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Abstract

A numerical model for simulating the transient nonlinear behavior of 2-D
viscous sloshing flows in rectangular containers subjected to arbitrary horizontal
accelerations is presented. The potential-flow formulation uses Rayleigh
damping to approximate the effects of viscosity, and Lagrangian node movement
is used to accommodate violent sloshing motions. A boundary element approach
is used to efficiently handle the time-changing fluid geometry. Additionally, a
corrected equation is presented for the constraint condition relating normal and

tangential derivatives of the velocity potential where the fluid free surface meets
the rigid container wall. The numerical model appears to be more accurate than
previous sloshing models, as determined by comparison against exact analytic
solutions and results of previously published models.

L. Introduction and Background

The prediction of the sloshing behavior of liquids in externally excited
containers finds application in robotic movement of containers, vehicle
dynamics and control, earthquake engineering, and many other important
pursuits. Multiple nonlinear constraints at the fluid free surface, special behavior
at “contact points” where the free surface meets rigid boundaries, and the
difficulties associated with a fluid domain that evolves in time in a manner not
known a priori (the evolution of the fluid domain is coupled into the problem and
must be solved for), make the problem an interesting and challenging one.

It is frequently the case that sloshing can be successfully modelled as
potential flow, in which an inviscid and incompressible liquid experiences
urrotational motion. Under these assumptions, Laplace’s equation governs the
flow. We note that Laplace’s equation is a linear elliptic partial differential
equation (PDE). Nonlinearity and time-dependence enter into the initial e 0
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boundary value problem through two conditions at the free surface that must be
satisfied simultaneously. The nonlinear “dynamic condition” refiects the
interplay of forces and momenta at the free surface, and the so-called “kinematic
condition” provides the prescription for moving the mathematical representation
of the free surface in accordance with physical considerations of the fluid motion.
In the discrete problem, the kinematic condition generally yields nonlinear
equations governing x and y position of free-surface nodes. ‘

In the linearized problem (see e.g. references [1] and [2]), the nonlinear
terms in the dynamic condition are dropped and displacements of the free surface
from the equilibrium (resting) level are assumed small enough that both the
dynamic and kinematic conditions can be evaluated at the rest level. The
linearized time-periodic small-amplitude sloshing problem yields an
eigenproblem for sloshing modes and frequencies that has been solved
analytically or numerically for various fluid depths and container geometries (see
the books [1]-[3] and the reviews [4]-[7]). Numerical solutions to non time-
periodic (“unsteady”) linearized and quasi-linear sloshing problems have been
attempted with finite element methods (see e.g. [8]-[11]), as well as with
boundary element techniques ([12], [13]). Boundary element techniques offer a
substantial advantage over domain-based methods in that only the boundary of
the fluid domain must be discretized as opposed to the entire domain. Thus,
boundary element approaches are especially suited for free-surface flows, which
involve a fluid domain that changes over time.

A boundary element formulation for the fully nonlinear (large amplitude)
sloshing problem has been published in [14] for a stationary rectangular
container. Faltinsen’s model [15] includes Rayleigh damping to dissipate fluid
‘motion over time (as occurs in real liquids) but is limited to relatively small
horizontal container displacements. Nakayama & Washizu [13] employed a
transformation to coordinates moving with the container so that arbitrary
horizontal motions could be applied, but the transformation linearized the
dynamic equation, resulting in a “quasi-linear” formulation. Pauwelussen [16]
solved the full nonlinear problem without horizontal motion restrictions, but did
not include damping and did not explicitly account for constraints where the fluid
free surface meets the walls of the container.

In this paper we present a numerical model for fully nonlinear unsteady
sloshing of a Rayleigh-damped fluid in a rectangular container subjected to time-
varying horizontal accelerations. Surface tension is neglected. We use a
boundary element approach in solving Laplace’s equation to efficiently handle
the changing fluid geometry. The initial boundary value problem is formulated
so that other time-integration packages can be easily substituted. A corrected
constraint equation is presented for the contact-point condition where the fluid
free surface meets a solid body. Finally, we apply the model to a standard
benchmark problem and compare our results to some previously published
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I1. Modél Problem

In the pursuing development, it is helpful to be apprised of the application in
mind so that we may quickly arrive at specific forms of the applicable equations
and boundary conditions. The model problem of a rectangular container
subjected to sinusoidal horizontal oscillation (see Figure 1) has been tried
previously by several other researchers, e.g. [13], [15], [16].

Initially the container of width w is at rest, holding a quiescent body of liquid
of depth d (relative to the bottom of the container). The container displacement
d . and velocity v, from its initial position are given by

6C = Asinw!? m
and
v, = Amcoswt @

where o is the angular frequency of the oscillation. In terms of the period T, of
the oscillation, ® is given by

®=27/T, | @

The container is assumed to extend into and out of the page far enough that
end-effects are negligible and a two-dimensional (2-D) treatment applies.

fixed coordinate system

does not move with container
y

___ initial container
position

container

w

Figure 1: Model problem: a horizontally oscillating container holding fluid




I11. Governing Equations

We work from the fixed x-y coordinate system depicted in Figure 2, with unit
vectors in the x and y directions being 7 and 7, respectively. To model the motion
of the fluid, momentum conservation must be applied. Assuming the fluid to be
irrotational, i.e. the curl of the velocity is everywhere zero ( VxP wid = 0), 8
velocity potential ¢ (x,y,7) governs the flow field such that it’s gradient
represents the fluid velocity at any point:

‘bﬂuid = V¢ @

Assuming incompressibility, conservation of mass requires that the
divergence of the velocity be zero everywhere within the fluid. This translates to
the requirement that ¢ satisfy Laplace’s equation in the domain:

Ve g =0 = V% =0 influid domain G

Under the additional assumption of negligible viscous effects (which
completes the set of assumptions characterizing potential flow), the time-
consistency of the problem is established by Kelvin’s theorem (see [2]), which
states that an inviscid and initially irrotational flow will always remain
urrotational, and therefore that Laplace’s equation will apply throughout time.
Though a real fluid might eventually depart from irrotationality, these
assumptions seem in practice to hold reasonably well throughout time for
problems where water is the fluid and the container motion is not exceedingly
violent.

_ From the consideration that the fluid boundary must conform to rigid
. surfaces but the fluid may slip tangentially along the surface for inviscid flow,
boundary movement on a fluid/solid interface is constrained according to

ne bfluid =fne 9w 217 atsolid boundaries (6)

Ky free boundary, ¢ specified (Dirichlet b.c.)

1/ solid boundary,
0¢/on specified
(Neumann b.c.)

0 in fluid domain

Figure 2: Laplace problem associated with the exafnple sloshing problem




where ¥, is the local velocity of the rigid surface and 7 is a unit vector locally
normal to the domain boundary and pointing away from the interior of the
domain as shown in Figure 2. Using equation (4) in (6) yields a Neumann
boundary condition at solid/fluid interfaces for the Laplace problem

a(bnf)

on wall

We will address the movement of nodes on solid/fluid interfaces later.

At the free surface the kinematic condition reflects the fact that for points on
the mathematical boundary to track the fluid surface their velocities relative to
the fluid at the surface must be “either wholly tangential or zero” (Lamb, [1]). If
the relative velocity is zero, then the point moves as though it were a fluid
particle at the free surface. Adopting this convention to move our computational
nodes on the free surface, we have

P

at solid boundaries @

=bﬂu ia=vo at the free surface ®)

node

Though other conventions exist that satisfy the kinematic condition (see e.g.
[17]), “Lagrangian” movement has unique properties that would appear to make
it well suited for simulation of high-amplitude sloshing flows. Lagrangian node
movement has been very successfully used to model highly nonlinear, impulsive,
and violent flows such as those generated by piston wavemakers or oscillating
floating bodies, with waves eventually crashing (overturning) or impacting tilted
or vertical walls (see e.g. [18]-[22]).

Cﬁlonsiderigg that node 15 the time derivative of nodal position ?n ode (=
Xnode! + Ynodel y» W€ have

d RN
bnode = E(>node) = (xnode) I+—= (ynode)J nodel *t Ynode! ©
Dotting the vector equation (8) with i,then j, and using the notation established
in eqn. (9) yields the following two ordinary differential equations (ODEs) for
Cartesian position of free-surface nodes.

= (i ﬁ) 99 + (ie ‘) ¢ at the free surface (10

.
{

node

Ge n) d) (] ¢ at the free surface an

1l

ynode

In the above we have assumed a form of V¢ in terms of its normal (n) and
tangential (s) components,

L9, 90
V=5 n+3-5. 12




We use the form (12) because, as will be shown later, our integral-equation
method for solving Laplace’s equation yields d¢ /dr directly, and d¢ /ds can be
easily found by numerical differentiation.

A Dirichlet boundary condition for the Laplace problem is obtained at the
free surface via the unsteady Bernoulli equation, which applies within and on the
boundary of the fluid. A derivation of this equation, which proceeds from
consideration of momentum conservation along a flow streamline, may be found
in [2], where the additional assumption beyond those already mentioned of
conservative body forces (here due to gravity) is invoked. Reference [15]
indicates how a simplifying mechanism to account for the major effects of
viscosity may be included in the momentum equation according to a device
originally proposed by Lord Rayleigh. Such “Rayleigh damping” acts to
dissipate momentum by opposing fluid motion with a force proportional to the
local gradient of fluid velocity. The constant of proportionality or “viscosity
coefficient” | changes with the flow regime and is best set by comparison with
experiments or computer analyses solving the full Navier-Stokes fluid-flow
equations (see e.g. [23]).

Applied at the free surface, the damping-modified unsteady Bernoulli
equation becomes

aad; [‘—/2—2 +gy+ ud)] at the free surface (13)

where y is the vertical coordinate (height of the free surface relative to the x axis),
. g is the magnitude of gravitational acceleration, V is the fluid speed (magnitude
of the local velocity vector ? Alui ;¢)» and atmospheric pressure has been assumed
constant all along the free surface.

When Bernoulli’s equation is applied at the free surface it is known as the
“dynamic condition” in free-surface potential-flow nomenclature. We employ it
to update the velocity potential ¢ on the free surface as the simulation progresses
in time. This provides a Dirichlet boundary condltlon at the free surface that is
used in solving Laplace’s equation.

We note that Equation (13) pertains to the partial or “Eulerian” time
derivative of the velocity potential ¢ (x, y, ¢) , taken while holding x-y position
fixed. However, we must use the total time-derivative (see e.g. [24]) in updating
¢ on the moving free surface. For a node moving as a fluid particle the total
time-rate-of-change of its velocity potential is given by (cf [25])

; 1
Dnode= %%) = i[(ai) (af) ] -gy-ué at the free surface (14)




IV. Outline of Numerical Solution Procedures

Method-qf-Lines Approach to Initial Boundary Value Problem

To recap, we may fully characterize the sloshing flow over the time span of
interest by resolving the time-dependent velocity field within the domain. This
translates via eqn. (4) to the requirement that we determine the time evolution of
the velocity potential ¢ over the time-changing domain. To accomplish this we
must time-march a set of 3N coupled nonlinear ordinary differential equations
(eqns. (10), (11), and (14) are written at each of the N free-surface nodes) while
simultaneously requiring ¢ to satisfy Laplace’s equation over the domain. We
may conceptualize the complete ODE set in standard ODE matrix notation:

(i} = [A({wk} , r)] {w,} a5)

where it has been emphasized that the coefficient matrix [A] is a function of
{w,} for a set of nonlinear ODEs, and has an explicit dependence upon time if
prescribed changes in geometry and Neumann conditions at solid boundaries
occur.

Standard explicit time-marching methods predicated upon the form (15)
(see e.g. [26]) can be applied to advance the set of ODEs in time, assuming that
the quantities on the right-hand-sides (RHSs) of equations (10), (11), and (14) are
known at the beginning of each time step. To determine the spatial derivatives on
the RHSs of these equations, we must solve the elliptic boundary-value problem
presented generically in Figure 2. The Neumann b.c.s on the nonfree portions of
the boundary are known from eqn. (7) and the time-specified container motion.
From initial conditions of specified geometry and specified velocity potential
(i.e. Dirichlet boundary condition) on the free surface we have a closed Laplace
problem to start. It’s solution, and subsequent spatial differencing, yields the
required derivatives d¢ /dn and d¢ /ds . All information necessary for advancing
the solution by one time-step is now known. Each time-step updates the locations
of free-surface nodes and the Dirichlet boundary condition (velocity potential) at
the free surface. This, along with the time-prescribed information in the problem,
sets up a new Laplace problem to be solved in preparation for taking the next
time step. Thus, the computation progresses and the solution unfolds in time.

A variable-step 4th/5th order Runge-Kutta integrator (DERK45 [27] from
the SLATEC library [28]) has been chosen for the present work. It has been
found to advance the nonstiff set of ODEs with a good balance of accuracy,
economy, and stability. However, other integrators have also been used with
good success. The modular method-of-lines formulation we’ve outlined allows
quick substitution/evaluation of different integration packages, whereas less
standardized approaches such as the ‘incremental’ time-marching method in
[13], the Taylor-Series method of Dold & Peregrine [29], and the implicit
technique of Liu & Liggett (see e.g. [17]), do not enjoy this benefit.




B lemen fution hod for L ‘s E

Although domain methods have been employed in solving free-surface
potential-flow problems there is tangible evidence that boundary integral
techniques offer superior performance for this type of problem ([30]-[321). The
direct boundary element method (DBEM, ([33]) is particularly accurate and
efficient at solving Laplace’s equation, and is extensible to 3-D whereas some
other integral-equation techniques (see [34], [35] for reviews) are not.

For our 2-D example problem we use the DBEM to solve the following
Fredholm boundary integral equation (BIE):

A (p) 6 (p) = 1[[¢(§)—£;1nr(§,3) mrEpRelre

where ¢ (p) is the velocity potential at a particular point p on the boundary,
a.(p) is the internal angle of the boundary contour there (see Figure 3), Inr is
the value at 5 of 27 times the 2-D free-space Green’s function centered at p and
r= |<§ pl “The operator d( ) /on finds the rate of change of the opérated
quantity 1 the direction normal to the boundary and pointing away from the
interior of the domain.

Using the principle of collocation, Equation (16) is written at all nodes on
the domain boundary. Using standard discretization techniques [33], these BIE
are represented in discrete form and assembled into a set of globally coupled
linear algebraic equations that can be solved by Gaussian elimination. The
formulation yields computed velocity potentials ¢; at nodes where a Neumann
boundary condition is specified, and yields computed normal derivatives
(d¢/0n) ; at nodes where a Dirichlet condition is specified.

piecewise linear
representation of boundary

=

double nodes at
corners of domain
(shown adjacent
here but actually
collocated in the
model)

O, mternal angle at node i

direction of integration
X dr’, differential element of boundary

Figure 3: Boundary element model of fluid domain




The present formulation uses a piecewise linear approximation to the
domain boundary. Linear isoparametric boundary elements are employed which
allow exact analytic integrations (see e.g. [36]) of Green’s function and its
normal derivative over the elements. Other types of boundary elements and
integration methods have been used in free-surface problems with good success
(e.g. [15], [20], [37]-[40]). However, formulations using higher-order elements
are more complex and also may suffer from deleterious effects when the free-
surface nodes in the physical space drift away from their assumed parametric
positions in the shape functions (see [41]).

As Figure 3 shows, the nodes on the ends of the piecewise-linear
approximation to the free surface have unambiguous normal directions, but the
other free-surface nodes do not. To resolve this we first define a boundary
tangency angle 8 in Figure 4. The tangency angles of the two boundary elements
adjoined at a node are averaged, yielding the value {3;. The nodal tangent 3, is
then said to have this average tangency angle. The nodal normals 7, are rotated
90 degrees counter-clockwise from the nodal tangents.

Instead of using geometry to calculate the internal angle of the domain at the
free-surface node points (the a; in Figure 3), we use eqn. (16) and the well-
known device of assuming a constant potential over the domain (see [33]) to
calculate o; in terms of the off-diagonal elements in the coefficient matrix of the
assembled BIEs. This self-consistent method of determining o.; has been shown
to lower the condition matrix of the BIE system significantly [19].

A double-node technique is used to address the very large differences in the
normal directions of the boundary elements adjoined at the four vertices of the
domain, denoted A, B, C, and D in Figure 2. This allows two distinct Neumann
conditions, one in each normal direction as the corner is approached from one
side then the other, to coexist at the corner. Operationally, two computational
nodes are placed at each vertex, one associated with each of the adjoining

n °B, boundary tangency angle
S

Figure 4: Boundary tangency angle 8




boundary segments, and BIEs are written at the nodes and assembled into the set
of discretized equations according as the boundary condition prescribed on the
adjoining segment is Neumann or Dirichlet. (This approach works very well and
is simpler to program than “splitting” the potential [16] or inserting a constraint
equation for continuity of potentlal at the collocated nodes as suggested in [20],
[22], [40], and [42].)

Numerical Determination of Tangential Derivatives on the Fr

The normal and tangential derivatives of ¢ are needed for time-integrating
the ODEs (10), (11), and (14). Although the solution of the BIEs directly yields
(99/0n) ; at the free-surface nodes, we must determine (J¢/ds), separately.
Although a more elegant method (the tangent-derivative BEM [43]) exists to
determine J0¢/ds at the free surface, numerical differencing is used in the
present model for economy and simplicity. Following Liu & Liggett [44], a
central difference approximation for d¢/ds that accounts for the (in general)
different lengths of adjacent free-surface elements is used.

Implementation of th nglrain Poin

At the “contact points” A and B in Figure 2 where the free surface meets a
solid boundary, a physically imposed constraint on the fluid velocity V¢ exists.
The velocity of the container wall determines d¢/dx at the contact point via
equation (7). Also, the solution to the BIEs yields d¢ /on on the fluid surface at
the contact point. The value of d¢/ds is thus constrained such that dotting eqn.
(12) by the direction vector 7 must equal the physically imposed value 9¢ /ox .
The proper algebraic manipulations lead to the result

dp_ Ve
Js cosB

where B is the angle between 7 and the tangent vector 3 at the fluid boundary
(see Figure 4) and v, is the speed of the container wall as defined in eqn. (2).

Since the horizontal velocity at the contact point is known a priori, eqn. (10)
does not have to be written for the free-surface node there, but the velocity
potential and height of the fluid surface at the wall do depend upon a compatible
value of dd /ds ineqns. (11) and (14). We comment that the constraint (17) must
be explicitly imposed on free-surface nodes at contact points when Lagrangian
node movement is used. Apparently, only the formulation of Grilli and
coworkers (see e.g. [40]) among the many works possessing similar
circumstances (e.g. [16], [20], [22]) explicitly recognizes the compatability
condition. However, eqn. (17), valid at both the left wall and the right wall of the
container, differs from the result published in [40], which can be shown to be
equivalent to (17) at the left wall but not at the right wall. Because nodes were
not located at the contact points in Faultinsen’s formulation [15], this constraint
does not apply even though he used Lagrangian node movement. However, his
model allows only very small horizontal container displacements. The
formulation of Medina et. al. [14] pre-constrains node movement to be

tan 3 %%) at contact points (17)




exclusively in the vertical direction, and therefore implicitly respects the
condition (17). However, the model is limited to the free sloshing of fluids in
stationary containers. The method of Nakayama & Washizu [13] also uses
constrained vertical node motion and therefore respects (17), but the
transformation used to account for horizontal container movement does not
contain all of the necessary terms for nonlinear free-surface motion. Finally, we
note that equation (17) is only valid for vertical walls, but can be generalized to
arbitrary wall angles from the same principles applied above.

Miscellaneous

It is appropriate here to mention that, as the solution progresses in time, the
computational nodes between the free-surface contact point and the bottom of
the domain are moved to maintain equal node spacing along the container walls.

A second special characteristic exists at contact points. Impulsive wall
motions (v, discontinuous in time) will generate a mathematical singularity at the
contact point [45]. Though more exotic elements and integration techniques exist
to resolve such singularities (see e.g. [40]), we implement no special measures
here. The numerical procedures used have proven adequate for the container
motions examined in the next section, even with impulsive starts from rest.

Finally, it is worth mentioning that where “static” geometrical relations
exist, boundary element contributions to the coefficients in the assembled BIE
matrix do not have to be recomputed at each new timestep (see [33] pp. 124).
This can lower total computation time significantly.

V. Model Validation

The numerical model described above has been applied to the model problem
defined in section II and the results are here compared to analytical and
numerical results published in the literature.

It appears that the only previously published fully nonlinear computer
model that accounts for all of the physics that the current model does is
Faltinsen’s [15]. However, Faltinsen’s model and the current model are quite
different numerically. Briefly, his model employs a fixed-step “central
difference” time-marching method with constant boundary elements in an
indirect boundary element formulation for solving Laplace’s equation. Due to
constraints on node movement the formulation breaks down when the absolute
value of the free-surface tangency angle 3 approaches large angles, like when
large and violent free-surface motions are involved. Additionally, the container
can only be moved relatively small horizontal distances about the starting
position. Nevertheless, comparisons can be made within these limits.

The governing parameters for the validation problem are (refer to Figure 1
and section IT): w = 1 meter [m}], d=0.5m, A =0.025m, Tp = 1.3 seconds [s], g
=9.8 m/s?, and U = 0.05u
coefficient 1L, is given by

cris- From [15] an estimate of the critical damping




T dn
mm=2%¢mqgj , (18

In the current model the boundary of the domain is divided into: 60 elements
on the free surface, 30 elements on the bottom boundary, and 20 on either side.
For the example problem this is probably more than sufficient to capture the local
details of the fluid motion. (No attempt was made to duplicate the number of
elements used in [15] in an effort to verify the current model by exact duplication
of the published results because of the confounding effects of other algorithmic
differences.) The nodes on the side and bottom boundaries are always equally
spaced, even though the lengths of the side elements change as the fluid rides up
and down the container walls. The lengths of the free-surface elements are not
constrained in any way, but Lagrangian node movement tends to concentrate
nodes in highly curved regions of the free surface wherever jets of liquid are
formed [25]. This is in some ways desirable because of the natural increase in
resolution at precisely the locations on the free surface where the curvature is
large. However, when nodes are too close together, special numerical procedures
may be required, depending upon the type of elements used and method of
integration, to accurately solve the BIEs (see e.g. [40]). Additionally, the
clustering of nodes may decrease the stability of the system, requiring smaller
time steps to be taken or periodic regridding of the free surface. None of these
special measures have been implemented in the current model.

Figure 5 shows the present model’s prediction of fluid response as measured
by deviation in surface height from the mean fluid level. Free-surface
dispacement at a distance 0.05m from the left wall of the container (i.e. the
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Figure 5: Free-surface displacement from rest level at a distance 0.05 m from
left side of container. Container oscillation period =T, = 1.3 sec.




absolute location of the measurement point changes in time following the motion
of the container) are plotted vs. time. Nonlinear and linear predictions digitized
from [15] are also shown for comparison. The nonlinear solutions from the
present model are quite different from Faltinsen’s solution, and both nonlinear
solutions are notably different from the linear solution, which probably does not
apply very well for this very nonlinear example (note that the amplitudes of up
to 22 cm are of the same order of magnitude as both the depth and the width of
the domain). Though the amplitudes of the three solutions are considerably
different, the phases all agree reasonably well. The nonlinear results produced by
both Faltinsen’s and the current model exhibit the characteristic trait of crests
with substantially greater amplitude than troughs. This physically observed
characteristic of nonlinear waves is not predicted by linear models. The
nonlinear model of Faltinsen, however, predicts substantially lower crests than
linear theory predicts. This is qualitative contrary to observed trends for
nonlinear vs. linear waves, and thus provides an indication that the current model
is probably more accurate than Faultinsen’s.

Further evidence that the current model is more accurate than Faltinsen’s is
shown in Figure 6, which plots the predicted responses when the simulation is
rerun with an oscillation period of T, = 1.6 seconds. The response is much less
regular, presumably because the oscillation frequency is further from the
predicted linear resonance frequency of 1.18 seconds (see [15]). For this much
more linear problem (maximum amplitudes of about 7 cm), the present model
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Figure 6: Free-surface displacement from rest level at a distance 0.05 m from
left side of container. Container oscillation period = T, = 1.6 sec.




much more closely conforms to the linear predictions than does the nonlinear
model of Faltinsen. We can expect that as the behavior becomes less and less
nonlinear, the nonlinear solution should converge to the linear solution. The
present model appears to possess this property much more than Faltinsen’s.

For an oscillation period of T, = 1.2 seconds, Figure 7 shows the shape of
the free surface when the container approaches its center of oscillatory motion at
succeeding multiples of the oscillation period. A period of 1.2 seconds was
determined by numerical experiment to excite the fluid motion in a most
resonance-like condition (cause fastest amplitude growth). The calculation had
to be suspended at ¢ = 4.4 seconds because of an instability that erupted shortly
thereafter. At periods of 1.18 seconds and 1.3 seconds (slight departures from the
resonance frequency) such instabilities did not errupt until slightly later in the
simulation. Lowering the error tolerances on the variable-step Runge-Kutta
integrator slightly delayed the onset of instabilities due to the smaller time-steps
taken. (Numerical instabilities and methods to suppress or circumvent them have
received much attention in the literature on computational free-surface potential
flows (see e.g. [20], [25], [34], [35], [46]). The present model incorporates no
special measures to delay the onset of instability except for controlling the sizes
of the time steps by appropriate selection of the error tolerancing parameters.) At
a period of 1.6 seconds, far away from the resonance condition, the calculation
was run to 20 seconds with no hint of impending instability.
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Figure 7: Free-surface displacement at multiples of the container oscillation
period T, = 1.2 sec. (near the natural frequency of the liquid).

VI. Concluding Remarks

The numerical model presented here appears to be more general and
qualitatively/quantitatively correct than previously published models for
simulating the unsteady nonlinear behavior of an incompressible Rayleigh-

damped irrotational liquid within a container subjected to forced horizontal
oscillation.
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