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Fully turbulent inflow past a “shaliow cavity is investigated for the configuration of an
axisymmetric cavity mounted in a pipe. Emphasis is on conditions giving rise to coherent
oscillations, which can lead to locked-on states of flow tones in the pipe-cavity system.
Unsteady surface pressure measurements are interpreted using three-dimensional representations -
of amplitude-frequency-inflow velocity, these representations are constructed for a range of
cavity depth. Assessment of these data involves a variety of approaches. Evaluation of pressure
gradients on plan views of the three-dimensional representations allows extraction of the
frequencies of the instability (Strouhal) modes of the cavity oscillation. These frequency
components are correlated with traditional models originally formulated for cavities in a free-
stream. In addition, they are normalized using two length scales: inflow boundary-layer thickness
and pipe diameter. These scales are consistent with those employed for the hydrodynamic
instability of the separated shear layer, and are linked to the large-scale mode of the shear layer
oscillation, which occurs at relatively long cavity length. In fact, a simple scaling based on pipe
diameter can correlate the frequencies of the dominant peaks over a range of cavity depth.

The foregoing considerations provide evidence that pronounced flow tones can be generated
from a fully-turbulent inflow at very low Mach number, including the limiting case of fully-
developed turbulent fiow in a pipe. These tones can arise even for the extreme case of a cavity
having a length over an order of magnitude longer than its depth. Suppression of tones is
generally achieved if the cavity is sufficiently shallow.

1. INTRODUCTION
A conceptual framework for the generation of flow tones requires, first of all, consideration of

strictly hydrodynamic oscillations in an acoustic-free system, then the coupling of such
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oscillations with the acoustic mode(s) of a resonator. These concepts, as well as related issues

and objectives, are described below.

1.1 CAVITY OSCILLATIONS IN AN ACOUSTIC-FREE SYSTEM

The origin, or stimulus, of locked-on flow tones is the inherent, organized unsteadiness of the
velocity and vorticity fields along the cavity. Figure la shows the essential features of self-
. sustaining cavity oscillations: (a) vorticity concentration(s) incident upon the trailing corner of
the cavity; (b) upstream influence of the vorticity distortion at the trailing corner to the sensitive
region of the shear layer formed from the leading comer of the cavity; (c} conversion of the
upstream disturbance arriving at the leading-edge to a fluctuation in the separating shear layer;,
and (d) amplification of this fluctuation in the shear layer as it develops in the streamwise
direction. To be sure, for the case of fully turbulent inflow, organized unsteadiness of the shear
layer along the cavity may not be immediately evident; nevertheless, the shear layer may exhibit
a predisposition for broadband undulations. The basic elements associated with self-sustained
oscillations described in Figure 1a were defined in the early investigation of Powell (1961) for
the simpler case of a planar jet impinging upon a leading-edge. Since then, Rockwell and
Naudascher (1978, 1979), Rockweil (1983), Blake (1986), Howe (1997), and Rockwell (1998)
have described these elements for a variety of configurations of impinging shear layers,

including the cavity configuration.

1.2 CAVITY OSCILLATIONS IN AN ACOUSTIC-RESONANT SYSTEM

Flow past a cavity in presence of an acoustic resonator, such as a long pipe, can exhibit coupling
with one or more resonant modes of the pipe. This type of lock-on has conceptual similarities to
that occurring in a wide variety of other flow-acoustic configurations. Rockwell and Naudascher
(1978, 1979), Rockwell (1983, 1998) and Blake (1986) summarize extensive investigations of
lock-on flow past cavity configurations, including not only quasi-two-dimensional geometries,
‘but also circular, triangular, and whistle-shaped cavities. Representative systems that exhibit

lock-on behavior are described below.

Jet excitation of a long organ pipe. Large amplitude oscillations of the jet at the mouth of an
organ pipe occur during resonant coupling with a pipe mode(s). Cremer and Ising (1967)
visualize the jet oscillations and analyze the jet-organ pipe as a controlled system. Techniques
for determining the amplitude and phase of the controller are also addressed. This same class of

resonant coupling is reviewed by Fietcher (1979), who describes further aspects of the jet-organ



pipe configuration from a systems perspective. Moreover, further aspects of nonlinear

interactions in organ flue pipes are analyzed in works summarized by Fletcher (1979).

Jet-sequential orifice plates. Resonant coupling of the jet instability through a series of orifice
plates, i.e., baffles, simulates the coupling that occurs in segmented solid rocket motors. In this
case, the acoustic wavelength is the same order, or less than, the baffle spacing. In other words,
the resonator is the cavity. Flatau and Van Moorham (1990) emphasize the importance of
distinguishing between the resonance of inlet and nozzle cavities, relative to resonance of the
total test section. Further insight into this type of lock-on configuration is provided by Hourigan,
Welsh, Thompson and Stokes (1990). They employ a discrete vortex simulation, in conjunction
with the theoretical concept of Howe (1975, 1980), to assess the generation of instantaneous
acoustic power. A recent investigation of locked-on flow tone generation in a baffle system by
Stoubos, Benocci, Palli, Stoubos, and Olivari (1999) emphasizes the empirically-determined
amplitude and frequency response characteristics of the tone as a function of flow velocity
through the baffle system. All of the foregoing investigations are, in certain respects, related to
early experiments on the fluid mechanics of whistling undertaken by Wilson, Beavers, DeCoster,
Holger, and Regenfuss (1971). In their work, a set of two sequential orifice plates, each having
rounded edges, gives rise to well-defined whistles or tones, and the nature of the jet instability

related to these types of flow tones is similar to those of the foregoing studies.

Wake from a flat plate in a test section. Vortex shedding from the blunt trailing-edge of a flat
plate in the test section of a wind tunnel gives rise to highly coherent resonant coupling with the
acoustic mode(s) of the plate-test section system. These modes are often referred to as Parker
modes, based on investigations of Parker (1966), which are summarized by Cumpsty and
Whitehead (1971). The latter provide a theory that allows the amplitude of the forced acoustic
mode to be predicted from the pressure field below resonance and the measured damping factor
of the acoustic mode. Stoneman, Hourigan, Stokes, and Welsh (1988) have recently undertaken
an additional, in-depth investigation of a similar lock-on phenomena involving two plates in
tandem in a duct.

Cavity shear layer - cavity resonator. For the case of an orifice in a wall bounded by a closed
cavity, DeMetz and Farabee (1977) determined the response characteristics of the coupled shear
layer-cavity resonance as a function of the character of the inflow boundary layer, i.e., whether it

is laminar or turbulent. Elder (1978) provides a systems model in conjunction with
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measurements. Elder, Farabee, and DeMetz (1982) give detailed spectra and mode
characterization of flow tone generation due to both laminar and turbulent boundary layers
approaching the cavity. Moreover, a model is formulated for the self-excited oscillations.
Nelson, Halliwell, and Doak (1981, 1983) have undertaken detailed measurements of the time-
averaged unsteady shear layer in relation to the overall response characteristics of the coupled
system. In their more recent study, momentum and energy balances are employed to characterize

the physics of these oscillations.

Cavity shear layer - side branch duct/pipe. Early characterization of the frequency and
amplitude characteristics in a jet-pipe (side branch) resonator was undertaken by Pollack (1980).
Coupled resonant oscillations that occur in a pipe branch system have been addressed both
theoretically and experimentally by Bruggeman, Hirschberg, van Dongen, Wijnands, and Gorter
(1989, 1991) and Kriesels, Peters, Hirschberg, Wijnands, Iafréti, Riccaradi, Piva and
Bruggemann (1995). In essence, this configuration represents the flow past a deep cavity. Both
experiments and theory are employed to explain the acoustic and hydrodynamic conditions for
resonance. This analysis leads to a concept that provides the ratio of acoustic to steady flow
amplitudes. Ziada and Buehimann (1992) and Ziada and Shine (1999) characterize this class of

coupling for various side branch configurations.

Cavity shear layer - long pipeline. The radiated sound due to lock-on of flow past a cavity
inserted in a long pipeline has been experimentally characterized in a series of investigations
extending from Davies (1981) to Davies (1996a,b). Sound propagation within, and radiation
from, various configurations is summarized therein. The primary emphasis of these
investigations has been identification of the locked-on resonant frequencies. Virtually no
attention was given to the underlying physics. Rockwell and Schachenmann (1982, 1983)
provided the first measurements of the physical behavior of the unsteady shear layer along the
mouth of a circular cavity at the end of a long pipe, in conjunction with the locked-on and non-
locked-on states. Concepts of linearized, inviscid stability theory were employed as a guide to
determining the phase shifts and amplitude spikes across the shear layer. In addition, they
characterized the streamwise phase difference, which is essential to the locked-on condition.
Moreover, they also showed that during lock-on, the magnitude of the fluctuating velocity due to
acoustic resonance can be of the same order as that associated with the hydrodynamic (vorticity)

fluctuations. This coexistence of acoustic and instability waves can give rise to false standing



wave patterns along the core of the jet in an acoustically-resonant system, as emphasized by
Rockwell and Schachenmann (1980). Such false, short wavelength patterns are not limited to
locked-on, self-excited cavity oscillations. They also occur in acoustically-forced jets
investigated by the Berlin group, originating with Pfizenmaier (1973).

Further insight into the lock-on phenomena that occur in the cavity-pipeline system is
provided by Rockwell and Karadogan (1982). Using zero-crossing statistics, in conjunction with
recursive digital filtering, they determined the self- and cross-probability density of velocity and
pressure. The degree of phase -ﬂuctuation of organized oscillations of turbulent jet flow through
the cavity was characterized in terms of a mean phase deviation from the locked-on condition.
In this manner, it is possible to characterize phase fluctuations as the phase-locked condition is
approached.

Finally, attenuation of pipeline-cavity oscillations has been undertaken by Rockwell and
Karadogan (1983). A variety of attenuation configurations were considered. Among them, small-

scale vortex generators were shown to be very effective in attenuating the lock-on oscillations,

1.3 CAVITY OSCILLATIONS IN AN ACOUSTIC-RESONANT PIPE SYSTEM: UNRESOLVED
ISSUES AND OBJECTIVES

Very little is known of self-excited oscillations of a fully turbulent inflow past a cavity, which is
bounded on either side by a pipe. Coherent oscillations are expected to occur when an acoustic
resonant mode of the pipe-cavity system is compatible with an inherent instability of the

turbulent shear layer past the cavity. The major unresolved issues are:

(a) The possibility of locked-on flow tones arising from a fully turbulent inflow and, in the
limiting case, of a fully developed turbulent flow in a pipe, has not been clarified. The onset
of such flow tones would require growth of an inviscid instability on the turbulent

background of the separated shear layer past the cavity.

(b) Flow tones in relatively shallow cavities at very low values of Mach number have not been
addressed. More specifically, when the acoustic wavelength is much longer than the length
of the cavity, then acoustic resonance cannot occur within the cavity. Most investigations of
flow tones at low Mach number have involved sufficiently deep cavities, such that the large-
scale instability of the separated shear layer develops in a relatively unhindered fashion. As
the cavity becomes relatively shallow, it is anticipated that the growth of large-scale vortical



(c)

(d)

(€

structures is hindered, and conditions for the onset of shear layer-resonator coupling, leading

to flow tones, may not be attainable.

The appropriate dimensionless scaling for the frequencies of dominant pressure amplitude
peaks of flow tones, provided they exist, has not been established. It is expected that, for a
relatively deep cavity, which is sufficiently long such that the large-scale vortical structures
develop, scaling based on pipe diameter D would be appropriate. In this case, it is
anticipated that the vortical structures would correspond to the fully-developed
axisymmetric instability of the jet-like shear layer through the cavity. The possibility of
extending this type of scaling to extremely shallow cavities has not been addressed.
Furthermore, the sensitivity of this scaling based on diameter D to variations in the inflow
boundary layer thickness has not been clarified. If the large-scale instability evolves to the
same form along a relatively long cavity, irrespective of the initial boundary layer thickness,
the case for scaling of the dimensionless frequency based on D would be even more
compelling.

The manner in which the amplitudes of flow tones are attenuated as a function of depth of a
shallow cavity is unknown. Furthermore, the possibility of the non-existence of flow tones
at a very small cavity depth is an important limit that has not been defined. A further,
important aspect is whether discernible spectral peaks, which would represent a low level

instability in absence of flow tone generation, can be detected in very shallow cavities.

The effect of mode spacing of the resonant modes of the pipe-cavity system, as well as the
absolute frequency of the lowest mode of the pipe-cavity system, may influence the types of
transformation between the resonant modes of the pipe-cavity system when the inflow
velocity is altered. This feature has not been addressed for either deep or shallow cavity-pipe

configurations.

The objectives of the present investigation are centered on these unresolved issues.

Pressure measurement techniques will be employed in conjunction with: three-dimensional

images of the pressure amplitude response; and techniques for assessing these images.



2. EXPERIMENTAL SYSTEM AND TECHNIQUES

2.1 OVERVIEW OF EXPERIMENTAL SYSTEM
The experimental system was designed and manufactured in the Fluid Mechanics Laboratories at

Lehigh University. In essence, the system consists of two principal subsystems. The first is the
air supply system, and the second is the actual pipeline-cavity system. These two subsystems are
located in different rooms, with a thick ceramic wall between them, in order to isolate

mechanical vibrations associated with the compressor system.

2.2 AIR SUPPLY SYSTEM
The air supply system involves an air compressor, which provides air to a compressed air

plenum. Within the compressed air plenum, the air is maintained at a gauge pressure of
552-689 kPa (80-100 psig). The air exhausts from the plenum into an air dryer where water is
separated from the air. A filter system extracts undesirable particles from the air. The air is then
transmitted through the isolation wall into the room housing the main experimental facility.

An overview of the pipeline-cavity system is given in Figure 2a. A pipe-valve
arrangement for regulating low and high flow rates to the pipeline-cavity system is located at its
upstream end. When low velocities through the pipeline-cavity system are desired, air is sent
through a series of two pressure regulators to accurately control the flow rate. The first regulator
operates at high pressures and takes the air input from approximately 621 kPa gauge (90 psig) to
138 kPa gauge (20 psig). The second regulator then limits the air output to a maximum of
approximately 14 kPa gauge (2 psig), which corresponds roughly to a maximum of 9.1 m/s
(30 fi/s) through the pipe. When it is desired to generate higher velocities through the pipeline-
cavity system, the second regulator, which operates at lower pressures, is bypassed. In this case,
the maximum centerline velocity through the pipe system is approximately 61 m/s (200 ft/s). In
summary, the role of this pipe-valve system is to provide a regulated, constant air supply to the

inlet plenum of the main pipeline-cavity system, as indicated in Figure 2a. |

2.3 PIPELINE-CAVITY SYSTEM
Inlet plenum. The inlet plenum of the pipeline-cavity system is shown in the plan and side views

of Figure 2a. It is constructed from Plexiglas, and houses a 2.5-inch thick layer of honeycomb,
which acts as a flow straightener. Moreover, the inside of the plenum is lined with acoustic
damping foam to minimize local acoustic resonances. The exit of the plenum contains a

contraction, which was designed to prevent localized separation in the pipe inlet. To ensure that



the large changes in pressure gradient near the exit of the nozzle did not produce localized
perturbations that would propagate downstream and, furthermore, to generate a fully-turbulent
boundary layer, a trip ring was located immediately downstream of the exit of the plenum
contraction. This ring was located a distance of 35 mm from the pipe inlet. It had a thickness of
1 mm, and was 4 mm long. Its geometry involved a series of adjacent triangular cuts along the

leading-edge of the ring.

Pipeline-cavity arrangement. The main pipeline-cavity arrangement was located downstream of
the inlet plenum, as indicated in Figure 2a. The first version of this system, shown in Figure 2a,
consists of two 2.4 m (8 fi) segments of 25.4 mm (1 in) ID aluminum piping, located on the
upstream and downstream sides of the Plexiglas cavity. This aluminum pipe had a thickness of
3.2 mm. A total of three pressure transducers were located in the inlet (upstream) pipe. They
were positioned at distances of 127, 1213, and 2365 mm upstream of the exit of the inlet
(upstream) pipe. Furthermore, a similar system of transducers was mounted on the exhaust
(downstream) pipe. They were located at distances of 78 mm and 1218 mm upstream of the exit
of the pipe. 7

The second version of the pipeline-cavity system employed the same inlet plenum and
cavity, however, shorter inlet (upstream) and exhaust (downstream) pipe sections were
employed. These sections had a length of 30.48 cm (12 in). One pressure transducer was located
in the inlet (upstream) pipe at a distance of 125 mm from the pipe exit. Regarding the exhaust
(downstream) pipe, one transducer was also mounted along this pipe at a distance of 152 mm

from the pipe exit.

Mounting arrangement for pressure transducers. The pressure transducers located along the
inlet (upstream) and exhaust (downstream) pipes were PCB high sensitivity transducers (Model
171103A02); the same transducers were employed for measurements within the cavity system, as
described subsequently in Section 2.4. The design for mounting the transducers on the pipe was
based on the recommendations of PCB. The diameter and depth of the hole drilled into the
aluminum piping was kept as smalil as possible, so that the flow was not distorted. Moreover, the
mounting arrangement shown ensures, for the range of frequencies of interest in this
investigation, that no acoustic resonant effects were generated in the region between the face of

the transducer and the surface of the pressure tap at the interior of the pipe.



2.4 CAVITY SUBSYSTEM
The cavity system is shown in Figure 2b. The inlet (upstream) aluminum pipe, designated as

pipe A, is maintained in a fixed position on the pipe supports. The left end of the Plexiglas tube
slides along the exterior of a smoothly-machined exterior surface of the inlet (upstream) pipe A.
In essence, this sliding arrangement allows adjustment of the cavity iength L with a high degree
of accuracy and repeatability. This adjustment was achieved by employing a traverse mechanism
(see the pipe translation system in Figure 2a), which translated the entire pipe B and the
Plexiglas tube attached to it. The junction between the interior of the Plexiglas tube and the
exterior of the exhaust (downstream) aluminum pipe B is fixed. The internal diameter D of the
two pipes A and B is 25.4 mm (1 in).

The downstream end of pipe A and the upstream end of pipe B form the leading- and
trailing-edges of the cavity, respectively. In order to obtain different values of cavity depth W,
the exterior diameters of pipes A and B were altered. This was accomplished by placing
Plexiglas sleeves around the ends of pipes A and B. Correspondingly, the interior diameter of
the Plexiglas tube was altered as well. Since it was desired to investigate a total of four values of
cavity depth W = W/D = 1.25, 0.5, 0.25 and 0.125, in which D = 25.4 mm (1 in) this meant that
four different aluminum pipe-Plexiglas-tube combinations were manufactured.

Pressure transducers were deployed in order to obtain pressure measurements on the
trailing- (impingement-) corner of the cavity, as well as on the floor of the cavity. In subsequent
notations of pressure measurements, the pressure transducer in the pipe upstream of the cavity is
designated as ps, that at the corner as ps, and that on the cavity floor as p, (see Figure 2b).

Since both of these transducers (p4 and ps) were fixed with respect to pipe B and the Plexiglas tube

attached to it, their position, relative to the trailing-corner of the cavity, remained unaltered when the

cavity length L. was varied.
2.5 PRESSURE MEASUREMENTS

Pressure transducers. PCB transducers (Model No. UI03A02) were employed for pressure
measurement. These transducers have a nominal sensitivity of 1727 mv/psi. The outputs from
the transducers were connected to a PCB Piezotronics multi-channel signal conditioner, Model
48A. This multi-channe! conditioner allowed independent adjustment of the gains of the pressure

transducer signals. Generally speaking, however, it was possible to employ the same value of



gain for all pressure measurements. This gain adjustment is important in order the meet the

required voltage input levels of the A/D (analog/digital) board.

Acquisition of pressure signals. The conditioned pressure signals were transmitted to ports on a
National Instruments board (Model PCI-MIO-16E-4). This board, when operating in the single
channel acquisition mode, can sample at the rate of 250 KS/sec, in which K = 10% and S is the
number of samples. In the present scenario, a total of eight pressure transducers were employed,
so the effective sampling rate is reduced by a factor of eight, i.e., it takes on a value of 31 KS/sec
per channel. In essence, there are two considerations to determine whether this sampling rate is
adequate. First of all, for characterization of pressure in the frequency domain, the sampling rate
should be at least twice the maximum frequency of interest. For representations in the time
domain, a minimum of five samples per cycle is required, but a minimum of ten samples per
cycle is desirable. Considering these requirements together, the acquisition system should have a
sampling rate at least ten times as high as the maximum typical frequency of interest in the
present investigation, which corresponds approximately to 1.5 x 10° Hz. This requirement is
approximately a factor of twenty lower than the acquisition rate of 31 KS/sec per channel. It 1§
also important to realize that this type of board basically consists of one A/D (analog digjtal)
converter, and the acquisition of eight pressure signals is accomplished using a multiplexing
technique. The scan interval is defined as the time required to go from a recorded point
corresponding to pressure transducer No. 1, through the sequence of the other seven transducers,
and return to the channel of transducer No.1. This scan interval is basically the inverse of the

maximum data acquisition rate per channel from ie. 1/(31.25 x 10%), which corresponds

approximately to 32 microseconds.

Processing of pressure signals. A Pentium II 350 MHz computer and LabView software were
used to process the pressure transducer signals. The major parameters for spectral analysis using
the Fast Fourier Transform (FFT) must be properly defined so that adequate resolution in the
frequency domain is accomplished, while at the same time minimizing the amount of collected
data. In order to determine which values of each parameter were adequate, a series of averaging
tests were performed using broadband noise input. For a given set of parameters, the number of
averaged hles was varied to determine the minimum number of files and, hence, the minimum

number of data samples needed to properly represent the system response.



The parameters were: (i) the number of samples acquired per data set; (ii) the sampling
rate; and (iii) the number of data sets employed to obtain an average. The sampling rate must be
twice as high as the maximum frequency of interest. Therefore, the necessary sampling rate
varied directly with the maximum frequency of interest for each experiment. The value of the
frequency resolution (Af) is equal to the sampling rate (f;} divided by the number of samples per
data set (n)). Once the sampling rate was determined for each experiment, the number of
samples was calculated according to n, = fy/Af.

In order to determine the value for Af, another set of averaging experiments was
performed. Values of Af were varied. These tests showed that Af = 0.5 Hz adequately
characterized the system response, while providing acceptable frequency resolution at both the
low and high ends of the frequency range of interest in this research program. At the lowest and
highest frequencies of interest, approximately 35 and 1,500 Hz, Afff has its maximum and
minimum values of 0.014 and 0.00034 respectively. |

During acquisition of final experimental data, the sampling rate was set to 4,096 samples
per second, which resulted in a Nyquist frequency of 2,048 Hz well above the maximum
ﬁequenéy component of interest for this research, which was approximately 1,500 Hz. The
number of samples per data set (n,) was then specified, while maintaining Af = 0.5 Hz, resulting
in 2'* = 8,192 samples per data set. Each of the spectra represented herein was obtained by
averaging a total of 42 data sets.

Unless otherwise indicated, all pressure measurements herein correspond to a reference
location (i.e., at pressure transducer p; as defined in Section 2.4) in the pipe resonator.

Comparisons of measurements at different locations are given in Section 6.

2.6 VELOCITY MEASUREMENTS
In order to characterize in detail the mean and fluctuating velocity distributions at the exit of the

inlet (upstream) pipe A, hot wire anemometry was employed. A miniature hot-wire probe was
traversed across the pipe exit. The traverse system was equipped with a linear variable
displacement transducer (LVDT), so that the position of the hot-wire probe could be positioned
with a precision of approximately 0.1 mm. In-house software was used to calculate the mean
and fluctuating velocity components from the raw hot-wire signal.

For the wide range of measurements during the course of this investigation, it was

necessary to have an accurate and repeatable means to determine the time-averaged centerline



velocity @, . This was accomplished by using a pressure tap on the side of the inlet pienum and
a tap located at the exit of the orifice plate, which was attached to the downstream end of the
plenum. The difference between these two pressure measurements provided a reference value for
calculating the centerline velocity of the flow through the pipe. This pressure difference was
calibrated against the centerline velocity at the exit of the exhaust (downstream) pipe B using
two different approaches. The first involved the calibrated hot-wire, described in the above, and
the second was based on the measurement of total pressure by means of a Pitot probe at the exit
of the pipe. The total pressure was measured using one of two Validyne transducers, model
DP103-104 for smaller values of flow velocity and model DP15-24 for higher values of flow

velocity.

3. INFLOW CONDITIONS

A major purpose of the present investigation is to determine whether self-excited flow tones can
be generated when the inflow conditions are fully turbulent. Proper specification of the inflow
conditions is important in several respects. First of all, it is desirable to ensure that quasi-laminar
or transitional phenomena do not exist in the approach flow. For the limiting case of laminar
inflow, i.e., a laminar boundary layer, self-excited coherent oscillations, which have pronounced
spectral peaks, can be generated even in the absence of a coexisting acoustic resonance of the
cavity or an adjacent pipe.

A second reason for specifying details of the inflow conditions is to facilitate the scaling
"of the dimensionless frequencies of oscillation. Geometric parameters are often used to
characterize the frequency of oscillation, e.g., fL/U, in which L is the cavity length and U is the
characteristic velocity or fD/U, where D is the diameter of the inflow pipe. Such geometric
scaling does not account for the variations of boundary layer thickness that exist in different

practical configurations.

The momentum thickness 6 = I:(E/Em ¥1-4/u,)dy is typically employed to represent
the characteristic thickness of a shear flow. In this investigation, velocity U is the average
streamwise velocity at any location, and U_ is its value at the centerline of the pipe. The value of

0 was determined for the extreme cases of velocity distributions described in this section. The
distributions of mean and fluctuating velocity are considered for two basic cases: (a) a long pipe,

having a length to diameter ratio of 96, which ensures a fully-developed flow at the pipe exit;



and (b) a relatively short pipe having a length to diameter ratio of 12, which has a turbulent
boundary layer at its exit that is not fully-developed. As indicated in Section 2, a boundary layer
trip ring was located at the pipe inlet for both cases of the long and short pipes. This trip
promotes the rapid onset of turbulence, which was especially important for the case of the short
pipe.

Prior to characterizing the values of momentum thickness for the long and short inlet
pipes, efforts were focused on ascertaining the turbulent nature of the flow at the exit of each
pipe. This involved determination of distributions of normalized root-mean-square velocity Unms
across the pipe. These distributions were found to be in agreement with established resuits. In
addition, the logarithmic form of the velocity distribution was pursued. The traditional semi-
logarithmic representation of the mean velocity distribution at the exit of the long pipe is given in
Figure 3a. In this plot, = U/u,. That is, the local mean velocity T is normalized with respect
to the wall friction velocity u,. This dimensionless velocity is plotted as a function of log n, in
which, n = yu./v. The purpose of this type of plot is to show the nature of the logarithmic and
inner viscous layers. These data are compared with the standard distributions provided by
Schlichting (1968). The log region is represented by ¢ = 5.75 log n + 5.5. In addition, this
region of the boundary layer is compared with the so-called one-seventh power law distribution
¢ = 8.74 n'”7. In the innermost region of the boundary layer, i.e., the viscous sublayer, the
dimensionless velocity is according to ¢ =m. This region corresponds to an extremely thin layer
next to the wall.

Considering first the log region of the boundary layer, the data exhibit a generally linear
variation in this region, corresponding to an actual logarithmic distribution. In the inner layer,
the data generally follow the reference curve ¢ =, except for departures at the highest value of
velocity.

Distributions of dimensionless mean velocity U/0,, as a function of dimensionless
distance y/R from the pipe wall are exhibited in Figure 3b for the short (top plot) and long
(bottom plot) inlet pipes. Considering first of all the distributions of mean velocity given at the
top of Figure 3b, a relatively flat region exists from approximately y/R = 04 to 1.0,

corresponding to the "core" region of the pipe flow. Data for the velocities 70.7 < 1, < 131.5

are remarkably coincident. For these velocity distributions, the dimensionless momentum



thickness falls in the range of 0.029 < 8/R < 0035 The definition of
6, = IY;R(ﬁ/ﬁm)(l—ﬁ/ﬁm)dy was employed.
y_

The bottom plot of Figure 3b represents the corresponding velocity distribution for the

case of the long inlet pipe. The values of momentum thickness 8, normalized by the pipe radius

R lie in the range 0.088 < 8/R < 0.096.

4. OVERVIEW OF CHARACTERISTICS OF PRESSURE FLUCTUATIONS

The nature of unsteady pressure fluctuations arising from flow past a shallow cavity is
complicated by variations in the cavity depth. In contrast to the overwhelming share of previous
investigations, where the cavity depth is much larger than the characteristic thickness of the
inflow shear layer, the existence of a sufficiently shallow cavity is expected to substantially alter
the onset and growth of instabilities in the separating shear layer. The consequence is. a rich
variety of possible flow states within the cavity. In the present investigation, emphasis is on the
case of a sufficiently long cavity length L, such that, for a deep cavity, the fully-evolved
axisymmetric instability of the separated shear layer occurs. This limiting case is well studied for
the corresponding case of a free axisymmetric jet. In fact, as will be discussed, the scaled
frequencies of a sufficiently deep cavity agree remarkably well with this limiting, reference case.
Moreover, preliminary diagnostics showed that the largest amplitude spectral peaks occurred for
this long cavity length L, irrespective of the cavity depth W. The present results provide
extensive characterization of the unsteady pressures as a function of inflow velocity U, cavity

depth W, and the thickness of the inflow shear layer.

4.1 SUMMARY OF RANGES OF PARAMETERS

The cavity length was adjusted to a fixed value of L = Ln/D = 2.5, which, as indicated in the
foregoing, allowed the fully-evolved axisymmetric instability mode to develop in the deepest
cavity. The cavity depth was then varied according to W' = W/D = 1.25, 0.5, 0.25, and 0.125.
The largest value of depth W' = 1.25 should, in concept, represent a sufficiently deep cavity,
such that the instability in the free shear layer develops in a relatively unhindered fashion. At the
other extreme, W' = 0.125 is small in comparison with the pipe diameter D, and thereby
represents the case of a very shallow cavity. The inflow velocity U was varied up to a2 maximum

value of approximately 200 fi/sec, depending upon the particular experimental configuration.



Furthermore, the characteristic thickness of the inflow boundary layer was altered by attaching
both long and short inlet pipes; this approach led to extreme values of momentum thickness 8,,
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4.2 METHODS OF PRESENTATION OF DATA \ T e nté
Features of the fluctuations are represented by pressure spectra. For a given experimental run, a
relatively large number of spectra are acquired. It is therefore useful to develop a unified,
comprehensive presentation of families of spectra. This was accomplished by developing a
color-coded, isometric view; a representative image of this type is given in Figure 4a. In
constructing these representations, a total of 37 to 40 spectra were employed. In the case where
velocity was varied during the experimental run, values of spectfal amplitude were interpolated
along the velocity axis. Similarly, for the case where the cavity length was altered, interpolation
was carried out in the direction of the cavity length. The magnitudes of pressure were color-
coded, such that gradations of color are evident in three-dimensional space, thereby providing an
overview of the conditions for which relatively high-pressure amplitudes are generated. Since
the focus of this program is on conditions for the onset of flow tones, most of the changes in
color level are concentrated at lower values of pressure amplitude. Once a threshold value of
amplitude is exceeded, the color magnitude is maintained the same for all higher values. This
color was, in fact, white. As a consequence of this approach, it is not possible to determine, in
certain cases, the maximum amplitude of the pressure spectra based on the three-dimensional
color plots. Complete families of spectra are therefore provided in a separate compendium, so
that the reader can easily deduce details of each individual spectrum.

A plan view of each isometric, three-dimensional color plot is also provided in each case.
It allows a perspective on a plane of velocity vs. frequency and identification of high values of
pressure amplitude. This type of view also gives a rapid indication of the extent of each locked-
on mode of a flow tone.

Further representations of the pressure variations involve either isometric or plan views
of logarithmic, as opposed to linear, pressure amplitude. This type of view emphasizes the
variation of the background fluctuations, in addition to the resonant values associated with
generation of flow tones.

Finally, effort was devoted to implementing a means of detecting peaks in the plot of
loganthmic pressure amplitude. The principal aim here was to educe low-level peaks of

pressure, which otherwise remain undetected in simple plots of logarithmic pressure amplitude



or linear pressure amplitude. Once these peaks were identified, they could be represented on the
plane of velocity vs. frequency, in order to determine the variation of the inherent instability
frequency of the shear layer, i.e., Strouhal frequency, that gives rise to vortex formation. A
successful approach to educing low level peaks involved, first of all, taking the derivative of the

logarithmic pressure amplitude with respect to velocity. This derivative may be written as:
d(log p)/ 0U 4.1)

Once this derivative is evaluated, it is plotted in a color-coded form on either the velocity vs.
frequency plane or the velocity vs. cavity length plane. The magnitudes of the derivatives are
color coded in such a manner that a pressure peak, which corresponds to an essentially
discontinuous change in the sign of the slope, according to equation (4.1), is represented by a
sharp junction between two distinctive colors. A line passing through these detected peaks is
then plotted on the aforementioned plan view of pressure amplitude as a function of velocity vs.
frequency or, alternately, on the plan view of pressure amplitude in relation to cavity length vs.
velocity. This is a very effective approach to identify a low amplitude peak that is not associated
with a flow tone, but nevertheless represents a localized peak due to the inherent instability mode
of the shear layer, which is accentuated by presence of the resonator.

In the following, the types of color representations described in the foregoing are shown,

first of all, for: (a) variations of the inflow velocity; and (b) alterations of the cavity length L.

4.3 PRESSURE FLUCTUATIONS FOR VARIATIONS OF INFLOW VELOCITY

The pressure response characteristics of the pipeline-cavity that correspond to variations of inflow
velocity are examined for the two extreme tnflow shear layers defined in Section 3. As described

therein, these different inflow conditions are generated via attachments of long and short inlet
pipes.

4.3.1 Long Inlet Pipe-Cavity System

Figures 4a through 4f exhibit the pressure amplitude response that corresponds to variations of
inflow velocity U = U_, i.e., the averaged velocity at the centerline of the pipe. The cavity
length L is maintained at its maximum value, designated as Ly, Variations of cavity depth W are
considered. Figures 4a,b show the case of a relatively deep cavity and, at the other extreme,

Figure 4f represents the shallowest cavity.



For the case of the deepest cavity exhibited in the top image of Figure 4a, pronounced
peaks of pressure amplitude are evident at values of inflow velocity of the order of 70 ft/sec and
higher. Harmonics of these peaks are either very small or indistinguishable. The peaks shown in
this image coincide with the resonant modes of the long pipe-cavity system having frequencies
approximately in the range from 300 to 600 Hz. The bottom image of Figure 4a, which shows a
plan view of the variation of pressure amplitude over the plane of frequency versus inflow
velocity U, indicates clearly the sequential excitation of higher modes of the resonant pipe-cavity
system with increasing velocity. The thin, elongated white regions correspond to the peaks
exhibited in the isometric view, i.e., in the top image of Figure 4a. At the center of each of these
peak (white) regions, the amplitude of the pressure in the neighboring resonant modes is small.
On the other hand, near the edges of a given peak (white) region, there is clearly simultaneous
excitation of two neighboring resonant modes. This feature is inherent to excitation of flow
tones in resonant systems having multiple resonant modes. The black lines indicated in the
bottom image of Figure 4a represent constant values of dimensionless frequency fL/U. They pass
through the pressure peaks. Although the line having the largest slope passes through distinct
and highly visible peaks, the remaining two lines pass through peaks that are less well defined.
In order to extract these peaks, the plan view corresponding to the bottom image of Figure 4a
was directly compared with the bottom image of Figure 4b, which employs the criterion for
identification of peaks.

The top image of Figure 4b shows a plan view of the pressure amplitude on the velocity-
frequency plane. It is based on the same data as Figure 4a, except the pressure is expressed in
terms of its logarithmic value, i.e., log p. This plot shows further features of locally high values
of pressure amplitude outside the clearly distinct peaks. The bottom image of Figure 4b is a plan
view of the variation of the parameter 8(logp)/dU over the velocity vs. frequency plane. As
addressed in the foregoing, this parameter aids in peak identification. At locations of the peaks,
the slopes on either side of the peak abruptly change from positive to negative values, and
thereby the colors show an abrupt change. It should be emphasized that this type of
representation shown in the bottom image of Figure 4b is simply intended to serve as an aid in
extracting peaks. By no means does it provide an indication of lock-on associated with
generation of flow tones. This concept of lock-on will be addressed subsequently.

Figures 4c,d represent the case of a shallower cavity having a depth W' =0.5. The most

striking feature of the top image of Figure 4c, in comparison with the case of the deeper cavity



corresponding to Figure 4a, is that the velocity for onset of a pronounced peak is shifted to a
higher value of approximately 120 fi/sec, which is approximately 50% larger than the onset
velocity for the deep cavity -of Figure 4a. Generally speaking, however, the overall form of the
distribution of peaké is similar to that of Figure 4a for the deep cavity. Observations of the
bottom image of Figure 4c are, in many respects, similar to the corresponding plan view of
Figure 4a. Lines of constant fL./U are linear and pass through the sequence of pressure peaks. In
Figure 4d, the plot of logarithmic pressure amplitude is shown in an isometric view (top image),
in order to further emphasize the locally large values of pressure amplitude, in addition to the
well-defined peaks evident in Figure 4c. This plot also clearly shows the increase in background
pressure fluctuation amplitude as the velocity is increased. The plot of magnitude of &(log p)/oU
on the plane of velocity versus frequency, represented by the bottom image of Figure 4d, is
directly analogous to the corresponding plot of Figure 4b.

A further decrease in cavity depth to a value of W' = 0.25 is represented in Figure 4e.
‘The top image of Figure 4¢ shows the generation of a number of well-defined peaks, which are
coincident with the resonant modes of the pipe-cavity system. An important observation is that
these peaks are generated only at very high values of inflow velocity, i.e., of the order of U = 150
ft/sec and larger. Although there may be a tendency to interpret these peaks as an indication of
locked-on flow tones, this may not be the case; further assessments are required and are
addressed in Section 6. The plan view of linear pressure amplitude on the plane of velocity vs.
frequency is represented in the bottom image of Figure 4¢. The white regions, which indicate the
highest amplitude peaks, generally do not have the same sharply-defined symmetrical form as
exhibited previously in the bottom images of Figure 4a and 4c. Nevertheless, there is a tendency
for these white, peak-like regions to follow & constant fL/U, 1.e., the black line having the
greatest slope in the bottom image of Figure 4e. As in the previously described cases
corresponding to deeper cavities, the black line of the lower siope was constructed with the aid
of the pressure gradient concept defined by equation (4.1).

The case of the shallowest cavity, W™ = 0.125, is shown in Figure 4f The top image of
Figure 4f reveals that significant peaks are attainable only at the highest values of flow velocity
of the order of U = 200 fi/sec. Since these peaks have very low amplitude, it is possible to
observe an increase in pressure amplitude for all of the pipe-cavity modes as the inflow velocity
increases. Considering the bottom image of Figure 4f, which shows the plan view of linear

pressure amplitude p on the plane of velocity vs. frequency, it is clear that isolated, distinct



pressure peaks cannot be defined in the same manner as for deeper cavities, i.e., in the bottom
images of Figure 4a through 4e. It is therefore not possible to construct lines of constant fL/U.
This lack of a clearly defined Strouhal line of constant fL/U was further reaffired by
examination of contours of constant pressure gradient calculated according to equation (4.1).

An overview of the pressure amplitude response for extreme values of cavity depth W is
given in Figure 4g. These three-dimensional images are taken from Figures 4a, 4e and 4f. The
transformation from sharply-defined pressure peaks to a larger number of less sharply-defined
peaks having much lower amplitude is clearly indicated for decreasing values of cavity depth.
Further observations are as follows: shallower cavities require a higher value of minimum flow
velocity to attain a locked-on flow tone; for a sufficiently small cavity depth, lock-on is not
attainable; and, for deeper cavities, lower order resonant modes lock-on because the critical flow
velocity decreases. All of these features are most likely related to the manner in which the
unsteady shear layer develops along the cavity. Presumably, for deeper cavities, the occurrence
of large-scale vortex formation proceeds in a relatively uninhibited fashion, whereas for the

shallowest cavity, it may not occur. This aspect will be addressed in a forthcoming investigation.

4.3.2 Short Inlet Pipe-Cavity System

A short inlet pipe to the cavity system was employed to: (i) examine the consequence of a
smaller characteristic thickness of the inlet boundary layer; (i) address the consequence of a
higher value of absolute frequency for the lowest pipe-cavity resonant modes, i.e., N =1, 2 and
3: and (iii) resolve the manner in which widely spaced resonant modes, which are attainable for
the short pipe system, influence the onset of flow tones, relative to the closely-packed modes
existing in the long pipe-cavity system, shown in Figures 4a through 4f,

The top image of Figure 5a represents the case of the deepest cavity. Clearly-defined
peaks of pressure occur at resonant pipe modes centered approximately at 550 Hz, 1100 Hz, and
1600 Hz. These excited modes are clearly much more widely spaced than for the corresponding
case of the long pipe-cavity system shown in the top image of Figure 4a. Two remarkable
similarities exist, however, between the plots of Figure 5a and Figure 4a. First of all, the value
of inflow velocity U for the onset of a clearly-definable peak of pressure amplitude is of the
order of 70 fi/sec for both cases of Figures 5a and 4a. This similarity is perhaps more evident by
comparing the plan view of pressure amplitude on the plane of velocity versus frequency,
represented by the bottom image of Figure Sa, with the corresponding image at the bottom of

Figure 4a. Note that, at a given velocity, as many as three well-defined peaks exist; moreover,



they are, in an approximate sense, harmonically related. This suggests that multiple Strouhal
modes may coexist in the separated shear layer. In the absence of an acoustic resonator, it is
known that an unstable shear layer can exhibit a number of coexisting, well-defined frequency
components as shown by Knisely and Rockwell (1982).

The second notable feature of the plots of Figure 5a is that the dominant resonant mode in
Figure Sa is of the order of 550 Hz, while in Figure 4a, the excited modes extend from
approximately 300 to 600 Hz. The same range of frequencies is therefore associated with the
generation of large-amplitude pressure peaks. This observation, which suggests that the same
mechanism of shear-layer instability is present in both cases, will be addressed subsequently.
The plan view of pressure amplitude p shown in the bottom image of 5a exhibits a black line
passing through the peak pressure amplitude. As in the preﬁous cases for the long pipe-cavity
system, this fine corresponds to a constant value of fL/U.,

In Figure 5b, the top image shows further features of the pressure amplitude response, in

the form of logp on the plane of velocity U versus frequency f. In thié plot, the increase in

amplitude of the pressure fluctuation as flow velocity increases is clearly evident. Regarding the
plot at the bottom of Figure 5b, a number of sharp changes in sign of d(log p)/ U occur along
each band of constant frequencies as velocity is increased. As in the corresponding figures for
the long pipe-cavity system, the abrupt change in color corresponds to the locations of the peaks.

For the case of a shallower cavity, represented by W’ = 0.5 and shown in Figure 5c, the
overall response characteristics are generally similar to those of the deeper cavity of Figure 5a.
Considering, first of all, the top image of Figure Sc, the pressure peaks are not quite as consistent
with variations of velocity, relative to those of Figure 5a. With regard to the plan view of the
pressure amplitude p, shown in Figure 5c, the value of velocity for the onset of the first, large -
amplitude peak, is of the order of U = 100 fi/sec. This compares with an approximate value of
U = 120 fi/sec for the first, large amplitude peak of Figure 4c.

The plot of logarithmic pressure amplitude log p shown in the top image of Figure 5d
clearly shows the increase in background amplitude with the increase of velocity and the emergence
of well-defined peaks above the background level at sufficiently high values of velocity. The
variation of the amplitude of &(logp)/dU, shown in the bottom image of Figure 5d, exhibits
correspondence between abrupt changes in slope (i.e., color) and the pressure amplitude peaks

evident in the plan view of the bottom image of Figure 5¢.
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If the cavity depth W is decreased still further to a value of W' = 0.25, as represented by
the images of Figure Se, sharply-defined pressure peaks are still evident. At the same value of
W' = 0.25 for the long inlet pipe, shown in Figure 4e, such sharply-defined peaks do not occur.
Note, however, that the peak occurring at the lowest value of velocity in the top image of Figure
Se, further evident in the bottom image of Figure Se, is within the band of approximately 500 to
600 Hz. For the case of the long inlet pipe, shown in Figures 5a and 5S¢, resonant peaks occur in
this same band of frequencies. A similar instability mechanism therefore appears to be operative
in both cases. The instability mechanism most likely associated with the generation of large-
scale vortical structures will be addressed subsequently. The manner in which these large-scale
structures develop may be a function of the momentum thickness 8, at separation, which, as
described in Section 3, differs for the long and short inlet pipes. The momentum thickness 0, of
the short pipe system is one-third that of the long pipe-cavity system. A further factor that may
influence the difference between Figures 4e and Se is the difference of damping of the long and
short pipe-cavity systems.

The variation of the logarithmic pressure amplitude, logp, over the welocity vs.
frequency plane, is represented by the top image of Figure 5f The increase in the pressure
amplitude, along a line of constant frequency, say a frequency of the order of 500 Hz, is evident
at a relatively low value of velocity U of the order of 35 fi/sec; this situation contrasts with
excitation of sharply-defined peaks at higher velocities. This observation suggests that an
inherent instability mode of the shear layer is effective in buffeting the resonator of the pipe-
cavity system at lower values of velocity. Confirmation of the peaks of pressure amplitude,
which are indicated in the bottom image of Figure Se, is evident in the abrupt change in sign of
d(logp)/ 8U in the bottom image of Figure 5f. Moreover, this parameter &(log p)/ U brings out
additional peaks at lower value of flow veiocity for the first two resonant modes; these peaks are
not evident in the raw pressure plot at the bottom of Figure 5e.

Finally, the case of the shallowest cavity, W' = 0.125, is represented in Figure 5g. The
values of pressure amplitude generally remain very small, of the order of 2 x 107 psi. Moreover,
sharply-defined peaks are not evident. It is possible, however, to identify a broader peak, as
shown in the plan view of the bottom image of Figure Sg; this broader peak serves as the basis
for the construction of a black line representing a constant value of fL/U. This peak, as well as others

that might be inferred from the bottom image of Figure Sg, are not sﬁf’ﬁciently sharp to produce a



consistent pattern of large gradients of d(logp)/dU, evident from examination of the
corresponding image of these gradients, which is not shown herein.

44 SCALING OF PRESSURE FLUCTUATIONS: AMPLITUDE LIMITS AND CONDITIONS FOR
ONSET, PERSISTENCE, AND SUPPRESSION

In the foregoing sections, emphasis has been on the description of the organized peaks of
pressure fluctuations that emerge above the background. These pronounced peaks are evident in
most of the three-dimensional (isometric) plots of the respective images of Figures 4a through
Sg. In the summaries that folléw, the focus is on the dimensionless representations that dictate
the onset and existence of well-defined peaks. They are: dimensionless frequencies;
dimensionless cavity length and depth; dimensionless pressure amplitudes, and values of
velocity. All of these parameters are characterized using detectable peaks in Figures 4a through
Sg. |

The modes of oscillation observed in the present investigation are defined as large-scale
modes. That is, the present emphasis is on oscillations occurring for a limiting value of cavity
length Lm, such that for a sufficiently deep cavity, the fully-evolved axisymmetric instability
mode is allowed to develop. As indicated in the foregoing, this asymptotic case corresponds to -
the largest pressure amplitudes observed in preliminary experiments over a range of cavity
length. In view of the fact that they occur for relatively long cavities, i.e., cavities of length L
significantly larger than the pipe (or jet) diameter D, these oscillations are designated as large-
scale modes. Furthermore, as will be addressed, when the frequencies at which the peaks occur
are scaled according to fD/U, then the values lie within a range corresponding to fully-evolved
(large-scale) vortex formation in an unbounded free-jet. This observation provides a further
reason for characterizing these oscillations as large-scale modes along sufficiently deep cavities.

In the following, several characteristics of these large-scale modes are addressed.

Frequency of oscillation. Considering the data shown in Figures 4a through Sg, the values of
frequency for the observed peaks extend over the range of approximately 300 Hz to 600 Hz. In
turn, these frequencies correspond approximately to dimensionless values in the band 0.3 < fD/U
< 0.6. This issue of frequency scaling is addressed in further detail at the end of Section $, i.e.
Section 5.2.

Pressure amplitudes. The magnitude p of \the pressure fluctuations can be normalized in two

physically significant ways. The first involves normalization by the dynamic pressure of the
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inflow, defined as pU?/2, in which p is the density of air under standard conditions and U is the
averaged centeriine velocity, i.e. U=1,_. This normalization involved the range of data for
which detectable peaks were observed in Figures 4a through 5g. Peak pressure amplitudes as:
high as p/(pU%/2) = 0.6 can be attained for the short inlet pipe, the deepest cavity, and a high
inflow velocity (Figure 5a). At the other extreme, values as low as p/(pU2/2) = 0.007 were
observed for the long inlet pipe, a moderate depth cavity, and a relatively low inflow velocity
corresponding to the onset of an initial peak amplitude (Figure 4c).

An alternate normalization for pressure is of the form p/pUc, in which c is the speed of
sound. For the ideal case of one-dimensional wave propagation, this normalization may be
interpreted as u,/U, in which u,. is the magnitude of the acoustic velocity. In other words, this
pressure normalization represents the ratio of the acoustic velocity u,. to the mean inflow
velocity U at the centerline of the pipe. Values of p/pUc = 0.04 (Figure 5a) are attainable. On
the other hand, values as low as p/pUc = 0.0003 (Figure 4c) occur. These extreme values
correspond to the same conditions as for the afqrementioned values of p/(pU?/2).

The extreme values of dimensionless pressure described in the foregoing are compared at
the top of Table 1; they are designated as large-scale modes therein. A further comparison of
peak values of pressure amplitude using individual spectra, as well as the plots discussed in
Section 4.3, reveals that, for a given cavity length and depth, the shorter pipe system yielded
significantly higher amplitudes than the longer pipe system. This general observation is due to
the difference of damping of the short and long pipe systems; it is proportional to the pipe length.
The experiments of Kriesels, Peters, Hirschberg, Wijnands, Iafrati, Riccaradi, Piva and
Bruggemann (1995) show the consequence of damping, represented by pipe length, for the
configuration of a closed side branch resonator. Extreme values of dimensionless pressure
attained with long and short pipes in their investigation are indicated at the bottom of Table 1.

Additional investigations of Rockwell and Schachenman (1982), Elder, Farabee, and
DeMetz (1982) and Hourigan, Welsh, Thompson and Stokes (1990} are also included in Table 1,
in order to illustrate that the values of dimensionless pressure attained in the present investigation
can have values of the same order of magnitude as found in other flow tone investigations,
despite differences in system configuration and damping.

When comparing values of normalized pressure, as in the foregoing, it should be

emphasized that the intermittency of the instantaneous states of the flow past the cavity, and



thereby intermittency of the instantaneous pressure signals, can contribute to a substantially
fower value of time-averaged peak pressure, relative to the cases where the instantaneous states
are locked-on, with no intermittency. This issue has not been accounted for in any investigation
to date.

Persistence of pressure peaks. Examination of the plots of Figures 4a through 5g reveals that as
the cavity depth W decreases, the peak pressure amplitude tends to decrease as well. Pronounced
peaks can occur, however, at values of cavity depth as low as W/D = 0.25, i.e., even for very
shallow cavities having a length to depth ratio of 10.

Suppression of amplitude peaks. For values of cavity depth sufficiently small, pronounced
amplitude peaks are no longer evident. This range of suppression occurs for W' '=wD <
0.125. It should be noted, however, that the occurrence of preferentialiy-excited pipe modes 1s
still identifiable at W™ = 0.125, over the aforementioned range of frequencies falling roughly in
the band 0.3 < fD/U < 0.6. These preferentially excited modes exist in absence of any apparent

lock-on.

Threshold velocities. Considering the range of data exhibited in Figures 4a through 5g, the
velocities for onset of pronounced peaks, accounting for both short and long inlet pipes, range
from approximately 70 ft/sec to 120 fi/sec. These velocities represent the values required to
trigger the first amplitude peak, and presumably the first occurrence of a flow tone (addressed in
Section 6), over a range of cavity depths, for both short and long inlet pipes. Dimensionless
representations of these velocities, based on power concepts, is currently under consideration. In
essence, one expects the vorticity-based contribution to the acoustic power Py to scale according
to Py ~ pUlu, for a given value of cavity length L. Sufficiently large values of Py can be
achieved either by increasing the value of inflow velocity U or the self-excited acoustic velocity

U.. These features must be taken into consideration for dimensionless representation.

Preferred modes of resonator. The foregoing considerations have addressed the scaling and
limiting values of the system parameters. An additional consideration is the determination of
whether all modes of the acoustic resonator, i.e., pipe-cavity system, are susceptible to coupling
phenomena that lead to generation of flow tones. For the entire range of experiments, tones are
generated only for the even modes, ie, n=2,4, ... of the pipe-cavity system. This observation
is compatible with the existence of a pressure node and a velocity antinode at the location of the

cavity. An interpretation of the excitation of even modes is as follows. Effective perturbation of
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the separating shear layer requires relatively large amplitudes of acoustic velocity fluctuations in

the vicinity of shear layer separation, i.e., in the most sensitive, or receptive, region of the shear

layer along the mouth of the cavity. This occurs for even resonant modes. With this concept in

mind, an interesting issue is the effect of asymmetry of the pipe sections located at either end of

the cavity, and whether a small amount of asymmetry can effectively attenuate the amplitude of

the self-excited oscillations, presumably by displacing the pressure node, ie., the velocity

antinode, away from its most effective location. This matter will be addressed in a forthcoming

stage of the investigation.

AUTHORS/ IpU2 P/pUc U(it/sec Notes
CONFIGURATION | PP pre (Usec)
~0.6 0.04 160 Large-scale
mode
[Short pipe; deepest cavity (Figure 5a)) (L/D=235]
Present
Cavity in pipeline 0.007 0.0003 130 Large-scale
mode:
[Long pipe; shallow cavity (Figure 4c)] [L/D = 2.5]
Rockwell and
Schachenmann (1982) 0.36 0.017 65
Pipeline-cavity-orifice
0.24 0.022 200 Large-
Elder et al. (1982) amplitude mode
Side-cavity in wall 0.014 0.00055 82 Initial mode
Hourigan et al. (1990)
Orifice-baffle system 0.192 0.048 35
NA 0.79 202
Kriesels et al. {1995) [Short side pipe]
Closed side pipe NA 0.02 54
[Long side pipe]

Table 1: Comparison of representative values of dimensionless pressure.
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5. FREQUENCIES OF OSCILLATION: CORRELATION AND SCALING
Identifiable peaks in the data given in Section 4.3, and the manner in which they vary with either
inflow velocity or cavity length, provide a basis for: (i) correlations with traditional models; and
(i) frequency scaling based on concepts of inviscid stability. In the following, these two classes

of assessments are addressed in detail.

5.1 CORRELATIONS OF FREQUENCIES OF OSCILLATION WITH EXISTING MODELS
BASED ON CAVITY LENGTH

5.1.1 Overview of Models
Over the years, a great deal of effort has been devoted to the development and revision of models

for the dimensionless frequency of oscillation. They have the general form:

fL/U = (UsU)(n % a), (5.1)

in which U is taken to be the freestream velocity, U, is the convective speed of a vortex or
instability wave through the shear lfayer, n is the stage of oscillation and a is an end correction.
This type of model has its genesis in the early formulations of Rossiter (1962, 1964), whose
more general formulation accounted for variations of Mach number, and Powell (1961, 1964),
who actually employed this type of relationship for a jet-edge, as opposed to a cavity
configuration. In the application of most models, the ratio U/U and a are viewed to be
adjustable constants. Various types of arguments have been made, however, for relating the
dimensionless phase velocity U/U to values determined from stability theory. In doing so,
however, a constant value of UJ/U is defined, in contrast, inviscid spatial stability theory
indicates that U/U is actually a function of frequency. Recent efforts in the theoretical direction
aim to specify values of U/U and a without recourse to empiricism. Such models employ an
infinitesimally thin shear layer. They include the works of Crighton (1992) for the case of a jet-
edge configuration and Howe (1997, 1998) for edge and cavity configurations.
For purposes of correlating the present experimental data, the following relations will be

employed:
(2) fL/U =0.61(n — 1/4), which is due to Elder (1978) and Pollack (1980);
() L/U = 0.6(n + 1/6), which is due to Howe (1997, 1998), and
(¢) TL/U = 0.6n, which serves as a reference correlation that does not account for any end

effects, i.e., a= 0. This correlation was also deduced on the basis of phase measurements by

Rockwell and Schachenmann (1982).



It should be emphasized that the correlations (a) and (b) have been employed almost
exclusively for the case where there is a well-defined freestream, as opposed to the present
situation of flow through a pipe. When the pipe flow is fully-developed, a freestream velocity
does not exist. The characteristic velocity, 0.86U = 0.86u_, which represents the spatially-

averaged or bulk-averaged velocity through the pipe, is employed herein. It should be noted that
use of this normalizing velocity 0.86U can also be interpreted as follows. It is equivalent to
employing an equivalent freestream velocity U and a lower value of a dimensionless phase speed

0.86 UJ/U.

5.1.2 Correlations for Variations of Inflow Velocity

Figures 6a through 6¢ show comparisons between the correlations of Section 5.1.1 and
the data of Figures 4a through 4e, which exhibit well-defined peaks. In each figure, the top plot
represents a best fit through the data of the form fL/U = K, in which K is simply the constant that
provides the best linear fit. In other words, this fit does not involve any of the aforementioned
correlations. In the bdttom plot of each figure, direct correlation with the foregoing models (a)
through (c) is given. In all figures presented herein, the normalizing velocity is 0.86 U = 0.86

ii,, which, as described in the previous section, corresponds to the bulk velocity at the pipe exit.

Figure 6a represents the case of the deepest cavity W' = 1.25. The top plot shows that the
normalized frequencies fL/U are related to each other in an approximately harmonic fashion.
The lower plot of Figure 6a shows correlations with stages n = 2, 4, and 6. Reasonable
agreement is attained with the correlation fL/(0.86 U) = 0.6 n.

The correlations of Figure 6b correspond to the shallower cavity W' = 0.5. In this case
the upper plot shows fits according to fL/U = 1.00, 1.45 and 1.98. In other words, in addition to
a harmonic mode, an apparent intermediate mode fL/U = 1.45 exists. In the lower plot of Figure
6b, however, the data are recently well fitted using stage, or mode, numbers n = 2, 3 and 4 and
with the end correction corresponding to n= 1/4.

For the case of the shallowest cavity, W' = 0.25, for which detectable peaks could still be
identified, the data are represented in Figure 6¢c. The correlation at the top of Figure 6¢ shows
that harmonics of the fundamental mode fL/U = 1.0 are not present. Rather, only a so-called
intermediate mode fL/U = 1.47 is apparent. As indicated in the bottom plot of Figure 6c, the

case of n = 2 is well correlated for the equation with (n = 1/4), while neither n = 2 or n = 3 shows



an acceptable correlation with the intermediate mode, represented as fL/U = 1.47 in the

corresponding upper plot of Figure 6¢.

5.1.3 Coexistence of Multiple Modes
A common feature of the correlations discussed in Sections 5.1.2 is the coexistence of two or

more frequency components at a given vaiue of velocity U. The criterion employed for defining
these frequency components simply involves detection of an organized peak(s) in the pressure
spectrum. These peaks are associated with the hydrodynamic unsteadiness of the shear layer
past the cavity. In other words, only selected frequency components in the corresponding figures
of Section 5.1.2 represent flow tones for which the organized unsteadiness of the shear layer, i.e.,
a Strouhal mode, couples with the acoustic resonant mode of the pipe-cavity system.

It is important to recognize that multiple hydrodynamic modes can exist in absence of
acoustic resonant phenomena. This is evident from the early correlations of Rossiter (1962,
1964) for the limiting case of zero Mach number, and the wide range of theoretical and
experimental investigations of impinging flows over the past two decades, including not only
cavity, but also jet-edge and jet-orifice systems. Most recently, the theoretical model of Howe
(1997) analyzes, using a vortex sheet representation, the multiple modes present for the case of
flow past a cavity at low Mach number. As shown by Knisely and Rockwell (1982), actual
experimental characterization of the unstable shear layer past a cavity, emerging from initially
laminar conditions, show the existence of a substantial number of frequency components at a
given value of cavity length. These multipie frequency components need not be harmonically
related to each other; in fact, sum and difference frequency components are also present. Such
strictly hydrodynamic considerations provide a basis for interpreting the multiple frequency
components, or modes, present at a given value of inflow velocity U in Section 5.1.2. Detectable
frequency components generally line up with one of the resonant acoustic modes of the pipe-

cavity system. If conditions are appropriate for coupling, a pronounced flow tone may resuit.

5.2 SCALING OF FREQUENCY OF OSCILLATION ON BASIS OF JET DIAMETER

The correlations of the preceding section attempt to provide overall guidance for the occurrence
of self-sustaining oscillations in accordance with variations of inflow velocity. An alternate, and
more rigorous, indicator of the origin of the oscillation involves scaling the frequencies on the
basis of stability concepts. It should be emphasized again that, for all cases considered herein,
the inflow is fully turbﬁlent, and it is assumed that application of inviscid stability theory to the



time-averaged base flow, which itself is influenced by the presence of turbulence, can provide
guidance for determining the frequency of the predominant fluctuation. This type of scaling is
based on a representative thickness of the shea_r fayer, in contrast to the use of a geometrical scale
such as cavity length or depth. These scaling parameters are: momentum thickness o, evaluated
at the exit of the inlet pipe (see Section 3); and the pipe diameter D, which is an approximation to
the jet diameter, i.e., the distance between the inflection points of the jet shear layer. Generally
speaking, use of the momentum thickness 8o is most relevant for the case of a thin shear layer
instability, which initially occurs in the immediate vicinity of the nozzle exit, and is expected to
give rise to formation of smaller-scale vortices. On the other hand, the jet diameter D provides a
suitable scale for a fully-evolved instability of the entire jet, typically associated with large-scale
vortex formation.

The present emphasis is on the large-scale mode of oscillation. This mode is defined to
occur at a long cavity length, which allows development of a fully-evolved axisymmetric
instability (Section 4.4). It is expected to scale on the jet diameter D. Considerable experimental
work for the case of a free axisymmetric jet subjected to loudspeaker excitation or, alternately, to
feedback from an impinging jet, allows one to deduce the predominant frequency fD/U, which is
taken to represent the generation of large-scale vortical structures, often referred to as "puffs”.
These experiments, along with an overall correlation of the data, are described by Blake (1986).
Relevant investigations include Browand and Laufer (1975), Crow and Champagne (1971), Lau,
Fisher and Fuchs (1972), and Nossier and Ho (1982). Based on this range of experimental
studies, the dimensionless frequency of the large-scale vortex formation in the jet is expected to
lie in the range of 0.3 < fD/U £ 0.6.

Scaling of the frequencies of the predominant peaks exhibited in Figures 4a through 5g
according to fD/U showed that they generally lie in the range of 0.35 < fD/U < 0.4. These values
are in remarkable agreement with the expected values of 0.3 < fD/U < 0.6 defined in the

foregoing. Figure 7 exhibits the data corresponding to the predominant amplitudes, which have
dimensionless frequencies fD/U in this range. This plot emphasizes the collapse of the data for
different thicknesses of the inflow boundary layer, and its relative invariance with flow velocity,
or more appropriately, with Reynolds number UD/v.

Perhaps the most remarkable observation, if one views the entire set of data, is that the

séaling relation fD/U proves accurate irrespective of the cavity depth. That is, the uastable



frequency of these so-called large-scale modes is fD/U = 0.4, even for relatively shallow cavities
for which large-scale vortex formation is not expected to occur. Peaks of the large-scale mode at
fD/YUJ = 0.4 are det_ectable for values of cavity depth as small as W/D = 0.25. Moreover, even for
the shallowest cavity W/D = 0.125, for which pronounced peaks do not occur, the excitation of
the pipe modes shows preferential values clustered in the vicinity of fD/U = 0.4. Details of the
development of this instability, and mechanisms for sustaining it, deserve further consideration.

In this regard, the possible existence of 2 global (absolute) instability should be
addressed. It contrasts with the aforementioned instabilities, which are of the convective type.
In essence, this type of instability is likely to occur in configurations where regions of negative
streamwise velocity occur as a result of, for example, the local reverse flow in the recirculation
zone in a shallow cavity. In an analogy with the w&esponding global (absolute) instability
occurring in the wake behind a cylinder of diameter D, for which the instability scales according
to fD/U, it is expected that the cavity unsteadiness would scale according to fW/U if it is globally
unstable. That is, the only representative transverse length scale would be the cavity depth W.
Preliminary indications suggest that such a global instability does not exist, since the frequency
scales remarkably well according to fD/U = 0.4 for all values of cavity depth W. Scaling of the
form fW/U would produce a fivefold variation of the values of fW/U, corresponding to the range
of W/D extending from 1.25 to 0.25. Nevertheless, the role of the recirculation zone in

maintaining the cavity oscillations is worthy of further consideration.

6. ONSET OF LOCKED-ON FLOW TONES
A primary issue is whether highly coherent, locked-on flow tones can arise in the presence of a
fully-turbulent inflow, as described in the references cited in Section 1. Nearly all previous
investigations of this class of flows have considered the case of laminar, transitional, or
undefined inflow conditions. Moreover, even in those limited cases where the inflow boundary
layer was fully turbulent, means to characterize the onset of lock-on were not explicitly

addressed using simple criterion.

6.1 GENERAL FEATURES OF LOCK-ON
It is generally accepted that locked-on flow tones exhibit the following characteristics:

(8) Amplitude increase with increase of inflow velocity. An abrupt increase in amplitude of the
unsteady pressure occurs as the flow velocity is increased in the region of the onset of lock-

on. It is expected that, if spatial resolution along the velocity coordinate is adequate, the plot



of unsteady pressure amplitude versus velocity will not necessarily be a discontinuity.
Rather, it should be possible to characterize a slope of peak pressure amplitude P versus U
associated with the occurrence of locked-on flow tones. This slope could be considered as a
deviation from the slope prior to the onset of lock-on, where it is due to a change in either

the background turbulence level or an underlying coherent instability, i.e.,, the Strouhal

source.

(b) Amplitude peak above background. Attainment of sufficiently high amplitude of the

(c)

pressure peak P above the background pressure leve! pye would be a further criterion for
identification of a locked-on flow tone. As noted in (&), this background pressure amplitude
would be due to either the underlying turbulence or the inherent instability (Strouhal
source), or a combination of them. It is expected that the incompressible pressure amplitude
due both to turbulence and to the inherent instability will change with velocity according to
a power law, The exponent in the power law would take on different values for each of these
two origins. It is, however, difficult to decompose the background pressure into turbulence
and inherent instability components, due to the manner in which the instability wave grows
upon the turbulent background. Nevertheless, it would be desirable to characterize the peak
pressure amplitude P that occurs for locked-on flow tones in terms of a value of excess
pressure above the background peg, i.€., turbulence/inherent instability wave components.
An important issue regarding the pressure amplitude is the fact that not only the magnitude
of the inherent instability (Strouhal source), but also the magnitude of the turbulence will be
enhanced by the presence of a resonator, even when lock-on does not occur. It is therefore
desirable to have a criterion that would allow a straightforward estimate of the maximum
attainable pressure amplitude due to turbulent/instability excitation of a resonator in the
absence of lock-on; then, any excess pressure p above this value would presumably be

associated with the lock-on features of the inherent instability (Strouhal source).

Frequency coincidence. Coincidence of the frequency of the inherent instability wave,
which presumably gives rise to vortex formation, with the frequency of a given mode of the
resonator, is a further criterion for the occurrence of locked-on flow tones. In situations
where the inflow is laminar, it is relatively easy to distinguish between the frequency of the
inhcreqt instability and the resonator frequency prior to the occurrence of lock-on. Although

well-defined peaks due to both of these origins may exist in the region away from lock-on, 2



single frequency occurs during lock-on. In the event that the inflow is fully turbulent, the
frequency of the inherent instability is more difficult to detect. In fact, a pre-existing
coherent oscillation may not be readily detectable prior to coupling with the resonator.

6.2 NON-LOCKED-ON BUFFETING OF A RESONATOR: A MECHANICAL ANALOGY
Incompressible turbulence or an instability wave can effectively excite a resonator. A
consequence of this excitation may be a detectable peak or bump in the spectrum of the pressure
fluctuation. A mechanical analogy to this process involves flow-structure interaction, or more
explicitly, turbulent buffeting of an elastically-mounted body. Whereas very little effort has
been devoted to understanding the nature of turbulent buffeting of a resonator, the Buﬁ'eting of a
body or structure has received considerable attention. It can serve as a basis for characterizing
the limiting pressure amplitude due to turbulent buffeting of a resonator.

Consider a discrete mechanical system with a mass m, a spring having a stiffness C, and a
dashpot having damping coefficient B. This system has a natural frequency f, = o»/2n. The Q-
factor of this mechanical system is determined by the damping coefficient {, i.e, Q = 1/2{. This
- system may be excited by, for example: a relatively broadband turbulence, a combination of
turbulence and an instability wave; or simply an instability in the form of a vortex. Irrespective
of the type of excitation, one may represent the spectrum of the consequent turbulent/instability
force F as Si{f). The mechanical admittance % of the system is, in accordance with the
terminology of Naudascher and Rockwell (1994):

[Xm(@)| =1/ CIA1 - (0] 0, )} +[0/Qo, '} (6.1

in which C is the mechanical stiffness of the spring. The relationship between the spectrum of
the displacement response S.(f) and the turbulent forcing function is simply:

$x() = [k () SHD. (6.2)

The form of Sx(f) is arbitrary. According to equation (6.1), for defined values of C and o, the
magnitude of the displacement at a given value of frequency ® = 2xf will be maximized when
the value of Q takes on its largest value. In other words, when the Q-factor becomes large, it
represents a very lightly damped system and the displacement amplitude becomes large. The
converse holds, of course, when Q is small An analogous relationship to equation (6.1), and

similar reasoning, holds for a distributed (multi-degree freedom) resonator as well.



In a general sense, a fluid resonator can be considered analogous to the resonant
structural system described in the foregoing. All resonators of the standing wave type are
inherently distributed, rather than discrete. Nevertheless, these distributed resonators do have, at
a single value of excitation frequency, a specific value of damping, or Q-factor. If an analogous
linear relationship between spectra of the response pressure amplitude, resonator admittance, and
the incompressible turbulence/ instability wave exists in parallel with equation (6.2), it is
possible to make the following, simple argument. Consider the schematic of the pressure
spectrum and its Q-factor deﬁne;d in Figure 8. The response pressure amplitude at frequency £,
i.e., Sy(f), due to buffeting of a resonator having a quality-factor Q can itself have a maximum
quality factor of Q. In other words, for the case of linearized, turbulent buffeting of a resonator,
no mechanism exists for inducing a pressure amplitude response having a Q-factor in excess of
the Q-factor of the resonator. It is known from an earlier phase of this investigation that the
maximum Q-factor of & resonator occurs in absence of mean flow; therefore, the no flow value
of Q would provide an upper (bounding) limit for the Q-factor of the pressure amplitude
response, i.e., the Q-factor of th_e spectrum of the pressure. In essence, this means that if the
spectrum of the response pressure has a Q-factor in excess of this upper bound, a mechanism for
coupling, i.¢., the onset of locked-on flow tone generation, must be present.

6.3 CRITERIA FOR EVALUATION OF FLOW TONE LOCK-ON

The background information outlined in the foregoing leads to several criteria for characterizing
the onset of locked-on flow tones. Generic cases were selected from the relatively large number
of experiments described in Section 4.3. The following types of assessments are expected to

lead to identification of locked-on flow tones.

(a) Varation, i.e., slope, of peak pressure amplitude P of the pressure spectrum as a function of
inflow velocity U,

(b) Value of the peak pressure amplitude P relative to the local amplitude of the background
pressure pug;

(c) Variation of the Quality (Q)-factor of the pressure spectrum as a function of either inflow

velocity U or cavity length L; this type of Q-factor is defined in Figure 8.

Emphasis herein will be on criteria (b) and (c).



6.4 CHARACTERIZATION OF THE ONSET OF LOCK-ON FOR A GIVEN RESONANT

ACOUSTIC MODE
The range of data described in Section 4.3 can be examined in order to determine the onset of

lock-on, in accord with the approaches defined in Section 6.3. Of particular interest with regard
to the onset and eventual attainment of lock-on are the following:

(a) The consequence of cavity depth on the lock-on process, and the nature of lock-on at a

sufficiently large flow velocity such that a relatively large pressure peak is generated.

(b) The initial onset of a locked-on state as flow velocity is varied. This initial state will most
likely exhibit a relatively low amplitude peak of pressure amplitude.

In the following, these features are addressed using selected data from Section 4.

6.4.1 Effect of Cavity Depth on the Lock-on of Large-Scale Mode

Figure 9a shows the variation of peak pressure amplitude P (determined from spectra p*(H)) and
quality factor Q as a function of the flow velocity for various values of cavity depth W. The
cavity length L’ has its largest value L], =L_/D =25 and is maintained constant. The plots of

P in the left column are to be compared respectively with Figures 4c, 4e and 4f representing plots
of cavity depths W' = 0.5, 0.25, and 0.125. The peak pressure amplitude P may occur at a
frequency that deviates from the frequency of the resonant acoustic mode when flow velocity is
increased. It is therefore necessary to search for the peak P over a defined band of frequencies at
a given velocity. The lower and upper frequencies of this band are designated by fi, and fy, and
are defined in the inset of each figure. Moreover, a zoomed-in view, which corresponds to
stretching of a portion of the image of amplitude response in a corresponding figure in Section 4,
is provided for each of the plots in the left column of Figure 9a. In each of these insets, the
direction of increasing velocity is vertically upwards and the left and right margins correspond to
values of f_ and f. Considering the peak magnitude in each of the pressure plots in the first
column, it is evident that as the cavity depth is decreased, this amplitude decreases as well.
Moreover, only for the deepest cavity, W™ = 0.5, represented by the top plot, does a well-defined
peak region exist. Milder peaks are evident in the middle and bottom plots.

Variations of the Q-factor with velocity are given in the right column of Figure 9a. The
Q-factor is calculated from the spectrum, p*(f) versus f, as defined in Figure 8. Let f, be the
frequency at which the peak occurs and f; and f; represent the frequencies at which half-values
of p*(f) occur. The quality Q-factor is f/(f2 ~ fi). As determined in the preliminary stage of this

-~ 4



program, substantial uncertainties in Q-factor are unavoidable, and the Q-factor plots of Figure
9a show significant deviations. For the top plot of the Q-factor, corresponding to the cavity
depth W' = W/D = 0.5, large values of Q of the order of 10* are attainable. Sincé the
theoretically determined Q-factor for a simple pipe, in absence of both a cavity and throughflow,
has a much lower value of approximately 80, and in accordance with the discussion of Section
6.2, the peak having Q = 107 is therefore taken to represent a locked-on flow tone. In contrast, at
smaller values of cavity depths W’ = W/D = 0.25 and 0.125, discernible, small-amplitude and
rounded peaks of the Q-factor are generally evident at locations of the corresponding mild peaks
of the pressure amplitude distributions in the left column of Figure 9a. It is clear, however, that
sufficiently large Q-factor above the background value are not attained, and it is therefore
concluded that no locked-on flow tone exists for these states. It should be cautioned, however,
that these observations are only for the longest cavity length, for which the large-scale mode of
vortex formation presumably becomes well-developed. At short values of cavity length, where
smaller-scale vortices may be present, locked-on states may be attainable. This issue is currently
under investigation.

Figure 9b provides further representations of the variation of peak pressure amplitude P.
The top left plot directly compares P versus velocity U. Note that the values of P for the
shallower cavities W' = W/D = 0.25 and 0.125 have been multiplied by a factor of 10 for this
comparison. The case of the deepest cavity W' = 0.5 produces a sharply-defined peak at a
relatively low value of velocity U = 130 fi/sec. For the case of the shallower cavity W =025 a
peak is not obtained until a much higher velocity of U = 200 ft/sec and, moreover, this peak is
not sharply-defined. Finally, for the shallowest cavity W' = 0.125, the peak is extremely mild at
a velocity of approximately U = 170 fi/sec.

The upper right plot of Figure 9b compares the shape of each peak on ordinates of peak
amplitude P versus normalized velocity U/Umx. This plot again brings forth the sharpest
response for the deepest cavity. In the lower plot Figure 9b, the plot of log P versus log U
emphasizes the increase in the pressure amplitude prior to attainment of the pressure peak.
Curves of approximately the same slope are fitted through each set of data for each value of
cavity depth W.

Finally, Figure 9¢ shows the varation of slope dP/dU for the two deepest cavities
W' = 0.5 and 0.25. Both the magnitude and gradient of the slope are sharpest for the deeper

cavity. The magnitude of the maximum slope is approximately two orders of magnitude higher
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for W' = 0.5, relative to W' = 0.25. The individual data points on each of these plots correspond
to the local value of slope calculated from the original data set, and the smooth curves represent a
best fit through these independently determined, local slopes.

6.4.2 Initial States of Lock-on

The series of plots shown in Figure 10 address the nature of the initial locked-on state as the
velocity is varied for several representative inflow and cavity configurations. Often, these states
have relatively low amplitude peaks. The pressure amplitude plots shown in the left column
correspond respectively, from top to bottom, to Figures 4c, 5c, and 4a. The top and bottom plots
of peak pressure amplitude P versus flow velocity U in Figure 10 compare the effect of cavity
depths W' = W/D = 0.5 and 1.25. It is evident that, for the larger value of cavity depth
W' = 1.25, the onset of a first, pronounced pressure peak occurs at a relatively low inflow
velocity of the order of U = 70 fi/sec (bottom plot), in comparison with the case W’ = 0.5, for
which the first peak is at U = 120 fi/sec (top plot). The presumption is that the deeper cavity
allows more effective development of a large-scale vortex over the relatively long cavity. For
both the W' = 1.25 and 0.5 cavities, the magnitude of the Q-factor shows a relatively large value
at the location of the first peak.

The middle set of plots of Figure 10 corresponds to the case of the cavity depth W' =05
with the short inlet pipe, for which the momentum thickness is approximately one-third the value
of the long inlet pipe employed for the case of the top row of plots of Figure 10. In this case, a
detectable peak is evident at a relatively low velocity U = 60 ft/sec and, correspondingly, the plot
of Q-factor shows a significant peak as well. This low value of onset velocity may be due to the
lower total damping of the short pipe-cavity system, relative to the long pipe-cavity system. In
addition, the initial development of the separated shear layer from the short inlet pipe has an
influence on the manner in which large-scale vortices eventually evolve; this difference in
evolution might promote a well-defined oscillation at a substantially lower velocity.

In summary, these results of Figure 10 suggest that larger values of ratio of cavity depth
to pipe diameter, i.e., larger W* = W/D, promote the onset of flow tones at significantly lower
velocities for a pipe-cavity system of constant length. In addition, larger W/ together with a

shorter length of the pipe-cavity system promote lower onset velocities.
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6.5 SUMMARY OF OBSERVATIONS OF LOCK-ON BASED ON SELECTED CRITERIA

The evaluations of lock-on, presented in Figures 9a and 10, are representative of those occurring
over a broad range of inflow velocity and cavity length, and it is possible to arrive at general
observations, which should be applicable to all of the specific cases addressed in this program.
Two principal criteria for defining lock-on are the focus of our present considerations: (a) a
quality Q-factor of the square of the pressure amplitude as a function of frequency, i.e, the
spectrum of the power p2(f) of the pressure fluctuation; and (b) the amplitude of the pressure
peak P normalized by the background pressure pug, i.e., P/pg. The background pressure peg is
defined in the top plot of Figure 9a. It represents the value, obtained by extrapolation, of the
magnitude of the background pressure that would exist at the frequency of the peak pressure in
the absence of any significant lock-on. In the following, these criteria are defined, then assessed

for representative cases.

6.5.1 Definition of Lock-on According to Quality (-Factor

According to the concept described in Section 6.2, in the absence of any coupling between flow
unsteadiness and a resonator, the quality-factor Q of the pressure response spectrum cannot have
a value exceeding the Q of the resonator. In principle, this criterion provides a basis for
determining the occurrence of the initial state of lock-on, provided uncertainties in deviations of
evaluated Q-factors are accounted for. In an initial phase of the present investigation, values of
Q-factor were determined for the pipe-cavity system subjected to external excitation, as well as
to self-excited excitation via throughflow. Despite use of adequate frequency resolution and
averaging over a very large number of cycles, significant deviations about a mean value were
discernible. In fact, these deviations are evident in virtually all of the Q-factor plots in Figures 9a

and 10. Such deviations are due, at least in part, to the uncertainty of evaluating the Q-factor.

In the present investigation, the nominal upper limit of the Q-factor approximately corresponds
to the theoretically-determined value in the absence of mean flow, if one excludes regions where
either well-defined peaks or certain “bumps” occur. Values of Q-factor can extend substantially
below this limit due to the effects of mean flow. Inspection of the trends of Q-factors for the data of
Figures 9a and 10 suggest the occurrence of organized “bumps”. The maximum values of these

“bumps’” do not exceed a value of Q of approximately 180, i.e.. Q = 180.

On the basis of these data, values of Q-factor substantially in excess of Q = 180 are taken

to represent occurrence of a locked-on state. In fact, considering the entire range of data
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displayed in Figures 9a and 10, the smallest value of Q-factor of the weil-defined peak
amplitudes is Q = 500, and the maximum value is Q = 2,000.

6.5.2 Lock-on According to Peak Pressure Amplitude

The variations of peak pressure smplitude P can be directly compared with the corresponding
variations of Q in each of the plots of Figures 9a and 10. It is readily apparent that large peaks of
Q essentially correspond to large values of peak pressure P above the background.

Values of (P/pug)msx Were evaluated for each of the cases of 9a and 10. The background
pressure pyg is defined in the top plot of Figure 9a. Parallel with the aforementioned
considerations for the Q-factor, where small-amplitude "bumps" of Q-factor are discernible, it is
possible to consider the comresponding "bumps” of the distributions of peak pressure P versus
velocity U in 9a and 10. For all cases considered, the maximum dimensionless amplitude of a
"bump" was P/py; = 2.0.

Consider the well-defined peaks of distributions of amplitude P, given in 9a and 10. The
values of (P/pvg)max range from 40 to 100. In parallel with reasoning for the aforementioned
Q-factor criterion, a peak amplitude ratio P/pyg in excess of 2.0 is taken to be an indication of a
pronounced lock-on and, in fact, the smallest value of 40 indicates that this limit is indeed well

exceeded.

6.6 CHARACTERIZATION OF LOCK-ON FOR A GIVEN STROUHAL NUMBER
In the foregoing sections, 6.4 and 6.5, emphasis has been on the onset of lock-on along a given
resonant mode, i.e., pipe mode of the pipe-cavity system. The inflow velocity U was varied, and
the consequent variations of the peak pressure amplitude P and quality factor Q were observed as
a function of U. This approach provides the most straightforward, and conventional,
interpretation of lock-on. It does not, however, provide a comparison of pressure peaks
corresponding to a number of pipe modes, which are negotiated by varying the inflow velocity
U, while maintaining a constant value of Strouhal number fL/U. A further reason for considering
this type of representation is the possible occurrence of ordered deviations of pressure amplitude
p between resonant modes as either inflow velocity U or cavity length L is increased.

This type of representation involves taking vertical cuts through the types of three-
dimensional plots shown in Section 4. These cuts are taken coincident with a constant Strouhal

line, i.e., a line corresponding to constant value of fL/U. They are represented as straight black



lines on the plan views of Figures 4a, 4c, and 4e for a long pipe on either end of the cavity and
Figures 5a, 5¢, and Se for a short pipe on either end of the cavity.

Consider first the case corresponding to Figure 4c, i.e., a cavity length L = 2.5 and depth
W' = 0.5. The pian view of Figure 11a is the same view as Figure 4c, but with different reference
lines, corresponding to the straight black solid and dashed lines. The dashed line indicated by
the symbol I passes through the peak values of pressure amplitude. Lines designated as a =—-0.5
and @ = — 0.742 define the boundaries of the domain on the velocity versus frequency plane.
Vertical cuts are made through these lines, as well as lines lying between them. Representations
of these cuts are given in Figure 11b. It is a three-dimensional plot of log p as a function of log f
and log u. The bold lines therein represent typical spectra on the log p versus log f axes.
Orthogonal to these bold black lines are thin black lines, which correspond to the aforementioned
vertical cuts.

Cuts at various values of a, using the data of Figure 11a, are given in Figure 11¢. For all
values of a, over the lower range of inflow velocity U, the pressure peaks are not sharp. For the
cuts corresponding to @ = -0.66, —0.68 and —0.70, there is onset of large amplitude, sharply-
defined peaks at a sufficiently high value of flow velocity.

A zoomed-in view of case a = —0.68 is shown in Figure 11d. As the value of velocity U
is increased, peaks tend to occur in pairs, and these paired peaks coalesce at the highest values of
velocity to produce single, sharply-defined peaks. In analogy with the classical Q-factor for a
typical spectrum, p*(f), it is possible to define a sharpness factor as: §; = U/(U; — Up). In
addition, an alternate sharpness factor may be defined according to: 8, = A/(U; — U,), in which
A is the amplitude of the local pressure peak. Representative values of S; and S; are indicated
adjacent to the two peaks designated in Figure 11d, one occurring at a relatively low value of
velocity U, and the other at the relatively high value of U. The values of both S, and S; increase
by approximately a factor of 5 as velocity U is increased.

The resuits for a shallower cavity are represented by Figure 12a, which is the same data
set as exhibited in Figure 4f. A reference line is indicated as I, and boundaries of the region
considered extend from a = -0.5 to a = —0.7. Sectional cuts are shown in Figure 12b.
Trrespective of the cut employed, sharply-defined peaks do not emerge, suggesting a non-locked-
on response. A zoomed-in view of a representative series of peaks, corresponding to the cut

“a=-0.76, is given in Figure 12c. Values of the sharpness factor S, exhibit little change over the



relatively wide range of inflow velocity U. In fact, the sharpness factor defined as S; actually
decreases at the higher value of inflow velocity.

For the case of the short pipe mounted on either end of the cavity, a representative data
set corresponding to Figure 5c was selected. The plot of Figure 13a corresponds to Figure 5c. A
predominant pressure amplitude peak intersects the line designated as I. The boundaries of the
domain extend from a = —0.6 to a = —0.8. As shown in Figure 13b, emergence of a sharply-
defined peak is evident at @ = —0.76, —0.78 and —0.8. A zoomed-in view of the case a = -0.78 is
given in Figure 13c. The sharpness factor S; increases by approximately a factor of 8 and S; by
about a factor of 7 as the value of U is increased.

- 7. CONCLUDING REMARKS
An overview of the principal findings of the present investigation is provided in this section.
Detailed values of parameters and other specifics related to these findings are summarized at the
end of each of the preceding sections. In the following, the onset of self-excited oscillations is
addressed with respect to the inherent instability of the shear layer past the cavity and its relation
to the generation of relatively large-scale modes of flow tone lock-on, the dimensionless

frequencies and pressure amplitudes associated with these modes, and the criteria for lock-on.

7.1 TRANSFORMATION FROM FULLY-TURBULENT INFLOW TO HIGHLY COHERENT
FLOW TONES

A central issue in this investigation is generation of highly éoherent flow tones from a fully
turbulent inflow. Considerable effort was devoted to the generation of fully turbulent shear flow
at the inlet of the cavity, including the case of a fully-developed turbulent pipe flow. For
appropriate ranges of parameters, highly coherent flow tones emerge. It is hypothesized that the
inherent, inviscid instability of the shear layer past the cavity is reinforced by coupling with an
acoustic resonant mode of the pipe. This process would then dominate the background
turbulence of the inflow. The fact that the inviscid instability of the shear layer plays a clear role
is suggested by agreement between dimensionless frequencies of the flow tone and frequencies
of instabilities of the shear layer predicted from inviscid theory. This observation suggests that

the time-averaged turbulent background flow can serve as the mean flow for the development of

the inviscid instability in the shear layer.



7.2 GENERATION AND SCALING OF FLOW TONES IN THE LARGE-SCALE MODE

Of primary interest in this investigation is generation of flow tones in a large-scale mode, which
is defined to occur at relatively long cavity lengths. Its frequency scales with the pipe diameter.
This mode occurs for extremes of boundary layer thickness generated at the cavity inlet, thereby
reaffirming the scaling based on pipe diameter.

Flow tones in the large-scale mode can be generated in very shallow, long cavities, where
the length of the cavity is an order of magnitude larger than its depth, and the cavity depth is as
small as one-fourth the pipe diameter. Generally speaking, the peak amplitude of the fluctuating
pressure decreases as cavity depth decreases. In the limit, if the cavity depth is sufficiently
shallow, of the order of one-eighth of the pipe diameter, flow tones cannot be generated in the
large-scale mode. |

Scaling of the pressure fluctuations involves two types of dimensionless groups. For
sufficiently deep cavities and minimum damping corresponding to the short pipe system, the
dimensionless pressure amplitude of a flow tone, using the inflow dynamic pressure for
normalization, 1s p/(pU2/2) ~ 0.6; correspondingly, the pressure amplitude normalized on inflow
velocity and the speed of sound can attain values as high as p/(pUc) ~ 0.04. On the other hand,
for shallower cavities and relative high damping corresponding to the long pipe system, flow
tones having low amplitudes of p/(pU*/2) ~ 0.007 and p/pUc ~ 0.0003 can be generated. For this
case, it is hypothesized that a degree of intermittency of the lock-on process may contribute to
low-pressure magnitudes, even though the pressure response characteristics are sharp and
indicate lock-on. A detailed summary of the concepts and issues related to this type of scaling is
given in Section 4.4.

Scaling of the frequencies of the flow tones of the large-scale mode involve, first of all,
scaling based on the pipe diameter D, i.e., fD/U = constant. Remarkable is the fact that this
scaling holds for all values of cavity depth W for which flow tones are generated, even for
cavities sufficiently shallow such that large-scale vortex formation is not expected to occur.
Apparently, a mechanism for a long wavelength, large-scale mode persists. Moreover, even for
the shallowest cavity for which flow tones do not occur, excitation of the pipe modes occurs over
a band of preferential frequencies that satisfy the fD/U scaling. This scaling is described in
detail in Section 5.2.

The frequencies of flow tones can also be scaled in accordance with the cavity length,
i.e., fL/U =K. A variety of scaling correlations have been compared with the present set of data,



but no single correlation adequately characterizes the flow tone frequency fL/U over the wide
ranges of parameters addressed herein. Generally speaking, however, the large-scale mode tends
to occur at the second mode, or stage, n = 2 defined by these correlations. The results of this type

of dimensionless scaling are described in Section 5.1.2.

7.3 NATURE OF LOCKED-ON FLOW TONES
Criteria, or indicators, for assessing the occurrence of locked-on flow tones have been addressed

and evaluated. The first is the quality Q-factor of the power spectrum of the pressure fluctuation.
After considering a range of representative, locked-on flow states, it is apparent that two types of
peaks can occur in variations of Q-factor with inflow velocity or cavity length. The first are
small amplitude, organized "bumps" of the Q-factor. The maximum value of Q-factor that occurs
for these "bumps" is approximately Q = 180. The second type of peak in the variation of Q-
factor is much larger; it exceeds by a substantial margin the values of the Q-factors for the so-
called bumps. In fact, these Q-factors range from Q = 500 to 2,000. The fact that these values of
Q are decisively larger than those occurring in the aforementioned band of Q-factors suggests
that they represent robust locked-on flow tones.

The Mnd criterion is the normalized pressure amplitude (P/pPvglmax, in which P is the
amplitude peak of the pressure spectrum and ppg is the background pressure magnitude that
would exist in the absence of flow tone coupling. Analogous observations hold for the ratio
(P/pv)max. for cases where inflow velocity is varied. Small "bumps" of this ratio have a
maximum value of (P/prmax = 2.0. On the other hand, the onset of pronounced peaks yields
values of (P/pogimex from 40 to 100. For cases where cavity length is varied, similar bumps and
peaks of (P/pwglmax OCcUr, but their correspondence with the features of the Q-factor is not as

consistent.
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10. FIGURE CAPTIONS

Figure 1: (a) Principal elements of self-sustaining oscillation of turbulent flow past cavity; and (b)
hypothesized flow pattern within a very shallow cavity.

Figure 2a: Overview of pipeline-cavity system
Figure 2b: Details of cavity subsystem.

Figure 3a: Variation of normalized mean velocity across pipe on semi-log coordinates to emphasize
region of logarithmic velocity variation.

Figure 3b: Direct comparison of time-mean velocity variations across short inlet pipe (top plot) and iong
inlet pipe (bottom plot).

Figure 4a: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function
of frequency and velocity. Lines shown on plan view represent fits through peak values of pressure
amplitude. Cavity length L* = L/D = 2.5 and depth W' = W/D = 1.25, where D is pipc diameter. Long
pipes of equal length are located at either end of the cavity.

Figure 4b: Plan view of logarithmic pressure amplitude as a function of velocity and frequency (top
image); and plan view of magnitude of the derivative of the logarithmic pressure amplitude with respect
1o velocity, logp ¥8U (bottom image). Cavity length L” = L/D = 2.5 and depth W' = W/D = 1.25,
where D is pipe diameter. Long pipes of equal length are located at either end of the cavity.

Figure 4c: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function
of frequency and velocity. Lines shown on plan view represent fits through peak values of pressure
amplitude. Cavity length L* = L/D = 2.5 and depth W' = W/D = 0.5, where D is pipe diameter. Long
pipes of equal length are located at either end of the cavity.

Figure 4d: Isometric view of logarithmic pressure amplitude as a function of velocity and frequency (top
image); and plan view of magnitude of the derivative of the logarithmic pressure amplitude with respect
to velocity, &(logp )/6U (bottom image). Cavity length L' =L/D=2.5 and depth W' = W/D = 0.5, where
D is pipe diameter. Long pipes of equal length are located at either end of the cavity.

Figure 4e: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function
of frequency and velocity. Lines shown on plan view represent fits through peak values of pressure
amplitude. Cavity length L™ = L/D = 2.5 and depth W' = W/D = 0.25, where D is pipe diameter. Long
pipes of equal length are located at either end of the cavity.

Figure 4f: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function
of frequency and velocity. Cavity length L = L/D = 2.5 and depth W' = W/D = 0.125, where D is pipe
diameter. Long pipes of equal length are located at either end of the cavity.

Figure 4g: Overview of effect of cavity depth on three-dimensional representation of pressure amplitude

as a function of velocity and frequency. In all cases, cavity length is constant at L’ =L/D=25. Cavity

:\ivgth varies according to W = W/D = 1.25 (top image), W = W/D = 0.25 (middle image), and
=W/D =0.125 (bottom image).
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Figure 5a: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function
of frequency and velocity. Line shown on plan view represents a fit through peak values of pressure
amplitude. Cavity length L’ = L/D = 2.5 and depth W' = W/D = 1.25, where D is pipe diaméter. Short
pipes of equal length are located at either end of the cavity.

Figure Sb: Plan view of logarithmic pressure amplitude as a function of velocity and frequency (top
image); and plan view of magnitude of the derivative of the logarithmic pressure amplitude with respect
to velocity, &logp)8U (bottom image). Cavity length L™ = L/D = 2.5 and depth W' = W/D = 1.25,
where D is pipe diameter. Short pipes of equal length are located at either end of the cavity.

Figure 5¢: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function
of frequency and velocity. Line shown on plan view represents a fit through peak values of pressure
amplitude. Cavity length L” = L/D = 2.5 and depth W' = W/D = 0.5, where D is pipe diameter. Short
pipes of equal length are located at either end of the cavity.

Figure 5d: Isometric view of logarithmic pressure amplitude as a function of velocity and frequency (top
image); and plan view of magnitude of the derivative of the logarithmic pressure amplitude with respect
to velocity, &(logp)/0U (bottom image). Cavity length L® =L/D =2.5 and depth W* = W/D = 0.5, where
D is pipe diameter. Short pipes of equal length are located at either end of the cavity.

Figure Se: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function
of frequency and velocity. Line shown on plan view represents a fit through peak values of pressure
amplitude. Cavity length L" = L/D = 2.5 and depth W™ = W/D = 0.25, where D is pipe diameter. Short
pipes of equal length are located at either end of the cavity.

Figure 5f: Plan view of logarithmic pressure amplitude as a function of velocity and frequency (top
image); and plan view of magnitude of the derivative of the logarithmic pressure amplitude with respect
to velocity, & logp)/6U (bottom image). Cavity length L' = L/D = 2.5 and depth W' = W/D = 0.25,
where D is pipe diameter. Short pipes of equal length are located at either end of the cavity.

Figure 5g: Isometric view (fop image) and plan view (bottom image) of pressure amplitude as a function
of frequency and velocity. Line shown on plan view represents a fit through peak values of pressure
amplitude. Cavity length L = L/D = 2.5 and depth W* = W/D = 0.125, where D is pipe diameter. Short
pipes of equal length are located at either end of the cavity.

Figure 6a: Plots of values of frequency corresponding to amplitude peaks in Figures 4a and 4b. Top plot
shows lines corresponding to the best fit of the dimensionless frequency fL/U through each set of data
points. Bottom plot shows lines corresponding to three different correlations for fL/U. Velocity U

corresponds to the time-mean centerline velocity at the center of the pipe, i, U= u_ . In the lower plot,
the bulk velocity of the pipe flow, 0.86 U, is employed as the normalization velocity.

Figure 6b: Plots of values of frequency corresponding to amplitude peaks in Figures 4c and 4d. Top
plot shows lines corresponding to the best fit of the dimensionless frequency fL/U through each set of
data points. Bottom plot shows lines corresponding to three different correlations for fL/U. Velocity U
corresponds to the time-mean centerline velocity at the center of the pipe, i.e., U= 1. In the lower plot,
the bulk velocity of the pipe flow, 0.86 U, is employed as the normalization velocity.



Figure 6c: Plots of values of frequency corresponding to amplitude peaks in Figure 4¢. Top plot shows
lines corresponding to the best fit of the dimensionless frequency fL/U through each set of data points.
Bottom plot shows lines corresponding to three different correlations for fL/U. Velocity U corresponds to
the time-mean centerline velocity at the center of the pipe, ie, U = U,. In the lower plot, the bulk

velocity of the pipe flow, 0.86 U, is employed as the normalization velocity.

Figure 7: Superposition of values of dimensionless frequency corresponding to the maximum amplitude
peaks for each cavity configuration.

Figure 8: Schematic illustrating definition of Quality (Q) factor based on pressure spectrum p’(f).

Figure 9a: Effect of cavity depth on onset of flow tones. Plots show peak pressure amplitude P and
quality factor Q as a function of centerline velocity U for data corresponding to Figures 4c.d (top set of
plots), 4¢ (middle set of plots), and 4f (bottom set of plots). Images in the inset of each pressure
amplitude plot correspond to a zoomed-in version of a portion of the plan view of the aforementioned sets
of plots.

Figure 9b: Direct comparison of variations of peak pressure amplitude P with centerline velocity U
corresponding to data of Figure 9a.

Figure 9c: Variation of slope of peak pressure amplitude P as a function of velocity U for data
corresponding to the top and middle sets of plots in Figure 9a.

Figure 10: Onset of initial flow tones. Plots show peak pressure amplitude P and quality factor Q as a
function of centerline velocity U for data corresponding to Figures 4c¢,d (top set of plots), 5¢,d (middle set
of plots), and 4a,b (bottom set of plots). Images in the inset of each pressure amplitude plot correspond to
a zoomed-in version of a portion of the plan view of the aforementioned sets of plots.

Figure 1la: Plan view of pressure amplitude response on plane of velocity versus frequency
corresponding to Figure 4c. Dashed line represents predominant Strouhal mode 1. Solid lines correspond
to boundaries of vertical cuts through three-dimensional plot of pressure amplitude - velocity -
frequency. Values of a are extreme reference values for these cuts. Cavity length L"=L/D=25and
depth W¥= W/D = 0.5, where D is pipe diameter. Long pipes of equal length are located at either end of
the cavity.

Figure 11b: Three-dimensional representation of vertical cuts defined by extreme values of a in Figure
11a. Bold lines represent spectra. Thin lines are vertical cuts coincident with the constant value of a in

Figure 11a. Logarithmic values of parameters are employed.

Figure 11¢: Vertical cuts through the plot of Figure 1la. All cuts are along a line of constant Strouhal
number fL/U, but at different values of a lying between the extreme values defined in Figure 11a.

Figure 11d: Zoomed-in view of vertical cut selected from series of Figure llc. This cut corresponds to
the largest amplitude, sharpest-peak response at larger values of inflow velocity. Parameters S, and S, are
sharpness factors analogous to Q-quality factors.

Figure 12a: Plan view of pressure amplitude response on plane of velocity versus frequency
corresponding to Figure 4f. Dashed line represents predominant Strouhal mode 1. Solid lines correspond
to boundaries of vertical cuts of three-dimensional plot of pressure amplitude — velocity — frequency.
Values of a are extreme reference values for these cuts. Cavity length L” = L/D = 2.5 and cavity depth
W' = W/D = 0.125, where D is pipe diameter. Long pipes of equal length are located at either end of the
cavity.



Figure 12b: Vertical cuts through the plot of Figure 12a. All cuts are along a line of constant Strouhal
number fL/U, but at different values of @ lying between the extreme values defined in Figure 12a.

Figure 12¢: Zoomed-in view of vertical cut selected from series of Figure 12b. Parameters §, and S; are
sharpness factors analogous to Q-quality factors.

Figure 13a: Plan view of pressure amplitude responsc on plane of velocity versus frequency
corresponding to Figure 5¢c. Dashed line represents predominant Strouhal mode I. Solid lines correspond
to boundaries of vertical cuts of three-dimensional plot of pressure amplitude — velocity — frequency.
Values of a are extreme reference values for these cuts. Cavity length L' = L/D = 2.5 and depth
W’ = W/D = 0.5, where D is pipe diameter. Short pipes of equal length are located at either end of the
cavity.

Figure 13b: Vertical cuts through the plot of Figure 13a. All cuts arc along a line of constant Strouhal
number fL/U, but at different values of a lying between the extreme values defined in Figure 13a.

Figure 13¢: Zoomed-in view of vertical cut selected from series of Figure 13b. Parameters S, and S, are
sharpness factors analogous to Q-quality factors.
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and long inlet pipe (bottom plot).
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Figure 6a: Plots of values of frequency corresponding to amplitude peaks in Figures 4a and 4b. Top
plot shows lines corresponding to the best fit of the dimensionless frequency fL/U through each set '
of data points. Bottom plot shows lines corresponding to three different correlations for fL/U.
Velocity U corresponds to the time-mean centerline velocity at the center of the pipe, i.e., U=uw,.In
the lower plot. the bulk velocity of the pipe flow. 0.86 U. is emploved as the normalization velocitv.
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Figure 6b: Plots of values of frequency corresponding to amplitude peaks in Figures 4c and 4d. Top
plot shows lines corresponding to the best fit of the dimensionless frequency fL/U through each set of
. data points. Bottom plot shows lines corresponding to three different correlations for fL./U. Velocity U
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