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1. Introduction 

A. Summary of Results. 

In this note we investigate a new model for the behavior of ferroelectric materials. This model is 

We begin with Maxwell’s equations which we take in the form, 
analogous to  one used in [I] to  describe the dynamics of elastic materials which exhibit phase changes. 

(1.1) 
aB aD - = - curl E and - + aE = curl H 
at at 

Here E and H are the electric and magnetic fields and D and B the electric and magnetic displacements, 
and 0 2 0 is the conductivity. 

In usual dielectrics, which are homogeneous and isotropic, D and E and B and H are related by the 
const it u t ive equations, 

D = EE and B = p H  (1.2) 

when e and p are positive constants. Insertion of (1.2) into (1.1) yields a linear hyperbolic system which 
can be solved in a region fl subject to  initial values for E and H and the specifications of the tangential 
components of either E or H on 82. Our primary focus will be on the case where n x E = 0 on but 
we will describe briefly what happens when n x H = 0 on do. 

In the case of ferroelectric materials one replaces (1.2) by, 

D = E(E+P)  and B = pH (1.3) 

where P is the electric polarization. 

namely 
We regard the polarization as an internal field which evolves according to  its own Maxwell type system; 

aP j 
El ( dt + 6 )  = curl m 

and 
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dm am ( z  + 7) = - curl P. 

Here, m has the interpretation of an internal magnetic field and j is a current density which is driven by 
the difference between an equilibrium electric field, E(P), and the electric field E; that is 

dj aj at + -j- = 5 (E( P) - E) 

This latter system for P, m, and j reduces to 

62 (pt t  + ~2 curl curl P) + a6Pt = p (E - E(P)) (1.7) 

which couples the polarization P to the electric field E. Here X = 1 is the speed of light for the internal 
fields. For definiteness we assume that 

m 

E(P) = vpqp - P) = 2P@/(P P) (1.8) 
where s -+ @(s) : [O,m) -+ (-m,oo) is smooth and satisfies @(O) = 0, -f 5 @’(O) < 0 and 
W ( s )  > 0, 0 5 s; s = a2 is the location of the unique local minimum of normalized so that @(a2)  < 0; 

~ and for large s 

where k > 0. These assumptions guarantee that 

is a symmetric double-well potential with a unique local maximum at q = 0, unique local minimum at 
7 = f a ,  and quadratic growth as lql + ool. 

We note that (1.7) with E(P) given by (1.8) supports hysteretic effects normally associated with bi- 
stable dynamics. Specifically, if we assume that E = paesin wt where e - e = 1 and p is large enough and 
look for spatially homogeneous solutions of (1.7) of the form P = ap(t)e, then p satisfies 

and plots of e V.S. p exhibit hysteresis loops. The results of such a simulation are shown in Figures 1 and 

2. These were run for the parameter values a, = p = p = 1, 6 = .01, and w = 7r when @ = ( P 2  - 
4 

In order to not complicate the analysis we consider a simple geometry. We suppose the material 
occupies a cylinder with generators parallel to the z-axis and a uniform, simply connected cross section 0. 
We consider only fields which are independent of z and have the special form, 

E = aee3, P = apes, and H = b (hlel + h2e2) (1.11) 

In this case (1.1) with (1.3) holding. Here, a2 is the location of the local minimum of @ and b = a 

and (1.2) become 

‘Equilibrium relations of this type may be found in Landau and Lifschitz [2], p. 84-91. 
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et + p t  + ole = ~ ( h 2 ~  - hl,) , hlt = -cey, and hat = ce, (1.12) 

where 01 = o/€ 2 0 and c = l/&i is the speed of light, and the evolution equation (1.7) for P reduces to 

b2 (ptt - A'&) + aSpt = p ( e  - 2 p @ ( a 2 p 2 ) )  . (1.13) 

where cx, p, 6, and X are positive constants and A is the two dimensional Laplacian. We require one or 
the other of the boundary conditions for e or (hl ,  h2): 

e = 0 or - n2h1 + nlh2 = 0 on dR. (1.14) 

We shall also insist that  the internal magnetic field m satisfies n x m = 0 on 8R. This condition, along 
with (1.5) and ( 1 . 1 1 ) 2 ,  implies that  p satisfies 

dP - = 0 on aR.  
d n  

Our goal is the study of long time behavior of solutions. We summarize our results below: 

(i) There is an energy E(e,  hl, h 2 , p ) ( t )  which decreases on solutions as t increases. 

(ii) For the boundary condition e = 0 on dR, e(z, y, t )  -+ 0,  h l ( z ,  y, t )  -+ 0, h2(z, y, t )  -+ 0, 
p(x, y, t )  -+ p"(x, y) and € ( e ,  hl,  h2,p) ( t )  -+ €,(p"). Additionally, p" satisfies 

(1.15) 

(1.16) 8P" 
an 

S2X2Ap" - 2ppo0@.' ( ( a ~ " ) ~ )  = 0 in s1 and - = 0 on 

and (1.16) is the Euler equation for the critical points of &,(p"). 

(iii) For the boundary condition -n2hl +nlh2 = 0 on dR conclusions (i) and (ii) continue to hold if 01 > 0 
while if o1 = 0, hl (z ,  y, t )  -+ 0,  hZ( z , y , t )  + 0, e ( z , y , t )  -+ e" (a constant), p ( z ,  y , t )  -+ p"(z ,  y) 
and &(e,  hl, h2, p ) ( t )  -+ E,(p"). Additionally, p" satisfies 

d2A2Apm - /3 (e" - 2p"Q' ((up")')) = 0 in R and - aP" = 0 on (1.17) 

and the above equation is the Euler equation for the critical points of &,(p"). The constant e" is 
determined by p" and the initial values of e and p by the formula 

d n  

(1.18) 

(iv) The equilibrium problem (1.16) has multiple solutions and these will be analyzed in Section 3. 

That  such results are expected may be seen by looking at the spatially homogeneous version of (1.12) 
and (1.13). This reduced system implies that (hl ,  h2) G (hy, hi), a constant vector, and that e and p satisfy 

et + pt + o l e  = 0 and S2ptt + aSpt = p ( e  - 2pG'(a2p2))  . (1.19) 

If one multiplies the first equation by De and the second by pt  and adds the results one obtains the identities 
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-ole2 - a6p; < o 
dt (1.20) 

and 

be2 J2p: 1 
2 2 a2 
- + - + -@(u2p2) + J;(ole2 + a6p;)(s)ds 

(1.21) 

If 01 > 0, a > 0, and 6 > 0, then (1.19) - (1.21) imply that e , p ,  and pt are bounded and that e, and p t  are in 
L2[O, 00). Moreover, if one multiplies (1.19)l by et and (1.19)2 byptt and notes that @'(a2p2)+2a2p2@."(a2p2) 
is bounded one finds that et and ptt are in Lz[O, 00) and this guarantees that lime(t) = 0 and limpt(t) = 0. 
Finally, if one differentiates (1.19)2 with respect to  t and multiplies the resulting expression by pttt one 
finds that pttt is also in &[O, 00) and this guarantees limptt(t) = 0, that limp(t) = poo exists and that pw 

satisfies 2poo@' ( ( ~ p ~ ) ~ )  = 0. We are also guaranteed that the energy 

t+w t+oo 

def 
t+m t+oo 

E def = -+-+,2@(ap) Be2 S2p: 1 2 2  

2 2 
satisfies 

(1.22) 

(1.23) 

Our results are generalizations of these observations to spatially inhomogeneous situations. 
We also note that in the limit where 6 + O+ the solutions of (1.12) and (1.13) exhibit microstructural 

oscillations where p rapidly jumps from -1 to  +1 and from +1 to  -1. The location of these jumps are 
commonly referred to  as '(domain-walls". Such solutions are most readily obtained in a slab geometry 
where -00 < y < 00 and 0 < x < l? and where solutions are independent of y. 

One such solution is shown in Figures 3 and 4 below. These were run with the system (1.12) and (1.13) 
with the following parameter values: 01 = c = X = a = p = l? = 1 and 6 = .01. We imposed the boundary 
conditions ( 1 . 1 4 ) ~  and (1.15). Our initial data was 

(hl ,  h2) G ( O , O ) ,  e 0, and p = cos 37rx, 0 < x < 1. 

The results of this simulation are shown at time t = 50. Our numerics conserved the zero means of e and 
P.  

B. An Equivalent System 

We cast the system (1.12), (1.13) in a slightly more symmetric looking fashion. To effect this reduction, 
we assume that the initial data 

and 

(1.24) 

(1.25) 
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satisfy 

eo (2, y) = o , (z, y) E dR. 

Equations (1.12)2 and (l.12)3, when combined with (1.26) and (1.27) imply that 

-+-- - 0 , (z, y) E R and t > 0 
ax ay 
ah1 dh2 

and 

(hl, h2) - (n1,n2) = 0 , (x,y) E 6% and t > 0 

and these latter two identities imply the existence of a potential $ such that 

a$ a$ 
dY ax hl = -c- and h2 = c - ,  (z,y) E R and t 2 0, 

and 

$ (w, t )  = g ( t )  7 ( x 4 )  E a-2 and t 2 0. 

Additionally, (1.12)2 and (l.12)3 imply the existence of a function t + H(t) such that 

d g  dH 
dt dt for all (x ,y)  E 0 and t 2 0. Moreover, (1.14)1, (1.32), and (1.33) imply that - = -. If 

we now let 

def 4 = $ - g ,  ( x , y ) ~ R a n d t > O ,  

we find that 

and that 4 satisfies 

4tt + 014t + pt = c2A4 , (z, y) E R and t > 0, 

and 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

(1.36) 

(1.37) 
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Moreover, 6 is coupled to  p through 

b2ptt + d p t  - P (4t - 2p@'(a2p2)) = d2X2Ap, (z, y) E R and t > 0, 

and 

aP - (z, y, t )  = 0 , (z, y) E dR and t > 0. 
an 

In Section 2 we shall focus on (1.35) - (1.39). 

(1.38) 

(1.39) 

2. Large  Time Behavior of Solutions to (1.35)-(1.39). 

In this section we focus on the large time behavior of solutions of the system: 

4tt + al4t + pt = c2A4 , (z, y) E R and t > 0 (2.1) 

b2ptt + adpt - P (d t  - 2p@' (u2p2))  = b2X2Ap , (z, y) 5 S2 and t > 0 (2.2) 

satisfying the boundary conditions 

(2.3) 
aP 4 (z, y, t )  = - (z, y, t )  = 0 an , (z, y) E dR and t > 0. 

Once again the parameters a, P, 6, A, and c are positive, o1 2 0, and e ,  h l ,  and h2 are related to  6 by 

84 84 
3Y dz 

, and h2 = c-. e = 4 t  , hl=-c- 

Information about the large time behavior of the system (2 .1)  - (2.3) will follow from a series of energy 
identities; the most basic of which is obtained by multiplying (2.1) by &bt and (2 .2)  by pt and adding the 
resulting expressions. The identity is 

divq = -alP4: - (.aP? 5 0 dE 
at 
-- 

where 

b2 P@ (U2P2) 
E = - P (4: + c21 v $I2) + (P: + x21 v PI2> + 

a2 2 9 

q . n  = 0 , (x,y) E and t > 0 (2.8) 

and once again @ (a2p2)  is the double-well potential with a unique local maxima at p = 0 and minima at 
p f 1. The key point of this and succeeding estimates is the fact that the term Pptq$ which comes from 
the multiplication of (2.1) by /3$t exactly cancels the term -Pp& which comes from multiplying (2.2) by 
Pt . 
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To obtain the higher order estimates we differentiate the system (2.1) - (2.3) with respect to time. One 
differentiation implies that  the pair ($ t ,  p t )  satisfies 

4ttt  +ai& +ptt  = c2A$t , (2 ,  y )  E Sz and t > 0, (2.9) 

J2pttt + abtt - P ( 4 t t  - GI ( p ) p t )  = 62X2Apt, (x, y) E and t > 0, (2.10) 

and the boundary conditions 

apt 
4t (x, Y ,  t )  = an ( x ,  Y ,  t )  = 0 > (z, Y )  E 8-2 and t > 0, 

while two differentiations imply that the pair ($t t ,  p t t )  satisfies 

(2.11) 

$tttt + 4 t t t  + pttt = c2A4tt , (z, y) E and t > 0 (2.12) 

S2ptttt + a b t t t  - P ($ttt - Gi(p)ptt - Gz(p)p:)  = S2X2Aptt , (2,  y )  E R and t > 0 (2.13) 

and the boundary conditions 

The functions G1 and G2 are given by 

and (2.15) 
G1 ( p )  = 2 (@(a2p2)  + 2 ~ ~ p ~ W ’ ( ~ ~ p ~ ) )  

G2(p) = 2a2 (6p@”(a2p2) + 4 ~ ~ p ~ @ ” ’ ( ~ ~ p ~ ) )  
and they are bounded by virtue of (1.9). 

Associated with the identities (2.9) - (2.11) and (2.12) - (2.14) we obtain identities of the form: 

and 

Equation (2.16) implies that  

(2.16) 
-- divq = G , (rc,y) E R and t > 0, 

q - n  = 0 , ( x , y )  E dR. 

!- / / E ( x ,  y ,  t)dxdy = 
dt R R 

and 

In the case of (2.9) - (2.11) 

(2.17) 

(2.18) 

(2.19) 



q = P C 2 4 t t  v 4t + S2A2Ptt v p t ,  (2.20) 

and 

G = -alp& - Q6P;t - P G l ( P ) P t P t t  

whereas in the case of (2.12) - (2.14) 

(2.21) 

(2.22) 

and 

G = -  alP4;tt - Q6P& - P ( G l ( P ) P t t P t t t  + G 2 ( P ) P T P t t t )  * (2.24) 

Next, we record some immediate consequences of the identities (2.5) and (2.15) when E is given by 
(2.6), (2.19), and (2.22). 
Lemma 1. The identities (2.5) and (2.6) imply that 

(i) 4 is in Hi(S1) with bounds which are independent of t ,  
(ii) p is in H'(R) with bounds which are independent of t ,  

(iii) 4t and pt are in L2(R)with bounds which are independent of t ,  
(iv) Q > 0 and 6 > 0 imply that pt is in Lz(R x [ O , o o ) ) ,  and 
(v) if 01 > 0, then q5t is in L2(R x [O,oo)). 

(i) q5t is in Hi(R) with bounds which are independent of t ,  
(ii) p t  is in H1(R) with bounds which are independent of t ,  
(iii) dtt and ptt are in L2(S1) with bounds which are independent of t ,  
(iv) a > 0 and 6 > 0 imply that ptt is in L2(R x [ O , o o ) ) ,  
(v) if 0 1  > 0, then $tt is in L2(R x [O,oo)). 

Lemma 2. The identities (1.9), (2.15) and (2.19) and the result (iv) of Lemma 1 imply that 

Proof. The key step in establishing Lemma 2 is the observation that (1.9) implies that  

and this inequality, (2.21), and the fact that Lemma 1 guarantees that pt  E L2 (R x [O,m)) implies the 
results claimed. Here, ICl is an upper bound for IGl(p)l. 

The next set of estimates will be a simple consequence of (1.9), (2.15), and (2.22) and the following 
inequality which pertains to functions which are H'(R), independently of t ,  and in L2(R x [0, m)), namely 
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Lemma 3. The identities (1.9), (2.15), (2.22) and (2.25) imply that 
(i) q5tt is in Hi(St)  with bounds which are independent of t ,  
(ii) ptt is in H'(0)with bounds which are independent of t ,  
(iii) q5ttt and pttt are in &(R)with bounds which are independent of t ,  
(iv) a > 0 and 6 > 0 imply that pttt is in L2(R x [ O , o o ) ) ,  
(v) if u1 > 0, then q5ttt is in L2(R x [O,oo)). 

Proof. The key step in establishing this result is the observation that (1.9) implies that 

P"? 2 
Ptt 

a6 2 -PGdP)PttPttt I -Pttt + --&- 4 
and 

0x5 2 P2G 4 -PG2(P)PaPttt I 4 P t t t  + --&-Pt 

where kg is an upper bound for IG2(p)I. These inequalities guarantee that the source term G defined in 
(2.24) satisfies 

and the last inequality along with the results of Lemmas 1 and 2 and the inequality (2.25) imply the results 
claimed. 

The underlying equations (2.1) - (2.3)) (2.9) - (2.11), and (2.12) - (2.14) together with the results of 
Lemmas 1-3 also yield 
Lemma 4. (i) A$ and Ap are in H1(R) independently oft  and (ii) A& and Apt are in &(R) independently 
of t.. 

The a-priori estimates of Lemmas 1-4 imply that if the initial data is sufficiently smooth, then for each 
T > 0 the functions 

(&pt) (z ,y , s )  = ( A P ) ( G Y , t + s )  9 (w) E 0 and 0 F s L T (2.26) 

a r e  u n i f o r m l y  bounded in H3(R x [O,T]) independently o f t  with b o u n d s  that depend on the size of the 
data and the number T > 03.  Moreover, the fact that  pt,ptt, and pttt are in Lg(S2 x [O,m)) guarantees that 
pt and ptLconverge to zero strongly in L2(R) as t tends to infinity and additionally that the functions 

(P:,P:s,P:ss) (w/,s)  = (Ps,Pss,Psss) ( w , t  + 4 , 0 2 s 2 T (2.27) 

converge to zero in L2(R x [O,T]) as t tends to  infinity. Our next task is to  prove 
Theorem 1. For each T > 0 the functions q5t converge strongly to zero in H2(R x [O,T]) as t tends to 
in fin it^.^ rn 

3Recall that Hk (0 x [0, TI) consists of all functions f on fl x [0, TI with partial derivatives apa,"a,"f of order m + n + p  5 IC 
which are in L2(R x [O,T]). For such functions 

4The implications of this result for the fields e, hl, and ha follow directly from (2.4). In particular, (e t ,  ht, h i ) ( z ,  y, s )  = 
(c$~, -c&, c&)(z ,y , t  + s),O 5 s 5 T converge to  zero strongly in L2(R x (0 ,T) )  as t + 03 . 
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Proof .  We assume the theorem is false. Then, we can find an increasing sequence {tn}F=l with 
lim t ,  = 00 and an E > 0 such that IlqYnl12,T 2 E .  We note that the sequence {@n}rll is also bounded in 
H3(R x [0, TI) and thus we can find a subsequence { T ~ ( ~ ) } F = ~  with lim ~k(,) = 00 of the original sequence 
and a function $" in H3(52 x [0, TI) such that 

n+w 

n+m 

(2.28) 

Moreover, we may assume, without loss of generality, that the sequence {p7k(n)};!1 converges strongly to 
pw in H2(R x [0, TI), that  poo is in H3(52 x [0, TI), and finally that 4" and pm satisfy the limit equations 

P:=o 7 (z, y) E 52 and 0 5 s 5 T ,  (2.31) 

and 

4m (z, y, s )  = - dP" (z,y) = 0 , (z, y) E 852 and 0 5 s 5 T. 
d n  

(2.32) 

If we now differentiate (2.30) with respect to s and exploit (2.31) we find that 4: E 0 and this in turn 
reduces (2.29) to  ol$: = c2A4". If we now differentiate the last relation with respect to s we find that 
A$: 0, (z,y) E 52 and 0 5 s 5 T .  Differentiating (2.32)1, also yields 4: = 0 on 852 and these two 
facts in turn imply that q5: = 0 for (z,y) E and 0 5 s 5 T .  Finally, equations (2.29) and (2.32) and 
the identities 47 E 4- ss 0 which is 
a contradiction. 

We note that we have made no reference in the proof as to whether 01 is positive or zero. Had we 
assumed u1 > 0, then our basic a-priori estimates would have guaranteed that (&, &, $tSs) all converged 
to  zero in L2(R x [O,T]) as t went to  infinity and thus the limit equations (2.29) and (2.30) would have 
directly taken the form A4m - S2X2Ap" = 0. These relations would then have 
yielded the desired result. 

The preceding proof gives us considerable information about the limiting behavior of solutions of (2 .1)  
- (2 .3) .  In particular we know that if (4",p") is such a limit, then 4" = 0 and pm is a solution of the 
equilibrium problem 

0 imply that q!P = 0 in Q x [0, TI and this in turn yields I [+"I 1 2 , ~  

0 and 2flp"W 

h2X2ApW - 2/3po0@ ((up")2) = 0 , (z,y) E 52 (2.33) 

and 

(X,Y)  E dQ. (2.34) dPm - - b C , Y )  = o  , dn 
We further note that if {tn}:==l is an increasing sequence of times satisfying 

lim t ,  = 00 and lim IIptn - ~ ~ 1 1 2 , ~  = 0 ,  
n+oo n+m 

then the energy identity (2 .5)  implies that the averaged energy 
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(2.36) 
satisfies 

(2.37) 

in fact (2.5) implies that &(t ,  T )  is monotone decreasing in t and thus we obtain the stronger result 

lim&(t, T )  = &. (2.38) 
t+m 

We note that the constants E, are not arbitrary, rather they must be one of the critical values of the 
functional 

as p ranges over H1(R). These critical values are the energies associated with nontrivial solutions of (2.33) 
and (2.34). In the next section we shall show that finding the critical points of the above functional (and 
the associated critical values) is equivalent to  finding the critical points (and critical values) of a real valued 
function defined on a finite dimensional Euclidean space. The dimension of this Euclidean space is related 

2p1a'(o)1. In the general case we have not succeeded in showing that for a to the size of the parameter 
fixed set of parameters and domain R either problem has only a finite number of critical points but we 
note that the results of [l] imply that in the one-dimensional case where R is an interval, say (0, l), there 
are only a finite number of critical points of E and thus only a finite number of critical values. We note 
there are always multiple solutions to (2.33) and (2.34) giving rise to a given critical value E, of E;  the 
evenness of E implies that  if poo is a nontrivial solution with energy &w = E (p"), then so is -pw. The 
above considerations lead us to 
Theorem 2. Suppose the number of pairs (p ,  - f i )  of solutions to (2.33) and (2.34) is finite and suppose 
further that  ( 4 , ~ )  is the solution to (2.1) - (2.3) corresponding to a fixed initial condition 

A262 

(2.39) 

which is smooth enough so that the estimates of Lemmas 1-4 obtain. Then, there exists a unique limit 
(O,p*)  so that 

1 0 1  (4,4t, P , P d  (z, Y , O + )  = (do, 4 , P , P ) Y) > (z, Y) E 

lim (114t112,T + llPt - P*ll2,T> = 0. (2.40) 
t-tw 

Additionally, p* must be one of the solutions of (2.33) and (2.34). 
Proof. The results of Theorem 1 guarantee that 4 has the appropriate limiting behavior. We now 

assume that p has no limit and we let 0, ( p l ,  -PI), (p2, - p 2 ) ,  ( p ~ ,  - p ~ )  be the finite set of equilibrium 
solutions to (2.33) and (2.34). The hypothesis that  p has no limit guarantees that for each index j = 
0 , 1 , ,  . . , M we can find an ~j > 0 and increasing sequence of times t i  with lim t i  = 00 such that 

n+w 

IIP' T P ~ I I ~ , T  L c j  (2.41) 
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for j = 0 , l .  . .  ,A4 and n = 1 ,2 , .  . . . But the uniform boundedness of the p&)s  in H 3  (R x [O,T]) 
guarantees we can find an increasing subsequence T ~ ( ~ , ~ )  of the times t i  which tends to  infinity such that 
the function p T k ( n ! ~ )  converge strongly in H 2  (a x [O,T]) to  some solution of (2.33) and (2.34) and this 
contradicts (2.41). rn 

We conclude this section with some remarks about the system (1.12) and (1.13) when the boundary 
condition e = 0 on is replaced by 

(hl, h2) * ( - n 2 , 4  (E, Y, t )  = 0 > (x7 Y) E (2.42) 

This latter condition when combined with (1.12)2 and (1.12)s implies that e satisfies the Neumann condition 

(2.43) 

We again insist that  p satisfies (1.15). To analyze the long time behavior in this situation we could again 
introduce a potential 4 via (1.34) and 4 would again satisfy (1.36) but (1.37) would be replaced by 

Identical energy estimates obtain for this problem but in this situation we lose L2(R) estimates for q5 and 
thus cannot avail ourselves of standard compactness results to  conclude that 4 has the desired limiting 
properties as t tends to  infinity. Thus, when the magnetic field satisfies (2.42) and p satisfies (1.15) we 
find it preferable to work directly with the original system (1.12) and (1.13). Here we assume that the 
initial data for the magnetic field, ho, is divergence free and thus satisfies the compatibility condition 

ho . nds = 0. This hypothesis guarantees that for all t > 0, h satisfies s R 

s -+-- - 0 and 
dhl dh2 
dx dy 

h - nds = 0. 
OR 

(2.44) 

For the new boundary condition our results depend upon whether ol > 0 or o1 = 0. When o1 > O,e 
and h converge to  zero as t tends to infinity and p converges to  a solution of (2.33) and (2.34). When 
o1 = 0, e converges to the constant em defined implicitly in terms of e ( . ,  a ,  0 ) ,  p ( . ,  e ,  0) and p"(- ,  e )  by 

where A(R) is the area of R and p converges to  p-  which now satisfies 

2ppo0@ ( ( a p ~ ) ~ )  - 6 2 ~ 2 ~ p o 0  = Deo0 (2.45) 

and the boundary conditions (2.34). In the case when 01 = 0, the magnetic field h also converges to zero 
as t tends to  infinity. 

To establish these results we use identities satisfied by solutions of (1.12), (1.13), (1,15), and (2.42). 
These are obtained from our previous ones by making use of (2.4). We let 
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(2.47) 

(2.48) 

P s2 
- (e? + h;t + h i t )  2 2 

P s2 

P s2 

P d2 
or equivalently 

+ - (Pit + x21 v Pt?) 

E2 = or equivalently 

- (e? + c21 V el2> + 2 (P& + x21 v PtI2) 

- 2 (e?t + G t t  + %tt) + 7 0:tt + x21 v PttI2> 

- 2 b:t + c21 v e t ? )  + 7 (P?tt + x21 v PttI2> 

2 1 

Q 3  = Pcett (hzt t ,  - h u t )  + d2Pttt v Ptt = Pc'ett v et + d2x2pttt  v p t t ,  (2.51) 

g1 def = -Pale2 - a S p t ,  2 (2.52) 

5 2  -Pale: - a6P:t - PGl(P)P tP t t ,  

and 

(2.53) 

53 dLf -Pal& - a6p:tt - P (Gl(P)Pt t  + Gz(P)P:) Pttt. (2.54) 

and GI and G2 are defined in (2.15). I t  is then easily checked that for indices i = 1 - 3 the following 
identities are satisfied by solutions of (1.12), (1.13), (1.15), and (2.42): 

-- " 2  divQ, = Gi (x,y) E R and t > 0 
at 

and 

Qi n (x, y, t )  = 0 , (x, y) E d R  and t > 0. 

Additionally, the electric field, e ,  satisfies 

de 
d n  ett + p t t  = c2Ae , (z,y) E R and - = 0, (x,y) E dR. 

The implications of these identities are summarized in 
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(2.55) 

(2.56) 

(2.57) 



Lemma 5 .  

(i) If the initial data for e, h, and p are sufficiently smooth, then for each t 2 0 and T > 0 the functions 

et ( x ,  M ,  S )  = e (a ,  y, t + s )  , (a ,  y) E R and 0 I s I T (2.58) 

and 

P t ( X ,  Y, s )  = P(X, Y, t + s )  , (2.59) 

are respectively in H 2  (R x [0, TI) and H 3  (R x [0, TI) with bounds which depend only on the initial 
data and 5". 

(a ,  Y) E R and 0 I s I T 

(ii) The derivatives pt and ptt  converge strongly to zero in L2(R) as t -+ DC) and p also satisfies the decay 
estimates (2.27). 

(iii) If C T ~  > 0, then e and et converge strongly to zero in &(R) as t -+ 00 and the functions 

converge to  zero strongly in L2 (R x [O,T]) as t + 00. 

Thus, if we exploit (ii) and (iii) of the preceding lemma we find that if (e, h,p) is a solution of (1.12), 
(1.13), (1.15), and (2.42) and if 01 > 0, then 

(2.61) 

To establish (2.61) note that (2.44) implies the existence of a function x such that hl = -xy and h2 = xI. 
Then, (1.12) yields 

def 1 
C 

Ax = w = - (et + p t )  

Moreover, the source, w ,  satisfies 

, ax (x,y) E R and - = 0 on do.  an 

w(x, y, t ) d z d y  = 0 and lim w2(a, y ,  t)dxdy = 0. 
R 

t+w 
R 

(2.62) 

(2.63) 

Then an  expansion of x and w in terms of the eigenfunctions of the Laplacian on R with zero Neumann 
conditions yields the estimate 

(2.64) 

which guarantees that h satisfies (2.61). The constant A2 in (2.64) is the smallest positive eigenvalue of 
the Laplacian on R with eigenfunctions satisfying a zero Neumann condition on dR which are orthogonal 
to  constants. 

The situation when o1 = 0 is more subtle. Here we use the arguments employed earlier to show that 
qP was zero to  conclude that 
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lim (Ile:ll;,T + IlhEII;,T + I l W , T )  = 0. (2.65) 

Equations (2.27) and (2.65) imply that the possible limits of solutions of (1.12), (1.13), (1.15), and (2.42) 
consist of fields (em, hm,pm) where em is a constant on R, h" EE 0, and em and pm are related by 

t+m 

Bem = 2Ppm@' ( ( a ~ " ) ~ )  - S2X2Apm , (x, y) E R 

and 

The constant em is related to  pm by 

(2.66) 

(2.67) 

(2.68) 

and again A(R) is the area of R. Finally that the averaged energy satisfies 

(2.69) 

where El is the energy density defined in (2.46). This concludes section 2. 

3. The Equilibrium Problem. 

In this section we examine the equilibrium problem 

and 

( 3 4  
aP - = o , (z,y) E a n  
d n  

where once again 0 < 6, 0 < A, 0 < p and @ : [0, 00) + (-00, m) is smooth and satisfies 

(3.3) 
1 
2 -  @ ( O )  = 0, -- < @'(s) < 0, and @"(s) > 0, 0 5 s; 

s = u2 is the location of the unique interior minima of @ normalized so that @(u2)  < 0; and finally, as 
s + m  

Q ( s )  N klQ'(O)ls, Qi'(s) N kI@'(O)l, and for p = 2 and 3, Qi(p)(s) = 0 (A) (3.4) 
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for some k > 0. In what follows we let 

def 2Pl@'(O)l 
9 6 2  

A =  

and note that (3.1) may be rewritten as 

-Ap + Am (a2p2) = ~p 

where 

satisfies 

y(0) = 0, 0 < y'(s), and ?(a2)  = 1, 

and the asymptotic estimates 

y(s) rv IC + 1 and for p = 1 and 2, ~ ( ~ ) ( s )  = 0 (i) . 
In what follows it will be convenient t o  work with the normalized potentials 

(3.9) 

$(s) = i 'y(7)dq and &(s) = $(s) - s. 

f l  and p E 0 and the non constant equilibriap 
satisfy the a-priori bounds -1 5 p 5 1. These inequalities follow from (3.8) and the maximum (minimum) 
principle for the Laplace operator. 

Our basic result is that finding the non trivial equilibrium solutions of (3.6) and (3.2) 
is equivalent to the finite dimensional problem of finding the critical points of an even C2 
function, 3, on RN. The integer N is equal to the number of eigenvalues of -A (with 
eigenfunctions which satisfy (3.2)) which are less than A. We assume that AN < A < A \ N + ~ .  

The problem (3.6) and (3.2) has the trivial equilibriap 

The function 3 has critical values satisfying 

AA(R) (Q(a2) - a2) I Zrit ical  I 0, 
2a2 value 

has an isolated local maxima at u = 0 satisfying J(0 )  = 0, and satisfies the asymptotic 
estimate 

Z(u) N Mllu112 , M > 0 

as \lull tends to infinity. These estimates guarantee that for 6 large enough 

(3.10) de f C = {U E RN (vuJ(u) = 0} C {U E RNI llull < 6 ) .  

The critical points may be obtained by examining the limit points of the gradient flow 

du  
dt  - = - vu 3(u ) ;  
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specifically, if we let 

S(E,O) = {u E RNIJyU) = € }  

and 

(3.12) 

1 N S(E,03) = u 
UO€S(€,O) 

{u, E R I u, = t-tm lim u(t, UO) where u(., UO) satisfies (3.11) and u(0, uo) = uo , 

(3.13) 
then 

c = US(E,00). (3.14) 

where 1 is the interval 5 6 5 0. Though not a particularly effective com- 
putational algorithm these observations point out that solutions of (3.6) and (3.2) can be 
obtained by taking the limits of a finite dimensional system of differential equations rather 
than the infinite dimensional system described in sections 1 and 2. 

Now, and in what follows, we assume R has a complete set of smooth eigenfunctions, $i, with eigen- 
values, Ai ,  satisfying 

€ € I  

A A ( S ~ ) ( Q ( U ~ )  - a2) 
2a2 

(3.15) 84; 
d n  

-A& = Ai& in R and - = 0 on dR. 

The numbers Ai and A are ordered as indicated below 

O = A l < A 2 I  ...I A N < A < A N + ~ I  . . . ~   AN+^ 

and the eigenfunctions, &, satisfy the normalization conditions 

(3.16) 

We let 

(3.18) 
N 

M N =  {.E H'(R)  I ~ = z u i $ i }  

and 

00 

N N  = { 21 E H1(R) I 21 = ~ v z ~ N + z }  (3.19) 

and note that for functions u E M N  the &(a) and H'(R) norms generate equivalent topologies whereas 
for functions TJ E N N  

i=l  

(3.20) 
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where 

00 

I I I ~ I I IT ,R  ( A N + i  - A> v: I ' I I ~ I I ? , ~ .  
i= 1 

Moreover, solving the equilibrium problem (3.6) and (3.2) is equivalent to finding u E M N  and 'u E ~ l f ~  
such that 

and 

 AN+^ - A) vi -t A / I  +N+i  (U + U) (u2 (U + u)") d x d y  = 0 , 1 5 Z, 
R 

and solving (3.22) and (3.23) is equivalent to finding the critical points u E M N  and v E N N  of 

(3.21) 

(3.22) 

(3.23) 

(3.24) * (2 (u + ?J)2) 
00 1 N 1 = - dXdY 9 

U 2  
(Ai - A) uf + - 1 (AN+, - A) v: + // 

2 .  2=1 2 .  2=1 2 R  

that is solutions of 

and 

, 152. 
d J  - = o  
dVa 

(3.25) 

(3.26) 

We observe that if u E MN and 'u E AfN satisfy (3.22) and (3.23), then the following additional identities 
must hold 

N 

(Ai - A) uf + A + v)? (u2(u + 'u)") d x d y  = 0 
i E  1 R 

(3.27) 

and 

(3.28) 
00 

 AN+^ - A) $ + A V ( U  + V)Y (u~(u + u)"> d x d y  = 0. 
i=l  R 

These last identities imply that if u E MN and 2, E NN is a critical point of J ,  then 

Jcritical(U, v )  z= - // (* (u2'u; U - (u + v)2 y (u2(u + q)) d x d y .  
value 2 R  

(3.29 
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The fact the function p %-- u + w satisfies (3.6) and (3.2) and the bounds -1 5 p 5 1 and the fact that 
$ 9 )  satisfies (3.8) and (3.9) guarantees that any critical value of J satisfies the bounds 

(3.30) 

Moreover, the lower bound is achieved at the critical points ( u , v )  = ( f 1 , O )  = ( f A ' / 2 ( R ) ~ 1 , 0 ) .  We are 
interested in the other critical points of J. 

For fixed u E MN we first focus on the system (3.23) (equivalently (3.26)). We note that if ZI E n / ~  is 
a solution of (3.23), then (3.28) implies that  

JJ  00 

5  AN+^ - A) w: + A 
i=l R 

y (u2 (u + u ) ~ )  (w2))" d x d y  

(3.31) 

where IC + 1 = limy(s) is the upper bound for y(.) on s 2 0. The Lipschitz continuity of the map 
ZI -+ T(u ,  w) together with the strong monotonicity estimate 

S-bW 

M 

i=l 

(with q ( u , v )  defined by the expression on the left-hand side of (3.23)) guarantees that for each u E MN 
there is a unique v = 6(u)  E N N  satisfying (3.23). Moreover, (3.4) - (3.9) imply that this mapping is C2 
on MN and has the following additional properties: 

6(-u) = -.i(u), (3.32) 

(3.33) 

and 

.ir(te)/t = o(1) , as t -+ 00. (3.34) 
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N 
e2dx dy = x e f  = 1. To obtain the smoothness of the In (3.33) and (3.34), e = xei$i and 

map u E M N  +- v E N N  one formally differentiates (3.23) with respect to the parameters up where 
i=l 

N 

i E l  R 

nr 
1v 

avi a2vi a 3  vi u = c u p $ p  to obtain integral equations for the partial derivatives -, , and . The 
p =  1 aUp aupau, du,du,du, 

integral operators involved are positive definite and one obtains a-priori estimates similar to (3.31) which 
imply the result claimed. 

We now turn our attention to the system (3.22) where 

(3.35) 
00 

2) = G(.) def = C ' 6 i ( U ) $ N + i  

i= 1 

N 

and the Gi(U) 'S  are the unique solution of (3.23). Once again the solutions u = xtii$i of this system are 
i= 1 

critical points of 

m 1 
(Ai - A) U: + - 

N 1 
J (u,  C ( U ) )  = - 2 .  ( A N + i  - A) '6!(~) + A (a2 (U + G ( u ) ) ~ )  dzdy, (3.36) 

2 .  2a2 * 
2=1 2=1 

d J  
that is the solutions of - = 0 , 

dUa 
that J (u ,  ij(u)) reduces to 

i = 1 , 2 , .  . . N .  Moreover, the fact that  v = ij(u) satisfies (3.28) implies 

- G(u) (u + G(u)) y (2 (u + G(u))2) 
N 

def 1 
J(u) = J(u,  '6(u)) = - (Ai  - A) 2 .  

2 = 1  

(3.37) 
and the inequality (3.30) implies that critical values of J ( - )  also satisfy (3.30). 

We now record some facts about 3(.). The first is that 

(3.38) 

This identity follows from the fact that v = @(u) satisfies (3.26). An immediate consequence of (3.37) is 
the identity 

d2 3 
~ = (Ai - A) Sij + / / $ i $ j  (y(a2(u + G(u))~) + 2(a2(u + G ( u ) ) ~ ~ ( ' ) ( u ~ ( u  + G ( u ) ) ' ) )  d x d y  
aui auj R 

(3.39) 
1 00 

+ A [ / ' $ i  (7 (a2 (u  + ij(u))2) + 2a2 (21 + C ( u ) ) 2 + 1 )  (a2 (u + ij(u))2) ~ % ( u ) $ ~  d U j  dzdy. 
p= 1 

dij 
duj The asymptotic estimate (3.33) guarantees that 2(0) = 0 and - (O)  = 0 and these identities, along with 

(3.9) and (3.22), imply that 

20 



(0) = diag (A1 - A, A2 - A , .  . . , AN - A) -(O) = 0 and - aJ a2 J 
d U i  auiauj 

and thus that u = 0 is an isolated local maxima of 3. We note that J ( 0 )  = 0. The asymptotic estimates 
(3.9) and (3.36) guarantee that for e’s satisfying 

N r r  N 

e = C e i 4 i  and J J e2dxdy = xer = 1 (3.40) 
k l  R i=l 

3 satisfies 

(3.41) 

and the latter estimate, together with the fact that  the critical values of J’ satisfy (3.30), guarantees that 
for 6 large enough all critical points of 3 satisfy (3.10) - (3.14). 

We can also apply the Lyusternik-Schnirelman theory (see e.g. [4], [5]) to  the function J(u) on M N  
to determine the critical levels of this functional and corresponding non-trivial solutions of 

0,3(u> = 0. (3.42) 

With the exception of the constant solutions, these can be expected to be saddles rather than local maxima 
or minima. These critical values may be obtained as follows. Let E,, n = 1,2, . . . , N denote the collection 
of compact, balanced (i.e. invariant under the map u + -u) subsets S C MN\{O} of genus 5 n. The 
genus of a compact, balanced subset of MN\{O} is the least integer n such that there exists an odd map 
f : S + Sn-’ ( the (n - 1)-sphere); clearly for S as above the genus is less than or equal to N and by the 
Borsuk-Ulam theorem an n-sphere has genus n + 1; for more details see [4], [5]. 

If we let 

c, = min max J(u), 
S € C ,  U€S 

n = 1,. . . N, 

then 

(3.43) 

(3.44) 

The left-most identity follows from (3.30), the monotonicity of the ~ ’ s  from the definition (3.43), and the 
last inequality from the fact that  u = 0 is an isolated local maximum. It can also be shown that c1 < c2. 

By a standard application of the Lyusternik-Schirelman theory it follows that the c,’s defined by (3.43) 
are critical values of J ( u ) .  If these numbers are distinct, this implies the existence of at least N pairs of 
solutions to (3.42). If there is repetition, i.e. if 

- 
C j  = C j + l  = . . . - C j + k - l r  

for some j : 1 5 j 5 N - k + 1 then the set of solutions to (3.42) on the level cj  is a set of genus I C .  
In particular a set of solutions of genus k will contain k pairs (ui, -ui), i = 1, . . . , k with inner product 
u . .  u .  - 6 . .  

a J - 23. 

This concludes section 3 and the paper. 
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