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Longitudinal Coupling Impedance of a Hole in an Infinite Plane Screen*
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Abstract

An analytical formula for the longitudinal coupling
impedance of a hole is developed using a variational
method. We show that the coupling impedance can be
expressed as a sum of functional series, whose argument is
the dimensionless quantity kd alone, where k is the free-
space wave number and d is the radius of the hole. When
expanded in powers of kd, we recover the long wavelength
result as a limiting case. The numerical evaluation re-
veals that the impedance can be well modeled by an RLC-
resonator circuit. We also show the qualitatively good
agreement between the theory and the MAFIA-T3 sim-
ulation for the geometry of a hole in a coupled waveguide
with rectangular cross section.

I. PROBLEM STATEMENT

The geometry of our problem is shown in Fig. 1 where
a charge is moving in the z-direction with velocity close to
the speed of light. The distance between the plane screen
and the beam path is b, and the origin of the coordinate is
at the center of the hole with radius d. The local cylindrical
coordinate system (p, 8, y) is also shown. We calculate the
longitudinal coupling impedance for this geometry.
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Figure 1
Infinite Flat Screen with a Hole.

II. Low FREQUENCY SOLUTION

Denoting E; and H; as the fields without the hole and
E; and H; as the fields with the hole, we can express the
longitudinal coupling impedance as [1]

1L|*Z(k) = (n x Ez) - HdS,

hole

(1)

where n x E; = J,, is the magnetic current induced in the

hole, which is not known until we solve the problem.
Assuming a small hole, namely kd = 2xd/)A < 1, Bethe

obtained the solution for the magnetic current in the hole
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where Eg and Hy are the field evaluated at the center of
the hole in the absence of the hole, and I g and J,, g
denote the magnetic current induced in the hole due to the
incident electric and magnetic fields, respectively.

The magnetic field from the unit source current can be
obtained using the image principle. In the plane of the
hole, it becomes
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where the coordinate system defined in Fig. 1 is used.
Assuming a small hole in which the field strength is uni-
form but the phase is varying, we may rewrite the source

field as

H; = Hy — jkzHp + O(kz), where Hg = —%e,. 4

Then, the longitudinal coupling impedance becomes
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3
which results in Z(k) = (2Z,d3/3x2b%)k.

If we apply the above formula to a cylindrical beam pipe
of radius b with a hole of radius d, the longitudinal coupling
impedance becomes, with Hy = 7’# in Eq. (7),
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which is exactly the same as the well-known results [1].

Z(k) =

III. VARIATIONAL SOLUTION

A. Variational Formalism
We begin by defining an “impedance functional” which
is stationary with respect to the unknown quantity (mag-
netic current density in the hole).
We define the impedance functional Z as
Z:—/J~(E2—-E1)dV. ©)
In the above definition, as we subtracted the contribution
from the source field, the entire contribution is from the
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scattered field which satisfies the homogeneous Maxwell’s
equations. We note that if the electric field is real, the
longitudinal impedance is the complex conjugate of the
impedance functional, Z(k) = Z*(k)*.

If the integrating surface is chosen to coincide with the
plane of the screen where E; satisfies the boundary condi-
tion n x E; = 0, Z reduces to

= / H, - (n x E,)dS. (10)

By using Rumsey’s reaction concept {3, 4], we can derive

the variational expression for Z as [5]

X [fs. B - (m x B#)as]”

= fjwe [s. J[s.ln x Eo(r)] - Go(rlr!) - [0 x Ee(x')]dSdS"

(11)

where H' is the incident magnetic field on the screen (pre-

viously denoted as H;), E® is the assumed electric field

in the hole, and Go(r|r’) is the free-space dyadic Green’s
function.

The above formula is a homogeneous equation in the
sense that the result does not depend on the amplitude
of the assumed electric field E®. In fact, this is a general
expression for the impedance functional of an aperture in
a conducting plane as long as the plane is the symmetry
plane separating two regions, namely, an infinite plane or
coupled waveguide structure. Details of the calculation
depend on the shape of the aperture and the assumed tan-
gential electric field in the aperture.

B. Results

In order to evaluate the variational expression repre-
sented by Eq. (11), we assume a trial function for E“ based
on the Bethe’s solution in Eq. (2):

nxE® =e4 Z b,,p"(l—‘Z—z)%‘"-i-e;r E an(l—%)"'%.
n=1 n=1

(12)
This field satisfies Meixner’s “edge-field” condition [6].

The coefficients a,, and b,, are unknown quantity and de-
pendent on the frequency. We used the method developed
by Levine and Schwinger {7] to determine these coefficients,
and the detailed results can be found in [5}.

Once the a, and b,, coefficients are determined, we can
use them to calculate the longitudinal coupling impedance.
It turns out that the coupling impedance is numerically
equal to the impedance functional. We also found that
the magnetic current from the electric and magnetic field
does not couple in contribution to the coupling impedance.
Thus we write the impedance as

Z(N+M) _ ZEEN) + Zﬁ,M),

(13)

where M or N denotes the order of approximation or the
number of terms used for trial fields.

!We found that the coupling impedance does not have the sta-
tionary property in general.

It may be interesting to compare Zg)(k) and Zﬂ‘) ex-
panded in powers of kd. We find that

2152
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In the low frequency range, it is found that Z(?) ~
](2Zod3H§/3)k which is the same as the low frequency
result found in the prevxous section.

Since. Hy ~ b~!, the above result shows that the
impedance scales as (d/b)2.
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Figure 2

Comparison of Impedances due the Incident Magnetic
Field, Zg, and Electric Field, Zg.

Numerical results of Zg) and Zg) are presented in
Fig. 2. It shows that the impedance of magnetic type Zn
is mainly inductive (Im Zg > 0), and the electric type Zg
exhibits capacitive behavior (Im Zg < 0).

The results, using the three terms Z(®) = Z(l) + Z(z)
are shown in Fig. 3, from which we find that the maximum
value of Re Z(k) is Re Z(k)maz = 0.216Z;. For all other
d/b, it becomes Re Z(k,d/b)mar = 0.216Z,(d/b)>.

1V. BROADBAND RESONATOR MODEL

Since the impedance shown in Fig. 3 is similar to the
impedance of a parallel RLC-resonator circuit, it would be
useful if we described the impedance in terms of circuit
parameters. The impedance of an RLC-resonator circuit

is
R
1+35Q (;“'——%")

where R is the shunt impedance, Q is the quality factor,
and w, is the resonant frequency.

Z(w) =

(14)
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Variational Results Using Three-Term Electric Field.
(The ratio d/b=1.0 is used.)

The resonant frequency and the quality factor can be
read from Fig. 3. For the Q value, we used the def-
inition Q@ = w,/2Aw, where |Z(w)| at the frequency
w = w, + Aw is 0.707 of its maximum value. The
shunt impedance can be determined in two ways., We
can either use the impedance in the low frequency limit,
Z(k) = j(2Zyd®HZ/3)k, or the impedance at resonance,
Z(k) = 0.216Zo(d/b)?>. Denoting these two models as
BBR-1 and BBR-2, respectively, the circuit parameters
are shown in Table 1.

Table 1
Circuit Parameter Based on BBR Model
Model wr Q R
BBR-1 | 1.35(c/d) | 1.8 | 0.164 Zo(d/b)?
BBR-2 | 1.35(c/d) | 1.8 | 0.216 Z(d/b)?

We compared the impedances from the two models with
the variational result, which is shown in Fig. 4. Note that
(Z(k)/Z0)/kd is plotted, which is the useful quantity in
the instability calculation.
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Figure 4
Comparison of Impedances from Variational Solution and
Broadband Resonator Model.

V. APPLICATION TO ACCELERATOR CHAMBER

We also applied the above results to the accelerator
chamber. As a model geometry we considered the rect-
angular waveguides coupled by the hole in the common

wall. In the analysis, we used the image charges in or-
der to remove the waveguide wall. By doing so we could
investigate the contributions from the real charge and the
image charges to the impedance separately. We found that
the image-charge contribution is small, as long as d/b is
small {5].

We compared the variational results with a MAFIA-T3
[8] simulation. The geometry used in the MAFIA-T3 sim-
ulation has a 2 cm-by-1 cm rectangular waveguide with a
hole of varying radius on the 1-mm-thick common wall.

The results for the hole with a radius of 1 mm corre-
sponding to d/b=0.2 are shown in Fig. 5. The agreement
between the two results is qualitatively good. From the
range of frequency we can conclude that the appropriate
length scale is the size of the hole and not the size of the
waveguide. Thus the scaling we found in the previous sec-
tion also applies to the waveguide geometry.
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Figure 5
Coupling Impedance of the Hole with a Radius of 1 mm
in the Coupled Waveguide.
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