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Abstract and Organization of Dissertation

In this work, we try to understand the protein folding problem using pair-wise hydrophobic
interaction as the dominant interaction for the protein folding process. We found a strong
correlation between amine acid sequence and the corresponding native structure of the protein.
Some applications of this correlation were discussed in this disseration inlcude the domain
partition and a new structural threading method as well as the performance of this method in
the CASPS competition.

In the first part, we give a brief introduction to the protein folding problem. Some essential
knowledge and progress from other research groups was discussed. This part include discussions
of interactions among amino acids residues, lattice HP model, and the designablity principle.

In the second part, we try to establish the correlation between amino acid sequence and the
corresponding native structure of the protein. This correlation was observed in our eigenvector
study of protein contact matrix. We belive the correlation is universal, thus it can be used in
automatic partition of protein structures into folding domains.

In the third part, we discuss a threading method based on the correaltion between amino
acid sequence and ominant eigenvector of the structure contact-matrix. A mathematically
straightforward iteration scheme provides a self-consistent optimum global sequence-structure
alignment. The computational efficiency of this method makes it possible to search whole
protein structure databases for structural homology without relying on sequence similarity.
The sensitivity and specificity of this method is discussed, along with a case of blind test
prediction.

In the appendix, we list the overall perfomance of this threading method in CASP5 blind

test in comparation with other existing approaches.



CHAPTER 1. Protein Structfure And Building Blocks

In this part, I will briefly discuss some known properties of protein structures as well as

basic knowledge important in discussing the protein folding problem.

Proteins

Proteins are chain-like polymers of small subunits {amino acids) [1, 2, 3, 4, 5, 6, 7, 8]. There
are twenty different amino acids which occur in nature. The structures of these compounds
are shown in Figure 1.1 [1]. Each amino acid has a central carbon atom (Cj,) connected to
an amino group{NH3+), a carboxyl group(COO-), a hydrogen atom(H), and a side chain.
Different amino acids are distinguished by their side chains. The sequential arrangement of
the amino acids in the protein gives each protein its unique character.

The amino acids are joined together in proteins via peptide bonds. This gives rise to the
name polypeptide for a chain of amino acids. A protein can have one or more polypeptide
chains. The atoms involved in forming covalent peptide (N-C,) bonds and the C' atoms of all
the amino acids in a protein are called the backbone of a protein. Because the peptide bond
is planar, the backbone configuration of a protein is completely determined by the ¢ (between
N and C,), 9 (between C, and C’) angles as shown in Figure 1.2 [1].

A polypeptide chain has polarity with a free amino group left at one end called the amino
terminus or N-terminus, and a free carboxyl group at the other end, called carboxyl terminus
or C-terminus.

The linear order of amino acids consititutes a protein’s primary structure. The way these
amino acids interact locally with their neighbours give a protein its secondary structure [9, 10,

11, 12, 13, 14, 15, 16, 17]. The alpha-helix is a common form of secondary structure. It results



from hydrogen bonding between backbone atoms of near neighbour amino acids, as shown in
Figure 1.3 [1]. Another common secondary structure found in proteins is the beta-pleated
sheet which is shown in Figure 1.4 [1]. This involves extended protein chains, packed side by

side, that interact by hydrogen bonding between backbone atoms.
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Figure 1.1 A list of natural occuring amino acids [1].

The total three-dimensional shape or “fold” of a polypeptide is its tertiary structure. Figure
1.5 [1} illustrates how the protein myoglobin folds up into its tertiary structure. The native

structures for some proteins can contain more than one compact structural regions. Each of



these regions is called a domain. Quaternary structure [18, 19, 20, 21, 22] is the way two or

more individual polypeptides fit together in a multi-unit protein.

Amino Acids

Amino acids are the building units of proteins which sometimes are also called residues.
The 20 naturally occuring amino acids interact with each other via non-covelant interactions to
form the global three dimensional structure of a protein. Figure 1.1 lists these amino acids with
their names and abbreviations using three- letter or one-letter code. These amino acids can be
divided into three classes according to the chemical properties of their side chains. ALA(A),
VAL(V), LEU(L), ILE(I), PHE(F), MET(M) and PRO{(P) are usually considered hydrophobic
residues. SER(S), THR(T), CYS(C), ASN(N), GLN(Q), HIS(H), TYR(Y), TRP(W), and
GLY(G) are polar, although CYS, TYR, TRP also have considerable hydrophobic character
as well and HIS is sometimes charged. ASP(D}, GLU(E), LYS(K) and ARG(R) are charged
residues. These multi-atomic residue side chains may have different geometry in forming a
protein’s three dimensional structure. We analyzed the existing protein structure database
to obtain a measurement of the sizes of the different amino acids. For every amino acid, we
use the geometrical center of the side chain to represent its side chain position. The distance
between the amino acid’s C-alpha atom and its geometrical center is defined as the "size” of

the residue. The average sizes of the 20 amino acids are listed in Table 1.1.

C 28 M 35 F 38 I 25 L 30
V 22 W 42 Y 42 A 15 G 15
T 22 S 24 N 29 Q 34 D 29
E 34 H 36 R 44 K 375 P 23

Table 1.1 Amino acid size obtained from PDB

The amino acid cysteine is special compared with other residues in constructing protein

structures. Two cysteines can form a disulfide bridge via the following chemical reaction:

CH»SH + CHySH +1/20; — CHy — § — § — CHy + Hy0 (1.1)



In some proteins, these covalent disulfide bonds are important to hold the polypeptide together
in forming a functional structure (e.g. disulfide bonds are important in forming the three

dimensional conformation of tumor necrosis factor{ TNF)-receptors in human).

Secondary Structure

In 1958, the first X-ray crystallographic structure for a globular protein (myoglobin) was
determined by John Kendrew [6]. Instead of the simple double-stranded helical structure
found for DNA molecules, globular proteins adopt very complicated conformations. Proteins
take on irregular and dramatically diverse structures in general. However, there are some
common features: Globular proteins generally contain compact hydrophobic cores [20]. Most
of the time, residues are so densely packed in the core that there is no space available for
water molecules. In the few cases where there is a "hole” in the hydrophobic core, the water
molecules inside are generally hydrogen-bonded with polar residues and thus can be viewed as
part of the protein structure.

Another common feature in protein structures are local secondary structures. The most

common secondary structures are « helix and 3 sheet.

o Helix

The o helical configuration of protein structure was first proposed by Linus Pauling [16,
17]. In forming < helix, a stretch of consecutive amino acids all have the ¢, 9 angle pair
approximately —60° and —50°. The most common ¢ helix has 3.6 residues per turn. For every
residue n of a helix, its €' = O is hydrogen bonded with the NH of the n+4 residue. All the
residues in the helix are hydrogen-bonded together except the two boundary residues.

There are some variations of helical secondary structure in which the chain can be a little
loose or tightly coiled. The hydrogen bonds in this case can be n to n+5, or n to n+3. They
are called 7 helix and 3;p helix respectively. The 3¢ helix has 3 residues per turn. Both #
helix and 3;g helix occur rarely in protein structures.

The length of o helices in globular proteins can be varied. The average length of an «



helix is around 10 residues. Almost all & helices observed in proteins are right-handed except
for, occasionally, a few short left-handed o helical regions (3-5 residues). The side chains of
the amino acids are not directly involved in forming o helix. However, different amino acids
have different propensities in forming ¢ helical conformation. ALA(A), GLU(E), LEU(L) and
MET({M) are believed to be good « helix formers, while GLY(G), TYR(Y) and SER(S) are
rarely found in @ helical formation. The aminoc acid PRO(P) is a @ helix "breaker”, since the
main-chain atom N in proline forms a ring structure with the side chain, thus depriving it of

the ability to form hydrogen bonds in a o helix[1].

B sheet

Another common secondary structure in proteins is the § sheet. Unlike o helices which
are formed by a continuous stretch of amino acids, the 8 sheet is built from a combinations
of several regions of a polypetide chain. These regions are often called 3 strands, and usually
consist of 5 to 10 residues. Like a helices, hydrogen bonds play an important role in holding
the strands together. Generally, in forming 3 sheet, the ¢’ = O of one amino acid in a strand
forms a hydrogen bond with the N H group of an amino acid in the adjacent strand.

There are two ways that 8 strands interact with each other to form a  sheet. If the amino
acids in the aligned f strands all run in the same direction, it is called parallel 5 sheet. The
directions of neighbouring 5 strands can also run in opposite directions. In this case, it is
called antiparallel 8 sheet. 8 strands can also be combined into mixed § sheets with some of
the 8 strand pairs parallel and some antiparallel. For known proteins, almost all g sheets have
“twisted” strands, and the “twisted” strands are always twisted in a right-handed way.

Certain combinations of secondary structure elements with specific geometric arrangements
has been found frequently in protein structures. They are often called structural ”motifs”.
Some of the motifs are associated with particular biological functions such as DNA binding.
Some examples of more frequent motifs are: the hairpin § motif, the Greek key motif, and the
zin¢ finger motif.

Combinations of motifs and secondary structure regions can build up a structural *domain”.



A structural domain is defined as part of a protein that can fold independently and is considered
to be the building block of protein tertiary structure. A protein may have a single domain or
multiple domains. Generally, a structural domain is also a unit of function. It is very often

that different domains of a protein are associated with different functionsfl].



Figure 1.2 Backbone of protein (1]



Figure 1.3 ¢ helix formation of protein local structure[l].
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Figure 1.5 Tertiary structure of a protein[1].
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CHAPTER 2. Protein Folding Problem

Proteins may be classified into three categories: fibrous,membrane and globular. Globular
proteins form compact three dimensional configurations under natural conditions.

In 1960’s Christan B. Anfinsen and co-workers show that globular proteins can fold re-
versibly [1]. It is now established that globular proteins in cells have unique three dimensional
structures, which are called their “native structures”. A protein’s native configuration is impor-
tant for its function [2]. For an example, the protein hemoglobin carries oxygen from lungs to
remote areas of the body. A normal cell hemoglobin(HbA) and a sickle-cell hemoglobin(HbS)
differ only by one amino acid which results in a small conformational difference between the
two proteins. Normal hemoglobin remains soluble under ordinary physiological conditions, but
the sickle-cell hemoglobin precipitates when the blood oxygen level falls, forming long, fibrous
aggregates that distort the blood cell into the sickle shape. This may be fatal without medical
attention. The native strcuture of a protein is uniquely determined by the protein’s amino

acids sequence as discussed in the previous part of this thesis.

Levinthal’s Paradox

Thermodynamically, the native state of a protein is believed to be the lowest free energy
state among all the conformations it can take. The conformational space of a polypeptide
chain is huge. Considering an ordinary protein with length of 150 residues, and assume that
for each residue, the ¢, 1 angles bewteen the backbone atoms have around 10 possible distinct
values, the total number of possible conformations will be around 10'%? for the backbone alone.
However, natural proteins fold in time from milliseconds to seconds. How can natural protein

find their native structures in such a short time? This is the famous “Levinthal’s paradox”
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raised by Cyrus Levinthal in 1960s [3, 4]. Levinthal’s argument suggests that there are “folding
pathways” in the protein folding process. Soon after Levinthal’s argument, experimentalist
started to search for folding-intermediate states. In 1971, Ikai, Tanford [5] and Tsong, Baldwin
and Elson [6] published their pioneering experimental paper [7, 8]. Those experiments used
disulfide bonds to trap folding intermediates (e.g. in BPT1 [9]), or use proline isomerization
[10] to study the process of folding. However, folding intermediates and complex kinetics can
still be observed in the absence of disulfide bonds and incorrect proline isomers[11, 12]. In the
classical view, it is assumed that there are intermediate states I; for protein folding from a

denatizred state U to the native state N:

U—-5L—>5L,...,»N (2.1)

A “new view” proposed by Peter G. Wolynes [13, 14, 15, 16] and co-workers replaced the
pathway concept of a sequence of events with a funnel concept of parallel events. They argue
that in order for the protein to fold in such a short time, the “energy landscape” of a protein
must be “funnel” like. The results from lattice HP models [15, 16] support this view. In the
“new view”, it is not neccessary for a denatured protein to go through given intermediates
in a “pathway” to reach the final native structure, but it can “fall down the hill” quickly
as long as the energy landscape is funnel-like. The funnel-like energy landscape can help us
understand some of the experiments. For example, some proteins in cells must be assisted in
their folding by “chaperone” proteins. When a protein falls into a misfolded local minimum,
the “chaperone” protein causes the misfolded protein to unravel and overcome the energy
barrier to start "falling down the hill” again. These “chaperone” proteins do not have to be
specific to a particular protein in order to interact correctly, but rather give help by providing
an “environment” to let misfolded proteins unfold. Thus, one kind of ”chaperone” protein can

help many different proteins fold.



15

Interactions

In order to determine the energy landscape of a protein, one must understand the in-
teractions among the residues. There are various kind of interactions involved in the folding
process. These interactions include hydrogen bonds, hydrophobic interactions, electrostatic in-
teractions, van der Waals interactions and disulfide bonds. Even a small protein contains tens
of thousands of atoms as well as surrounding water molecules. Because the vibrational motions
of these bonded atoms have times of about 1071* to 10~!3 seconds, it is impossible for existing
computers to simulate the dynamic process of folding which occurs on a time scale of around
107! to 10° seconds. Thus, except for studies where the protein is restricted to vary around a
given three dimentional structure{e.g. simulations in the final refinement of experimental NMR
structures), the interactions used in theoretical protein folding study are generally described at
the residue level. These effective interactions generally use one bead (C, position) or two beads
(Cq and center of side chain) in representing amino acids. Even at the residue level, there are
still disagreements about what is the dominant force for protein folding. Historically, Linus
Pauling [17] was the first to propose that hydrogen bond interactions drive the folding process.
He based this conclusion on his experimental studies of membrane proteins. However, in 1950s,
Walter Kauzmann [18] argued that hydrogen bonding would not strongly favor the folded state
compared with the unfolded state, since water molecules can also form hydrogen bond with
amino acids in the unfolded structures. From the observation that almost all globular proteins
form a compact hydrophobic core, he proposed that the hydrophobic interaction is a stronger
force for folding proteins. The mixing of nonpolar (oil-like or hydrophebic) molecules with
water has a large positive free energy, and is disfavored by entropy near room temperature,
leading to a large increase in heat capacity. Hydrophobic residues like to segregate to form
a hydrophobic core, while the polar residues are more abundant on the surface. At present,
it is believed that the driving force for protein folding is the hydrophobic interaction for the
majority of globular proteins. However, hydrogen bonding interactions and other non-covalent
interactions(e.g. electrostatic) are important in stabilizing the resulting native structure. In

some special cases, covalent interactions like disulfide bonds can be crucial in determining the
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native conformation when the protein is cysteine rich.

MJ matrix

In order to study hydrophobic interactions in detail at the residue level, some assumptions
have to be made. First of all, since only the side chain of an amino acid is involved in this
interaction, it is reasonable to represent the amino acid by a “bead” at the geometrical center
of the side chain. This takes the form of a “contact” interaction. When the centers of two
“bead” are within a cutoff distance (in our study, we choose 6.54), the two amino acids are
“in contact”. If the amino acids in contact are both hydrophobic, part of their surface areas
are covered by each other and inaccessible to solvent molecules or other polar amino acids. A
contact energy is assigned to this pair of residues according to the amino acids involved. The
total conformational hydrophobic interaction energy of a protein is the sum of all the pair-wise
contact energies for a given three dimensional structure. Because different amino acids differ
in their hydrophobicity, the contact energies between different amino acid pairs are different.
There are various interaction energy schemes to account for this difference in pair-wise contact
energy. The simplest one is called the HP model. In the HP model, the 20 natural amino acids
are classified into two groups: Hydrophobic(H) and polar(P). The contact energy for a polar
residue with another polar residue {PP contact) is generally assigned to be 0, and HH contact
is assigned to be 1. Different groups may choose different HP contact energy schemes. For
example, Chan and Dill use 0 for the HP contact in their study, while Li, Tang and Wingreen
used 1/2.3 . Because the HP model is generally used in qualitative studies (most of the groups
using HP model also restrict the structure of protein to be on a lattice; lattice HP models
will be described in more detail in chaper VI), this difference in assigning HP contact energies

makes little difference as long as the HP interaction scheme satisfies the following condition:

EHH > EBEyp > Epp (2.2)

the results will be similar.

Obviously, the two alphabet HP model is over-simplified for the purpose of calculations of
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realistic proteins, A more detailed pair-wise residue-residue interaction scheme was proposed
by Sanzo Miyazawa and Robert Jernigan (the MJ matrix). The MJ matrix is a 20 x 20
matrix, with element ¢; ; as the contact energy between i type residue and j type residue.
Miyazawa and Jernigan [19, 20, 21] studied the pair-frequency of real proteins in the Protein
Data Bank{PDB). If we look at a specific protein structure, the frequency of two amino acids
in contact is not only influenced by the interaction between these two amino acids, but also
affected by the chain connectivity constraint. However, by including many different protein
structures, the effect of chain connectivity might be averaged out. The basic assumption for
getting the MJ matrix is that the frequency of two amino acids in contact is correlated with
the strength of their interaction. In order to take into account the hard-core repulsions among
residues and solvent molecules, they assume the residues occupy lattice sites in a linear chain
fashion. The vacant sites are assumed to be occupied by solvent molecules, and for simplicity,
they assume interactions occur only between nearest-neighbor pairs of amino acids and solvent
molecules. Because different amino acids have different sizes, the number of nearest neighbors
around a residue (the total number of contacts between residues or between residue and solvent
molecule which is also called te coordination number of the residue} depends only on the size of
the amino acid. The contacts between sequential neighbours are excluded, because these result
from chain connectivity. If ¢; is the coordination number of residue type i, and the number of
residues of the ith type in all protein strcutures studied is n;, then the following relationship

should be satisfied:
20
Gnif2 =Y ni (2.3)

=0
where n;; = nj; is the total number of contact between ith type of residue and jth type residue.

i = ( represent the solvent molecule. If we define F;; as the interaction energy between residue

type i and residue type j, and relative energy e;; as:
eij = Eyj -+ Ego — Eio + Ejo (2.4)

which is the energy “gain” for forming the i-j contact compared with exposing these two

residues to solvent. Then, the total energy for th system is:
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Total Energy = Z E Eing; = 2(2E7:0 — Ego)gini/2 + Z Z €i§Ni (2.5)

=0 =0 i=0 i=1 j=1

The first summation in this equation is not relevant to the structures of protein (n), and can
be neglected in the following discussion. The partition function of the system in the Bethe

approximation can be estimated as:

0 g 1T0pp !
Z = constant Z I a T rezp | — 3y Z €5 Mij (2.6)
y ;=1 mi0 =m0 Ti=1 I = 5! o e

where 7rg is the total number of residue to solvent contacts and n,, is the total number of
contacts in the system. we use RT as the energy unit in the above equation. For this system,

the n,.. and n. must satisfy the following constraints:

Z Z?’Lij = Tpr (27)

ﬁ:l i=1
Z i = Terg (2.8)
i=1
ang = Ngy (2.9)
j=t1

Maximizing the partition function under these contraints, the statistical average < n;; >

of n;; correlates with the interaction energy:

erp(—Aeyy) = <> Tronor (2.10)
K Ty < ToT0; >

where Ae;; = e;; — ery, and the constant e, that is called the collapse energy is defined as:

. . _1
cop(—err) = (ST 0le)) (21)

Trr

The pair-wise contact freuencies obtained from the PDB are used to determine the values
of e;;. This MJ matrix is shown in Figure 2.1 (directly copied from Miyazawa and Jernigen's
paper[19]). e;; are the upper half triangle of this figure.

Sippl MJ. [22, 23] used the mean force approximation to obtain a similar empirical residue-

residue interaction potential.
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LTW parameterization

In 1997, Hao Li, Chao Tang and Ned S. Wingreen [24] completed an eigenvector analysis of
the MJ matrix. Mathematically, a given N X N real symmetrical mairix M can be represented

using the eigenvectors of M as:

N
Mij = AaVaiVay; (2.12)
a=1

where Ay is the ath eigenvalue of M, and V, is the corresponding eigenvector. Tang and
Wingreen found that the eigenvalue spectrum of MJ matrix is very abnormal. There are two
dominant eigenvalues which are much larger in magnitude than the rest. A = -22.49 and
Az = 18.62. while the rest of the eigenvalues have absolute values between 2.17 and 0.013, which

suggests that the MJ matrix can be accurately reconstructed using only two eigenvectors:
My =< My > 4+ V1V + AV Vo 5 (2.13)

They also found that the two eigenvectors V) and V3 are correlated. Approximately, V2 can be

obtained from Vi by a shift and rescaling:
Vg,i = ﬁ + "le,i (2.14)

Where 8 = —0.30 and v = —0.90. The correlation coefficient is 0.986. This indicates that the

MJ matrix can be effectively described using only 20 parameters,
Mi; = Gy + Cilg + g5) + Cagig; (2.15)

with the constants Cp =< Mj; >= —1.492, C; = 5.030 and C = —7.400 . This reconstructed
matrix reproduces the original MJ matrix with very high accuracy. The Figure 2.2 copied
from Li, Tang and Wingreen’s paper[24] shows the correlation between these two matrices.
The regression line is ¥ = 0.999z + 0.008 and the correlation coefficient is 0.989. The inset of
the figure shows the distribution of the original MJ matrix elements.

Li, Tang and Wingreen found that there is an obvious “gap” in the q values of the 20 amino

acids[24] (see Figure 2.3[24]).
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The 20 residues can be roughly categorized into two groups of 8 and 12, respectively. The

two groups are differentiated by their hydrophobicity. Rewriting the LTW parametrization:
My = hy + b — Cofgs — q;)° (2.16)

where h; are defined as:

hi = Co/2+ Cigs + (Ca/2)g} (2.17)

In a “mixing” process, four residues i, i, j, ] break initial contacts :i-i and j-j. to form two
new contacts: i-j and ij. , The energy gain for this “mixing” process is x;; = —Ca{g — qj)2.
This form is very similar to the mixing energy of two simple liquids as given by Hildebrand’s
solubility theory[25]. The h;’s defined above correspond to the hydrophobicities of the cor-
responding amino acids. Figure 2.4[24] (copied from Li, Tang and Wingreen's paper) clearly
show this correlation. Thus, we believe the hydrophobic interaction is the dominant effect in

the MJ matrix.
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Figure 2.2 Correlation between the LTW parameterized MJ matrix and
the original MJ matrix[24].
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CHAPTER 3. Simple Exact Model

HP model

As described earlier, the three dimensional structures of proteins are extremely variable.
To simplify the geometry in modeling, a simple lattice HP model was first proposed by HueSun
Chan and Ken A. Dill [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] in 1989. In this model, each
amino acid is represented by a single “bead”. A protein is modeled as a chain of “beads” on a
lattice. A lattice site can be either empty or filled by one bead. In this way, the bond angles
have only a few discrete values, depending on the lattice being used. Most studies used a two
dimensional rectangular lattice or three dimensional cubic lattice.

In the HP model, there are two types of amino acids: H for hydrophobic residues, and P
for polar residues. Interactions are pair-wise contacts only. There are only three parameters
in this interaction scheme: HI interaction energy, PP interaction energy and HP interaction
energy. Generally, the contact energy of P-P contact is set to be 0. The most popular scheme
is the (1,0,0) scheme in which HH contact energy is set to be 1 and HP contact energy is
0. According to Chan and Dill, the HP model is supported by the following experimental
evidence:

1. The water-to-oil transfer free energy is large and negative for nonpolar amino acids [14],
which is in consistent with the fact that they are buried in the protein core to avoid contact
with solvent molecules. The average transfer free energy of a nonpolar amino acid is around
-2 kcal/mol.

2. Large positive changes of heat capacity are observed for most proteins in the unfolding
process [15, 16, 17]. Though unfolding the backbone also involves heat capacity changes, it

cannot be the basis for the folding code, because it is insensitive to the amino acid sequence.
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3. The free energy for helix formation is small [18, 19, 20]. Most of the amino acids are unfa-
vorable for forming helical conformation, except for alanine(A} which is a strong helix-former.
Helix stability increases with length, but most helices in globular proteins are not long enough
to be stabilized by thermselves [21]. The observation that most helices in globular proteins are
amphipathic suggests that hydrophobic interaction may also be important in stabilizing helices
in globular proteins.

4. B sheets in general have few local interactions. Hydrogen bond interactions cannot fully
explain the folding of sheet proteins. Because J sheets generally involve strands that are far
apart in primary sequence, nonlocal interactions should dominate the folding of sheet proteins.
5. Electrostatic interactions in proteins generally contribute little to stability, as determined
by the general insensitivity of native structures to pH and salt[22, 23].

6. Polypeptides can be designed to fold to helical bundles by designing only the hydropho-
bic and polar residues without considering their helical propensities, side chain packing and
charge[24, 25]. There is evidence that the tendencies to form helical configurations depend

more on solvent than on residue sequence[26].

In the lattice HP model, when two amino acids are geometrical neighbors on the lattice
they are in contact. Because residues adjacent in sequence are always connected on lattice
model, they are not counted as contacts. The total “free energy” of a configuration for a
lattice protein is the summation of all contacts. For example, in (1,0,0) scheme, it is the total
number of HH contacts in the conformation. A globular protein in nature has a unique three
dimensional structure. The total number of gene sequences discovered is of the order of 107,
while for a polypeptide with around 200 residues, the total number of possible polypeptide
sequences is of the order of 20%°°, Yet few human ab inito designed polypetide seqeuneces has
folded into unique structures. This is because a random polypetide chain does not usually
have a unique ground state structure. A sequence is viewed as “protein-like” when its lowest
energy structure is unique.

The lattice model has the advantage of simplicity. For short chains (lengths < 34 for
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three dimension cubic lattice[27]) the conformations of a given lattice protein can be exactly
enumerated.

Even for such & simple model, the number of possible sequences and conformations increases
exponentially with the number of residues. Often researchers restrict the conformational space
of proteins by restricting the 'protein chain to a n x m two dimensicnal lattice or n X n X n
cubic lattice(most of the time it is 3 x 3 x 3). In this way, people can study lattice proteins
with relatively long chain lengths. A Kloczkowski and RL. Jernigan [28, 29] enumerated the
possible protein-like configurations on some n x m two dimensional lattices (see Figure 3.1).

Figure 3.2 gives an example of protein-like sequences for lattice models in 2D(A), 3D
cubic(B) and perturbed homopolymer on 3D(C) lattices. Black beads represent H residues
and white beads represent P residues[30] (Figure 3.2(C) is obtained by using (3 3 1) scheme).

Despite the simplification in the lattice HP model, many general qualitative results about
the protein folding problem have been obtained.

In the HP model, it can be shown that the requirement of “unique ground state” is a strong
constraint for choosing seqeunce. The fraction of protein-like HP sequences in the 2D lattice
is about 2.1 — 2.4%, depending slightly on the chain length. Figure 3.3 is the relation between
this percentage and the chain length obtained by Chan and Dill[30].

Protein structures are highly compact, but not perfect spheres. This feature has been repro-
duced in lattice model, which is an important result for the protein “design” problem. Design-
ing an amino acid sequence to fold to a desired target conformation has two aspects: (1) positive
design which is to ensure that the sequence will fold to the target structure(energetically favor-
able). (2) negative design which is to ensure that the sequence does not fold to an alternative
conformation(which means that in the whole conformation space of the sequence, there does
not exist another structure that is energetically more favorable that the desired structure). The
results from lattice HP model showed the importance of negative design. For an example, in a
Harvard/UCSF collaboration, the Harvard group chose 10 different three dimensional lattice
target conformations of 48 residues. They designed the sequence to fold on these structures by

a Monte Carlo method[31, 32] without explicit negative design. The UCSF group used different
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search strategies(CHCC algorithm and hydrophobic zippers) to search the conformation space
of the designed sequence provided by the Harvard group. For 9 out of 10 sequences provided by
the Harvard group, the UCSF group found a conformation with lower contact energy. Though
the desired conformations are maximally compact, the designed sequences invariably folded
to more stable conformations that were not maximally compact. Figure 3.4 show one of the
cases.

One surprising result from lattice model relates to secondary structure formation. Tradi-
tionally, secondary structures are believed to be stabilized by hydrogen bonds which are local
interactions. Because the lattice HP model does not include the backbone hydrogen bond
interaction in its energy scheme, it is expected that lattice proteins will not be able to produce
local structures like o helices and 3 sheets which are special features for proteins. But it has
been observed that there is an unexpected abundance of “protein-like secondary structures” in
the conformations of lattice proteins. They generally have more ordered structures compared
with random configurations on lattice, although because of the simple geometry of lattice, these
“or helices” and “8 sheets” are distorted. It is now believed that the “hydrophobic collapse”
resulting in compact conformations, also helps in building local structures like those in o he-
- lices. Different interactions might help the proteins form the native structure cooperatively,
even though how this is achieved by nature is still unclear. Figure 3.5 show the distributions
of secondary structures in real proteins and proteins on lattice.

Lattice models are also useful in studying folding kinetics. For short lattice proteins, all
intermediate states can be enumerated, thus qualitative results about protein folding process
can be obtained and compared with experimental results for real proteins. Figure 3.6 copied
from Chan and Dill’s paper[30] shows the multipathway feature of funnel like energy landscape

for a 13 residues protein folding to its native state.

Designability principle

Another important result from studies of lattice HP model is the “designability principle”

proposed by Li, Tang and Wingreen[8, 9]. For a given protein structure, the designability (N}
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is defined as the total number of different sequences that have this structure as their lowest
energy structure. Li, Tang and Wingreen found that there is a small class of lattice structures
which are extrordinary because they have very high designabilities.

Figure 3.7 obtained by Li, Tang and Wingreen shows histograms of N, for a 3 x 3 x 3 cubic
lattice(a) and a 6 X 5 two dimension rectangular lattice. The energy scheme used is (2.3, 1,
0). In both of these two figures, there appeared a long tail at the high designability end. For
example, on the 3 x 3 x 3 cubic lattice, there are 3794 different sequences that fold on to the
same native configuration(Ns = 3794). If we assume that the native structures on this cubic
lattice are randomly distributed for all protein sequences, the expectation value for a structure
with designability Ny > 120 is 1.76 x 107%. There are 51704 different structures unrelated
by rotation, reflection or reverse labeling on this cubic lattice. Considering the exponential
decay tendency of the expectation value with respect to designability, the high N; tail is very
interesting.

Li, Tang and Wingreen also observed that highly designable structures have secondary
structures that are absent in random compact structures. For highly designable structures,
there are many more parallel running lines folded in a regular way than in an average random
- structure. Figure 3.8 [9] gives an example of a highly designable structure in 2D and in 3D.
The number of straight lines (three amino acids in a row) found in the high N, structures is 8
or 9, while the average structure has only 5.4 straight lines.

The average energy gap dg for a structure S is defined as the minimum energy required
to change the native state structure to a different compact structure averaged over all N
sequences that design on it, At the high N, region, there is a higher energy gap between the
native state and the lowest misfolded state (see Figure 3.9). Thus highly designable structures
are thermodynamically more stable than random compact structures. In order for a natural
protein to be able to survive mutations and evolution, it has to be relatively robust against
sequence variation. Li, Tang and Wingreen proposed that only highly designable structures

on lattice can be considered as “proteins®.
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Figure 3.1 Enmumeration of all possible configurations of chains in m x n

rectangular lattice. (A Klockowski and RL. Jernigan[29}
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Figure 3.2

Examples of native structures on lattice.
A: a HP model in 2D rectangular lattice(Chan and Dill 1994).
B: a HP model in 3D cubic lattice(Yue et al. 1995).

C: a perturbed homopolymer model(Shakhnovich and Gutin
1993).

Energy scheme for A and B is (1,0,0), C is (3,3,1)
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Figure 3.3 Percentage of HP sequences that have unique native structures
on 2D lattices as a function of chain length (Chan and Dill 1991}
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Figure 3.4 The importance of “negative design”:
A: lattice model-designed protein and its HP sequences. Pro-
tein is designed by the Monte Carlo method of Harvard
group(Shakhnovich and Gutin 1993).
B: a lower energy configuration found by UCSF group use
CHCC conformational search method (Yue et al. 199}{27].
H residues are represented black beads, P residues white beads.
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Structures with the largest number of N, for 3D 3 x 3 x 3 (top)
cubic and 2d 6 x 6 rectangular lattice. Black beads represent I
residues and white beads represent P residues. energy scheme
is (2.3, 1, 0)[9]
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CHAPTER. 4. Protein Structure Prodiction

At present, methods in protein structure prediction can be classified into 3 categories:
sequence-based approaches, structure-based approaches and approaches starting from first

principles(ab initio).

Sequence Based Approach

Proteins with similar sequences generally have similar native structures. These proteins
often come from the same ancestor. Such evolutionarily-related proteins are said to be ho-
mologous to each other. In order to find a homiogous protein from the data base for a query
protein, it is necessary to align the query protein sequence to template protein sequences from
the database. There are various kinds of sequence alignment methods that can search the whole
sequence database rapidly. These methods, in general, use dynamic programming algorithms
to generate optimum alignments. Dynamic programming is mathematically proven to provide
the global optimum sequence alignment for a given similarity matrix(or substitution matrix,
which is a matrix for substituting an amino acid for a different related amino acid). The most
popular software for sequence-based identification of homologous structures are BLAST and

its variations (e.g. PSI-BLAST).

Dynamic Programing

Suppose that we want to align two sequences which are represented by two sequence vectors
A = aj,as,..,a, and B = by, bs,..by,. We define a function S(a,b) as the best(largest)

score from aligning A and B. We define:
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Hi,j = maﬂ?{ﬂ, S(am, Qptly i — by, by+1, bj)} (41)

where 1 <z <¢,1 <y <yJ.

H; ; is the best score of any alignment ending at a; and b; or 0, whichever is larger. By
doing this, we mean that the alignment score for two similar sequences should be positive.
An alignment score of zero means there is no sequence similarity, and the alignment equal to
random(which is assigned as 0). By starting with H;g = Hp;=0for 1 <i<n,1<j<m we
have

H; ; = maz{0, Hi—1;-1 + s(as, b;), Bi j, Fi 5} (4.2)

where s(a;, b;) is the contribution of aligning residue a; on residue b; which is an element
of the substitution matrix, and E; ; = maz{H,; ;. —w(k)} and F; = maz{H;4 ; —w(k)} are
the maximum scores for having an insertion/deletion at place (i, j). w(k) is the gap penalty,
usually defined as linear with the gap length w(k) = u + vk, where k + 1 is the total length of
continuous gaps. u is the gap initiation penalty, v is the the gap elongation penalty. For the
upper corner Hy g, the best alignment and score H; ; can be generated systematically.

However, sequence-based methods for identifying structural homologs are only reliable when
the query protein has a sequence above 30% identical with the template sequence. When
sequence identity falls below 20%, the results from this method are unstable. This sequence
simnilarity region is called the "twilight zone” (20 — 30%). When sequence similarity is lower

than 15%, results are highly unreliable.

Ab Initio Approach

Approaches starting from first principles are still not mature. Due to the large conforma-
tion space of protein structures and complicated interactions involved in the protein folding
process (in atomic detail), it is very hard for an ab initio method to search for a global op-
timum even using simple interaction schemes (like a simple bulk potential). At present, this
approach generally has to be combined with part of the results from either sequence-based

or structural-based approaches. One of the most sucessful approaches has been developed by
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Baker’s group, called fragment assembly, which performed well in the CASP5 competition.
In the Baker method, a query protein sequence is chopped into continuous segments of nine
residues. Possible configurations for each segment are obtained from aligning the segment to
existing protein structures. Monte Carlo simulations are used to assemble the segments to gen-
erate candidate global conformations. These candidates are then clustered according to their
structural similarity, resulting in a final conformation which has the largest global conforma-
tion cluster (the conformation that has the highest number of similar candidate structures).
In general, the ab initio approach is not as good as the other two approaches (in terms of
both speed and accuracy) when there are existing sequence homologs or structure homologs
in the database for a query sequence. The method developed by Baker’s group(a server called
ROSETTA) starts by using a sequence-based approach to search database for homologous
proteins for a query sequence. If no sequence homologs are found, the ab-initio method will
be used to generate predictions. Despite the inaccuracy of the ab initio approach, it is the
only existing approach with which is possible to generate a "new” fold when both structural
and sequencial similarity are absent. Recently many popular “meta servers” have emerged,
which use clustering methods to generate a “popular” structure which is compatible with the
majority of the results from different methods for a query protein sequence. We believe the
success of these method may be due to some inclusion of entropy effects in the protein folding
process by structural clustering, even though it may not be explicitly considered when the

methods are developed.

Structural Threading

Structural threading is an approach which uses both sequence and structural information of
existing proteins to predict the native structure of a query protein. The query protein’s amino
acid sequence is assumed to take the 3-d structure of a template protein structure. This is the
sequence to structure ”alignment” step. After an alignment is obtained, the conformational
energy is then calculated (the scoring step). By ranking the threading energy of the query

sequence threaded on different template structues, the one with the lowest conformational
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energy is predicted to be the structure of the query protein. The basic assumption of this
method is that the native state of a protein has the lowest free energy compared with all the
other physical conformations the query protein polypetide chain can take. It is also assumed
that structures similar to the native structure of a query protein will have low conformational
energy (i.e. the native state has a wide basin)

This approach is slower for database searches compared with sequence-based approach
because the sequence to structure alignment step is a 1-d to 3-d alignment process rather than
a simple 1-d to 1-d alignment used in sequence to sequence alignment. However, structural
threading does not depend on similarity in sequence, which makes it useful for sequences in or
below the "twilight zone”. The method we developed belongs to this category. I will discuss

our method and some of its applications in the remainder of this thesis.
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CHAPTER 5. Eigenvector Analysis of Protein Structures: A Manuscript
To Be Submitted To Phys. Rev. Lett.

by Haibo Cao, Yungok Ihm, Cai-Zhuang Wang,Drena Dobbs and Kai-Ming Ho

Abstract

We study the sequence-structure relation of protein using pairwise residue-residue hy-
drophobic interaction. A strong correlation between amino acid sequence and the correspond-
ing native structure of the protein is observed through the analysis of the eigen-spectrum of the
contact matrix of the native structure. We show that, in the first approximation, the dominant
eigenvector of the contact matrix provides a better representation of the sequence profile of
structurally similar protein than the amino acids sequence. Contributions from higher rank
eigenvectors (rank > 4) are found to be sequence blind. A method to determine protein do-
main boundary based on maximizing this correlation yields results in good agreement with

biological results.

Eigenvector analysis of protein structures

Globular proteins fold into unique three dimensional structures under natural conditions.
These native structures are primarily determined by the protein’s amino acid sequences [1].
However, to predict the native structure of a protein from its amino acid sequence remains one
of the most challenging problem in biophysics. Nature is extremely selective in choosing the
polypeptide sequence and structure of proteins. Among = 20°% theoretically possible polypep-

tide sequences, only about 107 occurr in nature. These natural proteins further condensed to



50

around 2000 distinct structural families [4]. Very few polypeptides designed from first prin-
¢iples have ever successfully folded under natural conditions. It is still not clear what makes
protein sequences and structures so special and different from ordinary polypeptides. Under-
standing the origin of this specificity can provide valuable information towards the ultimate
solution of the protein folding problem.

Chan and Dill have tried to understand the specificity of protein sequences using a lattice
H-P model [11, 12]. In their model, there are only two type of residues: H(hydrophobic)
and P(polar). The structures of these HP-residue sequences are restricted to be on lattice.
Their studies show that on a two-dimensional lattice, among all possible combinations of two
letter alphabet sequences of length 6-18, only a small fraction have nondegenerate lowest energy
structures. Li, Tang, and Wingreen have used a similar HP lattice model to study the specificity
of protein structures [8, 9]. They showed that a very small fraction of the lattice structures
distinguish themselves from other possible “native structures” in their ability to be native
structures of many different HP sequences. This ability is named “designability” of a given
structure. Structures with high designability generally are more stable thermodynamically and
often process “secondary structures” similar to those of real proteins. They suggest that only
highly “designable” structures can be native structures of proteins in nature.

The native state of a protein is believed, thermodynamically, to be the lowest free energy
state among all physical conformations the protein can take. Thus, the results from the above
HP lattice models are consistent with the funnel-like energy landscape of protein conformation
proposed by Wolynes and co-workers [13] who among many others have tried to explain why

" such a big conformational space and achieve a native fold in a

profein sequence can “searc
very short time(milliseconds to seconds). Lattice model studies suggest that both naturally
selected amino acid sequences and protein native structures are atypical, so that the funnel
like energy landscape of protein folding can be achieved [6]. However, the interplay between
these two “specificity” (or atypical) is still not well understood.

In this paper we study the correlation between real protein sequences and structures under

the assumption that the hydrophobic interactions dominate the protein folding process. By de-
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composing the contact matrix corresponding to a protein native structure into its eigenvectors,
we observed a strong overlap between protein sequence and the first dominant eigenvector. We
believe the above mentioned specificity comes from the fact that nature is restricted by this
rule in choosing the sequence and structure of a protein. As a result, the dominant eigenvector
provides a better representation of the protein structure than the protein sequence which is
generally used in structural threading. Our study also shows that this correlation also applies
to individual protein domains, thus domain boundaries can be predicted using this correlation
if a protein structure is known.

A protein is a complex system where thousands of atoms interact with each other and
with water molecules. For our purpose of studying the sequence-structure correlation, we
restrict ourselves to a coarser residue-level representation for describing interactions. In our
work, the pairwise hydrophobic interaction takes the form of “contact” interaction. When
the centers of two residues are geometrically within a certain cutoff distance, the two residues
are in contact and a contact energy is assigned, according to the residue type. The total
hydrophobic interaction energy for a given protein structure is the summation of all pairwise
contact energies of the conformation. Under this interaction scheme, the three dimensional
structure of a protein can be reduced to a contact matrix H which is a n X n matrix if the
protein has n residues. The element H; ; of H is assigned a value of 1 if the ith residue and jth
residue are in contact, otherwise, it is 0.

There are various ways to weight contact energies for different residue pairs from the 20
naturally occurring amino acids. The simplest is the HP model in which the amino acids are
classified as H type (Hydrophobic) and P type (Polar). Pairwise contact energy is 1 if both the
residues involved are H type, otherwise, it is 0. The statistical potential obtained by Miyazawa
and Jernigan is a 20 x 20 matrix which can be written in the following form after Li, Tang and

Wingreen parameterization[38):

E = ca(q; + a){(g; + a) + constant (5.1)

where ¢; is the q value of residue type i. By replacing the value g; by q; = ¢; + a where a
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is a constant, Eq. (1) can be rewritten as

E; ;= czq;q;- + constant (5.2)

We will refer to the modified ¢' as g value in the rest of this paper. Since the constant in
Eq. (2) is irrelevant to the residue identity and hence has no effect in our study of sequence-
structure relationship, we will neglect it in the rest of this paper. The constant ¢z in Eq. (2)
can be viewed as a unit in calculating energy, thus, it is set to be 1.

Under these interaction scheme(HP or LTW parameterized MJ matrix}, the sequence of
a protein can be represented by a sequence vector S whose elements are either 1 or 0 for HP
model, or ¢ values of the residues if using the LTW parameterized MJ matrix. For a protein

with H as the native contact matrix, the conformational contact energy can be written as
E=(S|H|S) {5.3)

The energy form of Eq. (3) is similar to a standard quantum system with H as its Hamil-
tonian. The difference is in the the vector space.” For a quantum system, elements in vector
S can be any complex number, while for the protein system, the elements in vector S are
limited to the 20 g values (LTW) or (1,0) (HP model). Note that H can be decomposed into
its eigenstates | 13}, i.e.,

H=Y X|Vi)(V] (5.4)
where H | V) = A; | V;). Thus the total cz)nformational contact energy can be expressed as

the summation of the individual contribution of the eigenvectors of H :
E=Y MW (5.5)
i

where W; =| (S | V) |%.

For a quantum system, the ground state is | Vp}, with the W; spectrum : Wy =1, W; =0 if
i # 0. For the protein, however, the vector space | S) is restricted by the 20 naturally occurring
amino acids, Thus the | Vp} is generally unreachable for the protein sequence vector, and W;
might be different from that of the quantum system even the protein folding process is indeed

optimized the hydrophobic interaction.
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Figure 5.1 and Figure 5.2 show the W; spectrum of a protein (1a0b from Protein Data
Bank (PDB)) using HP sequence(Figure 5.1) and LTW ¢ values(Figure 5.2). Clearly, the
dominant contribution to the energy is from the first eigenvector. The contributions from
other eigenvectors can be viewed as result of the restriction on | S) described above, or may
partially be a result of the inaccuracy of the energy scheme used.

The spectrum of W; we get from la0b is not a special case. In order to characterize
the feature of W; spectrum of proteins, we randomly chose 174 proteins from the PDB.
The only requirement for these proteins is they should have good experimental structure
resolution(< 1.54) and should consist of a single chain. W; is calculated for each of the
proteins, and the average of W; over these 174 proteins is plotted in Figure 5.3. For the pur-
pose of comparison , we randomly shuffled the native sequence(HP) of each protein. W of the
shuffled sequences were averaged and plotted with the average W; spectrum obtained from the
native sequences. The difference between the native sequence and the shuffled sequence mainly
comes from the first eigenvector. Because even the simple two letter alphabet HP sequences
- exhibit this character, we believe this reflects the fact that the dominant factor in protein
folding is optimization of hydrophobic interactions. Any interaction scheme which grasp the
hydrophobic interaction as the driving force for protein collapse should be able to reproduce
this feature. The difference between W; of the native and shuffled sequence drops quickly as
the rank of the eiegenvector increases. When 4 > 4 , this W, difference is negligible, which
iraplies that the majority of the eigenvectors are residue-ordering “blind”. This means that in
the process of assessing the sequence-structure fitness for a given amino acid sequence and a
given protein structure, one only needs to exam the effect of the several eigenvectors rather
than those of entire contact matrix, and that the dominate eigenvector | ¥p) is the first order
of approximation.

Structural “threading” is a widely used methods for protein structure recognition and
prediction. A common approach in structural threading is to use a structural “profile” to
represent a template of known protein structure. Generally, the native sequence of the template

protein plays an important role in generating the profile. Due to the strong correlation between
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the sequence and the dominant eigenvector of the contact matrix of the protein structure as
discussed above, we believe that the dominant eigenvector is a better representation than the
native sequence as a profile for structural threading studies. It is well known that homologous
proteins generally have similar structure, but the structural similarity does not necessarily
require similarity in sequence. Due to evolution, some protein’s homologous sequence can
diverge so much that the sequence similarity is undetectable, while they still share similar
three dimensional structures { e.g. TNF family). Also, very different sequences can give rise
to similar structures through convergent evolution. Correlation between the sequence and the
dominant-eigenvector is a consequence of the interaction among residues, and probably, is not
directly effected by evolution. Thus, for a given structure, its dominant may eiegenvector
provide more fundamental structural information than its the sequence, especially when one
want to establish the linkage between proteins with very little sequence similarity.

In order to compare the efficiency of native sequence vs eigenvector as the structural profile,
we have done a threading test using the threading scheme described in another paper. Protein
sequences were chosen from the ASTRAL data base of protein structural domain(the detail of
this database will be discussed in the later part of this thesis). Figure 5.4 show the frequency
at which the optimum threading energy were obtained using different profiles. The dominant
eigenvector has 17% more chance in finding the energy minimum compared with the native
segeunce.

The sequence and eigenvector correlation we get above hold when we use the entire pro-
tein sequence. The strong correlation generally does not exist if we instead use only part of
the sequence of a protein. This is in agreement with experimental observations that partial
sequences of proteins often unfold (or are unstable) under normal conditions. However, there
are abundant examples in which protein fragments can fold independently. These partial se-
quences generally correspond to “domains” of proteins. We believe these individual structural
domains have the feature we described above that distinguishing them from random amino
acid sequence, and hence can fold correctly. To test this assumption, we use the overlap of

a multidomain protein sequence and lst eigenvector as an index to test whether this value
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Protein name domain boundaries(experiment) domain boundaries(predicted)
lctb 101 108

1lcid 106 105

1dru 128 133

1fdr 100 100

lgri 79 74

1hjp 65 ‘ 66

lkaz 189 218

Table 5.1 Comparation of predicted domain boundaries with biological de-
termined domain boundaries

can identify the positions of domain boundaries. Seven two-domain proteins were randomly
selected from PDB. For each of the protein sequence, we collect all continuous {sequence-wise)
segments with length > 30 residues and < 2/3 of the total sequence. The sub-matrix of the
protein contact matrix corresponding to segment is diagonalized, and the overlap between the
subsequence and the dominant eigenvector of the sub-matrix is calculated. The function Ph(i)
is defined as the largest overlap for all segments starting at residue i. Figure 5.6 shows the
Ph(i) value for a single domain protein, Figure 5.5 show the Ph(i) value for a two-domain
protein. The obvious difference between the single domain Ph(i) and the two-domain Ph(i) is
that the two-domain protein present a strong peak at certain positions. This suggested that
there is a segment starting at that position which exhibits a strong sequence and dominant
eigenvector correlation. We believe this implies a sub-domain in the protein which has a do-
main boundary around the special position. Table 5.1 is the list of the domain boundaries
proposed by the eigenvector study (using the starting position of largest segment-eigenvector
overlap) compared with the actual domain boundaries determined biologically(ASTRAL). For
six two domain proteins, the predicted and experimental boundaries are in close agreement.

In summary, we found a strong correlation between protein sequence and the dominate
eigenvector of its structure contact matrix. High ranking eigenvectors are sequence blind.
This correlation hold for protein sub-domains. The dominate eigenvector provides a good
representation of a protein’s three dimensional structure, thus a gapped structural threading
method can be built using this principle. We believe this correlation is a result of the hy-

drophobic interaction dominating a protein’s folding process. In order to fulfill this principle,
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protein sequences and structures in nature are restricted, which result in the specificity in
natural protein sequences and structures. Although it is impossible to enumerate all possible
contact matrice of natural proteins at present, to enumerate the contact matrice of compact
lattice proteins is within our reach if the sequences are relatively short. Since the underlying
interaction in lattice HP model is only hydrophobic interaction, we believe the principle we
suggest for real proteins will remain true for HP model lattice protein. We are testing this
in a designability study using the dominate eigenvector overlap as a measurement of distance
between protein structures on lattice. Highly designable lattice protein structures should have
a low overlap with other structures. We believe this study on lattice is generalizable to real
three dimensional structures because contact matrix does not differentiate between lattice and

real space off-lattice proteins. Such studies are underway.
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Figure 5.1 Overlap between protein (1a0b} sequence (using HP model) and
eigenvectors of the protein’s native structure contact matrix.
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Figure 5.2 Overlap between protein (1a0Ob} sequence {(using LTW param-
eterized MJ matrix) and eigenvectors of the protein’s native
structure contact matrix.
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plotted. Average overlap using shuffled HP sequences is also
plotted for comparison.
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TRAL were threaded on protein structures belong to the same
superfamily to produce these statistics.
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CHAPTER 6. Three-Dimensional Threading Approach To Protein

Structure Recognition: A Paper Been Accepted By Polymer.

by Haibo Cao, Yungok Ihm, Cai-Zhuang Wang, Drena Dobbs and Kai-Ming Ho

abstract

We describe a gapped structural threading method starting from aligning the query pro-
tein sequence to the dominant eigenvector of the structure contact-matrix. A mathematically
straightforward iteration scheme provides a self-consistent optimum global sequence-structure
alignment. The computational efficiency of this method makes it possible to search whole pro-
tein structure databases for structural homology without relying on sequence similarity. The
sensitivity and specificity of this method is discussed, along with a case of blind test prediction.
This method will provide a versatile tool for protein structure prediction and protein domain

recognition complementary to existing tools that rely on sequence homology.

Review

Globular proteins form unique three dimensional structures under natural conditions. With
few exceptions, the native structure of a protein is determined only by its amino acid sequence
[1]. Nevertheless, to predict the unique native structure of a protein given its amino acid
sequence (i.e., protein folding problem) remains an outstanding challenge.

Although naturally occurring proteins can have dramatically different structures, related
groups of proteins often share a global folding topology. A number of databases exploit this
to classify known proteins according to their structural similarities [2, 3, 4] . In the ASTRAL

database [4], for example, more than 27000 known proteins are classified in a hierarchical way.
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The five structural levels assigned by this database are protein subfamilies, families, super-
families, folds, and classes in the order of decreasing similarity among members. When two
proteins belong to the same family, they generally share similar biological functions and ex-
hibit significant sequence similarity which can be detected by sequence comparison tools like
PSIBLAST[5]. The average root mean square deviation (RMSD) between different protein
structures from the same family is usually under 1 A. At the superfamily level, proteins have
much higher RMSD (around & A) and generally low sequence similarity even though they
share a similar global folding topology. When a sequence alignment method is used among
these proteins, the sequence identity generally falls into the “twilight zone” (below 20% amino
acid identity} where the linkages among these remotely homologous structures cannot be es-
tablished. The structural threading method we introduce in this paper aims to identify these
remotely homologous structures from other unrelated known structures.

When a protein is in its natural environment, it is generally believed that the native state
corresponds to the global minimum of the free-energy of the protein molecule. Studies of the
protein folding process suggest a global collapse followed by fine tuning of the structure around
the native global free-energy minimum [6, 7, 8, 9, 10]. From studies of lattice models, Chan
and Dill {11, 12] proposed that proteins correspond to highly atypical polymer sequences with
a well-defined unique free-energy minimum configuration separated from other configurations
by a relatively large energy gap. A funnel-like energy landscape for protein folding was also
proposed by Wolynes and co-workers [13]. Therefore, it is reasonable to assume that, when a
protein folds into a three-dimensional structure similar to its native structure, it should have
lower free energy compared with misfolded structures. Thus, the native structure for a given
protein sequence can be inferred by threading the sequence on known protein structures and
calculating the energy for each threading. If a target protein’s native structure is similar to
a known structure in the database, then the threading energy should be lower than those of
other structures in the database. Thus the global fold of the protein can be recognized.

Hendlich et al [14] introduced, in 1990, a threading method to test sequence-structure com-

patibility. A number of schemes for structural threading have been proposed over the past 13
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years [15, 16, 17, 18, 19, 20, 21, 22, 29, 30, 46, 47]. The basic idea of threading is to assume that
a query protein sequence takes on the three-dimensional conformation of a template structure.
This is a one-dimensional to three-dimensional (1D-3D} alignment since the ordering of the
original sequence is required to remain unchanged in the threading process. The difficulty of
this problem depends on whether “gaps” are allowed in the alignment process or not. Barly
work generally involved gapless threading [17, 20] in which insertions and deletions were not
considered. For gapless threading, it is possible to enumerate all possible alignments, however,
generally this approach cannot provide competitive decoys [23, 24]. While it can pick out the
native fold from a collection of structures, it is not good at identifying closely-related proteins
even when the structural similarity is high. When gaps are introduced in the alignment process,
a simple dynamic programing method [25, 26, 27] cannot be used without significant modifica-
tions due to the long-range (in terms of sequence separation) interactions of the residues in the
threaded structure. Godzik and Skolnick [18] proposed the “frozen approximation,” in which
the residue’s environment is evaluated using the native sequence of the threaded structure in-
stead of the query sequence. Then, a conventional dynamic programming method can be used
for the sequence-structure alignment. This approach can be viewed as a way to make a 1D
structural profile on which the sequence can be aligned. By modifying the structural profile
according to the alignment obtained in the previous step, the threading result can be improved
in an iterative manner [28]. A number of threading schemes have been proposed using various
ways to obtain structural profiles [29, 36, 47, 42]. Apart from this profiling approach, Jones
et al [16] used a double dynamic programing method to find the optimum sequence-structure
alignment. A search algorithm for getting global optimum threading method was also devised
by Lathrop and Smith [30] using a branch-and-bound approach.

When the optimum sequence-structure alignment is achieved, the accuracy of the threading
method depends on the interaction scheme used for calculating the free energy of the system.
Many kinds of interactions are involved in the protein folding process, including hydrophobic
interactions, hydrogen bond interactions, electrostatic interactions and covalent bond interac-

tions. An interaction scheme which involves atomic details is not suitable for the purpose of
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structural threading because amino acids on the template structure are replaced by different
types of amino acids from the sequence of query protein. Also, because threading studies may
examine many {20,000 or more) sequence-structure pairs, an effective residue-residue interac-
tion that captures the dominant interaction of the protein folding process is important for this
purpose.

The driving force for protein folding has been the topic of many discussions. Mirsky and
Pauling proposed in 1936 that hydrogen bonds determine the structure of proteins{31}. In
1950s, Walter Kauzmann proposed that the dominant driving force for protein collapse is the
hydrophobic interaction [32]. This point of view is adopted in lattice-protein-models studies by
Chan and Dill [11, 12, 39, 40]. In the simple H-P model, the interaction energy is a two letter
alphabet {H for hydrophobic residues and P for polar residues) pairwise contact energy. When
two residues are within a specified cutoff distance (in lattice models, contact is defined as when
the two residues are neighbours to each other), a contact energy is assigned according to the
characters of the residue pair {e.g., hydrophobic-hydrophobic (H-H) contacts have energy -1,
polar-polar (P-P) and hydrophobic-polar (H-P) contacts have energy 0). The total energy is
the sum of all pairwise contact energies of the conformation. A more detailed 20 alphabet
residue-residue interaction was proposed by Miyazawa and Jernigan[33, 34]. They applied a
quasi-chemical approximation to the relative abundance of different types of residue-residue
contacts in existing structures in the protein data bank (PDB) to produce a table of residue-
residue contact energies among the 20 amino acids : the MJ matrix [33, 34]. Various other
empirical interaction energy forms have also been proposed and tested by different groups[20].
Li, Tang, and Wingreen showed that the Miyazawa-Jernigan (MJ) matrix can be factorized
and interpret the resulting form of the interaction to show that hydrophobic interaction is the
dominant factor in the MJ interaction matrix [38]. Local interactions to stabilize secondary
structures in the native state of the protein are also important in determining the three-
dimensional structures of proteins. Miyazawa and Jernigan [35] showed that it is possible to
distinguish native structures from other decoy structures using a gapless threading method

when the secondary structure energy is included [35]. Here we propose a two-step structural
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threading method. In the first step, the query sequence is aligned onto the target structure
by optimizing the overlap of the sequence vector and the dominant eigenvector of the target
structure contact matrix. In the second step, the threading energy is calculated based on the

alignment obtained in the first step.

Method

Energy Functions

The interaction energy used in this paper follows the Li, Tang, Wingreen [38] parametriza-
tion of the MJ matrix. In the HP and the MJ models, the interactions are “contact” m-
teractions. In calculations of the free energy, a three-dimensional protein structure can be
represented by a contact map. For a protein containing N residues, the contact map is a
N x N matrix with element (i,j) whose value is 1 if the i** residue and j** residue are in
contact, otherwise, the element is set to 0. We choose 6.54 as the contact cutoff distance in
accordance with the MJ matrix.

Through eigenvector analysis of the MJ matrix, Li, Tang, and Wingreen showed that the

interaction energy can be written in the form

E = ci(g; + ;) + cagiq; + constant (6.1)

Thus, the 210 different residue-residue interactions in the MJ matrix are not entirely in-
dependent but can be described approximately by 20 parameters. This can be written in a

factorized form:

E=cy(g+a)(gj+a)+ K (6.2)

where K and a are constants independent of residue type. The additive constant K has
no effect on the output of the structural threading and will be eliminated hereafter in this
paper. From equation (2) we can redefine modified q values as ¢; + a , then equation (2) can

be written as : B = cpgiq; + K . We will refer to this modified q value as ¢; in the rest of this
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paper. If we represent a protein sequence vector s by the q values of its amino acids g;, for a
given alignment after threading a sequence on a template structure, the conformation energy

can be written as:

T
E= " ¢Ciq (6.3)

£,5=1

where C; ; is the contact matrix of the structure and ¢ is the aligned sequence vector s'.

Alignment

The problem of finding the best alignment of a query sequence s for a structure with contact
matrix C is to find a transformation from s to s’ that optimizes the free-energy function (3).
The transformation has to be performed under the following restrictions:

1: |s'| <|s| i.e. , no added residues can be introduced.

2: the ordering of the sequence must be kept.

Mathematically, if the residue types are not restricted to the 20 naturally occuring amino
acids and the two threading restrictions are ignored, the sequence vector can span the whole
N dimensional real space. This modified problem is readily solved: The optimum s’ is the
dominant eigenvector v of the contact matrix C (see Appendix). Under the threading restric-
tions, the phase space of 8’ consists of discrete points in the N dimensional space. If the native
structure of the query protein is similar to that of the template structure being considered, we
may expect the resulting transformed vector s’ to be located close to vo. We will discuss in
detail the evidence for the correlation between a protein sequence and the dominant eigenvec-
tor of its native structure’s contact matrix in another publication. Here we propose that the
transformation we are seeking can be obtained by maximizing the correlation between s’ and

Vo

(s - vo)®

(s'-s'){vo - vo)

(6.4)

This is an alignment problem, and the dynamic programming method in sequence alignment

can be readily adopted to solve this problem. The process can also be viewed as using vg as
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a profile.

Iteration

The step of aligning with v will produce a transformed vector s’ which is close to vg. The
ultimate solution s™2* also sits close to vg. This makes us believe that the transformation we
get is close to the optimum solution. Further improvements can be achieved by an iteration
scheme described below. The contact matrix energy function (3) can be rewritten as: F =s"-A
, where A = C -8’ . If the vector A is known, the transformation from s to s’ is an alignment
problem. On the other hand, A can be found by using the contact matrix C to transform
the vector s'. This makes it possible to use an iterative method to optimize the s = &'
transformation we need. Starting with v as the initial guess for A, alignment with sequence
vector s gives s}. From s} transformed by C, we can get A; = C -8, and repeat the process
of alignment. This iterative procedure can be repeated until A, and A,y converge. This
iteration process is similar to commonly-used iterative methods for finding the eigenvectors
of a symmetrical matrix [41]. Because of the involvement of the alignment process and the
restrictions on the choice of s', the convergence of the iterative process is not mathematically
guaranteed. In order to get a final converged alignment, the initial guess is important. In
our work, we used for initial guesses not only the eigenvector with the largest eigenvalue but
also repeat the calculation with each of top four eigenvectors of the contact matrix as well as
the vector corresponding to the frozen approximation. This improves the chance of getting a

converged result.

Gap penalty and size effects

For any method involving gapped alignment, the outcome is affected by the penalty for
insertion/deletion. In the work of Lathrop and Smith [30], the structure is divided into two
regions: regions with well-defined secondary structures and loop regions. Insertions and dele-
tions are forbidden in the secondary structure regions and no gap penalties are assessed in the

loops. We follow a similar approach. In our work, the threading is divided into two steps. In
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the first step, the sequence is aligned to the vector A, and then in the second step, the score
is calculated using the resultant alignment. After some tests, we found that the performance
of the scheme is optimized when we include gap penalties only in the alignment step and not
in the energy calculation step. In the alignment step, insertion/deletion in the coil region have
small penalties, while gaps in the secondary structure region are strongly penalized. Using this
gap penalty system, we allow the possibility of making big “jumps” in the threaded structure
without serious disruption of the secondary structure. Using our threading method, a substan-
tial portion of the threaded structure can be removed without severe penalty as long as the
contact score stays high.

We adopt a similar treatment of size effects. Size penalties are included only in the align-
ment step and not in the final score calculation. We obtained an average size for each amino
acid from the PDB. If a residue in the template structure is replaced by a residue in query
sequence whose size differs by 0.5A or more in radius, the alignment contribution for that
alignment pair is reduced if that residue has three or more contacts in the threaded structure.
The alignment score penalty is bigger as the discrepancy in size increases.

The process of including gap and size penalties only in the alignment step has the advantage
of removing threading alignments with unphysical gaps and packing from consideration without

putting too many parameters into the energy calculations.

Secondary structure energy

Hydrogen-bonds in the secondary structure region play an important role in helping to
stabilize the native structure[16]. Miyazawa and Jernigan pointed out in their paper [34]
that inclusion of secondary structure energy helps to distinguish native structures from other
decoy structures. In this work, we use a “global fitness” factor to take this interaction into
account. To calculate this factor, we first obtain a secondary structure prediction for the query
sequence using secondary structure predictors such as PSIPRED, PROF, JPRED, and SAM.
The “global fitness” is then defined as: f = &% where N, is the total number of matches

between the predicted secondary structure and the threaded structure. N_ is the total number
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of mismatches, and Nj is the total number of residues in the threaded structure selected in the
alignment. We define a modified energy of the form : Emedified - o f pthreading where o is a

parameter which can be optimized for accuracy of fold-recognition.

Raw score and relative score

The negative of the modified energy obtained above is taken to be the raw score for the
threading. Thus, a high score denotes a structure with favorable energy. The raw score can
contain systematic biases that lead to inaccuracies in identifying sequence-structure relation-
ships. In comparing different structures, structures with more contacts tend to have higher
scores than structures with fewer contacts. In comparing different sequences, sequences that
have a higher percentage of hydrophobic residues tend to have higher scores. Thus, a high
raw score does not automatically mean a high compatibility between the sequence and the
threaded structure.

Work by Bryant and Altschul [37] and Meller and Elber [42] showed that the accuracy
of threading method can be improved by using the Z-score instead of the raw score for the
selection of candidates. In this approach, after a sequence-structure threading is obtained, the
query sequence is randomly shuffled and threaded again on the same structure. The Z-score
is obtained by (E™® — E%¢) /g, where E™" is the result of the sequence-structure threading,
and E*¢ and o are the average and standard deviation respectively of the results from the
randomly shuffled sequences. In order to eliminate some of the biases inherent in raw scores,
we take an approach similar to the Z-score scheme by computing a relative score which we use
for our selection criterion. The “relative score” is defined by E™® = E™% — E%¢ where E*¢ is
the average score obtained by randomly shuffling the protein sequence and threading again on
the target structure. We find that relative scores give better discrimination among structures.
The use of the relative score may be rationalized from the thermodynamics of protein folding.
When a protein folds, it is not the raw final energy which makes the structure different from its
denatured states, but the energy difference between the native energy and that of the molten-

globule states. For a randomly-shuffled sequence, we would expect the native structure to have
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a free energy similar to the molten-globule configurations. Thus, we can model the average
energy of the molten globule by the average of the threaded energies of the randomly shuffled
sequences on the native structure. E™® can be viewed as the “energy gap” between the native
structure and its molten-globule competitors. E™® is obviously closely related to the Z-score
used in other threading studies. However, operationally, relative scores converge much more
rapidly with the number of shuffled sequences than the Z-score because E™ does not involve

the standard deviation (which converges much more slowly than the average score).

Results and Discussion

We have performed a series of tests to benchmark the above method and scoring scheme. In
the first test, we randomly selected 174 proteins from PDB. These proteins are listed in Table
1. We restricted ourselves to those proteins which have experimental resolution better than
1.54 and a single peptide chain to avoid any possible interchain interactions. For each protein
sequence in this set, we perform threading calculations on all of the 174 template structures
, a process we call “cross threading”. The self-threading score is compared with the best
decoy threading score. We found that the native structures always give better scores (higher
Er¢ values) than any decoys in this selected protein set. The self-threading score exhibits a
well-defined linear relationship as a function of the sequence length as shown in Figure 1. The
reason for the linear correlation is that the number of contacts of a native protein structure
is roughly proportional to its sequence length. By taking this into account, we can compare
threading results of proteins with different lengths.

A more challenging test for the threading method is homolog-recognition. The above test
of self-recognition depends more on the scoring function than alignment process because a
gapless threading method would be able to provide similar results. We choose 9 families from
the ASTRAL database from which we selected 86 proteins listed in Table 2. Proteins belonging
to the same family are homologous and generally have greater than 20% sequence identity, thus
a sequence alignment method {e.g. PSIBLAST) can detect the similarity among them. We

performed a cross threading test using this 86 protein set. For each query sequence, Efom is
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defined as the highest threading score among the homologous structures, Efe" is defined as the
best threading score among all the rest of the decoy structures. We rescale Egmm and Ef‘"c
according to their threading score on native structures E?*. A plot of Efmm JEP% against
Efec/ Ert is shown in Figure 2. For 83 out of 86 cases, Ehom i5 clearly much higher than E®ec,
For the remaining 3 cases, the native structure cannot be distinguished from the best decoy
structure. This might be a result of inaccuracy of the scoring function we used.

The above tests give us confidence that when a given template structure has a native se-
guence which is similar to the query protein sequence, our method can distinguish it from
random decoy structures without using the sequence information. In the next test, we want
to investigate the fold recognition capability of our method for proteins with low sequence
similarity. It is well known that structural similarity does not necessarily require sequence
similarity. Proteins in the ASTRAL database which belong to the same superfamily but dif-
ferent families generally share similar global structure, but have low sequence identity not
detectable by sequence comparison methods. In some cases, even proteins in the same family
have such divergent sequences that the structural homology can not be detected by sequence-
based recognition methods. For example, the TNF-like family includes both tumor necrosis
factor (TNF} ligand domains as well as complement 1q (clq) proteins. The structural rela-
tionship between these two families of proteins was not recognized by sequence-based methods
such as PSIBLAST and hidden-Markov-model methods such as PFAM. Because we designed
our method to use only structural information, we believe that it can distinguish such similar
structures from random decoy structures. To test this, we chose 3 superfamilies (a.1.1, b.1.1,
c.2.1) from ASTRAL database. They belong to 3 different folding classes: all alpha (a), all
beta (b) and mixture of alpha/beta (c, which is mainly beta sheets). One family is chosen
from each of these superfamilies: a.1.1.2, b.1.1.1, and c.2.1.1 respectively. A test set of 34
sequences listed in Table 3 were chosen from the three selected families. Structures belonging
to the same superfamily but different families are selected as structural homologs (see Table 3}.
Each sequence from the chosen sequence set is threaded on all the chosen structures. For each

sequence in the test set, we define "™ as the threading score obtained when the sequence
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is threaded on structures within the same family. In order to assess the noise background,
we used the 86 protein structures in the homolog-recognition test to provide decoy structures.
E9ec is the highest threading score among all decoy structures (i.e. structures not in the same
superfamily as the test sequence). The remote homologous threading score E7®™°% ig the high-
est threading score obtained on structures within the same superfamily but not in the same
family. Histograms of Ehom,  Eremote pdec normalized by the self-threading score are plotted
in Figure 3. Comparing Figure 3 (a) and Figure 3 (c}, we can see that the distribution of
Ehom ig well separated from the E%¢ distribution. This result is very similar to that obtained
in the homolog-recognition test described above. The wide distribution of the E*™ could be
the result of the inaccuracy in either the alignment step or the scoring scheme.

The result of the remote homolog recognition can be seen by comparing Figure 3 (b) with
Figure 3 (c). The center of distribution of ET¢™' is well separated from that of Edec although
the high score tail of E%¢ overlaps with the low score tail of E"®™°%,  Thus, at least half of
the remote structural homologs can be recognized using this structural-threading method.

Because the above tests are done using an existing database of proteins with known struc-
tures, we cannot ignore the fact that the results may be to some extent biased by the existence
of the final structure in the known database. The CASPS5 [44] competition provided us with a
chance to do a “blind test” of our threading method. In CASPS5, sequence of target proteins
whose structures have not yet been published are given to participants for prediction. We
will discuss one of our successful predictions. The target T174 is one of the difficult targets
according to the CASP5 assessment. There are two domains in this protein structure: T174.1
and T174.2. Of all the predictions submitted to CASP5 by various groups, domain T174.1
has the lowest average score and correct alignment percentage, and the T174.2 domain ranks
in the lowest 11% of average scores among the 83 domains predicted in CASPS5.

Structurally, the T174_2 domain belongs to the d.14.1.5 ASTRAL family, but has very low
sequence identity(10%) with its structural homologs. In our blind test prediction of T174,
we prepared a representative structure database for threading by selecting structures from

the ASTRAL database . When a family in ASTRAL database has more than 20 protein
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structures, we randomly choose 20 among them to reduce the redundancy but retain enough
representatives to collect sufficient statistics to overcome the noise from decoy structures.
Around 15,000 structures were included in our template structure dataset.

In the CASP5 blind test, the entire T174 sequence is provided without any knowledge of
the domain boundary. We selected all continuous 120 amino acid segments of T174 sequence
shifted by intervals of 5 residues. The choice of 120 is based on examination of the number of
ASTRAL domains as a function of domain size. There is a peak in the distribution around
120. Thus we have a good chance of including a large portion of a single domain of the T174
sequence in some of our cuts. Every segment is threaded against all of the template structures
to produce a segment-structure alignment score. For each structure, the threading energies
of all segments on that structure are compared. The highest E™%% score is used to represent
the threading score of the structure. A histogram showing the distribution of E™®® scores is
plotted in Figure 4. The histogram takes a shape similar to a normal distribution. The best
score was obtained by threading one of the partial sequences on a domain structure which
belongs to the ASTRAL family d.14.1.5 . The high score end of the histogram is plotted in
the inset of Figure 4. The abundance of the d.14.1.5 family structures (indicated in black) in
the high end of the distribution indicates that the high threading score for d.14.1.5 is not due
to statistical noise. The aligned part of the segment is then extended to the whole sequence
and submitted to the CASP5 as our prediction for the T174 structure. Figure 5 compares
the experimentally determined structure (a) of the T174.2 domain with our prediction (b) .
There are clear global similarities, with close arrangements of o helix and S sheet. The Dali
Z-score for structural similarity between the two structures is 8.9 (The higher the Dali Z-score
the more similar the structures. A Dali Z-scores of 2.0 or higher indicates structure similarity
between the two structures being compared). The alignment is not completely right, about
34% of the residues are aligned in the correct positions.

In order to analyze the sensitivity and specificity of this method, we used the 34 proteins
from the remote homolog recognition test as our query sequences, and the representative

structures used in CASP5 as a structure database. Structures do not belong to the same
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superfamily as a query protein’s native structure, it is treated as a decoy structure for the
query protein. We excluded decoy structures with significent structural similarity to native
structures (i.e. Dali Z-score greater than 2.8) of the query proteins (if the target structure is
not in the same superfamily as the query sequence). This resulted in a set of more than 10,000
structures with much more competitive decoy structures than the dataset used in the remote
homolog recognition test. We rescaled the score for each query sequence threaded on a template
structure according to its threading score on its native structure. For a given cutoff score, A
“true positive” is obtained when a query sequence threaded on a remote homolog structure
(within the same superfamily as the query sequence in ASTRAL database, but in a different
structural family) results in a score higher than the cutoff. Otherwise, it is treated as a false
negative. Similarly, when a query sequence threaded on a decoy (i.e. not similar) structure
results in a score higher than the cutoff, it is treated as a false positive. Otherwise, it is treated
as a true negative. We define sensitivity=% and Speciﬁcity=%, where TP, TN, FP,
FN stand for true positive, true negative, false positive, and false negative respectively[43]. We
plot the sensitivity and specificity vs rescaled score for each of the three superfamilies separately
in Figure 6. According to Figure 6, if a query protein sequence has no sequence-homolog in the
ASTRAL database but a structural-homolog is present, our method has roughly 35% chance

to detect it under optimum conditions.

Conclusion

In this paper, we propose a structural threading method which can be used to perform
whole database or genome-wide searches. The method is designed to focus predominantly on
structural information, making it particularly useful for establishing linkages between struc-
turally similar proteins that have very low sequence similarity. This tool can provide valuable
information complementary to existing sequence-based methods. Also, other groups interested
in testing their energy schemes can use this method to generate competitive decoy sets as long
as the dominant factor of their energy form can be factorized. With some modifications, the

method we propose can also be used in the study of protein-protein interfaces.
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Appendix

Eigenvectors and Eigenvalues of Contact Matrix

Given a n x n symmetrical matrix C, its eigenvectors v; and eigenvalues A; satisfy the

following relation:

Cvi= Ay (6.5)

Where index i goes from 1 to n.
For simplicity, we only consider matrix with nondegenerate eigenvalues, by which we mean
Ai % Aj if i # j . In this case, the eigenvectors are orthogonal to each other. Because a
constant times an eigenvector remains an eigenvector of the same matrix, eigenvectors can be
normalized, therefor :
1 ifi=j
ViV = {6.6)
0 ifis#yg
If C is a real and symetrical matrix (Le. C;; = C;;), any n dimension real vector s can be

decomposed using v; :

8= Zwivi (6.7)
i=1

where w; = s - v; is the overlap between vector vi and s

The matrix C can also be decomposed into the contribution of its eigenvectors:



78

C= Z)\,;Vi X V'ir (6.8)

In structural threé.ding, the score has the form:
E=s-C-s {6.9)

We are interested in which unit vector s (s-s =1) will maximize E. we can rearrange vector
indices i so that the eigenvalues are in decreasing order: A < As < ... < A,. Because vector s

is unitary, the overlaps satisfy the following equation:

l=s-5= Z Wildivi - Vj (6.10)
i

using equation (6), we get
dwi=1 (6.11)
i

Using equations (7) and (8), we can decompose E (equation 9) into contributions of different

eigenvectors:

E=Y Mwf (6.12)

Because eigenvalues are in decreasing order: Ay < Ay < ... < An, we have F = Z)\iw;—? <
5> A1w? = A1. We used the unitary condition in the last step. Note that the equal sign can
be achieved only when w; satisfies the following conditions: w; = 1, and w; = 0if ¢ # 1. By

putting this w; into equation (7), we get:

=l-vi+0-vi+..4+0-vp,=v1 (6.13)

which means that the dominant eigenvector maximizes the score.
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1531  la0b  la0i  1laall 1laa2 1laa3 laac laba 1ad2 1lads
laf?7  lag?2 lagd lah7 lahk 1laho 1ajj lakl lako lakz
lal3  laly lamp lanu lanv laol laop larv laua lawd
lawj laxn 1bdo 1beo 1bgp 1bkf 1bor 1bpl 1btn 1bvl
lecem 1lefb Ichd lcid lesh  letj leyx  l1ldad 1ddf 1dhs
1div  1ldru  leca lehs lerv  leur 1fbr 1fdr 1fkx 1lfna
I1gai lgin lgoh 1lgpc 1lgrj 1gvp 1lhed 1hfc  1hjp  lhoe
lhtp 1hxn lidk 1lido ligd 1lirk  1irl liso litg lixh
ljdw  1jli lkaz  1lkid 1lknb 1kte 1lkuh 1kvu 1llba 1lbu
1lcl 11it 11ki 1M1 1lml  1lxa lmml 1mrj Imrp Imsk
lmxa 1mzm Inif 1nls  1nom 1nox Inpk lore lois  lopd
lopr  1pax lpbn 1lpex 1phc 1php 1Iipkn 1ple 1plr 1pmi
lpoc  1pot lppn 1ppt 1lprr 1pta 1ptq lquf 1ra®  lref
Ires  1rgs lrie Irlw  1lrmd Iirmg 1rnl lrss  lryt  lsig
1sly  lsra  1lsvb  ltca 1tfe  1tfr  1tib  1tif  1tml 1tsg
ltul  lubi  luby luch 1lutg luxy 1lvec 1Ivhh Ivif 1lvin
1vls lvsd lvve 1wer 1lwhi 1lxub 1lysc  Ilytw Iyub 1zid
lzin lzxq 2ilb  5p2l

Table 6.1 174 protein sequences used in self-recognition test

[48] Luz J.G., Hassig C.A., Pickle C. , Godzik A., Meyer B.J., Wilson I.A. Genes Dev. 17
977 (2003)
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Domain Family Protein sequence chosen
a.1.1.2 labm lash 1babB  1ich4A  1d8uA
leca leco lew6A 1flp 1hlb
lirdA 1it2A lithA 1kifrA 1vhbA
2gdm 2hbg 21hb
a.3.1.1 1cBoA 1lcie lerg lctj IflcA
1hh7A lirv lyeb
b.1.1.1 lahl 1akjD leajA 1fo0A lgya
1i85A lneu lgfoA
b.3.1.1 1ad7-2 lacO 1b90A1  ledg-2 legyA
leyg-2  1d7fA2 1qghoA2 ©5bcaBl  8cgtA2
c.2.1.1 1a71A2 lagnA2 1cdoB2 ledeA2 1le3jA2
lgpjA2 1lkevA2 1qorA2 1ykfC2
c.d.1.1 1cjcAl 1djnA2 1h7wA3 1h7xA3
d.1.1.1 lagzA  lay7A 1bu4 1byA 1fus
1rds 1rtu lyvs
d.3.1.1 laec laim latk 1bp4 1gjl
lepjA  lcqdD lev8 1dkiB 1fh0A
1gecE lmeg lpbh lqdgA lyal
e.l.1.1 la7cA latu limvA 1jtiA lgmnA
1sek

Table 6.2 86 proteins from 9 families in ASTRAL database used in ho-
molog-recognition test
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Family Sequence in the family Superfamily | Structures in Superfamily
a.1.1.2 1lp 1kfrA 2hbg a.l.l 1phnA lepcA li7yA
labm leco 2gdm 1ghOA lallA 1b33A
1d8uA  lirdA  1babB 1liaA 1b8dA  1qgwC
1ch4A  1it2A 2lhb 1kr7A

lash lithA 1hlb

lvhbA  lewBA

b.1.1.1 | 1lahl lahl lakjD b.1.1 1frtAl lbmg  la6zBl1
leajA 1fo0A lgya 11d9A1  1b3jAl1  1cl6Bl
1i85A lneu lgfoA lexuAl lexuBl  ligtA2
1ij9A1 2ncm 1tlk
1tnn lwiu 1tiu
1gl4B 1qtyY lwwaX
1hefX  lfegAl  1f2gAl
lefxD1  1gOxAl  1f45Al1
1jbjA2  1eh9A1 levuAl
1ccOE lgdf 1ksgB
layrAl 1a02N1  1bftB
1h6uAl  lehxA  1im3P
1jjuA3
c.2.1.1 | 1a71A2 lagnA2 1lcdoB2 c.2.1 lkvq 1fjhA 1bdb
1e3eA2 1gpjA2 lkevA2 laduA lgcoA 1h5gC
lqorA2 1ykfC2 1i01A laelA 1dohA
lhdoA  1hudA  IgpdGl
1brmAl 1dapAl larzAl
2nacAl  1gp8Al1 1gdhAl
1psdAl 1sayAl  1f8gAl
1b3rAl 1mldAl 1hyhB1
lhyeAl 1qmgA2 1f0yA2
1dljA2  levyA2 1ks9A2
ljaxA  1bgvAl 1lehAl
1bw9Al 1adiBl  lee9Al
1doBA1l  1lidlA legiAl

Table 6.3 Protein structures used in structural-homolog-recognition test
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Figure 6.1 Relationship between relative score Em¢ and protein length.
174 randomly chosen proteins were self-threaded (see text).
The relative score for each protein is plotted against the num-
ber of residues of that protein. A linear correlation between
self-threading score and number of residues of the protein can
be observed.
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Figure 6.2 Cross threading test of homolog recognition. 86 protein se-
quences are chosen from 9 different families in the ASTRAL
database. Each sequence is threaded on the structure of the
other 85 proteins. The highest threading score obtained when
a sequence is thread on protein structures in its own family is
used to represent the homologous threading score E"™. The
decoy threading score E9e¢, is the highest threading score ob-
tained when the sequence is threaded on decoy structures (not
in the same family). Homologous threading score E**™ is plot-
ted against decoy threading score F%¢ using the self-threading
score E™ as unit for each sequence. Points above the diagonal
represent cases in which structural homologos are distinguished
from decoys.



87

10
Fig. 3 (3
5
o H
o] 0.2 0.4 0.6 0.8 1
Threading Score/Native Score
10
Fig. 3 (b)
S
. ] ]
o 0.2 0.4 0.6 0.8 1
Threading Score/Native Score
10
_ Fig. 3 (c)
5
O —lj
o] 0.2 c.4 0.6 0.8 1

Threading Score/Native Score

Figure 6.3 Cross threading test of remote homolog recognition. 34 protein
sequences belonging to 3 different families are chosen from AS-
TRAL database. Histograms of BPo™ (a) ETemo (b) and E9°¢
(c) normalized by self-threading score are shown. (a) E"o™:
Each of the 34 protein sequences is threaded on protein struc-
tures in its own family. The highest threading score of each
sequence is plotted in this histogram. (b) ET*™°%: Each of
the 34 protein sequences is threaded on protein structures be-
longing to the same superfamily but different family (i.e. re-
mote homologs). (c) E%¢: Each of the 34 protein sequences are
threaded on structures randomly chosen from other superfami-
lies {decoys). In all histograms, the highest threading score for
each sequence is plotted.
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Figure 6.4 Distribution of E™® scores for CASP5 targer T174.2. Segments
of T174 sequence with length 120 (continuous) were threaded
on representative ASTRAL database structures (see text). For
each structures, the highest segment-structure alignment E7¢
score is used to represent the threading score of that structure.
Histogram of the threading energies of all the representative
database structures is plotted. The high relative score tail of
this histogram is enlarged in the inset. The dark bins in the
inset belong to the structures from ASTRAL family d.14.1.5.
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(b)

Fig. 5

Figure 6.5 Comparison of experimental and predicted structure of CASP5
target T174_2 domain. {a) T174_2 domain structure experimen-
tally determined by J. G. Luz et al [48]. (b} T174_2 domain
structure submitted to CASPS by our group.
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Figure 6.6 Sensitivity and specificity of threading method. performance
of threading method was evaluated using 34 protein sequences
belonging to 3 different supperfamilies thread on a representa-
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and specificity as a function of E™ for superfamily a.1.1 (b)
Sensitivity and specificity as a function of E™¢ for superfam-
ily b.1.1 {c) Sensitivity and specificity as a function of E™ for
superfamily ¢.2.1



91

CHAPTER 7. Conclusion

1. From the discussion above, we believed that the hydrophobic interaction dominate the
protein folding process. With the help of local secondary structure information, the native
structures of proteins show significant energy gaps compared with decoy conformations. Given
the sequence information of a protein, it is possible to use this energy scheme to distinguish
homologous structures of the protein from decoy structures.

2. The dominant eigenvector of a protein structure contact matrix shows strong correlation
with the protein seqeunce vector. This correlation limits the choice of protein sequences in
nature. The strength of this correlation can be used as an index for the fitness of a sequence to
a structure. A strong segeunce-eigenvector correlation was also found in the protein domains.
Thus, it is possible to automatically partition a given multi-domain protein structure into
separated domains useing this correlation.

3. High rank eigenvectors of the contact matrix are sequence-order blind. Their contri-
bution should be removed from the calculation of fitness of a seqeunce to a structure. This
explains why the commonly used Z-score can improve the prediction in many threading meth-
ods. We propose to use the relative energy as a replacement of the Z-score becasue it is more
meaningful physically and faster in calculation.

4, A threading algorithm has been developed useing the correlation between seqeunce
and dominant eigenvector. The results from this algorithms can be improved by an iterative
method which is mathmetically straightforward. Our method can distinguish protein structure
homologs from decoy structures without the requirement of high sequence similarity. This new
method performed reasonably well in the CASPS5 blind test in the fold-recognition and new-fold

categories. Our method can be used cooperatively with most of exsiting approaches. When
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working along, this method can provide information to biologist about the global configuration
of a query protein even when there are no sequence similarity between the query protein
and existing protein structures in the database. It can be combined with existing ab intio
approaches as a good screening tool before clustering. It can also be used as input to meta

servers to combine with results from other approaches.
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CHAPTER 8. Appendix: A CASP5 Automatic Assessment By Michael
Levitt

Abstract

In this appendix, I directly copied a CASP5 Automatic Assessment done by Michael Levitt.
Because our method was designed for recognizing proteins withou;c high sequence similarity
to existing protein sequences, only the Fold recognition and New fold part are in listed. Our
group name in CASP5 is Ho-Kai-Ming and group id number G437.

An Automatic Assessment of all CASPS categories follows. More complete data including

the perl script and data that produced these tables is available at http://csb.stanford.edu/levitt/

Automatic Assessment of CASP5 (by Michael Levitt 18 January 2003)

(1) All the assessment is based on the official GDT_TS scores calculated and released at
the Asilomar meeting.
{2) The targets in each of the three categories are those selected by the three human assessors.
(3) Ranks are based on a total Z-Score. This total is the sum of Z-scores above 1.0 for all
models of a particular group. Groups ID’s are from the official score file. The names were
added manually and those servers that were in CAFASP are indicated in bold.
(4) For Comparative Modeling and Fold Recognition the first model is the only one used. For
New Folds, all targets are assessed. When more than a single target is assessed, the weights
of the models of a particular group and particular target are weighted to have a total weight

of 1.0 (i.e. the same as that when just one target is assessed).
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(5) The Z-Score of a particular model for a particular target is calculated as: Z-Score = (
GDT_TS - mean ) / SD.

(6) The mean and SD of the model are calculated without assuming a score distribution.
The mean value is the value of GDT_TS with 52.5% of the data having a lower value. For a
normal distribution, this is equivalent to eliminating the data worse than 2 standard deviations
(in lowest 2.5%) and then taking the mean of the remaining data.

The SD value is calculated as the GDT_TS value that has 15.105% of the scores above it. For

a normal distribution, this would just be the standard deviation.

Some General Observations

Comparative Modeling

The Polish group (Leszek Rychlewski) dominates this section with human entries in rank
1 (Bujnicki-Janus), 2 (Ginalski) and 3 (GeneSilico) and their automatic server in rank 4
(BIOINFO.PL). Honig in rank 4 is the best non-server related entry in the top nine ranks. The
best real server (non-meta) is ORNL-PROSPECT (rank 6); no other non-meta server makes

the top-40 list.

Fold Recognition

The Polish group also dominates this section with human entries in rank 1 (Ginalski) and
their automatic server BIOINFO.PL in rank 4. The Skolnick and Baker entries are at ranks 2
and 3 and the Baker server is at rank 5 (BAKER-ROBETTA). Shortle did well at rank 5 and
Brooks at rank 7.

The best real server (non-meta) is ARBY-SCAI in rank 16.

New Folds
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This is the only CASPS5 category not dominated by the BIOINFO.PL server and associated
groups.
Surprise entries on the list are I-sites/Bystrof (rank 3) and Chimera (rank 8).
The meta-servers, BAKER-ROBETTA and PMODELS3 are tied in ranks 10 and 11.
The best non-meta server is SAMUDRALA-NF (which is essentially the same as PROTINFO-
AB).

Ranking

Fold Recognition (targets manually assessed by Nick Grishin)
targets: 134 138 156 157 174 193_1 135 147 148 162_1 162_2 187_2 191_1
Use the first model for all the targets.
Total Z-Scores Above 1.0 for CASP5 All Targets Listed Above: Table 8.1

New Folds (targets manually assessed by Rob Russell)
Targets: 129 1492 161 162_3 181 146_1 146.2 1463 1722 173 186_3 187_1 170
Use all the models weighted to have a total weight of 1.0
Total Z-Scores Above 1.0 for CASP5 All Targets Listed Above: Table 8.2

User Contributed Links:
MichaelLevitt: url : http://csb.stanford.edu/leviit/
MichaelLevitt: url : http://csb.stanford.edu/levitt/CASP5_AutoAssessor/
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FR Rank Group Z-Score Ngood Npred NgNW NpNW Group-name

FR 1 G453 24.26 9.00 1200 9 12 Ginalski

FR 2 G010 21.64 7.00 12.00 7 12 Skolnick-Kolinski
FR 3 G002 19.55 8.00 1250 9 14 Baker

FR 4 G006 16.88 6.00 10.00 6 10 BIOINFO.PL

FR 5 G349 15.25 7.00 7.00 7 7 Shortle

FR 6 G029 14.56 6.50 1150 7 13 BAKER-ROBETTA
FR 7 G373 13.49 4.00 11.00 4 11 Brooks

FR 8 G437 11.34 3.00 6.00 3 6 Ho-Kai-Ming

FR 9 G068 10.45 3.00 5.50 3 6 Jones-NewFold

FR 10 G001 9.61 5.00 8.00 5 8 Sam-T02-human
FR 11 G067 9.19 4.00 9.00 4 9 Jones

FR 12 G427 9.04 5.00 10,00 5 10 Fischer

FR 13 G045 9.00 4.00 9.00 4 9 PMODEL3

FR 14 G028 8.43 5.00 6.00 6 7 Celltech

FR 15 G224 8.09 5.00 10.00 5 10 3D-SHOTGUN-3DS5
FR 16 G183 7.86 4.50 7.50 5 8 ARBY-SCAI

FR 17 G223 7.29 4.00 10.00 4 10 3D-SHOTGUN-3DS3
FR 18 G096 7.29 3.00 1050 3 11 Bates-Paul

FR 19 G110 7.11 3.00 8.00 3 9 Honig

FR 20 G020 6.79 5.00 7.00 5 7 Bujnicki-Janusz

FR 21 G046 6.73 4.00 9.00 4 9 PCOMB

FR 22 G222 6.72 4.00 10.00 4 10 3D-SHOTGUN-INBGU
FR 23 G214 6.50 3.00 7.00 3 7 Advanced-Onizuka
FR 24 GQ12 6.33 5.00 11.00 5 11 ORNL-PROSPECT
FR 25 G517 6.25 4.00 11.00 4 11 GeneSilico

FR 26 G368 5.86 3.00 7.00 3 7 Jose

FR 27 G464 5.60 2.00 6.00 2 6 Atome

FR 28 G476 5.50 3.00 7.00 3 7 123d-server

FR 29 G423 5.28 2.00 8.00 2 8 Taylor

FR 30 G450 4.82 2.50 8.00 3 10 Tome

FR 31 G078 4.47 2.00 7.00 2 7 Rost

FR 32 G041 4.39 2.00 9.00 2 9 Chbre

FR 33 G537 4.34 1.00 5.00 1 5 Nec-asogawa

FR 34 G435 4.30 3.00 7.00 3 7 Fujita

FR 35 G417 3.72 3.00 6.00 3 6 Chsu

FR 36 G288 3.68 3.00 9.00 3 9 Lomize- Andrei

FR 37 G242 3.59 3.00 8.00 3 8 Genesilico.pl-servers-onl
FR 38 G265 3.54 2.00 9.00 2 9 Sasson-Iris

FR 39 G447 3.54 2.00 7.00 2 7 Cam-Biochem

FR 40 G039 3.54 1.00 6.00 1 6 PCONS3

Table 8.1 NgNW is the number of good predictions without weighting for

multiple models.

NpNW is the number of total predictions without weighting for

multiple models.

All-uppercase names are of CAFASP registered servers.
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NF Rank Group Z-Score Ngood Npred NgNW NpNW Group-name

NF 1G002 25.72 9.33 12.50 47 63 Baker

NF 2 G349 17.57 8.25 10.00 14 17 Shortle

NF 3G132 13.46 5.00 10.00 5 10 I-sites/Bystroff
NF 4 G010 11.78 5.69 11.51 29 59 Skolnick-Kolinski
NF 5 G001 11.31 5.53 11.33 20 38 Sam-T02-human
NF 6 G016 10.50 6.70 9.30 26 36 Levitt

NF 7 G068 10.39 5.40 7.00 27 35 Jones-NewFold
NF 8Gl153 9.07 4.00 6.00 4 8 Chimera

NF  9G450 7.64 4.03 9.60 13 29 Tome

NF 10 G029 7.59 4.50 11.80 28 58 BAKER-ROBETTA
NE 11 G045 7.58 4.75 1015 15 41 PMODEL3

NF 12 G051 7.29 3.80 9.27 19 49 SAMUDRALA-NF
NF 13 G517 7.08 2.75 8.50 6 14 GeneSilico

NF 14 G140 7.04 3.60 8.30 18 44 PROTINFO-AB
NF 15 G040 6.94 4.93 11.67 22 49 PMODEL

NF 16 G453 6.81 3.50 10.50 4 11 Ginalski

NF 17 G373 6.57 3.95 11.30 16 46 Brooks

NF 18 G020 6.40 3.50 5.00 4 6 Bujnicki-Janusz
NF 19 G112 6.05 4.77 9.67 13 30 Friesner

NF 20 G437 5.94 3.92 9.17 9 18 Ho-Kai-Ming

NF 21 G475 5.84 3.00 4.00 3 4 Bionomix

NF 22 G170 5.74 4.00 9.00 4 9 Chimerax

NF 23 G006 5.39 3.00 11.00 3 12 BIOCINFO.PL
NF 24 G531 5.17 2.80 5.60 14 24 Kias

NF 25 G067 5.02 3.00 7.50 3 8 Jones

NF 26 G099 4.83 2.00 3.67 6 10 Camacho-Carlos
NF 27 G224 4.45 3.00 8.00 3 8 3D-SHOTGUN-3DS5
NF 28 G314 4.31 2.40 4.00 12 20 Scheraga-Harold
NF 29 G427 4.18 2.75 8.00 4 15 Fischer

NF 30 G105 4.10 3.00 9.00 3 9 Sternberg

NF 31 G084 3.88 2.83 11.50 5 18 Sbe

NF 32 G429 3.68 2.20 3.50 11 19 Keasar

NF 33 G096 3.50 3.00 9.00 3 9 Bates-Paul

NF 34 G423 3.37 2.00 4.67 2 6 Taylor

NF 35 G214 3.34 2.50 8.50 5 15 Advanced-Onizuka
NF 36 G288 3.31 2.00 4.00 2 4 Lomize-Andrei
NF 37 G516 3.22 2.50 4.50 4 6 Burnham

NF 38 G464 3.18 2.20 8.03 9 36 Atome

NEF 39 G265 3.10 2.00 8.00 2 8 Sasson-Iris

NF 40 G039 3.07 2.28 8.07 7 35 PCONS3

Table 8.2 NgNW is the number of good predictions without weighting for

multiple models.

NpNW is the number of total predictions without weighting for

multiple models.

All-uppercase names are of CAFASP registered servers.
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