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Abstract

In a previous paper the author and Demay advanced a model to explain the melt
fracture instability observed when molten linear polymer melts are extruded in a cap-
illary rheometer operating under the controlled condition that the inlet flow rate was
held constant. The model postulated that the melts were a slightly compressible vis-
cous fluid and allowed for slipping of the melt at the wall. The novel feature of that
model was the use of an empirical switch law which governed the amount of wall slip.
The model successfully accounted for the oscillatory behavior of the exit flow rate,
typically referred to as the melt fracture instability, but did not simultaneously yield
the fine scale spatial oscillations in the melt typically referred to as shark skin.

In this note a new model is advanced which simultaneously explains the melt frac-
ture instability and shark skin phenomena. The model postulates that the polymer is a
slightly compressible linearly viscous fluid but assumes no slip boundary conditions at
the capillary wall. In simple shear the shear stress 7 and strain rate d are assumed to be
related by d = Fr where F ranges between F> and F; > F». A strain rate dependent
yield function is introduced and this function governs whether F evolves towards F»
or F}. This model accounts for the empirical observation that at high shears polymers
align and slide more easily than at low shears and explains both the melt fracture and
shark skin phenomena.
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1 Introduction

In a previous paper [1] Greenberg and Demay advanced a model to explain the melt fracture
instability observed when molten linear polymer melts are extruded in a capillary rheometer
operating under the controlled condition that the inlet flow rate was held constant. Their
model postulated that the melts were a slightly compressible viscous fluid and allowed for
slipping of the melt at the wall. The novel feature of their model was the use of an empirical
switch law which governed the amount of wall slip. Their model successfully accounted
for the oscillatory behavior of the exit flow rate typically referred to as the melt fracture
instability but did not simultaneously yield the fine scale spatial oscillations in the melt
typically referred to as shark skin. A similar model was developed at approximately the
same time by Hatzikiriakos and Dealy [2,3].

In this note, we return to the problem studied in [1] and advance a new model which
simultaneously explains the melt fracture instability and shark skin phenomena. The pro-
posed model also assumes the polymer is a slightly compressible linearly viscous fluid but
assumes no slip boundary conditions at the capillary wall. We assume that in simple shear
the shear stress 7 and strain rate d are related by

T = ud (1.1)
where
Hijd2
= 1.2
= = 9) + e (12
and

p2 > py > 0. (1.3)

¢ is interpreted as an order parameter which ranges over the interval [0,1]. When ¢ = 0
the polymer molecules are nonaligned and the fluid is highly viscous (u = u2) whereas when
¢ = 1 the polymer molecules are aligned and the fluid is less viscous (p = 1 < p2).

We assume that ¢ satisfies

59+ - 99) = 5 (L+sign (Irlmme = 7)) — 4. (14)

Here u is the fluid velocity, |7|max i the maximum shear stress, and 7, is a strain rate
dependent yield stress which we shall model later. (1.4) implies that if |7|max < 7y, then ¢
is driven to zero, whereas if |7|max > Ty, then ¢ is driven to one.

If we let
1
F= i (F2 + (F1 — F2)9) (1.5)
where
1
F= i <k = —, (1.6)
H2 H1
then (1.4) is equivalent to
1 .
§(Fi+u-VF) = 3 (Fy + F2 + (Fy — F) sign (|T{max — 7)) — F. (1.7)



This model accounts for the empirical observation that at high shears polymers align and
slide more easily than at low shears. Equation (1.4) represents the new twist of our model
and allows us to abandon the questionable assumption that slipping occurs at the capillary
wall.

A nice description of the melt fracture phenomenon may be found in Joseph and Renardy
[4, pp. 375-378]. They too discuss the existence critical or yield stresses which governs
whether the polymer is more or less viscous. Here we quote “we can expect a migration
of low-viscosity constituents into regions of high shear. These high-shear regions may take
form as wet layer of small thicknes or perhaps a region deficient in high molecular weights
defined by large gradients of molecular weight. The slip in such layers is apparent. There is
no slip surface, rather there are large gradients across narrow layers which are perceived as
slips.” The model we advance predicts many of these features.

2 Model Development.

Figure 2 describes the flow geometry. Our modelling effort accounts for what happens in the
capillary tube and not in the reservoir.
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Figure 1.

We assume the flow in the capillary is axisymmetric, and that all quantities depend only
on z,r and t. We let p denote the polymer density, p denote the pressure and assume that
the velocity field u and Cauchy stress tensor o are of the form:

u = ue; + we, (2.1)

and



oc=-ple1®e;+e.Qe, +e,®e) +olie;1®e; + oy.e. e, +0pes ® €y

+7(e;1®@e, +e,®e;).! (2.2)

(011, 07, Ogg, T) are the nonzero components of the viscous stress tensor and are related to
u and w by

2w 10w 18u F b (2.3)

3r 30r 30z 5090

and

Ou Ow
or + Oz =Fr J
where once again F satisfies (1.7). The constitutive equation (2.3) yields a trace free viscous
stress tensor and thus satisifes the “Stokes” hypothesis.
The governing equations are the continuity equation

© %t o) + o o) =0,

and balance of momentum in the directions e; and e,. At the boundary, r = R, we assume
that

(BC) u(z,R,t) =0 and w(z, R,t) = 0.

'e; = (1,0,0),e, = (0,cos8,sinf) and ey = (0,—sinfcosh) and for any vectors @ = (a1,a3,a3) and
ay
b = (b1,b2,b3), a ® b= aTb where aT = | a,
as



We further assume that the polymer is slightly compressible, that is the following equation
of state holds between the density and pressure:
’ 2e
(EOS) p=po 1+—1p>.
0
Here, pp and pg are reference values of the density and pressure and 0 < ¢ < 1 is a
dimensionless small parameter.

To assess which terms in this system are important and which may be neglected, we cast
the system in dimensionless form. We let

€1

z=Lzy, r=Rry, and t= t (2.4)

Do 5% F,
and

p=pop1, u=poResFous, w=pyReZFw,, p=2pop; and F = F,D (2.5)

R
where D ranges from 1to Dy = F1/F, >1and 0 < e = — << 1.2

L
With these scalings the shear stress becomes
‘ T = Pog€aT (2.6)
where
aul 6w1
— — ) =Dn. .
(arl + €2 aml ) T1 (2 7)

The remaining viscous stresses are O (poe2) and are thus neglectable relative to the pressure
and shear stress. With this scaling we may replace the maximum shear stress |7|max in (1.7)

by poea|71|-
The equation of state transforms to

p1 =1+ 2e1p;. (2.8)

The assumptions 0 < ¢ € 1 and 0 < € € 1 imply that to lowest order in the €'s the
continuity equation is reduced to

28])1 6'!1.1 1 0 B
ot " Ba Ty om0 (29)

If we further make the lubrication hypothesis 0 < €2 /€e1 < 1, then balance of momentum in
the direction e, implies that

p1 = pi(z1, 1) (2.10)

while balance of momentum in the direction e; takes the form

2The length of scale L in the “z” direction may be thought of as the capillary length or the length of a
typical disturbance in the “z” direction.



. (rm) = Fre (2.11)
Equations (2.10) and (2.11) then yield
Op

=r=—— 2.12
n=n 8z, (2.12)

and equations (2.7) and (2.12) imply, to lowest order in the €’s, that

6’&1 3171
dy = =D 2.1

1= 3’!‘1 T = D7'1 31?1 ( 3)

Equation (2.13), together with (BC);, implies that the velocity u, is given by

e,
Uy (21,71,0) = ——2—1-/ D(z,,s,t)sds
ahd the flow rate, g, by
def 1
ql(:rl,t) = / rlul(xl,rl,tl)d'rl —8D3((B1,t1) (a:l,tl) (214)
0
where Dj is the cross-sectional average
1
D3($1, tl) def / r?D(zl, 1, tl)dT1 (215)

If we multiply (2.9) by r,, integrate the resulting equation from r, = 0 to r; = 1, and exploit
the fact that r;w; vanishes at 7, = 0 and r; = 1, we obtain the following equation for p; :

apl 190 3p1
=~ — —~——{ D3=— )} =0. 2.16
6t1 8 6w1 3621 ( )
Under the scaling (2.4) and (2.5) equation (1.7) transforms, to lowest order in the €’s, to

oD 1 . .
636—t1‘ = 5 (D1 + 1 + (D1 - 1)s1gn(|7‘1| - Ty)) — D. (217)
Here
2F.
_ ‘mals (2.18)
€1

71 is the scaled z — r shear stress, and 7, is the scaled yield stress defined by 7, = ppea7,.
Moreover (2.17), when combined with (2.12), implies that D satisfies

572} .

Up to this point we have deferred a discussion of the behavior of the yield stress 7, on
the strain rate. In a simple shear experiment a plausible yield function is given by

D
5t

1
(:L'l,’f‘l,tl) = -2- (D] + 1 + (Dl bl l)sign <'I'1



(02, 0<|d| < Faoy

g1 — O
Ty(ld]) = o2+ (E_UiTzzaz) (|d]) = Fao3), F202 <|d| < Fioy

| 01, Fioy <|d|

where o1 < 03, Fo < Fy, and Fy0, < Fy01, and with the scalings (2.4)-(2.6) and 7, = poea?y
this would yield the scaled yield stress

(85, 0 < |dy] < s2

(81— 82)

m(ldll s 82), 82 S Id1| S D151 (220)

Ty(ldi]) = § 82+

81, D181 < |dy]

\

where
O o F;
Sg=—>8=—-2and D= —>1 (2.21)
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Figure 2.

One could attempt to use the scaled yield stress directly in (2.19). If one does this, then
(2.13), (2.19)-(2.21) would imply the following evolution equation for D:
oD 1 op1 2

636{ = 5 6x1 - Ty (D'r‘l %1— ))) - D (222)

and our combined system would be (2.15), (2.16), and (2.20)-(2.22). The fine structure
equation, (2.22), for D requires initial data Do(z1,m) = D(z1,71,0%), a quantity not easily
measured.

Instead of (2.22) we seek a simplier model which doesn’t require such fine

Op ) in (2.22) by

Opy

(Dl +1+ (D) —1) sign (7'1

6.’1)1

structure data. We accomplish this by replacing the term 7 (Drl

. 0

) where again Dj is the cross-sectional average
1
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1
Dyl ) = 4 / r3D (1,1, 1)drs. (2.23)
0

With this replacement we are guaranteed that the function

T —nN

A 15
. (T1,t1) — 7 (D3($1,t1)7‘1 il

D 1
92, B, (:vl,tl))

changes sign at most once as r; ranges over [0, 1]. With this revised model (2.22) takes the
form

1-D s 05T1<Ri($1,t1)

oD
o = (2.24)
1 Di-D , Ri<r <1
where
Rl(xl, tl) = min (1, R(ml,tl)) (225)
and R(z1,t;) is the unique solution of
Op

R(wl) tl)

(:vl,tl) = Ty (D3($1,t1)R($1,t1) ((131, tl)) (226)
Moreover, with this rev1sed model the cross-sectional average Dj satlsﬁes

dDs
oty
In fact (2.15), (2.16), and (2.25)-(2.27) represents a closed system for the switch radius Ry,

cross-sectional average D3, and pressure p;. We solve this latter system with the following
initial and boundary conditions

= (R{ + D:(1 - R})) — D;. (2.27)

€37,

| p1(z1,0%) = H(z1) and Ds(z1,0%) = Ds(z;), 0< 2, < 1 (2.28)
where p(1) = 0,9’ (z1) <0for0<z; <land 1< D3(:vl) <D,for0<z; <1,

0*,4,) 8
(BC), -2 g ) = g0 > 0
and
(BC)l pl(l_ytl) =0

We note that (2.4); implies that the normalizing time scale in our problem is Ty = E};F—Q
and this number though large is small relative to the travel time of a particle through the
rheometer when F' = F;. This latter quantity is T, = _TIT and of course Ty = ;7.

There is another important time scale in our problem namely the relaxation time §
which appears in (1.7). This time manifests itself in the dimensionless equation (2.27) in the
parameter €3 = ﬁ. In the numerical simulations given in the next section we shall assume
this parameter is small. This assumption, together with Ty = ¢7,, will allow multiple

spatial oscillations or wave forms over the unit capillary length.

8



3 Analysis of the Model of Section 2

Our interest here is in the reduced model

Op 1 0 op\ _

and

6ot = (R +Dy(1-RY)) Dy , 0<z<1

where
R(z,t) = min (1, R(z,t)),

R is the unique solution of

—= 0
Rz |2

(z,t) =7, (D3(a:, t)R(z,t) . —g%

and 7,(:) is the normalized yield curve

S2, OSdS82

#Hd) =4 s+ pati(d-s) , <d<Dis

S , D]Sl_Sd.

=d —z 1

@),

S ’
2 = = /D,

Sy

\

(3.2)

(3.3)

(3.4)

(3.5)



Once again s; > s; and 1 < D;. This latter system is solved.subject to the following initial
and boundary conditions

p(z,0") = p(z) and Ds(z,0%)=D(z) e [1,D4],0<z <1 (3.6)
and
1 NG/ o _
—gDa(O ,t)a(o ,t)=¢go>0 and p(17,t)=0. (3.7)

We assume that $(1) =0 and §'(z) <0, 0 <z < 1.2
Steady Solutions

Our first task is to examine steady solutions of (3.1)-(3.5) which are compatible with
(3.7). Such steady solutions are of the form

p=g(l—c) and p'(z)=-9g<0 (3.8)
where

D3g = 8qD , D3 = (Dl - (Dl - 1)R4) s and Rg = ’f'y(SRqO) (39)

Of particular interest to us here are the response curves go — R(qo) and go — g(go)-
We first note that if 0 < g < %, then

R(go) =1 and g(go) = 84o. (3.10)
When 2 < go, (3.9) implies that R satisfies

8Rgo .
B (D, D - #(8Rgo) (3.11)

and this latter equation has a unique positive solution R = R(gg) < 1. Moreover, the identity

1 4D - DRYw) ., dR
@ [(Dl — 0 DR @) T - D= DR @) (8R(q°)q°)] ag

= R(qo) (?'(SR(QO)QO) - (D, — (D, 1— 1)R4(¢I0)))

31n this section we drop the subscript 1 on dimensionless quantities.
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implies that %(qg) < 0 on % < go. For suitable choices of s; < s; and 1 < D;, the curve

g0 — 9(go) has a local maxima at gy = %, is monotone decreasing on (%,q,), and then is

monotone increasing on {g,,00). Graphs of these curves when s; = .75,5, = 1, and D; = 2
are shown below.
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Figure 4.

It is not difficult to show that for any gy > 0 the system (3.1)-(3.7) is solvable and that
the solution satisfies

0 < p(z,t) < p(0*,t) and g(z,t) Lef —%(m,t)g—z(m,t) > 0. (3.12)

The latter inequality follows from the observation that g(z,t) satisfies

2 Y
a(i) ¥ =0, 0<z<1

9t \Ds) o2l
D4(z,0%) 0p

0q
+ — —— - =
q(0t,t) =¢o >0 and 6.7:(1 ,t) = 0. )

Moreover, if go € (0,%) or go € (gs,00), then the solution to (3.1)-(3.7) converges to the
steady solution described above as time goes to infinity. Of interest to us here is what
happens when the input flow rate ¢op > 0 lies between 3 and g.. For gp in this interval we
get the temporal and spatial oscillations characteristic of the melt fracture instability and
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shark skin phenomena. The particular character of these oscillations is dependent on the
magnitude of ¢;.

Computational Experiments

We use an operator splitting technique to integrate (3.1)-(3.7). If At is our time step, we
assume that we have an approximate solution (p™(z), D}(z), R*(z)),0 < z < 1, defined at

tn = nAt,n =0,1,2,,.... During the first step we advance p keeping D3 fixed, that is we
solve
Op 10 Op
= (D=} =0 , 0<t<At 3.14
at 83:1:( 33a:> == (3.14)

subject to the boundary conditions (3.7) and the initial condition

p(z,0t)=p*(z) , 0<z<1. (3.15)

The updated value of the pressure, p"*!, is the solution of (3.14) and (3.15) at t = At.
During the second half step we freeze p and update Dj3, that is for each z we solve

oD,
ot

subject to the initial condition

es——(z,t) = (D1 — (D1 — 1)(R™(z))*) — Ds(z,t) , 0<z <1 and 0<t< At (3.16)

Dy(z,0")=D3(z) , 0<z <1 (3.17)

The updated value of D3, namely D3(-), is the solution to (3.16) and (3.17) at t = At.
We complete the process by updating R(-). This is accomplished by solving

apn+1 . - apn+l
R@|E @ =4 (rERE|E |@ (3.1
and then defining R"*!(-) by
R**(z) =min(1,R(z)), 0<z <L (3.19)

When solving (3.14) and (3.16) we let N be an integer, Az = 37> and evaluate p and
(Ds, R) on the respective grids

{vx,1= (2k2_1)Aa: : 15k5N+1} (3.20)
and
{gf=(k-1)Az , 1<Ek<N}. (3.21)
All of our simulations were run with the following system parameters
s=1, s=.75, Dy =2, and gy = .135. (3.22)

This choice of go was well within the interval where the steady response curve gg — g(go) was
decreasing. All simulations were carried out with N = 100 and A¢ = min (ﬁlﬁ;, .035714 63)
and explicit algorithms were used to update p and Dj.
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This first simulation was run with €3 = 7 x 105 and the initial data
plxz) = .995(1 — z), 0 < z < 1. The solution with this data rapidly converges to an
oscillatory right propagating wave train exhibiting regular relaxation oscillations. The speed
of individual pulses is 0(100), a number far greater than the dimensionless average flow
velocity which varies between .25 and .36.

Figure 5 shows relevant flow information at ¢ = .2. The first frame in this figure shows
the steady flow response curve and a graph of the negative pressure gradient versus the
cross-sectional flow rate; i.e. the curve z — (g(z,.2), —gf(:c, 2)). The point labeled + is
the image of £ = 0 and the point labeled o is the image of z = 1. The second frame shows
profiles of p, —-gs, g, and R at t = .2. The remaining three frames are temporal plots of the
exit flow rate, exit radius, and 10000x inlet pressure over the window [.18, .2].

The second simulation was run with e3 = 3.5 x 10~ and the same initial data as the first
simulation. By time ¢t = .2 the solution had converged to a regular relaxation oscillation
whose temporal frequency is approximately twice that of the preceding simulation. This is
easily seen by counting the number of spikes in the exit flow quantities over the window of
length .02. Figure 6 shows the results of this simulation. A film of both simulations may be
found at http://www.math.cmu.edu/math/people/greenberg.html.

Concluding Remarks

We note that once the extrudate exits the rheometer it is quenched leaving a solid tube
as the final manufactured product. The wrinkles observed in the final product result from
the oscillations in the exit radius, R, since the less viscous fluid is partially removed during
the quenching and solidification process.
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