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1. Introduction
A. Summary of Results.

In this note we investigate a new model for the behavior of ferroelectric materials. This model is
analogous to one used in [1] to describe the dynamics of elastic materials which exhibit phase changes.

We begin with Maxwell’s equations which we take in the form,

0B oD
i curl E and e +oE=curl H (1.1)

Here E and H are the electric and magnetic fields and D and B the electric and magnetic displacements,
and o > 0 is the conductivity.

In usual dielectrics, which are homogeneous and isotropic, D and E and B and H are related by the
constitutive equations,

D =¢E and B =uH (1.2)

when € and p are positive constants. Insertion of (1.2) into (1.1) yields a linear hyperbolic system which
can be solved in a region ) subject to initial values for E and H and the specifications of the tangential
components of either E or H on 2. Our primary focus will be on the case where n x E = 0 on 0f2 but
we will describe briefly what happens when n x H = 0 on 0f2.

In the case of ferroelectric materials one replaces (1.2) by,
D=¢(E+P) and B=pH (1.3)

where P is the electric polarization.
We regard the polarization as an internal field which evolves according to its own Maxwell type system;
namely

oP
€1 (W + %) = curl m (1.4)

and
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Here, m has the interpretation of an internal magnetic field and j is a current density which is driven by
the difference between an equilibrium electric field, E(P), and the electric field E; that is

7 <8m am) = — curl P. (1.5)

d  ai P (s
=t E(E(P)—E). (1.6)
This latter system for P, m, and j reduces to
6% (Py + A? curl curl P) + afP, = (E - E(P)) (1.7)
which couples the polarization P to the electric field E. Here \ = ﬁ is the speed of light for the internal
fields. For definiteness we assume that
E(P) = Vp®(P - P) = 2P%'(P - P) (1.8)
where s — ®(s) : [0,00) — (—00,00) is smooth and satisfies ®(0) =0, —1 < ®'(0) < 0 and

®"(s) >0, 0 < s; s =a? is the location of the unique local minimum of ® normalized so that ®(a?) < 0;
and for large s

B(s) ~ ks|®'(0)], ¥'(s) ~ k|®'(0)], and for p = 2 and 3, BP)(s) ~ O (%) (1.9)
S

where £ > 0. These assumptions guarantee that

¥(n) ¥ o(p)

is a symmetric double-well potential with a unique local maximum at n = 0, unique local minimum at
n = +a, and quadratic growth as |n| — oo!.
We note that (1.7) with E(P) given by (1.8) supports hysteretic effects normally associated with bi-

stable dynamics. Specifically, if we assume that E = uyaesin wt where e - e = 1 and u is large enough and
look for spatially homogeneous solutions of (1.7) of the form P = ap(t)e, then p satisfies

8°pu + adp, = B (psinwt — 2pd’ (a*p?)) (1.10)

and plots of e v.s. p exhibit hysteresis loops. The results of such a simulation are shown in Figures 1 and
(p* — 1)
YR
In order to not complicate the analysis we consider a simple geometry. We suppose the material
occupies a cylinder with generators parallel to the z-axis and a uniform, simply connected cross section {2.
We consider only fields which are independent of z and have the special form,

2. These were run for the parameter valuesa =f=pu=1, § = .01, and w = 7 when ® =

E= aees, P= apes, and H = b(hlel -+ hgeg) (111)

with (1.3) holding. Here, a? is the location of the local minimum of ® and b = a\/g. In this case (1.1)

and (1.2) become

1Equilibrium relations of this type may be found in Landau and Lifschitz [2], p. 84-91.



et +pt + o1e = ¢ (hog — hiy), hit = —cey, and hy = ce, (1.12)

where 0, = o/e > 0 and ¢ = 1/,/¢x is the speed of light, and the evolution equation (1.7) for P reduces to

8% (pu — A°Ap) + adp, = B (e — 2p®'(a®p?)) . (1.13)

where «, (3, 4, and A are positive constants and A is the two dimensional Laplacian. We require one or
the other of the boundary conditions for e or (hy, hy):

e =0or —nyh; +nhy =0 on 012. (1.14)
We shall also insist that the internal magnetic field m satisfies n x m = 0 on 0. This condition, along

with (1.5) and (1.11),, implies that p satisfies

Op
5. =0om 0. (1.15)

Our goal is the study of long time behavior of solutions. We summarize our results below:
(i) There is an energy & (e, hy, hy, p)(t) which decreases on solutions as ¢ increases.

(ii) For the boundary condition e = 0 on 89, e(z,y,t) — 0, hi(z,y,t) = 0, ha(z,y,t) = 0,
p(z,y,t) = p®(z,y) and E(e, hy, hy, p)(t) = Ex(p™). Additionally, p*> satisfies

o0

A2 Ap™® — 20p>’ ((ap°°)2) =01in § and % =0 on 0N (1.16)

and (1.16) is the Euler equation for the critical points of £, (p™).

(iii) For the boundary condition —nyh, +n1he = 0 on 952 conclusions (i) and (ii) continue to hold if o; > 0
while if 01 = 0, hi(z,y,t) = 0, ha(z,y,t) = 0, e(x,y,t) = e* (a constant), p(z,y,t) — p>(z,y)
and (e, hy, ha, p)(t) — £ (p™). Additionally, p™ satisfies

(e o]
6222Ap™ — B (e* — 2p™® ((ap™)*)) = 0 in © and %pn— = 0 on 0N (1.17)

and the above equation is the Euler equation for the critical points of £, (p®). The constant e is
determined by p™ and the initial values of e and p by the formula

e® = —A—(l?z-;//n(e(x,y,O) + p(z,y,0) — p>(z,y))dz dy. (1.18)

(iv) The equilibrium problem (1.16) has multiple solutions and these will be analyzed in Section 3.

That such results are expected may be seen by looking at the spatially homogeneous version of (1.12)
and (1.13). This reduced system implies that (hy, hy) = (h{, h3), a constant vector, and that e and p satisfy

e; -+ p; +ore = 0 and 6%py + adp, = B (6 - 21"1),(‘121)2)) . (1.19)

If one multiplies the first equation by Be and the second by p; and adds the results one obtains the identities



d (Be?  &pf 1 2,2 2 2
i (T+ 5t 2t )) = —o1e’ —adp <0 (1.20)
and
2 52 2 1
-ﬂzi + % + a-2—<1>(a2p2) + 3 (01€® + adp?)(s)ds
(1.21)
_ B, ?pf(0) , 1 2,2
=3¢ 0) + 5 T a—2<1>(a p*(0)).

Ifo; >0, @ >0,and é > 0, then (1.19) - (1.21) imply that e, p, and p; are bounded and that e, and p; are in

L,[0, 00). Moreover, if one multiplies (1.19); by e; and (1.19); by p;; and notes that ®'(a?p?)+2a%p?®" (ap?)

is bounded one finds that e; and py; are in L,[0, 00) and this guarantees that tlim e(t) = 0 and tlim pe(t) = 0.
—00 —00

Finally, if one differentiates (1.19), with respect to ¢ and multiplies the resulting expression by py: one
finds that py is also in Ls[0,00) and this guarantees tlim pu(t) = 0, that tlim p(t) ) p™ exists and that p™
—»00 —00

satisfies 2p> P’ ((ap°°)2) = 0. We are also guaranteed that the energy

d ﬁ62 52 2 1
£ 5 %+ —®(a’p?) (1.22)

satisfies

lim £(t) = :_2¢ (ap™)?) . (1.23)

) t—o0
Our results are generalizations of these observations to spatially inhomogeneous situations.

We also note that in the limit where § — 0% the solutions of (1.12) and (1.13) exhibit microstructural
oscillations where p rapidly jumps from —1 to +1 and from +1 to —1. The location of these jumps are
commonly referred to as “domain-walls”. Such solutions are most readily obtained in a slab geometry
where —00 < y < 00 and 0 < z < £ and where solutions are independent of y.

One such solution is shown in Figures 3 and 4 below. These were run with the system (1.12) and (1.13)

with the following parameter values: 0y =c=A=a==/£=1 and § = .01. We imposed the boundary
conditions (1.14), and (1.15). Our initial data was

(hy,hy) = (0,0), e=0, and p=cos3nz, 0 <z < 1.

The results of this simulation are shown at time t = 50. Our numerics conserved the zero means of e and
p.

B. An Equivalent System

We cast the system (1.12), (1.13) in a slightly more symmetric looking fashion. To effect this reduction,
we assume that the initial data

e (xz,y) = tlir&e(x,y,t) , (z,y) € (1.24)
and
(h(l)a h’g) (x>y) = tl_l)lgi (hlv h2) (m)ya t) ) (iE,’y) € (125)

4



satisfy

R O
.é;+5;—0’(x’y)697
(h‘l’, hg) (ny,me) =0 , (z,y) € 09,

and

e’ (z,9) =0, (z,y) € 00
Equations (1.12); and (1.12)3, when combined with (1.26) and (1.27) imply that

ohy n Ohy

—+ == Q and ¢
5z T oy 0, (z,y)eQandt>0

and

(hl,hQ) . (nl,ng) =0 , (:I:,y) €0andt>0

and these latter two identities imply the existence of a potential 1) such that

_ oY -_El >
h, = ca and hy ca , (z,y) € Q and t >0,

and

d}(x’y:t) = g(t) y (I,y) € 0N and t > 0.
Additionaﬂy, (1.12), and (1.12)3 imply the existence of a function ¢ — H(t) such that

0 dH
e(a:, Y, t) = %(‘T’ Y, t) - -E(t)

dg dH

—. If

for all (z,y) € Q and t > 0. Moreover, (1.14),, (1.32), and (1.33) imply that il

we now let

défz/)——g,(:v,y)eﬂandtZO,
we find that
d¢ _ 0¢
e=¢y hl——ca—y , and h2—c%,

and that ¢ satisfies

by + 010 + Pt = c*A¢ , (z,y) € Qand t > 0,

and

¢(z,y,t) =0, (z,y) €9 and t > 0.

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)



Moreover, ¢ is coupled to p through

82py + abp, — B (¢: — 2p®'(a®p?)) = 6°X?Ap, (z,y) € Qand t > 0, (1.38)
and
op
5 (z,y,t) =0, (z,y) € N and t > 0. (1.39)

In Section 2 we shall focus on (1.35) - (1.39).

2. Large Time Behavior of Solutions to (1.35)-(1.39).

In this section we focus on the large time behavior of solutions of the system:

b+ 010+ pe=Ad , (z,y) €Qandt>0 (2.1)

82pu + adp, — B (qﬁt — 2pd’ (a2p2)) =6MAp , (z,y)€Qandt>0 (2.2)

satisfying the boundary conditions

¢($,y,t)=§f‘;($,y,t)=0 , (z,y) € 0 and t > 0. (2.3)

Once again the parameters «, 3,6, A, and c are positive, o, > 0, and e, h;, and hy are related to ¢ by

e = ¢t , hl = —Cg—z , .and h2 = Cg—f. (24)
Information about the large time behavior of the system (2.1) - (2.3) will follow from a series of energy
identities; the most basic of which is obtained by multiplying (2.1) by 8¢; and (2.2) by p; and adding the

resulting expressions. The identity is

OF

5 ~diva= —018¢; — adp; <0 (2.5)
where
52 P (a?p?
E=L(@rlvep) + L @+ 2 vol) + 20T) (26)
q =B v ¢+ 8 X’p, v p, (2.7)
and
qn=0 , (z,y)€0Qandt>0 (2.8)

and once again ® (a?p?) is the double-well potential with a unique local maxima at p = 0 and minima at
p & 1. The key point of this and succeeding estimates is the fact that the term Sp;¢, which comes from
the multiplication of (2.1) by 8¢, exactly cancels the term —gp,¢; which comes from multiplying (2.2) by

Pt



To obtain the higher order estimates we differentiate the system (2.1) - (2.3) with respect to time. One

differentiation implies that the pair (¢, p;) satisfies

but + 0104 +pu = C2A¢t , (CL‘,y) €andt >0,

8 put + abpy — B (i — G1(p)pe) = §2\2Ap,, (z,y) € Qand t > 0,

and the boundary conditions

_3__&
on

while two differentiations imply that the pair (¢, py) satisfies

¢t (z,y,t) = (z,9,t) =0 , (z,y) €0 andt >0,

Geree + 010t + Dur = APy (z,y) €Qand t >0

8*puse + a0pus — B (¢ee — G1()pn — Ga(p)p?) = 82A2Apy , (7,y) € Qand t >0

and the boundary conditions

¢tt(xay>t)=%(xayat)=o ’ (x7y)eaQa'ndt>O'

The functions G; and G5 are given by
Gi(p) = 2(2'(a’p?) + 2ap*?" (a’p?)) }

Galp) = 202 (6p2"(a%?) + 4a°p*2" (a%p?))

and

and they are bounded by virtue of (1.9).
Associated with the identities (2.9) - (2.11) and (2.12) - (2.14) we obtain identities of the form:

and

%—?—ddizG , (z,y)eQandt>0,
q-n=0 |, (x,y)EGQ.

Equation (2.16) implies that

4 //E(x,y,t)dwdy = //G(x,y,t)dwdy
dt J .

and

//E(x,y,t)dxdy = //E(z,y, O+)da:dy+/t ( //G(x,y, s)dxdy) ds.
Q Q 0

Q

In the case of (2.9) - (2.11)

g

52
5 (‘b?t + c2| \Y4 ¢t|2) + = (p?t + ’\zl th|2) )

E= 5

7

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)



q= ﬂc2¢tt VvV ¢ + 52/\2Ptt V Pt (2.20)

and

G = ~01B¢3, — adp, — BG1(p)pipu (2.21)
whereas in the case of (2.12) - (2.14)

B 5
=3 (¢?tt + Czl \Y4 ¢tt|2) + ) (p?tt + )‘ZI tht|2) ) (2.22)
q = f¢c? (et V Pee) + 52/\2pttt \Y4 ¢tta, (2.23)
and '
= —0108¢%; — adply, — B (G1(P)Puput + G2(P)Pipus) - (2.24)

Next, we record some 1mmed1ate consequences of the identities (2.5) and (2.15) when E is given by
(2.6), (2.19), and (2.22).
Lemma 1. The identities (2.5) and (2.6) imply that
(i) ¢ isin H}(Q) with bounds which are independent of ¢,

(ii) pisin H'(Q2) with bounds which are independent of ¢,

(ili) ¢ and p; are in Ly(2)with bounds which are independent of ¢,

(iv) o> 0 and § > 0 imply that p, is in Ly(2 x [0,00)), and

(v) if o1 >0, then ¢; is in Lo(92 x [0,00)). m
Lemma 2. The identities (1.9), (2.15) and (2.19) and the result (iv) of Lemma 1 imply that

(i) ¢ is in H}(Q) with bounds which are independent of ¢,

(i) p¢ is in HY(Q)) with bounds which are independent of ¢,

(i) ¢y and py are in Ly(£2) with bounds which are independent of ¢,

(iv) @ > 0 and é > 0 imply that py is in La( X [0, 00)),

(v) if oy >0, then ¢y is in Ly(2 x [0,00)). m
Proof. The key step in establishing Lemma 2 is the observation that (1.9) implies that

—BG1(p)ptpse < P '82 P}
= 2 wF as Pt
and this inequality, (2.21), and the fact that Lemma 1 guarantees that p; € L, (2 x [0,00)) implies the
results claimed. Here, k; is an upper bound for |G1(p)|.
The next set of estimates will be a simple consequence of (1.9), (2.15), and (2.22) and the following

inequality which pertains to functions which are H'(f2), independently of ¢, and in L, (2 x [0, 00)), namely

/0°° ( //f‘i(:c,y,t)dxdy) dt§K1x< 0<S;H;oo 1£12 ot ) / (//fz (z,y,t d:vdy)dt (2.25)
Q <

where K i>s independent of f and depends only on .2

*Here |Ifll}q // f(z,y, t)dzdy + / (F2 + f2) (z,y,t)dzdy



Lemma 3. The identities (1.9), (2.15), (2.22) and (2.25) imply that

(i)  ¢u isin H}(2) with bounds which are independent of ¢,
(ii) pe is in H'(Q)with bounds which are independent of ¢,
(ili) ¢ue and py: are in Ly(Q2)with bounds which are independent of t,
(iv) a > 0and ¢ > 0 imply that py is in La(Q x [0, 00)),
(v) if o1 >0, then @y is in Ly(2 x [0,00)). m
Proof. The key step in establishing this result is the observation that (1.9) implies that

ad B2k?
—BG1(p)pupus < —4—pfn + —agl-pft

and

a
~BG2(p)Pipe < 1 Pant + 5 P

where ky is an upper bound for |G2(p)|. These inequalities guarantee that the source term G defined in
(2.24) satisfies
ad B2k32
G < —018¢%, — '2_p?tt + a_52 (v} + ph)

and the last inequality along with the results of Lemmas 1 and 2 and the inequality (2.25) imply the results
claimed.

The underlying equations (2.1) - (2.3), (2.9) - (2.11), and (2.12) - (2.14) together with the results of
Lemmas 1-3 also yield
Lemma 4. (i) A¢ and Ap are in H(2) independently of ¢ and (ii) A¢; and Ap; are in Ly(€2) independently
of t.m

The a-priori estimates of Lemmas 1-4 imply that if the initial data is sufficiently smooth, then for each
T > 0 the functions

(¢, 0")(z,y,s) = (4, p)(z, st +5) , (z,y)€Q and 0<s<T (2.26)

are uniformly bounded in H3(2 x [0,7]) independently of ¢ with bounds that depend on the size of the

data and the number T' > 03. Moreover, the fact that p;, py, and py: are in Ly(§2 x [0, 00)) guarantees that
p, and py_converge to zero strongly in L,(€2) as t tends to infinity and additionally that the functions

(0, 0%, Ples) (2,9, 8) = (Dsy Dsss Psss) (2, 0,6 +5) , 0<s<T (2.27)

converge to zero in Ly( X [0,T]) as ¢ tends to infinity. Our next task is to prove
Theorem 1. For each T' > 0 the functions ¢t converge strongly to zero in H%(Q2 x [0,7]) as t tends to

infinity.* m

3Recall that H* (€2 x [0, T]) consists of all functions f on Q x [0, T] with partial derivatives 87*9; 0} f of order m+n+p <k
which are in Lo(§2 % [0,T]). For such functions

fEr= 3 / ( [[ @ranezs) (z,y,S)dzdy)ds
m+n+p<k

4The implications of this result for the fields e, hy, and hy follow directly from (2.4). In particular, (et bt hE)(z,y,8) =
(¢s, =y, che)(z,y,t +8),0 < s < T converge to zero strongly in Ly(2x (0,T))ast = o0 . .



Proof. We assume the theorem is false. Then, we can find an increasing sequence {t,}%, with
lim ¢, = co and an € > 0 such that ||¢'||s7 > €. We note that the sequence {¢*"}, is also bounded in

n—o0 n=
H*( x [0,T]) and thus we can find a subsequence {Tk(ny }o2, with lim 7,y = oo of the original sequence
n-—>o0

and a function ¢* in H3(Q x [0,T]) such that

lim [|¢™) — ¢||or = 0 and [[¢®]loz > e (2.28)

Moreover, we may assume, without loss of generality, that the sequence {p™® }22, converges strongly to

p™ in H*(Q2 x [0,TY)), that p™® is in H3(Q2 x [0,T)), and finally that ¢> and p™ satisfy the limit equations

X+ =c2A¢>® , (z,y)€Q and 0<s< T, (2.29)
B = 28p™d’ ((ap°°)2) —&XAp® |, (z,9)€Q and 0<s< T, (2.30)
p=0 , (z,y)€N and0<s< T, (2.31)
and
o0 op*
) (:c,y,s):—a—n——(:v,y)=0 , (z,y) € and0<s<T. (2.32)

If we now differentiate (2.30) with respect to s and exploit (2.31) we find that ¢ = 0 and this in turn
reduces (2.29) to 016 = c?A¢™®. If we now differentiate the last relation with respect to s we find that
A¢P =0, (z,y) € Q@ and 0 < s < T. Differentiating (2.32), also yields ¢%° = 0 on I and these two
facts in turn imply that ¢ = 0 for (z,y) €  and 0 < s < T. Finally, equations (2.29) and (2.32) and
the identities ¢3° = ¢2 = 0 imply that ¢*° = 0 in © x [0, T] and this in turn yields ||¢*||o.r = 0 which is
a contradiction. m

We note that we have made no reference in the proof as to whether o; is positive or zero. Had we
assumed o7 > 0, then our basic a-priori estimates would have guaranteed that (¢, ¢%,, ¢t..) all converged
to zero in Lo(©2 x {0, T]) as t went to infinity and thus the limit equations (2.29) and (2.30) would have
directly taken the form A¢™ = 0 and 28p™®' ((ap™)?) — 62X2Ap™® = 0. These relations would then have
yielded the desired result.

The preceding proof gives us considerable information about the limiting behavior of solutions of (2.1)
- (2.3). In particular we know that if (¢*°,p™) is such a limit, then ¢* = 0 and p* is a solution of the
equilibrium problem

82X2Ap>™ — 28p®d’ ((ap°°)2) =0 , (z,y9)en (2.33)
and
8 o0
P (z,y)=0 , (z,y)€ o (2.34)
on
We further note that if {¢,},-.; is an increasing sequence of times satisfying
limt, =co and lim llp™ — pl|or = 0, (2.35)
n—o0

n—oo

then the energy identity (2.5) implies that the averaged energy

10



T 2
ewn® [ ( // (St +etvom+ o2+ 2w + (5 ) (st +9 dxdy> ds/T

Q
(2.36)
satisfies

5272 oz B® o def
lim & (4, T) = //( v PZ + — (ap™) ) (z,y) dzdy = Eu; (2.37)
in fact (2.5) implies that £(¢,T') is monotone decreasing in ¢ and thus we obtain the stronger result

ImE(t, T) = £ (2.38)

We note that the constants £, are not arbltrary, rather they must be one of the critical values of the

functional
E(p) = //(6—22'\—2| vol’ + (a )) (z, y)dzdy

as p ranges over H'(£2). These critical values are the energies associated with nontrivial solutions of (2.33)
and (2.34). In the next section we shall show that finding the critical points of the above functional (and
the associated critical values) is equivalent to finding the critical points (and critical values) of a real valued
function defined on a finite dimensional Euclidean space. The dimension of this Euclidean space is related
24]9'(0)]
252

fixed set of parameters and domain € either problem has only a finite number of critical points but we
note that the results of [1] imply that in the one-dimensional case where 2 is an interval, say (0,1), there
are only a finite number of critical points of £ and thus only a finite number of critical values. We note
there are always multiple solutions to (2.33) and (2.34) giving rise to a given critical value &, of E; the
evenness of E implies that if p® is a nontrivial solution with energy £, = E (p*°), then so is —p*®. The
above considerations lead us to

Theorem 2. Suppose the number of pairs (5, —5) of solutions to (2.33) and (2.34) is finite and suppose
further that (¢, p) is the solution to (2.1) - (2.3) corresponding to a fixed initial condition

to the size of the parameter . In the general case we have not succeeded in showing that for a

(¢, 60,0, p2) (z,9,0%) = (8% 6%, 0°,0") (z,v), (z,y) € (2.39)

which is smooth enough so that the estimates of Lemmas 1-4 obtain. Then, there exists a unique limit
(0,p*) so that '

: t t_ Lk —
lim (||¢‘llor + lIp* = pllair) = 0. (2.40)

Additionally, p* must be one of the solutions of (2.33) and (2.34). m
Proof. The results of Theorem 1 guarantee that ¢ has the appropriate limiting behavior. We now

assume that p has no limit and we let 0, (p1, —p1), (P2, —P2), (Pm, —pm) be the finite set of equilibrium
solutions to (2.33) and (2.34). The hypothesis that p has no limit guarantees that for each index j =

0,1,..., M we can find an ¢; > 0 and increasing sequence of times t2 with lim ¢ = oo such that
n—oo

6% F pjllar > € (2.41)
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for j = 0,1...,M and n = 1,2,... . But the uniform boundedness of the p®’s in H3 (Q x [0,77)
guarantees we can find an increasing subsequence 7y, ;) of the times # which tends to infinity such that
the function p™.J) converge strongly in H (2 x [0,T]) to some solution of (2.33) and (2.34) and this
contradicts (2.41). m

We conclude this section with some remarks about the system (1.12) and (1.13) when the boundary
condition e = 0 on 052 is replaced by

(hl, hg) . (—ng, nl) (2?, Y, t) =0 ; (.’17, y) € 0N. (242)

This latter condition when combined with (1.12); and (1.12)3 implies that e satisfies the Neumann condition

Oe

on
We again insist that p satisfies (1.15). To analyze the long time behavior in this situation we could again
introduce a potential ¢ via (1.34) and ¢ would again satisfy (1.36) but (1.37) would be replaced by

o¢

on
Identical energy estimates obtain for this problem but in this situation we lose L(£2) estimates for ¢ and
thus cannot avail ourselves of standard compactness results to conclude that ¢ has the desired limiting
properties as t tends to infinity. Thus, when the magnetic field satisfies (2.42) and p satisfies (1.15) we
find it preferable to work directly with the original system (1.12) and (1.13). Here we assume that the
initial data for the magnetic field, h°, is divergence free and thus satisfies the compatibility condition

(z,9,t) =0 , (=z,y) € 909. (2.43)

(z,y,t) =0 , (z,y) € o

/ h° - nds = 0. This hypothesis guarantees that for all ¢ > 0, h satisfies
)
ohy 4 Oha Ohs

. 6y =0 and /h -nds = 0. (2.44)

on

For the new boundary condition our results depend upon whether o; > 0 or 0, = 0. When o, > 0,¢
and h converge to zero as t tends to infinity and p converges to a solution of (2.33) and (2.34). When
o1 = 0, e converges to the constant e® defined implicitly in terms of e(-,-,0), p(-,-,0) and p™=(-,-) by

= e(z,y,0) +p(z,y,0) — p° (z,y)) dzdy
NORA (e(
where A(QQ) is the area of {2 and p converges to p* which now satisfies

20p°® ((ap™)?) — 62X\2Ap™ = Be™ (2.45)

and the boundary conditions (2.34). In the case when o, = 0, the magnetic field h also converges to zero
as t tends to infinity.
To establish these results we use identities satisfied by solutions of (1.12), (1.13), (1.15), and (2.42).
These are obtained from our previous ones by making use of (2.4). We let
2,2

52
5 e? + hi+h3) + = (p} + M| vl*) + =

E1= )

12



B §2
ry (et2 + h’%t + h%t) + = (p?t + ’\2| v pel?)

2 2
Ey = ¢ or equivalently ,

B §?
FE@+dIvel) + 5@k +3 Vel

'B 2 h2 h2 52 2 2 2

2 (et + hiy + h3y) + ) (Pl + A°| V puel”)

E3 = ¢ or equivalently
ﬂ( 2 2 2 é2 2 )2 2
5 ey + | vel) + 3(Pttt+ | V7 pul?)

Ql = ,606 (h2’ _hl) + 62)‘2pt Vp,

Q, = Beey (hat, —hit) + 52)\2Pu Vb= ﬂc2et ve+ 52)\2Pt¢ V Dt,

Q3 = Beey (h2tt, - hltt) + 52Pttt V bu = 5C2€tt Ve + 52)\2pttt V Dit,

d
G Y —Boie? — asp?,

d
G2 24 —ﬂale? - CY(SP?,: - ﬂGl(P)PtPtt,

and

Gy % _ Bores, — adpr, — B (G1(p)pu + G2 (P)P}) Pes-

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

and G; and G, are defined in (2.15). It is then easily checked that for indices ¢ = 1 — 3 the following

identities are satisfied by solutions of (1.12), (1.13), (1.15), and (2.42):

%—dinﬁg,. (z,y) € Qand t > 0

and
Q, n(z,y,t)=0 , (z,y)€0Qandt>0.

Additionally, the electric field, e, satisfies

ew + py = c2Ae , (z,y) € Qand g—; =0, (z,y) € 9.

The implications of these identities are summarized in

13

(2.55)

(2.56)
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Lemma 5.
(i) If the initial data for e, h, and p are sufficiently smooth, then for each ¢ > 0 and T > 0 the functions

et (z,y,s) =e(z,y,t+5) , (z,9)€Qand0<s<T (2.58)

and

p(z,y,8) =p(z,y,t +s8) , (2,9)€Qand0<s<T (2.59)

are respectively in H? (2 x [0,T]) and H*® (2 x [0, T]) with bounds which depend only on the initial
data and T

(i) The derivatives p; and py; converge strongly to zero in Ly(f2) as t — oo and p also satisfies the decay
estimates (2.27).

(iii) If oy > 0, then e and e; converge strongly to zero in Ly(2) as t — oo and the functions

(' €l e,) (2,9, 8) = (e,es,€55) (T,9,t+5) , 0<s<T (2.60)

converge to zero strongly in Ly (2 x [0,T]) as t — co. m

Thus, if we exploit (ii) and (iii) of the preceding lemma we find that if (e, h,p) is a solution of (1.12),
(1.13), (1.15), and (2.42) and if o; > 0, then

lim // (h? + h3) (z,y, t)dzdy = 0. (2.61)
o

t—00

To establish (2.61) note that (2.44) implies the existence of a function x such that h; = —x, and hy = x,.
Then, (1.12) yields

1 éj
Ax =w w - (ee+p) , (z,9)€Qand % =0 on 9Q. (2.62)
Moreover, the source, w, satisfies
//w(x,y,t)dmdy =0 and tl_i)m //wQ(m,y,t)dzdy =0.  (2.63)
Q * “a

Then an expansion of x and w in terms of the eigenfunctions of the Laplacian on Q with zero Neumann
conditions yields the estimate

1
//IIVXII2dx dy = / (kY +13) (@, y, t)dzdy < = //wz(w,y,t)dxdy, (2.64)
Q

Q Q
which guarantees that h satisfies (2.61). The constant Ag in (2.64) is the smallest positive eigenvalue of
the Laplacian on £ with eigenfunctions satisfying a zero Neumann condition on 02 which are orthogonal
to constants. ;
The situation when o; = 0 is more subtle. Here we use the arguments employed earlier to show that
¢ was zero to conclude that

14



Jim (€417 + 113+ [1B12) = o

(2.65)

Equations (2.27) and (2.65) imply that the possible limits of solutions of (1.12), (1.13), (1.15), and (2.42)

consist of fields (e*, h®, p™®) where €™ is a constant on ,h® = 0, and e® and p™ are related by

Be™ = 2p®' ((ap®)’) - X°Ap™ , (z,9) €9

and

op>

The constant e* is related to p™ by

™

* = ﬁ é/ (e(z,y,0) + p(z,y,0) — p™(z,y)) dzdy

and again A(f2) is the area of Q. Finally that the averaged energy satisfies

tl_lglo (/T ( //E1 (m,y,t—}-s)dxdy) ds) /T
0 Q
= <§ // (——1\7p°°l2 W) (w,y)dxdy>

where F; is the energy density defined in (2.46). This concludes section 2.
3. The Equilibrium Problem.

In this section we examine the equilibrium problem

20 o,
—Ap+/\262p<1>( p’)=0 , (z,y)ef
and

dp

£ _o

on '
where once again 0 <4, 0 < A, 0 < # and ® : [0,00) = (—00,00) is smooth and satisfies

(z,y) € 052

®(0) =0, “-;- < ®'(s) <0, and @”(S) >0,0<s;

(2.66)

(2.67)

(2.68)

(2.69)

(3.1)

(3.2)

(3.3)

s = a? is the location of the unique interior minima of ® normalized so that ®(a?) < 0; and finally, as

§ — 00

®(s) ~ k|D'(0)|s, D'(s) ~ k|D'(0)|, and for p =2 and 3, <I>(p)(s) = <——

sp-1

15
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for some k£ > 0. In what follows we let

A 26|9'(0)|

= g (3.5)
and note that (3.1) may be rewritten as
~Ap + Apy (a®p®) = Ap (3.6)
where
def ¥'(s) — ¥'(0)
(s) % 233 — 210 3.7
O] 1)
satisfies
7(0) =0, 0<7(s), and 7(a®) =1, (3.8)
and the asymptotic estimates
¥(s) ~k+1 and forp=1and 2, 7" (s) =0 <§5) . (3.9)

In what follows it will be convenient to work with the normalized potentials

U(s) = /Osfy(n)dn and &(s) = ¥(s) —s.

The problem (3.6) and (3.2) has the trivial equilibria p = £+1 and p = 0 and the non constant equilibria p
satisfy the a-priori bounds —1 < p < 1. These inequalities follow from (3.8) and the maximum (minimum)
principle for the Laplace operator.

Our basic result is that finding the non trivial equilibrium solutions of (3.6) and (3.2)
is equivalent to the finite dimensional problem of finding the critical points of an even C*
function, J, on RY. The integer N is equal to the number of eigenvalues of —A (with
eigenfunctions which satisfy (3.2)) which are less than A. We assume that Ay < A < Ayy,.

The function J has critical values satisfying

2\ __ 52
/\A(Q) (\I’(a ) a ) < Tasiticas < 0,
2a2 7 value

has an isolated local maxima at u = 0 satisfying J(0) = 0, and satisfies the asymptotic
estimate

J(u) ~ Mlu|* , M>0
as ||u]| tends to infinity. These estimates guarantee that for ¢ large enough

cY {ueR"|y,J(u) =0} {ueR"||ju| <6}. (3.10)

The critical points may be obtained by examining the limit points of the gradient flow

du

3;=—vu J(u); (3.11)
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specifically, if we let

S(e,0) = {u € RY|J(u) = ¢} (3.12)

and

S(e,00) = U {uoo € RY |uy, = tlim i(t, up) where (-, up) satisfies (3.11) and @(0,ug) = uo},
WoeS(e,0) e
(3.13)

then

c= Js( ). | (3.14)

eel
AA(Q)(¥(a?) — a?)
2a?
putational algorithm these observations point out that solutions of (3.6) and (3.2) can be
obtained by taking the limits of a finite dimensional system of differential equations rather
than the infinite dimensional system described in sections 1 and 2.
Now, and in what follows, we assume €2 has a complete set of smooth eigenfunctions, ¢;, with eigen-
values, A;, satisfying

< € £ 0. Though not a particularly effective com-

where [ is the interval

—A¢; = Ni¢; in Q and % =0 on 1. (3.15)

The numbers A; and A are ordered as indicated below

0:/\1</\2S---SAN</\</\N+1S-'-S/\N+1' (316)

and the eigenfunctions, ¢;, satisfy the normalization conditions

1
¢1 = m and 4/¢,¢J dIL'dy = 5i,j- (317)
We let
N
My = {UGHI(Q) |U=Zu,‘¢i} (318)
i=1
and

i=1

NNZ {’UEHl(Q) |U=Z’Uz’¢N+i} (319)

and note that for functions u € My the Ly(R2) and H'(2) norms generate equivalent topologies whereas
for functions v € Ny

e = Ay +1
e # /f (vv-w+va>dxdy=Z<AN+,~+1>v3s(iA—jj—;L_——Al)nlvmin (320)
Q i -

—1
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where

00
def ’
Mollla = D (Avgs = A) v? < [vl2q. (3.21)
1=1

Moreover, solving the equilibrium problem (3.6) and (3.2) is equivalent to finding u € My and v € Ny
such that

(/\i—/\)u1-+/\//¢i(u+v)7(a2(u+v)2)dxdy=O , 1<i<N (3.22)
Q

and

(AN+i — A)v; + A / onsi(u+v)y(a?(u+v))dedy=0 , 1<4, (3.23)
)

and solving (3.22) and (3.23) is equivalent to finding the critical points u € My and v € Ny of

ef 1 AT (a2 (u + v)?
J(u, v) d=f§ // (vu-Vu+Vv-Vv—/\(u2+v2)+ (@ (u+2) )>dxdy
Q -

a2
(3.24)
1 1 A ¥ (a? (u +v)?)
2 ;( /\) U; + 2 ; (/\N-H /\) v; + 2 o 0,2 d(L’dy,
that is solutions of
oJ
— =0 1<i<N 2
i , <1< (3.25)
and
oJ
—_—_ = < 1. .
o 0, 1< (3.26)

We observe that if u € My and v € Ny satisfy (3.22) and (3.23), then the following additional identities
must hold

N .
Z (A — AN ui+A //u(u +v)y (a’(u + v)?) dzdy = 0 (3.27)
i€l Q
and
Z/\Nﬂ—/\v +/\// (u+ v)7y (a*(u + v)?) dzdy = 0. (3.28)
=1

These last identities imply that if u € My and v € Ny is a critical point of J, then

Jcm,cal (u,v) // < (u + v)") - (u+v)’y (a®(u+ v)2)) dzdy. (3.29)

value
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The fact the function p % u + v satisfies (3.6) and (3.2) and the bounds —1 < p < 1 and the fact that
7(-) satisfies (3.8) and (3.9) guarantees that any critical value of J satisfies the bounds

NA(R2)
2a?
Moreover, the lower bound is achieved at the critical points (u,v) = (£1,0) = (:tAl/z(Q)ngl,O). We are
interested in the other critical points of J.

For fixed u € My we first focus on the system (3.23) (equivalently (3.26)). We note that if v € My is
a solution of (3.23), then (3.28) implies that

s~ 1) [ [ ey < i,
Q

<Y (Ang —ANVZ+A //fy (a® (u + v)?) (v?)% dzdy
- Q

i=1

(\P(az) - a2) S Jcritlical(u, v) S O (330)

= - A // u+v uv dzdy (3.31)

Ak + 1) ( / / u2da:dy) i ( / / v2dzdy) 1/2
k+1 (// 2dxdy> Iolll10

(/\N+1 -

Nlb-‘

where & + 1 = lim~(s) is the upper bound for ¥(-) on s > 0. The Lipschitz continuity of the map
§—00

v — T'(u,v) together with the strong monotonicity estimate

00
0% = 0MlIEg < 3 (o7 = 02) (T (w,0%) — T (u,07))
=1

(with T;(u,v) defined by the expression on the left-hand side of (3.23)) guarantees that for each u € My
there is a unique v = 9(u) € Ny satisfying (3.23). Moreover, (3.4) - (3.9) imply that this mapping is C?
on My and has the following additional properties:

0(—u) = —9(u), (3.32)
' _ (1) 3.2
v;(te) = A (0)ta //¢N+,e dzdy , ast— 0", (3.33)
AN+i — A
and
o(te)/t =0(1) , ast— 0. (3.34)
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In (3.33) and (3.34), Ze,gb, and // 2dr dy = Ze = 1. To obtain the smoothness of the

i€l
map 4 € My — v € Ny one formally dlfferentlates (3 23) with respect to the parameters u, where
N
dv; 0%y, O3,
u = Y u,¢, to obtain integral equations for the partial derivatives — ', and —————. The
2 oty srat e P B, Oudu, T Duydu,duy

p=1
integral operators involved are positive definite and one obtains a-priori estlmates similar to (3.31) which

imply the result claimed.
We now turn our attention to the system (3.22) where

[«

v =

OESP AN (3.35)

N

and the 9;(u)’s are the unique solution of (3.23). Once again the solutions u = Zuiqﬁi of this system are
=1
critical points of

Z (N = AN)u2 + = ;(/\NJ,, +o5 //\Il 2 (u+9(w)?) dzdy,  (3.36)

i=1

k‘
N)lr-a

that is the solutions of STJ =0 , ¢=1,2,...N. Moreover, the fact that v = 0(u) satisfies (3.28) implies

that J (u,o(u)) reduces to

Gl | 1 & (u + B(u))?)
J() = J(u, :§ (As — A) u+— — 9(u) (u+ o( ))'y(a2(u+v( )))d:cdy
=1
(3.37)
and the inequality (3.30) implies that critical values of J(-) also satisfy (3.30).
We now record some facts about J(-). The first is that
0J aJ , . :
— = <1< N. .
B, (u) . (u,9(u)) , 1<i<N (3.38)

This identity follows from the fact that v = 9(u) satisfies (3.26). An immediate consequence of (3.37) is
the identity

2
0T (A= A) 8ij + //¢i¢j (v(a?(u + 9(w))?) + 2(a®(u + 8(w))*y D (a? (u + 9(u))?)) dzdy
6Uiau]' Q
- va
t A [2/@ (7(“ (u+ 5(w)®) + 202 (u + 9(u))* 4 (a? ( Zau] )dxdy.

(3.39)

The asymptotic estimate (3.33) guarantees that 9(0) = 0 and g—uv-(O) = ( and these identities, along with
j

(3.9) and (3.22), imply that
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N T

'87,-(0) =0 and 3u,~8u,-(0) =diag (A1 = A, A — A, .., AN —A)

and thus that u = 0 is an isolated local maxima of J. We note that J(0) = 0. The asymptotic estimates
(3.9) and (3.36) guarantee that for e’s satisfying

N N
e= Zeigb,- and /Q/e2d:cdy = Ze? =1 (3.40)
=1 =1

J satisfies

2
J(te) ~ 3 (; Aier + /\k) as t — 0o (3.41)
and the latter estimate, together with the fact that the critical values of J satisfy (3.30), guarantees that
for  large enough all critical points of J satisfy (3.10) - (3.14).

We can also apply the Lyusternik-Schnirelman theory (see e.g. [4], [5]) to the function J(u) on My

to determine the critical levels of this functional and corresponding non-trivial solutions of

VuJ (1) =0. (3.42)
With the exception of the constant solutions, these can be expected to be saddles rather than local maxima
or minima. These critical values may be obtained as follows. Let 3 ,n=1,2,..., N denote the collection

of compact, balanced (i.e. invariant under the map u — —u) subsets S C My\{0} of genus < n. The
genus of a compact, balanced subset of My\{0} is the least integer n such that there exists an odd map
f:S — 8™ (the (n — 1)-sphere); clearly for S as above the genus is less than or equal to N and by the
Borsuk-Ulam theorem an n-sphere has genus n + 1; for more details see [4], [5].

If we let

¢, = min max J(u), n=1,...N, (3.43)
Sey, ues

then

NA(Q) (¥(a?) — a?)

2a2?
The left-most identity follows from (3.30), the monotonicity of the ¢,’s from the definition (3.43), and the
last inequality from the fact that u = 0 is an isolated local maximum. It can also be shown that ¢; < c;.

By a standard application of the Lyusternik-Schirelman theory it follows that the c,’s defined by (3.43)
are critical values of J(u). If these numbers are distinct, this implies the existence of at least N pairs of
solutions to (3.42). If there is repetition, i.e. if

= <<...<cy<0. (344)

Cj = Cjt1 = ... = Cjtk-1,
for some j : 1 < j < N —k + 1 then the set of solutions to (3.42) on the level c; is a set of genus k.
In particular a set of solutions of genus & will contain k pairs (u;, —u;), ¢ = 1,...,k with inner product
u; - u; = 6ij-

This concludes section 3 and the paper.
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