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ABSTRACT

Argonne National Laboratory (ANL) is collaborating with Louisiana State University (LSU) in constructing
a synchrotron x-ray micro-analytical beamline at the Center for Advanced Microstructures and Devices
(CAMD) in Baton Rouge. This project grew from earlier work at the National Synchrotron Light Source
(NSLS), where a team of ANL researchers developed techniques to examine small-scale structures in
diffusion zones of a variety of materials. The ANL/CAMD beamline will use x-ray fluorescence,
diffraction, and absorption spectroscopy techniques to reveal both compositional and structural information
on a microscopic scale.
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1. NSLS STUDIES

Understanding chemical interactions at the interface between dissimilar materials is a major concern for many
scientific and industrial applications and has been an important focus of research for ANL. For example,
to better understand compatibility of metallic nuclear fuel and stainless steel cladding, detailed multi-
component, isothermal interdiffusion experiments have been performed. In those studies, scanning electron
microscopy (SEM) using energy-dispersive x-ray (EDX) analysis was used to measure composition profiles
across the diffusion zones from which kinetic information was calculated. Intermetallic phase identification
was not possible with these techniques, however. Moreover, conventional crystallographic techniques (such
as standard x-ray diffractometry) could not resolve the micron-sized phase layers in the diffusion zones.
Similarly, transmission electron microscopy would have involved formidable sample preparation difficulties.

The high x-ray fluxes associated with synchrotron radiation sources, on the other hand, make them uniquely
suited for studying small phases because x-ray intensities are still significant even after substantial beam
collimation. Synchrotron radiation can be used to reveal both composition (by fluorescence) and structure
(by diffraction). To assess the feasibility of examining material interfaces using synchrotron radiation
sources, x-ray diffractometry of diffusion couples was performed at the NSLS. Beam collimation allowed
narrow regions of the interdiffusion zone to be isolated so that diffraction patterns from only a few phases
were collected simultaneously.

As an example, Ref. 1 reported on NSLS diffractometry studies using a diffusion couple between a binary
U-Zr fuel alloy and a Ni-Cr alloy. Figure 1 shows the SEM/EDX results. The diffusion zone was
approximately 100 um thick with nine distinct layers. Five of those layers consisted of a mixture of two
phases; four of the regions were less than 10 um wide.
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In a separate set of studies at NSLS
beamline X-18B, diffusion couples
were examined using x-ray fluores-
cence.? Phase zone plates were used
to focus the synchrotron x-rays to
spots as small as 3 um by 5 pum.
Fluorescence x-ray signals were
collected using a Si(Li) detector and
a multi-channel analyzer. By
stepping the sample through the x-
ray spot, changes in the fluorescence
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microstructure could be generated Nucl. Mat., Vol. 200, 1993, pp. 229-243, with kind permission from Elsevier
by scanning the sample in two Science B. V, Amsterdam, The Netherlands.

dimensions.

For example, Fig. 3 gives fluorescence maps of Cr and Ni for the U-Zr/Ni-Cr diffusion couple, which used
a2 um step size. The Cr map shows a build-up of Cr near the leading edge of the diffusion zone, consistent
with the SEM/EDX results (Fig. 1). In contrast, the Ni map shows a depletion of Ni in the same region.
Two-phase regions are also visible in the Ni map.

The studies at the NSLS demonstrated the feasibility of examining small-scale structures using x-ray diffraction
and fluorescence techniques at a synchrotron light source. Three NSLS beamlines were used since no single
beamlineallowed simultaneous diffraction and fluorescence experiments. One objective, then, of the ANL/CAMD
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Fig. 2 Diffraction experiment geometry (Ref. 1).

micro-analytical beamline is to provide a single facility with small-beam capabilities for fluorescence (for
chemical analysis), diffraction (for structure determination), and x-ray absorption spectroscopy (XAS) (for

local element-specific coordination
information). CrK, NiK,
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machining, lithography, and soft Fig. 3 Fluorescence mapping of Ni-16.4Cr/U-23Zr diffusion couple after four

x-ray analysis of molecules, surfaces, ~ days at 700°C.




and solids. Research programs at CAMD, unlike those at the national user facilities, are built upon long-term
partnerships aimed at solving complex technological problems.

3. THE ANL/CAMD BEAMLINE

When completed, the ANL/CAMD beamline will provide an ideal tool for studying the composition and
structure of materials on a microscopic scale using x-ray diffraction, fluorescence, and XAS techniques. The
beamline includes a large x-ray isolation room and a kinematic vibration-control table. A unique four-circle
goniometer with an X-Y-Z translation stage with 1-um stepping motors allows samples to be manipulated
and scanned in many orientations.

The micro-analytical beamline is currently available for x-ray fluorescence studies using a collimated beam
of white x-rays. An intrinsic germanium detector is used to collect characteristic x-rays from the sample.
This detector has a 12-inch-long by 1-inch-diameter snout that can be placed close to the sample to maximize
collection efficiency. In addition, a video microscope with a long working distance monitors the orientation
of the microstructure. Moreover, a pan-and-zoom video surveillance camera eases remote operation of the
equipment.

During 1996 a fixed-exit, double-crystal monochromator will be added to tune the beam to a single x-ray
wavelength. Focusing optics will also be added to intensify the x-ray flux. These upgrades will allow x-ray
diffractometry and XAS for structural analyses. In a typical study, fluorescence at high energies can be used
to locate specific microstructural features on a sample. The monochromator can then be tuned to a lower
x-ray energy for diffraction and XAS of that feature.

The ANL/CAMD micro-analytical beamline will complement the capabilities of DOE user facilities such
as Argonne’s Intense Pulsed Neutron Source and Advanced Photon Source (APS). The power of APS, in
particular, to produce high-energy, high-intensity x-rays is unmatched. Nevertheless, as a DOE user facility,
APS provides only limited access to independent researchers. This is not the case with CAMD, which is
owned by the State of Louisiana. The essentially unrestricted beam time available at CAMD will allow research
that cannot be performed at APS. Examples would be screening large numbers of samples or providing fast
turn-around times for analyses—features that are attractive to industrial users. Indeed, collaborations have
already been established to perform non-destructive examinations of quality control samples for industry using
the ANL/CAMD beamline.

Although certain studies require the higher energies and intensities of APS, preliminary work at CAMD (including
testing optical components or verifying experimental techniques) would make a session at APS more productive.
Moreover, the APS experiment review committee may look favorably on programs with prior synchrotron
experience at CAMD.
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