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Abstract 
In a previous paper the author and Demay advanced a model to explain the melt 

fracture instability observed when molten linear polymer melts are extruded in a cap- 
illary rheometer operating under the controlled condition that the inlet flow rate was 
held constant. The model postulated that the melts were a slightly compressible vis- 
cous fluid and allowed for slipping of the melt at the wall. The novel feature of that 
model was the use of an empirical switch law which governed the amount of wall slip. 
The model successfully accounted for the oscillatory behavior of the exit flow rate, 
typically referred to as the melt fracture instability, but did not simultaneously yield 
the fine scale spatial oscillations in the melt typically referred to as shark skin. 

In this note a new model is advanced which simultaneously explains the melt frac- 
ture instability and shark skin phenomena. The model postulates that the polymer is a 
slightly compressible linearly viscous fluid but assumes no slip boundary conditions at 
the capillary wall. In simple shear the shear stress T and strain rate d are assumed to be 
related by d = FT where F ranges between F2 and F1 > F2. A strain rate dependent 
yield function is introduced and this function governs whether F evolves towards F2 
or F1. This model accounts for the empirical observation that at high shears polymers 
align and slide more easily than at low shears and explains both the melt fracture and 
shark skin phenomena. 

#This paper is dedicated to Fred Howes, my program officer at the U.S. Department of Energy, who 
was always supportive of my research program and whose death is sadly mourned. 

*This research was partially supported by the Applied Mathematical Sciences Program, U.S. Depart- 
ment of Energy; the Mathematics and Computer Science Division, Army Research O5ce; and International 
Programs, U S .  National Science Foundation. During the summer of 1996, the author also received generous 
support from CNRS to persue this project. 
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1 Introduction 
In a previous paper [l] Greenberg and Demay advanced a model to explain the melt fracture 
instability observed when molten linear polymer melts are extruded in a capillary rheometer 
operating under the controlled condition that the inlet flow rate was held constant. Their 
model postulated that the melts were a slightly compressible viscous fluid and allowed for 
slipping of the melt at the wall. The novel feature of their model was the use of an empirical 
switch law which governed the amount of wall slip. Their model successfully accounted 
for the oscillatory behavior of the exit flow rate typically referred to as the melt fracture 
instability but did not simultaneously yield the fine scale spatial oscillations in the melt 
typically referred to as shark skin. A similar model was developed at approximately the 
same time by Hatzikiriakos and Dealy [2,3]. 

In this note, we return to the problem studied in [l] and advance a new model which 
simultaneously explains the melt fracture instability and shark skin phenomena. The pro- 
posed model also assumes the polymer is a slightly compressible linearly viscous fluid but 
assumes no slip boundary conditions at the capillary wall. We assume that in simple shear 
the shear stress 7 and strain rate d are related by 

where 

and 

> PI > 0. (1.3) 
4 is interpreted as an order parameter which ranges over the interval [0,1]. When 4 = 0 
the polymer molecules are nonaligned and the fluid is highly viscous ( p  = p2) whereas when 
4 = 1 the polymer molecules are aligned and the fluid is less viscous ( p  = p1 < p2). 

We assume that 4 satisfies 

(1.4) 
1 
2 6 ((bt + U - 'rJ4) = - (1 -k Sign (ITImax - Tu))  - 4. 

Here u is the fluid velocity, 17Imax is the maximum shear stress, and T~ is a strain rate 
dependent yield stress which we shall model later. (1.4) implies that if 171max < T ~ ,  then 4 
is driven to zero, whereas if > T ~ ,  then is driven to one. 

If we let 

where 

1 1 
P2 P1 

F 2 = - < F  1 - - -, 

then (1.4) is equivalent to 

(1.7) 
1 
2 S(Ft + u - vF) = - (Fl + F2 + (Fl - F2) sign (171max - T ~ ) )  - F. 
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This model accounts for the empirical observation that at high shears polymers align and 
slide more easily than at low shears. Equation (1.4) represents the new twist of om model 
and allows us to  abandon the questionable assumption that slipping occurs at the capillary 
wall. 

A nice description of the melt fracture phenomenon may be found in Joseph and Renardy 
[4, pp. 375-3781. They too discuss the existence critical or yield stresses which governs 
whether the polymer is more or less viscous. Here we quote “we can expect a migration 
of low-viscosity constituents into regions of high shear. These high-shear regions may take 
form as wet layer of small thicknes or perhaps a region deficient in high molecular weights 
defined by large gradients of molecular weight. The slip in such layers is apparent. There is 
no slip surface, rather there are large gradients across narrow layers which are perceived as 
slips.” The model we advance predicts many of these features. 

L 

2 Model Development. 
Figure 2 describes the flow geometry. Our modelling effort accounts for what happens in the 
capillary tube and not in the reservoir. 

I Resevoir 
e3 ~ \e 

Figure 1. 
We assume the flow in the capillary is axisymmetric, and that all quantities depend only 

on Z,T  and t. We let p denote the polymer density, p denote the pressure and assume that 
the velocity field u and Cauchy stress tensor u axe of the form: 

and 
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(2.2) 
u = --P (el @ el + e, e, + ee @ ee) +au 11 e 1 @ el + a:rer @ e, + 

+T (el 
@ eo 

e, + e, @ el) . l  

(a&, a:,, a&, r )  are the nonzero components of the viscous stress tensor and are related to 
u and w by 

and 

au aw -+- = F r  
ar a x  

where once again F satisfies (1.7). The constitutive equation (2.3) yields a trace free viscous 
stress tensor and thus satisifes the “Stokes” hypothesis. 

The governing equations are the continuity equation 

a 1 0  
at ax r ar 
3 + -(p) + --(rpw) = 0, 

and balance of momentum in the directions el and e,. At the, boundary, r = R, we assume 
that 

(BC) U(Z, R, t )  = 0 and W ( Z ,  R, t )  = 0. 

‘el = (l,O,O),er = (O1cos8,sinO) and eo = (0,-sinOcos0) and for any vectors u = (ul,uZ,u3) and , .  
b = ( b l , b z , b 3 ) , a @ b = a T b w h e r e a T =  [ :i ) .  
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We further assume that the polymer is slightly compressible, that is the following equation 
of state holds between the density and pressure: 

( E W  p = p o ( l + ? ) .  

Here, po and po are reference values of the density and pressure and 0 < €1 << 1 is a 
dimensionless small parameter. 

To assess which terms in this system are important and which may be neglected, we cast 
the system in dimensionless form. We let 

and 

p = POPI, u = poR~zF2u1, w = ~ O R E ~ F Z W I ,  p = 2popl and F = F2D (2 .5)  
R 
L 

where D ranges from 1 to D1 = Fl/F2 > 1 and 0 < e2 = - << 1.2 
With these scalings the shear stress becomes 

7- = POE271 

where 

The remaining viscous stresses are 0 (poci)  and are thus neglectable relative to the pressure 
and shear stress. With this scaling we may replace the maximum shear stress 17-lrnax in (1.7) 
by PoE217-11. 

The equation of state transforms to 

The assumptions 0 < 
continuity equation is reduced to 

<< 1 and 0 < €2 << 1 imply that to lowest order in the E’S the 

2ap1 au1 1 a - + - + - - (T1zu1)  = 0 .  
at, as1 T1 a?-, 

If we further make the lubrication hypothesis 0 < E % / E ~  << 1, then balance of momentum in 
the direction e, implies that 

P l  = Pl(% tl) 
while balance of momentum in the direction el takes the form 

(2.10) 

’The length of scale L in the “2” direction may be thought of as the capillary length or the length of a 
typical disturbance in the “x” direction. 

5 



Equations (2. 0) an1 (2.11) then yield 

and equations (2.7) and (2.12) imply, to lowest order in the E’S, that 

(2.11) 

(2.12) 

(2.13) 

Equation (2.13), together with (BC)l, implies that the velocity u1 is given by 

and the flow rate, q1, by 

(2.14) 
1 

where 0 3  is the cross-sectional average 

(2.15) 

If we multiply (2.9) by TI, integrate the resulting equation from TI = 0 to TI = 1, and exploit 
the fact that ~ l w l  vanishes at TI = 0 and = 1, we obtain the following equation for pl : 

- aP1 - -- 1 a (+) = 0. 
at, 88x1 

(2.16) 

Under the scaling (2.4) and (2.5) equation (1.7) transforms, to lowest order in the E’S, to 

(2.17) 
dD 1 
at, 2 

€3- = - (Dl  + 1 + (01 - l)sign((T11 - FY)) - D. 

Here 

(2.18) 

71 is the scaled x - T shear stress, and +y is the scaled yield stress defined by T~ = po~z.i,. 
Moreover (2.17), when combined with (2.12), implies that D satisfies 

(2.19) 

Up to this point we have deferred a discussion of the behavior of the yield stress T~ on 
the strain rate. In a simple shear experiment a plausible yield function is given by 
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where a1 < u2, F2 < Fl, and F 2 a 2  < Flal, and with the scalings (2.4)-(2.6) and T, = p o ~ ? ,  
this would yield the scaled yield stress 

(2.21) 

where 

a1 Fl 

P O E Z  POE2 F 2  
> s l = - a n d D 1 = - > l  s 2  = - a 2  

(2.20) 

Figure 2. 

One could attempt to use the scaled yield stress directly in (2.19). If one does this, then 
(2.13), (2.19)-(2.21)'would imply the following evolution equation for D: 

D1+ 1 + (Dl - 1) sign (2.22) 

and our combined system would be (2.15), (2.16), and (2.20)-(2.22). The fine structure 
equation, (2.22), for D requires initial data Do(x1, TI) = D(z1, rl, O+), a quantity not easily 
measured. 

Instead of (2.22) we seek a simplier model which doesn't require such fine 

st ructure  data. We accomplish this by replacing the term .i ( D l 1  izi) in (2.22) by 

?, (D3r1 1&1) where again D3 is the cross-sectional average 
8x1 
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1 

03(21,tl) = 4 1  r ~ D ( ~ l , r l , t l ) ~ ~ l *  
0 

With this replacement we are guaranteed that the function 

(2.23) 

changes sign at most once as r1 ranges over [0,1]. With this revised model (2.22) takes the 
form 

Rl(Z1,tl) = min (1, Z(z1J1)) 
and x(z1, tl) is the unique solution of 

Moreover, with this revised model the cross-sectional average 0 3  satisfies 

dD3 
at1 

€3- = (R: + Dl(1 - R:)) - D3. 

(2.25) 

(2.26) 

(2.27) 

In fact (2.15), (2.16), and (2.25)-(2.27) represents a closed system for the switch radius R1, 
cross-sectional average D3, and pressure pl. We solve this latter system with the following 
initial and boundary conditions 

and 

(BC), P l ( L t 1 )  = 0 

We note that (2.4)3 implies that the normalizing time scale in our problem is T# = p& 

and this number though large is small relative to the travel time of a particle through the 
rheometer when F = Fz. This latter quantity is T' = 

There is another important time scale in our problem, namely the relaxation time 6 
which appears in (1.7). This time manifests itself in the dimensionless equation (2.27) in the 
parameter €3 = L. In the numerical simulations given in the next section we shall assume 
this parameter is small. This assumption, together with T# = will allow multiple 
spatial oscillations or wave forms over the unit capillary length. 

1 and of course T# = e1T2. 

T# 
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3 Analysis of the Model of Section 2 
Our interest here is in the reduced model 

- - - - ( 4 2 ) = 0 ,  a p  1 a O < x < l  
at 8 a x  

and 

aD3 

at e3-= ( R * + D ~ ( ~ - - R ~ ) ) - D ~  , O < X < I  

where 

R ( z , t )  = min ( 1 ,  Z ( x , t ) ) ,  
- 
R is the unique solution of 

and Fy (.) is the normalized yield curve 

s a ,  O l d l S 2  

sz + e ( d  181 -82 - sz) , s2 I d 5 Dlsl 

s1 , a s 1  5 d. 

Z= d 

I s2 D.Is 1 

Figure 3. 
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Once again s2 > s1 and 1 < D1. This latter system is solved subject to the following initial 
and boundary conditions 

We assume that $(l)  = 0 and fi'(x) 5 0, 0 5 z 5 L3 

Steady Solutions 

Our first task is to examine steady solutions of (3.1)-(3.5) which are compatible with 
(3.7). Such steady solutions are of the form 

p = g ( l -  z) and p' (z )  = -g < 0 

where 

DBg = 8q0 , 0 3  = (01 - (01 - l)P), and Rg = Fg(8Rqo). (3.9) 
Of particular interest to us here are the response curves qo + R(qo) and qo + g(qo). 

We first note that if 0 5 qo 5 9, then 

R(qoo) = 1 and dqo) = 8qo. 

When < qo, (3.9) implies that R satisfies 

(3.10) 

(3.11) 

and this latter equation has a unique positive solution R = R(q0) < 1. Moreover, the identity 

31n this section we drop the subscript 1 on dimensionless quantities. 
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implies that Z(q0) < 0 on 3 < qo. For suitable choices of s1 < s2 and 1 < D1, the curve 
qo + g(q0) has a local maxima at qo = T, is monotone decreasing on (2, q*) , and then is 
monotone increasing on (q*, m). Graphs of these curves when SI = .75, s2 = 1, and D1 = 2 
are shown below. 

" 
0 0.2 

yldstress and g vs q 
l.61, 

0.95" 0.4 
0.4 0.12 0.14 0.16 0.18 0.2 

1.1 

1 

0.E 

0.8 

0.7 

0.6 

0.5 

R vs q 

0.2 0.4 

It is not difficult to show that for any qo > 0 the system (3.1)-(3.7) is solvable and that 
the solution satisfies 

The latter inequality follows from the observation that q(x t  t )  satisfies 

1 & ) - s q = o ,  a a2 O < x < l  

(3.13) 

% q(O+, t )  = QO > 0 and z ( l - , t )  = 0. 

Moreover, if qo E (0, F) or qo E (q*, oo), then the solution to (3.1)-(3.7) converges to the 
steady solution described above as time goes to infinity. Of interest to us here is what 
happens when the input flow rate qo > 0 lies between 3 and q+. For qo in this interval we 
get the temporal and spatial oscillations characteristic of the melt fracture instability and 
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shark skin phenomena. The particular character of these oscillations is dependent on the 
magnitude of e3. 

Computational Experiments 

We use an operator splitting technique to integrate (3.1)-(3.7). If At is our time step, we 
assume that we have an approximate solution (p"(z), Dt(x ) ,  R"(x)), 0 5 x 5 1, defined at 
t ,  = nAt, n = 0 , 1 , 2 ,  ) . . .. During the first step we advance p keeping 0 3  fixed, that is we 
solve 

(3.14) 

subject to the boundary conditions (3.7) and the initial condition 

p ( x ,  O+) = p y x )  ) 0 5 5 5 1. (3.15) 
The updated value of the pressure, p"+', is the solution of (3.14) and (3.15) at t = At.  
During the second half step we freeze p and update D3, that is for each z we solve 

OD3 
at 

~ 3 - ( x , t )  = (D1 - (Dl  - ~ ) ( R " ( z ) ) ~ )  - &(x, t )  , 0 < 2 < 1 and 0 5 t 5 At (3.16) 

subject to the initial condition 

D3(x,0+) = D t ( z )  , o 5 x 5 1. (3.17) 

The updated value of D3, namely D:+'(-), is the solution to (3.16) and (3.17) at t = At. 
We complete the process by updating R(.). This is accomplished by solving 

(3.18) 

and then defining Rn+' (e) by 

R"+'(x) = min(I ,R(z)) ,  O < 5 < 1. (3.19) 

When solving (3.14) and (3.16) we let N be an integer, Ax = &, and evaluate p and 
( 0 3 ,  R) on the respective grids 

and 

{ x :  = (k - 1)Az , 1 5  k 5 N } .  

All of our simulations were run with the following system parameters 

(3.20) 

(3.21) 

sa = 1 , s1 = .75 , D1 = 2, and qo = .135. (3.22) 

This choice of qo was well within the interval where the steady response curve qo -+ g(q0) was 
decreasing. All simulations were carried out with N = 100 and At = min (A) .035714 € 3 )  

and explicit algorithms were used to update p and D3. 
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This first simulation was run with €3 = 7 x and the initial data 
$(z) = .995(1 - z), 0 5 2 5 1. The solution with this data rapidly converges to an 
oscillatory right propagating wave train exhibiting regular relaxation oscillations. The speed 
of individual pulses is 0(100), a number far greater than the dimensionless average flow 
velocity which varies between .25 and .36. 

Figure 5 shows relevant flow information at t = .2. The first frame in this figure shows 
the steady flow response curve and a graph of the negative pressure gradient versus the 
cross-sectional flow rate; i.e. the curve z + (q(z, .2), --%(z, .2)). The point labeled + is 
the image of 2 = 0 and the point labeled o is the image of 2 = 1. The second frame shows 
profiles of p ,  -2, q, and R at t = .2. The remaining three frames are temporal plots of the 
exit flow rate, exit radius, and 1 0 0 0 0 ~  inlet pressure over the window [.18, .2]. 

and the same initial data as the first 
simulation. By time t = .2 the solution had converged to a regular relaxation oscillation 
whose temporal frequency is approximately twice that of the preceding simulation. This is 
easily seen by counting the number of spikes in the exit flow quantities over the window of 
length .02. Figure 6 shows the results of this simulation. A film of both simulations may be 
found at http://www.math.cmu.edu/math/people/greenberg.html. 

The second simulation was run with €3 = 3.5 x 

Concluding Remarks 

We note that once the extrudate exits the rheometer it is quenched leaving a solid tube 
as the final manufactured product. The wrinkles observed in the final product result from 
the oscillations in the exit radius, R, since the less viscous fluid is partially removed during 
the quenching and solidification process. 
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