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1. Executive Summary 
Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of 

semiconductors at the nanometer level. Under the support of this DOE grant we have shown that 
it is possible to structurally engineer oxides with a precision that rivals the structural engineering 
and customization achieved in semiconductor structures. Two examples of the structural 
engineering that we have achieved in oxides are shown in Fig. 1 adjacent to a state-of-the-art 
semiconductor heterostructure. As described in Sec. 2.7, all of these MBE-grown structures are 
metastable. 

It is the broad and greatly unexplored spectrum of electronic and optical properties exhibited 
by oxides that makes such structural customization exciting. The ability to structurally-engineer 
oxides opens the door to establishing the fundamental properties of known oxide materials as a 
function of direction (many are anisotropic), as well as creating and probing the properties of new 
oxides. We did both in this DOE program. For example, we used epitaxy to establish some of the 
fundamental dielectric and ferroelectric properties of SrBizTa209 and SrBi2&Op-materials used 
in today’s “smart cards” (despite the dearth of knowledge about their physical properties). We 
also used epitaxy and epitaxial stabilization to synthesize new phases, e.g., Srn+lT&03n+l 
Ruddlesden-Popper phases for n = 1 to 5, and established some of their dielectric properties. 

These advances were made through the use of epitaxy, epitaxial stabilization, and a 
combination of composition-control techniques including adsorption-controlled growth and 
RHEED-based composition control that we have developed, understood, and utilized for the 
growth of oxides. Also key was extensive characterization (utilizing RHEED, four-circle x-ray 
diffraction, AFM, TEM, and electrical characterization techniques) in order to study growth 
modes, optimize growth conditions, and probe the structural, dielectric, and ferroelectric 
properties of the materials grown. The materials that we have successfully engineered include 
titanates (PbTiO3, BbTi3012), tantalates (SrBizTazOg), and niobates (SrBi2&09); layered 
combinations of these perovskite-related materials (B4Ti3012-SrTi03 and B4Ti3012-PbTi03 
Aurivillius phases and metastable PbTi03 / SrTiO3 and BaTi03 / SrTiO3 superlattices), and new 
metastable phases (Srn+lT&03n+l Ruddlesden-Popper phases). The films were grown by reactive 
MBE and pulsed laser deposition (PLD). Many of these materials are either new or have been 
synthesized with the highest perfection ever reported. The controlled synthesis of such layered 
oxide heterostructures offers great potential for tailoring the superconducting, ferroelectric, and 
dielectric properties of these materials. These properties are important for energy technologies. 
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Fig. 1. High-resolution TEM images of GaAs / AlAs [Ref. 11, PbTi03 / SrTiO3 [Ref. 21, and 
BaTi03 / SrTi03 [Ref. 31 superlattices grown by MBE. All are shown at the same 
magnification for comparison. The GaAs / AlAs and PbTiO3 / SrTi03 superlattices have 
comparable layer thicknesses (-4 nm), whereas the layer thicknesses of the 
BaTiO3 / SrTi03 superlattice are half that of the others (-2 nm). 
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t 2. Results from this DOE-Supported Research 

2.1. Establishment and Thermodynamic Understanding of Adsorption-Controlled Growth 
Regime for PbTiO3 and BidTi3012 by MBE 

We have investigated the use of an adsorption-controlled growth mechanism to accurately 
and reproducibly control film stoichiometry during the growth of oxides by MBE. Adsorption- 
controlled growth was first utilized for the MBE synthesis of epitaxial GaAs thin films over 30 
years ag0.4-7 This growth mechanism relies on the volatility of the group V component and has 
been explained using thermodynamics.*-” In the growth of oxides, the oxygen incorporation is 
controlled by an adsorption-controlled growth mechanism, but we have established and 
understood (using thermodynamics) that in addition to oxygen, the incorporation of lead and 
bismuth may also be controlled by an adsorption-controlled growth mechani~m.’~.’~ For example, 
PbTiO3 and BhTi3012 can be grown in a regime where it is only necessary to accurately control 
the titanium flux. Within a wide range of lead, bismuth, and oxygen fluxes (the “growth window” 
for the adsorption-controlled growth of these phases), phase-pure PbTiO3 and BbTi3012 films may 
be realized with the growth rate entirely controlled by the titanium flux. We have demonstrated 
fiom measured fjlm thickness, RBS composition measurements, monitoring of RHEED half-order 
intensity oscillations during growth, and in situ flux measurements using atomic absorption 
spectroscopy (AA), that at suitable temperature and ozone pressure the titanium sticking 
coefficient approaches one and the excess lead or bismuth desorbs. 12*13 

In Fig. 2 we show the results of our thermodynamic calculations where we contrast the 
adsorption-controlled growth window for the synthesis of GaAs with that for PbTiO3 and 
BbTi3012. Because PbO (and As2) is the dominant vapor species that exists when PbTiO3 (or 
GaAs) is heated in the temperature-pressure region pl~t ted,’~ the axis of the ordinate in Fig. 2(a) 
can be plotted as simply a function of pressure. However, as many BixOy species with comparable 
partial pressure are created when BbTi3012 is heated, the ordinate axis in Fig. 2(b) is the total flux 
of bismuth (or arsenic) atoms. Like GaAs, it can be seen that a growth window exists for the 
adsorption-controlled growth of PbTiO3 and BbTi3012. In comparison to GaAs, however, the - - 
latter growth windows are considerably narrower. Nonetheless, the adsorption-controlled growl 
windows significantly simpllfy the phase-pure growth of these multicomponent oxides by MBE. 

Temperature (“C) 
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Fig. 2. The thermodynamics of adsorption-controlled growth. For GaAs growth, the growth 
window for phase-pure GaAs growth (as a function of reciprocal temperature and As2 
pressure in (a) or as a function of reciprocal temperature and arsenic flux in (b)) exists 
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between the two dashed lines. For PbTi03, the growth window for phase-pure PbTiO3 
growth as a function of reciprocal temperature and PbO pressure exists between the two 
solid lines in (a). For BbTi3012, the growth window for phase-pure BbTi3012 growth as 
a function of reciprocal temperature and bismuth flux (&om all of the BixOy species in the 
vapor phase) exists between the two solid lines in (b). 
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The use of adsorption-controlled growth has proven to be extremely effective for the MBE 
growth of 111-V and 11-VI semiconductors, 11*15~1‘ PbTiO3 and BbTi3012 (our which has 
since been confirmed by others17), Bi2Sr2Cu06,I8 and to a lesser degree the growth of 
(Rb,Ba)Bi03.19 We anticipate that adsorption-controlled MBE growth will be applicable to many 
other multicomponent oxide materials containing a volatile metal-oxide constituent.20 

2.2. Adsorption-Controlled Growth of SrBizTa209 and SrBiflbzO9 by PLD 

Like BbTi3012, these structurally-related Aurivillius  compound^^'-^^ also grow in an 
adsorption-controlled growth regime with bismuth oxide species being analogous to arsenic in the 
GaAs system. In other words, a constant overpressure of the volatile bismuth oxide species must 
be maintained in the system to stabilize epitaxial, phase-pure growth. To fully exploit this 
phenomenon, we have explored the use of non-stoichiometric, bismuth-rich targets as source 
materials for the growth of SrBizTa209 and SrBi2mO9 by PLD. To maintain this appropriate 
overpressure, particular attention must be paid to the PLD growth conditions (substrate 
temperature, oxidant pressure, laser fluence, and laser pulse rate) as they each play a significant 
role in determining an optimized growth window. We have optimized the growth conditions of 
SrBizTa209 and SrBi2m09 films by PLD by exploring a wide range of bismuth-rich target 
compositions and corresponding growth conditions.26 This optimization of adsorption-controlled 
growth conditions has allowed us to grow epitaxial iilms of these materials with unparalleled 
perfection and establish several of their fundamental properties, as described below. 

2.3. Growth of SrBi~Taz09 and SrBim209 Films with Highest Structural Perfection and 
Highest Remanent Polarization Ever Reported 

Although they are now widely used in “smart cards,” little is known about the fundamental 
properties of the layered ferroelectric materials SrBizTa209 and SrBizNbZO9. For example, prior 
to our work the spontaneous polarization of these materials was unknown, as was the anisotropy 
in the dielectric constants, coercive fields, and fatigue resistance. The critical property that was 
known about these materials that has enabled the smart card application is that polycrystalline 
SrBi2Ta209 and SrBi2mO9 films were capable of withstanding repeated ferroelectric switching 
cycles (in excess of 10l2 in polycrystalline films) without The layered structure of 
SrBi2Ta209, SrBi2mO9, and other Aurivillius  phase^^'-^' that show similar fatigue-resistance, was 
argued to be responsible for this advantageous property. To get a more detailed understanding of 
what makes these materials fatigue resistant, it is desirable to measure the anisotropy in the 
properties of SrBi2Ta209 and SrBi2m09 films. For example, are these materials fatigue resistant 
in all directions, e.g., perpendicular to as well as parallel to their Bi202 planes? In addition, 
spontaneous polarization is a key parameter of all ferroelectrics. 

To investigate the anisotropy in the dielectric and ferroelectric properties of SrBi2Ta209 and 
SrBi2PO9 films, we have grown epitaxial films of these materials on (OOl), (1 lo), and (1 11) 
SrTiO3 substrates and studied their orientation, perfection, and electrical properties with four- 
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, circle x-ray dfiaction, AFM, RBS, TEM (both planar view and cross-sectional views), 
polarization-electric field (P-E), and capacitance-voltage (C-V) measurements. The epitaxial 
orientation relationship on all substrates can be described as one involving a local continuation of 
the perovskite sublattice and is schematically shown in Fig. 3. Four-circle x-ray diffraction, 
RBS (Xmi,, = 12% for SrBi2Ta209 and xmin = 5% for SrBi2m09),2691 and TEM32*33 analyses 
indicate that the epitaxial films grown under our optimized adsorption-controlled conditions have 
the highest structural perfection and phase purity reported to date for these materials. 

The three orientations of epitaxial SrBiZTa209 and SrBizm09 films have been used for 
three different purposes. The SrBi2Ta209 and SrBi2mO9 films on (001) SrTiO3 substrates are 
free of growth twins (see Fig. 3), making them ideal for the study of two types of domains in these 
films using TEM: (1) out-of-phase and (2) ferroelectric domains.34 We recently 
reported the first observation of ferroelectric domains in SrBi2mO9 films.34 The ferroelectric 
domains are unusual in these films both in their small size, -50 nm, and in the non-faceted nature 
of the ferroelectric domain walls. We believe that the latter results from the incredibly small  
anisotropy (~0.02%) in the a and b lattice constants of SrBi2mO9, as a and b are equal to five 
significant digits (a = b = 5.5094 This is in considerable contrast to the widely studied 
ferroelectrics BaTiO3 and Pb(Zr,Ti)Os, where the difference in lattice constants is 1.1% and up to 
6.4%, respectively, and the domain walls are high faceted. With the miniscule anisotropy in its a 
and b lattice parameters, the ferroelastic strain energy associated with 90" ferroelectric domain 
boundaries in SrBizmO9 is much smaller than in more conventional ferroelectrics and we believe 
that this is why the domain walls curve to such a degree.34 

By growing SrBi2Ta209 and SrBi2m09 films on (1 11) SrTiO3 substrates (with an 
underlying epitaxial SrRuO3 electrode), we achieved what at the time was the highest remanent 
polarization reported for SrBi2mO9 or SrBi2Ta209 ijlrr~s,'~ 15.7 pC/cm'. Because the 
spontaneous polarization of SrBi2Ta209 and SrBi2mO9 exists entirely along its a axis, an increase 
in remanent polarization is associated with film orientations in which a larger component of the 
a axis lies pardel to the direction in which the electric field is applied. From Fig. 3 it is evident 
that of the three orientations studied, growth on (1 11) SrTiO3 will have the largest remanent 
polarization for the standard parallel plate capacitor geometry, and it does. 

26,29,30 
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(1 11) SrTi03 
Fig. 3. SrBi2m09 and SrBi2Ta209 grow epitaxially on (001) SrTiO3 with the c-axis parallel 

to the substrate surface normal, on (1 10) SrTiO3 in a two-fold twin structure with the 
c-axes tilted by 245" fiom the surface normal, and on (1 11) SrTiO3 in a three-fold 
twin structure with the c-axes tilted by 57" away fiom the surface normal. 

Finally, the SrBi2TazO9 and SrBi2m09 films grown on (1 10) SrTiO3 have been used to 
establish the spontaneous polarization in these compounds, as described below. 

2.4. Establishment of Lower-Bound of Spontaneous Polarization of SrBiflb209 
A lower-bound for the spontaneous polarization, P,, of SrBi2Nb209 was established by 

epitaxially growing SrBizm09 on (1 10) SrTiO3 s~bstrates.~' Unlike other potentially interesting 
epitaxial orientations, this orientation is special because of the specific angular relationship 
between the P, and remanent polarization, Pr, vectors. Here, the four types of twins (the two 
growth twins shown in Fig. 3 and an additional two twins generated within each of those during 
cooling through the Curie temperature (transformation twins) due to a-b twinning) are equivalent 
in terms of their contributions to the remanent polarization because the projection of the P, vector 
along the direction of the applied electric field is identical for all four twins (i.e., always involves 
two rotations of 45"). This is a key simplification, since quantification of the a-b twinning (at least 
in this orientation) is not required to estimate P,. Additionally, details concerning the switching 
nature (through either 90" or 180" reorientation of the polar axis) of the spontaneous polarization 
can be ignored since both a 90" or a 180" reorientation would result in the same effect on the 
remanent polarization. Thus, this orientation is special because many of these still unanswered 
fundamental questions are rendered immaterial to the establishment of P,. From the measured 
remanent polarization and an understanding of the epitaxial geometry, a lower bound of 
22.8 pC/cm2 was determined for Ps.30 This is a lower bound for this fundamental value, since our 
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, calculation assumes that the entire film is switching and that the film is entirely phase-pure. That 
the film is free of second phases and hlly crystalline is supported by TEM (performed on the same 
film) and x-ray diffraction results. However, although the P, value is taken from a fully-saturated 
hysteresis loop, it cannot be concluded that 100% of the film is actually switching. For this 
reason, our value of 22.8 pC/cm2 is a lower bound on the Ps of SrBi2m09. 

2.5. Observation of Spiral Growth in e-axis Oriented BidTijO~p SrBi2Ta20% and SrBi2Nb209 
Films Grown by MBE and PLD 

AFM images of the surfaces of (001) BhTi3012 films grown by MBE36 on (001) SrTiO3 as 
well as of (001) SrBi2Ta20g and (001) SrBi2NbZOg films grown by PLD26*3' on (001) SrTiO3 
reveal the presence of a high density (lo8 to lo9 per cm2) of growth spirals emanating from 
dislocations with screw component. Such growth spirals also occur in the growth of other layered 
perovskite thin m, e.g., ( O O ~ ) Y B ~ ~ C U ~ O ~ - ~ ~ ~ - ~ ~  and indicate that growth occurs by the 
incorporation of the deposited species at the steps that emanate from dislocations having a screw 
component, i.e., spiral Unfortunately, the surfaces of oxide films that grow by spiral 
growth tend not to be smooth because the growth spirals contain several winds, making the peak- 
to-valley roughness over a square micron region typically at least 10 run As smooth surfaces are 
a prerequisite to the growth of high quality superlattices, we have investigated the growth of 
c-axis oriented BiQTi3012, SrBi2Ta209, and SrBi2m09 films on substrates of varying lattice 
mismatch. By growing on substrates better lattice-matched to BhTi3012 than (001) SrTiO3, e.g., 
(001) LaAl03-Sr2AlTaO6 (LSAT) or (110) NdGaO3, we have been able to grow films free of 
growth spirals.36 This avoidance of spiral growth enabled us to grow smooth BhTi3012 films and 
subsequently higher n Bi2(Bi,Pb,Sr),lTi,,O3,,3 Aurivillius phases (which can be considered as a 
superlattice of alternating formula units of BhTi3012 and SrTiO3 or PbTi03).43 

2.6. Establishment of MEED-Based Composition Control Method with Absolute Accuracy 
of Better than 1% 

The growth of high quality multicomponent oxide thin films by reactive MBE requires 
precise composition control. In some cases, e.g., the growth of PbTi03 or BhTi3O12 described 
above, it is possible to use adsorption-controlled growth conditions to automatically limit the 
incorporation of volatile constituents. In many other cases, however, such fortuitous automatic 
composition control is not possible. SrTiO3 and BaTiO3 are examples where adsorption- 
controlled growth conditions are not possible for practical substrate temperatures. Although we 
use the best of today's commercially-available techniques for in situ composition control, i.e., 
atomic absorption spectroscopy (AA) and a quartz crystal microbalance (QCM), one of the major 
obstacles to the controlled synthesis of metastable oxides is the lack of adequate composition 
control. To this end we have developed an in situ =ED-based composition control method for 
the stoichiometric deposition of SrTi03 (100) from independent strontium and titanium sources.44 
By monitoring changes in the RHEED intensity oscillations as monolayer doses of strontium and 
titanium are sequentially deposited, the Sr:Ti ratio can be adjusted to within 1% of stoichiometry. 
These shuttered RHEED oscillations differ from the conventional RHEED oscillations that occur 
when species are codeposited; they are analogous to the RHEED oscillations that occur during the 
growth of GaAs films a t  low temperatures by the sequential deposition of gallium and 
where fractional coverage results in a modulation of the RHEED intensity oscillation envelope.46 
Furthermore, the presence of a beat frequency in the intensity oscillation envelope allows the 
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, adjustment of the strontium and titanium fluxes so that a full monolayer of coverage is obtained 

with each shuttered dose of strontium or We have found this technique to have an 
absolute accuracy of better than 1%.44 Its use, coupled with epitaxy and epitaxial stabilization, has 
allowed us to grow the new and metastable oxides described below. 

2.7. Growth of Metastable PbTiOJ / SrTiO3 and BaTiO3 1 SrTiO3 Superlattices by MBE with 
Structural Pe~ect ion Comparable to Superlattices of III / V Semiconductors Grown by 
MBE 
Using reactive MBE and the composition control methods described above (adsorption- 

controlled growth for PbTi03 and RHEED-based composition control for SrTi03 and BaTiOs), 
we have grown PbTiO3 / SrTiO3 and BaTi03 / SrTiO3 superlattices on (001) SrTi03  substrate^.^'^ 
Both of these systems form a solid solution over their entire composition range.47i48 Thus, 
PbTiO3 / SrTiO3 as well as BaTiO3 / SrTiO3 layered heterostructures are metastable; it is 
energetically favorable for these oxides to dissolve into each other forming (Pb,Sr)Ti03 and 
(Ba,Sr)Ti03 solid solutions. The metastability of PbTiO3 / SrTiO3 and BaTi03 / SrTi03 
heterostructures is analogous to the situation for AlAs / GaAs heterostructures, which also form a 
solid solution over their entire composition range.49 

As can be seen in the cross-sectional TEM images in Fig. 1, the interface abruptness and 
layer thickness control of our PbTiO3 / SrTiO3 and BaTiO3 / SrTiO3 superlattices are comparable 
to what has been achieved for AlAs / GaAs superlattices grown by MBE' and MOCVD" (not 
shown). The PbTi03 and BaTiO3 layers in these superlattices were grown to have thicknesses less 
than the critical thickness for the formation of interfacial misfit dislocations, leaving the entire 
superlattice fully coherent with the substrate. Indeed TEM revealed that the interfaces in both the 
PbTiO3 / SrTiO3 and BaTiO3 / SrTiO3 superlattices are fully-coherent; no misfit dislocations or 

io5 

io4 

io3 

lo2 

10' 
0 10 20 30 

28 (degrees) 
Fig. 4. 8 2 8  x-ray dfiaction scan of a [(PbTiO3)10 / (SrTi03)10]15 superlattice in which a 

PbTiO3 layer 10 unit cells thick (in the c-axis direction) is grown on top of a SrTi03 
layer 10 unit cells thick (in the c-axis direction) and this bilayer is repeated 15 times. 
The OO! superlattice reflections, the 001 reflection of the thick PbTi03 buffer layer 
and overlayer, and 001 reflection of the SrTiO3 substrate are labeled. The x-ray 
diffi-action data indicate that this superlattice has a periodicity of 8.37 f 0.02 nm. 
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, other defects were observed in the superlattices by TEM.2s3 The PbTi03 and BaTiO3 layers are 
oriented with their c-axis parallel to the growth direction. The dimensional control and interface 
abruptness achieved in these oxides indicate that MBE is a viable method for constructing oxide 
multilayers on a scale where enhanced dielectric effects are e~pected.~' 

To probe the regularity in the periodicity of these superlattices over macroscopic 
dimensions, $28 x-ray diffraction scans were performed. Figure 4 shows the 828 scan of the 
same PbTiO3 / SrTi03 superlattice whose TEM is shown in Fig. 1. The high degree of uniformity 
in the structural order of the superlattice over macroscopic dimensions is revealed by the presence 
of all of the superlattice peaks and by the narrowness of these peaks. The full width at half- 
maximum (FWHM) of these peaks is comparable to the FWHM of the PbTiO3 peaks arising from 
the 50 nm thick PbTiO3 buffer layer and overlayer that encapsulate the superlattice. 

In addition to superlattices, we have also prepared digitally-graded structures in which the 
average composition is varied by changing the fraction of occurrence of pure layers of the two 
constituents. Digital grading is commonplace in the growth of compound semiconductors by 
MBE." Figure 5(a) shows an example of digital grading in oxides on a comparable length scale to 
that used in advanced semiconductor structures. In the example shown, the composition is 
digitally graded from pure SrTiO3 to pure BaTiO3 by linearly increasing (in 10% increments) the 
fraction of BaTi03 unit-cell-thick layers that occur in each segment of the structure.52 The grading 
from pure SrTi03 begins by depositing a one unit-cell-thick (in the c-axis direction) BaTi03 layer 
followed by a SrTi03 layer nine unit cells thick (in the c-axis direction). Then comes a two unit- 
cell-thick BaTiO3 layer followed by a SrTiO3 layer eight unit cells thick. Next a three unit-cell- 
thick BaTiO3 layer followed by a SrTi03 layer seven unit cells thick, . . ., until a ten unit-cell-thick 
BaTi03 layer is deposited, completing the digital grading from pure SrTiO3 to pure BaTiO3. 

Just like their oxide su'perlattice counterparts, these digitally-graded BaTiOs / SrTiO3 
structures are also metastable; the equilibrium state is a (Ba,Sr)TiOs solid solution. However, the 

Fig. 5. HRTEM images of a digitally-graded BaTiO3 / SrTiO3 layer that goes from pure 
SrTiO3 to pure BaTi03 in unit-cell-thick increments. (a) The as-grown sample 
(Tsub = 660 "C) and (b) after annealing at 1000 "C for 2 hours in oxygen. The BaO 
monolayers in each unit-cell-thick layer of BaTiO3 are marked with arrows. As can be 
seen in (b), the nano-engineered layering is stable to relatively high temperatures. 
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, rate of cation interdiffusion between the Ba-sites and Sr-sites (both A-sites) in these perovskites is 
slow. This is apparent from Fig. 5(b), which shows an HRTEM image of a piece of the same film 
shown in Fig. 5(a) after it was annealed for 2 hours at 1000 "C in 1 atm of pure oxygen. 
Significant interdifhsion is only just beginning to occur under these conditions. Being able to 
anneal these metastable structures at such high temperatures in oxygen is advantageous in 
exploring the intrinsic dielectric, ferroelectric, and optical properties of such customized oxide 
heterostructures. In their as-grown state, the electrical properties of our layered titanate films 
have significantly higher leakage (and dielectric loss) than after annealing. We attribute this 
behavior to a reduction in the concentration of oxygen vacancies. 

2.8. Growth of n = 1 to 5 Sr,,+ITi,,Oj,,+l Phases, Including Metastable Ones, 
by MBE 

We have used reactive MBE to create new materials by atomic-layer engineering. An 
example is the phase-pure growth of the n = 1 to 5 members of the Sr,,+lTiO3,,+1 homologous 
series, whose crystal structures are shown in Fig. 6. These compounds are known as Ruddlesden- 
Popper phases after the researchers who discovered the n = 1 (Sr2Ti04) and n = 2 (Sr3Ti207) 
members of this ~ e r i e s . ~ ~ . ~ ~  SrTiO3, the n = m member of this homologous series, consists of 
alternating Ti02 and SrO layers. The n = 1 (Sr2Ti04) compound has a double SrO layer disrupting 
the perovskite network along the c-axis. Subsequent members of the series have an increasing 
number (n) of perovskite blocks separating the double SrO layers. 

Sr,Ti,O,, 
Sr,Ti,O, 3 

SrTiO, 

... 

n =  4 
n = 5  

Fig. 6. n = 1 (SrzTiO,), n = 2 (Sr3TizO,), n = 3 (Sr4Ti3010), n = 4 (SrsT&013), n = 5 (Sr,jTi5016), 
and n = m  (SrTiO3) members of the Ruddlesden-Popper homologous series of 
compounds Srn+lTi,&,+~.* Ti4' ions lie at the center of the oxygen coordination 
polyhedra (octahedra). The filled circles represent S3'  ions. 

As the $28x-ray diffraction patterns in Fig. 7 (and cross-sectional TEM images in Fig. 8) 
show, it is possible to grow single-phase epitaxial films with specific n values, even though nearby 
phases have similar formation energies. The example shown is the synthesis of the first five 
members of the Sr,,+lTi,,O3,,+~ Ruddlesden-Popper homologous series.55 These structures, shown 
in Fig. 6, are analogous with the Sr,,+lRunO3,,+l series. X-ray diffraction is an excellent probe for 
spotting non-periodicity (i.e., intergrowths) in the stacking sequence in the c-direction. 
Intergrowths cause certain peaks to broaden, shift, or split in 28.56-58 All of the peaks in Fig. 7 
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6 

have narrow widths, are at the correct 28positions, and are not split. 4 scans of all the n members 
grown indicate that \the films are oriented with the epitaxial relationship 
(001) Srfl+lTin03n+l 11 (001) SrTiO3 and [OlO] Srn+lTin03n+l 11 [OlO] SrTi03.ss*s9 Although the 
n = 1 - 3 members of this series have been grown by bulk methods (in polycrystalline form 

this is the first thin film growth of these materials and the first report of phase-pure 
n = 4 and n = 5 phases in any form. This achievement, made under our DOE-supported program 
that recently ended, is described further in Sec. 2.8. 

ody),53,54,60-62 

= 5  

= 4  

= 3  

= 2  

= I  
0 20 40 60 80 

28 (degrees) 
Fig. 7. 8 2 8  x-ray diffraction spectra of epitaxial films of the first five members (n = 1 to 5) of 

the Sr,+1TiO3~+1 Ruddlesden-Popper homologous series, i.e., Sr2TiO4 (n = l), Sr3Ti207 
(n = 2), Sr4Ti3010 (n = 3), SrsT4013 (n = 4), and Sr6Ti~016 (n = 5). The W.! SrTiO3 
substrate peaks are marked by asterisks (*). This data (from Ref. 55)  demonstrates that 
epitaxial engineering using a sequential deposition MBE process can produce single- 
phase films of high n phases that cannot be synthesized by conventional syhthesis 
techniques [Refs. 53,54,56,60-651. 

Using reactive MBE and a combination of AA and RHEED-based composition control we 
have grown the first five members of the Srn+lTit03n+l Ruddlesden-Popper homologous series: 
Sr~Ti04, Sr3Ti207, Sr4Ti3O1o, Sr5T&013, and Sr6Tis016.~~ X-ray difli-action (Fig. 7) and 
high-resolution TEM images (Fig. 8) confirm that these films are epitaxially oriented and contain 
relatively few intergrowths. Dielectric measurements indicate that the dielectric constant tensor 
coefficient €33 increases from a minimum of 44k4 in the n = 1 (Sr2Ti04) film to a maximum of 
26332 in the n = 00 (SrTiO3) film.55 Detailed investigations using quantitative high-resolution 
TEM methods reveal that the films have the expected n = 1-5 structures of the Ruddlesden- 
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. Popper Sr,+lTi,,O3,+1 homologous series. Among these films, SrzTi04, Sr3Ti207, and Sr4Ti3010 
thin films are nearly free of intergrowths, while Sr5Tj4013 ahd Sr6Ti~O16 thin films contain 
noticeably more anti-phase boundaries in their perovskite sheets and intergrowth  defect^.'^ We 
have shown that these results are consistent with what is known about the thermodynamics of 
Sr,+1Ti~03~+1 phases, including the metastability of Sr,+lTi,03n+l phases with 3 F n < 

Fig. 8. Cross-sectional HRTEM images (from left to right) of the n = 1 (SrzTiOr), n = 2 
(Sr3Ti207), n = 3 (Sr4Ti3010), n = 4 (SrsT&013), and n = 5 (Sr6Ti5016) m. A model of 
the crystal structure of the n = 1 and n = 5 members are adjacent to the corresponding 
images showing the position of the SrO double layers and perovskite layers. The arrows 
mark the position of the interface of the films with the homoepitaxial SrTiO3 buffer layer. 

2.9. Understanding of why Epitaxial Sr&Og Films are not Superconducting 

Sr2Ru04, which is isostructural to the high-T, cuprate superconductor Lal,Sr,Cu04, is the 
only known Cu-free layered perovskite superconductor.66 Rice and Sigrist predicted that the 
pairing state of SrzRu04 is odd-parity, possibly p - ~ a v e . ~ ~  However, phase-sensitive 
measurements similar to those carried out on high-7‘‘ cuprates to establish their d-wave paring 
~tate ,~*-~’  are lacking for SrZRuO4. To facilitate such experiments on SrzRu04, an important step 
is the growth of superconducting epitaxial films of this material. Although epitaxial SrzRu04 fjlms 
have been superconductivity has not been achieved. From single crystal work it is 
known that both impurities (e.g., as little as 300 ppm of aluminum)8o and “structural disorder”81 
can quench superconductivity in Sr2RuO4. To date, there has been very little characterization of 
structural defects in SrzRu04 single crystals and films. Consequently, the particular type of 
structural defects that suppress superconductivity in Sr2Ru04 is not established. 

We grew epitaxial Sr2Ru04 thin films by PLD from high-purity (99.98%) Sr2RuO4 targets 
on (001) LaA103 and found them not to be superconducting down to 0.4 K. A correlation was 
observed between higher resistivity ratios in electrical transport measurements and narrower x-ray 
diffraction rocking curve widths of the SrzRu04 Nms. This correlation implicated structural 
disorder as being responsible for the lack of superconductivity in these epitaxial Sr2RuO4 films. 
High-resolution TEM was used to investigate the structural defects in these films. The dominant 
structural defects, i.e., the defects leading to the observed variation in rocking curve widths in the 
films, are (011) planar defects, with a spacing comparable to the in-plane superconducting 
coherence length of Sr2RuO4 (see Fig. 9). These results imply that minimizing structural disorder 
is the key remaining challenge to achieving superconducting Sr2RuO4 
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2.10. Growth of Superconducting Sr2RuO4 Films by MBE 
As described in Sec. 2.9, Sr2Ru04 (Tc = 1.5 K in single crystals)83 is unique in several ways, 

To enable including increasing evidence that it is an unconventional superconductor. 
phase-sensitive measurements to establish its pairing symmetry, a crucial step is the growth of 
superconducting films of Sr2RuO4. In Sec. 2.9, we described our identification of crystallographic 
shear defects as the dominant defects in epitaxial Sr2RuO4 films.82 A cross-sectional TEM image 
showing such defects is shown in Fig. 9. Note that the spacing between the planar defects is not 
significantly greater than the in-plane superconducting coherence length of Sr2Ru04, 
&,(0) 66 mg3 In all images covering a sufficiently large area, at least one such defect was 
observed over any a-b plane interval of &,(0). And, since any lattice defect can be a pair-breaker 
in an odd-parity superconductor, these planar defects that disrupt the RuO2 planes are very likely 
responsible for the suppression of superconductivity in these high-purity Sr2Ru04 films. A 
schematic of how we believe these defects are generated is shown in Fig. 10. 

67,76,80,84-86 

Fig. 9. Anm 
arrowe 
closely 
lack of 

LTEM 
:d regi 
than 
super 

image of a high-purity c-axk SrzRu04 film grown by PLD I 
on is a crystallographic shear defect. These planar defects a~ 
the in-plane superconducting coherence length of SrzRu04, 
conductivity in these films. 

[Ref. 821. 
-e spaced 
explainin 

The 
more 
ig the 

Fig. 10. A schematic showing a nucleation mechanism for the crystallographic shear defects 
observed in epitaxial Sr2RuO4 films. Two Sr2Ru04 nuclei on adjacent terraces of a 
(001) LaAlO3 surface will form such a planar defect where they meet due to the 
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* mismatch between the step height of the substrate (3.79 A for (001) LaAlO3) and the 
repeat length in the growth direction of the film (12.75 A for (001) Sr2Ru04). The unit 
cell of Sr2Ru04 is outlined on the right side of the figure. 
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