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ABSTRACT

The Matteucci effect, which mainly manifests itself as the change of magnetization of
a material with torsional stress, is currently of great technological interest because of the
search for magnetic torque sensors. Magnetic torque sensors are important to future
improvements of automobiles and industrial robots. It is well known that the magnetic state
of a material depends on both the external magnetic field and external stress which causes
strain and change in magnetization of the material. The former phenomenon has been well
understood in both theory and application. However, the magnetic state dependence of stress
is not adequately understood and the experimental data is of limited extent.

In this project, the Matteucci effect in iron, cobalt, nickel and permalloy rods has
been documented when they were in magnetic remanence status along the axis and nickel
ring when they were in remanence status along the circumference. The effect of annealing on
the magnetomechanical effect in nickel and the temperature dependence of the
magnetomechanical sensitivity has also been examined.

Factors related to the sensitivity at equilibrium condition have been theoretically
developed. It is found in the experiments that the mechanism of magnetic domain wall
movement plays an important role rather than the domain rotation. A higher sensitivity was
found by domain wall movement mechanism than that by domain rotation mechanism.
However, the domain wall movement will result in more hysteresis than domain wall rotation.

The dynamic process of Matteucci effect of iron, cobalt, permally, especially as-

fabricated and annealed nickel rods have been examined. A tentative explanation for the



Vi

difference of these in terms of magnetic domain configuration and domain wall movement
was given.

As a result, another method of configuring and processing magnetic domains to get a
linear magnetomechanical response other than that suggested by Garshelis, which was the
basic method before the present studies, has been experimentally developed and theoretically
analyzed. A higher sensitivity was obtained in nickel by employing this method than that by
employing the method of Garshelis. The results suggest that magnetic domain configuration

is very important in designing a high sensitivity magnetic torque sensor.

Key words: Matteucci Effect, Magnetomechanical Effect, Magnetic Torque Sensors.



Chapter 1. Introduction

1.1  Background

Magnetic torque sensors are important to future improvements of automobiles and
industrial robots. It has been calculated by automotive manufacturers that the use of
electronic steering systems based on magnetoelastic torque sensors will lead immediately to a
5% improvement in automotive fuel efficiency. This is because the hydraulic systems
currently in use continuously draw high levels of power, whereas the electronic systems draw

lower power and only draw power as needed. The fuel efficiency improvement implies that

3.7x10° gallons of gasoline can be saved every year for US passenger cars alone by using
new energy efficient magneto-electronic steering systems. Also, drive shaft sensors can be
used to monitor engine misfire in order to control and minimize unwanted and harmful
emissions in exhaust. The Matteucci effect [1] is thus currently of great technological
interest because of the potential usage in magnetic torque sensors.

The primary advantage of a magnetic torque sensor is that any change of magnetic
induction can be conveniently sensed by a Hall effect probe or other magnetic measurement
method, such as magnetoresistive (MR) or giant magnetoresistive (GMR) sensors without
contacting the shaft subjected to torque. Basically the Matteucci effect manifests itself by the
change of magnetization of a material with torsional stress. This can occur both with and
without an external applied magnetic field. The literature on this subject has been until
recently very limited since Matteucci first discovered the phenomenon in 1847 [1]. This is
because, in most cases, the Matteucci effect is non-linear and path dependent (hysteretic) so

that its practical application is limited, Research by Garshelis and coworkers [2, 3, 4] has



shown that the development of a magnetoelastic torque sensor is a realistic goal for
automotive steering applications. Fig.1.1 shows a torque uangducer utilizing a circularly
polarized ring that was first suggested by Garshelis in 1992 [2]. Linear variation of field as a
function of applied torque was obtained from this transducer. Jiles [5] developed a theory of
the magneto-mechanical effect in 1995. Herbst et al [6] developed model calculations of
torque-induced axial magnetization in circumferentially magnetized rings. However, there is
still a long way to go before this type of transducer can be introduced to routine engineering
practice. First, the sensitivity, which is defined as the change of detected signal with applied
torque, is too low for materials such as iron and steel to be useful in applications. Chen et al
[7] developed this type of torque sensor utilizing a new material, specifically a metal-bonded
cobalt ferrite composite which has large magnetoelastic coefficients. A large magneto-
mechanical sensitivity has been observed in metal-bonded cobalt ferrite composite. Second,
magnetomechanical effects of some materials were experimentally found to give relatively
large magnetomechanical hysteresis at room temperature. However, cobalt ferrite composites
show very good hysteresis-free response only above 60 'C as shown in Fig.1.2. In addition to
high sensitivity, low hysteresis should be another key consideration for improving material
properties for magnetic torque sensors. However, in the previous literature, little attention has
been paid to this issue. Third, the sensitivity should be as stable as possible when the sample
is subjected to different loads and temperatures. Again, very little work has been focused on

this area.
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Fig.1.1 A torque transducer utilizing a circularly polarized ring. First presented by Garshelis
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Fig. 1.2 The magneto-mechanical torque response of cobalt ferrite at 22 'C and 80 'C. After

Chen et al [7].



1.2

Scope of this work

Nickel, iron, cobalt and nickel-iron alloys in the form of cylindrical rods have been

used to examine the Matteucci effect. This series of materials has advantages because they

contain different magnetostriction constants and magnetic anisotropy constants. They provide

rich information of how magnetostriction and magnetic anisotropy affect the Matteucci effect.

Also, they all have large elastic moduli and elastic limits that make them resilient against

strong torque compared to other materials. Pure torque will load the rod samples and cause

the magnetic induction to change along the surface which can be recorded by a Hall sensor.

The research in this thesis covers the following aspects in detail.

L.

Investigation of the Matteucci effect in nickel rods with different configurations of
magnetic domains.

Investigation of how internal stress affects the Matteucci effect in nickel. Nickel
rods with the same dimensions were fabricated in the same condition. One half of
them were selected for annealing at 500 "C for 2 hours to reduce their internal stress.
Matteucci effects of these two types of samples were compared in both domain
configurations mentioned above.

The Matteucci effect in a series of compositions of iron nickel alloy as well as iron,
nickel and cobalt have been examined. This series of compositions includes
FegaNisg, FessNigs and FejgNigg. These have different intrinsic properties such as
different magnetostriction coefficients and different magnetic anisotropy constants.
The sensitivity change of polycrystalline nickel samples versus different
temperature have been investigated to provide the basic information of the stability

of the sensitivity with temperature.



Chapter 2. Theory of Elasticity

2.1 Load, direct stress and direct strain

External force applied to a body in equilibrium results in internal forces being set up
within the materials. If a cylindrical bar is subjected to a pull or push along its axis as shown
in Fig.2.1, then it is said to be subjected to load, either in tension or compression. The unit of
load is measured in newtons. If the tension or compression is mifoﬁnly or equally applied
across the cross-section, the internal forces set up are also distributed uniformly and the bar is

said to be subjected to a uniform direct stress. The stress is defined as:

stress(o) = load £ (2.1)
area A

When the bar is subjected to a stress, the bar will change in length. Let the original length of

the bar be L and the changes in length be &, the strain produced is defined as follows [9]:

strain(e) = change in length _ o 2.2)
original length L

0=

_{..___ e —

Area A

Strain

|
|
|
Stress e=aLsL |l i
o= A | i
b
()
T8 s
L v
p P S
Tension Compression —l
P

Fig.2.1 (a) Types of direct stress. (b) Strain under load. After E.J. Hearn [9].



Strain is a measure of the deformation of the material and is dimensionless. For mathematical
convenience, tensile stresses and strains are considered positive in sense; compressive

stresses and strains are considered negative in sense.

2.2 Elastic materials, modulus of elasticity and Hooke’s law

A material is said to be elastically deformed if it returns to its original, unloaded
dimensions when the load is removed. In practice, strain is found to be proportional to the
stress within a load limit known as the elastic limit. Hooke’s law states that, within the elastic
limit,
stress(o) o« strain(g)
or

Stress

— =constant (2.3)
strain

This constant is given the symbol E and termed the modulus of elasticity. Thus for axial
stress and axial strain,

g ostress _o _ F/4 FL
strain & SL/L ASL

(2.4)

Modulus of elasticity of a material is generaily assumed to be the same in tension or
compression and for most engineering materials has a numerical value of the order of 10’s to
100’s of GPa. Table 2.1 lists the typical values of Young’s modulus of basic ferromagnetic

materials iron, cobalt and nickel.



Table 2.1 Young’s modulus and modulus of rigidity of iron, cobalt and nickel. Data are cited

from reference [10, 11, 12, 13]

Iron Cobalt Nickel
Elastic Modulus (GPa) 190 211 210
Shear Modulus (GPa) 75 82.6 80
Poisson’s ratio 0.3 0.32 0.31

2.3 Shear stress, shear strain and modulus of rigidity

| -a = lr
‘ N

Q {a) {6} {c)

Fig. 2.2 (a) Shear force (b) resulting shear strain showing typical form of failure by relative

sliding of planes. (¢) Shear strain produced by shear stress. After Hearn [9].

Consider a block or portion of material as shown in Fig. 2.2 (a) subjected to a pair of
equal and opposite forces Q. There is then a tendency for one layer of the material to slide
over another to produce the form of strain shown in Fig. 2.2 (b). A shear stress T is set up,

defined as follows:

shear stress(7)= shear load =—F— (2.5)

area resisting shear A




This shear stress will always be tangential to the area on which it acts; longitudinal stress,
however, is always normal to the area on Which it acts. The block will change shape or
“strain” into the form shown in Fig 2.2 (¢} The angle of deformation y is termed the shear
strain. Shear strain is measured in radians and hence is dimensionless. For materials within
the elastic range the shear strain is proportional to the shear stress producing it, i.e.

shear stress T
————— = — =constant=G (2.6)
Shear strain y

the constant G is termed the modulus of rigidity or shear modulus and is analogous to the
modulus of elasticity used in the longitudinal stress application. The data of Young’s

modulus and modulus of rigidity of iron, cobalt and nickel are listed in Table 2.1.

2.4 Principal stress and principal axes
To fully describe the state of material interaction at any given point in a body, nine
components of stress are necessary of which six are independent if the examined body is in

equilibrium [14].

Gz
Ty
Tz By
.QK )T— — Uyy
£y
T
O-XX

Fig 2.3 Nine components of stress fully descript the state of stress of an element.



These nine components of stress form a symmetric matrix when in equilibrium.

Ty (T5="T51), (2.7
Tyy Tap Og

According to matrix theory, for a symmetric matrix, a set of coordinates can be found

with respect to which the matrix of stress components can be reduced to a diagonal matrix of

the form
o 0 0

c={0 o, 0] . (2.8)
0 0 o,

The particular set of coordinate axes with respect to which the stress matrix is
diagonal are called the principal axes, and the corresponding stress components are the

principal stresses. Physically, each of the principal stresses is normal on a principal plane,

and there is no shear component on that plane.

A P Ty o

[
LY

Txy |

Txy C

Fig. 2.4 Stress on an element subjected to pure shear.

One would now like to examine the principal axes of a circular rod under pure shear.

Consider the element shown in Fig 2.4 to which shear stresses have been applied to the sides
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AB and DC. Complementary shear stresses of equal value but of opposite effect are
necessary on sides AD and BC in order to prevent rotation of the element when in
equilibrium. Since the‘ applied and complementary shears are of equal value on the x and y
planes, they are both given the symbol t,,. Consider now the equilibrium of portion PBC.
Resolving normal to PC assuming unit length,

0o|PC| = 7,,|BC|sin @+ 7 _|PB|cos6 =, |PC|cosfsin 8 + 7, |PC|sin & cos @ (2.9)
Simplifying the equation, we get

Oy =7, 81020 (2.10)
Similarly, resolving forces parallel to PC,

7,|PCli =7 |PB|sin 6 — 7, |BC|cos§ =7_|PC|sin* 6 -7,

PC|cos® @ (2.11)
Simplifying the equation, we get

Ty =—7,, €020 (2.12)
When 6=45°, 1 reaches zero while oq reaches the maximum of Txy. When 6=-45° | 14

reaches another zero while op reaches the value of -1y,

b

i

xy

Fig. 2.5 Direct stress due to pure torque.
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Therefore the system of pure shear stresses produces a pair of equivalent direct stresses as

shown in Fig 2.5, one compressive stress and one tensile stress, each at 45°  to the original

shear directions, and equal in magnitude to the applied shear.

2.5 Stress strain relationship

In the previous section, we showed that the nine component stresses can be reduced
to 3 independent direct stresses by selecting a particular set of coordinates. Experiments
show that stress along a particular direction not only causes strain along that direction, but
also causes strain along other perpendicular directions. Say, principal stress 6, causes a
positive strain &y along the x direction. It also causes a complementary negative strain of -g, -
€z ﬁlong the y axis and the z axis respectively. In practice, the quotients of g,/e4 and &,/g, are
found to be a constant for isotropic polycrystalline material. It is termed the Poisson’s

coefficient v. Thus the stress strain relationship can be expressed as follows for isotropic

material:
’sx = %(‘TI -v(o, + az))

le, = é(cry ~v(o, +3,)) : (2.13)
g, = %(crz -v(o, + O'y))

The Poisson’s coefficient » is usually found to be in the range 0.3-0.5.
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2.6 Simple torsion theory

Consider a solid circular shaft of radius R subjected to a torque at one end with the
other end being fixed (Fig. 2.6). Under the action of this torque a radial line at the free end of
the shaft twists through an angle 8, point A moves to B, and AB subtends an angle yat the

fixed end.

Fig. 2.6 A rod under pure torque [9].

This is then the angle of distortion of the shaft, i.e. the shear strain.

arc AB=R@=Ly, and therefore

»—RO/L, (2.14)
From the definition of modulus of rigidity,

shear strain y =shear stress ©/ G, (2.15)

where T is the shear stress set up at radius R. Therefore equating above equations gives,

Ro
L

Q=

%z%:[i) oo =2%,_cy , (2.16)
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where 7’ is the shear stress at any radius ». These equations indicate that the shear stress and
shear strain vary linearly with radius and have their maximum values at the outside radius as
shown in Fig 2.7. It is noticeable that the applied shear stresses in the plane of the cross-
section are accompanied by complementary stresses of equal value on longitudinal planes as
indicated in Fig 2.7. Some materials of cylindrical shape have different stress limits along the
axis and the circumference. Therefore the lower one should take effect when consider the

stress limit,

Fig. 2.7. Complementary longitudinal shear stress in a shaft subjected to torsion

We now consider how the total torque relates to the shear modulus and twist angle.
Let the cross-section of the shaft be considered as divided into elements of radius 7 and

thickness dr as shown in fig.2.8 each subjected to a shear stressz”.



dr

Fig. 2.8. Cross-section of a shaft

The torque set up on each element is stress x area x radius . i.e.

T =1'2nrdrr = 277" ridr . (2.17)

14

the total torque T on section will then be the sum of all such contributions across the section,

ie.

R
T = [2nc'ridr. (2.18)

Now the shear stress 7’ will vary with the radius r and must therefore be replaced in terms of

. . . GO . .
r before the integral is evaluated. Substitute '= —» into above equation, we have

R 4 3
_{ Sdr = GG IZ G_Q =R T, i or
2 2

T = 7;2 T . | (2.19)

This is the relationship of the total applied torque T and the reacted maximum torsional

stresst,, - For example, when a torque of 1 N # m was applied to a nickel cylinder of

diameter of 13mm, the corresponding torsional stress along the outer circumference is

2

— — =23MPa . 2.20
7(0.0065)’ : (2:20)

z'max -
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Chapter 3. Elements of Magnetism

3.1 Origin of magnetism

Ampere first suggested that magnetism in materials originates from equivalent current
loops inside a material [15, page 7,14]. The main idea was that when electrical charge is in
motion, it produces a magnetic field. The basic mathematical entity of Ampére’s theory is an

equivalent current loop, as shown in Fig. 3.1, There is a magnetic moment m associated with

this loop which is equal to the product of the current I and the area of the loop A .

An alternative model of the origin of magnetism in matérials is that it arises from
magnetic dipole. This contends that there are 2 types of magnetic poles, positive and negative,
which are analogous to the positive and negative electric charges. The magnetic poles
produce a magnetic field just like the electric charge produces electric field. On the basis of
this model a magnetic pole pair, positive and negative, always appears together and forms a
. magnetic dipole. Until now scientists have not yet found a single magnetic pole or
“monopole”. The basic mathematical entity of this theory is therefore the magnetic dipole as

shown in Fig. 3.1. There is a magnetic moment 7 associated with this dipole which equals

to the product of the pole strength p and the separation I between the poles.
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(a) (b)
Fig. 3.1 Configurations of the most basic mathematical entities. (a) the magnetic dipole and

(b) the current loop (after Cullity).

To say a magnetic source exists, it must be evidenced by the effect on other trial
objects. When the distance between the magnetic source and the trial object is much larger
than the separation between the poles, both models of the origin of magnetism (current loops
or poles) are the same for the effect on other objects [15, 16]. Thus both current loop and
magnetic dipole are mathematically equivalent entities on a macroscopic scale. This provides

us alternative options to explain macroscopic magnetic phenomena,

3.2 Magnetic field H, Magnetization M, magnetic induction B and demagnetization
factor Ny

As stated in the previous section, a current loop or a magnetic dipole with magnetic
moment /7 causes magnetic field in the space near it. To measure this effect, the magnetic

field can be defined as follows:
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In the vacuum or free space, for an infinitely long wire, if the current passing through

1
it is 1 amp, the magnitude of magnetic field at a radial distance of I m is py amp / meter;
_ . T

the direction of the magnetic field is defined byi x¥, where 1 is the unit vector of current,

¥ is the unit vector of the position from the radius.

Fig. 3.2 Definition of magnetic field generated by an infinitely long wire in vacuum.

The general calculation of magnetic field in macroscopic situations is given by Biot-
Savart law or Ampére’s circuital law. The Biot-Savart law states that

SH = 12i(52‘xa (3.1

4y
where i is the current flowing in an elemental length & of a conductor, r is the radial
distance, u is a unit vector along the radial direction and 85 is the contribution to the

magnetic field at r due to the current element i8] . Ampére’s circuital law states that

i=qHal (3.2)
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where i is the algebraic sum of the current that are enclosed by the integrated closed path.
Biot-Savart law and Ampére’s circuital law are equivalent when calculating the magnetic

field generated by a current source in vacuum space.

Consider a volume ¥ that contains N magnetic moments 7 . Magnetization M is

defined as,

I
g
3

- —“‘““V (3.3)
or if all m are aligned along the same direction,
- Nm
M= 34
v (3.4)

Let’s consider the magnetic field H . within the volume ¥ generated by these N magnetic

source

SOUrces.

H, oo = F(M) (3.5)

If this volume V includes a position that an external group of magnetic sources generate a
magnetic field of H,, at that point for vacuum space, the total magnetic field within the
volume V is given by

H,=H,+H, =H,_ +f(M) | (3.6)

where Hex is the applied external magnetic field. Hgouree is the magnetic field generated by the
sample itself. The average magnetic field at a position within the volume V is given by the
sum of the contributions to the magnetic field by all the magnetic moments m. The magnetic
field generated by the source can be approximately expressed as:

H, . =M-N,M, (3.7)

Sonrrce
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where Ny is a coefficient greater than 0 and less than 1 and is termed as demagnetization

factor. It is noticeable that in SI unit the magnetic field and the magnetization are in the same

units.
M m M
Am P P
Am M o
Mm tm Mm
Pm tm Mm Mm P T Pm

Fig.3.3 Magnetic field generated by the magnetic sources themselves within the magnetic

sources with a volume V.

Thus the total magnetic induction within the magnetic sources is given by,
Bin = }uO (Hin + M) = JuOHex + #GHsource + )uOM - #OHe.t + fu{)f(M) + #OM (38)
Experiments show when a magnetic moment is subject to a magnetic field, torque

may be exerted on the magnetic moment. The maximum torque generated by the magnetic

field is found to be

Tmax = :u[)ﬁl x ﬁlara! (39)



20

where 4, is a constant and has the value of 4z x107 Nm/(A*m™) =4z x107 Hm™" . The

term .M, is defined as magnetic induction B. Thus, for position where the

demagnetization field is 0, one gets
B = 1H = pt(H . + M) (3.10)
When we mention magnetic field, it usually refers to the applied magnetic field 4, ;

when we mention magnetic induction, it refers to the effect of total magnetic field z, Ff

total

asB = uH wa - Magnetic induction is also called magnetic flux density.

Magnetization M of a sample is usually dependent on the external magnetic field A o

which is the cause of changes in the alignment of the magnetic moments # and thus alters
the vector summation of m which when divided by volume ¥ determines the value of

magnetization M,

3.3 Maxwell’s equations of the electromagnetic field

Maxwell combined and integrated the work of previous investigators in
electromagnetic fields and formulated four differential equations [15] that set up the basis of
classical electromagnetism. These are

oD

VXH=J+E (Ampére’s law) (3.11)
oB

VxE= 5 (Faraday’s law) (3.12)

VeB=0 {Gauss’s magnetic flux law) (3.13)

VeD=p (Gauss’s electric flux law) (3.14)
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where E is the electric field, D the electric flux density, J the current density and p the charge
density. It is noticeable that all of these equations were obtained as a result of macroscopic

observation.
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Chapter 4. Magnetic Anisotropy and Magnetostriction

Magnetic properties of magnetic materials usually depend on the direction in which
they are measured [15, 16]. This phenomenon is called magnetic anisotropy. There are two
kinds of anisotropy:

1. Intrinsic anisotropy. Also called crystal anisotropy or magnetocrystalline anisotropy.
2_. Extrinsic anisotropy. Also called induced anisotropy. This may be caused by many
factors such as shape, stress, magnetic annealing or plastic deformation.
Although the physical origin of magnetocrystal anisotropy is rooted in qﬁantum
theory, it is customary to describe the anisotropy of a crystal by macroscopic coefficients K,
K that are obtained using a phenomenological analysis. This is because the calculation of
crystal anisotropy from quantum theory is complex and usually K, K> are enough to give the

required information on crystal anisotropy in a given material.

4.1 Anisotropy in Cubic Crystals

For a cubic single crystal, measurements of magnetization curves along different
crystallographic directions give different results. The results for iron, which has a body-
centered cubic structure, and nickel, which has a face-centered cubic structure, are shown in
Fig. 4.1(a) and Fig. 4.1(b) respectively. For iron, these measurements show that saturation
can be achieved with the lowest field strength in <100> direction. Thus <100> is accordingly
called the “easy direction” of magnetization. For nickel, the easy direction is found to be the

<111> direction.
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Fig. 4.1 Magnetization curves for single crystals of (a) iron, and (b) nickel. After Cullity[16].

From these figures, the areas enclosed between the magnetization curve and the M
axis, which corresponds to the energy needed to saturate the magnetization, are different
along different directions. An easy direction thus can be considered as the direction along
which the lowest energy will be needed to magnetize the sample to saturation. More
generally, the direction of easy magnetization of a crystal is the direction of spontaneous
domain magnetization in the zero field demagnetized state. Because the applied field must do
work against the anisotropy force in order to turn the magnetization vector away from an
easy direction, there must be additional energy stored in any crystal in which M points in a
noneasy direction. This is called the crystal anisotropy energy E,. Akulov [17] showed that
the crystal anisotropy energy E, can be expressed in terms of a series expansion of the

direction cosines of M; relative to the crystal. For a cubic crystal, let &, &, ; be the angles of

M; relative to the crystal axes, and oy, &, , &3 be the cosines of these angles. Because of the
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symmetry of a cubic crystal, the crystal anisotropy energy should have the following

properties.

(1) Any interchange of &;, &;, 65 thus any interchange of o4, @, , 05 does not change the

environment of M;, and thus does not change the value of anisotropy energy E,

(2) Inversion of M, compared with the original direction does not change the

environment of M;. Therefore, E(&;, &), 85)=E(6,+7 6547 6547); thus E(oy e, , os)= E(-

oy, -03);

(3) Rotation of M; with respect to any axes for 180° does not change the environment of
M;. For example, if we rotate M, with respect to z axes for 180°, the new angles of M,
relative to the crystal axes are &+ &+7 85 Therefore, in conjunction with property
(2) we obtain, E(oy, &z, , 03)= E(oy, &t , -05)= E(ou -, 05)= E(-v, @, @)

According to these properties, the series expansion of E, can not contain any odd

power of o4, @, , 03. Expanding E, in terms of the direction cosines o e, , 05, the expression

must have the form

3 3
2z 2 2 4 2 2 12 4 z 6
E=A0+Alz a; +AZE o’ a, +A3§ a, +A,0 e, a, +A5§ e a,; +A6§ a; +..
i=1 i i=l if i

i# i

4.1)

where A;’s are constants. Bearing in mind that oz|2+ a, 2+a33=1. We have

3 2
Ya'=1 (4.2)
i=1

3 4 3 )
2o =Q e’ +2) ala=1+2> a’a (4.3)
i=l i=] iJ [y

i#f i
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Za a; =—(Za a,’~3a’a, ) (4.4)

ia,.s:i ; —ZZa a; —l-l-Zcx a; +30:1 a,’ 0:3 (4.5)

i=l i=] iJ
1:; =

Substituting equations (4.2), (4.3) and (4.4) into the equation (4.1), we have

E, =(dy+ 4, +2)+(4, + 3%)2 ol + (4, + -;—)alzazzaf +... (4.6)

Rewriting the above equation, one gets
E, =K, + K (a]a, +a,°a; +a,"e) + Ky (a0, a,t) +... (4.7)
where Ky, K, K>,...are the anisotropy coefficients for a particular material and are expressed
in Joules/m®. Higher powers are generally not needed, and sometimes even K is so small that
the term involving it can be neglected. The first term, which is simply Ky, is independent of
angle and is usually ignored, because normally we are interested only in the change in the
energy E, when the M; vector rotates from one direction to another.

When K is zero, the direction of easy magnetization is determined by the sign of K.
If X; is positive, then E go<E;10<E;;;, and consequently <100> is the easy direction, because
E, is the minimum when A is in that direction. Iron and the cubic fefrites containing cobalt
have positive values of K. If K| is negative, E1, 1<E110<E100, and consequently <111> is the
easy direction. X; is negative for nickel and the cubic ferrites that contain no cobalt.

When X is not zero, the easy direction is determined by the values of both X; and K.
The way in which the values of these two constants determine the directions of easy, medium,
and hard magnetization is shown in Table 4.1. The room temperature anisotropy constants of

several ferromagnetic materials are listed in Table 4.2.



Table 4.1 Directions of easy, medium, and hard magnetization in a cubic crystal. After

Cullity [16 ].
K, + + + - - -
K, +o0 to 9K /4to | -9K;to w0to9 | 9Kil/dto | 9Kyfto
-9K,/4 -9K -0 |K.[/4 9 K4 +00
Easy <100> <100> <111> <1i1> <110> <110>

Medium <110> <111> <100> <110> <111> <100>

Hard <111> <110> <110> <100> <100> <111>

Table 4.2 Crystalline anisotropy constants of different materials.

Structure Substance K(10° J/m®) Kx(10° ¥/m’)
Cubic Fe 48.1 12
Ni -5.48 247
FeQeFe,05 -11.8 -23
CoQeFe,0s 270 300
NiOeFe;0; -7.0 -
MnQsFe,0; -3.79 0
Mng 457219 55F €204 -0.62 -

Mno s2Zng 40Fe2.0804 -0.10 -

CuFe,0; 63 i
MgFe,04 -3.75 -
Hexagonal | Co 412 143
BaOe6Fe,03 330 -
2C00eBa0e8Fe,03 -186 75

2Co0e3Ba0#12Fe, 05 | -180 -
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4.2 Anisotropy in hexagonal crystals
Cobalt has a hexagonal close-packed structure. The hexagonal axis ¢ is the easy
direction of magnetization, and, within the accuracy of the measurements, any direction in
the basal plane is found to be approximately equally hard, meaning that there is little
anisotropy within the basal plane. Therefore, the anisotropy energy E, depends on only a
single angle, the angle 8 between the M; vector and the ¢ axis. According to the crystalline
symmetry, the anisotropy energy under these circumstances is given by:
E,=K,+K,'cos’ @+ K,"cos* G +... (4.8)
However, it is customary to write the equation for E, in hexagonal crystals in powers of sin6.
Bearing in mind that cos®6=1-sin’0, we get
E,=K,+K, sin’ 8+K,sin* 8 +... 4.9)
When K| is positive and K;>>-K;, the energy E, is a minimum for 8= (°, and the ¢ axis
is along the easy magnetization direction, as in cobalt. Under this circurnstance, the crystal is
referred to as one with a “uniaxial anisotropy”. The energy E, will have a minimum for
8 =90" if X, is negative and K;<|K;|/2. The basal plane is then an easy plane of
magnetization and the material is referred to as one with a “basal plane anisotropy”. If K is
negative and K>>|K;|/2, then E, is minimum for@ =sin™ (=X, /2K,)"*. The M, vector may

lie anywhere on the surface of a cone with a semi vertex angle of 8.
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Fig. 4.2 Magnetization curves of a single crystal of cobalt. After Cullity [16 ].

4.3 Physical Origin of Crystal Anisotropy

We now consider the physical origin of crystal anisotropy. Magnetic order such as
ferromagnetism originates from exchange interaction between electrons, From the point of
view of quantum theory, Heinsenberg suggested that the ordering of local magnetization

arises from the exchange energy E., of electron pairs.

E, =JY 545, (4.10)

i
where J is the constant of exchange integration, S,. , S ; are the quantum spin vectors of two

interacting electrons. It is customary to divide the motion of electron into spin and orbit. For

a single free atom, both spin and orbit magnetic moments of electrons contribute the total
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magnetic m;)ment. In a crystal, atoms are fixed at the lattice points. Thus an electron is not
only subject to the Coulomb force of the nucleus that it rotates around and other electrons of
the atom, but alse subject to the Coulomb force by other nuclei and their electrons.

The effect of other nuclei and their electrons is called the crystal field. Crystal field
lowers the symmetry of the environment of electrons. This lowered symmetry leads to a split
of the energy degeneracy of the orbital component of moment. The split causes the orbital
magnetic moment to be “quenched”—the orbital magnetic moments cancel each other. We
call this the orbit-lattice coupling. The orbit-lattice coupling is very strong so that even a
strong external magnetic field can not affect the “quenched” orbit magnetic moment. This
means the orbital magnetic moment are fixed strongly to the lattice. Since the orbital
magnetic moment is “quenched”, it does not affect the magnetocrystalline anisotropy.

We call the exchange interaction between the two neighboring spins “spin-spin”
coupling. In ferromagnetism or anti-ferromagnetism this coupling is strong so that it keeps
neighboring spins aligned, either parallel or anti-parallel respectively. However, the spin-spin
coupling depends to a first approximation only on the angle between adjacent spins, not on
the crystalline axes. Therefore, spin-spin coupling does not contribute to magnetocrystalline
anisotropy.

There is also a coupling between the spin and the orbit motion of an electron known
as “‘spin-orbit” coupling. When an external magnetic field is applied, it tries to reorient the
direction of electron’s spin and hence the orbital motion because of the spin-orbit coupling.
However the orbital motion direction is strongly constrained by the lattice. So the spin-orbit
coupling tries to resist the reorientation of the spin direction. The energy that is needed to

overcome the spin-orbit coupling to rotate the spin magnetic moment of a domain from the
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easy direction is the anisotropy energy. This coupling is relatively weak compared with the
other coupling energies because fields of a magnitude of 10> A/m are usually enough to

rotate the spin such as iron or nickel from the easy direction.

4.4 Magnetomechanical effect.

The elastic properties of a solid body can be characterized by a unique expression
connecting the components of stress and strain at any point in the body for most. materials.
For some materials, however, especially the ferromagnetic metals and their alloys, the strain
is also a function of the external magnetic field in which the body is placed. The state of
magnetization of such a body also depends not only on the magnetic field but also on the

stress components as shown in Fig 4.3.

500 p—

400 [—

" No-stress

-

w300

;51

=
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= 200 0 :H 500
. 10,080

100 7 ahd

T " | |1 | l
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H(Oe)

Fig. 4.3 Effects of applied tensile (+) and compressive (-) stress on the magnetization of

nickel. Numbers on curves are stresses in Ib/in’. Inset: behavior of nickel under 10,000 Ib/in®

tension at higher fields. After Cullity [16].
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The elastic and magnetic states of the body are thus interdependent and each is a
function both of the applied field and of the applied stress. When external stress is absent, we
call the strain from applied magnetic field magnetostriction. When stress is incorporated, we
call this case the magnetomechanical effect. Only in recent years have models of the
magnetomechanical effect been disclosed [, 18-21]. The most challenging problem is to
describe the hysteretic behavior of ferromagnetic materials under both magnetic field and
stress since both reversible and irreversible magnetic domain movement involved. Jiles [5]

presented a model which simulates the hysteresis under stress.

4.5 Magnetostriction.

In the case of magnetostriction, the state of magnetization and the state of strain of
ferromagnetic materials are both dependent only on the external magnetic field. In practice, it
is also found that at the Curie temperature, both magnetization and elastic properties show
anomalies. That means the elastic and magnetic states of a ferromagnetic material are
physically rooted in the same atomic level theory. Nevertheless the empirical magneto-elastic
coupling expressions are accurate enough for most materials applications.

It is reasonable to suppose that the strain totally depends on the magnetocrystalline
anisotropy when a ferromagnetic material subject to external magnetic field. i.e. there exists
spontaneous strain for each magnetic domain. If the magnetic domain is capable of being
strained homogeneously along any direction, it requires that the magnetic field within the
magnetic domain is the same for all points. Only an ellipsoid can produce a uniform

demagnetizing field inside the sample. Therefore within individual homogeneous domains
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the strain varies with angle § from the direction of spontaneous magnetization according to

the relation, as shown in Fig 4.4

e(6) =ecos® 6 4.11)

Spontaneous ;
/ magnetostriction

Above T,

Below T, <

Fleid -induced
) magnetosthchon

Fig. 4.4, Mechanism of magnetostriction [After Jiles].

Based on this model, polycrystalline ferromagnetic material, the expression for the
magnetostriction has been developed for cubic crystalline anisotropy as [15]

dl

3 1
] = 5(“121612 + ‘5322/‘822 + ‘3"32[;32 - EJ + 3’1111("11&2181}92 + 0,0, 5,8, + oy, B, By )

(4.12)
where o4, 0, @ are the direction cosines of the magnetization and the three crystalline axis.
B, B, B ;are the direction cosines of the strain measured related to original coordinate

axes.
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If a further approximation is made, say 4, = 4,,, = 4, , where Ngo, M11 and As are the

magnetostriction constant along [100], magnetostriction constant along [111] and saturation

magnetostriction constant, respectively, equation (4.11) reduces to

a_ —31,13[0052 6 — }-] (4.12)
I 2 3

where & is the angle between the magnetization and the direction of measurement. For
. . " 2 3
randomly oriented (i.e. untextured) polycrystals, it is found A, = r Aroo T+ gﬂm . The

magnetoelastic constants for some ferromagnetic materials are listed in table 4.3

Table 4.3 Magneto-striction constants of some substance.

Ao (109 | An(o® | A= %2“0 %’L“ (107
Fe 21 21 4
Ni -46 24 -33
Fe-Ni (85%Ni) -3 3 3
Fe-Co(40%Co) 146.6 8.7 | 64
Fe;04 | -20 78 39
Coo5Fes204 -590 +120 -164
MnpgCogsFes 04 -200 65 -40
Z10.3C00.2F¢2.204 210 110 18
Terfenol 90 1640 1020
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Chapter 5. Experiments and Procedure

The materials that were examined included nickel, iron and nickel-iron alloy
(permalloy) rods with dimensions of ®13mmx70mm. These rods were fabricated with a
6x6x13 mm rectangular shaft at each end of the sample for loading torque. The dimension of
the samples is shown in Fig 5.1. One half of the as-fabricated nickel rods were selected for

annealing at 500 °C for 2 hours to examine the effects of annealing.

I 13 mm

Stainless

/ steel shaft

Nickel ring
blazed on the
shaft

=

70 mm
45 mm

6.4x6.4 mm

| 4

Y

¥ig.5.1 Geometry of samples.

Nickel toroid samples were also studied. The dimensions of the shaft of each sides of
the nickel rings are the same of those of nickel rod. The height h (Fig. 5.1) of the nickel rings

ranged from 8 to 20 cm,
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All samples were magnetized to saturation and left in remanence status before
running the test. There were two types of magnetizing procedures. The first method was to
magnetize thé sample along the axis to saturation by a solenoid. This method was applied to
all iron, cobalt, nickel and permalloy rod samples. The second method was to magnetize the
sample along the circumference and keep them at remanent status. This was achieved by
rotating the sample at a high speed in a slowly decreasing gradient magnetic field generated

by a yoked electromagnet. The second method was applied to nickel ring samples.

l‘rorquaa..

Hali
Probe

Fig. 5.2 Schematic of experiment setup.

After magnetizing along the cylinder axis, the as-cast rods were divided into two
groups to examine the dependence of magnetization on direction of stress. One groﬁp was
initially subjected to applied torque in a clockwise direction; the other was initially subjected
to applied torque in a counterclockwise direction. Both were cycled over 25 times. The

schematic of the experiment setup was drawn in Fig. 5.2.
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A magnetic torque sensor test bed was used as a part of this investigation. It can
provide a pure torque on the samples without bending. The accuracy of the applied torque by
a computer feedback mechanism was £ 0.1 Nm. A photograph of the test bed is shown in Fig
5.3. The strength of the magnetic field at the sample surface was measured using a Hall effect

sensor with an accuracy of +0.8Am™.

Fig. 5.3 Magnetic torque sensor test bed.

The samples tested are listed in Table 5.1.



Table 5.1. Composition of samples tested.

37

Name Iron Cobalt | Nickel Permalloy (in wt%)
Composition | 99.9% Fe | 99.9% | 99.9% | 99%Fe|(Nigy | 99%FessNias 99%FegsNisg
Co Ni + + +
1%A1,0; 1%A1L,0; 1%A1,0;4
Shape Rod Rod Rod Rod Rod Rod
Ring
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Chapter 6: Experimental Results

6.1 Magnetomechanical effect in iron

The magnetomechanical response of iron is shown in Fig.6.1. The rod was initially
magnetized along the axis to keep it in remanence status and a Hall sensor was used to
measure the magnetic field along the axis. It can be seen that when the torque was under
INm, the stress almost does not affect the magnetization. Above that, the surface magnetic
field decreased as applied torque increased. After ten cycles of torque, an approximately
linear reversible response was obtained. However the sensitivity, which is defined as the

quotient of the change of surface magnetic field to applied torque, was as low as 0.1

(A/m)/(Nm).

[y
[y
Las)

Surface Axial Field (A/m)

0 4 8 12
Applied Torque (Nm)

N
N
I
co
[
N

Fig. 6.1 The magnetomechanical response of a pure iron rod. The rod was initially
magnetized along the axis and a Hall sensor was used to measure the surface magnetic field

along the axis.
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6.2 Magnetomechanical effect in cobalt

The magnetomechanical response of a cobalt rod is shown in Fig. 6.2. The rod was
initially magnetized along the axis and a Hall sensor was used to measure the surface
magnetic field along the axis. The change of the surface axial field is no more than 1% (about

5A/m) and no trend of linearity shown within the range of the applied torque.

Surface Axial Field {(A/m)

4 -2 0 2 4
Applied Torque (N.m)

Fig. 6.2 Magnetomechanical response of a cobalt rod.

6.3 Magnetomechanical effect in nickel

Experimental data of as fabricated nickel rods are shown in Fig 6.3. The samples had
been magnetized along the axis to saturation and then kept in the remanence status before
running the test. Chen [8] has done some measurements of the magnetomechanical effect in

nickel and a linear response after 10 cycles of torque was reported. In our experiment, it was



found that the response of the surface magnetic induction along the axis depends on the

direction of the initial torque.

1250
E f
%« 1200 - /2 Thefirst 15 Cycles
&’ 1150 -
S
é 1100 |
]
1050 |
£
-
W 1000}

4 3 2 4 0 1 2 3
CCwW

Applied Torque (N.m)

(a)
1850
—_ The first 15 cycles
51800— e
— “:.":::k“ Aodag *«‘::f:: m
o it gl
T 1750} .
[ o,
g 1700 |
§ 1650 |-
=
=
01600 b——mr 0000 L
ok 8 2 a1 0 1 2 3 4
Applied Torque (N.m)
(b)

Fig. 6.3 As-fabricated nickel rod under torque with (a) initial counter-clockwise direction;

and (b) initial clockwise direction.
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Fig. 6.4 shows the change in remanent induction of a nickel rod when it was under
tensile or compressive stress along the axis. A coil was wounded on the rod to obtain the
change of magnetic induction B. During the measurement, a constant stress was applied to
the rod on an Instron mechanical test system. Hysteresis was measured in situ. Within the
range of applied stress (<25MPa), the remanence was found to be proportional to stress. This
range of applied stress is much more than that of the decomposed stress (< 8.1 MPa, in

chapter 7.2) when we applied torque on the rods.

Nickel Sample #1

044
S 0.37 +
) N y =-0.002x + 0.3189
Q ".
o — 033 e
c
© A
= o,
[ 629 v
(1 o ..
®
! 6:25 1
-40 -20 0 20 40

Stress (MPa)

Fig. 6.4 The change in remanent induction of a nickel rod when it is under tensile or

compressive stress along the axis.

Fig. 6.5 shows the temperature dependence of sensitivity (change in surface axial
field per N e m of applied torque) of one of as-fabricated nickel rods after 15 cycles of

torque. The rod was initially magnetized to saturation along the cylindrical axis. After 20
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cycles of applied torque from -3.5 Nm to 3.5 Nm, the sensitivity became stable at room
temperature. Then both the sample and the Hall sensor were emerged in a vessel which
contains selected composition of water-ethanol liquid. The temperature is controlled from -25
°C to 90 °C. The temperature effect on the response of Hall sensor was eliminated from the

raw data.

13.0
125, S

L XY
12.0 - ®

115} ©.

11.0

¢

10_5 P DT R RO BT DR
40 20 0 20 40 60 80
0
Temperature ( C)

Sensitivity (-1*AN"'m?)

Fig. 6.5 Temperature dependence of sensitivity of nickel rod after 15 cycles of torque.

The nickel samples annealed at 500 °C have different magnetomechanical response
from the as-fabricated samples as shown in Fig. 6.6. It can be seen that the surface axial field
of the annealed sample is no longer linear with torque even after many torque cycles. As a
comparison, the magnetomechanical response after 15 cycles of both as-fabricated and

| annealed samples is shown in Fig. 6.7.
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Fig. 6.6 Matteucci effect of an annealed nickel rod. The rod was initially magnetized along

the axis to get remanent status and a Hall sensor was used to measure the magnetic field

along the axis.

—4— As fabricated nickel rod
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Fig. 6.7 Magnetomechanical response of as-fabricated nickel rod and nickel rods annealed at

500 °C for 2 hours. This plot is drawn after about 10 cycles of torque.
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Matteucci effect of a nickel ring was drawn as Fig. 6.8. The ring was initially
magnetized along the circumference and a Hall sensor was used to measure the magnetic
induction along the axis. The obtained sensitivity (4.7(Afm)/(Nm)) 1s much lower than that of

as-fabricated nickel rod (31(A/m)/(Nm)) shown in Fig 6.7.

—4— At Room Temperature

Sensitivity: 4.7 ({A/m)/(Nm)

)

=
i

ho

Surface Axial Field (A/m)

by TAY
FAv

Applied Torque (Nm)
Fig, 6.8 Matteucci effect of a nickel ring. The rod was initially magnetized along the
circumference to get the remanence status. A Hall sensor was used to measure the magnetic

field along the axis.

6.4 Magnetomechanical effect in permalloy

To examine the magneto-mechanical response of permalloy, we bought samples with
3 different compositions. These were FegsNiss, FissNiss and FegNigg atomic%. The rods were
magnetized along the axis to obtain remanence status before any test. The magneto-

mechanical responses are shown in Fig. 6.8, Fig. 6.9 and Fig. 6.10.
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Fig. 6.9 Magnetomechanical response of FegqNisg,

305

300

295

290

285

280

275

Surface Axial Field (A/m)

270

265

Applied Torque (Nm)

Fig. 6.10 Magnetomechanical response of FessNigs.
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Fig. 6.11 Magnetomechanical response of FeoNigy.
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Chapter 7. Discussion

7.1 Equilibrium behavior—factors related to sensitivity.

We shall now examine the factors that affect the of Matteucci effect. As is consistent
with previous references [7, 8], we consider a quantity—magnetomechanical sensitivity—
which is defined as the change of magnetic induction of a ferromagnetic sample under torque.
According to thermodynamics [15], one has the following relationship in equilibrium for

small amplitude of stress or field applied to ferromagnetic materials,

(ar),(a8)
do )y \dH), (7.1)

where B is the magnetic induction, ¢ is the stress, A is the magnetostriction coefficient and H

is the applied magnetic field. The latter can be expressed as

(i), () (),
dH ), \dM ) \dH ), (7.2)
where M is the magnetization of the sample. It is well known that
(%)
— 1 =#-1
df ), ., (7.3)

where g, is the relative permeability which is easily measured in experiments. In the next step,

. di . . . L s .
one would like to evaluate term (W)o-—m . We will consider an ideal sample with isotropic

magnetostriction by which the properties of polycrystalline materials, such as nickel, are
approximately approached. The average bulk magnetostriction \ is given by,

N=(3/2) M(<cos’8>-1/3) : (7.4)
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where ) is the saturation magnetostriction constant, § is the angle between the magnetization
and the direction of measurement and “< >” denotes the average value. For a single crystal
that contains only a single magnetic domain, the magnetization M can be expressed as,
M=M;cos 0 (7.5)

where ¢ is the angle of M to the direction of measurement. For multi-domain samples,
along the direction of measurement we get the magnetization on average,

M=M; <cos 0> (7.6)

where M; is the saturation magnetization and @ is the angle between the direction of

magnetization measured and the direction of that domain. Therefore, the sensitivity

expression becomes

[@_] _(ﬂj _[dﬂj [dM) 34 u, -1 d<cos’@>
do ), \dH), \am)\dH ), 2M, d<cosf> (1.7

&

Thus the stress sensitivity is related to 4 factors:

d <cos* 8>
d <cos@ >

1. Configuration of domains (by the term
2. Relative permeability y,
3. Saturation magnetostriction constant A
4. Saturation magnetization M.

The first factor describes how the configuration of magnetic domains affects the

magnetomechanical sensitivity. For example, when a nickel rod under torque with different

initial conditions, such as demagnetized status, remanence status along the axis or remanence
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along the circumference, the magnetic induction near the surface along the axis is totally

different. For a single magnetic domain, since

dcos® 6

=2cosf (7.8)
dcos@

the smaller the angle between the direction of measurement and the magnetization, the larger

2
value of dcos’ 0 . Thus one would expect the largest di
dcos6 aM

dcos® 6
oC

near saturation
dcosé

magnetization M, according to reference [27].

The second factor—relative permeability u—indicates that both domain wall
movement and domain rotation affect the sensitivity. The expression developed by Garshelis
[2], Herbst [6] and Chen [8] do not include the contribution of domain wall movement to the
sensitivity of magnetomechanical effect. In those expressions, only the mechanism of
magnetic domain rotation was considered. The magnetization in the domains was supposed
only to rotate under the influence of stress and magnetocrystalline anisotropy. We shall see in
the next section that this is not the case. Actually, the magnetic domain wall movement plays
the main role for a high sensitivity in most cases. Sablik and Jiles [27] discussed the
difference between the domain wall movement mechanism and the domain rotational

mechanism of a ferromagnetic composite rod under torsion.
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7.2 Magnetomechanical mechanism in nickel

The effect of torsional stress on magnetization was modelled by Sablik and Jiles [29].
A torsional stress can be decomposed to 2 perpendicular surface stresses, as shown in Fig.5.2.
There exists an energy associated with the magnetization and stress. Consider the positive

tensile stress 0. The energy raised by this stress to the magnetization can be simply presented

as [15],

3 3
E, =—=cA=—=0l _cos’@
- 20‘ 20'5(:05 (7.9)

where o is the applied stress along the positive stress direction, )\ is the saturation
magnetostriction of the sample and § represents the angle between the local magnetization
and the positive stress axis. By the same reasoning, the energy raised by the compressive
stress is given by,
3 3 .
E_=-=(-c)i= —E(—O')ls sin® @

2 (7.10)

The total energy raised by the two stresses is given by the sum of the above two energies,

E,=E _+E_= -%azs cos(26) 7.11)
Let’s only consider the magnetic domain rotation under torque, which resuits from

the competition between magnetocrystalline anisotropy energy and the magnetoelastic

energy. For nickel sample, if the deviation of magnetization from the easy direction is small

EH

the energy raised by this deviation can be represented by,

= _ K qin?
E,=—K sin“a (7.12)
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where o is the deviation of magnetization from the <111> easy direction of the
magnetocrystalline anisotropy. The relationship of # and «is illustrated in Fig. 7.1. It can be

seen that the change of ¢ is the same of the change of . for nickel.

Fig. 7.1. Illustration of the angles among the pull stress, magnetization and the easy direction

of magnetocrystalline anisotropy of nickel rod.

According to the least energy principal at equilibrium and bearing in mind that

df =da , we get

dlE,+E) 3 . dcos(26) dsin’a _ . . _
18 ) oA, T K, =304, sin(20)- K, sin(2a)=0
(7.13)
This gives,
sin(2a) =22 in(20) (7.14)

1
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For a rod under torque, the decomposed perpendicular stress ¢ from the rod axis at a
radial distance r is related to the torque 7 by

Tr
| cr(r)=2ﬁ:R4

2T

where R isr the radius of the cylinder, T is the torque applied on the cylinder. In our

experiments, R=12.7 mm. Consider the typical maximum torque we employed—3.5Nm—
which corresponds too,,, (R) =8.1MPa. And A =-34x107%; K , =5x10°Jm™, Using

these values of o, A; and K, we can estimate the rotation angle of magnetization from the

easy magnetocrystalline direction from equation (7.14).

304,

1

3,

lsin{2a) = =017, @, =4.8° (7.16)

max

sin(29* <

1

this small angle is not enough to cause irfeversible domain rotation even for cubic crystal
anisotropy with <111> easy direction which needs at least 35.3° to make this change. It
means that most of the irreversible magnetomechanical response comes from the magnetic
domain wall movement. Therefore, to decrease the hysteresis, it is betterito employ more

mechanism of domain rotation than mechanism of domain wall movement.,

Now we shall demonstrate that the mechanism of magnetic domain wall movement
rather than that of magnetic domain rotation plays the main role in this Matteucci effect
process. Expression (7.12) gives the equivalent magnetic field due to magnetocrystalline
anisotropy by

_ dE,
- Lo dM 717

k
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where g is the vacuum permeability. The magnetization component of a single domain along

the easy magnetocrystalline direction <111> is given by

M=M_cosa (7.18)
Combining equation (7.12), (7.17) and (7.18), we get,

H, = _M (7.19)

#OMS
Bearing in mind that ¢, = 4.8° (expression (7.16)), we get,
. 3 0 a
|Hkl LK sm(2a)|=_ 5x107xsm(4.8 )5l=616 Alm (7.20)
max 1M, 47 x10" x4.84x10° |

We shall see that this is a very small value compared to the equivalent field due to torque.

Expression (7.11) gives the equivalent magnetic field due to the torque by

dE

— o

7 HodM

(7.21)

where i is the vacuum permeability. Using the results of (7.11) and (7.21), we get,

H = m-3_).,s(cos2950| +o dcos29J

T 2u, M|, M (7.22)

The magnetization component of a single domain along the tensile stress direction is given

by
M =M_cos@ (7.23)

Combining equation (7.22) and (7.23), we get,
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H, = = 3[00326’

do | +4crcos€]
2,

=—i/1s cos29d01 +40'0056
M|, M 2

dB iH /JOMS

5

(7.24)
To experimentally evaluate expression (7.24), we measured the change of the magnetic

induction of a nickel rod under tensile and compressive stress when the rod is at remanence

. : d . e
status (Fig. 6.4). The experimental value of agnear the remanence status is Sx 10 Nm 2T~
We obtain the maximum equivalent magnetic field due to the torque,

4x(8.1x10°)

= 7
(.26 x10 ¢ )x (4.84 xms)l-s.sxlo Alm

|# =—z—x(—34)x10'6x(5x108)+

& |max

(7.25)

compared fo the typical coercitivity of 400 A/m and saturation field of 20 kA/m [15] for
nickel, this equivalent magnetic field is really large. If the magnetic domain rotation
mechanism played the important role, the effective magnetic field in equation (7.25) would
be almost the real magnetic field which makes the magnetization to saturation. However the
experimental data (Fig. 6.3) demonstrate that this is not the case. This means the mechanism
of domain wall movement rather than the magnetic domain rotation occurred mainly in the
process.

As direct experimental evidence, after 15 cycles of torque, we measured the
sensitivity change against temperature as shown in Fig 6.5. It can be seen that the sensitivity

decreases 20% when the temperature goes from -20 °C to 80 °C. On the other hand, the

5

quotient

almost does not change [16]. This disagrees with the theoretically predicted
1

linear sensitivity from magnetic domain rotation developed by both Herbst [6] and Garshelis
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5

[2,3] which is approximately proportional to

. The observed 20% sensitivity change with
1

temperature suggests that the torque sensitivity of the nickel rod mainly comes from the
mechanism of domain wall movement which is temperature dependent. The sensitivity drops
as temperature increases becanse when the temperature increases, the weakly pinned domain
walls is released. At new equilibrium position, the pinning of domain wall is much stronger
than before, so the potential energy varies much faster than before. It requires more energy to
overcome this pinning. Thus the sensitivity drops as temperature increases. The

experimental results by Chen (Fig.1.2) also agree to our experiment data.

7.3 Dynamic process of the Matteucci effect in nickel, iron and cobalt

The spatial illustrations of the relative magnitude of magnetoelastic energy are drawn
as Fig. 7.1 according to the expression (7.11). It can be seen that the two perpendicular stress
axes are the highest energy directions alternately when the stress cycle alternates (i.e. when
the applied torque changes from CW to CCW or vice versa). From the experimental data
shown in Fig. 6.3, it is reasonable to propose that, for the as-fabricated nickel sample, after
15 cycles of torque, most of fhe magnetic domains near the directions of the two stress axes
were incorporated into the magnetic domains near the horizontal and perpendicular directions.
This process causes the drop of the magnetization along the sample axis as shown in Fig. 6.3.
The final linear magnetomechanical response mainly comes from the mechanism of magnetic
domain wall movement among the domains near these two directions. Since the nickel rods
are magnetized along the cylindrical axis to get remanence status before running the test, it is

reasonable that the magnetic domains oriented with magnetization in the upper hemisphere
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directions dominate against those oriented with magnetization in the lower hemisphere.
Since the initial torque in CW and CCW will cause the favoring of domain directions along
left and right, this causes the initial direction dependence of the Matteucci effect of the as-

fabricated nickel rods as shown in Fig. 6.3.

(a) Torque in CW direction, (b)  Torque in CCW direction.

Fig. 7.2 lllustration of the relative magnitude of magnetoelastic energy under torque in (a)
CW and (b) CCW direction. The radial length of the curve presents the magnitude of
magnetoelastic energy due to torque.

It is interesting that after aﬁnealing the nickel sample at 500 °C for 2 hours, the
Matteucci effect is totally different. These results are shown in Fig. 6.6 and Fig. 6.7. After
annealing, the permeability of nickel increased and the pinning of domain walls was greatly
released. Thus the torsional stress within the range of our experiments is large enough to
allow most of the high energy domains to be incorporated into the lowest energy domain. In

every cycle of torque, the high energy stress axis and low energy stress axis change position.
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Magnetic domains favorite these two axes alternately expand and retract volume accordingly.
The magnetic domain wall movement mainly occurred between domains near these two axes.
In this case, as shown in Fig 6.6 and Fig 6.7 a linear response of magnetization can no longer
be obtained.

The magnetomechanical response of iron to applied torque shown in Fig. 6.1 can be
explained for the same reasons. Thé magnetization almost does not change for the cobalt rod
within the torque range of our experiment (Fig. 6.2). This is because cobalt has large
magnetocrystalline anisotropy and thus a large coercivity. Thus the effect of stress is too

weak to make much magnetic domain rotation and magnetic domain wall movement.

7.4 Matteuccti effect in nickel rod magnetized along the axis and nickel ring magnetized
along the circumference

Much attention has been paid to a magnetically polarized ring along circumference
since Garshelis developed a prototype of non-contact torque sensor based on this method in
1992 [2]. The obvious advantage of this method is that a linear signal (magnetization) against
torque can be obtained with small stress. For engineering applications, it is always interesting
to increase the sensitivity of a torque sensor. A high sensitivity material—cobalt ferrite
composite—nhas been developed based on this method. However, our further experimental
result shows that at least in the interest of sensitivity it is not best to magnetically polarize a
ring circumferentially.

Fig. 6.8 shows the magnetomechanical response of a nickel ring. The ring was
magnetized to saturation along the circumference before the test and a Hall sensor was put

near the surface to record the magnetic induction change along the axis. The best results of
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the sensitivity we have obtained is 4.7 (A/m)/(Nm) (Fig. 6.8). However, the sensitivity of all
the as-fabricated nickel rods after 15 cycles, i.e. Fig. 6.3, is between 11~35 (A/m)/(Nm). It is
reasonable to suppose that the mechanism of magnetic domain rotation plays a more
important role in the nickel ring than that in nickel rod because of the different initial
magnetic status. This suggests that to get a high sensitivity torque sensor, one should employ

more of the mechanism of domain wall movement rather that domain rotation.

7.5 Experimental results on permalloy
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Fig. 7.2 Composition dependence of anisotropy constant and magnetostriction A of iron
nickel alloys, after Bozorth [25] and Jiles [15].

As stated in the previous sections, the magnetic domain wall motion plays an
important role in high sensitivity materials. Since there is a rich variation of magnetic domain
movement in iron and nickei alloy, we shall now examine the magnetomechanical response
of permalloy. Our objective was to find a linear response with high sensitivity in permalloy.

Fig 6.9, Fig 6.10 and Fig 6.11show the Matteucci effect of Fe gNigg, FessNiss and

Feg4Nizs. Unfortunately, only in FessNiss was there a linear response of the magnetization
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along the axis. Furthermore the sensitivity was lower than that of as-fabricated nickel. Fig.7.2
shows the compositional dependence of anisotropy constant and magnetostriction A of

permalloy. It seems that a linear and high sensitivity is expected for those materials with high

quotient % , high K and low coercivity (high permeability).

7.6 Conclusions

The Matteucci effect in iron, cobalt, nickel and permalloy rods has been documented
when they were in magnetic remanence status along the axis and nickel ring when they were
in remanence status along the circumference. The effect of annealing on the
magnetomechanical effect in nickel and the temperature dependence of the
magnetomechanical sensitivity has also been examined.

Factors related to the sensitivity at equilibrium condition have been theoretically
developed. It is found in the experiments that the mechanism of magnetic domain wall
movement plays an important role rather than the domain rotation. A higher sensitivity was
found by domain wall movement mechanism than that by domain rotation mechanism.
However, the domain wall movement will result in more hysteresis than domain wall rotation.

The dynamic process of Matteucci effect of iron, cobalt, permally, especially as-
fabricated and annealed nickel rods have been examined. A tentative explanation for the
difference of these in terms of magnetic domain configuration and movement was given.

As a result, another method of configuring and processing magnetic domains to get a
linear magnetomechanical response other than that suggested by Garshelis [2], which was the

basic method before the present studies, has been experimentally developed and theoretically
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analyzed. A higher sensitivity was obtained in nickel by employing this method than that by
employing the method of Garshelis. The results suggest that magnetic domain configuration

i very important in designing a high sensitivity magnetic torque sensor.
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