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An Extended Self-Consistent Viscoplastic Polycrystal For mulation:
Application to Polycrystalswith Voids

Ricardo A. Lebensohn,” Carlos N. Tomé,” and Paul J. Maudlin'

ABSTRACT

In thiswork we consider the presence of ellipsoidal voids inside polycrystals submitted to large
strain deformation. For this purpose, the originally incompressible viscoplastic self-consistent
(VPSC) formulation of Lebensohn and Tomé (1993) has been extended to compressible
polycrystals. In doing this, both the deviatoric and the spherical components of strain rate and
stress are accounted for. Such an extended model allows us to account for the presence of voids
and for porosity evolution, while preserving the anisotropy and crystallographic capabilities of
the VPSC model. The formulation is adjusted to match Gurson model in the limit of rate-
independent isotropic media and spherical voids. We present several applications of this
extended VPSC model that address the coupling between texture, plastic anisotropy, void shape,

triaxiality, and porosity evolution.

This report contains a detailed and comprehensive derivation of the VPSC polycrystal
model and of the equations associated with the theory. Such description is meant to serve asa
genera reference source for the VPSC formulation and is not limited to the particular case of

voided polycrystals.

" Materials Science and Technology Division
" Theoretical Division



NOTATION

The addition of a spherical component to the formulation makes the associated tensor algebra
dlightly more complicated. As a consequence, we revise here the notations used in previous
publications by the same authors, with the intent of making them more consistent and self-

explanatory. The following isalist of the symbols used in this manuscript and their meanings.

a) Vectors
X vector of Cartesian space
o unitary vector of Fourier space
k = kol vector of Fourier space
6 and @ spherical coordinates of the Fourier unit vector o

b) Velocities, Stresses, and Strain Rates

u; (%), u; (%) velocity and velocity gradient fields
€] (), Ejj » Eij strain rate field, average strain rate in each grain, and

macroscopic strain rate

cij(X), ojj » Zjj Cauchy stress (field, average in each grain, and
Macroscopic)

eﬁ' (%), eﬁ' , Efj' deviatoric strain rate (field, average in each grain, and
Macroscopic)

és(i) =1tr 8” (7) , f—:s =tr 8” ) ES =tr E”
dilatation rate (field, average in each grain, and
Macroscopic)

ci‘}'(i) , ij' , ij' deviatoric stress (field, average in each grain, and

Macroscopic)

GS(Y)Z %tr Gij(i) , o° = %tl’ Gjj

mean stress (local and average in each grain)

>° = %tr Zj mean stress (Macroscopic)



u; (%) local deviation of the velocity field from macroscopic

velocity field
~d(g -d ~d ~d -d _~d
local deviation of deviatoric strain rate (field and averagein

each grain)

local deviation of dilatation rate (field and average in each

grain)
5ij(x)=cl(x)-2] 3] =of ~Z{
local deviation of deviatoric stress (field and average in

each grain)

local deviation of mean stress (field and average in each

grain)
(7 EOI Ed) equivalent macroscopic (Von Mises) deviatoric strain rate
(/Ed Zd) equivalent macroscopic (Von Mises) deviatoric stress
c) Plagticity-Related Quantities
misj (X) Schmid tensor of slip system (s) at point (X)
3(X) threshold stress of glip system (s) at point (X)
Yo strain-rate normalization factor
n rate-sensitivity exponent (inverse of crystal’srate
sensitivity)
Mijki M; ik viscoplastic compliance (in each grain and macroscopic)
ﬁo EOIO back-extrapolated term (in each grain and macroscopic)
Liji » Eijm viscoplastic stiffness (in each grain and macroscopic)



K,K

viscoplastic bulk modulus (in each grain and macroscopic)

d) Green and Eshelby Tensorsand Scalars

4 (%), sfj'

deviatoric eigenstrain rate (field and average in each grain)
eigendilatation rate (field and average in each grain)
deviatoric eigenstress field

deviatoric and spherical inhomogeneity fields

Green functions of velocity and mean stressfieldsin

Cartesian and Fourier spaces, respectively

contribution of deviatoric components to local deviation of
velocity gradient (field and average in the grain)
contribution of spherical components to local deviation of
velocity gradient (field and average in the grain)

deviatoric and spherical Green interaction tensors
deviatoric and spherical Eshelby tensors

Eshelby factor (trace of spherical Eshelby tensor)

Eshelby factor of voids and grains, respectively

Eshelby coupling tensor

€) Interaction and L ocalization Tensors and Factors

~d (o) d
ui,j(x),ui,j
up; (%),
d S
T+ Tij

d
Sijki + Sj
‘P:tr(Sfj)
\PV ,\Pg
s
"y 3
Mijki » B
Bijki  ®ij, B
Ajji » Qi , A®
K

deviatoric and coupling interaction tensors
stress |ocalization tensors

strain-rate localization tensors

spherical interaction factor



Ky . Kg

de Se de Se
Eij ,E ] Eij ] E

f) Miscellaneous

(0]
a,b,c
Y
S
-
>

spherical interaction factor of voids and grains, respectively

reference stress and strain-rate magnitudes needed to derive

generalized self-consistent relations

porosity (void volume fraction)
principal radii of the ellipsoid
equivaent (Von Mises) yield stress of solid phase

stress triaxiality



1 INTRODUCTION

The evolution of porosity is of relevance for assessing damage during both quasi-static and high
strain-rate deformation of metallic aggregates. The Gurson (1977) criterion, which provides a
constitutive relation between yield stress and strain rate in voided materials, iswidely used in
simulations of metal deformation under complex boundary conditions (e.g., Johnson and
Addessio, 1988). The Gurson constitutive law follows from an upper-bound solution of aunit
cell problem, based on the simplifying assumptions of elastically rigid, isotropy, perfectly
plastic, rate-independent matrix plastic behavior, spherical voids, and no void interaction. Such
assumptions do not adequately represent many situations in which the anisotropy of the material
response or the void shape or rate effects may play arole. As a consequence, modifications of
the Gurson model have been proposed to address some of these issues, e.g, void shape (Lee and
Mear, 1992; Golaganu et a., 1993, 1994), matrix anisotropy (Chen et al., 2000), rate sensitivity
(Lee and Mear, 1992; Addessio and Johnson, 1993; Liu et al., 2002; Chen et al., 2002) and void
interaction (Tveergard, 1982).

Ponte Castafieda and coworkers (Ponte Castafieda et al., 1994; Kailasam et a., 1997a,b),
on the other hand, have developed a model based on the variational formulation of Ponte
Castarieda (1991) to predict the behavior of porous rate-sensitive materials with isotropic phases,
taking into account the field fluctuations induced by the presence of voids and the anisotropy
induced by void-shape evolution. The best performance of this model is obtained at low void
concentration and low triaxiality. Such formulation was implemented inside an elastoplastic
FEM code to account for the evolution of porosity and the development of anisotropy due to
changes in the shape and orientation of the voids during deformation (Kailasam et al., 2000).
Later, Ponte Castafieda (1996) devel oped a second variational formulation that yields estimates
that are exact to second order in the fluctuation of properties between phases, and therefore are
specially suitable for porous materials. However, this second-order procedure does not take into
account the field fluctuations and therefore is not accurate for cases near percolation or of high
triaxiality. More recently, Ponte Castarieda (2002a,b) developed a new formulation that
combines the main advantages of the former models (i.e., takes into account the field fluctuations
and is exact to second order in the contrast), which can be applied to the high triaxiality, void-

concentration case.



The study of the interplay between texture and anisotropy of polycrystalline materials
motivated the devel opment of numerous polycrystal models. Such models alow usto predict the
evolution of anisotropy, texture, and hardening during plastic deformation of an aggregate of
anisotropic grains. When the single crystal anisotropy is severe, self-consistent formulations
should be used instead of the simpler upper-bound formulation (Taylor, 1938) to obtain accurate
results. In particular, the fully anisotropic viscoplastic self-consistent (VPSC) model developed
by Lebensohn and Tomé (1993), based on the original Molinari et a. (1987) isotropic
formulation, has been successfully used in the last ten years to describe the constitutive response
of avariety of anisotropic systems under diverse loading conditions. Recently, VPSC has been
interfaced with FEM codes to describe the forming of Zr and Zr aloys (Logé et al., 1998; Tome

et a., 2001) under complex boundary conditions.

Although the VPSC polycrystal theories have also been extended to multiphase
polycrystals (e.g., Lebensohn and Canova, 1997) until now no model was available to treat the
large-strain deformation of voided polycrystals, i.e., an extreme case of atwo-phase aggregate
with infinite contrast between phases. A formulation with such characteristics would be useful,
for example, to predict the behavior of anisotropic materials submitted to dynamic loading
conditions with the ultimate goal of building a numerical interface with dynamic FEM codes.
With thisin mind, we present here a 3-D VPSC model for polycrystals with preexisting voids
that allows us to consider the full anisotropy associated with morphologic evolution of voids and
grains and with crystallographic texture devel opment in the aggregate, as well as rate effects.
The model applies to the stage of void growth but not to the previous stage of void nucleation

nor the subsequent stage of void coal escence.

The formulation is a generalization of the incompressible fully anisotropic VPSC model
of Lebensohn and Tomé (1993) and Lebensohn et al. (1998). This model treats each grain as a
viscoplastic elipsoidal inclusion embedded in a homogeneous effective medium (HEM). Since
both the inclusion and the HEM are anisotropic and incompressible, the model was formulated in
the deviatoric 5-dimensional space. In the present extension, cavities are still treated as
elipsoidal inclusions but the assumption of incompressibility does not apply to the voids nor to
the HEM (the inclusions representing grains, however, remain incompressible). Dilatation and
hydrostatic pressure have to be accounted for, and they represent the sixth dimension of the

problem.



An important requirement for this extended VPSC formulation is that it should reproduce
Gurson'’ s results for the case of rate-insensitive isotropic aggregates with spherical voids, for
different triaxialities and porosities. The procedure used here for adjusting the extended VPSC
formulation to the Gurson limit isinspired by the work of Ponte Castafieda (2002a,b), and is
based on adjusting the local linearized behavior in the grains to implicitly take into account the
field fluctuations in the grains due to the presence of voids. To acomplish this, it has been
necessary to generalize the tangent VPSC mode of Lebensohn and Tomé (1993) to allow for an
ad hoc linearization of the grain’s constitutive response, as originally proposed by Masson et al.
(2000) in their affine formulation.

In the next section, we describe the formulation and discuss its assumptions in detail.
Next, we illustrate some of the capabilities of the model with several applications. First, we make
a comparison with the Gurson model, after which we study the role of texture, rate sensitivity,
and void morphology (shape) upon porosity evolution and stress-strain response. We consider

both fcc and hep polycrystalsin this analysis.

2. EXTENDED VPSC MODEL
2.1. Local Constitutive Behavior and Homogenization

Let us consider an aggregate consisting of grains (material phase) and cavities (void phase). The
deviatoric part of the viscoplastic constitutive behavior of the material phase at local level is

described by means of the nonlinear rate-sensitivity equation

(1)

e;}(x):vogmﬁm[ o

ms, (%) o) (x)]” |

where £d (X) and Ggl (X) arethe deviatoric strain rate and stress fields, m:

i i (x) and t3(X) arethe

Schmid tensor and the threshold stress of slip (s), ¥, isanormalization factor, and n isthe rate-

sensitivity exponent. Linearizing EqQ. (1) inside the domain of agrain and adding alinear relation

between the spherical components of stress and strain rate gives

83(7) = My of (X)+ éﬁo : (22)

£S(X) =K1 o%(%), (2b)



where slol' (%), €3(x)=tr &;(x) and Giojl (X),03%(X) = %tr cjj(X) arethe deviatoric and spherical

components of the local fields, and Mijy éfj'o and K are the grain’s viscoplastic compliance,

back-extrapolated term, and viscoplastic bulk modulus, respectively. Concerning the

linearization in the equation that rel ates the deviatoric components, in the material phase, Mj;y

and éﬁo can be chosen differently. While the original VPSC formulation (Molinari et al., 1987;
Lebensohn and Tomé, 1993) was restricted to the assumption of a tangent linearization of the
local behavior, Masson et a. (2000) generalized these kinds of self-consistent formulations to
arbitrary linearized behaviors by means of the so-called affine procedure. In what follows, we
will adopt Masson et a.’ s affine linearization scheme since it provides the required flexibility to
take into account the effect of porosity on the local behavior of the materia phase, leaving for
later the discussion regarding which is the best choice of the linear moduli in the case of voided

polycrystals.

Equation (2b), which relates the spherical components, it expands the scope of the
constitutive response, and the derivation that followsis general and has application beyond the
specific case of voided polycrystals. For the grains of an incompressible solid phase, it holds that
K — o, and Eq. (2b) just states the condition of incompressibility. Solving simultaneously
Egs. (2a) and (2b) allowed us (Lebensohn et a., 1998) to solve the problem of the
incompressible inclusion without using the penalty method, which consists in assuming avery
small (rather than null) compressibility (Hutchinson, 1976). Asfor the infinitely compliant void

phase, we can write expressions formally equivalent to Eq. (2), taking Mjjq — e and K =0.

Performing homogenization on this heterogeneous medium consists in assuming pseudo-
linear constitutive relations analogous to (2) at the effective medium (polycrystal) level

cd v wd |, ed
Ei = Mjju =k +E;° (3)

ES=K1xS, (3b)
where Ei‘}', ij', ES, and X° are overall (macroscopic) deviatoric and spherical magnitudes and

M; ikl » 'Ei‘}'o, and K are the macroscopic viscoplastic compliance, back-extrapolated term and



viscoplastic bulk modulus, respectively. The latter moduli are unknown a priori and should be
adjusted self-consistently. Due to the presence of voids, the effective viscoplastic bulk modulus
K has afinite nonzero value even if the solid material isincompressible. Invoking the concept

of the equivalent inclusion (Mura, 1988), the local constitutive behavior can be rewritten in terms
of the homogeneous macroscopic moduli so that the inhomogeneity is hidden inside afictitious
transformation rate (referred to as eigenstrain rate in what follows) as

Elcjj (X) = mi“d G% (Y)'l‘ EI(JiO + Slcjj* (X) , (4a)
£5(%) = K 2o3(x)+£% (%), (4b)

where éi(}'* (%) and £%° (X) are the deviatoric eigenstrain-rate field and anewly defined

eigendilatation-rate field, respectively, which follow from replacing the inhomogeneity by an

equivalent inclusion. Rearranging and subtracting (3) from (4) gives

G{(X)=Lij (Eﬁ (X)-2& (7)) ) (5a)
55(®) =K (F5(%)-¢5 (%), (b)

where the ~ quantities are local deviations from macroscopic values and L; ikl = Mﬁlﬁ :

Combining (5) with the equilibrium condition
Gij,j(i)zaij,j(i)zaﬁ,j(f)+(~5,si (x) ©)

and using the relation between strain rate and velocity gradient, i.e, &;(X)= %(Ei,j (X)+ U, (x)),

we obtain
Liju ak,|j(i)+5ﬁ(7)+fid(7):0' (7a)
Ky (x)-5°(%)+f°(x)=0, (7b)

where the fictitious forces associated with the heterogeneity are
d(y T ad* (o d* (-
f, (X):_Lijklgku(x):Gij,j(x) , ©))

£5(%) = —Ke (%) . )

10



Thefieldcﬁ'* (X)= —[ijk|éﬁ|* defined in (8) will be called in what follows eigenstress field.

2.2.  Green Function Method and Fourier Transform Solution
System (7) consists of four differential equations with four unknowns: three are the components
of velocity deviation vector G; (X) and one is the mean stress deviation G5(X). Formally, system
(7) can be expressed as

Dig gq (X)+f; (X)=0 (,a=14), (10)

where the 4-dimensional unknown and inhomogeneity vector fields are, respectively,

~ ~ ~

9(%) = (6:(%), T2(%), T3(%), 5°(%)) (11)
f(x)= [ 9®).F9(%),F 4 (%).F5 (%)) (12)

and the differential operator D is given by:

MGG UE GGG T Edd o
_ a2 d? >  d
D-| ddxs  2Bdxdxs  2Fdxdxg dxo (13)
3rls erdXS 3r2s erdXS 3r3s erdXS dX3
Tl k-9 K- -1
I Xm dX2 dX3 i

A system of N linear differential equations with N unknown functions and an inhomogeneity
term such as (10) can be solved using atensorial extension of the Green function method, which

is explained below. Assumethat G, (X) isthe Green tensor, which solves the auxiliary

problem of a unitary inhomogeneity field with a single nonvanishing m-component applied at
X =0,

Dig Ggm (X)+8(X)8j, =0 (i,gm=14), (14)

where 8(X) is Dirac’s deltafunction and &;r, is the Kronecker delta. Then the solution of system

(10) is given by the convolution integra

11



9q(X)= [ Ggm(X = X)f n(X)dx" . (15)
The proof isasfollows:
Diq 9q(X)= Diq_[ G (X = X')f 1 (X)dx"= jDiq Ggm (X = X')f (X)X’ =
= [=8(X = X)8jmf (X)X = —f; (X).. (16)
In our particular case, if Gy (X)and Hpy,(X) denote the Green functions associated with 0 (X)

and 6°(X), the auxiliary problem (14) is written as

Eij|<| Gimyj (X)+ Hppj (X)+8im 8(X) = (17a)

R G (%) Hon (%) 82 8(5) =

0,
(,j,kl=13;m=14)

0. 7b)

System (17) can be solved using the Fourier transform method. The direct and inverse Fourier

transforms of the Green functions G, and H ,, are defined by*

G (K) = [ Gym (X) exp(ikx)ax (182)

Gion ()= 5 | Gyon (K exp(-iKR) (18b)

Hin (k) = [Hpn (%) exp(ikx)dx , (193)

Hin () = 5 [ Al () explcik k. (19b)
J

In addition, Dirac’ s delta function can be expressed as
= 1 =
8(x)=— j exp(-ikx)dk . (20)
8n

Replacing Egs. (18)—(20) in (17) and taking derivatives with respect to X inside the integrals,
transforms the differential system into an algebraic system:
—OCJ'OC| Eijk| kzékm (E)—Oﬁi ikl:|m<E)+6im :O, (213.)
K(=iot )KG i (k)= A (k)+ 840, =0, (21b)

¥ In what follows, the letter “i” is used both to denote the unit imaginary number and as a tensor index.

12



wherek and o are the modulus and the unit vector associated with a point of Fourier space k
(i.e.,, k = kar), respectively. Multiplying (21a) and (21b) by (1) and (i k?‘l), respectively, we

obtain

a0y Ly k*Gyy (R) ik () =8y (22a)
0 k2G i (K)— K LikA 1, (k) = —K ik 4y - (22b)

Calling Aidk =0 oy Eijkl , System (22) can be expressed as amatrix product A = BxC, where
A, B, and C are 4 x 4 matrices given by

K?Gyy k?Gyp k%Gyy kG
K?Gy K?Gp k%Gpy k2Goy

k2Gy k2Gg k2Gy k%G, -5
IkH;  ikH, ikH;  ikH, 23)
Afl Afz Afs g 1 0 0 0
A:Agl Agz Ags o2 0 1 0 0 -C
Agl Agz Ags 3 0 0 1 0 |
o0, oy O3 -—K* 0 0 0 —ikK™

The matrix A isreal and symmetric. As a conseguence, itsinverse will also bereal and

symmetric. Using the explicit form of matrix C , we can write the solution to (22) as

Al A AR —(kkhHad
A‘l Azt AL 1 _vie—1y A1
21 (kK ) A%

B=A"lxC= n 24
Az A3 1 A33 3 — (kK ) A3] @9
AL AD AR 3 ~(KK™HAZ
Finally, comparing Egs. (23) and (24),
K2Gij=Agt (j=13) (25)
2A8  _ rw-Ia-1 GIAA A=l
k’Gig=—(KK HA} = (kK)Gjz=A7 (=13, (26)
ikH; =AZL (=13, (27)
ikHy = —(ikK )A ~KHy=AZ
4=—-(KK™Azz = -KHy=Az. (28)

13



Since the components of A are real functions of o, so are the components of A™, and so k G i
and ikI:Ii arereal functions of o. This property leads to real integralsin the derivation that
follows.

2.3. Integration of Equations—Eshelby Tensors and Eshelby Factors

Now that we have a solution for the Green tensors, we can write the solution of our problem

using the convolution integrals (15). The local deviation in velocity is given by

~

G (R)= [ Gpan(x X)) X =

3
i (29)
=[G (X=X (X)X + [Gra(x—X)F3(X) X .
RS RS
Taking partial derivatives of Eq. (29), we obtain
ak,l( )= Uk|( )+Uk|( X) (30)

where the “deviatoric” and “spherical” contributions to the local deviation of velocity gradient
field are defined by

g (%)= [Gy, (x-X) (X)X, (31)
53

a§,|(7)= J.Gk4,|(7—7')fs(7’) dx’ . (32)
=3

Replacing (8) in (31), recalling that 9G;j(X —X')/ 9X = —0G;; (X — X)/ X, integrating by parts,
and using the divergence theorem, we obtain
a* (=~ ’
ukI J.Gk, j1(x = x)c] (X)X’ . (33)
3
R

Equation (33) provides an exact implicit solution to the problem. Such solution requires
knowledge of the local dependence of the eigenstress tensor. However, we know from the elastic
Eshelby inclusion formalism that if the eigenstrain is uniform over an elipsoidal domain where

the stiffness tensor is uniform, then the stress and the strain are constant over the domain of the

14



inclusion. The latter suggests to assume a constant eigenstress (a priori unknown) within the
volume Q of theinclusion, and zero outside. This alows us to average the local field (33) over

the domain Q and obtain an average strain rate inside the inclusion of the form
~d 1 — <’ r . d*
uk,l _{—EJ.J.GKLH(X—X)dXdY]LijmnEmn , (34
QQ

where ag,, and é% have to be interpreted as average quantities inside the grain. Expressing the

Green tensor in terms of the inverse Fourier transform (18b) and taking derivatives, we obtain

EEJ - ]é J.J- J-OLJ' Oc|(k2éki (R))eXp[_iE(i_i,)]dEdeY’ Eijmné(rjr:n
8n Q2 Q0R3

= Tij Lt £ - (35)

ijmn €mn

Writing dk in spherical coordinates dk = k2 sin® dk d@ de and using Eq. (25), the deviatoric

interaction tensor Tﬂij can be expressed as

2T T
1 1N e
Tlglij =3 J. j Ocjoquil(oc)A(oc)smeded(p , (36)
8t Q 5 o

where 6 and ¢ are the spherical coordinates of the Fourier unit vector o and

oo

A@)=[ | [ [expl-ik(x-x)|dx dx’ | k% . (37)
0 \QQ

Integration of Eq. (37) inside an ellipsoidal grain of radii (a,b,c) isgiven in Appendix A
[Ea. (AS)]:

, (38)

where p(a) = [ (a01)? + (boiy) % + (cocg)z]m. Replacing Eq. (38) in Eq. (36), the expression of

Tl‘j'“j for an elipsoidal grainis
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o oc| oc
g” ” sin0dode . (39)
Working analogously with Eg. (32), and using Egs. (9), (18b), and (26), we obtain

ug) = —EHKGMI (X—i')didi'] &5 =
QQQ

_ 8n39££££30c|Ak4exp[ ik(X - x)]dkd’d‘J =TS e . (40)

After integrating in dx, dx’, and dk and using Eq. (38), the spherical Green interaction tensor
Ty for an ellipsoidal grain reducesto

2nn

T = H'al 4() sin@dode . (41)

Finally, the convolution integral over the Green tensor I:|(7) allows us to obtain an expression
for the mean stress deviation 6°(X), which is the fourth unknown function in differential system

(7). Sincethe latter is not relevant to the present work, its derivation is presented in Appendix B
mostly for the sake of completeness. Thisway of computing the hydrostatic pressure field has
been used by Lebensohn et a. (1998) in a particular application of VPSC to make atransition

from viscoplastic incompressible loading to elastic unloading.

The expressions (39) and (41) have to be integrated numerically (we use a Gauss-
Legendre technique). The evaluation of the integrand requires usto invert the 4 x 4 linear system
(23) for each integration point. For numerical purposesit is convenient to define fourth-order

“deviatoric” and second-order “spherical” symmetric Eshelby tensors as

d _1{d d d d |

Sljk| 4(Tijmn+Tj|mn+T|jnm+TJ|nm)Lmnkl ’ (42)
1(s S

Sj = 2(T +T5 ) (43)
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Replacing (35) and (40) in (30), taking the symmetric component, and using (42) and (43), we
obtain the strain-rate deviation in the ellipsoid

”klskl +3s s . (44)

The deviator and the trace of Eij are

d . :
—S”mnemn +SS &% —5 8ij &%, (45)

~ d g* St
€% =Sy Emn +PE° (46)

where ¥ = tr(Sfj) will be called in what follows the * spherical Eshelby factor.” At this point, we

need to find the deviatoric and spherical eigenstrain rates. From Eqg. (46), we have

~s S
s _ € “kkmn gd*
‘P b4 &mn (47

Replacing (47) inside (45),

Nd (Sﬂmn E;ijmn)égr:n +B;€° (48)
where
S8
ij = 3 (49a)
tr(§’) 3
S sd
Bijm = (49b)

According to (48), Bij describes the coupling between the spherical and the deviatoric

components of the strain rate. For this reason, it will be called here “the Eshelby coupling
tensor.” Furthermore, using symmetry considerations, it is easy to realize that (49a) would vanish

in the case of a spherical inclusion embedded in an isotropic matrix. As a consequence, f; j can

be interpreted as a measure of the anisotropy of the medium, and the deviatoric-spherical
coupling can be expected to become stronger as the anisotropy of the medium increases or to
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vanish if the medium isisotropic. The latter situation, however, is never found if the materia’s
behavior isnonlinear (i.e.,, n=1 in Eqg. 1). In such a case, even if the polycrystal has arandom
texture, the viscoplastic compliance tensor is afunction of the stress state and the response of the

homogeneous medium will be, in general, anisotropic, resulting in anonvanishing f; tensor. On
the other hand, in what concerns &; jmn » Wwe have checked numerically (see Appendix C) that the

norm of &jjmn is, for our purposes, at |east two orders of magnitude smaller than the norm of

Si(}lmn and can be neglected. Then, the following approximation holds:

~d _cd  .0* =S
&ij =S|jmn€mn +Bij €7, (50)

from where the deviatoric eigenstrain rate é,‘ﬁn is obtained as
0 _odt Zd g 7S 51
€mn = Smnpq (€pg qu €”) . (51)

. . . . -1 <
Replacing Eqg. (51) in Eq. (47), it can be proved, using Sgkmns%npq = Skp6kq , tr si? =0, and
trBij =0, that

s* E

5 = (52)

Equation (51) indicates that the deviatoric strain rate is coupled to both the deviatoric eigenstrain
rate and the eigendilatation rate, while (52) shows that, under assumption (50), the dilatation rate
depends only on the eigendilatation rate.

24. Interaction and L ocalization Equations

Theloca constitutive behavior expressed by Eq. (2) aso describes the relation between the

average stress and strain rate in the domain of the grains, namely,

.d d | .d
& = Mjj ol +&° (539)

éS — K—l GS ) (53b)

For compl eteness, we copy below Eg. (3), describing the relation between the macroscopic stress

and strain rate in the effective medium:
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Ed MIJH 2|(| + Edo , (54a)
ES=K1xS. (54b)

Expressions similar to Egs. (5) relating deviations with respect to overall quantities also hold for
the average stress, strain rate, and eigenstrain rates in the grains:
~d _T (’Td L )
Gij = Lijw (& — € ), (554)
55 =K [F5-¢%). (55b)

Replacing the expressions (51) and (52) that give the eigenstrain rates in terms of the strain-rate

deviationsinto the deviation equations (55), we obtain the following interaction equations:

&l =My 534 — Bud® (56a)

=—(1/K)3°, (56b)
where the interaction tensors and factor are given by

Y dil «d w7

Mijki = (I -S )jmn Smnpq M pgkl (57a)

by -

Bij = @WK) U =S JijmnBrn (57b)

K="FK. (57¢)

Replacing the local and overall deviatoric constitutive relations (53) and (54) into the interaction
equations (56), we can write, after some manipulation, the following localization equations for

the deviatoric and spherical stress components:
d =By =0 + @ , (582)
6% =B°2%, (580)
where the localization tensors are defined as
Bijk = (M +M )y (V4 §) i (59a)

(Dij :(M +|\7|)|jlkl (Edo 8kI BkIMS) (59b)

19



A
+
Al

BS =

(59¢)

X =
x

+

X

For asolid phase (K — <) the limit of Eq. (59c) iswell defined. However, in the case of avoid

phase, for which Lijiq =0, Mjjq — e, and K =0, the localization tensors become null tensors

Bij =0, ©;;=0,B%=0, (60)

which isto be expected, since avoid cannot sustain stress. However, the void does contribute to
strain. As aconsequence, we need to derive aternative localization equations in terms of strain
rates. Inverting Egs. (53) and (54) and expressing them in terms of stiffness tensors (i.e.,

-1 —_1 ~ ~_1 . _ .
Liju = MijkI , Lijk = MijkI and Lij = MijkI ), and following a similar procedure, we obtain the
localization relation for the strain-rate components:

.d ~d
& = Aijkl Eig +<ij (61a)
£5=ASES . (61b)

For the solid phase (K — <), the localization tensors are

Ajja =L+ E)?jlmn (C+L) i - (62a)

Q;; :(L+E)_ij1k| (—E: E% L :édo—f:ﬁ?ss)k' , (62b)

AS:KHE:O, (62¢)
K+K

while for the void phase (K = 0), they are

~1

Aijkl = lijid * Lijrn Lmnki (639)

Qi =Lk Lign ES — By 6° 63b
ij = ~hijki Skimn Emn BUG , (63b)

AS = KEK . (630)
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25. Sdf-Consistent Polycrystal Model

The derivation presented in the previous sections solves the problem of a viscoplastic
compressible inclusion embedded in a viscoplastic compressible effective medium being subject
to external loading conditions. In this section, we are going to use the previous result to construct
apolycrystal model that regards each grain as an ellipsoidal inclusion embedded in an effective
medium which represents the polycrystal. The properties of such media are not known a priori
but have to be found thorough an iterative self-consistent procedure. Replacing the stress
localization Eqg. (58) in thelocal constitutive EQ. (53), we obtain

.d d , .d d .d
& =Mij oy +€ij° = Miji Bkimn Zmn + Mijig P +€ij° : (64a)
¢S =K 1S =K 1BSxS. (64b)

Enforcing the condition that the weighted average of the strain rate over the aggregate has to

coincide with the macroscopic quantities, i.e.,
Bl =(ef), E°=(e%), (65)

and using the constitutive Eq. (54), we obtain

v d _ ed d .d
Mijmn Zmn + Ej° = <Mijkl Bklmn> Zmn +<'V|ijk| Dy +€ij0> ) (662)

K1lss - <K‘1 BS> S (66b)

Equating the linear and independent terms leads to the following self-consistent equations for the
homogeneous compliances and back-extrapolated term,

Mijmn =<Mijk| Bklmn> ; (6723)
ESO = <Mijk| (Dkl +E'Ii?0> , (67b)
K = <K‘1BS> -1 (67¢)

Replacing the strain-rate localization Eg. (61a) in Eq. (64a) and using Eq. (54a) gives
Aid Migrn =0 +Aiig EL +Qi = Miig Biymn 29 + Miigg @ +£%° 68
ijkl Mkimn &mn + Ajjkl By T3] ijkl Bkimn <mn + Mijig Pkl + € (68)
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from where
Mijki Bkimn = Aijki Midmn (693)

Mljkl (I)kl +£d Aljkl Edo+Q (69b)

1)

Therelations (69) are especially useful when the averagesin (67) have to be evaluated for the

void phase, in which case Miji; — o=, Bjj =0, and ®j; =0

If the shape of the grains and the voids is the same, then the Eshelby factor ¥ and

therefore K [given by Eq. (57¢)], are unique. In such a case, Eq. (67c) gives the following self-
consistent equation for the effective bulk modulus:

_ ] K
K = <K+K>(K+K) (70)

Since K — o« for the incompressible material phase and K =0 for the void phase, it holds that

1 forgrains
“__ granst (71)
K+K |0 forvoids
Then the self-consistent equation for the viscoplastic bulk modulusis given by
K=1"%k (72)

4

where ¢ isthe current porosity (relative volume fraction of voids) in the polycrystal.

The self-consistent equations (67), are derived imposing the average of the local strain
rates to coincide with the applied macroscopic strain rate [Eq. (65)]. It can be shown (see
Appendix D) that these equations are also consistent with the condition that the average of the
local stresses coincides with the macroscopic stress only if the shape of al inclusions (grains and
voids) is unique. If the grains and the voids each have a different shape, they have associated
different Eshelby tensors and factors, and consequently the interaction tensors cannot be factored
from the averages. In this case, the following general self-consistent expressions (derived in
Appendix D) should be used (Walpole, 1969; Lebensohn et al., 1996):
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Mijk' < : >|]mn< >mnk| ! (733)

ESO < > Ijkl >;I1mn <q)>mn ’ (730)

g=0 % (730)
¢ Yo

¥y and 'y thetrace of the spherical Eshelby tensors associated with the grains and the voids,

respectively. In writing EqQ. (73c), we assume that all the grains have asimilar shape and all the

voids have the a similar shape.
The self-consistent Eqgs. (67) are aparticular case of Egs. (73). Both sets constitute fixed-
point equations that provide improved estimates of My, ESO, and K when they are solved

iteratively starting from an initial guess for the latter tensors. From anumerical point of view,
Egs. (73) are more robust and improve the speed and stability of the convergence procedure even
when solving a problem where all the inclusions have the same shape.

2.6. Local Linearization for Voided Polycrystals

As stated earlier, the deviatoric local constitutive behavior [EQ. (2a)] can be linearized in
different ways, and the macroscopic response resulting from the self-consistent formulation will

depend on the choice made for that linearization. For instance, if the back-extrapolated term sﬁ'o
isapriori set to zero, the resulting model is a secant one, which has been proved to be, in

general, too stiff, leading to close-to-upper-bound results. On the other hand, if
Mijii = ae,,(o,, )/ 80k| the model is tangent (Molinari et al., 1987; Lebensohn and Tomé, 1993)

and gives amore compliant response. However, as pointed out by Ponte Castafieda (2002a), any
homogenization scheme whose local linearization depends only on the average of local statesin
the phases (or grains) failsin reproducing Gurson’ s results at high triaxialities and leadsto a
completely rigid response in the pure hydrostatic limit. This result is connected to the high
deformation gradients that physically exist inside the phases (or grains) in the vicinity of avoid
when high hydrostatic pressure is applied to the aggregate. Linearizing a power law using the
tangent at the midpoint (first-order moment) of the intragranular stress distribution
underestimates, in general, all the rates within the interval. But, in particular, the rates at the
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higher stresses that make the effective response of the phases (grains) softer can be seriously
underestimated. In fact, Suquet (1995) showed that estimating the magnitudes of the intraphase
(intragranular) fluctuations (second-order moments) and linearizing the local behavior in terms
of them, rather than just using the average states, softens the predicted effective behavior of the
aggregate. For these reasons, good agreement between the present theory (in itsisotropic and
rate-insensitive limit) and the Gurson model at high triaxialities requires us to generalize the

linearization and to formulate a super-tangent approach. We define the slope of the local

compliance as

Mijki (6% —G%):(éﬁ‘éﬁ)- (74)
Here, GEI isthe average stressin the grain and (6% —cﬂl ) can be interpreted as a measure of
the intragranular stress fluctuation. We propose for 6% an empirical functional form colinear
with oﬂl :

&4 = [+ a(X,0) [X[)of - (75)

Here, X = =5/39 isthe stress triaxiality (to be called triaxidlity in what follows), =% isthe

dyd)’2

i Zij is the macroscopic equivalent deviatoric

macroscopic hydrostatic pressure, x4 = (%):

(Von Mises) stress, and o.(X, ) isan empirical parameter whose dependence with X and ¢ is

adjusted to match the predictions of Gurson’s formulation for an isotropic and rate-insensitive

polycrystal. Defined in this way, the local tensors 6% are evidently related with the stress

fluctuations. Here, rather than estimate them directly, we fit the parameter o.(X,¢) to the Gurson
model for different triaxialities and porosities. Observe that by setting o= 0, the tangent
formulation is recovered, while a.< 0 corresponds to a stiffer sub-tangent approximation closer

to the secant response.
2.7.  Fitting of a(X,$) using the Gurson M odel

The Gurson (1977) model follows from solving the localization problem on arepresentative
volume element formed by the solid phase and a void included at the center. The assumptions of
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the model are that the solid phase isisotropic rigid plastic (with an effective yield stress Y) and
rate insensitive, and that the void is spherical. Under such conditions the effective yield stress for

the effective medium is

d_ 2 3z°
> _Y\/1+q) 20 cosh[ ZYJ : (76)

Equation (76) describes ayield surface in the 3-D space defined by the normalized stresses

xd / Y, 23/ Y and the porosity ¢ . Such ayield surface defines, for a given porosity, the stress
state that fulfills the yield condition. This equation depends on the hydrostatic pressure and
reduces to the classical Von Misesyield condition when the porosity is null. When the spherical

stress component is zero, Eq. (76) predicts ayield stress corrected for the porosity, i.e.,
yd=v(@1-9¢). (77)

When the deviatoric stress component is zero, this expression leads to the Carroll and Holt
(21972) limit

ZS:%Yln(%j . (78)

Equation (78) gives, for afixed porosity, the value of hydrostatic stress that will produce
dilatational plastic deformation. The present viscoplastic formulation cannot be used in the
purely hydrostatic limit without encountering mathematical singularities. Such a case, however,
can still be treated approximately in the limit of high triaxialities when the hydrostatic
component is much larger than the deviatoric one. In what follows, we will fit the parameter

a.(X,) by matching the result of the self-consistent formulation to the Gurson equation (76) for

aggregates with the lowest possible anisotropy and rate sensitivity. For thisfitting procedure, the
VPSC model has been applied to afcc aggregate, with 500 randomly oriented spherical grains
deforming by (111)<110> dlip, containing spherical voids, and using a rate-sensitivity exponent
n = 20 considered in what follows as the “rate-insensitive limit.” The loading conditions chosen
for the fitting correspond to an axisymmetric tensile stress with the transverse stress components
being adjusted to keep the triaxiality constant throughout deformation.
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In the case of arate-dependent material, a“yield stress’ cannot be defined
unambiguously because any nonzero stress state will induce a strain rate. Therefore, if the yield
surface of arate-independent material (such as Gurson’'syield surface) is assumed to follow from
aplastic potential, it should be compared to a surface of equal dissipation rate of the rate-
dependent material. Evidently, the locus of an equal-dissipation-rate surface will depend on the
reference dissipation rate chosen. We show in Appendix E that the dissipation rate obtained with
VPSC is a homogeneous function of degree (n+1) of the stress. As a consequence, all the equal-
dissipation-rate surfaces are homothetic (same shape) and a unique surface is obtained after

normalization. In this work, we use as our normalization stress the equivalent stress >4 induced
by atensile imposed strain rate of unit norm in a material without voids. The locus of the equal
dissipation rate defined by the normalized deviatoric stress, the normalized hydrostatic stress,
and the porosity can be directly compared with the rate-independent Gurson yield surface. By
adjusting the value of o for parametric values of porosity and triaxiality, the stress predicted by
VPSC is made to reproduce the stress state given by the Gurson criterion [Eq. (76)].

Figure 1a (solid lines) shows 2-D sections of the normalized Gurson yield surfaces for
different porosities, together with several points of the normalized equal-dissipation-rate surfaces
obtained with VPSC for different positive triaxialities using the value of o that optimizes the
match with the Gurson surface. The higher the void concentration or the imposed hydrostatic
state (i.e., the higher local fluctuations inside a grain), the higher the value of o (i.e., the softer
effective behavior of the grain). Figure 1b shows parametric curves of o versus porosity for fixed
triaxiality and vice versa. For the sake of completeness, although the above fitting was for tensile

states, using symmetry argumentsit is easy to prove that o.(X,¢)= o(X|,¢) for compressive

states (X° < 0 = X < 0). Concerning the computational implementation of the model, the above
information has been used to build an interpolation table that gives o as afunction of the current

porosity and triaxiality.

The adjustment of o above is performed by matching the VPSC stress to the Gurson
stress under the condition of equal dissipation rate. No constraint isimposed on the associated
strain rate. Within the Gurson criterion, the latter follows from invoking the associated flow rule
(also called the normality rule), which isa common assumption in continuum plasticity theory.
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Figure 1. (a) Normalized Gurson yield surface (solid lines) for porosities 0.1%, 0.5%, 1%, 5%, and 10%
and points of the normalized equal -dissipation-rate surface for same porosities and triaxialities 0, 1, 2, 3,
5, 10, and 20, calculated with VPSC for the displayed val ue of the super-tangent parameter ¢, for the
case of a fcc-voided polycrystal, with random crystallographic texture, spherical grains and voids, and
viscoplastic exponent n = 20. (b) Dependence of « as a function of porosity for parametric triaxialities
and vice versa.

Within the viscoplastic polycrystal approach, however, the strain rate follows from the
calculation and is not assumed to be given by the normality rule. Our calculation shows that in
our model, the coincidence of the plastic potential and the yield surface is only approximate and
becomes more nonassociative with increasing porosity and triaxiality. Figure 2 (left column)
shows polar charts displaying the relative deviation between VPSC and Gurson’s strain
triaxiality at different stress-triaxialities, for two different porosities. This difference in the strain
triaxiality predicted by both models can be interpreted into angular deviations of VPSC strain
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Figure 2. (Left) Polar charts of the relative deviation of VPSC from Gurson’s strain triaxiality at different
stresstriaxialities, for porosities 0.1% and 1%. (Right) Deviations of VPSC strain rates from normality
(as assumed by Gurson’s model) at different stresstriaxialities for porosities 0.1% and 1%.

rates from the normal to the yield surface,® and is shown in the plots on the right of Fig. 2. At
0.1% porosity we see that, moving from low- to high-stress triaxialities, VPSC overestimates
Gurson’s strain triaxialities. This disagreement determines deviations of VPSC from the
normality condition, which starts becoming noticeable for triaxialities higher than 3. At ahigher
porosity (1%), VPSC overestimates Gurson’ s strain triaxialities by about 25 to 50%, for the
whole range of triaxialities considered. This determines a deviation from normality which is

close to 20° when X =5 and is even higher for higher triaxilities.

This result pointsto the fact that the associated flow rule, which is avalid assumption for

describing the constitutive response of solid aggregates, does not apply to voided aggregates.

8 The axes used for plotting sections of the Gurson yield surface in Fig. 1 introduce a distortion. As a consequence,
the components of the vector normal to such surfaces do not coincide with the strain-rate components given by the
associative rule and used to compare with VPSC. The rate components associated with Gurson are cal culated
anayticaly.
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2.8.  Numerical Implementation

To illustrate the use of this formulation, we describe here the steps required to predict the rate of
porosity evolution ¢ for a given stress state 3 j applied to apolycrystal with an initial porosity

¢ . From Zj; we can derive the mean stress X°, the stress deviator Zﬁ' , the equivalent deviatoric

stress 2 , and the triaxiality X. With ¢ and X, the value of the super-tangent parameter o can

be obtained. In order to start an iterative search of the local states, one should assume initia

input values for the local deviatoric stresses and moduli. Taking ci‘}' = ZS and using Egs. (1),

(534), and (74), an initial guessfor ¢, My, and £{° is obtained for each grain. Next, initial

do

guesses for the macroscopic moduli M Kl s E,j ,and K (usually simple averages of the

corresponding local moduli) are needed. With these guesses and the applied state Zj; , the guess
for the macroscopic strain rate follows from the constitutive law [Eqg. (54)], and the Eshelby
tensors and factors Sﬁ'mn : §,J , ¥, and Bisj are calculated using the macroscopic moduli plusthe
grain and void shape by means of the procedure described in Sections 2.2 and 2.3. Subsequently,

the interaction tensors and factors M ik ﬁij ,and K [EQ. (57)] and the localization tensors

Bijki » @ij» B®, Ajjui, Q

i and AS [Egs. (59) and (62)], can be obtained as well. With these

ij 1

tensors, new estimates of My, Ef°, and K are obtained by means of the self-consistent

ij
Egs. (73). After achieving convergence on the macroscopic moduli (and, consequently, also on
the macroscopic strain rate and the interaction tensors and factors), new estimates of the local
stresses can be obtained using the interaction Egs. (56). If the recalculated local stresses are
different from the input values, a new iteration should be started. If, instead, they coincide within

acertain tolerance, the converged value of the macroscopic bulk modulus K is used to obtain

the macroscopic dilatation rate as E® = £°/K . Finally, the porosity rate is calculated by means
of the following kinematic relation (Tveergard, 1981):

0=(1-9)E®°. (79)
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3. RESULTS

In this section, we present several calculations that illustrate the capabilities of the extended
VPSC formulation and compare its predictions with the ones obtained using the classical
Gurson’s model. We show in what follows how this formulation accounts not only for porosity
evolution but also for void shape effects in the mechanical response and in the porosity

evolution. The effect of rate sensitivity, texture, and triaxiality upon the mechanical response of a

voided material isaso investigated in this section.
3.1. Comparison with Gurson for Evolving Porosity

In Section 2.6, we fit the parameter o, i.e., the single adjustable parameter in the present
extended VPSC formulation, to match Gurson’s results at fixed porosities, for the case of a
random fcc polycrystal with spherical voids. Here, we present a comparison of VPSC and
Gurson for the case of the same polycrystal, alowing for porosity evolution. In doing so, we
minimize the rate effects (taking n = 20, considered to be the rate-insensitive limit) and switch
off the microstructure evolution in VPSC (i.e., texture, grain shape, and void shape), except for

the porosity evolution. The procedure for this comparison is as follows:

a) Assumeageneral axisymmetric tensile stress %j;, which can always be expressed in
terms of the hydrostatic and deviatoric components as Xqq = X5, =X° — %zd and
Sag=25+243Y,

b) The hydrostatic component X° and areference flow stress for the solid material Y are

kept fixed throughout the calculation. For £°/Y fixed and for a given porosity ¢q, the

deviatoric equivalent stress >9 is obtained from Gurson’s Eq. (76). The vaue of s
going to evolve with porosity and aso with the triaxiality X.

) Given =5 and =9, calculate the triaxiality X and use o(X,¢) inside VPSC to get

£9 = (o) 2, E5, and = (-0 ES
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AED

d) For an imposed deviatoric strain increment AEd, get the time increment At = — and
E
update the porosity according to (a) Gurson: ¢ = _ %2 with
1-6o +9oZ
; S
Z = exp| 3 3;2 I2Y) A9 | (3ohnson and Addessio, 1988), and (b) VPSC:
257 /3Y
O = 0p + OAL.

Figure 3 shows the porosity evolution as afunction of tensile strain for parametric values

of 2°/Y, as predicted by Gurson and VPSC models. In al cases, theinitial porosity was set to
3% 10™. For ratios 1/3 and 1, the total longitudinal strain was evolved to avalue of 1. For higher
ratios of the parameter, the porosity evolves faster and the Carroll-Holt (1972) limit (Eq. 78) is
reached before the final strain is achieved. Although both models exhibit similar trends, there are

some quantitative discrepancies (VPSC overestimates the porosity rate with respect to Gurson

for values of X3/Y=1/3, 1 and underestimates them for £°/Y =2, 3) which are to be expected
since, as shown in Fig. 2, the strain triaxialities which determine the porosity evolution differ
from one model to the other. Finally, a numerical aspect of these simulations that should be
highlighted is that the VPSC code still convergesin the vicinity of the numerically demanding
Carroll-Holt limit (i.e., at high triaxialities), although it cannot handle pure hydrostatic

conditions.
3.2. Effect of Rate Sensitivity

Another interesting characteristic of the present formulation is that its results depend on the rate
sensitivity of the material. This feature can be easily visualized by plotting normalized equal -
dissipation-rate surfaces corresponding to different rate-sensitivity exponents. Figure 4 shows
these surfaces for 0.5%, 1%, and 5% porosity calculated with VPSC for a random polycrystal
with spherical voids, using rate-sensitivity exponentsn =1, n=3, n =5, and n = 20 (defined here
asthe rate-insensitive limit). Even though the associated flow rule does not apply, it is still true
that the normal to the equal dissipation surface gives a qualitative estimate of the strain-rate

triaxiality (see discussion above). An inspection of the surfacesin Fig. 4 indicates that
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Figure 3. Porosity evolution in an isotropic material (random polycrystal) with spherical voids, deformed
in tension, for different triaxialities, as predicted by Gurson (symbols) and VPSC (lines) models. Initial

porosity: 3 x10™. Total longitudinal strain: 1.0, for /Y =1/3 and 1. Inthe casesof =°/Y =2 and
3, the longitudinal strain was limited by the Carroll and Holt condition. No texture or morphology
evolution allowed in VPSC cases.

a) Atagiven porosity and for fixed stress triaxiality (straight line through the origin), the
higher the rate sensitivity (lower exponent), the smaller the dilatation component E®,

and, as a consequence, the lower the required strain triaxiality (defined as ES / Ed). In
other words, the porosity evolution (dilatation rate) will be slower for the same stress
triaxiality because the solid phase contributes more to overall deformation as the rate

sensitivity of the material increases.

b) Asthe porosity increases, the relative difference between the surfaces corresponding to
different rate sensitivities decreases. In other words, the material becomes less rate
sensitive as porosity increases because the cavities themselves are, essentially, rate-
insensitive domains. The same tendency was reported by Liu et al. (2002) using arate-

sensitivity extension of the Gurson model.
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What the equal-dissipation-rate plotsin Fig. 4 show for fixed porosities and different triaxialities
can also be shown for afixed triaxiality and evolving porosity. In Fig. 5, we plot the porosity
evolution of arandom fcc polycrystal with 1% initial volume fraction of spherical voids for
different values of the rate-sensitivity exponent and afixed traxiality of 1. Evidently, the present

model predicts afaster porosity evolution as the rate sensitivity of the solid material decreases.
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Figure 4. Effect of rate sensitivity. Normalized equal-dissipation-rate surfaces for porosities 0.5%, 1%,
and 5%, calculated with VPSC for a random fcc polycrystal with spherical voids for different rate-
sensitivity exponents.

3.3.  Creep Test Smulation

Fixing the equivalent stress 39 and the triaxiality X = >S/x9 and assumi ng an axisymmetric

stress state amounts to prescribing the full stress tensor jto simulate an axisymmetric triaxial

creep test. This case differs from the casesin Section 3.1 where 39 isnot allowed to evolve. In
what follows, we will use such loading conditions to illustrate different anisotropic features of

the generalized VPSC model. For this reason, the results are discussed here in some detail.

33



0.16

0.14
0.12 1
0.10

0.08

porosity

0.06

0.04

0.02

longitudinal strain

Figure 5. Effect of rate sensitivity. Porosity evolution in a random polycrystal with spherical voids
deformed in tension for X = 1 and different rate-sensitivity exponents. Initial porosity 1%. Total
longitudinal strain 0.5.

Figure 6 shows the results of a creep test simulation for the case of arandom fcc polycrystal

containing spherical voids deforming by (111)<110> slip (t° =100MPa), with a rate-sensitivity
exponent n = 10 and an initial porosity of 3 x 107" under a constant triaxiality of X = 2 and

x4 = 273 MPa. No texture devel opment or void-shape evolution was allowed, only void
dilatation was accounted for. The porosity evolution (Fig. 6a) shows in a semi-logarithmic
representation an initial constant slope until about 5% porosity is reached, followed by an
acceleration at high porosities. Note that in this case, the calculation was carried out up to 30%
porosity in order to stay below the percolation limit (about 50% porosity), at which point the
self-consistent approach fails. Fig. 6b shows that for a constant applied stress, there is a steady
increment of the strain-rate components as deformation evolves. This response reflects a
softening of the material as porosity increases. These strain-rate increments are higher in the

dilatational component than in the deviatoric component. The stress and strain triaxialities,
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Figure 6. Creep test simulation. Case of a random fcc polycrystal deforming by (111)<110> dlip

(1°=100MPa), n = 10, initial porosity 3 x10™, X = 2, € = 273 MPa, no texture or morphology
evolution allowed. (a) Porosity evolution, (b) Deviatoric and spherical components of stressand strain
rate, (c) Sressand strain triaxialities.

plotted in Fig. 6¢, reflect the evolution of the individual components. It isworth noting that
unlike the rate-insensitive Gurson model that prescribes precise values of flow stress for agiven
porosity and triaxiality, within the VPSC formulation any imposed stress induces plastic
deformation, and the strain rate is determined by the magnitude of the stress components and the
current porosity of the material. In the present case of constant stress, for instance, the increasein
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porosity accel erates the deformation rate by several orders of magnitude with respect to the

initial value.
3.4. Effect of Void Morphology

In order to isolate the effects of void morphology from the full anisotropy evolution due to
morphologic and crystall ographic texture development, Fig. 7 shows the VPSC predictions of
porosity evolution during a creep test for arandom fcc polycrystal with different void shapes
(spherical, oblate, and prolate) and for triaxialities X = 1/3 (uniaxial stress) and X = 1. In the
oblate and prolate case, the short and long axis of the ellipsoidal void, respectively, is aligned
with the tensile axis. In al cases, the rate sensitivity exponent isn = 10, initial porosity is 0.5%,
the total longitudinal strain imposed is 0.5, and neither texture development nor void
morphology evolution were allowed. Note that scales are different since, as expected, porosity
increases faster at the higher triaxiality. Oblate voids (axes ratios 5:5:1) tend to grow
significantly faster than prolate ones (axes ratios 1:1:5), independent of the triaxiality. This
intuitively correct result has also been reported by other authors using different approaches (Lee
and Mear, 1992; Ponte Castafieda et al., 1994). Under the present model, the void morphology
enters naturally into the formulation via the Eshelby tensor, whose components depend on the

orientation and the shape of the cavities present in the material (see Section 2.3).

In addition, it is possible to treat both aligned or arbitrarily distributed void shapes. In the
former case, the Eshelby tensor isthe same for all the voids, while the latter case requires
calculating the Eshelby tensor for each void, which results in a more time-consuming
calculation.

3.5. Coupling between Texture Development and Por osity Evolution

The present model allows usto account for the anisotropic response of voided polycrystals
induced by the development of crystallographic or morphologic textures. While the former is due
to crystal rotations associated with plastic distortion of the grains, the latter refers to changesin
the shape of both voids and grains. Figure 8(a) shows the porosity evolution in an fcc polycrystal
with initially random crystallographic texture, a rate-sensitivity exponent of n = 10, an initial
porosity of 1%, for asimulation of an axisymmetric creep test with atriaxiality X = 1 and atotal
longitudina strain of 0.5. The different cases are for voids of different initial shapes (spherical or
prolate with along-to-short ratio of 5) with or without texture evolution. When no
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Figure 7. Effect of void shape. VPSC predictions of porosity evolution during a creep test performed on
an fcc polycrystal with random texture for different void morphologies, with no texture or morphology

evolution. Initial porosity 0.5%, n = 10, total longitudinal strain 0.5. Cases of (a) triaxiality = 1/3,
(b) triaxiality = 1.
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Figure 8. Effect of texture development. Evolution of (a) porosity and (b) void aspect ratio during a creep
test performed on an fcc polycrystal with random texture for different void morphol ogies with and without
texture or morphology evolution. Initial porosity 1%, X = 1, n= 10, total longitudinal strain 0.5. In the
cases with texture evolution, the final (111) inverse pole figure maximumisindicated in the right margin.

crystallographic texture development is allowed, in al the cases the fina porosities remain below
10%. Asdiscussed in Section 3.4, prolate voids tend to grow slower than spherical voids.
Moreover, if theinitially spherical voids are alowed to evolve in shape under such a stress state,
they become prolate and the porosity exhibits a slightly slower evolution. On the other hand, if
the crystallographic texture is allowed to evolve, two things happen: the tensile axis tends to
align with the <111> crystallographic direction (a secondary component develops along the
<100> direction) and the solid phase (grains) become harder to deform along this direction. Asa
consequence, more deformation is accommodated by the void phase (compare open and solid

symbol curves). In the cases of fixed void shape, once again, prolate voids grow slower than
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spherical voids. In the case of evolving shape, athough the voids go from spherical to prolate
shape, the porosity grows even faster than in the former cases, indicating a strong coupling
between texture, morphologic effects, and porosity evolution. Illustrating the effect of porosity
on texturein Fig. 8a, we report the final intensities of the <111>-peak of the inverse pole figure,
corresponding to the three cases with texture evolution. It can be seen that if the porosity evolves
faster (slower), the deformation carried out by the solid material is smaller (higher), leading to a
slower (faster) crystallographic texture evolution. Finally, Fig. 8b shows that the evolving
morphology of the cavitiesis aso affected by the anisotropy evolution of the voided polycrystal.
Comparing the void aspect ratio predicted with and without crystallographic texture evolution, it
is seen that in the former case the voids become more elongated than in the latter case for the

same amount of macroscopic elongation.

The previous example shows that the anisotropy induced by texture development in a
polycrystal with initial random texture gradually affects the porosity evolution. Asa
consequence, it isto be expected that a simulation carried out in an initially textured polycrystal
along different directions should predict a different trend of void growth from the very beginning
of the deformation. Furthermore, this anisotropic behavior should be more marked if the plastic

anisotropy of the single crystal is higher. For this reason, the next example concerns an hcp

material with easy (0001) <1210> basal and (1010) <1210> prismatic <a> slip and four times

harder (1011) <1123 > pyramidal <c+a> dlip. Theinitial texture consists of a strong basal

component along the axis x; (see Fig. 9b). Imposing axisymmetric tensile states parallel to the
axis x; or perpendicular to it (along axis xy) for triaxialities X = /3 and X =1, for aninitial
concentration ¢ = 0.01 of spherical voids and for afinal longitudinal strain of 0.5, we observe
that (1) texture evolution is not very sensitive to triaxiality and rather depends on the relative
orientation of the initial texture and the tensile axis (Fig. 9b), and (2) the porosity evolution is
strongly influenced by the texture, especially at higher triaxialities (Fig. 9a). Indeed, the case of
tension along x; (i.e., most crystals with their <c>-axis aligned in tensile direction and therefore
hard to deform) exhibits a faster void growth than the case of tension along x,, and the reason is
clear: the material chooses to accommodate deformation by opening the voids rather than by
deforming plastically along the hard direction. The coupling between the hydrostatic component
and the material plastic anisotropy is strong: for triaxiality X = 1, the hydrostatic component
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Figure 9. Coupling between initial texture and porosity evolution. VPSC predictions of (a) porosity
evolution in aninitially textured hcp polycrystal deformed in tension along x; and x, for triaxialities 1/3
and 1. Initial porosity 1%, n = 10; prismatic and basal slip (°= 100 MPa) and pyramidal <c+a> dip
(z° = 400 MPa) modes; total longitudinal strain 0.5. (b) Initial and final (0001) basal poles figures for the
four cases shown above.

leverages the latter mechanism and promotes an acceleration in void contribution to deformation
(Fig. 9a). The response of the hcp aggregate provides a dramatic example of a case where the
combined anisotropy of the single crystal and of the polycrystal (texture) affect the evolution of
porosity substantially.

The difference in porosity evolution predicted above when the textured hcp plate is made
to creep in tension along different directions should also manifest itself in the overall mechanical
response. Figure 10 shows the predicted stress-strain curves obtained by imposing a constant
axial strainrate of 1 s and a constant lateral stress chosen to give an initial triaxiality of 1. Note
that unlike a creep test simulation, these mixed-boundary conditions determine changesin
triaxiality (in these cases, an increase) as deformation proceeds. Other parameters of these
simulationswere n = 10, 1% initial porosity, texture and morphology evolution allowed, and no

mechanical strain-hardening (i.e., constant threshold stresses for every dlip system throughout
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Figure 10. Influence of porosity evolution on macroscopic mechanical behavior. (a) Stress-strain curves
calculated with VPSC for the textured hcp polycrystal of Fig. 9b deformed in tension along both in-plane
directions at a constant longitudinal strain rate of 1 s™ and imposing constant lateral stressesto give an
initial triaxiality of 1. Cases with and without porosity. (b) Porosity (right axis) and triaxiality (left axis)
evolution. Initial porosity 1%, n = 10, total longitudinal strain 0.5.

deformation). In order to assess the influence of porosity evolution, Fig. 10 also shows the stress-
strain curves without porosity, which shows a geometric softening consistent with the texture
evolution shown in Fig. 9b. In the case of tension along X, afast porosity evolution induces a
significant additional softening (and, consequently, a marked increase of the triaxiality), whilein
the case of tension along x», the contribution to softening of the slow porosity evolution isonly
marginal.

41



4, CONCLUSIONS

We have presented here an extension of the polycrystal VPSC model that incorporates a
viscoplastic compressibility into the originally incompressible approach. The motivation for this
extension isto be able to account for dilatational damage and its evolution during plastic-forming
while retaining the capabilities of the original VPSC formulation. Specifically, we are interested
in retaining the crystallographic basis of the model and its description of anisotropy and
anisotropy evolution both at the grain and at the aggregate level. We also retain the rate
sensitivity effects built into the model. The benefits of extending the VPSC formulation,
however, go beyond the specific problem of damage evolution. By forcing us to reformulate the
model in terms of amore general linearization of the material response (which supersedes the
traditional secant or tangent assumptions), we can now account (albeit approximately) for
variations of stress and strain rates in the grains. Such a super-tangent extension is based on the
affine formulation for viscoplasticity proposed by Masson et al. (2000).

It is unavoidable when referring to plasticity models that include porosity to compare
them with the widely used seminal model proposed by Gurson (1977). The present VPSC
extension has advantages and disadvantages when compared to the Gurson model. Among the
advantages:

1) VPSC accounts for the anisotropy of the mechanical response, while Gurson is

limited to an isotropic response;

2) VPSC accounts for elipsoidal void shapes and shape evolution with deformation,

while Gurson assumes spherical voids; and
3) Rate-sensitivity effects are not accounted for by the Gurson formulation.
Among the disadvantages:

1) VPSC isbased on alinearization of a highly nonlinear rate-sensitive constitutive
response and, as a consequence, it becomes less accurate when spatial inhomogeneity
islarge. This handicap is partially mitigated with the introduction of the super-tangent
approach;

2) VPSC cannot handle purely hydrostatic stress states, although from an agorithmic
point of view it can handle stress triaxilities up to X = 20; and
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3) From anumerical point of view, VPSC is much more complex to implement than
Gurson and much more demanding on computer resources. In addition, the fact that
the VPSC formulation starts deviating from the accepted associative rule at
triaxialities of order X = 5 may represent an advantage over the Gurson formulation,

which assumes the validity of the latter rule.

Obvioudly, the reason for choosing VPSC over Gurson (or over one of the various
Gurson extensions proposed in the literature) depends on the characteristics of the material and
the loading conditions under consideration. When anisotropy and its evolution with deformation
has to be accounted for, or when void shape matters, then we show in this work that VPSC
performs well when simulating the mechanical response and porosity evolution. We may say
that, in much the same way as the original VPSC formulation represents an improvement over
the limited isotropic VVon Mises plastic approach, the present extension represents an

improvement over the simple isotropic Gurson formulation.

The extended VPSC model contains one tunable parameter, o(¢,X), afunction of the
porosity and the triaxilality that controls the linearization of the constituive response. This
function is tuned to give the same response as Gurson when the material has low rate sensitivity,
isisotropic, and the cavities are spherical. A direct connection exists between this parameter and
the second-order stress moment associated with the stress gradients in the grains, which are
required to accommodate locally the deformation of the voids. Such second-order moment
dependence was formally introduced by Ponte Castafieda (1991, 2002a,b) in his variational

formalisms.

We explore here the predictions of the extended VPSC formulation for avariety of
situations. Specifically, we test the effect of void shape, texture, strain rate, and triaxiality upon
damage evolution, texture evolution, and stress-strain response. In all these cases, the results
obtained are qualitatively in agreement with the intuitive response that one expects. For example,
we predict that

1) Void shape has amagjor effect on porosity evolution. Oblate voids tend to grow faster

than prolate voids under tensile stress, and lead to accel erated damage evolution.

2) Rate-sensitivity influences porosity evolution in such away that, under tensile stress,

voidstendsto grow faster in less rate-sensitive materials.
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3) Porosity evolution does not substantially affect texture evolution in comparison with

an aggregate without voids that is deformed to the same strain.

4) Texture can change substantially the porosity evolution in a highly anisotropic
hexagonal aggregate tested along and across the basal component. The reason is that
it ismore efficient for the material to accommodate deformation by deforming the

voids rather than by deforming the hard direction of the grains.

5) Superimposing a hydrostatic stress component increases the rate of void dilatation
and, conseguently, their contribution to deformation.

This extended VPSC model will have to be tested and expanded in the future. Experimental
verification should be an important part of such efforts, and producing materials with controlled
initial porosity and texture and performing well-controlled experiments will certainly be a
challenge. From anumerical perspective, we plan to use the model to describe the local
constitutive response in FEM simulations of plastic-forming operations. Criteriafor void
nucleation can be incorporated into the formulation in a straightforward manner, as well as
distributions of void shapes. It will be more challenging to incorporate void coal escence effects
and a dependence of the model with the relative size of voids and grains (size effects). Finally,
we plan to study the model’ s performance when simulating aggregates of material grains (no
voids) with very inhomogeneous properties. The possibility of accounting for intragranular
gradients and localization through second-order moments should open new avenues in this area
and should provide amore efficient tool for looking into these systems.
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APPENDIX A. INTEGRATION OF A(a) OVER ELLIPSOIDAL DOMAINS

The use of the Fourier transform for solving the differential system (7) plus the integration of the
velocity gradient field inside the domain of agrain to get average representative values of the

velocity gradient in the grain leads to integrals of the form (37),

A(&):T ( [ exp[—iE(Y—i’)]didY’} k2dk (A1)
0 \QQ
which can be rewritten as
A@) T[jexp ikx d—jexplkx dx’ }kzdk . (A2)
0\Q

Solving the integrals in the Cartesian space over the ellipsoidal domain of radii (a, b,c) gives

gjzexp(_ipg)ay _ 4nabcén[p(6)k]—[gzaa(?£;<3] coslp(a)k] -

where p(a) = \/(aocl)2 +(boip)? + (caz)? and K = kat . Sincethe right term in (A3) isan even

function of k, the same result holds for jexp(iEY)dY . Replacing (A3) in (A2), we obtain
Q

Afer) = (4mabe) Jsm[p o)kl [p(e)k] coslp(a)k])? , -

(A4)
@) % k*
Solving the improper integra in (A4) gives (Bervellier et al., 1987)
0 TN T (o L2
janb@kl- p@kloosp(@) g (s
0 k 6
Hence,
3 2
Afa) < 8 (@) (A5)
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APPENDIX B. CALCULATION OF THE LOCAL MEAN STRESSFIELD

Thelocal deviation of the mean stress represents the fourth unknown in the system (7) of
differential equations. Using the solution for the associated Green tensor H , (X) , the local

deviation of the mean stress can be expressed as the convolution integral

G°(X)= [Hp(x=X)f (%) dx’ (m=14),
R3 (B1)
)= [Hi(x-X)f¢ () dx'+ [Ha(x-X)F3(x) X" (i=13),
R3 R3

where the fictitious forces are defined by Egs. (8) and (9). Following the procedure described in
Section 2.3, we assume uniform eigenstrain rate within the domain Q of the grain and zero
outside and calculate the average mean stress deviation within the grain’s volume. Integrating
(B1) gives

~ 1 ’ ’
S:_EI [Hi(x=x") Tijaegy (X )d—d———j [Ha(x-x)Ke¥ (X)dxax”. (B2)
QQ Q Q
Solving thefirst integral by parts and using the divergence theorem, we obtain
___j jHIJx ) Lij el dxdx’— = jo X -X')KeS dxdx’. (B3)
Q Q

Next, using the definition of the Fourier transform, Eq. (19b),

G° 8n3§2“ J”{ k) (-ik;) expl-iK(X - x)]dkd‘d’} Lijél -
1 - N
= sz gj} J3H4(k)exp[—|k(x—x)] ddedY]Ke§. (B4)

Using the explicit form of the inverse Fourier transform, Egs. (27) and (28),

N 1 e A
cs—sngg(f | [AG(@)0; expl-ik(x- x)]dkoﬁf} Lijaid +
Q QR

: (Ij [ A (@) exp[-ik(x - %")] dkd’d’J (B5)
8Q g o o
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Writing dk in spherical coordinates dk = k? sin® dk d6 de and using the integral derived in
Appendix A reduces (B5) to

21t nA4
i

| I I b

Sneded({)} Eijk| Eg’; +

2n A }
sin6dode (B6)
an £ I[p(oc)]
where p(a [(aocl) + (bocz) + (coc3)2] , and the first bracket is the tensor T”S obtained in

Section 2.3 (EQ. 41), in connection with the velocity gradient deviations. As a matter of fact, a
reduced form of the expression (B6) containing only the first term was derived by Lebensohn
et a. (1998) for the solution of the incompressible inclusion in an incompressible medium. The
first term in (B6) couples the deviations in mean stress to the deviatoric eigenrate, while the
second term arises from the compressibility of the medium and couples the deviation in mean
stress with the dilatational eigenrate.
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APPENDIX C. COMPARISON BETWEEN THE NORMS OF &j;,, AND Sﬂmn

d
Srj S'kkmn

In Section 2.3, the tensor &ijmn = present in Eq. (48) that relates the deviatoric strain-

rate deviation and the deviatoric eigenstrain rate

~d d d* <
&j = (Sﬁjmn _E;ijmn)gmn +Bij55 (CY

was removed from the above equation to give

~d _ d . d* N

. Thefollowing numerical examplesillustrate the

by arguing that, in general, H Eijmn H << H S,?mn

latter inequality. Figure C1 shows the cases of two different creep test simulations (no texture or

morphology evolution allowed) of fcc polycrystals with random texture, for different triaxialities

and void shapes. Figure Cla shows the quadratic norms of &; jmn and Sﬂmn and the porosity

evolution for X = 1, spherical voids, 1% initial porosity, 0.5 final longitudinal strain, and around

10% final porosity. In this case, H Eijmn Hz remains several orders of magnitudes smaller than

I

ijmn

X throughout the simulation. Figure C1b shows the results of another creep test

simulation for a higher triaxiality (X = 3) and afaster porosity evolution, induced by the oblate
morphology of the voids (aspect ratio 1:1:5) with an initial porosity of 3x 107 afinal

longitudinal strain of 0.09, and around 10% final porosity. In this case, H &ijmn Hz shows arapid

increase as porosity increases but it still remains two orders of magnitude below H Sﬁ'mn

at the
2

end the simulation.
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Figure C1. Comparison between the norms of the tensors &; jmn and S?mn (dashed lines, right axis scale)

in creep test simulations on random fcc polycrystals. Cases. (a) 1% initial porosity, X = 1, spherical
voids, n = 10, final longitudinal strain 0.5. (b) Initial porosity 3 x107™*, X = 3, oblate voids (1:1:5), final
longitudinal strain 0.09. No texture or morphology evolution allowed. The porosity evolutionis
superimposed (solid line, right axis scale).
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APPENDIX D. SELF-CONSISTENT EQUATIONSFOR AGGREGATESWITH
DIFFERENT GRAIN AND VOID SHAPES

In Section 2.4, we derived the following interaction equations (Eg. 56):
.d _=d Y d d) 3 =
gjj —Ejj =My (le —-Zy )— BkS® (D1a)
B =K (o5-59) . (D1b)

The unknown moduli of the effective medium follow from enforcing the condition that the

volumetric average of stress and strain rates has to coincide with the macroscopic magnitudes
i =(ok), =°=(c%), (D2)
EQ = (el), B =(¢°). (D3)

If the shape and orientation of the ellipsoids that represent the grains and the voids are the same,

then the Eshelby tensors Sgkl , §” , and the Eshelby factor W are the same for al grainsand

voids and, as a consequence, the interaction tensors and factors M ijki and K arethe same for

every grain and void in the aggregate. Hence, when taking the average in (D1), these magnitudes
can be factored out from the average to give

() —Ef =My (<Gf<’| )z ) (D4a)

(e°)-£° =R Hom)-z"). (D4b)

Note that in writing (D4), we used <§k| 6S> =By <65> = 0. From Eq. (D4) it is obvious that if
the conditions (D2) on the stress components are fulfilled, then the conditions (D3) on the strain-
rate components follow automatically and vice versa. However, if the grain and void shapes

differ, then their Eshelby tensors are also different, and consequently, M ijki and K cannot be

factored out from the averages. In this case, amore general formulation isrequired in order to

fulfill smultaneoudly the stress and strain-rate averages (Walpole, 1969; Lebensohn et a., 1996).
First, let us define the auxiliary magnitudes =§*, =, E*, and E*, related through the
macroscopic constitutive law Eq. (3),
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tde 17 wde , gd
Ei* =My =i +E;°, (D5a)

E* =K1z*. (D5b)

Subtracting equations (D5) from equations (53) and following the procedure leading to the
interaction equation (D1) gives another form of the interaction equations,

-d  =de Y d de) 7 =
&j —Bij =-Mijq (o8 -8 )-Bus®, (D6a)
¢S —E" =Ko -x>). (D6b)

Now we need to determine the auxiliary magnitudes using the conditions (D2) and (D3). From

(D6a) we obtain the following localization relation:
d de
Sjj = Biju Zjj +Pjj (D7)

where Bjjq and @j; are given by Eq. (59). Taking averagein Eq. (D7),
= =(of) = (B =i + (i) %)
Hence,
° -1 °
2" = (Biu) [ - (@w). (DY)

Then, replacing (D9) in (D7) to remove the auxiliary stress Zi‘}" ,

Gﬁl = Biju [(Bk|mn>_1(zﬂqn _<q)mn>)}+q)ij : (D10)

Using the local constitutive law (53a), and following the same procedure as in Section 2.4, we

obtain

83 = Mijki Brimn (<Bklmn>_l(zg1n _<q)mn>))+ Mijki P +éﬁ° ) (D11)

Mijpq Zpg + E = Ejf = <€ﬁ> = (Mij Bimn) <anpq>_1zgq

(D12)
—<M ik Bklmn> <anpq>_l<q)pq>+<M ijki P +éﬁo> :



Hence,

-1
Miqu=<MijkI Bklmn><anpq> ) (D13)
: . -1
The self-consistent equations (D13) and (D14) represent a generalization of Eq. (67). Asfor the
spherical components, using (D6b), we obtain

g5 KHKese (D15)
K+K

from where, averaging,

gs o (KAKY ese (D16)
K+K

If every grain has the same shape and every void has the same shape (but different from each

other), only two different values of the Eshelby factor have to be considered: ¥y and ',

respectively. The grain and void interaction tensors associated with the compressibility are given
by Eg. (57¢) as

- 1-Y,

K, = K,
S (D174)
- 1-v,
K. = Sk, D17b
9= "y ( )

while for incompressible grains and infinitely compressible voids we have

- 0 for grains (K — <o) ,
K+K — =~
- = D18
K+K KiKV for voids (K =0). (D18)
KV
As a consequence,
K+KV__o (D19)
K+K/ 1-¥,
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from where (D16) becomes

1w,
¢

ES* ES.

Replacing (D20) in (D15) to remove the auxiliary strain rate ES®,

1-¥, K+K .
g7 v K+K s
0 K+K

Then,

e =30 = (o) = (et} = 100 LK i)

K
Using Eg. (71) in (D22),

1-¥,

. 1-0) K +Kg),

K =

which, combined with (D17b), leads to the following self-consistent equation for the

determination of the viscoplastic bulk modulusk :

1-¥,
Yo

K=1-¢
¢
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APPENDIX E. SCALING OF THE STRESSTO MATCH A REFERENCE
DISSIPATION RATE IN VPSC

The dissipation rate is given by
W =3 Ej; . (E1)

Decomposing the tensors in the deviatoric and spherical components

. . d . . d ES
Eij = EIJ + Ei = E” +?8ij , (EZ)
g, =28 43% =58 1 555; (E3)
ij ij i ij Iy
allows usto rewrite (E1) as
iy vde=d S =S
W _Zij Eij +X°E> . (E4)

We want to show that given areference state E{jer , E{jef , then, if a stress state Zicj’ such that

= =2zl (E5)
is applied to the polycrystal, the resultant strain rate will be

B - E (E6)
Equation (E5) can be written separately for the deviatoric and spherical stress tensors

Zﬁl'o = kzﬁ'rer , (E7)

ij’o =z} ref (E8)

It is easy to show that Eq. (E6) holds true for the deviatoric tensors. Using the connection
between local and macroscopic strain rate and the homogeneity of order n of local deviatoric
constitutive equation (53a), we have
'Ei(}l,o — ES,O(ZS,O) — ‘Eﬁ,o (}intjj',ref ) — <ES’O (xcref )> — 7\(!’1 <éi(j'l,l’€f (Gref )> —
_\n ‘Ei(}i,ref . (E9)
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If the same relation holds for the spherical components
~5,0 _ 4 NyS,ref
or
£SO _ xnzs,ref ’ (E11)

then the dissipation rate of both the statesis related by

V‘VO — ZS,O ESO +ES’O 'Es,O — xn+1 Zicjj,ref Eicji,ref +kn+1 Es,ref Es,ref —

r

ef . ref .
— kn+1 Eljr EIJ — 7\4[’]+1 Wref . (E12)

Hence, given an arbitrary stress and associated strain rate, the correction to the stress that gives a

state with the reference dissipation rate W' is

1

isref \ns1
i =(W—} =7 . (E13)
W

For verification purposes, in Fig. E1 we present the results of running VPSC for the case of a
random fcc polycrystal when varying the norm of the applied stress for two different cases of
fixed porosity, triaxiality, and rate sensitivity. We plot there the quadratic norms of the deviatoric
and spherical stress tensors versus the quadratic norms of the deviatoric and spherical strain-rate
tensors respectively and the dissipation rate versus the quadratic norm of the Cauchy stress
tensor. From the linearity and the slopes of the log-log plots, it can be seen that the curves
corresponding to the deviatoric and spherical norms are consistent with Egs. (E9) and (E10),
respectively, and as a consegquence, the dissipation rate fulfills the relation (E13). Although these
results were derived for only two sets of parameters, we have verified that these results are

independent of the choice of parameters.
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Figure E1. Plots of deviatoric and spherical stresstensor norms (HZ;}I H and Hzﬁ H , respectively) versus

deviatoric and spherical strain-rate tensor norms(HESH and ‘ , respectively) and dissipation rate W

=S

versus Cauchy stress norm “ Zijj “ for the case of a random fcc polycrystal with a rate-sensitivity exponent

n= 10, t° = 100 Mpa, and for two sets of porosity and triaxiality. The log-log plots have constant slopes
equal to n for the deviatoric and spherical stressnormsand (n + 1) for the dissipation rate, indicating
dependences of the type (E9), (E10), and (E13), respectively. Same behavior is obtained for arbitrarily
chosen porosities, triaxialities, rate sensitivities, and textures.
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