o o o o o o
V22TINT V22iiNg VZ2eIN VZ2iiN V222INT VZ2TINT V22iiNe
Oy g s 9€0[€e0’ LED' v [449) [oige) 8E0| Umjn_
1433¢) 662 680 vELD 6210 €cLo
Ogfosmavgo HNLoo0 HNL000 HnLoo'0 NL00'0 HNLoo0 HNL000 HnLoo'0
Oz e
Ot e
[]
S
SENY
o
e 0
Ve
©
=
JB
S
mz_<1uu| -
Oz
Os
TP
01NOYEHD 1100¥EHD 2100vEHD £100vEHD 1N0YEHD S1NOVEHD 9100vEHD L100vEHD
T |
\ 0SNaYeHO “wjm:zo szm:xo Km:mz:o xm:mz:o szmsxo ijm:zo szmzxo [£°01LNOYEHD
TSI
oS
5 zenalo| 120
o
*orrhYeeeeNs e VezzeNe 51D Ro Ne— o fgeene o o Yeezane— o rzzeeNe — nearezzane ———
LED ¥€0 €0 € Ejgel el (129} 6£0 asand
4nkooo 4no00o 4nooo 4niooo 4nL000 4nL000 4n1L000 4NL000
S
0ENY
0
<]
O0ANPEHD

10/13/2003 04:05:27p f=0.62 C:/EAGLE-4.X/projects/project1/FC_Controller.sch (Sheet: 8/15)

G1/6 f198ys|

®QC:8CiA1 €00C/92/2

1918Q

o}t 00104-¥YSNF03 T
N3 S 149qunN uswnoog
amvol grvolamo[gmvol ol anvolsmolmig| ol gl
4911043400 34 #FILIL 180 €80] L.0] e/D] ovd] 620] 210] 9ovd] 8vd| 263
Slievzla e
447HOZdD
447dOzZHO
THOZaONF << QHOZdOM-
TIIeAoT << adozHoY-
TRz
TaAOE
~oROzaos
dOSSIVIES V7. dOSSIVIESTVY. TRICION™ +UdICHY
~aROzETE
o 10 maozmom dOSSLY/STVhL
L—d o0 —
\O ¥10
€l
8o = as g TN 08 a8 |7 TN HOJ—T
TEq & 7 ac oL THTOTIN OL AL |7 ogoeNg
= as 09 o9 a9 e a
CTASH: N7 R toes il os as 2 » o 3w b4
vEE0a
] o o sy o av [— ° =
q ae e TN Ot QE [—T—mmom dOSSLyveSIvrL
T 7| % 02 THEOEN A dOSSLy/STvh.
vca g ¢ | 9 = THEOTaN oL al THEOTaN 9 Or o o
b
[270INIPEHD [Len Oen o v B N -
SSLELZSTVYL oA 2 I I
JOSSLELES Y T A = 601 a |5
91
10 v|F TIEITa T LA W z ot 3 o 34d v|Av
[270lLNOYEHD HIO<I—7 ~TOvER v v
o <1 ¢nd
9LNOVEH; 80 80 g —mEoraNg JUSSIFFeS 97 JOSSIFHCS TV EOweroes
SLNOVEH: L0 L0 |7 —dmmoEng
PLNOVEH: 90 90 |—jr—gmmEoENg 7 © q ©
£1NOVEH: SO SO [—r—mEEoENg e
ZLNOVEH: vO va |5 TEOTING e PV YA I TEIAN e e YA fZT—raEoeN
ZLNOVEH: €0 €a [T TN g A €A o mmeN] Naucoa B €A |T7mEomeN T
LLNOYEH; 20 20 [——EEoEN gicrr AN e 2 ZA [gr—Tamor T
0LNOYEHD 1] \a [TN “wero | Y WA 5 vEmoeN] huuzocenr e [
Sen aren vIEn
dr839101d
- g Rk —<Jo18Y-
[0zt HD > I o ssh g
dosslelesTvyL T [i
T
evd
[270]LNOZLHO %_on_l. — pvamiooL
T —aoTT
mm wm__ BT TN JOSSTHHCS 97 JOSSIFHZS TV ETeTHos o il
90 ea ﬂ “uunn = © d ° LBUOIdH =N 2080 [
SO S0 [Ny Z8DIdH: eay _
vo v0 -3 TN o | YV YA I TEIAN wers g | YV YA =T HEOTaN £8UOIdH: vad 13S0 5 <710031970id
€0 €4 [TN Eiras e MO A 5 TETOTEN] e 5| €Y €A T —mmoang PEUOIH: S8y
20 20— e AR s TNy] &Y A [savoIdH o8y
10 \a TN e LY B w3 TN ez Y WA T TmIreN] 98HOIdH: L8d [o
1en avin vrin L0 2en
[2-0lg¥01dHD

9/15)

Controller.sch (Sheet:

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

G1/01 193ys|

©QCi8C @1 £0BC/9C/2

131e(

ol 00104-¥SN303

N3

149qunN yusauwndoqg

49710 AAU0] T4

AL

eweqge|y Yyinos Jo AlsiaAiun

=]
@G@M w ZA
X070 Jid 1

¥001070Id"an

=> [270INLS¥AT
a¥y3aTy- > TEET
dOSSLybeSIvhL
9
dOSS1€.28TVrL non
o ¥ [N
asadam = g 10 YN
_ 0]
reg g e | %9 80 SLbZSIvhL
i) 7] La L0
B 7] 9a 90 9 T
4l T sa SO
[4 va 0 YA i T
7 €a €0 €A eV 9
= za [4e} ZA A4
e AN
- o <__1[z70lNuy3an
lievzlaa <
447a12do <57
aazdom-
Sl — dOSSLy.ESTVHL _
HOJ— TUTZaoN
20 T pulears oy
olsy- [_ dOSSLy/STvhL
dOSSLyresIvrL — TEq_ g
0Ed_"
s ba savoan 50T
o S g
YA WY sauolda YAOR:]
A &V m" z@soia mNdumI\
A i olsysn- \auoiaat T
B ms 00197017 8N oauolda SZAR]
e an
dr849101d
[ssn . ovy |
SSA ovy
9 T oroT
v _ﬂ Rerior
_ o o
evd a
ZHWN8 PYH/INO0L o
1no_ 9 T 3| w08y g om0
= 1y 1g80ldaT
37 20s0 288 T\ zauoldal
gy £8u0IdaT
S 2 4nLo _”V|o_ 10S0 yad [F——\J rewouc dOSS1€.2STVhL
S0 ozt 50010 Jid sad [T swoun
49 ZHNg 0 o oTSE pe Gk
o Ao 1] aan 184 f——] mouen ~qoTT TP —
= cen e o)
S saroIda1 T La ie) STroaT [z 0lLnoal
D0A sauoldal 7 9a 90
B rasoial T sa <o
sn £8u0IdaT ¥a YO
& Zmoid0n £a €0
< 1ol 71 @ o
e =@ o Tmoa
vEN

[2-0layoldan

10/15)

Controller.sch (Sheet:

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

GI1/11 $198ys|

®QC:8CiA1 €00C/92/2

1918Q

ol 00L04-¥SN303
e

1JagunN uawndoQg

4811041U007 34

71T

eweqge|y Yinog Jo AlsiaAiun

WEnd <] slalje)] 2av01
mO mO
O O
SRRk 0| EHEE |0
g - <O § 2 =0
o o T g P SR S
4 @
—O fo
T ar
; O_Z._.wmﬁ_n_ ONLS¥A1 INLSHAOT ZNLSHA1 ENLSHAT PNLSHAT SNLS¥AT ONLSHAT INLSHOT
=
jin ko PN
ot apre [| gpe | I_Iwa,\o._ I_Iun_<o._
> - o
HNLOO G HNL0o ¢ HNLOO G © ©
grLo]o ;010 200 BER |0 ERE | .0
w VZZeeN vezelN vezzeN g EE |¢
250 90 €0 ML o b
R | o REK | o
L L F
[l i O oy O
. [— Lk B L B
i © |k 0
0 o
T or
L
INYY3AT INYH3aT ZNYY3a1 ENYH3AT YNYH3AT SNYH3aT ONYH3aT LNYH301
[2-0INyyaaT <<
I_lvm<o._ I_lmn_,qo._
50 50
| w] wjw) =] w] w)
| BRE |© | BRB | ©
Rk | o Rk |©
L L F
=0 =0
b F 0o E F o
4 1k ¢
0 pS
i T
owvaat 11vaq1 z1va01 c1vaa1 »1va01 s1vaat 91vaa1 11vaa1
0Lnoal 1Lnoal Z1n0a1 €1n0a1 v1n0a1 SLnoa1 (9Ln0a1 £1n0an
lolinoan = | ! ! ! |] avo1 avol
mo mO
| O | O
E Pl 3 Ee]
E F E F
| E [<l E I 0
E I 20 | B 729)
4 4
—O fo
[vIr St
LLLLE
e I£-olvaan
: 0PN
3 " [z okwsaan
= NY [27olisya1

11/15)

Controller.sch (Sheet:

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

G1/21 f198ys|

®QC:8CiA1 €00C/92/2

1918Q

ol 00104-¥SN303

N3

1JagunN uawndoQg

4811041U007 34

71T

eweqge|y Yinosg Jo AlsieAiun

STVYNOIS W3aon

4nko 4nb | 4nko
Tl T

73] 0eD[F €e]]

AN

8ETXVI
NIvd LNOvY SO-1dS/SLOLLYSN
¢SI0 9ol Ll
axag 7 Nied 1noed |= X LLYSN/ONIA
e} £ Nizd 1nozy | SL1O014sn
v 7 N Lo |5 axdoLdsn
1NOYL NIvL SINI/SLYLIYSN
mm._.w ww 1NOSL NIEL _%_ axLi14sn/o1noa
T T LnozL NiZL |7 SLyoLly¥sn
e 7 LnoiL NIl | axioLrdsn
e E
A @ I 4nL
1w T S
o [4e)
ong3ada |_| el s
4nL A B 4nt
|m\-.1 = " 9 Jon i
1< 5] 020 o] 610
o7 TxT
s1< T
H
Ldi—~J
dOSS1v0STvYL [levela™a
O1SY < 5 5 < 0Llsy-
WSL10- =T
T Ee 2810
e > d0SSLYOS VYL ———] fz0lv
T ML ST T
axt gsin T azes91L0d
YOS TVY.
dOSSL1y0STVhL sd emw a
= -van 9a
LINI- ﬂmr: E — M FAINI sa
e VNI va
Zd -8rauxL ea
8EZXV =S wvaauxt za
1a
- =71 Nivd 1NOYd =7 = «8S10 oa
$ NIg¥ 1nogY $ eI .8sLy
NIZd 1nozd = «84¥Sa ISHO
B 2 TSI
L-zeTsy 7| NIk Lol 5 TETT ~8d1a 2v
|A\J =51 lNovL Bl ol o
— = LAl ov
1 M —0m | noc o s aNis
7 T ST T Linozl WORT a1nos M -
o TR 7 Lnowr a pp—
T TYSTO o “VS1O 89 Dgr < < SO1¥vNa-
ani, — 5 VSLY
—5 -vusa
€0 g «vula
s " —25C] va0d N |7 - -T-
n —q v MS'L
4ny T — WYNIS 1NOX 4dzz 4dzz
— VINOS NIX m__ HY == 150 = 00
220) |=H=|A
H O
= Lo ZHWZEY 8L
[INF <% =500
- =
[CRATLN E

12/15)

Controller.sch (Sheet:

ect1/FC_|

0]

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

GI/E1 f188ys|

BQC:BZ @1 £00C/9C/9 i8ikQ

0l
N3

00104-vSN303

$J9quNN yUaundo(Q

4971043U007 04 :3TILIL

eweqge|y Yinog Jo AlsiaAiun

AY

LH41v$Z2dS

90N aniaxLt
J1L1axy .aNIdLa
S1LLaXL aNiaxy

o
B

&)

JLLE aNIaod %
~1L1dsa EON ==
S1LISLO N |77
.111aoa
SLM1a ION ==
BE S <] olsy-
051-009d.L
==
Z]
2-G2p02s
_HMU«I 5] SN
]
Ea =™ onis
T
i 051-009d.L Fo| S diL
m& zn
waoa- <1
ny- <1
< and
A aosand
98/LHO
wsLo- <t L
<1 ¢
naxy — onw PON |
€ON |5~
2 7] 9 N
X ION |5~
q -sH
T flelele]
< NYLa-
T <1
- sa 410
T o axi < waxw
—{ s
- ™ WXL
—{ 43318 18y /<< olsd

[xel}
clLol
eLol
viol
SLOl

L0l

=51 0lol

MS 940

90I

SOl

Ol

el

col

LOI

([e])

Ee] <144 dozHo
] <144 Hoedo
oTor <1447 aTedo

dOSS18eLSTVYL
aniol

N |[2270lV

10/13/2003 04:05:27p f=0.62 C:/EAGLE-4.X/projects/project1/FC_Controller.sch (Sheet: 13/15)

G1/+#1 198y4s|

©QCiBZ @1 £@AC/9C/2 i81BQ

0l
N3

00104-vsSN303

149qunN yusauwndoqg

4811043400704 :F1LIL

eweqge|y Yyinos Jo AlsiaAiun

809XV
— -0dd 1Hd |5
- ON aNO T
1353y < —{ -s¥o0n |+ 2
= 1Sd AN T H T 4 H
v €
a3113sM a3y
Laa R # n
328
N
AEE+
ZHN99
1n0_AINOI—T
= =
.
Q0N 7 4 _W L
— M | 7o i)
— €Ly ZHWSS
10713 Ndo ¢
1no_AINOI—
- =
00A |
€N
"
@
@
<

ZANYO

dOSSLy.SIViL

olsy-

SO~

SISEW|

fH

[Le-ola

J 55a
e+
<] ¥¥and
2/4n0001
” L)
0
YEHOHEMS
06030y
<1 ¥ [z
OOANYEHD 28
)
K
N .
N V2zeeNT WSk
) W
ol g b
@ $00YNL 018y
W ! W €a H3IMOod
_ 1sa o
O TS |iadg 9
2/4n000L mo
ZIHOYEMS ?O
06030y
<3 = 0
D0ANZLHO e
z0
0sa
%) _o
orr
UMd “
2sa
¥Mdnd
any | Awanozy H ALIANOLY H H%Nméz
801 r 8zl ﬂ.fm:u
601D zvn mﬁo *NLOLS L])
aNo _ aNo _ WM
Ne'e+ < . no no -
| e -
Jojenbei Age LN 35 06030Y
208 < 4
<1

00AN

10/13/2003 04:05:27p f=0.62 C:/EAGLE-4.X/projects/project1/FC_Controller.sch (Sheet: 14/15)

G1/G1 :1984§

©QZ2:82:01 £BAZ/92/9

2180

0l -
N3y 00104-vsSN303

149quny jusunsog

431104140070 4

F30LIL

ewege|y Yyinosg Jo AlsleAlun

PoAOWSI £ PUE Py ZEY S! [eUBIS HaUNgSN a4 Jof Buyss jineea

dupf dup|d4nio
ovLO | LrLO | 9eLD

4nLo

AEe+

LLIENEOY8KZE N
e

62
A
V!

B

SIOWVHOVA 'OSO NIANId ¥1 8 8

HO4 LNI¥d.LOO4 LNOAVT - HOLVT1IOSO 8sn

N 2z
M1071X3 8SN < }—AWW——+
Iy

- =
Bl = 7s Lo

7L —
ZHNSY 663

AE'E+

L11L0EAgNIN
pae) MN

Ae'e+

dL"asniovd
NLT8sn/evd

L1110eagnin M
sed

e

/

£+

MW
WW-

Mdvildasnidd

HaNPEsN
Ny d d = 5 1aNasn
gl 1dzz gl PeAOWIS] 8231 PUE PaN 08 S1 [8UBIS TUIESN 50 10] Bumas Inejad
81 235 0613
=38
#
>
B B VLLLLESN PIoNES PUE VL LESNIAd
M sl - 318 11cH00} G0 34} USHEUY 12U} SISASIOUE EWIEIYS SJa1SSO
W
£ Lo pareindod Jou i (GiN) JeAIBOUE} [eUIBIX® BU) PUE (| L) Hod gSN BY} 0} N0
=8
» B3 1Bno1q a1e JaASIOUEAL SN [EUIBIUI (82N) 222540 BU 40 Sincino sy Inejsp Ag ‘FLON
3

-3 ON
ano T
ol a3ads Y3AIFONVYYHL 9SN _
anasns 5 <] dsns asnivvd
a A
H +a WA NyZgsn/evd
an dyasn/vd
o L 2 axyasn/evd
T 03S4/IONA _
.30 <] NaxLEsn/svd
T O0A 3aow n
il
A+
NN
28 L NI3ML38 ONILLIS vI ¥3dNNr LINvY43a
300NESN pges
[

15/15)

Controller.sch (Sheet:

ect1/FC_|

0

/EAGLE-4.X/projects/pr

27p f=0.62 C:

05

10/13/2003 04

APPENDIX C

Data Acquisition

LJAD/ANCE
TECHNOLOG/IES
10/27/2003

GIFCO DAQ Module Description
Ali Mehrabi and Dean Li

1. Overview

The Grid Independent Fuel Cell Operated Smart Home Project (GIFCO) is a study being
conducted by the University of South Alabama (USA) and Radiance Technologies (Radiance).
GIFCO involves learning human living patterns in a house in order to manage the peaks and
valleys of typical home device usage. Electrical load management will be decided by the Smart
Energy Management Control or SEMaC. The GIFCO team plans to track living patterns in
several ways with a Data Acquisition Module (DAQ). The DAQ will monitor home device
electrical usage on a per device level, and also monitor room environmental data as stated in the
GIFCO Requirements Document in subsections 3.3.1.1 and 3.3.1.2. The environmental sensors
consist of two packages including the Environmental Sensor Box and the Occupancy Sensor.
Electrical usage will be monitored by current sensors placed in the relay box. All sensor data will
be sent to the multiplexer, and then to the SEMaC.

2. Environmental Sensor

The Environmental Sensor Box will house the temperature and humidity sensors while
also receiving the input from the Occupancy Sensor. Incoming power to the box will be +/- 12V.
The +12V supply will be fed to a LM7805 regulator which will output +5V. The +5V will be
used to power the Humirel HM1500-ND humidity sensor and the LM335 temperature sensor.
Their outputs will be connected to TLO81 op-amps which use +/- 12V to supply power. The
output of the op-amps will then be sent to the SEMacC.

The data from the motion sensor is inputted to a 74HC123 retriggerable monostable
multivibrator. The input data is expected to be a normally high +5V which will trigger the
multivibrator when it goes low. Once triggered, the multivibrator will output a signal indicating
the room is occupied. The room will stay “occupied” for an amount of time that is adjustable by
means of a potentiometer up to a period of several minutes. Every time the multivibrator is
triggered by the motion sensor, it will reset the timer and continue to show occupancy. If no
more motion is detected within the set time period, then the multivibrator will shut its output and
the SEMaC will see the room as unoccupied.

3. Occupancy Sensor Logic

The occupancy detector itself is described in the Occupancy Sensor Study. From the
study, we concluded that the sensor needed some modifications in order for SEMacC to track room
occupancy. The unmodified detector has two different types of motion sensors. It sends the
signals from the two sensors to an AND gate and outputs the signal from the AND gate. The
modified sensor now sends the two signals to an OR gate. To do this, we took the signals from

Company Proprietary Information — Use Restricted C2
UNIVERSITY OF SOUTH ALABAMA, revision 2, printed on 11/18/2003 3:51 PM by

E TECHNOLOGIES

two legs of a tri-state LED that indicated which sensor was being set off by its output color. Each
signal was sent to the positive input of its own comparator. If either legs of the LED went high,
then the corresponding comparator would output a signal. The two comparator’s outputs are

connected to a OR gate and then inverted with an inverter. The additional logic resides on a small
pc board that fits inside the housing of the current motion detector.

4. Current Sensors

Current sensors are used to determine the power draw on each device or circuit. 20A
sensors (Bicron EX9LC200) are used for the smaller loads such as lighting and 50A sensors
(Bicron EX9LC500) are used for the larger loads such as the oven and HVAC system. Twenty-
four of the 20A sensors reside in the low current relay panel box and two are in the high current
box. Ten of the S0A sensors reside in the high current box measuring 5 loads; each sensor
measuring one leg of the 240V input. The outputs from these current sensors will be connected to
a multiplexer board and they will be read by the SEMaC.

5. Multiplexor

There are thirty six current sensing transformers monitoring the current draw on every
electrical circuit in the Model House. The corresponding output voltages (using Linear
Technology LT1966 RMS-to-DC converters) of these transformers are sent to the SEMaC
computer’s analog-to-digital converter circuit (Measurement Computing PCI-DAS4020/12
analog-to-digital converter board). The information is then converted to digital format and used
by the SEMacC intelligent software for power management. A total of forty eight channels are
used to receive power draw, environmental, and occupancy information. The information from
the forty eight channels will be sent to a multiplexer circuit (using 74HC4067 analog
multiplexers). The job of the multiplexer is to route the information from each channel to the
analog-to-digital converter in the Host PC one channel at a time.

A block diagram below shows the basic components of both SEMaC and SHC and their
communication links. Further below are the schematics for the environmental sensor board,
motion detector logic and multiplexer.

Company Proprietary Information — Use Restricted C3
UNIVERSITY OF SOUTH ALABAMA, revision 2, printed on 11/18/2003 3:51 PM by

ADIANCE
TECHNOLOGIES

Fuel Cell Current On/Off
p Monit Sensors Sensors
Buer moniter ‘Status status
MUt plexer

AD Converter

SEMaC
Core

A
)
T

14} &

|

gﬁ Interface g

I!

HadeStau

Loads
Load PIC Hardware
Command
Load Switch [{Owverride:
Status || Status || Status |

TR TA, L=

L=

Ll L]l

Motorola ColdFire
Integrated Microcontroller

Fig. C1 SEMaC and SHC Communication Links

Company Proprietary Information — Use Restricted

UNIVERSITY OF SOUTH ALABAMA, revision 2, printed on 11/18/2003 3:51 PM by

C4

J1

Incoming Power

us
LM7805

3
VIN 2 vouT
o

uF A~ c9
0.1uF
+ C10

+5V
[}
~ 10uF

1

+12V
o

—
P4 J4 C2
z Tl w
S = TLO81 [
vout (2 2 2 3
=) 6
] 2
C\ U4 e
Humidity Sensor
il Y
o) = 10k
-12v c4
0.1
Power Supply for the Environmental Sensor Circuit =
A
+12v
+5V
y R2 1
15k c5
C X — C
= Jd us 53
TLo81 OUTPUT
R6 3 1
Input from OS Red LED R11 o d 3.3k 6 2
- 10k 2 3
2
3 D1 b
LM335
| U6 =
+5V LM311 R4
- _q 10k
= = I 01
UBA U9A =
74HC32 74HC04 S
3 1 2
+5V +8v
S Output to J2 P
Adjust for 1.4V DC | J2
B FROM MOTION SENSOR E
1
R7
= R12 3.3k = c1
10k A9 0.1uF
2 = =
Input from OS Green LED 3 +5V U1A
_ <) g 74HC123
~ u7
LM311 R1 1 [o QM3
+5V || 50k c3 25 o
€L 1000uF = als
= H(14 | cexr
A 15 REXT/CEXT
3| == z
+5V CIR ©
+12V DC u10 Q
LM7805
VN 2 vout]
Adjust for 1.4V DC |_O =
+ C12 - P
4.7uF T~ C11
L 0.1uF Environmental Sensor Circuit A
Radiance Technologies, Inc.
= [Title
<Title>
. . . . DAQ MODULE
Comparator Circuit +5V Power Source for comparator circuit 7o Document Number 9 ov
B <Doc> rA
Date: Thursdax October 23, 2003 Eheet 1 of 1

APPENDIX D

Graphical User Interface

The Graphical User Interface

The graphical user interface (GUT) is written in C"™ using Microsoft Visual Studio C™

version 6.0

and Microsoft Foundation Classes (MFC). The program is Windows based, it provides the user
with a graphical illustration of the target home. The view of the home is a scale drawing of the
home being controlled indicating the locations of all doors, windows, closets, etc. The full view
of the home shows all controllable appliances including lights and electrical outlets. Each of
these devices has its own associated icon. Occupancy status for each room is also indicated on
this view. A mapping of the various icon types to the individual appliances in the home is shown
to the right of the home view. A bar graph illustrating the instantaneous home power
consumption is placed immediately below the home view and, immediately below that, a message
box indicating communications from the SEMAC. The SEMAC contains the intelligent system
that maintains total home power consumption at or below a predetermined maximum.

The icons representing the various appliances and devices within the home are color
coded to indicate their status. An appliance that is off and drawing no power is indicated in blue.
A device that is on, and drawing its maximum power is indicated in bright red. The GUI has the
ability to illustrate appliances that have been dimmed or are not drawing their maximum power
level with shades of red of varying intensity. Lighter shades of red indicate lower power
consumption with deeper shades of red indicating progressively higher power draws. This
permits the user, with a single glance to determine the state of every appliance within the home.

The GUI has been implemented to permit the user to examine the status of an individual
room more closely if needed. The user can click the mouse on any room. This causes an
expanded view of the selected room to replace the view of the home. All appliances are still
visible. In addition, sensor data indicating the temperature and humidity in that particular room
are added to the display. In the expanded state, the user has the ability to control the appliances
in that room. By clicking the mouse on the icon for an individual appliance, the user can send a
request to the SEMAC for that appliance state to be changed. Clicking the mouse on an appliance
that is presently on, sends a request to the SEMAC for that device to be turned off. If the
appliance is presently off, clicking on the icon sends a request for the device to be turned on.
These actions using the GUI are only requests. The SEMAC does not have to honor them. Again
the SEMAC is charged with keeping overall power consumption below prescribed maximums, so
if a user request to turn on an appliance would cause power consumption to exceed this
maximum, the SEMAC may ignore the request.

When an individual room view is maximized, all information usually visible on the main
view is still present except the overall home view has been replaced by the individual room view.
In addition to the bar graph indicating total power consumption, another bar graph indicating total
power consumption for this particular room is also displayed.

As indicated above, the GUI is implemented using MFC. The classes defined in this
program are illustrated in Figure One below. The relationship among the various methods
defined in the program are illustrated in Figure Two, Figure Three and Figure Four below. There
are three independent threads in the program. The first, illustrated in Figure Two handles
drawing and maintenance of the GUI. The second, illustrated in Figure Three, handles
communications with the SEMAC. The third, illustrated in Figure Four, handles appliance
manipulation using the mouse. A complete listing of the program is attached.

D2

Room Folding Opening
Door
Closet
CObject
Applicances [«——— |
CLabel Door ApplianceSt
at
ListSemac

Windows

\ 4

CTypedPtrList

objects
rooms
doors

type

folding doors

openings
windows
appliances

Figure D1

Appliance
StatusSemac

Inherits from ——»

contains

D3

Figure D2
invokes

v

Room::Room(Door::Door Window::Windo

A A A

Home:: Home::AddDoo Hoome::AddWin

A

CFuelCellDoc::OnNewDocument()

v

Home::AddCloset

Home::AddApplica

Calls

Room::AddCloset(..) Appliances:: Applian Room::GetRoomID

ta tha vanm tna which

v

A 4 A 4

Home::SetMax

Closet::Clo Room::SetMaxPow

D4

Figure D3
invokes

v

CFuelCellView::OnlnitialUpdate()

A 4

SemacClient::StartSemacClientThread(Cview::

A 4

AfrBeginThread(SemacClientThread,
m_hWnd)
will invoke SemacClientThread...new thread

SemacClientThread()
receives messages from semac
server

D5

Figure Four

invokes

v

Right Click on an Appliance

A 4

DFuelCellView::OnRButtonDown(.

A 4

SemacClient::SendRequestMsgToSemac()

D6

e
THE GUI INTERFACE PROGRAM. THIS CONSISTS OF MULTIPLE C**

//// WRITTEN IN MICROSOFT VISUAL STUDIO C™" VERSION 6.0 USING

//// MICROSOFT FOUNDATION CLASSES.
T

// FuelCellDoc.cpp : implementation of the CFuelCellDoc class
/l

#include "stdafx.h"
#include "FuelCell.h"

#include "FuelCellDoc.h"
#include <iostream>
#include <fstream>

using namespace std;

/*Creating COLORREEF objects that encapsulate RGB color objects

*/

COLORREF HOME CLR(RGB(192,192,255)),
ROOM_CLR(RGB(255,255,255)),DOOR_CLR(RGB(255,255,255)),

FOLDING DOOR_CLR(RGB(0,0,0)), APPLIANCE ON_CLR(RGB(255,0,0)),
APPLIANCE OFF CLR(RGB(100,100,255)),PORCH CLR(RGB(192,192,192)),
WINDOW_CLR(RGB(255,255,255)),0PENING CLR(RGB(255,255,255));

#ifdef DEBUG
#define new DEBUG NEW
#undef THIS FILE

#endif

I
// CFuelCellDoc

IMPLEMENT DYNCREATE(CFuelCellDoc, CDocument)
BEGIN_MESSAGE_ MAP(CFuelCellDoc, CDocument)
/I{{AFX_MSG_MAP(CFuelCellDoc)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
/1Y AFX_MSG_MAP
END MESSAGE MAP()

T

D7

// CFuelCellDoc construction/destruction
CFuelCellDoc::CFuelCellDoc()

{
/I TODO: add one-time construction code here
h
CFuelCellDoc::~CFuelCellDoc()
{
POSITION pos = homes.GetHeadPosition();
while(pos != NULL)
delete homes.GetNext(pos);
}
BOOL CFuelCellDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

// TODO: add reinitialization code here
/I (SDI documents will reuse this document)
homeCount = 0;

homes.AddTail(new Home(950,650,HOME CLR));
homeCount++;
Appliances::setOffColor(APPLIANCE _OFF CLR);

//cornners of room
int array r0[40] = {25,50,400,50,400,400,25,400};
int array r1[40] = {400,50,775,50,775,400,400,400} ;

//closet
int array r2[40] = {25,50,100,50,100,125,25,125};

// rectangles for appliances
CRect rectFKB(200,210,250,260),rectFGR(570,205,620,255),
rectW(35,235,85,295),rectDW(345,235,395,295),rectD(35,165,85,225),
rectS(245,55,310,115),rectR(160,55,235,120),rect WH(350,65,395,110),
rectHVAC(35,60,90,115);
//rectangles for lights
CRect rectLGT1(210,150,240,180), rectLGT2(210,330,240,360),
rectLGT3(580,150,610,180), rectLGT4(580,330,610,360),
rectLGT5(25,405,45,425), rectLGT6(750,405,770,425);
//rectangles for outlets
CRect rectHWO1(330,55,350,75), rectHW02(200,375,220,395),
rectHWO03(30,130,50,150), rectHWO4(375,150,395,170),
rectHW0O5(405,120,425,140), rectHWO6(750,150,770,170),

D8

rectHWO7(480,55,500,75), rectHWOS8(480,375,500,395),
rectHW09(360,375,380,395),rect HWO 10(405,230,425,250),
rectHWO11(700,375,720,395),rect HWO12(700,55,720,75),
rectHWO13(750,250,770,270);

POSITION pos = homes.GetHeadPosition();
Home * h = homes.GetNext(pos);

// adding rooms
h->addRoom(array r0,4,ROOM_CLR,"KIT/EAT",CPoint(200,250));
h->addRoom(array r1,4,ROOM_CLR,"LIVING R", CPoint(560,250));
/! h->addRoom(array r2,4,ROOM_ CLR,"AIR-RT",CPoint(30,70));

//adding closets
h->addCloset(1,array r2,4,ROOM_CLR);

// 'adding doors
h->addDoor(1,-1,25,388,25,313,-90,DOOR_CLR);
h->addDoor(2,-1,775,388,775,313,270,DOOR_CLR);
h->addDoor(1,2,400,388,400,313,270,DOOR_CLR);
h->addDoor(1,-1,100,60,100,105,90,DOOR_CLR);

//adding foldingDoors

//add opening
h->addOpening(13,7,475,345,510,345,90,0PENING_CLR);

//adding windows
h->addWindow(1,100,400,300,400,90, WINDOW _CLR);
h->addWindow(2,475,400,675,400,90, WINDOW _CLR);
h->addWindow(2,775,75,775,275,180,WINDOW _CLR);

D9

h->addWindow(1,400,125,400,275,180, WINDOW_CLR);

//adding appliances

h->addApplainces(1,rectW,APPLIANCE ON _ CLR,10.f, Appliances::WASHER);
h->addApplainces(1,rectD,APPLIANCE ON_CLR,10.f, Appliances::DRIER);

h->addApplainces(1,rectHVAC,APPLIANCE ON_CLR,10.f, Appliances::HVAC);

h->addApplainces(1,rectWH,APPLIANCE ON_CLR,10.f,
Appliances::WATER _HEATER);

h->addApplainces(1,rectS,APPLIANCE ON_CLR,10.f, Appliances::STOVE);

h->addApplainces(1,rectDW,APPLIANCE ON_ CLR,10.f,
Appliances::DISH WASHER);

h->addApplainces(1,rectR, APPLIANCE ON _ CLR,10.f, Appliances::REFRIGERATOR);

// fans //

h->addApplainces(1,rectFKB,APPLIANCE ON_CLR,10.f, Appliances::FAN);
h->addApplainces(2,rectFGR,APPLIANCE ON_CLR,10.f, Appliances::FAN);

// bulbs //

h->addApplainces(1,rectLGT1,APPLIANCE ON_CLR,10.f, Appliances:
h->addApplainces(1,rectLGT2,APPLIANCE ON _ CLR,10.f, Appliances:
h->addApplainces(2,rectLGT3,APPLIANCE ON_CLR,10.f, Appliances:
h->addApplainces(2,rectLGT4,APPLIANCE ON CLR,10.f, Appliances:
/l h->addApplainces(1,rectLGT5,APPLIANCE ON_CLR,10.f, Appliances:
h->addApplainces(2,rectLGT6,APPLIANCE ON CLR,10.f, Appliances:

/[e outlets //

:LIGHT);
:LIGHT);
:LIGHT);
:LIGHT);
:LIGHT);
:LIGHT);

>addApplainces(1,rectHWO1,APPLIANCE ON_CLR,10.f,Appliances::HIGH WATTAGE OU

TLET);
h->addApplainces(1,rectHWO2,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE_OUTLET);
h->addApplainces(1,rectHWO3,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE_OUTLET);
h->addApplainces(1,rectHWO4,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE_OUTLET);
h->addApplainces(2,rectHWOS,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE_OUTLET);
h->addApplainces(2,rectHWO6,APPLIANCE _ON_CLR,10.f,
Appliances::HIGH WATTAGE_OUTLET);
h->addApplainces(2,rectHWO7,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE_OUTLET);
h->addApplainces(2,rectHWOS,APPLIANCE ON CLR,10.f,
Appliances::HIGH WATTAGE_OUTLET);
h->addApplainces(1,rectHWO9,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE_OUTLET);

D10

h->addApplainces(2,rectHWO10,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE OUTLET);
h->addApplainces(2,rectHWO11,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE OUTLET);
h->addApplainces(2,rectHWO12,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE OUTLET);
h->addApplainces(2,rectHWO13,APPLIANCE ON_CLR,10.f,
Appliances::HIGH WATTAGE OUTLET);
// ExhaustFan //
// //
///READING DATA FROM FILE HAPPENS ONLY ONCE
arrayPointer = 0;
ifstream input("AppliancesDoc.txt");
if(input){

int homeldFromFile ;
input >> homeldFromFile;
lastInUse =0;
while(input>> applIDBuff[lastInUse] >> applStatusBuff[lastinUse] >>
applPowerBuff[lastInUse])
lastinUset++;
}
input.close();
return TRUE;

}

BOOL CFuelCellDoc::OnOpenDocument(LPCTSTR IpszPathName) {
if (!CDocument::OnOpenDocument(IpszPathName))
return FALSE;
return TRUE;

void CFuelCellDoc::dataFromFile(CDC* dc,CRect *rect){

if (arrayPointer >= lastInUse)
arrayPointer = 0;

POSITION pos = homes.GetHeadPosition();

Home * home;

while(pos != NULL){
home = homes.GetNext(pos);
home->setCurPower(applIDBuff,applStatusBuff,applPowerBuff, arrayPointer);

}

SetModifiedFlag(TRUE);

//UpdateAllViews(NULL); commented out by shahrukh to remove the flicker

DI1

home->setDC(dc,rect); //added in process of removing flicker
home->draw (dc); //added in process of removing flicker

11011111771
// CFuelCellDoc serialization

void CFuelCellDoc::Serialize(CArchive& ar)

{
if (ar.IsStoring())

{
// TODO: add storing code here
ar << homeCount;
POSITION pos = homes.GetHeadPosition();
while(pos != NULL)
ar << homes.GetNext(pos);

}
else
{
// TODO: add loading code here
ar >> homeCount;
Home * h;
for (int 1 = 0; i < homeCount ; i++){
ar >> h;
homes.AddTail(h);
}
h

}

i
// CFuelCellDoc diagnostics

#ifdef DEBUG
void CFuelCellDoc::AssertValid() const

{
}

void CFuelCellDoc::Dump(CDumpContext& dc) const
{

}
#endif / DEBUG

CDocument::AssertValid();

CDocument::Dump(dc);

DI2

11111111171
// CFuelCellDoc commands

#include "stdafx.h"
#include "Appliances.h"
#include <Math.h>

int Appliances::count;
COLORREF Appliances::appliancesCIlrOff;

//Definition of class Appliances
IMPLEMENT SERIAL (Appliances, CObject, 1);
Appliances::Appliances(){}
Appliances::~Appliances(){

--count;

}

Appliances::Appliances(int theHomeld,int theAttachedTold, CRect theRect, COLORREF
theAppliancesClr,float maxPower,enum Appliances::Shape theShape){

appliancesld = ++count;

homeld = theHomeld;
attachedTold = theAttachedTold;
appliancesClr = theAppliancesClr;
onOff = 0;

rect.operator =(theRect);
setColor(appliancesClr);
setMaxPower(maxPower);

shape = theShape;
powerConsumed = 0.f;

curPower = 0.f;

changelnPower = 0.f;
/lappliancesClrOff = RGB(255,255,255);

}
Appliances::Appliances(const Appliances & a){

appliancesld = a.appliancesld;
homeld = a.homeld;
attachedTold = a.attachedTold;
appliancesClr = a.appliancesClr;
onOff = a.onOff;

rect.operator =(a.rect);
appliancesClr = a.appliancesClr;
maxPower = a.maxPower;
shape = a.shape;

D13

powerConsumed = a.powerConsumed;
curPower = a.curPower;
changelnPower = a.changelnPower;

}

/* Appliances * Appliances::operator =(Appliances *a){
return a;

3/

Appliances Appliances::operator =(Appliances a){
return a;
}

float Appliances::getCurPower(){
return curPower;
}

void Appliances::draw(CDC* dc){

/lto get the shading effect when light is on the following formula

//can be used 255 +(getR-255)(curPower/maxPower) for all RGB

float powerRatio = curPower/maxPower;

CBrush * oldBrush,

cbrushl(appliancesCIrOff),
cbrush2(RGB((255 + (int)((GetRValue(appliancesClr)-255)*powerRatio)),
(255 + (int)((GetGValue(appliancesClr)-255)*powerRatio)),
(255 + (int)((GetBValue(appliancesClr)-

255)*powerRatio))));

onOff == 0 ? oldBrush = dc->SelectObject(&cbrushl): oldBrush = dc-
>SelectObject(&cbrush2);

CPen pen(PS_SOLID,1,RGB(0,0,0));

CPen * oldPen = dc->SelectObject(&pen);

dc->SetBkMode(TRANSPARENT);

switch(shape){

case WASHER : dc->Rectangle(rect); dc->DrawText(_ T("W"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT_VCENTER)); break;

case DRIER : de->Rectangle(rect); dc->DrawText(_T("D"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT_VCENTER));break;

case HVAC : dc->Rectangle(rect); de->DrawText(_ T("AC"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT_VCENTER));break;

case WATER HEATER : dc->Ellipse(rect); dc->DrawText(_T("H"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT_VCENTER)); break;

case FAN : drawFan(dc); break;

case LIGHT : drawLight(dc); break;

case LOW_WATTAGE OUTLET : drawLWOutlet(dc); break;

case HIGH WATTAGE OUTLET : drawHWOutlet(dc); break;

case EXHAUST FAN : drawExhaustFan(dc); break;

case OVEN : dc->Rectangle(rect); dc->DrawText(_T("O"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT_VCENTER)); break;

D14

case STOVE : dc->Rectangle(rect); dc->DrawText(_T("S"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER)); break;
case DISH WASHER : dc->Rectangle(rect); dc->DrawText(_ T("DW"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER)); break;
case REFRIGERATOR : dc->Rectangle(rect); dc->DrawText(_T("R"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER)); break;
}
dc->SetBkMode(OPAQUE);
dc->SelectObject(oldBrush);
dc->SelectObject(oldPen);
}
//this function is invoked when appliances are clicked on the screan
int Appliances::setOnOff(CPoint point){
if (rect.PtInRect(point)){
onOff = 1-onOff;
if (onOff) {
changeIlnPower = maxPower - curPower;
curPower = maxPower;
}
else{
changelnPower = 0.f - curPower;
curPower = 0.f;

}

return 1;
}
return O;

}

//this function is invoked when data is read from the file
int Appliances::setOnOff(int status, float thePower){
changeInPower = thePower - curPower;
curPower = thePower;
if(status == onOff) {

if (onOff)
return 1;
else
return O;
}
else {
onOff = 1-onOff;
return 1;
}
}
void Appliances::Serialize (CArchive& ar)
{

CObject::Serialize (ar);

DI5

if (ar.IsStoring ()){

ar << count;
ar << appliancesCIrOff;
ar << homeld;
ar << appliancesld;

ar << attachedTold;
ar << appliancesClr;
ar <<rect;
ar << maxPower;
ar << powerConsumed;
ar << shape;
ar << onOff;
ar << curPower;
ar << changelnPower;

}
else {// Loading, not storing
ar >> count;
ar >> appliancesCIrOff;

ar >> homeld;
ar >> appliancesld;
ar >> attachedTold;
ar >> appliancesClr;
ar >> rect;
ar >> maxPower;
ar >> powerConsumed;
int theShape;
ar >> theShape;

shape = (Shape)theShape

ar >> onOff;
ar >> curPower;
ar >> changelnPower;

}

float Appliances::getPowerChange()
{

}

void Appliances::drawFan(CDC *dc)
{

return changeInPower;

CPoint center = rect.CenterPoint();

int reducedW = rect.Width()/6, reducedH = rect.Height()/6;

int reducedW 1 = rect. Width()/12, reducedH1 = rect.Height()/12;

CRect centerRect((center.x - reducedW),(center.y - reducedH),(center.x +

reducedW),(center.y + reducedH));

D16

CRect wingl(rect.left,(center.y - reducedH1),center.x,(center.y + reducedH1)),
wing2(center.x,(center.y - reducedH1),rect.right,(center.y + reducedH1)),
wing3((center.x - reducedW1),rect.top,(center.x + reducedW1),center.y),
wing4((center.x - reducedW1),center.y,(center.x + reducedW1),rect.bottom);

dc->Ellipse(centerRect);

dc->Ellipse(wingl);

dc->Ellipse(wing2);

dc->Ellipse(wing3);

dc->Ellipse(wing4);

h
void Appliances::drawExhaustFan(CDC *dc)
{

CPoint center = rect.CenterPoint();

dc->Ellipse(rect);

int reducedW = rect.Width()/6, reducedH = rect.Height()/6;

int reducedW1 = rect. Width()/12, reducedH1 = rect.Height()/12;

CRect centerRect((center.x - reducedW),(center.y - reducedH),(center.x +

reducedW),(center.y + reducedH));

CRect wingl(rect.left,(center.y - reducedH1),center.x,(center.y + reducedH1)),
wing2(center.x,(center.y - reducedH1),rect.right,(center.y + reducedH1)),
wing3((center.x - reducedW1),rect.top,(center.x + reducedW1),center.y),
wing4((center.x - reducedW1),center.y,(center.x + reducedW1),rect.bottom);

dc->Ellipse(centerRect);

dc->Ellipse(wingl);

dc->Ellipse(wing2);

dc->Ellipse(wing3);

dc->Ellipse(wing4);

}

void Appliances::drawLight(CDC *dc)
{
int reducedW = rect.Width()/7, reducedH = rect.Height()/7 ,
yPosOfHLine = rect.top + rect.Height()/2,
xPosOfVLine = rect.left + rect. Width()/2;
CRect smallRect(rect.left+reducedW, rect.top+reducedH,rect.right-
reducedW,rect.bottom-reducedH);
dc->Ellipse(smallRect);
dc->MoveTo(rect.left, yPosOfHLine);
dc->LineTo(rect.right,yPosOfHLine);
dc->MoveTo(xPosOfVLine, rect.top);
dc->LineTo(xPosOfVLine, rect.bottom);

}

void Appliances::drawLWOutlet(CDC *dc)

{
int reducedW = rect.Width()/7, reducedH = rect.Height()/7 ,

D17

yPosOfHLine = rect.top + rect.Height()/2;
CRect smallRect(rect.left+reducedW, rect.top+reducedH,rect.right-
reducedW,rect.bottom-reducedH);
dc->Ellipse(smallRect);
dc->MoveTo(rect.left, yPosOfHLine);
dc->LineTo(rect.right,yPosOfHLine);

}

void Appliances::drawHWOutlet(CDC *dc)
{
int reducedW = rect.Width()/7, reducedH = rect.Height()/7,
yPosOfHLinel = rect.top + rect.Height()/3,
yPosOfHLine2 = rect.bottom - rect.Height()/3;
CRect smallRect(rect.left+reducedW, rect.top+reducedH,rect.right-
reducedW,rect.bottom-reducedH);
dc->Ellipse(smallRect);
dc->MoveTo(rect.left, yPosOfHLinel);
dc->LineTo(rect.right,yPosOfHLinel);
dc->MoveTo(rect.left, yPosOfHLine2);
dc->LineTo(rect.right,yPosOfHLine2);

}

void Appliances::drawList(CDC *dc, int x, int y)
{
CBrush * oldBrush,
cbrush(RGB(255,255,255));
oldBrush = dc->SelectObject(&cbrush);
CPen pen(PS_SOLID,1,RGB(0,0,0));
CPen * oldPen = dc->SelectObject(&pen);
dc->SetBkMode(TRANSPARENT);
for (int shape = 0 ; shape <= 12 ; shape++){
CRect rect(x,y,x+30,y+30);
CRect rectText(x+32,y,x+150,y+30);y+=34;
setRect(rect);
switch(shape){
case WASHER :
dc->Rectangle(rect);
dc->DrawText(_ T("W"),-
I,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER));
dc->DrawText(_T("Washer"),-
1,&rectText,(DT_SINGLELINEDT VCENTER));
break;
case DRIER :
dc->Rectangle(rect);
dc->DrawText(_T("D").-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER));

DI8

dc->DrawText(_T("Drier"),-
1,&rectText,(DT_SINGLELINE|DT VCENTER));
break;
case HVAC :
dc->Rectangle(rect);
dc->DrawText(_ T("AC"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER));
dc->DrawText(_ T("HVAC"),-
1,&rectText, (DT _SINGLELINEDT VCENTER));
break;
case WATER HEATER :
dc->Ellipse(rect);
dc->DrawText(_T("H").-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER));
dc->DrawText(_T("Water Heater"),-
1,&rectText,(DT_SINGLELINE|DT _VCENTER));
break;
case FAN :
drawFan(dc);
dc->DrawText(_T("Fan"),-
1,&rectText,(DT_SINGLELINEDT VCENTER));
break;
case LIGHT :
drawLight(dc);
dc->DrawText(_T("Light"),-
1,&rectText,(DT_SINGLELINE|DT _VCENTER));
break;
case LOW_WATTAGE OUTLET :
drawLWOutlet(dc);
dc->DrawText(_T("Low Wattg o/1"),-
1,&rectText,(DT_SINGLELINE|DT _VCENTER));
break;
case HIGH WATTAGE OUTLET :
drawHWOutlet(dc);
dc->DrawText(_T("High Wattg o/1"),-
1,&rectText, (DT _SINGLELINEDT VCENTER));
break;
case EXHAUST FAN:
drawExhaustFan(dc);
dc->DrawText(_T("Exhaust Fan"),-
1,&rectText,(DT_SINGLELINE|DT _VCENTER));
break;
case OVEN :
dc->Rectangle(rect);
dc->DrawText(_T("O"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER));

D19

dc->DrawText(_T("Oven"),-
1,&rectText,(DT_SINGLELINE|DT VCENTER));
break;
case STOVE :
dc->Rectangle(rect);
dc->DrawText(_T("S"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER));
dc->DrawText(_T("Stove"),-
1,&rectText, (DT _SINGLELINEDT VCENTER));
break;
case DISH WASHER :
dc->Rectangle(rect);
dc->DrawText(_ T("DW"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER));
dc->DrawText(_T("Dish Washer"),-
1,&rectText,(DT_SINGLELINE|DT _VCENTER));

break;
case REFRIGERATOR :
dc->Rectangle(rect);
dc->DrawText(_T("R"),-
1,&rect,(DT_SINGLELINE|DT CENTER|DT VCENTER));
dc->DrawText(_T("Refrigerator"),-
1,&rectText, (DT _SINGLELINEDT VCENTER));
break;
}
}

dc->SetBkMode(OPAQUE);
dc->SelectObject(oldBrush);
dc->SelectObject(oldPen);

}
void Appliances::setRect(CRect theRect)
{
rect.operator =(theRect);
}

#include "stdafx.h"
#include "Closet.h"
#include <iostream>
using namespace std;
int Closet::count;
//Definition of class Closet
IMPLEMENT SERIAL (Closet, CObject, 1);
Closet::Closet(){}
Closet::~Closet() {
--count;

D20

delete [] corners;

}

Closet::Closet(int theHomeld, int theArray[],int theNumberOfCorners, COLORREF theClr){
homeld = theHomeld;
closetld = ++count;
numberOfCorners = theNumberOfCorners;
initializeCorners(theArray);
closetClr = theClr;

J

Closet::Closet(const Closet & c){
numberOfCorners = c.numberOfCorners;
homeld = c.homeld;
int index = 0;

while(index < numberOfCorners){
corners[index] = c.corners[index];index++;

}
closetld = c.closetld;
closetClr = c.closetClr;

}

Closet * Closet::operator =(Closet *c){
return c;

j

Closet Closet::operator =(Closet ¢){
return c;

}

void Closet::draw(CDC* dc){
CPen pen(PS_SOLID,5,RGB(0,0,0)),* oldPen;
//CBrush cbrush(RGB(248,248,248));
//CBrush cbrush(RGB(200,200,255));
//CBrush cbrush(RGB(255,253,235));
CBrush cbrush(closetClr), * oldBrush;
oldPen = dc->SelectObject(&pen);
oldBrush = dc->SelectObject(&cbrush);
dc->Polygon(corners,numberOfCorners);
dc->SelectObject(oldBrush);
dc->SelectObject(oldPen);

void Closet::initializeCorners(int theArray[]){
try {

corners = new CPoint[numberOfCorners];

int counter = 0;
while(counter < numberOfCorners){

D21

corners[counter| =

CPoint(theArray[counter<<l],the Array[(counter<<1)+1]);

}

counter++;

}

catch(bad_alloc bac){

}

cout <<"\nFailure to allocate";

void Closet::Serialize (CArchive& ar)

{

CObject::Serialize (ar);
if (ar.IsStoring ()){

}

ar << count;

ar << homeld;

ar << numberOfCorners;

for (int 1 = 0 ; i < numberOfCorners ; i++)
ar << corners[i];

ar << closetld;
ar << closetClr;

else {// Loading, not storing

j
}

ar >> count;
ar >> homeld;
ar >> numberOfCorners;
try {
corners = new CPoint[numberOfCorners];
for (int i =0 ; i < numberOfCorners ; i++)
ar >> corners[i];
§
catch(bad_alloc bac){
cout <<"\nFailure to allocate";

}

ar >> closetld;

ar >> closetClr;

#include "stdafx.h"
#include "Door.h"
#include <Math.h>

int Door::count;
//Definition of class Door

D22

IMPLEMENT _ SERIAL (Door, CObject, 1);
Door::Door(){}
Door::~Door(){
--count;
b

Door::Door(int theHomeld, int theAttachedTold1,int theAttachedTold2, int X1,int Y1,int X2, int
Y2, int theRotation, COLORREF theDoorClr){
doorld = ++count;
homeld = theHomeld;
attachedToldl = theAttachedTold1;
attachedTold2 = theAttachedTold2;
hinge.x = X1;
hinge.y =Y1;
lock.x = X2;
lock.y =Y2;
rotation = theRotation;
width = distBtPoints();
doorClr = theDoorClr;
}
Door::Door(const Door & d){
doorld = d.doorld;
homeld = d.homeld;
attachedTold1 = d.attachedTold2;
attachedToldl = d.attachedTold2;
hinge.x = d.hinge.x ;
hinge.y = d.hinge.y;
lock.x = d.lock.x;
lock.y = d.lock.y;
rotation = d.rotation;
width = d.width;
doorClr = d.doorClr;

H

/*Door * Door::operator =(Door *d){
return d;

}*/

Door Door::operator =(Door d){
return d;

}

void Door::draw(CDC* dc){
CPen pen(PS_SOLID,1,RGB(0,0,0)), * oldPen;
//CBrush cbrush(RGB(100,100,255));
//CBrush cbrush(RGB(148,148,148));
//CBrush cbrush(RGB(225,223,205));

D23

CBrush cbrush(doorClr), * oldBrush;

oldPen = dc->SelectObject(&pen);
oldBrush = dc->SelectObject(&cbrush);

CPoint cp((int)(hinge.x+width*sin(abs(rotation)*3.14/180)),(int)(hinge.y + width *

cos(abs(rotation)*3.14/180)));

if(rotation >= 0)

dc->Pie(hinge.x-width,hinge.y-

width,hinge.x+width,hinge.y+width,lock.x,lock.y,cp.x,cp.y);

else

dc->Pie(hinge.x-width,hinge.y-

width,hinge.x+width,hinge.y+width,cp.x,cp.y,lock.x,lock.y);

dc->SelectObject(oldBrush);

dc->SelectObject(oldPen);

}

int Door::distBtPoints() {

return (int)sqrt(pow((hinge.x-lock.x),2)+pow((hinge.y-lock.y),2));

}
void Door::Serialize (CArchive& ar)
{
CObject::Serialize (ar);
if (ar.IsStoring ()){
ar << count;
ar << homeld;
ar << doorld;
ar << attachedTold1;
ar << attachedTold2;
ar << hinge;
ar << lock;
ar << doorClr;
ar << rotation;
ar << width;
J
else {// Loading, not storing
ar >> count;

ar >> homeld;

ar >> doorld;
ar >> attachedTold1;

ar >> attachedTold2;
ar >> hinge;
ar >> lock;

ar >> doorClr;

ar >> rotation;

D24

}

ar >> width;

#include "stdafx.h"
#include "FoldingDoor.h"
#include <Math.h>

int FoldingDoor::count;

//Definition of class FoldingDoor
IMPLEMENT _ SERIAL (FoldingDoor, CObject, 1);
FoldingDoor::FoldingDoor(){}
FoldingDoor::~FoldingDoor() {

}

--count;

FoldingDoor::FoldingDoor(int theHomeld,int theAttachedTold1,int theAttachedTold2, int X1,int
Y1,int X2, int Y2,

int theRotation,int theSlidingAngleFromVertical, COLORREF

theFoldingDoorClr){

}

homeld = theHomeld;

foldingDoorld = ++count;
attachedToldl = theAttachedTold1;
attachedTold2 = theAttachedTold2;
hinge.x = X1;

hinge.y =Y1;

lock.x = X2;

lock.y = Y2;

rotation = theRotation;

s_a_f v=theSlidingAngleFromVertical;
width = distBtPoints();
foldingDoorClr = theFoldingDoorClr;

FoldingDoor::FoldingDoor(const FoldingDoor & fd){

foldingDoorld = fd.foldingDoorld;
homeld = fd.homeld;
attachedTold1 = fd.attachedTold2;
attachedTold1 = fd.attachedTold2;
hinge.x = fd.hinge.x ;

hinge.y = fd.hinge.y;

lock.x = fd.lock.x;

lock.y = fd.lock.y;

rotation = fd.rotation;
safv=fds afyv;

width = fd.width;

foldingDoorClr = fd.foldingDoorClr;

D25

}

/*FoldingDoor * FoldingDoor::operator =(FoldingDoor *fd){
return fd;

el

FoldingDoor FoldingDoor::operator =(FoldingDoor fd){
return fd;

}

void FoldingDoor::draw(CDC* dc){
CPen penl1(PS_SOLID,5,RGB(255,255,255)), *oldPen;
oldPen = dc->SelectObject(&penl);
dc->MoveTo(lock);
dc->LineTo(hinge);
CPen pen(PS_SOLID,2,foldingDoorClr);
dc->SelectObject(&pen);
CPoint cp((int)(hinge.x+(width/2.)*sin(abs(rotation)*3.14/180)),(int)(hinge.y + (width/2.)
* cos(abs(rotation)*3.14/180)));
dc->LineTo(cp);
if(hinge.x <= lock.x && hinge.y <= lock.y)
de-
>LineTo((int)(hinge.x+width*cos(abs(rotation)*3.14/180)*sin(s_a f v*3.14/180)),(int)(hinge.y +
width * cos(abs(rotation)*3.14/180)*cos(s_a f v*3.14/180)));
else
dc->LineTo((int)(hinge.x-
width*cos(abs(rotation)*3.14/180)*sin(s_a f v*3.14/180)),(int)(hinge.y - width *
cos(abs(rotation)*3.14/180)*cos(s_a_f v*3.14/180)));
dc->SelectObject(oldPen);

}

int FoldingDoor::distBtPoints() {

return (int)sqrt(pow((hinge.x-lock.x),2)+pow((hinge.y-lock.y),2));
}

void FoldingDoor::Serialize (CArchive& ar)
{
CObject::Serialize (ar);
if (ar.IsStoring ()){
ar << count;
ar << homeld;
ar << foldingDoorld;
ar << attachedTold1;
ar << attachedTold2;
ar << hinge;
ar << lock;

D26

ar << foldingDoorClr;
ar << rotation;
ar<<s a f v;

ar << width;
}
else {// Loading, not storing
ar >> count;
ar >> homeld;
ar >> foldingDoorld;

ar >> attachedTold1;
ar >> attachedTold2;
ar >> hinge;
ar >> lock;
ar >> foldingDoorClr;
ar >> rotation;
ar>>s a f v;
ar >> width;

}

// FuelCell.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "FuelCell.h"

#include "MainFrm.h"

#include "FuelCellDoc.h"

#include "FuelCellView.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

i
// CFuelCellApp

BEGIN _MESSAGE MAP(CFuelCellApp, CWinApp)
/I{{AFX_MSG_MAP(CFuelCellApp)
ON_COMMAND(ID_APP ABOUT, OnAppAbout)

// NOTE - the ClassWizard will add and remove mapping macros here.
//- DO NOT EDIT what you see in these blocks of generated code!

/I}YAFX _MSG_MAP
// Standard file based document commands

ON_COMMAND(ID FILE NEW, CWinApp::OnFileNew)

D27

ON_COMMAND(ID_FILE OPEN, CWinApp::OnFileOpen)
END MESSAGE MAP()

I T
// CFuelCellApp construction

CFuelCellApp::CFuelCellApp()
{

// TODO: add construction code here,
// Place all significant initialization in InitInstance

}

I T
/I ' The one and only CFuelCellApp object

CFuelCellApp theApp;
I T
// CFuelCellApp initialization

BOOL CFuelCellApp::Initlnstance()
{
// Standard initialization
// If you are not using these features and wish to reduce the size
/I of your final executable, you should remove from the following
/I the specific initialization routines you do not need.

// Change the registry key under which our settings are stored.

// TODO: You should modify this string to be something appropriate
// such as the name of your company or organization.
SetRegistryKey(_T("Local AppWizard-Generated Applications"));

LoadStdProfileSettings(); // Load standard INI file options (including MRU)

/I Register the application's document templates. Document templates
// serve as the connection between documents, frame windows and views.

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
IDR_ MAINFRAME,
RUNTIME CLASS(CFuelCellDoc),
RUNTIME CLASS(CMainFrame), // main SDI frame window
RUNTIME CLASS(CFuelCellView));
AddDocTemplate(pDocTemplate);

// Enable DDE Execute open

D28

EnableShellOpen();
RegisterShellFileTypes(TRUE);

// Parse command line for standard shell commands, DDE, file open
CCommandLinelnfo cmdInfo;
ParseCommandLine(cmdInfo);

// Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdInfo))
return FALSE;

// ' The one and only window has been initialized, so show and update it.
m_pMainWnd->ShowWindow(SW_SHOW);
m_pMainWnd->UpdateWindow();

// ' Enable drag/drop open
m_pMainWnd->DragAcceptFiles();
return TRUE;

}

I T
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:

CAboutDlg();

// Dialog Data
/I{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
/I}}AFX _DATA

// ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
/I}yAFX VIRTUAL

/I Tmplementation
protected:
/I{{AFX_MSG(CAboutDlg)
// No message handlers
/1Yy AFX_MSG
DECLARE _MESSAGE MAP()

D29

3

CAboutDlg::CAboutDlg() : CDialog(CAboutDIg::IDD)
{

/I{{AFX_DATA_INIT(CAboutDlg)

//} yAFX_DATA INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);

/I{{AFX_DATA_ MAP(CAboutDIg)

/I} yAFX _DATA _MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
/I{{AFX_MSG_MAP(CAboutDlg)
// No message handlers
/I}YAFX MSG_MAP
END_MESSAGE _MAP()

/I App command to run the dialog
void CFuelCellApp::OnAppAbout()
{
CAboutDlg aboutDlg;
aboutDIg.DoModal();

}

I T
/I CFuelCell App message handlers

// FuelCellDoc.cpp : implementation of the CFuelCellDoc class

/1

#include "stdafx.h"
#include "FuelCell.h"

#include "FuelCellDoc.h"
#include <iostream>
#include <fstream>

using namespace std;

/*Creating COLORRETF objects that encapsulate RGB color objects

*/

D30

COLORREF HOME_CLR(RGB(192,192,255)),
ROOM CLR(RGB(255,255,255)),DOOR_CLR(RGB(255,255,255)),
FOLDING DOOR_CLR(RGB(0,0,0)), APPLIANCE_ON_CLR(RGB(255,0,0)),

APPLIANCE OFF_CLR(RGB(100,100,255)),PORCH_CLR(RGB(192,192,192)),
WINDOW_CLR(RGB(255,255,255)),0PENING_CLR(RGB(255,255,255));

#ifdef DEBUG

#define new DEBUG _NEW

#undef THIS FILE

#endif
0101110111111
// CFuelCellDoc

IMPLEMENT DYNCREATE(CFuelCellDoc, CDocument)

BEGIN MESSAGE MAP(CFuelCellDoc, CDocument)
/I{{AFX_MSG_MAP(CFuelCellDoc)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
/1Y yAFX_MSG_MAP
END_MESSAGE MAP()

I
// CFuelCellDoc construction/destruction

CFuelCellDoc::CFuelCellDoc()

{
// TODO: add one-time construction code here
h
CFuelCellDoc::~CFuelCellDoc()
{
POSITION pos = homes.GetHeadPosition();
while(pos != NULL)
delete homes.GetNext(pos);
}
BOOL CFuelCellDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

// TODO: add reinitialization code here

// (SDI documents will reuse this document)

homeCount = 0;
homes.AddTail(new Home(950,650,HOME CLR));

D31

homeCount++;

Appliances::setOffColor(APPLIANCE OFF CLR);

//cornners of room

int array r0[40] = {25,50,400,50,400,400,25,400};
int array_r1[40] = {400,50,775,50,775,400,400,400} ;

//closet

int array r2[40] = {25,50,100,50,100,125,25,125};

/*

int array r16[40] =
int array r17[40] = {130,200,220,200,220,255,130,255};

int array _r18[40] =
int array r19[40] =

{0,200,90,200,90,255,0,255};

{540,145,600,145,600,195,540,195};
{600,145,670,145,670,195,600,195};

int array_r20[40] = {600,195,670,195,670,245,600,245}

int array r21[40] =
int array 122[40] =

[
int array 1r23[40] =
int array 124[40] =
int array r25[40] =
int array 126[40] =

*/

{630,365,680,365,680,425,630,425};
{630,425,680,425,680,485,630,485};

{600,245,670,245,670,285,600,285};
{630,345,680,345,680,365,630,365};
{720,285,740,285,740,345,720,345};
{450,365,475,365,475,405,450,405};

// rectangles for appliances

CRect rectFKB(200,210,250,260),rectFGR(570,205,620,255),
rectW(35,235,85,295),rectDW(345,235,395,295),rectD(35,165,85,225),
rectS(245,55,310,115),rectR(160,55,235,120),rectWH(350,65,395,110),

rectHVAC(35,60,90,115);

//rectangles for lights

CRect rectLGT1(210,150,240,180), rectLGT2(210,330,240,360),
rectLGT3(580,150,610,180), rectLGT4(580,330,610,360),
rectLGT5(25,405,45,425), rectLGT6(750,405,770,425);

//rectangles for outlets

CRect rectHWO1(330,55,350,75), rectHWO02(200,375,220,395),
rectHW03(30,130,50,150), rectHWO4(375,150,395,170),
rectHWOS5(405,120,425,140), rectHWO6(750,150,770,170),
rectHWO7(480,55,500,75), rectHWOS8(480,375,500,395),
rectHW09(360,375,380,395),rect HWO10(405,230,425,250),
rectHWO11(700,375,720,395),rectHWO12(700,55,720,75),

rectHWO13(750,250,770,270);

D32

POSITION pos = homes.GetHeadPosition();
Home * h = homes.GetNext(pos);

// adding rooms
h->addRoom(array r0,4,ROOM_CLR,"KIT/EAT",CPoint(200,250));
h->addRoom(array r1,4,ROOM_CLR,"LIVING R",CPoint(560,250));
/l h->addRoom(array r2,4,ROOM _ CLR,"AIR-RT",CPoint(30,70));

//adding closets
h->addCloset(1,array r2,4,ROOM_CLR);

// adding doors
h->addDoor(1,-1,25,388,25,313,-90,DOOR_CLR);
h->addDoor(2,-1,775,388,775,313,270,DOOR_CLR);
h->addDoor(1,2,400,388,400,313,270,DOOR_CLR);
h->addDoor(1,-1,100,60,100,105,90,DOOR_CLR);

//adding foldingDoors

//add opening
// h->addOpening(13,7,475,345,510,345,90,0PENING_CLR);

//adding windows
// h->addWindow(4,770,145,790,145,90, WINDOW _CLR);
h->addWindow(1,100,400,300,400,90, WINDOW _CLR);
h->addWindow(2,475,400,675,400,90, WINDOW _CLR);
h->addWindow(2,775,75,775,275,180, WINDOW _CLR);
h->addWindow(1,400,125,400,275,180,WINDOW _CLR);

//adding appliances
h->addApplainces(1,rectW,APPLIANCE ON_CLR,10.f,Appliances:: WASHER);
h->addApplainces(1,rectD,APPLIANCE_ON_CLR,10.f,Appliances::DRIER);

D33

h->addApplainces(1,rectHVAC,APPLIANCE ON_CLR,10.f,Appliance
h-

s::HVAC);

>addApplainces(1,rectWH,APPLIANCE ON_CLR,10.f,Appliances::WATER _HEATER);
h->addApplainces(1,rectO,APPLIANCE ON_CLR,10.f,Appliances::OVEN);
h->addApplainces(1,rectS,APPLIANCE_ON_CLR,10.f,Appliances::STOVE);

/!

h-

>addApplainces(1,rectDW,APPLIANCE ON_CLR,10.f,Appliances::DISH WASHER);
h->addApplainces(1,rectR, APPLIANCE ON CLR,10.f,Appliances::REFRIGERATOR);

1

/*

// fans //
h->addApplainces(1,rectFKB,APPLIANCE ON_CLR,10.f,Appliances::
h->addApplainces(2,rectFGR,APPLIANCE ON_CLR,10.f,Appliances::

// bulbs //

h->addApplainces(1,rectLGT1,APPLIANCE ON _ CLR,10.f,Appliances
h->addApplainces(1,rectLGT2,APPLIANCE ON _ CLR,10.f,Appliances
h->addApplainces(2,rectLGT3,APPLIANCE ON _ CLR,10.f,Appliances
h->addApplainces(2,rectLGT4,APPLIANCE ON CLR,10.f,Appliances
h->addApplainces(1,rectLGT5,APPLIANCE ON_CLR,10.f,Appliances
h->addApplainces(2,rectLGT6,APPLIANCE ON _ CLR,10.f,Appliances

FAN);
FAN);

:LIGHT);
:LIGHT);
:LIGHT);
:LIGHT);
:LIGHT);
:LIGHT);

h->addApplainces(10,rectLGT10,APPLIANCE _ON _CLR,10.f,Appliances::LIGHT);
h->addApplainces(11,rectLGT11,APPLIANCE ON_CLR,10.f,Appliances::LIGHT);
h->addApplainces(12,rectLGT12,APPLIANCE _ON_CLR,10.f,Appliances::LIGHT);
h->addApplainces(13,rectLGT13,APPLIANCE ON_CLR,10.f,Appliances::LIGHT);
h->addApplainces(14,rectLGT14,APPLIANCE _ON_CLR,10.f,Appliances::LIGHT);
h->addApplainces(4,rectLGT4MB,APPLIANCE ON CLR,10.f,Appliances::LIGHT);

*/
/[e outlets //

h-
>addApplainces(1,rectHWO1,APPLIANCE ON_CLR,10.f,Appliances:
TLET);

h-
>addApplainces(1,rectHWO2,APPLIANCE ON_CLR,10.f,Appliances:
TLET);

h-
>addApplainces(1,rectHWO3,APPLIANCE ON_CLR,10.f,Appliances:
TLET);

h-
>addApplainces(1,rectHWO4,APPLIANCE ON_CLR,10.f,Appliances:
TLET);

h-
>addApplainces(2,rectHWOS5,APPLIANCE ON_CLR,10.f,Appliances:
TLET);

h-

>addApplainces(2,rectHWO6,APPLIANCE ON_CLR,10.f,Appliances:

TLET);

:HIGH WATTAGE OU

‘HIGH WATTAGE_OU

:HIGH WATTAGE OU

‘HIGH WATTAGE_OU

:HIGH WATTAGE OU

‘HIGH WATTAGE_OU

D34

>addApplainces(2,rectHWO7,APPLIANCE ON_CLR,10.f,Appliances::HIGH WATTAGE OU
TLET);

h-
>addApplainces(2,rectHWO8,APPLIANCE ON_CLR,10.f,Appliances::HIGH WATTAGE OU
TLET);

h-
>addApplainces(1,rectHWO9,APPLIANCE ON_CLR,10.f,Appliances::HIGH WATTAGE OU
TLET);

h-
>addApplainces(2,rectHWO10,APPLIANCE ON CLR,10.f,Appliances::HIGH WATTAGE O
UTLET);

/1 h-
>addApplainces(9,rectLWO9,APPLIANCE _ON_CLR,10.f,Appliances::LOW_WATTAGE OU
TLET);

h-
>addApplainces(2,rectHWO11,APPLIANCE ON CLR,10.f,Appliances::HIGH WATTAGE O
UTLET);

/1 h-
>addApplainces(10,rectLWO10,APPLIANCE ON_CLR,10.f,Appliances::LOW_WATTAGE O
UTLET);

h-
>addApplainces(2,rectHWO12,APPLIANCE ON CLR,10.f,Appliances::HIGH WATTAGE O
UTLET);

/1 h-
>addApplainces(11,rectLWO11,APPLIANCE ON_CLR,10.f,Appliances::LOW_WATTAGE O
UTLET);

h-
>addApplainces(2,rectHWO13,APPLIANCE ON CLR,10.f,Appliances::HIGH WATTAGE O
UTLET);

/* h-
>addApplainces(12,rectLWO12,APPLIANCE_ON_CLR,10.f,Appliances::LOW_WATTAGE O
UTLET);

h-
>addApplainces(12,rectHWO12,APPLIANCE ON_CLR,10.f,Appliances::HIGH WATTAGE
OUTLET);

h-
>addApplainces(13,rectLWO13,APPLIANCE_ON_CLR,10.f,Appliances::LOW_WATTAGE O
UTLET);

h-
>addApplainces(13,rectHWO13,APPLIANCE ON_CLR,10.f,Appliances::HIGH WATTAGE
OUTLET);

h-
>addApplainces(14,rectLWO14,APPLIANCE_ON_CLR,10.f,Appliances::LOW_WATTAGE O
UTLET);

D35

>addApplainces(14,rectHWO14,APPLIANCE ON CLR,10.f,Appliances::HIGH WATTAGE
OUTLET);
h-
>addApplainces(4,rectLWO4MB,APPLIANCE ON_CLR,10.f,Appliances::LOW_WATTAGE _
OUTLET);
h-
>addApplainces(4,rectHWO4MB,APPLIANCE ON_CLR,10.f,Appliances::HIGH WATTAGE _
OUTLET);
/1 ExhaustFan //
h-
>addApplainces(6,rectEFKB,APPLIANCE ON CLR,10.f,Appliances::EXHAUST FAN);
h-
>addApplainces(12,rectEFB,APPLIANCE ON_CLR,10.f,Appliances::EXHAUST FAN);
h-
>addApplainces(4,rectEFMB,APPLIANCE ON CLR,10.f,Appliances::EXHAUST FAN);
*/
// //
///READING DATA FROM FILE HAPPENS ONLY ONCE
arrayPointer = 0;
ifstream input("AppliancesDoc.txt");
if(input){

int homeldFromFile ;
input >> homeldFromFile;
lastInUse =0;
while(input>> applIDBuff[lastInUse] >> applStatusBuff]lastinUse] >>
applPowerBuff[lastInUse])
lastinUse++;
}
input.close();
return TRUE;

}

BOOL CFuelCellDoc::OnOpenDocument(LPCTSTR IpszPathName) {
if (!CDocument::OnOpenDocument(IpszPathName))
return FALSE;
return TRUE;

}

/*void CFuelCellDoc::dataFromFile(){
if (arrayPointer >= lastInUse)
arrayPointer = 0;
POSITION pos = homes.GetHeadPosition();
Home * home;

D36

while(pos != NULL){

home = homes.GetNext(pos);

home->setCurPower(applIDBuff,applStatusBuff,applPowerBuff, arrayPointer);
}
SetModifiedFlag(TRUE);
//UpdateAllViews(NULL);
home->draw (NULL);
3/

void CFuelCellDoc::dataFromFile(CDC* dc,CRect *rect){
if (arrayPointer >= lastInUse)
arrayPointer = 0;
POSITION pos = homes.GetHeadPosition();
Home * home;
while(pos != NULL){
home = homes.GetNext(pos);
home->setCurPower(applIDBuff,applStatusBuff,applPowerBuff, arrayPointer);
j
SetModifiedFlag(TRUE);
//UpdateAllViews(NULL); commented out by shahrukh to remove the flicker
home->setDC(dc,rect); //added in process of removing flicker
home->draw (dc); //added in process of removing flicker

I
// CFuelCellDoc serialization

void CFuelCellDoc::Serialize(CArchive& ar)
{
if (ar.IsStoring())
{
// TODO: add storing code here
ar << homeCount;
POSITION pos = homes.GetHeadPosition();
while(pos != NULL)
ar << homes.GetNext(pos);

else

// TODO: add loading code here

ar >> homeCount;

Home * h;

for (int 1 = 0; 1 < homeCount ; i++){
ar >> h;

D37

homes.AddTail(h);

}

I T
/I CFuelCellDoc diagnostics

#ifdef DEBUG
void CFuelCellDoc::AssertValid() const

{
}

void CFuelCellDoc::Dump(CDumpContext& dc) const
{

}
#endif / DEBUG

CDocument::AssertValid();

CDocument::Dump(dc);

0101011111771
// CFuelCellDoc commands

// FuelCellView.cpp : implementation of the CFuelCellView class

#include "stdafx.h"
#include "FuelCell.h"
#include "FuelCellDoc.h"
#include "FuelCellView.h"
#include "SemacClient.h"

#define ID_TIMER CLOCK 1
#define ID_TIMER SIMULATION 2

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]= FILE ;
#endif

I
// CFuelCellView

IMPLEMENT DYNCREATE(CFuelCellView, CView)

D38

BEGIN MESSAGE_MAP(CFuelCellView, CView)
/I{{AFX_MSG_MAP(CFuelCellView)
ON_WM _CREATE()
ON_WM_TIMER()
ON_WM _ LBUTTONDBLCLK()
ON_WM_RBUTTONDOWN()
/I}}AFX_MSG_MAP
ON_MESSAGE (MESSAGE RECEIVED FROM_SEMAC, OnSemacThreadMessage)
ON_MESSAGE (DEVICE_STATUS MSG _FROM_SEMAC,
OnSemacDeviceStatusMsg)
END_MESSAGE_MAP()

I
// CFuelCellView construction/destruction

CFuelCellView::CFuelCellView()

{

//todoo code
}
CFuelCellView::~CFuelCellView()
{
}

LONG CFuelCellView::OnSemacThreadMessage (WPARAM wParam, LPARAM IParam)
{

setSemacMessage((char*)wParam);
return O;

}

LONG CFuelCellView::OnSemacDeviceStatusMsg (WPARAM wParam, LPARAM [Param)
{
CRect dRect; //added by shahrukh to remove the flicker
GetClientRect (&dRect); //added by shahrukh to remove the flicker
CClientDC pDC2 (this); //added by shahrukh to remove the flicker
pDoc->dataFromFile(&pDC2,&dRect); //changed by shahrukh to remove the flicker

return 0;
j
BOOL CFuelCellView::PreCreate Window(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying

D39

/I the CREATESTRUCT cs

return CView::PreCreateWindow(cs);

}

I T
// CFuelCellView drawing

void CFuelCellView::OnDraw(CDC* pDC)
{
CRect rect;
GetClientRect (&rect);
// TODO: add draw code for native data here
POSITION pos = pDoc->homes.GetHeadPosition();
/Iwhile (pos !'=NULL){ //for multiple homes not needed at this time
Home * h = pDoc->homes.GetNext(pos);
h->drawSemacMessage (this);
CWnd::OnPaint ();
/! }
pos = pDoc->homes.GetHeadPosition();
while (pos != NULL){
Home * h = pDoc->homes.GetNext(pos);
//SetBkColor(*pDC,h->getColor());
h->sethomelnDefaultView (true); //to redraw properly on window rezise, this is a
hack fix it
h->setSelectedRoomEnlargedPaintedForFirstTime (true); //to redraw properly on window
rezise, this is a hack fix it
h->setDC(pDC,&rect);
h->draw(pDC);

I T
/I CFuelCellView diagnostics

#ifdef DEBUG
void CFuelCellView::AssertValid() const

{
CView::AssertValid();
}
void CFuelCellView::Dump(CDumpContext& dc) const
{

CView::Dump(dc);

D40

CFuelCellDoc* CFuelCellView::GetDocument() // non-debug version is inline

{
ASSERT(m_pDocument->IsKindOf(RUNTIME CLASS(CFuelCellDoc)));
return (CFuelCellDoc*)m_pDocument;

}
#endif / DEBUG

I T
// CFuelCellView message handlers

int CFuelCellView::OnCreate(LPCREATESTRUCT IpCreateStruct)
{
if (CView::OnCreate(lpCreateStruct) == -1)
return -1;

// Set a timer to fire at 1-second intervals.

//

if (!SetTimer (ID_TIMER CLOCK, 1000, NULL)) {
MessageBox (_T ("SetTimer failed"));
return -1;

}
if (!SetTimer (ID_TIMER SIMULATION, 5000, NULL)) {
MessageBox (_T ("SetTimer failed"));
return -1;

}

return O;

void CFuelCellView::OnTimer(UINT nIDEvent)
{
/!
// Do nothing if the window is minimized.
/!
if (IsIconic ())
return;
if (nIDEvent ==1D TIMER CLOCK){
/!
// Get the current time and do nothing if it hasn't changed.
/!
CTime time = CTime::GetCurrentTime ();
int nSecond = time.GetSecond ();

/*if (nSecond == m_nPrevSecond)

D41

return;*/

/!

// 1f seconds have changed

/l

CRect rect;

GetClientRect (&rect);

CClientDC pDC (this);

POSITION pos = pDoc->homes.GetHeadPosition();

while (pos != NULL){
Home * h = pDoc->homes.GetNext(pos);
//SetBkColor(pDC,h->getColor());
h->setDC(&pDC,&rect);
h->drawClock(&pDC);

}

//if (nSecond != m_nPrevSecond) {
/l drawClock(&pDC);

/l m_nPrevSecond = nSecond;
1}
}
/* else {
CRect dRect; //added by shahrukh to remove the flicker
GetClientRect (&dRect); //added by shahrukh to remove the flicker
CClientDC pDC2 (this); //added by shahrukh to remove the flicker
pDoc->dataFromFile(&pDC2,&dRect); //changed by shahrukh to remove the
flicker
yx
CView::OnTimer(nIDEvent);
}

/*OnLButtonDbICIk - is called when user double clicks on the "Home". the "homes"
CTypedPtrList object
is traverresed to find which "Home" was clicked on and then
Home::selectRoom method of the clicked "Home" is called to find what "room"
was clicked on inorder to enlarge it

*/
void CFuelCellView::OnLButtonDbICIk(UINT nFlags, CPoint point)
{

CClientDC pDC (this);

CRect rect;

GetClientRect (&rect);

POSITION pos = pDoc->homes.GetHeadPosition();

D42

while (pos != NULL){
Home * h = pDoc->homes.GetNext(pos);
//SetBkColor(pDC,h->getColor());
h->setDC(&pDC,&rect);
pDC.DPtoLP(&point);
if (!(h->getClicked())){

if(h->selectRoom(point)){
h->setClicked(1);
h->setSelectedRoomEnlargedPaintedForFirstTime (true);
//h->draw(&pDC);
Invalidate();
/! CView::OnUpdate(NULL, 1, (CObject*)&rect);
h->drawSemacMessage (this);

}

else {

h->setClicked(0);
h->sethomelnDefaultView (true);
h->setSelectedRoomEnlargedPaintedForFirstTime (true);
//h->draw(&pDC);
Invalidate();
/ICView::OnUpdate(NULL, 1, (CObject*)&rect);
h->drawSemacMessage (this);

CView::OnLButtonDbIClk(nFlags, point);
}

void CFuelCellView::OnRButtonDown(UINT nFlags, CPoint point)
{
CClientDC pDC (this);
CRect rect;
GetClientRect (&rect);
POSITION pos = pDoc->homes.GetHeadPosition();
while (pos != NULL){
Home * h = pDoc->homes.GetNext(pos);
//SetBkColor(pDC,h->getColor());
if (h->getClicked()){
h->setDC(&pDC,&rect);
h->setCurPower(point,&pDC);
h->draw(&pDC); //added by shahrukh to remove flicker
//Invalidate(); removed by shahrukh as it was causing flicker

D43

CView::OnRButtonDown(nFlags, point);
}

void CFuelCellView::OnlnitialUpdate()

{
CView::OnlnitialUpdate();

pDoc = GetDocument();
ASSERT VALID(pDoc);

CClientDC pDC (this);
CRect rect;
GetClientRect(&rect);

//code to draw the semac message box and label for the first time in application life cycle
POSITION pos = pDoc->homes.GetHeadPosition();
/Iwhile (pos !'=NULL){ //for multiple homes not needed at this time
Home * h = pDoc->homes.GetNext(pos);
//h->setDC(&pDC,&rect);
h->setCurrentSemacMessage("waiting for a message from Semac Server");
h->drawSemacMessage (this);

oo

//make a callto SemacClinet's communicateWithSemacServer()
SemacClient communicator;
communicator.startSemacClientThread(CView::m_hWnd);

}

void CFuelCellView::setSemacMessage(char * SemacMessage)

{
pDoc = GetDocument();

ASSERT VALID(pDoc);

CClientDC pDC (this);
CRect rect;
GetClientRect(&rect);

POSITION pos = pDoc->homes.GetHeadPosition();
/Iwhile (pos !'=NULL){ //for multiple homes not needed at this time
Home * h = pDoc->homes.GetNext(pos);
h->setDC(&pDC,&rect);
h->setCurrentSemacMessage (SemacMessage);
h->setSemacMessage (SemacMessage);

D44

#include "stdafx.h"
#include "Home.h"

//#include <fstream> //for debugging remove later
/[#include <iostream> //for debugging remove later
//using namespace std; //for debugging remove later

int Home::count;
//Definition of class Home

IMPLEMENT SERIAL (Home, CObject, 1);
Home::Home(){}
Home::~Home(){
--count;
POSITION pos;
pos = rooms.GetHeadPosition();
while(pos != NULL){
delete rooms.GetNext(pos);
}
pos = doors.GetHeadPosition();
while(pos != NULL){
delete doors.GetNext(pos);
}
pos = foldingDoors.GetHeadPosition();
while(pos !=NULL){
delete foldingDoors.GetNext(pos);
}
pos = openings.GetHeadPosition();
while(pos !=NULL){
delete openings.GetNext(pos);
}
pos = windows.GetHeadPosition();
while(pos !=NULL){
delete windows.GetNext(pos);
}
pos = appliances.GetHeadPosition();
while(pos !=NULL){
delete appliances.GetNext(pos);

}
if (semacMsgBox != NULL)
{
delete semacMsgBox ;
}

D45

Home::

Home::

if(semacLabel != NULL)
{

}

delete semacLabel ;

Home(int theMaxLength, int theMaxWidth, COLORREF theClr){

homeld = ++count;

homeClr = theClr;

maxPower =0.f;

curPower = 0.f;

powerConsumed = 0.f;

selectedRoom = -1;

maxLength = (int)(1.5*theMaxLength);
maxWidth = (int)(1.5*theMaxWidth);
timeSlot = 0;

roomCount = 0;

doorCount = 0;

foldingDoorCount = 0;

openingCount = 0;

windowCount = 0;

appliancesCount = 0;

clicked = 0;

homelnDefaultView = true;
lastRoomPowerLabelWidthPos =0;
semacMsgBox = new CEdit();
semacLabel = new CEdit();
currentSemacMessage = new char [512];

Home(const Home & h){

homeld = h.homeld;

homeClr = h.homeClr;

maxPower = h.maxPower;
curPower = h.curPower;
powerConsumed = h.powerConsumed;
maxLength = h.maxLength;
maxWidth = h.maxWidth;
timeSlot = 0;

selectedRoom = h.selectedRoom;
POSITION pos;

pos = h.rooms.GetHeadPosition();

while(pos !=NULL){

Room * r = h.rooms.GetNext(pos);
rooms.AddTail(r);

D46

}

}

pos = doors.GetHeadPosition();

while(pos != NULL){
Door * d = h.doors.GetNext(pos);
doors.AddTail(d);

}

pos = foldingDoors.GetHeadPosition();

while(pos != NULL){
FoldingDoor * fd = h.foldingDoors.GetNext(pos);
foldingDoors.AddTail(fd);

}

pos = openings.GetHeadPosition();

while(pos != NULL){
Opening * 0 = h.openings.GetNext(pos);
openings.AddTail(o);

}

pos = windows.GetHeadPosition();

while(pos != NULL){
Window * w = h.windows.GetNext(pos);
windows.AddTail(w);

}

pos = appliances.GetHeadPosition();

while(pos != NULL){
Appliances * a = h.appliances.GetNext(pos);
appliances.AddTail(a);

}

roomCount = h.roomCount;

doorCount = h.doorCount;

foldingDoorCount = h.foldingDoorCount;

openingCount = h.openingCount;

windowCount = h.windowCount;

appliancesCount = h.appliancesCount;

clicked = h.clicked;

homelnDefaultView = h.homelnDefaultView;

lastRoomPowerLabelWidthPos = h.lastRoomPowerLabelWidthPos;

lastPowerLabelWidthPos = h.lastPowerLabelWidthPos;

/*Home * Home::operator =(Home *h){

}¥/

return h;

Home Home::operator =(Home h){

}

return h;

void Home::setDC(CDC* dec,CRect *rect){

D47

CPoint orgV(maxLength/10,maxWidth/10);
dc->SetMapMode(MM_ISOTROPIC); //setting the mapping mode
dc->SetWindowExt(maxLength,maxWidth); //setting the window acording to the size
dc->SetViewportExt(rect->Width(),rect->Height());
dc->LPtoDP(&orgV);
dc->SetViewportOrg(orgV);
}

void Home::draw(CDC* dc){
CPoint moveOrg(maxLength,maxWidth), resetOrg;
CGdiObject * pOldPen = dc->SelectStockObject(NULL PEN);
CBrush cbrush(homeClr), *oldBrush;
oldBrush = dc->SelectObject(&cbrush);

//dc->Rectangle(-maxLength/10,-maxWidth/10,maxLength,maxWidth); changin position
2 lines down

//to remove flicker, as the home does not need to be erased every time.

//dc->SelectObject (pOldPen); moving down with previous statement

if((!clicked) && (homelnDefaultView)){

dc->Rectangle(-maxLength/10,-maxWidth/10,maxLength,maxWidth);

POSITION pos;

pos = rooms.GetHeadPosition();

while(pos != NULL){
rooms.GetNext(pos)->draw(dc);

}

pos = doors.GetHeadPosition();

while(pos != NULL){
doors.GetNext(pos)->draw(dc);

}

pos = foldingDoors.GetHeadPosition();

while(pos != NULL){
foldingDoors.GetNext(pos)->draw(dc);

}

pos = openings.GetHeadPosition();

while(pos != NULL){
openings.GetNext(pos)->draw(dc);

}

pos = windows.GetHeadPosition();

while(pos != NULL){
windows.GetNext(pos)->draw(dc);

}

pos = appliances.GetHeadPosition();

while(pos != NULL){
appliances.GetNext(pos)->draw(dc);

D48

}

homelnDefaultView = false; //added by shahrukh to remove flicker

}
else if((!clicked) && (! homeInDefaultView)){

POSITION pos;
dc->SelectObject (pOldPen); //added by shahrukh to remove flicker
pos = appliances.GetHeadPosition();
while(pos != NULL){
appliances.GetNext(pos)->draw(dc);
}

}

else { // code in else draws the enlarged view
//dc->Rectangle(-maxLength/10,-maxWidth/10,maxLength,maxWidth);
dc->SelectObject (pOldPen); //added by shahrukh, while removing flicker
POSITION pos;
pos = rooms.GetHeadPosition();
while(pos != NULL){
Room * room = rooms.GetNext(pos);
if (room->getRoomlId() == selectedRoom){
room->SelectOrigin(&moveOrg);
resetOrg = dc->GetWindowOrg();
float factor = room->magnifyingFactor(maxLength,maxWidth);
de-
>SetWindowExt((int)(maxLength/factor),(int)(max Width/factor));
dc->SetWindowOrg(moveOrg);
if (room->getRoomEnlargedPaintedforfirstTime ())
{
dc->Rectangle(-maxLength/10,-maxWidth/10,maxLength,maxWidth);
room->draw(dc);
room->setRoomEnlargedPaintedforfirstTime (false);

j
}

pos = doors.GetHeadPosition();
while(pos != NULL){
Door * door = doors.GetNext(pos);

//attachedTold1 or attachedTold2 as common door between two rooms
have roomld's
//of both Room objects attached to it.
if (door->attachedTold1 == selectedRoom || door->attachedTold2 ==
selectedRoom)
door->draw(dc);

}

D49

pos = foldingDoors.GetHeadPosition();
while(pos != NULL){

FoldingDoor * fdoor = foldingDoors.GetNext(pos);

if (fdoor->attachedTold1 == selectedRoom || fdoor->attachedTold2 ==
selectedRoom)

}

pos = openings.GetHeadPosition();
while(pos != NULL){
Opening * opening = openings.GetNext(pos);
if (opening->attachedTold1 == selectedRoom || opening->attachedTold2

fdoor->draw(dc);

== selectedRoom)

}

pos = windows.GetHeadPosition();
while(pos != NULL){
Window * window = windows.GetNext(pos);
if(window->attachedTold == selectedRoom)
window->draw(dc);

opening->draw(dc);

}

pos = appliances.GetHeadPosition();

while(pos != NULL){
Appliances * appliance = appliances.GetNext(pos);
if(appliance->attachedTold == selectedRoom)

appliance->draw(dc);

}

dc->SetWindowExt(maxLength,maxWidth);

dc->SetWindowOrg(resetOrg);

Appliances *app = new Appliances();

7.7 and 2 and 10
delete app;
j
drawClock(dc);
drawGraph(dc);
dc->SelectObject(oldBrush);
dc->SelectObject(pOldPen);

}

void Home::drawClock(CDC *dc){
CTime time = CTime::GetCurrentTime();
int nSecond = time.GetSecond();
int nMinute = time.GetMinute();
int nHour = time.GetHour();
CFont font;
font.CreatePointFont(140, T("Times New Roman"));

D50

CFont * pOldFont = dc->SelectObject(&font);
//dc->SetTextColor(RGB(0,0,0));
CString s;
if(nHour > 12)
s.Format(_T("%0.2d:9%0.2d:%0.2d PM"),nHour%12,nMinute,nSecond);
else
s.Format(_T("%0.2d:9%0.2d:%0.2d AM"),nHour,nMinute,nSecond);
COLORREF bkClr = dc->SetBkColor(homeClr);
CGdiObject * pOldPen = dc->SelectStockObject(NULL PEN);
CBrush cbrush(homeClr), *oldBrush;
oldBrush = dc->SelectObject(&cbrush);
dc->Rectangle((int)(7.7*maxLength/10),maxWidth/10,maxLength,2*maxWidth/10);
dc->SelectObject (pOldPen);
dc->TextOut(8*maxLength/10,maxWidth/10,s);
dc->SetBkColor(bkClr);
dc->SelectObject(pOldFont);

}
void Home::deleteOldSemacMsgBoxAndLabel()
{
if (semacMsgBox != NULL)
{
delete semacMsgBox ;
}
if(semacLabel !=NULL)
{
delete semacLabel ;
}
}
void Home::setSemacMessage(char * SemacMessage)
{
semacMsgBox->SetWindowText (T (SemacMessage));
}

void Home::drawSemacMessage(CView * cMainFrameRef) {
deleteOldSemacMsgBoxAndLabel ();
CRect rect;
cMainFrameRef->GetClientRect(&rect);
CClientDC dc (cMainFrameRef);
setDC(&dc,&rect);
int msgBoxHeight = maxWidth/40;
/ly cordiantes are common for for label and the box

int startY = 33*msgBoxHeight;

int endY = startY+ (2*msgBoxHeight);

//code for constructing label co-ordiantes(logical) in CPoint and converting them to
Physical Co-ordinates

D51

int startXLabel = 2;
int endXLabel = 162;
CPoint startXLabelPoint (startXLabel, startY);
CPoint endXLabelPoint (endXLabel, endY);
dc.LPtoDP (&startXLabelPoint);
dc.LPtoDP (&endXLabelPoint);
CRect enclosingRectSemacLabel (startXLabelPoint, endXLabelPoint);
//lend of code for label co-ord.

//code for constructing CEdit box co-ordiantes(logical) in CPoint and converting them to
Physical Co-ordinates
int endX = (Home::maxLength - 5*msgBoxHeight);
CPoint startPoint(endXLabel + msgBoxHeight , startY);
CPoint endPoint (endX, endY);
dc.LPtoDP (&startPoint);
dc.LPtoDP (&endPoint);
CRect enclosingRectEditBox (startPoint, endPoint);
//code for CEdit box Co-Ord ends here

// code for drawing semac label
semacLabel = new CEdit;
semacLabel->Create (WS_CHILD | WS_VISIBLE | WS_BORDER | ES READONLY,
enclosingRectSemacLabel, cMainFrameRef, 1233);
semacLabel->SetWindowText (T ("Semac Status:"));
/I code for drawing semac label ends here

// code for Semac message text box starts
semacMsgBox = new CEdit;
semacMsgBox->Create (WS _CHILD | WS_VISIBLE | WS BORDER |

ES AUTOHSCROLL | ES READONLY, enclosingRectEditBox, cMainFrameRef, 1234);
semacMsgBox->SetWindowText (T (Home::currentSemacMessage));
Home::semacMsgBox->SetFocus();

// code for Semac message text box ends

}
void Home::setCurrentSemacMessage (char * SemacMessage)
{

strcpy(Home::currentSemacMessage, SemacMessage);
b

void Home::drawGraph(CDC *pdc){

int barLength = 6*maxLength/10;

int barHeight = maxWidth/40;

int curBar = (int)((curPower/maxPower)*barLength);
int curRoomBar;

D52

float curSelectedRoomPower;
POSITION pos = rooms.GetHeadPosition();

while(pos != NULL){
Room * room = rooms.GetNext(pos);
if (room->getRoomld() == selectedRoom){
curSelectedRoomPower = room->getCurPower();
curRoomBar = (int)((curSelectedRoomPower/maxPower)*barLength);

}

//to erase the old power label by painting with background color

pdc->SelectStockObject(NULL PEN);
CBrush cbrushErase(homeClr), *oldBrush;
oldBrush = pdc->SelectObject(&cbrushErase);
pdc->Rectangle(Home::lastPowerLabel WidthPos, 29*maxWidth/40,
(lastPowerLabelWidthPos + (barLength/3)),29*maxWidth/40+barHeight);
//erasing done

CFont font,* pOldFont;

font.CreatePointFont(120, T("Times New Roman"));
pOIldFont = pdc->SelectObject(&font);
//pdc->SetTextColor(RGB(0,0,0));
CString s1,s2;
sl.Format(_T("Total Power: %0.2f"),curPower);
s2.Format(_T("Room Power : %0.2f"),curSelectedRoomPower);
/leraseStr.Format(_T("Total Power : %0.21"),curPower)
CPen pen(PS_SOLID,1,RGB(0,0,0)),*pOldPen;
pOldPen = pdc->SelectObject(&pen);
CBrush cbrush(RGB(255,255,255)), *pOldBrush;
pOldBrush = pdc->SelectObject(&cbrush);
COLORREF bkClr = pdc->SetBkColor(homeClr);
pdc->Rectangle(0,30*maxWidth/40,barLength,30*maxWidth/40+barHeight);
CBrush cbrush1(RGB(0,138,138));
pdc->SelectObject(&cbrushl);
pdc->Rectangle(0,30*maxWidth/40,curBar,30*maxWidth/40+barHeight);
pdc->TextOut(curBar,29*maxWidth/40,s1);
if (clicked){
/Ito erase the old Room power comsumption label by painting with background
color

pdc->SelectStockObject(NULL PEN);

CBrush cbrushErase(homeClr), *oldBrush;
oldBrush = pdc->SelectObject(&cbrushErase);

D53

//pdc->Rectangle(Home::lastRoomPowerLabelWidthPos, 29*maxWidth/40, (
Home::lastRoomPowerLabelWidthPos + (barLength/4)),30*maxWidth/40+barHeight);
pdc->Rectangle(0, 27*maxWidth/40, (
Home::lastRoomPowerLabelWidthPos + (barLength/2)),27*maxWidth/40+barHeight);
//erasing done

CBrush cbrush2(RGB(255,255,255));
pdc->SelectObject(&cbrush?2);
pdc-
>Rectangle(0,28*maxWidth/40,barLength,28*maxWidth/40+barHeight);
CBrush cbrush3(RGB(0,138,138));
pdc->SelectObject(&cbrush3);
pdc-
>Rectangle(0,28*maxWidth/40,curRoomBar,28*maxWidth/40+barHeight);
pdc->TextOut(curRoomBar,27*maxWidth/40,s2);
h
pdc->SetBkColor(bkClr);
pdc->SelectObject(pOldBrush);
pdc->SelectObject(pOldPen);
pdc->SelectObject(pOldFont);

//to use when next power change occurs, to erase the last power label
Home::lastPowerLabelWidthPos = curBar;
Home::lastPowerLabel = s1;

}

int Home::selectRoom(CPoint point){
POSITION pos;
pos = rooms.GetHeadPosition();
while(pos != NULL){
Room * r = rooms.GetNext(pos);
if (r->selectedRoom(point)){
selectedRoom = r->getRoomld();
return 1;

}
j

return 0;

}

void Home::setSelectedRoomEnlargedPaintedForFirstTime(bool setValue){
POSITION pos;
pos = rooms.GetHeadPosition();
while(pos != NULL){
Room * r = rooms.GetNext(pos);
if (r->getRoomld() == selectedRoom){
r->setRoomEnlargedPaintedforfirstTime (setValue);

D54

break;

}

void Home::setCurPower(CPoint point, CDC *dc){

CPoint moveOrg, resetOrg;
POSITION pos = rooms.GetHeadPosition();
Room * room;
while(pos != NULL){

room = rooms.GetNext(pos);

if (selectedRoom == room->getRoomld())

break;

}
room->SelectOrigin(&moveOrg);
resetOrg = dc->GetWindowOrg();
float factor = room->magnifyingFactor(maxLength,maxWidth);
dc->SetWindowExt((int)(maxLength/factor),(int)(maxWidth/factor));
dc->SetWindowOrg(moveOrg);
pos = appliances.GetHeadPosition();
dc->DPtoLP(&point);
while(pos != NULL){

Appliances * appliance = appliances.GetNext(pos);

if(appliance->attachedTold == selectedRoom) {

if(appliance->setOnOff(point)){
curPower = curPower + appliance->getPowerChange();
room->setCurPower(appliance->getPowerChange());

}
}
}
dc->SetWindowExt(maxLength,maxWidth);
dc->SetWindowOrg(resetOrg);

}

//if the wrong ids of the appliances are sent then nothing will
//be changed. appliance->getAppliancesld() == appIDJi] test is only for
//consistency.
void Home::setCurPower(int appID[], int status[], float power[], int& arrayPointer){
POSITION pos1,pos2;
Room * room;
int 1 =0;
posl = appliances.GetHeadPosition();
while(pos1 !'= NULL){
Appliances * appliance = appliances.GetNext(posl);
if(appliance->getAppliancesld() == appID[arrayPointer]){
if(appliance->setOnOff(status[arrayPointer],power[arrayPointer])){

D55

curPower = curPower + appliance->getPowerChange();
pos2 = rooms.GetHeadPosition();
while(pos2 != NULL){
room = rooms.GetNext(pos2);
if (appliance->attachedTold == room->getRoomld()){
room->setCurPower(appliance-

>getPowerChange());
break;
b
h
b
h
arrayPointer++;
h

h

int Home::addRoom(int theArray[],int theNumberOfCorners, COLORREF theClr,CString
theName, CPoint point){
rooms.AddTail(new Room(count,theArray,theNumberOfCorners,theClr,theName,point));
roomCount+-+;
return 1;

}

int Home::addCloset(int roomld, int theArray[],int theNumberOfCorners, COLORREEF theClr){
POSITION pos = rooms.GetHeadPosition();
while(pos != NULL){
Room * r = rooms.GetNext(pos);
if (r->getRoomlId() == roomld){
r->addCloset(count,the Array,theNumberOfCorners,theClr);
return 1;

}
j

return 0;

}

int Home::addDoor (int theAttachedTold1,int theAttachedTold2, int X1,int Y1,int X2, int Y2, int
theRotation,
COLORREF theDoorClr){

doors.AddTail(new Door(count,theAttachedTold1, theAttachedTold2, X1, Y1, X2, Y2,
theRotation, theDoorClr));

doorCount++;

return 1;
}
int Home::addFoldingDoor (int theAttachedTold1,int theAttachedTold2, int X1,int Y1,int X2, int
Y2, int theRotation,

D56

int theSlidingAngleFromVertical, COLORREF
theFoldingDoorClr){
foldingDoors.AddTail(new FoldingDoor(count, theAttachedTold1, theAttachedTold2,
X1,Y1,X2,Y2,
theRotation, theSlidingAngleFromVertical,

theFoldingDoorClr));
foldingDoorCount++;
return 1;

}

int Home::addOpening (int theAttachedTold1,int theAttachedTold2, int X1,int Y1,int X2, int Y2,
int theInclination, COLORREF theOpeningClr){
openings.AddTail(new Opening(count, theAttachedTold1, theAttachedTold2, X1, Y1,
X2,Y2,
thelnclination,theOpeningClr));
openingCount++;
return 1;
}
int Home::addWindow (int theAttachedTold, int X1,int Y1,int X2, int Y2,
int theInclination, COLORREF theWindowClr){
windows.AddTail(new Window(count, theAttachedTold, X1, Y1, X2, Y2,
thelnclination, theWindowClr));
windowCount++;
return 1;
j
int Home::addApplainces (int theAttachedTold, CRect theRect, COLORREF theAppliancesClr,
float maxPower,enum Appliances::Shape
theShape){
appliances.AddTail(new Appliances(count, theAttachedTold, theRect, theAppliancesClr,
maxPower, theShape));
POSITION pos = rooms.GetHeadPosition();
while(pos != NULL){
Room * r = rooms.GetNext(pos);
if (r->getRoomld() == theAttachedTold)
r->setMaxPower(maxPower);
h
setMaxPower(maxPower);
appliancesCount++;
return 1;

}

void Home::Serialize (CArchive& ar)
{
CObject::Serialize (ar);
if (ar.IsStoring ()){
ar << count;
ar << homeld;

D57

ar << homeClr;
ar << maxPower;
ar << curPower;
ar << powerConsumed;
ar << selectedRoom;
ar << maxLength;
ar << maxWidth;
ar << timeSlot;
ar << roomCount;
ar << doorCount;
ar << foldingDoorCount;
ar << openingCount;
ar << windowCount;
ar << appliancesCount;
POSITION pos;
pos = rooms.GetHeadPosition();
while(pos != NULL){
ar << rooms.GetNext(pos);
§
pos = doors.GetHeadPosition();
while(pos != NULL){
ar << doors.GetNext(pos);
§

pos = foldingDoors.GetHeadPosition();
while(pos != NULL){

ar << foldingDoors.GetNext(pos);
h
pos = openings.GetHeadPosition();
while(pos != NULL){

ar << openings.GetNext(pos);
h
pos = windows.GetHeadPosition();
while(pos != NULL){

ar << windows.GetNext(pos);
h
pos = appliances.GetHeadPosition();
while(pos != NULL){

ar << appliances.GetNext(pos);

}
ar << clicked;
h
else {// Loading, not storing

ar >> count;
ar >> homeld;
ar >> homeClr;
ar >> maxPower;

D58

ar >> curPower;
ar >> powerConsumed;
ar >> selectedRoom;
ar >> maxLength;
ar >> maxWidth;
ar >> timeSlot;
ar >> roomCount;
ar >> doorCount;
ar >> foldingDoorCount;
ar >> openingCount;
ar >> windowCount;
ar >> appliancesCount;
Room * r;
for (int1i=0 ; i <roomCount ; i++){
ar >>r;
rooms.AddTail(r);
j
Door * d;
for (1=0 ;1 <doorCount ; i++){
ar>>d;
doors.AddTail(d);
j
FoldingDoor * fd;
for (1=0 ;1< foldingDoorCount ; i++){
ar >> fd;
foldingDoors.AddTail(fd);
j
Opening * o;
for (1=0 ;1< openingCount ; i++){
ar >> 0;
openings.AddTail(o);
}
Window * w;
for (1=0 ;i <windowCount ; i++){
ar >>w,;
windows.AddTail(w);
§
Appliances * a;
for (1=0 ;i< appliancesCount ; i++){
ar >> a;
appliances.AddTail(a);
}

ar >> clicked;

D59

// Lable.cpp: implementation of the CLable class.

/1
T T

#include "stdafx.h"
#include "FuelCell.h"
#include "Lable.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#define new DEBUG _NEW

#endif

T
// Construction/Destruction
T
IMPLEMENT SERIAL (CLable, CObject, 1);
CLable::CLable()

{
b

CLable::~CLable()
{

}

CLable::CLable(CString theName, CPoint point)
{

position.x = point.x;

position.y = point.y;

name = theName;

}
void CLable::Serialize (CArchive& ar)

{
CObject::Serialize (ar);
if (ar.IsStoring ()){
ar << name;
ar << position;

}

else {// Loading, not storing
ar >> name,
ar >> position;

}

D60

}

void CLable::setXPos(int x)

{position.x =X;

ioid CLable::setYPos(int y)

{position.y =vy;

ioid CLable::setName(CString theName)

{

name = theName;

}

// MainFrm.cpp : implementation of the CMainFrame class
//

#include <afxwin.h>

#include "stdafx.h"

#include "FuelCell.h"

#include "MainFrm.h"

#include "FuelCellDoc.h"
#include "FuelCellView.h"

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[]=_ FILE ;
#endif

I
// CMainFrame
IMPLEMENT DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE MAP(CMainFrame, CFrameWnd)
/I{{AFX_MSG_MAP(CMainFrame)

// NOTE - the ClassWizard will add and remove mapping macros here.

// DO NOT EDIT what you see in these blocks of generated code !
/1 ON_WM SIZE()
/Iy yAFX_MSG_MAP
END_MESSAGE _MAP()

D61

I
// CMainFrame construction/destruction

CMainFrame::CMainFrame()

{
}

CMainFrame::~CMainFrame()
{

}

/*void CMainFrame::OnSize (UINT nType, int cX, int cy)
{

CWnd::OnSize(nType, cx, ¢y);

if (nType == SIZE MINIMIZED)

{

}

//code to call setDC to adjust to new window size, call to
//deleteOldSemacMsgBoxAndLabel and make a new semacMsgBox
CFuelCellView * currentView = (CFuelCellView *)GetActiveView();
if(currentView == NULL)

return;

return;
}
currentView->redrawingOnResezingWnd();
//ICWnd::Invalidate ();
/*CClientDC pDC (currentView);
CFuelCellDoc* pDoc = (CFuelCellDoc*)currentView->GetDocument();
CRect rect;
currentView->GetClientRect(&rect);
POSITION pos = pDoc->homes.GetHeadPosition();
//while (pos !'=NULL){ //for multiple homes not needed at this time
Home * h = pDoc->homes.GetNext(pos);
h->setDC(&pDC,&rect);
h->draw(&pDC);
h->drawSemacMessage (currentView, cX, Cy);
/! }

3/

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)

D62

CWnd * desktop = GetDesktopWindow();
RECT desktopRect;
desktop->GetClientRect(&desktopRect);

cs.cx = desktopRect.right - desktopRect.left;

cs.cy = desktopRect.bottom - desktopRect.top;

if(!CFrameWnd::PreCreate Window(cs))

return FALSE;
// TODO: Modify the Window class or styles here by modifying
/I the CREATESTRUCT cs

return TRUE;

T
// CMainFrame diagnostics

#ifdef DEBUG
void CMainFrame:: AssertValid() const

{
b

CFrameWnd::AssertValid();

void CMainFrame::Dump(CDumpContext& dc) const
{

}

#endif / DEBUG

CFrameWnd::Dump(dc);

I
// CMainFrame message handlers

//opening.cpp

#include "stdafx.h"
#include "Opening.h"
#include <Math.h>

int Opening::count;

//Definition of class Opening

IMPLEMENT SERIAL (Opening, CObject, 1);
Opening::Opening(){}

D63

Opening::~Opening(){

}

--count;

Opening::Opening(int theHomeld, int theAttachedTold1,int theAttachedTold2, int X1,int Y1,int

X2, int Y2, int thelnclination, COLORREF theOpeningClr){

}

openingld = ++count;
homeld = theHomeld;

attachedToldl = theAttachedTold1;
attachedTold2 = theAttachedTold2;

endl.x = X1;

endl.y=Y1;

end2.x = X2;

end2.y =Y2;

inclination = thelnclination;
width = distBtPoints();
openingClr = theOpeningClr;

Opening::Opening(const Opening & 0){

openingld = o.openingld;

homeld = o0.homeld;
attachedTold1 = o.attachedTold2;
attachedToldl = o.attachedTold2;
endl.x =o0.endl.x;

endl.y = o.endl.y;

end2.x = 0.end2.x;

end2.y = o.end2.y;

inclination = o.inclination;

width = o.width;

}

/*Opening * Opening::operator =(Opening *w){

3/

Opening Opening::operator =(Opening w){

}

openingClr = o.openingClr;

return w;

return w;

void Opening::draw(CDC* dc){

CPen pen(PS_DOT,1,RGB(0,0,0)),*pOldPen;

CBrush cbrush(openingClr), * pOldBrush;

pOldPen = dc->SelectObject(&pen);

pOldBrush = dc->SelectObject(&cbrush);
dc->Rectangle((int)(end1.x-3*cos(abs(inclination)*3.14/180)),(int)(end1.y-

3*sin(abs(inclination)*3.14/180)),

D64

(int)(end2.x

+3*cos(abs(inclination)*3.14/180)),(int)(end2.y+3*sin(abs(inclination)*3.14/180)));
dc->SelectObject(pOldPen);
dc->SelectObject(pOldBrush);

}

int Opening::distBtPoints() {

return (int)sqrt(pow((end1.x-end2.x),2)+pow((end1.y-end2.y),2));

}
void Opening::Serialize (CArchive& ar)
{
CObject::Serialize (ar);
if (ar.IsStoring ()){
ar << count;
ar << homeld;
ar << openingld;
ar << attachedTold1;
ar << attachedTold2;
ar <<endl;
ar << end2;
ar << openingClr;
ar << inclination;
ar << width;
§
else {// Loading, not storing
ar >> count;
ar >> homeld;
ar >> openingld;
ar >> attachedTold1;
ar >> attachedTold2;
ar >>endl;
ar >>end2;
ar >> openingClr;
ar >> inclination;
ar >> width;
§
}
// room.cpp

#include "stdafx.h"
#include "Room.h"
#include <iostream>
using namespace std;

D65

int Room::count;

//Definition of class Room

IMPLEMENT SERIAL (Room, CObject, 1);
Room::Room(){}

Room::~Room(){

}

--count;
delete lable;
POSITION pos = closets.GetHeadPosition();
while(pos != NULL){
delete closets.GetNext(pos);
}

delete [] corners;

Room::Room(int theHomeld, int theArray[],int theNumberOfCorners, COLORREF
theClr,CString name, CPoint point) {

}

homeld = theHomeld;

roomld = ++count;

numberOfCorners = theNumberOfCorners;
initializeCorners(theArray);

roomClr = theClr;

maxPower =0.f;

curPower = 0.f;

powerConsumed = 0.f;

closetCount = 0;

roomEnlargedPaintedforfirstTime = true;

lable = new CLable(name,point);

Room::Room(const Room & r){

numberOfCorners = r.numberOfCorners;
homeld = r.homeld;
int index = 0;

while(index < numberOfCorners){

corners[index] = r.corners[index];index++;
h
roomld = r.roomld;
roomClr = r.roomClr;
maxPower = r.maxPower;
curPower = r.curPower;
powerConsumed = r.powerConsumed;
closetCount = r.closetCount;
roomEnlargedPaintedforfirstTime = r.roomEnlargedPaintedforfirstTime;
minXY =r.minXY;
maxXY =r.maxXY;
lable = r.lable;
POSITION pos = r.closets.GetHeadPosition();

D66

while(pos != NULL){
Closet * closet = r.closets.GetNext(pos);
closets.AddTail(closet);

}

}

Room * Room::operator =(Room *r){
return t;

}

Room Room::operator =(Room r){
return r;

}

void Room::draw(CDC* dc){
CPen pen(PS_SOLID,5,RGB(0,0,0)), *pOldPen;
//CBrush cbrush(RGB(248,248,248));
//CBrush cbrush(RGB(200,200,255));
//CBrush cbrush(RGB(255,253,235));
CBrush cbrush(roomClr),*pOldBrush;
pOIldPen = dc->SelectObject(&pen);
pOldBrush = de->SelectObject(&cbrush);

dc->Polygon(corners,numberOfCorners);
POSITION pos = closets.GetHeadPosition();
while(pos != NULL){
closets.GetNext(pos)->draw(dc);

h
dc->SelectObject(pOldPen);
dc->SelectObject(pOldBrush);
COLORREF oldBkCol = de->SetBkColor(roomClr);
dc->TextOut(lable->getPosition().x,lable->getPosition().y, lable->getName());
dc->SetBkColor(oldBkCol);

}

bool Room::getRoomEnlargedPaintedforfirstTime (){
return roomEnlargedPaintedforfirstTime;

}

void Room::setRoomEnlargedPaintedforfirstTime (bool setValue){
Room::roomEnlargedPaintedforfirstTime = setValue;

}

void Room::initializeCorners(int theArray[]){
try {

corners = new CPoint[numberOfCorners];
int counter = 0;
while(counter < numberOfCorners){

D67

corners[counter| =
CPoint(theArray[counter<<l],the Array[(counter<<1)+1]);
counter++;
}
minXY.x = INT MAX;
minXY.y = INT MAX;
maxXY.x = 0;
maxXY.y =0;
for (int 1 =0 ; i < numberOfCorners ; i++){
1f(minXY.x > corners[i].x)
minXY.x = corners[i].X;
if(minXY.y > corners[i].y)
minXY.y = corners[i].y;
}
for (=0 ; 1 < numberOfCorners ; i++){
if(maxXY .x < corners[i].x)
maxXY.x = corners[i].x;
if(maxXY.y < corners[i].y)
maxXY.y = corners[i].y;
}
}
catch(bad_alloc bac){
cout <<"\nFailure to allocate";

}
}

//reference http://home.earthlink.net/~bobstein/inpoly/
int Room::selectedRoom(CPoint point){

int xnew,ynew;
int xold,yold;
int x1,yl;
int x2,y2;
int i;
int inside=0;

xold=corners[numberOfCorners-1].x;
yold=corners[numberOfCorners-1].y;
for (i=0 ; 1 < numberOfCorners ; i++) {
xnew=corners[i].x;
ynew=corners[i].y;
if (xnew > xold) {
x1=xold;
X2=Xnew,
yl=yold;
y2=ynew;

D68

}

else {
x1=xnew;
x2=xold;
yl=ynew;
y2=yold;
}
if ((xnew < point.x) == (point.x <= xold) /* edge "open" at one end */
&& ((long)point.y-(long)y1)*(long)(x2-x1)
< ((long)y2-(long)y1)*(long)(point.x-x1)) {
inside=!inside;
}

xold=xnew;
yold=ynew;
}
return(inside);
}
/* returns the minXY.x and minXY'.y as set by the initializeCorners method. selectOrigin is
called by various methods of Home class
*/
void Room::SelectOrigin(CPoint *point){
point->x = minXY .x;
point->y = minXY.y;

}

int Room::addCloset(int homeld,int theArray[],int theNumberOfCorners, COLORREF theClr){
closetCount++;
closets.AddTail(new Closet(homeld,theArray,theNumberOfCorners,theClr));
return 1;

}

void Room::Serialize (CArchive& ar)

{

CObject::Serialize (ar);
if (ar.IsStoring ()){
ar << count;

ar << homeld;
ar << numberOfCorners;
for (int 1 = 0 ; 1 < numberOfCorners ; i++)
ar << corners|[i];
ar << roomld;
ar << roomClr;
ar << maxPower;
ar << curPower;
ar << powerConsumed;
ar << minXY;

D69

ar << maxXY;
ar << lable;
ar << closetCount;
POSITION pos;
pos = closets.GetHeadPosition();
while(pos != NULL){
ar << closets.GetNext(pos);

}
}
else {// Loading, not storing
ar >> count;

ar >> homeld;
ar >> numberOfCorners;
try {
corners = new CPoint[numberOfCorners];
for (int 1 = 0 ; 1 < numberOfCorners ; i++)
ar >> corners[i];
}
catch(bad_alloc bac){
cout <<"\nFailure to allocate";
§
ar >> roomld;
ar >> roomClr;
ar >> maxPower;
ar >> curPower;
ar >> powerConsumed;
ar >> minXY;
ar >> maxXY;
ar >> lable;
ar >> closetCount;
Closet * c;
for (int1=0 ; i < closetCount ; i++){
ar >> ¢,
closets.AddTail(c);

}

/*Used to calculate how much a room should be enlarge so that enlarged size in not more than the
original size of the Home.

called by Home::draw and Home::setCurPower
theMaxLength - length of the drawing area set when Home object was initialzed in

CFuelCellDoc::OnNewDocument
theMaxWidth - Width of the drawing area set when Home object was initialzed in

D70

CFuelCellDoc::OnNewDocument

*/
float Room::magnifyingFactor(int theMaxLength, int theMaxWidth)
{
float factor = 7.0f;
int xLimit = (int)(.66*theMaxLength), yLimit = (int)(.66*theMaxWidth);
while (abs(factor) > 1) {
if (factor*(maxXY.x-minXY.x) < xLimit && factor*(maxXY.y-minXY.y) <
yLimit)
return factor;
else
factor = factor - .25f;
h
return factor;
}

//semac client.cpp

#include "stdafx.h"

#include "SemacClient.h"
#include "FuelCellDoc.h"
#include "FuelCellView.h"
#include<winsock.h>
#include<iostream.h>

/FExEREWI] perform actual communication with semac server
const short semacServerPort = 8989;

SOCKET semacClientSocHandle;

SOCKADDR _IN semacServerStruct;

char * semacServerAddr="127.0.0.1";

UINT semacClientThread(LPVOID pParam)

{
short stx = 2;
short etx = 3;
short rs = 30;
short fs = 28;

int loadProfilePacket = 1;
int managementMessage = 2;

D71

int numReturnFromConnect;
WORD wVersionRequested;
WSADATA wsaData;
int err = WS AStartup(wVersionRequested, &wsaData);
if (err!=0) {
// Tell the user that we could not find a usable
// WinSock DLL.
return 0;
}
semacClientSocHandle = socket (PF_INET, SOCK _STREAM, 0);
if (semacClientSocHandle == INVALID SOCKET)

{
cout << "could not create the socket \n"
<< WSAGetLastError();
return -1;
}

semacServerStruct.sin_family = PF_INET;
semacServerStruct.sin_port = htons(semacServerPort);
semacServerStruct.sin_addr.S un.S addr = inet_addr(semacServerAddr);
numReturnFromConnect = connect (semacClientSocHandle,
(LPSOCKADDR)&semacServerStruct, sizeof (SOCKADDR));
if (numReturnFromConnect == SOCKET ERROR){
cout << "Couldn't connect socket."
<< WSAGetLastError();
return -1;
}
HWND hWnd = (HWND)pParam;
int counter = 1;
while(true)
{
char * semacMsgBuff = new char[80];
cout << "semacMsg="<<sizeof(semacMsgBuff)<<"\n";

numReturnFromConnect = recv (semacClientSocHandle, semacMsgBuff,40,0);
/Itrying to read 5 bytes for<stx>
if(numReturnFromConnect == SOCKET _ERROR)
{
cout << "error while receiving message"
<< WSAGetLastError();
return -1;

}

{
//char temp4;

//char temp;

else

D72

//temp4 = semacMsgBuff[3];
::PostMessage (hWnd, MESSAGE RECEIVED FROM_ SEMAC,
(WPARAM)semacMsgBuff, 0);
if(counter % 5 == 0)

{
::PostMessage (hWnd, DEVICE STATUS MSG FROM SEMAC,

(WPARAM)semacMsgBuff, 0);
}

//::Sleep(1000);
cout<<"bytes read = " << numReturnFromConnect <<"\n";
cout<<"Message received form Semac Server ="
<< semacMsgBuff<<"\n";

}
++counter;
}+//end of while loop
h
//* skskoskesksk

/[F*F*F*xthis function will run in a separate and lesson to messages from semac server
/*

UINT semacClientThread(LPVOID pParam)

{

::Sleep(5000);

int k;

for(k=0; k <=200; ++k)
{

char * message = new char[50];
char * counterString = new char[20];
message = " Hello,Message from Semac message number :";

itoa(k, counterString, 10);

HWND hWnd = (HWND)pParam;
//::PostMessage (hWnd, MESSAGE RECEIVED FROM SEMAC,

(WPARAM)"Hello,Message from Semac", 0);

::PostMessage (hWnd, MESSAGE RECEIVED FROM SEMAC,
(WPARAM)counterString, 0);

//::Sleep(1000);

}
3/

return 0;

D73

CWinThread * pThread = AfxBeginThread (semacClientThread, &cMainFrameRef);
SemacClinet::cMainFrameRef = cMainFrameRef

//lend of semac client function™ stk
/*void SemacClient::startSemacClientThread (CFuelCellView * cMainFrameRef)

{

bl

void SemacClient::startSemacClientThread (HWND m_hWnd)

{ CWinThread * pThread = AfxBeginThread (semacClientThread, m_hWnd);
}

/*void SemacClient::startSemacClientThread ()

{ CWinThread * pThread = AfxBeginThread (semacClientThread, NULL);
bl

/*void SemacClient::callDrawSemacMessage(char * message)

{

}¥/

// stdafx.cpp : source file that includes just the standard includes
/l FuelCell.pch will be the pre-compiled header
/! stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

// Window.cpp

#include "stdafx.h"
#include "Window.h"
#include <Math.h>

int Window::count;
//Definition of class Window
IMPLEMENT SERIAL (Window, CObject, 1);
Window::Window(){}
Window::~Window(){
--count;

}

D74

Window::Window(int theHomeld, int theAttachedTold, int X1,int Y1,int X2, int Y2, int

thelnclination, COLORREF theWindowClr){

}

windowld = ++count;

homeld = theHomeld;
attachedTold = theAttachedTold;
endl.x = X1;

endl.y=Y1;

end2.x = X2;

end2.y =Y2;

inclination = thelnclination;
width = distBtPoints();
windowClr = theWindowClr;

Window::Window(const Window & d){

}

windowld = d.windowlId;
homeld = d.homeld;
attachedTold = d.attachedTold;
endl.x =d.endl.x ;

endl.y =d.endl.y;

end2.x = d.end2.x;

end2.y = d.end2.y;

inclination = d.inclination,;

width = d.width;

windowClr = d.windowClr;

/*Window * Window::operator =(Window *w){

3/

return w;

Window Window::operator =(Window w){

}

return w;

void Window::draw(CDC* dc){

CPen pen(PS_SOLID,1,RGB(0,0,0)), *pOldPen;
CBrush cbrush(HS VERTICAL,RGB(0,0,0)), *pOldBrush;
COLORREF bkClr = dc->SetBkColor(windowClr);

pOldPen = dc->SelectObject(&pen);
pOldBrush = de->SelectObject(&cbrush);

//77?? what is the whole calculation for

dc->Rectangle((int)(end1.x-3*cos(abs(inclination)*3.14/180)),(int)(end1.y-

3*sin(abs(inclination)*3.14/180)),

D75

+3*cos(abs(inclination)*3.14/180)),(int)(end2.y+3*sin(abs(inclination)*3.14/180)));

}

(int)(end2.x

dc->SetBkColor(bkClr);
dc->SelectObject(pOldPen);
dc->SelectObject(pOldBrush);

int Window::distBtPoints(){

}

void Window::Serialize (CArchive& ar)

{

return (int)sqrt(pow((end1.x-end2.x),2)+pow((end1.y-end2.y),2));

CObject::Serialize (ar);

Ty

I

gy

if (ar.IsStoring ()){

ar << count;
ar << homeld;
ar << windowld;

ar << attachedTold;

ar <<endl;

ar << end2;
ar << windowClr;
ar << inclination;
ar << width;

}

else {// Loading, not storing

ar >> count;
ar >> homeld;
ar >> windowld;
ar >> attachedTold;
ar >>endl;
ar >>end2;
ar >> windowClr;
ar >> inclination;
ar >> width;

HEADER FILES

D76

/I ApplianceList.h

#if

Idefined(AFX_APPLIANCELIST H_ 8847E021 88B8 4AE5 AOFC 21DE5756FEF1 INCL
UDED)

#define

AFX APPLIANCELIST H 8847E021 88B8 4AES5 AOFC 21DE5756FEF1 INCLUDED

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000
/I ApplianceList.h : header file
/!

I T
/I CApplianceList window

class CApplianceList : public CStatic
{
// Construction
public:
CApplianceList();

/I Attributes
public:

/I Operations
public:

/I Overrides

/I ClassWizard generated virtual function overrides

/I{{AFX_VIRTUAL(CApplianceList)

public:

virtual BOOL Create(LPCTSTR IpszClassName, LPCTSTR IpszZWindowName, DWORD
dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID, CCreateContext* pContext =
NULL);

/I} yAFX_VIRTUAL

// Implementation
public:
virtual ~CApplianceList();

// Generated message map functions

protected:
/I{{AFX_MSG(CApplianceList)

D77

// NOTE - the ClassWizard will add and remove member functions here.
/1Y AFX_MSG

DECLARE MESSAGE MAP()
¥

T

/I{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX APPLIANCELIST H 8847E021 88B8 4AE5 AOFC 21DES756FEF1 INCL
UDED)

//Appliances.h

//Class Appliances
#ifndef Appliances H
#define Appliances H

class Appliances :public CObject
{
DECLARE_SERIAL (Appliances)
static int count;
static COLORREF appliancesCIrOff;
int attachedTold; /IThis variable specifies whether it is a closet(the Appliances
number
//to which it is attached) or Appliances(-1).
enum Shape {
WASHER,
DRIER,
HVAC,
WATER _HEATER,
FAN,
LIGHT,
HIGH WATTAGE OUTLET,
LOW_WATTAGE OUTLET,
EXHAUST FAN,
OVEN,
STOVE,
DISH WASHER,
REFRIGERATOR

3

protected :

D78

method
//are private

//draws the fan Shape
void drawFan(CDC * dc);

//draws the exhust fan Shape
void drawExhaustFan(CDC * dc);

int homeld,;

int appliancesld;

CRect rect;

COLORREF appliancesClr;

float maxPower;

float powerConsumed,

int onOfT;

Shape shape;

float curPower;

float changeInPower;
public :

float getPowerChange();

//Invoked By : Home::draw
/*Description : Default constructor.
Makes an empty(no attributes populate) instance of an Appliance.
Used by Home::draw to get an instance to call Appliance::drawList method
*/
Appliances();

~Appliances();

//Invoked by Home::addApplainces
Appliances(int homeld,int attachedTold, CRect rect, COLORREF appliancesClr,float
maxPower, Shape theShape);

Appliances(const Appliances &);
Appliances operator= (Appliances a);
//Appliances* operator= (Appliances *a);

/*Invoked by : Home::draw (invoked twice)
Arguments : dc (pointer to the Drawing context, which is used to render all graphics)
Type :pointer to CDC object

*/

void draw(CDC* dc);

D79

/*Invoked By : Appliances::Appliances(int theHomeld,int theAttachedTold, CRect
theRect, COLORREF theAppliancesClr,float maxPower,enum Appliances::Shape theShape)
Arguments : theClr (this encapsulates the RGB object)
Type : COLORREF class
*/
void setColor(COLORREF theClr){appliancesClr = theClr;}

//not being invoed anywhere
COLORREF getColor(){return appliancesClr;}

// changes the color of the appliances to mark an appliance off
static void setOffColor(COLORREF theClr){appliancesCIrOff = theClr;}

//not being invoked anywhere
static COLORREF getOffColor() {return appliancesCIrOfft;}

//not being invoked anywhere
float getCurPower();

//not being invoked anywhere
void setCurPower();

//mot being invoked anywhere
void setMaxPower(float thePower) {maxPower = thePower;}

//not being invoked anywhere
float getMaxPower() {return maxPower;}

//not being invoked anywhere
void setPowerConsumed(int timeSlot) {powerConsumed += (timeSlot*maxPower/3600);}

//not being invoked anywhere
float getPowerConsumed() {return powerConsumed; }

//not being invoked anywhere
int getOnOff() {return onOff;}

/*Called by : Home::setCurPower
*/
int getAppliancesId() {return appliancesld;}

/*Logic for setting an aplliance off/on, this function is invoked when appliances are
clicked on the screan

*/

int setOnOff(CPoint point);

D80

/*Logic for setting an aplliance off/on, this function is invoked when data is read from
the file

*/

int setOnOff{(int status, float power);

*/
void Serialize (CArchive& ar);

private:
//sets the size of the monitor screen available
void setRect(CRect theRect);

//draws the ligths ie the lamp
void drawLight(CDC* dc);

//draws Low wattage power outlet
void drawLWOutlet(CDC* dc);

//draws High wattage power outlet
void drawHWOutlet(CDC* dc);
public:
/*description : Draws the legend for the appliances, in the enlarged view of a room
this method is only used for drawing legends by creating a default
appliance in home class as the behavior is not dependent on
a particular
instance of appliance ie the behavior of this method is same
for any
Appliance object hence this method shoud be disassociated
with the instances
of Appliances and attach it class so it can be called like
Appliance::drawList(...) and does not require an object for
its invocation,
which is the case in the current implementation e.g. as in
Home::draw at line
201 and 202.
Called by : Home::draw */
void drawList(CDC *dc,int x,int y);
¥
#endif

// closet.h

D81

#ifndef Closet H
#define Closet H
#include <afxtempl.h>

/*Does not contain min or max co-ordinate and functionality of finding the origin is contained
in the Room class
*/
class Closet :public CObject
{
DECLARE_SERIAL (Closet)
static int count;
CPoint * corners;
int numberOfCorners;
protected:
int homeld;
int closetld;
void initializeCorners(int theArray[]);
COLORREEF closetClr;

public:
Closet();
~Closet();
Closet(int homeld, int theArray[],int theNumberOfCorners, COLORREEF theClr);
Closet (const Closet & ¢);
Closet* operator= (Closet *c);
Closet operator= (Closet ¢);
operator== (Closet c¢) const {return (closetld == c.closetld);}

/*Name : draw
Invoked by : Home::draw
description : code for rendering graphics for a door
Arguments : dc (a pointer to context for drawing.)
type : CDC

*/

void draw(CDC* dc);

int getClosetld() {return closetld;}

void setColor(COLORREEF theClr){closetClr = theClr;}
COLORREF getColor() {return closetClr;}

int getNumberOfCorners() {return numberOfCorners;}

void Serialize (CArchive& ar);

}s
#endif

D82

// door.h

//To add a door we have to provide hinge position lock position /
//angle of the door with the vertical axes and direction of rotaion /

//To add a window we have to give information of both ends and angle/
/I with vertical line . /

T T

//Class Door
#ifndef DOOR _H
#define DOOR_H

class Door :public CObject
{
DECLARE_SERIAL (Door)
static int count;
public:
int attachedTold1; //This variable specifies whether it is a closet(the Door number
int attachedTold2; //to which it is attached) or Door(-1).

protected :

int homeld;

int doorld;

CPoint hinge,lock;

int rotation;

int width;

COLORREF doorClr;
public :

Door();

~Door();

Door(int homeld,int attachedTold1,int attachedTold2, int X1,int Y1,int X2, int Y2, int
theRotation, COLORREF doorClr);
Door(const Door &);

Door operator= (Door d);
//Door* operator= (Door *r);

/*Name : draw
Invoked by : Home::draw
description : code for rendering graphics for a door
Arguments : dc (a pointer to context for drawing.)
type : CDC
*/
void draw(CDC* dc);

/*

D83

Invoked by : Door::Door(int theHomeld, int theAttachedTold1,int theAttachedTold2, int
X1,
int Y1,int X2, int Y2, int theRotation, COLORREF theDoorClr)
description : implementation of pythegoras theoram to find the length of the diagonal
of a triangle using the length of other 2 sides. But is being used to set

*/

int distBtPoints();

void Serialize (CArchive& ar);
3
#endif

// FoldingDoor.h

//Class Door
#ifndef FOLDINGDOOR H
#define FOLDINGDOOR H

class FoldingDoor :public CObject
{
DECLARE_SERIAL (FoldingDoor)
static int count;
public:
int attachedTold1; //This variable specifies whether it is a closet(the Door number
int attachedTold2; //to which it is attached) or Door(-1).

protected :
int homeld;
int foldingDoorld;
CPoint hinge,lock;
int rotation;
ints a f v; //sliding Angle From Vertical
int width;
COLORREF foldingDoorClr;
public :
FoldingDoor();
~FoldingDoor();
FoldingDoor(int homeld,int attachedTold1,int attachedTold2, int X1,int Y1,int X2, int
Y2, int theRotation,int s a f v, COLORREF doorClr);
FoldingDoor(const FoldingDoor &);
FoldingDoor operator= (FoldingDoor d);
//[FoldingDoor* operator= (FoldingDoor *r);

/*Name : draw
Invoked by : Home::draw

D84

description : code for rendering graphics for a folding door
Arguments : dc (a pointer to context for drawing.)
type : CDC
*/
void draw(CDC* dc);

/*
Invoked by : FoldingDoor::FoldingDoor(int theHomeld,int theAttachedTold1,
int theAttachedTold2, int X1,int Y1,int X2, int Y2,
int
theRotation,int theSlidingAngleFromVertical,
COLORREF
theFoldingDoorClr)
description : implementation of pythegoras theoram to find the length of the diagonal
of a triangle using the length of other 2 sides. But is being used to set

*/

int distBtPoints();

void Serialize (CArchive& ar);
}s
#endif

// FuelCell.h : main header file for the FUELCELL application
/!

#if

|defined(AFX_FUELCELL H 4D38EBCB_A531 41C9 A093 72BOBEE62C3A INCLUDE
D)

#define

AFX_FUELCELL H_4D38EBCB_A531 41C9 A093 72BOBEE62C3A_INCLUDED

#if MSC_VER > 1000
#pragma once
#endif / MSC_VER > 1000

#ifndef AFXWIN H
#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

I T
/I CFuelCellApp:

//'See FuelCell.cpp for the implementation of this class
/1

D85

class CFuelCellApp : public CWinApp
{
public:

CFuelCellApp();

/I Overrides
/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CFuelCellApp)
public:
virtual BOOL InitInstance();
//} yAFX_VIRTUAL

// Implementation
/I{{AFX_MSG(CFuelCellApp)
afx_msg void OnAppAbout();
/I NOTE - the ClassWizard will add and remove member functions here.
//- DO NOT EDIT what you see in these blocks of generated code !
/I yAFX _MSG
DECLARE _MESSAGE _MAP()

T

/I{{AFX_ INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX FUELCELL H 4D38EBCB_AS531 41C9 A093 72BOBEE62C3A INCLUDE

D)

// FuelCellDoc.h : interface of the CFuelCellDoc class
Z///

?!#(llzﬁned(AF X FUELCELLDOC H 72C5A8B0 2422 4371 9999 983FC65008A0 INCLUD
sdefne

AFX FUELCELLDOC H 72C5A8B0 2422 4371 9999 983FC65008A0 INCLUDED

#f MSC_VER > 1000

#pragma once
#endif / MSC VER > 1000

D86

#include "Home.h"

class CFuelCellDoc : public CDocument

{

protected: // create from serialization only
CFuelCellDoc();
DECLARE DYNCREATE(CFuelCellDoc)

/I Attributes
public:

// Operations
public:

// Overrides
/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CFuelCellDoc)
public:

//Invoked by automatically generated MFC code when the main window is instantiated
//Every time the main window is repainted this method is invoked
virtual BOOL OnNewDocument();

virtual BOOL OnOpenDocument(LPCTSTR IpszPathName);
virtual void Serialize(CArchive& ar);
//} yAFX_VIRTUAL

// Tmplementation
public:
CTypedPtrList<CObList,Home*> homes;
int homeCount;
int applIDBuff[200];
int applStatusBuff[200];
float applPowerBuff[200];
int arrayPointer;
int lastInUse;
void dataFromFile(CDC* dc,CRect *rect);
virtual ~CFuelCellDoc();
#ifdef DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions

D87

protected:
I1{{AFX_ MSG(CFuelCellDoc)
/I NOTE - the ClassWizard will add and remove member functions here.
//- DO NOT EDIT what you see in these blocks of generated code !
/I yAFX _MSG
DECLARE _MESSAGE _MAP()

¥
s

/I{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX FUELCELLDOC H 72C5A8B0 2422 4371 9999 983FC65008A0 INCLUD
ED)

// FuelCellView.h : interface of the CFuelCellView class
/l Contains methods that respond to various events
T

#if

!defined(AFX FUELCELLVIEW H_ BDIDBF65 2B51 4884 A83B 184E8DCE4A85 INC
LUDED)

#define

AFX FUELCELLVIEW _H BDIDBF65 2B51 4884 A83B 184E8DCE4A85 INCLUDED

#if MSC_VER > 1000
#pragma once

#endif / MSC_VER > 1000

#define MESSAGE_RECEIVED FROM_SEMAC 0x100
#define DEVICE_STATUS MSG FROM_SEMAC 0x150

class CFuelCellView : public CView
{

protected: // create from serialization only
CFuelCellView();
DECLARE DYNCREATE(CFuelCellView)
/I Attributes
public:
CFuelCellDoc* GetDocument();

D88

CFuelCellDoc* pDoc;

/I Operations
public:

/I Overrides
/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CFuelCellView)
public:
virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
virtual void OnlnitialUpdate();
//} yAFX_VIRTUAL

// Tmplementation
public:
virtual ~CFuelCellView();
void CFuelCellView::setSemacMessage(char * SemacMessage);
#ifdef DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif

protected:

/I Generated message map functions
protected:
/I{{AFX_MSG(CFuelCellView)

//CFuelCellView message handlers
afx_msg int OnCreate(LPCREATESTRUCT IpCreateStruct);

//refreshes the time every second on the main window.
afx_msg void OnTimer(UINT nIDEvent);

/*OnLButtonDbICIk - is called when user double clicks on the "Home". the "homes"
CTypedPtrList object
is traverresed to find which "Home" was clicked on and then
Home::selectRoom method of the clicked "Home" is called to find what "room"

was clicked on inorder to enlarge it
*/

afx_msg void OnLButtonDbICIk(UINT nFlags, CPoint point);
afx_msg void OnRButtonDown(UINT nFlags, CPoint point);

//gets called when window is minimized, maximized and restored
/1Y yAFX_MSG

D89

afx_msg LONG OnSemacThreadMessage (WPARAM wParam, LPARAM I[Param);

afx_msg LONG OnSemacDeviceStatusMsg (WPARAM wParam, LPARAM IParam);
DECLARE MESSAGE MAP()

}s

#ifndef DEBUG // debug version in FuelCellView.cpp
inline CFuelCellDoc* CFuelCellView::GetDocument()

{ return (CFuelCellDoc*)m_pDocument; }
#endif

T

/I{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX FUELCELLVIEW H_ BDIDBF65 2B51 4884 A83B 184ESDCE4A85 INC
LUDED)

//Home.h

//Class Home

#ifndef Home H

#define Home H
#include <afxtempl.h>
#include "Room.h"
#include "Door.h"
#include "FoldingDoor.h"
#include "Opening.h"
#include "Window.h"
#include "Appliances.h"

class Home :public CObject
{

/*keeps track of number of homes, it is a static variable so retains
it value even when goes out of scope
*/
static int count;

protected :
int homeld;
int timeSlot;

D90

int maxLength;

int maxWidth;

COLORREF homeClr;

float maxPower;

float curPower;

float powerConsumed;

int selectedRoom; //to store the roomld of the selected room
int lastPowerLabel WidthPos;

int lastRoomPowerLabelWidthPos;
CString lastPowerLabel,

CEdit * semacMsgBox ;

CEdit * semacLabel ;

//Room *room;//

/*description for next 12 lines:
rooms, doors, foldingDoors, openings, windows, appliances are the various
CTypedPtrList
(linked list) objects to hold the different objects of type Room, Door, FoldingDoor,
Opening, Window and Appliance respectively. roomCount, doorCount,
foldingDoorsCount,
openingCount, windowCount, appliancesCount are used to keep track of number of
object
held in the various lists(mentioned above) respectively
*/

CTypedPtrList<CObList,Room*> rooms;

int roomCount;
CTypedPtrList<CObList,Door*> doors;

int doorCount;
CTypedPtrList<CObList,FoldingDoor*> foldingDoors;

int foldingDoorCount;
CTypedPtrList<CObList,Opening*> openings;

int openingCount;
CTypedPtrList<CObList,Window*> windows;

int windowCount;
CTypedPtrList<CObList,Appliances*> appliances;

int appliancesCount;

char * currentSemacMessage ;//= new char[512];
int clicked; //set to 1 if user double clicked on any room else 0
bool homeInDefaultView; //set to true every time home view has to

//be rendered for the first time i.e.
//when comming back from enlarged room view

D91

//is set to true by
//CFuelCellView::OnLButtonDbIClk

//After the house has been rendered once time
// it 1s set to false so that only applicans

// are redrawn on change of power not the
//whole house

public :

//default constructor
Home();
/*Destructor: frees memory associated with various CTypedPtrList objects like rooms,
doors,
foldingDoors, openings, windows, appliances
*/
~Home();

/*Description : initializes the Home::maxLength, Home::maxWidth, Home::homeClr,
with values
passed to it as arguments. Initializes Home::timeSlot, Home::roomCount,
Home::doorCount, Home::foldingDoorCount,
Home::openingCount,
Home::windowCount, Home::appliancesCount,
Home::clicked, Home::maxPower,
Home::curPower, Home::powerConsumed to 0.
Initializes Home::selectedRoom to -1.
Increments Home::count by one
Invoked By : CFuelCellDoc::OnNewDocument
*/
Home(int theMaxLength, int theMaxWidth, COLORREEF theClr);

/*Copies the all the attributes of the "Home" argumnet to make a new instance of "Home"
all
attributes including the rooms, doors, appliances, windows etc lists are copied. The homeld
is also copied but one instances of Fuel Cell can not have 2 Homes with the same homeld
*/
Home(const Home &);

//Overloading the "=" operator
Home operator= (Home d);

//Home* operator= (Home *r);
/*
Name : setDC

paramaters : "rect" is a pointer to a CRect object encapsulating the monitor screen

D92

"pdc" is a pointer to a CDC object encapsulating the drawing context, used to
actually render the graphics.

Called By : CFuelCellView::OnDraw
CFuelCellView::OnTimer
CFuelCellView::OnLButtonDbIClk
CFuelCellView::OnRButtonDown

Description:Sets the mapping mode
Sets the window size as specified by the "Home" object.

*/
void setDC(CDC* pdc,CRect *rect);

/*Name : draw
Arguments : dc (poiter to the drawing context)
Type : CDC
Description : 1)Draw the normal size - if "isClicked" 0 , traverse CTypedPtrList
(linked list) objects Home::rooms, Home::doors,
Home::windows, Home::foldigDoors, Home::openings
etc lists and
get pointers to various objects they
hold and
invoke their draw methods, respectively.
2)Draw enlarged view - if "isClicked" 1. traverse the
Home::rooms CTypedPtrList
(linked list) object to find the Room that was

clicked on,
change the magnifying factor and call

its draw
method.

Traverse

CTypedPtrList(linked list) objects
Home::doors,
Home::windows, Home::foldigDoors,

Home::openings, Home::appliances etc lists and

get pointers to
various objects and invoke their

draw methods
if they are associated with the

selected room.

Invoked By : CFuelCellView::OnDraw, CFuelCellView::OnTimer,
*/

D93

void draw(CDC* dc);

/*Description : Draw the current system time
Invoked by : CFuelCellView::OnTimer
Arguments : dc (is a pointer to a CDC object encapsulating the drawing context, used
to
actually render the time)

Type : CDC

*/
void drawClock(CDC* dc);

/*Description : 1)Draws the horizontal bar at the bottom of main window representing the
power, comsumed by the all the appliances in the entire Home.
2)Draws the horizontal bar at the bottom of the enlarged

view of a Room
representing the power consumed by appliances in a

particular room, in
addition of the 1).
Invoked By : Home::draw,
*/
void deleteOldSemacMsgBoxAndLabel();
void drawSemacMessage(CView * cMainFrameRef);
void setSemacMessage(char * SemacMEssage);
void setCurrentSemacMessage(char * SemacMessage);
void drawGraph(CDC *dc);
/*selectRoom - is called by CFuelCellView::OnLButtonDbICIk and passed the x and y
co-ordinate encapsulated in CPoint object. selectRoom traverses
the "rooms" object, a CTypedPtrList datastructure and calls Room::selectedRoom
passing it "point" object
*/

int selectRoom(CPoint point);

//not being invoked anywhere
void setTimeSlot(int theTimeSlot) {timeSlot = theTimeSlot;}

void Home::setSelectedRoomEnlargedPaintedForFirstTime(bool setValue);

//not being invoked anywhere
int getTimeSlot() {return timeSlot;}

D94

/*Decription : instantiates a new Room object using
Room::Room(int theHomeld, int theArray[],int theNumberOfCorners,
COLORREF theClr,CString name, CPoint point)
constructor.
And adds it to the Home::rooms a CTypedPtrList datastructure holding all the
"Room" objects.
*/
int addRoom (int theArray[],int theNumberOfCorners, COLORREF theClr,CString
theName, CPoint point);

/*
Name :addCloset
Description: traverses the "rooms" a CTypedPtrList datastructure holding all the "Room"

objects and finds the one with matching roomld and call Room::addCloset
method to add the closet to the room.
Called By : CFuelCellDoc::OnNewDocument
*/
int addCloset (int roomld,int theArray[],int theNumberOfCorners, COLORREF theClr);

/*
Name : addDoor
Description: Instantiates a new "Door" object with the arguments passed to it, adds the
object to Home::doors object, which is a CTypedPtrList datastructure holding
all the "Door" objects.
Increments the Home::doorCount by one.
Called By : CFuelCellDoc::OnNewDocument
*/
int addDoor (int theAttachedTold1,int theAttachedTold2, int X1,int Y1,int X2, int Y2, int
theRotation,
COLORREF theDoorClr);

/*Name : addFoldingDoor
Description: Instantiates a new "foldingDoor" object with the arguments passed to it,
adds the object to Home::FoldingDoor object, which is a CTypedPtrList
datastructure holding
all the "foldingDoor" objects.
Increments the Home::foldingDoorCount by one.
Called By : CFuelCellDoc::OnNewDocument
*/
int addFoldingDoor (int theAttachedTold1,int theAttachedTold2, int X1,int Y1,int X2, int
Y2,
int theRotation,int theSlidingAngleFromVertical, COLORREF
theFoldingDoorClr);

/*Name :addOpening

D95

Description: Instantiates a new "Opening" object with the arguments passed to it,
adds the object to Home::openings object, which is a CTypedPtrList
datastructure
holding all the "Opening" objects.
Increments the Home::openingCount by one.
Called By : CFuelCellDoc::OnNewDocument
*/
int addOpening (int theAttachedTold1,int theAttachedTold2, int X1,int Y1,int X2, int Y2,
int thelnclination, COLORREF theOpeningClr);

/*Name : addWindow
Description: Instantiates a new "Window" object with the arguments passed to it,
adds the object to Home::windows object, which is a CTypedPtrList
datastructure
holding all the "Window" objects.
Increments the Home::windowCount by one.
Called By : CFuelCellDoc::OnNewDocument
*/
int addWindow (int theAttachedTold, int X1,int Y1,int X2, int Y2,
int thelnclination, COLORREF theWindowClr);

/*Description : 1)Instantiates a new Appliance using the
Appliances::Appliances(int theHomeld,int theAttachedTold, CRect theRect,
COLORREF theAppliancesClr,float
maxPower,
enum
Appliances::Shape theShape)
constructor, adds it to the Home::appliances object, which
isa
CTypedPtrList datastructure holding all the "Appliance"
objects.
2)Invokes Room:setMaxPower of the room the appliance is added to
3)Invokes Home::setMaxPower
*/
int addApplainces (int theAttachedTold, CRect theRect, COLORREF theAppliancesClr,
float maxPower,enum Appliances::Shape theShape);
int getClicked() {return clicked;}

/*
Description : Sets the clicked to the "value" , CFuelCellView::OnLButtonDbIClk will invoke
this method with "1" as parameter when "Home" is double clicked and is being
enlarged but CFuelCellView::OnLButtonDbIClk will invoke
this method with "0" as parameter when the enlarged "Room" is double clicked
on

Called by : CFuelCellView::OnLButtonDbIClk

D96

*/
void setClicked(int value){clicked = value;}

void sethomelnDefaultView(bool homeState){ homeInDefaultView = homeState; }

void setColor(COLORREF theClr) {homeClr = theClr;}
COLORREF getColor(){return homeClr;}

//not being invoked anywhere
void setMaxPower(float thePower) {maxPower += thePower;}

//not being invoked anywhere
float getMaxPower() {return maxPower;}

/*Called by : CFuelCellView::OnRButtonDown

*/

void setCurPower(CPoint point, CDC * dc);

/* Called by : CFuelCellDoc::dataFromFile

*/

void setCurPower(int applID[], int status[], float thePower[], int & arrayPointer);

//mot being invoked anywhere
float getCurPower() {return curPower;}

//not being invoked anywhere
void setPowerConsumed(int timeSlot) {powerConsumed += (timeSlot*curPower/3600);}

//not being invoked anywhere
float getPowerConsumed() {return powerConsumed; }

int getMaxLength() {return Home::maxLength ;}
int getMaxWidth() {return Home::maxWidth; }
void Serialize (CArchive& ar);

}s
#endif

// Lable.h: interface for the CLable class.
//
I 1T

D97

#if

|defined(AFX_LABLE H 91EEB525 B123 49D7 B4BF 15E7737A7C838 INCLUDED)
#define AFX LABLE H 91EEB525 B123 49D7 B4BF 15E7737A7C88_INCLUDED

#if MSC_VER > 1000
#pragma once
#endif / MSC_VER > 1000
class CLable : public CObject
{
DECLARE_SERIAL (CLable)
public:
void setXPos(int x);
void setYPos(int y);
void setName(CString theName);
CPoint getPosition() {return position;}
CString getName() {return name;}
CLable(CString theName, CPoint point);
CLable();
virtual ~CLable();
void Serialize (CArchive& ar);

private:
CString name;
CPoint position;

3

#endif //
!defined(AFX LABLE H 91EEB525 B123 49D7 B4BF 15E7737A7C88 INCLUDED)

// MainFrm.h : interface of the CMainFrame class
//
0011110111111

#if
ldefined(AFX_MAINFRM H 64B58001 3B8A 4E70 8F64 9317B4D22C14 INCLUDED

)
#define AFX_ MAINFRM H 64B58001 3B8A 4E70 8F64 9317B4D22C14 INCLUDED

#if MSC_VER > 1000
#pragma once

#endif / MSC VER > 1000

class CMainFrame : public CFrameWnd
{

D98

protected: // create from serialization only
CMainFrame();
DECLARE DYNCREATE(CMainFrame)

/I Attributes
public:

// Operations
public:

/I Overrides
/I ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CMainFrame)
public:
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
/I yAFX _VIRTUAL

// Implementation
public:
virtual ~CMainFrame();

#ifdef DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
/I{{AFX_MSG(CMainFrame)
/I NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!
//gets called when window is minimized, maximized and restored
/! afx_msg void OnSize (UINT nType, int cx, int cy);
/1Y yAFX_MSG
DECLARE_MESSAGE_MAP()

¥
T

/I{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX MAINFRM H_ 64B58001 3B8A 4E70 8F64 9317B4D22C14 INCLUDED _

)

D99

// Opening.h

//Class Opening
#ifndef Opening H
#define Opening H

class Opening :public CObject
{
DECLARE_SERIAL (Opening)
static int count;
int attachedTold1; //This variable specifies whether it is a closet(the Door number
int attachedTold2; //to which it is attached) or Door(-1).

protected :
int homeld;
int openingld;
CPoint end1,end2;
int width;
int inclination;//angle from vertical
COLORREF openingClr;
public :
Opening();
~Opening();
Opening(int homeld,int attachedTold1,int attachedTold2, int X1,int Y1,int X2, int Y2, int
thelnclination, COLORREF openingClr);
Opening(const Opening &);
Opening operator= (Opening w);
//Opening* operator= (Opening *w);

/*Name : draw
Invoked by : Home::draw
description : code for rendering graphics for a door
Arguments : dc (a pointer to context for drawing.)
type : CDC

*/

void draw(CDC* dc);

/*
Invoked by : Opening::Opening(int theHomeld, int theAttachedTold1,int
theAttachedTold2,
int X1,int Y1,int X2, int Y2, int thelnclination,
COLORREF theOpeningClr)
description : implementation of pythegoras theoram to find the length of the diagonal
of a triangle using the length of other 2 sides. But is being used to set

D100

*/
int distBtPoints();

void Serialize (CArchive& ar);
}3
#endif

// Resource.h

/I{{NO_DEPENDENCIES}}

// Microsoft Visual C++ generated include file.
// Used by FUELCELL.RC

//

#define IDD ABOUTBOX

#define IDR_MAINFRAME

#define IDR_ FUELCETYPE

// Next default values for new objects

/!

#ifdef APSTUDIO INVOKED

#ifndef APSTUDIO READONLY SYMBOLS
#define APS NEXT RESOURCE VALUE
#define APS NEXT CONTROL VALUE
#define APS NEXT SYMED VALUE
#define APS NEXT COMMAND VALUE
#endif

#endif

// Room.h

#ifndef ROOM_H

#define ROOM_H

#include <afxtempl.h>

#include "Closet.h"

#include "Lable.h" // Added by ClassView

class Room :public CObject
{

static int count;
CTypedPtrList<CObList,Closet*> closets;
int closetCount;

100
128
129

130
1000
101
32771

D101

CPoint * corners;
int numberOfCorners;
protected:
int homeld; //Which home the room is associated with
int roomld; //An int to number and represent the rooms

/*initializeCorners - takes theArray the array of co-ordinates of the room as the input
and finds minimum x and minimum y cordinate and set maxXY.x and
maxXY.y respectively. maxXY.x and maxXY.y will be used to resize
the Home on the drawing area.

*/
void initializeCorners(int theArray[]);
COLORREF roomClr;
float maxPower;
float curPower;
float powerConsumed,
public:

/*Description : minXY.x and minXY.y contain the values of the minimum x and y co-
ordinates

which is calculated by and set by initializeCorners method. minXY.x and

minXY.y are used while enlarging the room to ensure the
whole drawing

area is not repainted over.
*/
CPoint minXY;

Room();
~Room();

/*Description : Room constructor that takes different argument that specify a room and
instantiates a room this constructor is called by Home::addRoom

Arguments : homeld (a number to associate a "Room" with a particular "Home" i.e. if
more than one instance of "Home" is running in a single fuel cell
application or on a grid but this is an old requirement and as of
05/10/03 only one instance of "Home" per
fuel cell application will
be running)

theArray (hold Co-ordinates for the room the size of the
array = 2*theNumberOfCorners)

theNumberOfCorners (Specifies the number of corners a room has)

D102

theClr (An object encapsulating the RGB object that represents colors)

theName (CString aobject that encapsulates the name displayed on the
drawring area used by CLabel)

point (CPoint object used to encapsulate the position co-ordinates that is
used by CLabel object to set its postition on the

drawing area.)
Type :int, int, int, COLORREF, CString, CPoint
*/

Room(int homeld, int theArray[],int theNumberOfCorners, COLORREF theClr,CString
theName, CPoint point);

/*Description : Not being invoked anywhere now but is included for future use
Instantiates a room object by copying the attribute of argument "r",
(???but one home can not have 2 rooms with same roomld

and "r.roomld" is copied
to make a new instance of "Room" in this constructor

Arguments : r (room object to be copied)
Type : Room
*/
Room (const Room & r);
Room* operator= (Room *r);
Room operator= (Room r);
operator== (Room r) const {return (roomld == r.roomld);}

/*Name : magnifyingFactor
Description : Used to calculate how much a room should be enlarge so that enlarged size

in not
more than the original size of the Home.
Arguments :theMaxLengt (length of the drawing area set when Home object was initialzed

in
CFuelCellDoc::OnNewDocument)
theMaxWidth (Width of the drawing area set when Home object was
initialzed in
CFuelCellDoc::OnNewDocument)
Type : int ,int

called by : Home::draw and Home::setCurPower
*/

D103

float magnifyingFactor(int theMaxLength, int theMaxWidth);

/*Name : draw
Arguments : dc (a pointer to context for drawing.)
type : CDC

Description : 1)All the drawing operations related to a "room" takes place here
2)Traverses the Room::closets list, gets pointer to the closet objects
and calls their draw method.
Called by : Home::draw method
*/
void draw(CDC* dc);

void drawClosets(CDC *dc);

/*Name : getRoomld
Arguments : void
type : N/A

Description : returns the Room::roomld attribute.
Invoked By : Home::draw, Home::drawGraph, Home::selectRoom, Home::setCurPower

2 times,
Home::addCloset, Home::add Applainces
*/
int getRoomId() {return roomld;}

//Not being invoked any where, as the "roomClr" attribute is set when the "Room" object
is

//instantiate. But setColor can be used later to set "roomClr" attribute

void setColor(COLORREEF theClr) {roomClr = theClr;}

//Not being invoked any where but might be used in future.
COLORREF getColor() {return roomClr;}

/*Name : SetMaxPower
Description : increment the power by "thePower", which is the maximum power
consumption
: of an apppliance being added.
Argument : thePower

type : float
Called by : Home::addApplainces
*/

void setMaxPower(float thePower) {maxPower += thePower;}
/*Description : returns the maximum power consumption of a room which, is the sum of

the
maximun power consumptions of various appliances, which is calculted in

D104

setMaxPower method.
Called by : Not called anywhere as of 05/14/03
*/
float getMaxPower() {return maxPower;}

/*Called by:Home::setCurPower

*/
void setCurPower(float thePower) {curPower += thePower;}

//Called by : Home::drawGraph
float getCurPower() {return curPower;}

//not being invoked any where
void setPowerConsumed(int timeSlot) {powerConsumed += (timeSlot*curPower/3600);}

//Not being called anywhere

float getPowerConsumed() {return powerConsumed; }

//Not being called anywhere
int getNumberOfCorners() {return numberOfCorners;}

bool getRoomEnlargedPaintedforfirstTime ();

void setRoomEnlargedPaintedforfirstTime (bool setValue);

/* reference http://home.earthlink.net/~bobstein/inpoly/
Name : selectedRoom

*/

Description : take CPoint(encapsulating x and y co-ordinates) as input and finds
if it is in current instance of room or not. Called by Home::selectRoom

int selectedRoom(CPoint point);

/*Called by: Home::draw, Home::setCurPower
*

Vﬁ)id SelectOrigin(CPoint *point);

/*Called by: Home::addCloset

*/
int addCloset (int homeld, int theArray[],int theNumberOfCorners, COLORREF theClr);

/*Description : used to serialize ie save to a file "Room" object attributes.
used also to re-instantiate a Room object, by reading the attributes form
a file.
*/

D105

void Serialize (CArchive& ar);

private:

CLable *lable; //encapsulates the name of the Room

CPoint maxXY;

CString name;

bool roomEnlargedPaintedforfirstTime;
15
#endif

//SemacCEdit.h

#ifdef SemacCEdit H
#define

class SemacCEditv : CEdit
#endif

//SemacClient.h

#ifndef SEMACCLIENT H
#define SEMACCLIENT H

void semacClientThread();
//class CFuelCellView;

class SemacClient

{
public:

void startSemacClientThread (HWND m_hWnd);
/Ivoid startSemacClientThread(CFuelCellView * cMainFrameRef);
/Ivoid startSemacClientThread();
//void callDrawSemacMessage(char * message);

¥

#endif

//SemacDeviceStatusPacket.h

#ifndef SemacDeviceStatusPacket H
#define SemacDeviceStatusPacket H
class SemacDeviceStatusPacket
{ .
private:
int packetType;
int devicelD;

D106

float deviceLoad; / SemcManagementMsgPacket.h

#ifndef SemacManagementMsgPacket H
#define SemacManagementMsgPacket H
class SemacManagementMsgPacket

{ .
private:
int packetType;
char semacMessage [512];
¥
#endif

/I SemacRequestPacket.h

#ifndef SemacRequestPacket H
#define SemacRequestPacket H
class SemacRequestPacket

{
private:
int packetType;
int deviceld;
int command;
} .

#endif// stdafx.h : include file for standard system include files,
/I or project specific include files that are used frequently, but
/I are changed infrequently

/!

#if
ldefined(AFX_STDAFX H_ 4F1937D3 2E32 4623 80D7 1370DBB0D979 INCLUDED)
#define AFX_STDAFX H_ 4F1937D3 2E32 4623 80D7 1370DBB0D979 INCLUDED

#if MSC_VER > 1000
#pragma once
#endif / MSC VER > 1000

#define VC_EXTRALEAN /I Exclude rarely-used stuff from Windows headers
#include <afxwin.h> // MFC core and standard components

#include <afxext.h> /I MFC extensions

#include <afxdtctl.h> /I MFC support for Internet Explorer 4 Common Controls
#ifndef AFX NO_AFXCMN_SUPPORT

#include <afxcmn.h> /I MFC support for Windows Common Controls

#endif/ AFX NO_AFXCMN_SUPPORT

D107

//{{AFX_INSERT LOCATION}}

/I Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif /
!defined(AFX STDAFX H 4F1937D3 2E32 4623 80D7 1370DBB0D979 INCLUDED)
int deviceOverride;
float hometemp;
int homeHumdity;
int homeOccupany;
K
#endif

// Window.h

//Class Window
#ifndef Window H
#define Window H

class Window :public CObject
{
DECLARE_SERIAL (Window)
static int count;
int attachedTold; /*This variable specifies whether it is a closet(the Window number???
please
elaborate ??? to which it is attached) or Window(-1). */
protected :
int homeld;
int windowld;
CPoint end1,end2;
int width;
int inclination;//angle from vertical
COLORREF windowClr;
public :
Window();
~Window();
Window(int homeld,int attachedTold, int X1,int Y1,int X2, int Y2, int
thelnclination, COLORREF windowClr);
Window(const Window &);
Window operator= (Window w);
//Window* operator= (Window *w);

?2?7?7? what is the whole calculation for
Name : draw
Invoked by : Home::draw

D108

description : code for rendering graphics for a window
Arguments : dc (a pointer to context for drawing.)
type : CDC

*/

void draw(CDC* dc);

/*
Invoked by : Window::Window(int theHomeld, int theAttachedTold, int X1,int Y1,int
X2,
int Y2, int thelnclination, COLORREF theWindowClr)
description : implementation of pythegoras theoram to find the length of the diagonal
of a triangle using the length of other 2 sides. But is being used to set

*/

int distBtPoints();

void Serialize (CArchive& ar);
§3
#endif

D109

APPENDIX E

GIFCO Occupancy Sensor Study

6 3,4 DIANCE
TECHNOLOGIES

10/27/2003

GIFCO Occupancy Sensor Study
Brett Megginson and Dean Li

1. Introduction

The Grid Independent Fuel Cell Operated Smart Home Project (GIFCO) is a project
being conducted by the Department of Energy, in conjunction with the University of
South Alabama (USA) and Radiance Technologies, Inc (Radiance). Part of the GIFCO
program involves learning human living patterns in order to manage peaks and valleys of
typical home electrical usage. Electrical load will be managed by a Smart Energy
Management Control System or SEMaC. In order to accomplish its task, SEMaC must
monitor room occupancy as stated in the GIFCO Requirements Document in section
3.3.1.3. Theinformation gathered from tracking occupancy will be used to make energy
management decisions. For instance, occupancy data will be used to change the
management priority of electrical devices causing devices in unoccupied rooms to be
managed before devices in occupied rooms.

2. GIFCO Occupancy Sensor Choices
We considered several optionsto collect occupancy data, including the following:
2.1. Doorframe Entry/Exit Tracker

One option for occupancy detection entailed using two horizontally opposed
infrared emitter/detector pairsinstalled in the door frame at waist height coupled with
acontrol circuitry (see Fig. E1). The order that the two beams were broken indicates
either entry or exit and which causes the room occupant count to be incremented or
decremented respectively. A problem is that this solution is not stateless. In other
words, if power is lost and room occupancy changes prior to power being restored,
then the counter would hold the incorrect count until the system is manually
corrected.

Company Proprietary Information — Use Restricted Eo
GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

63,4 DIANCE
TECHNOLOGIES

Top Down View

Fig. E1 Proposed Occupancy Detection Unit

2.2. Position Tags

Another option considered was a system using RF transmitting tags, RF receivers
and a device to interpret the received signals. The system requires all home occupants
to wear the RF tags at all times, and develops room occupancy counts by
triangulating the signals from the RF tags. Clearly, one problem with this system is
ensuring occupants wear the tags at al times. It is possible that occupants would
choose not to wear the tag or simply forget, and then the occupancy data would be
inaccurate. Another problem is that the system is both expensive to design and
implement.

2.3. Motion Sensor

The third method considered for tracking occupancy was a system using motion
detectors placed throughout the house. Motion detectors are inexpensive, stateless
and do not require the home user to wear equipment. The problem with using a
motion sensor is that significant motion is required for detection. When home
occupants are inactive for extended periods of time, motion detectors fail to detect
occupancy. We chose to use motion detectors as the basis for detecting occupancy
therefore we needed to gain an understanding of its limitations.

3. Motion Detector

The motion detector we chose is a DS9360 TriTech Ceiling Mount PIR/Microwave
Intrusion Detector. It is one of the more sensitive units on the market because it uses
both infrared and microwave detection technologies. The unit gives visua feedback
whenever it senses movement, but both the infrared and microwave sensors must be
tripped before the unit alarms. Note that for the purposes of this study, we define “ partial
aarm” to be movement detection by either the infrared sensor or the microwave sensor,
indicated by a green or yellow light. We define a“full darm” to be movement detection
by both sensors indicated by a red light and voltage produced on the motion detector
output. We define“at least partial dlarm” to be the sum of partial alarms and full alarms.

Company Proprietary Information — Use Restricted E3
GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

4. Motion Detector Testing Procedures

We conducted an experiment to gauge the accuracy of the detector. The test was
conducted to determine the limitations of the chosen motion sensors. The detector was
placed in the middle of aroom 13'7” in length, 10'4” in width and 9°6” in height. We
separated the room into sections with radial lines spaced 15 degrees and rings at two foot
intervals, which produced atotal of 65 sections (see Fig. E2).

Fig. E2 Foor Layout for Detection Testing

We conducted two separate movement tests in each section. To test small movements,
we used hand movement trials and to test larger movements, we used body movement
trials. After some informal testing, we decided upon guidelines that would help increase
consistency and repeatability. To insure height and distance consistency, we placed a
ruler horizontally on the back of arolling chair, measuring four feet above the floor. We
used a stopwatch to insure uniform movement speeds. We moved our hand across the
ruler a distance of one foot. The stopwatch was started when movement was initiated and
stopped when it ceased. For each trial the chair was placed in the center of the test
section. For hand trials we moved only our right hand from right to left at a rate of two
feet per second. The body trial consisted of moving our entire body within a section from
right to left one foot, at a speed of one foot per second. Any test whose time was two
tenths of a second plus or minus the target time was thrown out. We conducted ten trials
in each section for each type of movement and recorded whether there was no alarm,
partial alarm, or afull alarm.

5. Results
5.1. Results of Detector 1

Company Proprietary Information — Use Restricted E4
GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

The test results indicate that the motion detector is significantly more sensitive to
movement in certain regions. The raw data are shown in Appendix E1 while the
results are grouped in Appendix E2. It is important to note that during the hand
motion trials the detector only sensed enough movement to alarm when the
movement was located in three closely situated sections as shown in Figure E.1.1%,
Even with full body movement, the detector only registered a full alarm consistently
when the movement was located in a few concentrated areas as seen in Figure E.2.1.
The results seem to indicate that this motion detector, when used as designed is not
sufficient to indicate occupancy. However, when we look at the partial alarms along
with full alarms we see a different picture. Figures E.1.3 and E.2.3, depicting “at
least partial alarms,” both show a marked increase in detection. Hand movement
detection rates increase from 3% to 33% while body movement detection rates
increase from 38% to 92%.

The raw data shown in Appendix E1 lists each section’s trials in terms of
percentage of detection. We calculated each section’s area and gave it a
corresponding weight. Noting the data for detector 1, the results showed that on
average, only about athird of hand movements were indicated by at least one sensor,
but 92% of body movements were. The average of the two types of movement is
62%. Full alarms were detected only 3% of the time for hands and 37% for the body.
Unweighted and weighted results in each case differed by less than 1%. The
unweighted results are close enough to the weighted results that weighting the results
does not appear to be important.

5.2. Results of Detector 2

After completing the full round of testing for the first detector, we partially tested
the detection rates for our second Bosch sensor of the same model to see if its
detection patterns matched our previous result. In testing every other section, the
second detector was less accurate with about 20% at least partial detection of hands
and about 90% of body, giving it an averaged accuracy of 55%, or 7% less than that
of the other sensor. The most sensitive and least sensitive areas did not regularly
match; therefore we can not depend on future units to have the same detection
patterns. The test results are listed at the end of Appendix E1.

6. Conclusion

After reviewing the results it is clear that relying on the full aarm will not be
sufficient for the purposes of detecting occupancy. However, if we use partial alarms, the
detection rates will be more acceptable. To do this we added logic circuitry to the
detector so that the signa that SEMaC receives will include partial alarms and full
alarms. Once the modified detector and the rest of the system have been fully integrated

! Figures that have the same number designation were originally meant to be overlapped as transparencies.
Company Proprietary Information — Use Restricted E5
GIFCO Occupancy Sensor Study, revision 11, printed on 12/3/2003 11:01 AM by dli

ZJA DIANCE
TECHNOLOGIES

into the mock house, we recommend more testing take place to determine if the
modifications are sufficient for our purposes of detecting occupancy. We will modify
this document to reflect any future findings. Even if the modifications work flawlessly,
we realize a 55-63% detection rate misses a significant portion of movement. With the
constraints of time, money and complexity, the modified motion sensor is currently the
best solution available.

Company Proprietary Information — Use Restricted E6
GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

63,4 DIANCE
TECHNOLOGIES

Appendix E1

The following pages are the raw data that was collected during testing.

Company Proprietary Information — Use Restricted

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

E7

6 JA DIANCE
TECHNOLOGIES

Trial Record: Hand Detector 1
% Total % Full % Partial % At Least Weighted At Least
Section Area Alarm Alarm Partial Partial
1A 2.70 0 100 100 2.70
3A 1.80 0 0 0 0.00
5A 1.80 0 0 0 0.00
7A 2.70 0 0 0 0.00
5AA 1.80 0 30 30 0.54
7TAA 2.70 0 20 20 0.54
3B 1.80 0 30 30 0.54
5B 1.80 0 0 0 0.00
7B 2.70 0 0 0 0.00
5BB 1.80 0 30 30 0.54
7BB 2.70 0 40 40 1.08
3C 1.80 0 0 0 0.00
5C 1.80 0 40 40 0.72
7C 2.70 0 20 20 0.54
5CC 1.80 0 30 30 0.54
7CC n/a n/a n/a n/a n/a
3D 1.80 0 0 0 0.00
5D 1.80 0 10 10 0.18
7D n/a n/a n/a n/a n/a
5DD 1.80 0 10 10 0.18
7DD n/a n/a n/a n/a n/a
3E 1.80 0 20 20 0.36
5E 1.80 0 80 80 1.44
7E n/a n/a n/a n/a n/a
5EE 1.80 0 50 50 0.90
7EE n/a n/a n/a n/a n/a
3F 1.80 0 0 0 0.00
5F 1.80 0 90 90 1.62
7F n/a n/a n/a n/a n/a
5FF 1.80 50 40 90 1.62
7FF 2.70 0 80 80 2.16
3G 1.80 0 0 0 0.00
5G 1.80 0 70 70 1.26
7G 2.70 0 10 10 0.27
5GG 1.80 20 70 90 1.62
7GG 2.70 0 0 0 0.00
3H 1.80 0 60 60 1.08
5H 1.80 80 20 100 1.80
Company Proprietary Information — Use Restricted ES8

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

% Total % Full % Partial % At Least Weighted At Least
Section Area Alarm Alarm Partial Partial
7H 2.70 0 90 90 243
5HH 1.80 0 10 10 0.18
7HH 2.70 0 100 100 2.70
3l 1.80 0 30 30 0.54
51 1.80 0 30 30 0.54
71 2.70 0 30 30 0.81
51 1.80 0 30 30 0.54
Il n/a n/a n/a n/a n/a
3J 1.80 0 10 10 0.18
5J 1.80 0 0 0 0.00
7J n/a n/a n/a n/a n/a
5JJ 1.80 0 10 10 0.18
7JJ n/a n/a n/a n/a n/a
3K 1.80 0 20 20 0.36
5K 1.80 0 30 30 0.54
7K n/a n/a n/a n/a n/a
5KK 1.80 0 50 50 0.90
7KK n/a n/a n/a n/a
3L 1.80 0 10 10 0.18
5L 1.80 0 70 70 1.26
7L n/a n/a n/a n/a n/a
5LL 1.80 0 0 0 0.00
7LL 2.70 0 0 0 0.00
Totals 150 1470 1620
Percentages 100.00 3.06 30.00 33.06 33.60
Company Proprietary Information — Use Restricted E9

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

Trial Record: Body Detector 1
% Total % Full % Partial % At Least Weighted At Least
Section Area Alarm Alarm Partial Partial
1A 2.70 60 40 100 2.70
3A 1.80 0 90 90 1.62
5A 1.80 50 40 90 1.62
7A 2.70 100 0 100 2.70
5AA 1.80 50 50 100 1.80
7TAA 2.70 0 70 70 1.89
3B 1.80 70 30 100 1.80
5B 1.80 70 30 100 1.80
7B 2.70 70 20 90 2.43
5BB 1.80 0 90 90 1.62
7BB 2.70 80 20 100 2.70
3C 1.80 80 20 100 1.80
5C 1.80 60 40 100 1.80
7Q 2.70 30 50 80 2.16
5CC 1.80 30 40 70 1.26
7CC n/a n/a n/a n/a n/a
3D 1.80 10 90 100 1.80
5D 1.80 10 50 60 1.08
7D n/a n/a n/a n/a n/a
5DD 1.80 0 50 50 0.90
7DD n/a n/a n/a n/a n/a
3E 1.80 30 30 60 1.08
5E 1.80 0 100 100 1.80
7E n/a n/a n/a n/a n/a
5EE 1.80 50 50 100 1.80
7EE n/a n/a n/a n/a n/a
3F 1.80 10 80 90 1.62
5F 1.80 0 100 100 1.80
7F n/a n/a n/a n/a n/a
5FF 1.80 100 0 100 1.80
7FF 2.70 100 0 100 2.70
3G 1.80 0 90 90 1.62
5G 1.80 0 100 100 1.80
7G 2.70 60 40 100 2.70
5GG 1.80 30 60 90 1.62
7GG 2.70 0 100 100 2.70
3H 1.80 0 70 70 1.26
5H 1.80 100 0 100 1.80
Company Proprietary Information — Use Restricted E10

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

% Total % Full % Partial % At Least
Section Area Alarm Alarm Partial Weighted Total
7H 2.70 100 0 100 2.70
5HH 1.80 10 60 70 1.26
7HH 2.70 100 0 100 2.70
3l 1.80 0 100 100 1.80
51 1.80 20 80 100 1.80
71 2.70 0 100 100 2.70
51 1.80 70 30 100 1.80
Il n/a n/a n/a n/a n/a
3J 1.80 0 80 80 1.44
5J 1.80 10 90 100 1.80
7J n/a n/a n/a n/a n/a
5JJ 1.80 10 70 80 1.44
7JJ n/a n/a n/a n/a n/a
3K 1.80 0 100 100 1.80
5K 1.80 0 90 90 1.62
7K n/a n/a n/a n/a n/a
5KK 1.80 0 100 100 1.80
7KK n/a n/a n/a n/a n/a
3L 1.80 0 90 90 1.62
5L 1.80 80 20 100 1.80
7L n/a n/a n/a n/a n/a
5LL 1.80 100 0 100 1.80
7LL 2.70 100 0 100 2.70
Totals 1850 2650 4500
Percentages 100.00 37.76 54.08 91.84 92.25
Company Proprietary Information — Use Restricted E11

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

Hand and
Body Results

Detector 1

% At Least Partial

% At Least Partial

% At Least Partial Hand and

Section Hand Body Body
1A 100 100 100.00
3A 0 90 45.00
5A 0 90 45.00
7A 0 100 50.00

5AA 30 100 65.00
7TAA 20 70 45.00
3B 30 100 65.00
5B 0 100 50.00
7B 0 90 45.00
5BB 30 90 60.00
7BB 40 100 70.00
3C 0 100 50.00
5C 40 100 70.00
7Q 20 80 50.00
5CC 30 70 50.00
7CC n/a n/a n/a
3D 0 100 50.00
5D 10 60 35.00
7D n/a n/a n/a
5DD 10 50 30.00
7DD n/a n/a n/a
3E 20 60 40.00
5E 80 100 90.00
7E n/a n/a n/a
5EE 50 100 75.00
7TEE n/a n/a n/a
3F 0 90 45.00
5F 90 100 95.00
7F n/a n/a n/a
5FF 90 100 95.00
7FF 80 100 90.00
3G 0 90 45.00
5G 70 100 85.00
7G 10 100 55.00
5GG 90 90 90.00
7GG 0 100 50.00
3H 60 70 65.00
5H 100 100 100.00
Company Proprietary Information — Use Restricted E12

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

% At Least Partial

% At Least Partial

% At Least Partial Hand and

Section Hand Body Body
7H 90 100 95.00
5HH 10 70 40.00
7HH 100 100 100.00
3l 30 100 65.00
51 30 100 65.00
71 30 100 65.00
51 30 100 65.00
Il n/a n/a n/a
3J 10 80 45.00
5J 0 100 50.00
7J n/a n/a n/a
5JJ 10 80 45.00
7JJ n/a n/a n/a
3K 20 100 60.00
5K 30 90 60.00
7K n/a n/a n/a
5KK 50 100 75.00
7KK n/a n/a n/a
3L 10 90 50.00
5L 70 100 85.00
7L n/a n/a n/a
5LL 0 100 50.00
7LL 0 100 50.00
Totals 1620 4500 3060
Percentages 33.06 91.84 62.45
Company Proprietary Information — Use Restricted E13

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

Weighted Hand and Body Results

% Total At Least Partial At Least Partial At Least Partial Hand and
Section Area Hand Body Body
1A 2.70 2.70 2.70 2.70
3A 1.80 0.00 1.62 0.81
5A 1.80 0.00 1.62 0.81
7A 2.70 0.00 2.70 1.35
5AA 1.80 0.54 1.80 1.17
7TAA 2.70 0.54 1.89 1.22
3B 1.80 0.54 1.80 1.17
5B 1.80 0.00 1.80 0.90
7B 2.70 0.00 2.43 1.22
5BB 1.80 0.54 1.62 1.08
7BB 2.70 1.08 2.70 1.89
3C 1.80 0.00 1.80 0.90
5C 1.80 0.72 1.80 1.26
7Q 2.70 0.54 2.16 1.35
5CC 1.80 0.54 1.26 0.90
7CC n/a n/a n/a n/a
3D 1.80 0.00 1.80 0.90
5D 1.80 0.18 1.08 0.63
7D n/a n/a n/a n/a
5DD 1.80 0.18 0.90 0.54
7DD n/a n/a n/a n/a
3E 1.80 0.36 1.08 0.72
5E 1.80 1.44 1.80 1.62
7E n/a n/a n/a n/a
5EE 1.80 0.90 1.80 1.35
7EE n/a n/a n/a n/a
3F 1.80 0.00 1.62 0.81
5F 1.80 1.62 1.80 1.71
7F n/a n/a n/a n/a
5FF 1.80 1.62 1.80 1.71
7FF 2.70 2.16 2.70 243
3G 1.80 0.00 1.62 0.81
5G 1.80 1.26 1.80 1.53
7G 2.70 0.27 2.70 1.49
5GG 1.80 1.62 1.62 1.62
7GG 2.70 0.00 2.70 1.35
3H 1.80 1.08 1.26 1.17
5H 1.80 1.80 1.80 1.80
Company Proprietary Information — Use Restricted E14

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

% Total At Least Partial At Least Partial At Least Partial Hand and
Section Area Hand Body Body
7H 2.70 2.43 2.70 2.57
5HH 1.80 0.18 1.26 0.72
7HH 2.70 2.70 2.70 2.70
3l 1.80 0.54 1.80 1.17
51 1.80 0.54 1.80 1.17
71 2.70 0.81 2.70 1.76
5l 1.80 0.54 1.80 1.17
71l n/a n/a n/a n/a
3J 1.80 0.18 1.44 0.81
5J 1.80 0.00 1.80 0.90
7J n/a n/a n/a n/a
5JJ 1.80 0.18 1.44 0.81
7JJ n/a n/a n/a n/a
3K 1.80 0.36 1.80 1.08
5K 1.80 0.54 1.62 1.08
7K n/a n/a n/a n/a
5KK 1.80 0.90 1.80 1.35
7KK n/a n/a n/a n/a
3L 1.80 0.18 1.62 0.90
5L 1.80 1.26 1.80 1.53
7L n/a n/a n/a n/a
5LL 1.80 0.00 1.80 0.90
Totals
Percentages 100.00 33.60 92.25 62.93
Company Proprietary Information — Use Restricted E15

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

Trial Record: Hand

% Total % Full % Partial % At Least Weighted At Least
Section Area Alarm Alarm Partial Partial
1A 5.26 20 80 100 5.26
3A 3.51 0 0 0 0.00
5A 3.51 0 20 20 0.70
7A n/a n/a n/a n/a n/a
5AA n/a n/a n/a n/a n/a
7TAA 5.26 0 0 0 0.00
3B n/a n/a n/a n/a n/a
5B 3.51 0 0 0 0.00
7B n/a n/a n/a n/a n/a
5BB n/a n/a n/a n/a n/a
7BB 5.26 0 10 10 0.53
3C 3.51 0 10 10 0.35
5C 3.51 10 20 30 1.05
7Q n/a n/a n/a n/a n/a
5CC n/a n/a n/a n/a n/a
7CC n/a n/a n/a n/a n/a
3D n/a n/a n/a n/a n/a
5D 3.51 0 10 10 0.35
7D n/a n/a n/a n/a n/a
5DD n/a n/a n/a n/a n/a
7DD n/a n/a n/a n/a n/a
3E 3.51 0 0 0 0.00
5E 3.51 0 10 10 0.35
7E n/a n/a n/a n/a n/a
5EE n/a n/a n/a n/a n/a
7EE n/a n/a n/a n/a n/a
3F n/a n/a n/a n/a n/a
5F 3.51 0 90 90 3.16
7F n/a n/a n/a n/a n/a
5FF n/a n/a n/a n/a n/a
7FF n/a n/a n/a n/a n/a
3G 3.51 0 20 20 0.70
5G 3.51 0 0 0 0.00
7G 5.26 0 0 0 0.00
5GG n/a n/a n/a n/a n/a
7GG n/a n/a n/a n/a n/a
3H n/a n/a n/a n/a n/a
5H 3.51 0 0 0 0.00
Company Proprietary Information — Use Restricted E16

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

% Total % Full % Partial % At Least Weighted At Least
Section Area Alarm Alarm Partial Partial
7H 5.26 0 10 10 0.53
5HH n/a n/a n/a n/a n/a
7HH n/a n/a n/a n/a n/a
3l 3.51 0 10 10 0.35
51 3.51 0 10 10 0.35
71 5.26 0 0 0 0.00
5l n/a n/a n/a n/a n/a
71l n/a n/a n/a n/a n/a
3J n/a n/a n/a n/a n/a
5J 3.51 0 0 0 0.00
7J n/a n/a n/a n/a n/a
5JJ n/a n/a n/a n/a n/a
7JJ n/a n/a n/a n/a n/a
3K 3.51 0 0 0 0.00
5K 3.51 0 20 20 0.70
7K n/a n/a n/a n/a n/a
5KK n/a n/a n/a n/a n/a
7KK n/a n/a n/a n/a n/a
3L n/a n/a n/a n/a n/a
5L 3.51 0 70 70 2.46
7L n/a n/a n/a n/a n/a
5LL n/a n/a n/a n/a n/a
7LL 5.26 0 60 60 3.16
Totals 30 450 480
Percentages 100.00 1.20 18.00 19.20 20.00
Company Proprietary Information — Use Restricted E17

6 JA DIANCE
TECHNOLOGIES

Trial Record: Body Detector 2
% Total % Full % Partial % At Least Weighted At Least
Section Area Alarm Alarm Partial Partial
1A 5.26 60 40 100 5.26
3A 3.51 0 70 70 2.46
5A 3.51 0 90 90 3.16
7A n/a n/a n/a n/a n/a
5AA n/a n/a n/a n/a n/a
7TAA 5.26 30 40 70 3.68
3B n/a n/a n/a n/a n/a
5B 3.51 90 10 100 3.51
7B n/a n/a n/a n/a n/a
5BB n/a n/a n/a n/a n/a
7BB 5.26 100 0 100 5.26
3C 3.51 0 80 80 2.81
5C 3.51 0 90 90 3.16
7Q n/a n/a n/a n/a n/a
5CC n/a n/a n/a n/a n/a
7CC n/a n/a n/a n/a n/a
3D n/a n/a n/a n/a n/a
5D 3.51 30 70 100 3.51
7D n/a n/a n/a n/a n/a
5DD n/a n/a n/a n/a n/a
7DD n/a n/a n/a n/a n/a
3E 3.51 0 80 80 2.81
5E 3.51 50 50 100 3.51
7E n/a n/a n/a n/a n/a
5EE n/a n/a n/a n/a n/a
7EE n/a n/a n/a n/a n/a
3F n/a n/a n/a n/a n/a
5F 3.51 0 90 90 3.16
7F n/a n/a n/a n/a n/a
5FF n/a n/a n/a n/a n/a
7FF n/a n/a n/a n/a n/a
3G 3.51 0 60 60 2.11
5G 3.51 0 90 90 3.16
7G 5.26 0 90 90 4.74
5GG n/a n/a n/a n/a n/a
7GG n/a n/a n/a n/a n/a
3H n/a n/a n/a n/a n/a
5H 3.51 20 50 70 2.46
Company Proprietary Information — Use Restricted E18

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

% Total % Full % Partial % At Least Weighted At Least
Section Area Alarm Alarm Partial Partial
7H 5.26 0 100 100 5.26
5HH n/a n/a n/a n/a n/a
7HH n/a n/a n/a n/a n/a
3l 3.51 0 90 90 3.16
51 3.51 40 50 90 3.16
71 5.26 60 20 80 4.21
5l n/a n/a n/a n/a n/a
71l n/a n/a n/a n/a n/a
3J n/a n/a n/a n/a n/a
5J 3.51 0 100 100 3.51
7J n/a n/a n/a n/a n/a
5JJ n/a n/a n/a n/a n/a
7JJ n/a n/a n/a n/a n/a
3K 3.51 0 100 100 3.51
5K 3.51 80 20 100 3.51
7K n/a n/a n/a n/a n/a
5KK n/a n/a n/a n/a n/a
7KK n/a n/a n/a n/a n/a
3L n/a n/a n/a n/a n/a
5L 3.51 100 0 100 3.51
7L n/a n/a n/a n/a n/a
5LL n/a n/a n/a n/a n/a
7LL 5.26 100 0 100 5.26
Totals 760 1480 2240
Percentages 100.00 30.40 59.20 89.60 89.82
Company Proprietary Information — Use Restricted E19

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 3,4 DIANCE
TECHNOLOGIES

Hand and Body Results

Detector 2

% At Least Partial % At Least Partial % At Least Partial Hand and
Section Hand Body Body
1A 100 100 100.00
3A 0 70 35.00
5A 20 90 55.00
7A n/a n/a n/a
5AA n/a n/a n/a
7TAA 0 70 35.00
3B n/a n/a n/a
5B 0 100 50.00
7B n/a n/a n/a
5BB n/a n/a n/a
7BB 10 100 55.00
3C 10 80 45.00
5C 30 90 60.00
7Q n/a n/a n/a
5CC n/a n/a n/a
7CC n/a n/a n/a
3D n/a n/a n/a
5D 10 100 55.00
7D n/a n/a n/a
5DD n/a n/a n/a
7DD n/a n/a n/a
3E 0 80 40.00
5E 10 100 55.00
7E n/a n/a n/a
5EE n/a n/a n/a
7EE n/a n/a n/a
3F n/a n/a n/a
5F 90 90 90.00
7F n/a n/a n/a
5FF n/a n/a n/a
7FF n/a n/a n/a
3G 20 60 40.00
5G 0 90 45.00
7G 0 90 45.00
5GG n/a n/a n/a
7GG n/a n/a n/a
3H n/a n/a n/a
5H 0 70 35.00
Company Proprietary Information — Use Restricted E20

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 3,4 DIANCE
TECHNOLOGIES

% At Least Partial

% At Least Partial

% At Least Partial Hand and

Section Hand Body Body
7H 10 100 55.00
5HH n/a n/a n/a
7HH n/a n/a n/a
3l 10 90 50.00
51 10 90 50.00
71 0 80 40.00
5l n/a n/a n/a
71l n/a n/a n/a
3J n/a n/a n/a
5J 0 100 50.00
7J n/a n/a n/a
5JJ n/a n/a n/a
7JJ n/a n/a n/a
3K 0 100 50.00
5K 20 100 60.00
7K n/a n/a n/a
5KK n/a n/a n/a
7KK n/a n/a n/a
3L n/a n/a n/a
5L 70 100 85.00
7L n/a n/a n/a
5LL n/a n/a n/a
7LL 60 100 80.00
Totals 480 2240 1360
Percentages 19.20 89.60 54.40
Company Proprietary Information — Use Restricted Eo1

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 JA DIANCE
TECHNOLOGIES

Hand and Body Results

Detector 2

% Total At least Partial At Least Partial At Least Partial Hand and
Section Area Hand Body Body
1A 5.26 5.26 5.26 5.26
3A 3.51 0.00 2.46 1.23
5A 3.51 0.70 3.16 1.93
7A n/a n/a n/a n/a
5AA n/a n/a n/a n/a
7AA 5.26 0.00 3.68 1.84
3B n/a n/a n/a n/a
5B 3.51 0.00 3.51 1.75
7B n/a n/a n/a n/a
5BB n/a n/a n/a n/a
7BB 5.26 0.53 5.26 2.89
3C 3.51 0.35 2.81 1.58
5C 3.51 1.05 3.16 2.11
7Q n/a n/a n/a n/a
5CC n/a n/a n/a n/a
7CC n/a n/a n/a n/a
3D n/a n/a n/a n/a
5D 3.51 0.35 3.51 1.93
7D n/a n/a n/a n/a
5DD n/a n/a n/a n/a
7DD n/a n/a n/a n/a
3E 3.51 0.00 2.81 1.40
5E 3.51 0.35 3.51 1.93
7E n/a n/a n/a n/a
5EE n/a n/a n/a n/a
7EE n/a n/a n/a n/a
3F n/a n/a n/a n/a
5F 3.51 3.16 3.16 3.16
7F n/a n/a n/a n/a
5FF n/a n/a n/a n/a
7FF n/a n/a n/a n/a
3G 3.51 0.70 2.11 1.40
5G 3.51 0.00 3.16 1.58
7G 5.26 0.00 4.74 2.37
5GG n/a n/a n/a n/a
7GG n/a n/a n/a n/a
3H n/a n/a n/a n/a
5H 3.51 0.00 2.46 1.23
Company Proprietary Information — Use Restricted Eoo

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

6 3,4 DIANCE
TECHNOLOGIES

% Total At least Partial At Least Partial At Least Partial Hand and

Section Area Hand Body Body
7H 5.26 0.53 5.26 2.89
5HH n/a n/a n/a n/a
7HH n/a n/a n/a n/a
3l 3.51 0.35 3.16 1.75
51 3.51 0.35 3.16 1.75
71 5.26 0.00 4.21 2.11
5l n/a n/a n/a n/a
71l n/a n/a n/a n/a
3J n/a n/a n/a n/a
5J 3.51 0.00 3.51 1.75
7J n/a n/a n/a n/a
5JJ n/a n/a n/a n/a
7JJ n/a n/a n/a n/a
3K 3.51 0.00 3.51 1.75
5K 3.51 0.70 3.51 2.11
7K n/a n/a n/a n/a
5KK n/a n/a n/a n/a
7KK n/a n/a n/a n/a
3L n/a n/a n/a n/a
5L 3.51 2.46 3.51 2.98
7L n/a n/a n/a n/a
5LL n/a n/a n/a n/a

Percentages 100.00 20.00 89.82 54.91

Company Proprietary Information — Use Restricted E23

GIFCO Occupancy Sensor Study, revision 9, printed on 11/26/2003 10:32 AM by dli

LBA DIANCE
TECHNOLOGIES

Appendix E2

The following pages show the floor layout of the room where the testing took
place. During testing, the floor was taped off so that different sections would have easy
visual identification. As noted above, the figures with the same designmation were
originally transparencies meant to be layered on top of each other.

Company Proprietary Information — Use Restricted E24
GIFCO Occupancy Sensor Study, revision 11, printed on 12/3/2003 11:17 AM by dli

Hand: Full Alarm

4

Figure E1.1

Hand: Partial Alarm

Figure E1.2

Hand: At Least Partial Alarm

Figure E1.3

Hand: At Least Partial Alarm

Figure E1.3

Body: Full Alarm

Figure E2.1

Body: Partial Alarm

&

Figure E2.2

Body: At Least Partial Alarm

Figure E2.3

Body: At Least Partial Alarm

Figure E2.3

Hand and Body: Full Alarm

~

Figure E3.1

Hand and Body: Partial Alarm

Figure E3.2

Hand and Body: At Least Partial Alarm

Figure E3.3

Hand and Body: At Least Partial Alarm

Figure E3.3

