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ABSTRACT

Magnetic particle inspection (MPI) is a widely used nondestructive inspection method
for aerospace applications essentially limited to experiment-based approaches. The analysis
of MPI characteristics that affect sensitivity and reliability contributes not only reductions in
inspection design cost and time but also improvement of analysis of experimental data.
Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a
magnetic field source, which produces a magnetic field gradient large enough to detect a

defect in a test sample or component, is an important factor in magnetic particle inspection.

In this work a finite element method (FEM) has been employed for numerical
calculation of the MPI simulation technique. The FEM method is known to be suitable for
complicated geometries such as defects in samples. This thesis describes the research that is
aimed at providing a quantitative scientific basis for magnetic particle inspection. A new
FEM solver for MPI simulation has been developed in this research for not only nonlinear
reversible permeability materials but also irreversible hysteresis materials that are described
by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic
properties in this research (i.e., the magnetic properties of the material are identical in all
directions in a single crystal). In the research, with a direct current field mode, an MPI
situation has been simulated to measure the estimated volume of magnetic particles around
defect sites before and after removing any external current fields. Currently, this new MPI
simulation package is limited to solving problems with the single current source from either a

solenoid or an axial directional current rod.



CHAPTER 1.

INTRODUCTION

A number of nondestructive evaluation (NDE) techniques have been developed for
evaluating defects, such as surface discontinuities, voids, surface flaws, and cracks on the
surface or in the body of materials. Properly applied NDE techniques will prevent operational
failures of the mechanical parts by locating critical defects. Metallic materials are widely
evaluated in NDE applications due to their common usage in industry. Different NDE
techniques should be used depending on whether the metallic materials are magnetic or non-
magnetic. For magnetic metallic materials like steel, techniques such as eddy currents [1,2],
magnetic flux leakage [3,4], magnetic Barkhausen noise [5,6], and magnetic particle
inspection [7,8] can be employed. Among these techniques, the magnetic particle inspection
(MPI) and the magnetic flux leakage (MFL) are popular due to their inexpensive and simple
procedures. Both techniques depend on the distortion of magnetic flux lines caused by a
defect on the surface or sub-surface of a ferromagnetic material. The difference between the
techniques is the method of observing this distortion. The MPI technique uses fine magnetic
particles, dry iron powder or wet magnetic particles suspended in a liquid medium, to
identify the defect while the MFL technique employs a magnetometer to measure the
magnetic Jeakage field occurring around the defect. The indication of magnetic particles on a
test sample makes the MPI technique suitable for samples with large surface areas while the
MFL technique may be appropriate for detecting defects in the areas where access would be

difficult for visualization such as inside surfaces of pipelines.

The magnetic field generator and the magnetic particles are essential components of
the MPI method. The magnetic field strength should be large enough to magnetize the
sample so that the magnetic particles can interact with the leakage fields. The magnetic force,
which drags the magnetic particles to the defect sites, is proportional to the product of the
magnetic field and the magnetic field gradient. The distortion of the magnetic field is greatest
when the direction of the magnetic field is perpendicular to the plane of a defect, which

maximizes the magnitude of the magnetic field gradient. Magnetic fields can be generated



either by a direct contact of current source to the test material using prods, an electromagnet,
or by using current coils such as a solenoid or a yoke. The magnetic properties of the
magnetic particles are an important factor in MPI testing. A simple analytical model for the
calculation of the magnetic leakage field of surface-breaking cracks and an estimation of the
magnetic force on the magnetic particle were studied under the assumption of constant
permeability [9]. Computational advances enabled the numerical simulations of MPI
problems for a complicated geometry [10]. In this thesis we report the use of the finite
element method (FEM) with nonlinear and hysteretic magnetization modeling in order to
give realistic numerical simulations of MPI for defects with various sizes. The simulated
results can provide indications of the expected behavior of magnetic particles around a defect

and can therefore be used to devise improved inspection procedures.

1.1. Research Objective

An MPI simulation problem is usually determined by three categories of problem
characteristics: i) the definition of permeability functions of test materials, ii) the dimension
and coordinate system of a spatial space of a test environment, and iii) source field conditions
of either electric current field or permanent magnetostatic field. A new MPI simulation

package has been developed for solving the following 12 (=3x2x2) problem categories:

Table 1. Possible MPI problem categories for a new MPI simulation package

Definition of permeability of | Dimension or coordinate of a | Source current field from either

test materials spatial space a solenoid or a straight-line coil

Linear {(constant permeability) 2-D planar (XY plane) Magnetostatic (DC mode)

User-defined nonlinear

) . Axisymmetric (RZ plane) Quasi-magnetostatic (AC mode)
(variable permeability)

Hysteresis (J-A model)




The following concepts describe how to simulate magnetic particle inspection: (1)
spraying magnetic particles over the surface of test objects, (2) for nonlinear permeability
materials, making the program compute the magnetic force to pull the magnetic particles
against their gravity while the current field exists, and (3) for hysteresis materials, making the
program compute the magnetic force needed to retain the magnetic particles after the current

field is removed, and computing the demagnetization condition of materials.

The objective of this thesis is to develop a software package for the use of the finite
element method (FEM) with nonlinear and hysteretic magnetization modeling in order to
give realistic numerical simulations of MPI tests. The simulated results of an MPI test can
provide indications of the expected behavior of magnetic particles around a defect and can
therefore be used to devise improved inspection procedures. The simulation package can also
be applied for both MFL and MPI tests. For purposes of a nondestructive test, one can
simulate a test material without any defect to obtain MFL signals or magnetic particle
volumes at the beginning, and then simulate the test material with additional artificial defects
in order to find the difference of MFL signals or magnetic particle volumes between the
sitnations with and without defects. Therefore, the important issue in NDE applications is to
find the relationship between a particular geometry of a defect and the difference of either
MFL signals or magnetic particle volumes. This issue is one of the most important objectives

in this thesis.

In this thesis, a comparison is made between an output of our MPI simulation
package and an analytical formula for its verification. Because of the limited availability of
either analytical resuits or commercial software package concerning hysteresis in materials, it
is very difficult to compare these resuits to any others. The best appropriate validation of

these results should be accompanied with the comparison of experimental tests.

1.2. Thesis Organization

Chapter 1 presents the basic introduction of Maxwell’s equations, magnetic modeling
for simple 2-D planar problems with both magnetostatic and quasi-magnetostatic cases, and

finite element modeling for these Maxwell problems. The method for solving 2-D Maxwell



problems using FEM also has been introduced. In general the solution from a 2-D Maxwell
problem can support directly the analysis of magnetic flux leakage test. However, there
require more modules or processes for a test of magnetic particle inspection. One of the most
important objectives of this thesis is to provide these modules and procedures for simpler and
easier analysis of MPL. Additionally it is available to provide some sensitivity analysis for an

MPI test as a part of NDE applications.

Chapter 2 presents an MPI simulation for a simple geometry like axisymmetric
coordinate. A new MPI algorithm is introduced here for any nonlinear permeability materials.
Before the introduction of this new algorithm, some verification tests have been preceded for
both linear and nonlinear permeability cases. The new MPI algorithm with FEM provided the

sensitivity analysis of different sizes of defects on a test material.

Chapter 3 introduces the Jiles-Atherton hysteresis model, and the algorithm of
incorporating the hysteresis characteristics with our FEM programming. For the simulation
of hysteresis materials, a simple 2-D planar coordinate is employed. Our 2-D hysteresis
modeling is currently limited to the case of magnetization that is parallel to its magnetic field
intensity. Suppose a 180° domain-wall area between two domains did not align parallel and
anti-parallel to a magnetic field, but the angle between this domain wall and the magnetic
field is deterministic. Then, the recently implemented MPI simulation must be modified

some computation modules. Chapter 3 suggests how to extent in this case.

Finally, chapter 4 summarizes all research works and suggests the future works for
more realistic modeling of isotropic hysteresis materials. Appendix A shows the symbols and
their descriptions defined in this thesis. Appendix B introduces how to build an FEM
problem from simple Maxwell's equations. Several publications for NDE applications are

attached at Appendix C.

1.3. Magnetic Flux Leakage

Magnetic Flux Leakage (MFL) is used to test magnetically permeability materials
such as steels. Due to the relatively high permeability of carbon steel, eddy current

penetration is severely limited, and subsurface and far surface defects are usually not



detectable with the method. On the other hand MFL has been used successfully for many
years for inspection of high permeability materials in the wire rope, petrochemical, power

industries [3,4], and gas transmission pipeline [11].

Abrupt boundary changes due to metal losses or cracks can produce a magnetic flux
leakage field that rises above the inside and outside surface of the tube as shown in Figure 1
f11]. Inside the magnetic flux leakage probe head are detection coils, in which a voltage is
produced as they pass through a magnetic field. A Hall effect sensor is used to detect changes
in the flux density produced by the magnet {9]. Figure 1 shows the device for an MFL test to
detect flaws making abrupt wall-thickness changes. However, with damage such as gradual

wall-loss or -bulges, a leakage field would not be produced.

The inspection results are in the form of voltage pulses. These are compared to the
indications produced by milled notches in a calibration reference standard of the same
diameter, wall thickness and alloy composition. The severity of damage is determined by the
response as compared to the response of the simulated defects on the calibration reference
standard [12]. However, the response caused by natural damage may differ from the response

caused by artificial notches and grooves.

Magnetic Flur Leakage
Drive Magnets  Main  Auxiiary  Pipe MFL) signals
Section & Brushes Semsors Sensors Wall

Figure 1. Magnetic Flux Leakage (MFL) Test



1.4. Introduction to Magnetic Particle Inspection

Magnetic Particle Inspection (MPI) is an NDE technique that relies on local or
complete magnetization of the component or surface being interrogated [7,8,13]. It can only
be applied to ferromagnetic parts. When a crack is present on the surface, then some
magnetic flux will leak out from the sides of the crack where the magnetic flux is in a
suitable direction. Small magnetic particles, if they are allowed to flow over the magnetized
surface, can be attracted to this flux leakage. If it is possible to make them easily detectable
by visual inspection, the concentration of particles will enhance the appearance of any cracks.

Frequently, the particles are suspended in a liquid medium to enhance fluidity, and in many

cases, they are colored to enhance contrast [14].

FLUX LEAKAGE

MAGHETIC FIELD LINES /uamnc PARTICLES
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Center of track
Figure 2. Actual experimental MPI test



For most sensitive applications, fluorescent-coated particles are used, and inspection
is carried out under an ultraviolet light. This enhances the detection even more. The integrity
of the inspection relies on the operator to induce an adequate magnetic flux in the surface
being tested, the lighting conditions, contrast media and orientation of the defects relative to

the induced flux. The operator must also inspect the surface to detect any defects.

The technique uses the principle that magnetic lines of force will be distorted by the
presence of a flaw in a manner that will reveal its presence. The flaw is located from the flux
leakage, following the application of fine magnetic particles, to the area under examination.
Surface irregularities and scratches can give misleading indications. Therefore it is necessary

to ensure careful preparation of the surface before magnetic particle testing is undertaken.

The set up for an MPI test is shown in Figure 2. After the magnetization of material
wet magnetic particles will stick around the crack. Figure 2 shows the cross section of crack
area. If the magnetization force is greater than any other force that tries to remove magnetic

particles away from the crack, the particles will stick around the crack [9,15,16].

1.5. Maxwell’s Equations on Magnetics

The equations of the electromagnetic field can be written as follows [17]:

VtzJ+%—?, (Ampere's Law) (1.1a)
VXE= —%—l:, (Faraday's Law) (1.1b)

where B is magnetic flux density induction, E is electric field intensity, D is electric flux
density, J is current density including induced current field density , and H is magnetic field

intensity.

Useful alternative Maxwell’s point-wise partial differential equations (PDE) are
volumetric forms obtained by integrating equations in equations (1.1a) and (1.1b} over space.
Applying the “curl” theorem to the resulting integrals of VXE and VxH yields the vector

integral equations



_ (B ua= jandz, j(a—D—+J)dg= [nxHas (1.2)
9] at z Q af z
where  is the volume of integration, £ is its surface, and » is the outward unit normal vector

to £ [18, 19, 20].

To make Maxwell’s equations determinate for B, E, D, J, and H, constitutive

relations must be defined. In nearly all cases linear relations are used whereby,

V-B=0, (1.3a)
V.D=p, (1.3b)
J =0oE, (1.3¢)
B=uH, (1.3d)
D=¢E, (1.3e)

where the parameters L, &, 0, and ¢ are magnetic permeability, dielectric permittivity, electric
charge density (or resistivity), and conductivity, respectively [17]. Use of # in equation (1.3d)
implies linearity, but B(H) can be nonlinear, irreversible, etc. Provided the medium is
isotropic, these parameters are scalars; otherwise they are tensors [17]. However, the
magnetic permeability can be any function of magnetic field intensity. It is also assumed that
both # and £ themselves are time-invariant in comparison to the fields. For nonmagnetic
materials permeability # is essentially equal to its vacuum value, /4, everywhere. In this
thesis magnetic permeability # can be a constant, a user-defined nonlinear (or piecewise
linear) function, or a hysteresis function defined by a model equation such as the Jiles-
Atherton model [21,22]. The electric field from the source coil is usually magnetostatic (DC;
direct current mode) or quasi-magnetostatic (Eddy current; AC powered current mode). A
further assumption in this thesis is that there is no electric free-charge (p=0), so that
V-D=0 (1.4a)

and
ap
V.- J=—"=0. (1.4b)

Consequently,



V.El_)_: -(EB—E]:O. (1.4c)

Equation (1.4¢) implies that the time variance of either D or E can be neglected at the quasi-

magnetostatic steady state. That is,

dD JE
—=| = |=0. 1.5
ot ( ot ] (1.3)
- The current MPI simulation package has been developed for either magnetostatic or quasi-

magnetostatic mode only. Substituting equations (1.3¢) and (1.5) into equation (1.1a) gives
VxH=0E (1.6)

relating the (approximately time-invariant) electric field to the curl of the magnetic field.
Consequently, by substituting equation (1.3d} into equation (1.1b), one of Maxwell’s partial

differential equations is established as follows:

—}—;—VXE=§ (1.7

relating the time rate of change of the magnetic field to the curl of the electric field. Since E
is the primary field, unknown variables such as H may be eliminated between the two curl
equations in (1.6) and (1.7) and treated as a secondary or derived quantity. Substituting
equation (1.6) into the curl of equation (1.7) gives the second order partial differential

equation,

—VX(—}—VXEJ=0'8—E. (1.8)
Y7, ot

1.5.1. Magnetostatics

“Magnetostatics” implies that the time rate of magnetic field change is very slow or
approximately time-invariant. Therefore, the Maxwell’s equations for this steady state case

are as follows [20]:
VXE =0, (1.9a)
V-B=0, (1.9b)
VxH=]J,, (1.9¢)
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where J; is the electric current density from a source coil, and the relationship
B=ul (1.10a)
or

B=yu,(H+M). (1.10b)

Equation (1.10a) is used for an approximate expression of any function of B(H), and (1.10b)

is used for the exact expression of B(H) when M is known and measurable at any time.
For any differentiable vector v, it is always true that [23]

V- (Vxv)=0. (1.11)
Since VB =0 under all conditions, there exists a magnetic vector potential A such that
B=VxA, (1.12)
50 that the differentiable vector A meets
V- (VxA)=0, (1.13)
with the same reason of equation (1.11). Substituting equation (1.10a) and (1.12) to equation

(1.9b) gtves

Vx[iVXAJ:JS. (1.14)
M
Similarly, substituting equation (1.10b) and (1.12) to equation (1.9b) gives
VX(LVXA)=JS+VXM. (1.15)
Ho

The 2D-planar case assumes that the current flows are parallel to the z-axis, so only

the z component of A is present,
A =(0,04)7, J,= 0,007 (1.16)

where A = A(x,y), J = J(x,y), and v! means the transpose of the vector v, so that vectors A
and J; be column vectors . The (X, y, z) coordinate will be mapping to the (r, z, 8) coordinate
(however, the Jacobian transform of the Cartesian coordinate into the rotational coordinate

will be required for all partial differential equations). Equation (1.14) can be written as [23]



Il

—V-[lVA]+V(—1—V-A]=JS, (1.17)
H H
and for this 2D case,

V-A=0. (1.18)

Therefore, equations (1.14) or (1.15) can be simplified to a scalar elliptic PDE:

—V-(lVAJ=J (1.19)
u
or
—V-[;l—VAJ=J+k-(V><M) (1.20)
0

wh-ere k is the unit vector along the z direction, which is the same direction of current flow
[19]. From equation (1.16), the magnetization M is a function of the vector potential with
respect to its own material permeability property. For the case of hysteretic magnetic
materials, since the relationship between the magnetization and the magnetic vector potential
is nonlinear and irreversible (i.e., there is no one-to-one mapping), the solution for this FEM
problem can be only solved by some generic ways (i.e., the solver for hysteresis problems
converts unknown continuous solution space to a piecewise-linear space and gradually
updates vectors B, H, and M for each finite element by minimizing computational errors).

Equation (1.20) will be included in our hysteresis FEM algorithm for an MPI simulation test.

For the 2-D planar case, we can compute the magnetic flux density B from (1.12) as

A oA Y
B=|—, -——, 0 1.21
[ay ox J (121)
and, assuming
H=(/u)B (1.22)

at a particular position of 2-D planar space (remind we are using an FEM computation. i.e.,
each finite element has unique values of B, H, and #, and it is assumed that the value of yis

constant for each finite element), the magnetic field H at the particular position is given by
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ne(12 18 o], 023
gady  pox
The interface condition across spatial subdomain borders between regions of different
material properties is that Hxn be continuous [18,19,20]. There are three types of boundary
conditions for applying FEM: Dirichlet boundary condition, Neumann boundary condition,
and the mixed condition of both cases [18, 20]. More detailed description of these boundary
conditions will be presented in the next section, The Dirichlet boundary condition specifies
the certain value of the magnetostatic potential A on the boundary. The Neumann condition
specifies the value of the normal component of
n-[iVAJ (1.24)
H
on the boundary. This is equivalent to specifying the tangential value of the magnetic field H
on the boundary. Visualization of the magnetic vector potential A, the magnetic field H, and

the magnetic flux density B is also provided in the MPI simulation package.

1.5.2. Quasi-Magnetostatics (Eddy Current Case)

The MPI test may apply an AC (alternating current) power; e.g., for the purpose of
the surface test of an experimental object [18]. Suppose electric and magnetic fields vary
harmonically in time with low frequency. Let the time-frequency of a source current field be

@. If the current field is homogenously periodic, then the current density of the source coil is
J(t) =Re{Je™®}. (1.24)

The conductivity o of an isotropic material is scalar. The homogenous time-frequency of the
electric field generated by this current density field is also assumed as the same as @ in
equation (1.3c). From equations (1.1b) and (1.12) it is easily derived that

9B _ JVXA _ JVxRe{Ae’)

VXE=—— ,
of ot or

(1.25)

where A is the maximum magnitude vector of A. Assuming that V and 0/0¢ operators

commute, (1.25) can be rewritten as [23]
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Vx[E+a—A)=O. (1.26)
ot
Because VXV ¢ =0 for any scalar ¢ [23], we can define an electrical scalar potential ¢ such
that
dA
E=—a——V(0=a)A—V¢. (127)
i
Substituting (1.27) to (1.3c),
J=c(wA-Vo)=woA+], (1.28)

where J_ =-0V ¢ is the current density field in the source coil which of course is simply a

restatement of the Ohm’s law. Substituting (1.28) to (1.6), we have
VxH=J, +acA. (1.29)

From (1,12}, (1.22) and (1.29) finally we have

Vx(%VxA}wA:JS (1.30)

at a particular position of 2-D planar or axisymmetric spatial space. By the condition of

(1.18) and the corresponding result of (1.17), Equation (1.30) becomes

—V-{lVAJ—a)aA=JS. (131)
u

Suppose an MPI environment is 2-D planar, such that the time-harmonic current field

in the source coil is defined as J; = (0,0,J) Re{¢/™'}. Then the magnetic vector potential A can

be defined as

A =(0,0,A)Re{e’™}. (1.32)

Then, equation (1.28) can be easily derived as an elliptic PDE equation as following

—V-[iVZJ—wZ:J (1.33)

or
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-V-[iVX]—mZ=J+k-(VxM) (1.34)
Hy
where k is the same direction of current flow and M is the magnetization, which is a function

of the vector potential A.

1.5. Finite Element Modeling in Magnetics

Solving Maxwell’s electric and magnetic problems at all points in space yields
complex and large systems of equations. In general a finite element method approximates an
original physics problem by a discrete piecewise linear system. The discrete problem is then
solved locally at each time step by summing nodal contributions from nearest neighbors and
integrating each node independently using a “leapfrog” scheme. Finite elements are suited to
structurally complex models, but increase the floating-point operation count. However, the
dominance of finite elements in many scientific fields such as thermal, structures, fluids, and

electromagnetics is due to geometric adaptability and modeling ease.
The basic characteristics of finite element modeling (FEM) are as follows:

¢ Finite Element Analysis is a generic method for simulating a physical system (geometry
and loading environment) by a mathematical approximation of the real system.

¢ The simulated physical system is constructed using discrete interrelated building blocks
called “elements”.

» The field equations are solved for locations defined by the elements.

* FEM deals with complex boundaries well and gives answers to “real world” structural

problems.

Figure 3 shows an example of how to mesh 3-dimensional objects into finite elements.
The Delaunay refinement method is the most popular ways to guarantee suitable meshes
[24.25]. If a finite element generated by a particular mesh generation algorithm has very
acute angle between two edges, then the element may result in an inadequate or distorted
physical approximation, because any value from physics is assumed to be the same in this

clement (i.e., the values have been averaged across this element). Since many excellent
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commercial mesh generation utilities are currently available, the description of mesh

generation will be omitted from this thesis.
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Figure 3. Finite Element Method: Delaunay Refinement Method [25]

1.5.1. Elliptic Partial Derivative Equation (PDE)
The basic equation of the standard scalar elliptic PDE is
-V -sVuy+mu=f in£, (1.35)
where Q is a bounded spatial domain [20]. The parameters s, m, and f are given as scalar
values, and the unknown variable u are (complex-valued) scalar defined on the spatial

domain €. A nonlinear solver is also available in our MPI simulation package for the

following nonlinear elliptic PDE:
-V -(@)Vu)+muw)u = f(u), (1.36)

where s, m, and f are time-invariant functions of the unknown solution u [20].
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The Maxwell's equations for 2-D planar or axisymmetric problems form elliptic PDE
' models. Very restricted conditions of 3-D Cartesian environment may be able to maintain
this elliptic PDE modeling: it depends on whether the equation (1.14) remains true or not.
For our MPI simulation environment, the parameter m{x) in equation (1.34) is defined as a
scalar constant, but s(u#) and f{uz) can be nonlinear functions of u. Table 2 shows the
relationship between elliptic PDE models and MPI problems supported by our simulation

package.

The boundary conditions specify a combination of « and its normal derivative on the

boundary [18,19,20]:

o Dirichlet: hu = r on the boundary 0€2.
o  Neumann: i - (sVu) = g on 0Q2.

e Mixed: A combination of Dirichlet and Neumann, i.e., # - (sVu) + qu = g on Q.

Here, n is the outward unit normal vector to the surface. The parameters of boundary
conditions (k, r, g, and g) can be constants or functions defined on 0Q (Recall s is the same
value as shown in equation (1.33)). Dirichlet conditions are also called essential boundary
conditions and restrict the trial space. The most common use of Dirichlet boundary
conditions from a magnetic problem is that the magnetic vector potential is defined as zero
along a boundary, so that any magnetic flux leakage cannot cross the boundary. It is also

known as a closed boundary condition.

Table 2. Relationship between elliptic PDE models and MPI problems

Parameters/Variable of | Magnetostatics for planar or | AC Power Electromagnetics for

Elliptic PDE Models axisymmeltric probiems planar or axisymmetric one
Variable, u Magnetic vector potential, A Magnetic vector potential, A

5(u) 1 u(|VA[y or 174, 1/ p(VAp or 1/ 1,

miu) 0 jwo—w'E O jwo

Ru) Jor J+k-(VxM) Jor J+k-(VxM)
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The computational effort to solve an FEM problem is increased by the number of
finite elements and mesh vertices. Therefore, the smaller the number of finite element is, the
less time-consuming is the computation. There are two ways of reducing the number of finite
elements: (1) to use course meshes of test objects, and (2) to reduce the size of a background
space. The first case may be not preferable because of its large approximation error. For the
second choice with Dirichlet boundary conditions (i.e., the size of a spatial domain space is
not relatively big enough to test objects), the solution from the closed boundary condition
may yield unrealistic results since the magnetic flux lines around the spatial domain surface
could be significantly distorted by these Dirichlet boundary conditions [18,20]. It implies that
the internal magnetic flux lines are also influenced by these boundary conditions
simultaneously. Therefore, it is required to take a large enough region of the domain space in
order that the solution may approximately converge to the real physical result. However, it

may require utilization of large computational resources.

Neumann boundary conditions are also called natural conditions and arise as
necessary conditions for a solution {18,19,20]. This boundary condition specifies the normal
derivative of a vector potential along the boundary. The most common and simple definition
of Neumann conditions of a magnetic FEM problem is that » - VA = (¢ along a boundary;
1.e., each position at the boundary always keep the direction of magnetic flux leakage to be
normal to the boundary. This is in general unrealistic, but this sort of boundary condition is

consistent with an interface with extremely high-permeability metals.

The ‘mixed’ boundary condition is most often used in eddy current problems on
interfaces with bodies with small skin-depth eddy currents. The selection of adequate
boundary conditions is dependent on the geometric conditions of the source fields, test

objects, and the size and shape of a spatial domain space {18,20].

The implementation of FEM can be summarized in the following way: Project the
weak form of the differential equation onto a finite-dimensional function space [20]. For the
weak form of the differential equation, “mixed” boundary conditions are assumed to apply on
the whole boundary. In the simple case of a unit matrix A, setting g = gr and then letting

yields the Dirichlet condition because division with a very large g cancels the normal
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derivative terms. The actual implementation is different, since the above procedure may

create conditioning problems.

Assume that u is a solution of the differential equation. Multiply the equation with an

arbitrary test function v and integrate on £2 [20]:
L{— (V- (sVu) v+ muvldx = Lfvdx, forailv. (1.37)
Then, the partial integration (Green’s formula) yields:
L{(sVu) Vv + muvix — _L A{sVulvds = Lfvdx for allv. (1.38)
The boundary integral can be replaced by the boundary condition:
L{(sVu)- Vv + muv jdx — LQ (—qu+ g vds = Lﬁdx, for allv. (1.39)
Replace the original problem with: Find « such that

L{(sVu) Vv + muv— frdx— _L —qu+gWvds =0, for all v. (1.40)

This equation is called the weak form of the differential equation. Obviously, any solution of
the differential equation, including these assumed limitations, is a solution of the restricted
variant problem family. The reverse is true under some restrictions on the domain and on the

coefficient functions.

The solution u and the test functions v belong to some function space V. The next step

is to choose an N,-dimensional VNP , which is a subset of the global space V. ‘Project the

weak form of the PDE onto a finite-dimensional function space’ simply means requesting u

and v to lie in VNp rather than V [20]. The solution of the finite dimensional problem turns

out to be the element of that lies closest to the weak solution when measured in the energy

norm shown in equation (1.40). Convergence is guaranteed if the space VN,, tends to V as

N,—oo [19]. Since the differential operator is linear, we demand that the weak form of

equation is satisfied for N, test-functions ¢, € V,, - that form a basis [20], i.e.,

[{sVu)- Vg, +mug, - foJax— [ (—qu+gdds=0, for i=12,..N,.  (1.41)
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Expand « in the same basis of VN,.
NP
w(x)=>U¢;(x), (1.42)
j=t
and obtain the system of equations [20]

i_p:Uj [L{(Sv¢j ) Ve, +m¢j¢;h’f+ J;ququb,.ds]

(1.43)
= [ fedx+ [ gdds, fori=12,..N,.
Use the following notations:
e K,= L(ngbj)-qu,. dx (Stiffness matrix)
s M= Lqu&j;éidx (Mass matrix)
* Oy= nq¢j¢,.ds (Boundary conditions)”
o F = L Jf@é.dx (Field sources)
e G = LQ g¢.ds (Boundary field sources)
Then, equation (1.30) can be rewritten as the system in the form {20]
K+M+Q)U=F+G), (1.44)

where K, M, and @ are N,-by-N, matrices, and F and G are N,-vectors. For the case of
Maxwell' equations (self-adjoint and elliptic PDE problem), the matrix (K+M+Q) becomes
symmetric and positive definite, and equation (1.41) is also formulated as a minimization

problem. Appendix B describes on how to assembling Maxwell’s equations to FEM.

The approximate solution to the elliptic PDE is found in four steps:

1. Describe the geometry of theé domain € and the boundary conditions.

2. Build triangular (for 2-D problems) or tetrahedral (for 3-D problems) meshes on the

spatial domain £2. A mesh is described by three matrices of fixed format that contains
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information about the mesh points, the boundary segments, and the
triangles/tetrahedrons.

. Transform the PDE and the boundary conditions into discrete mesh segments to obtain a
linear system (K + M + Q) U = (F + G). The unknown vector  contains the values of
the approximate solution at the mesh points, the matrix (K + M + Q) is assembled from
the coefficients ¢, a, A, and g and the right-hand side (F + G) contains, essentially,
averages of f around each mesh point and contributions from g.

Once the matrices (K + M + Q) and (F + G) are assembled, the solver is prepared for

solving the linear or nonlinear (even, hysteresis) system and post-processing the solution.
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CHAPTER 2.

SENSITIVITY ANALYSIS IN SIMPLE GEOMETRICAL SITUATIONS

2.1. Axisymmetric FEM and its Verification

2.1.1. Verification with a Solenoid Model

There is no general analytic formula for the magnetic field of a cylindrical solenoid at
a general point in space. Equation (2.1) gives the strength of the magnetic field on the long,
central axis of a solenoid, oriented as shown in Figure 4 [26].

N . (L +2a) (L —2a)
H=|— 2.1
[L l][z{pz +(L+2a)*}" . 2{D? +(L—2a)2}”2} D

When considering the center point (a = 0), the field is

H:(gi)[ﬁ] 02

Figure 4. A solenoid with length L, diameter D, number of turns &, and current {

For a long solenoid, where I>>D and (D2 +I? )”2 ~L, then
H="li=ui, (2.3)

where # is the number of turns per unit length (turns/m).



22

We designed two shapes of solenoids for the verification of the solenoid model with

the same current field conditions: i=1.00 A and N=1000 turns. We have
(a) a solenoid with D=2.54 cm, L=12.7 ¢m (L >> D), and
(b) a solenoid with D=12.0 cm, L=1.0 cm (L << D).

For the case (a), the magnetic field intensity H at the center of the solenoid is 7,721 A/m
from above equation. For the case (b), the magnetic field intensity H at the center 1s 8,305
A/m. Our simulation package created the contour lines of magnetic flux as shown in Figure 5.
Figure 5(a) showed the magnetic field is almost parallel inside of this solenoid coil when L. is
much larger than D, but Figure 5(b) with (D >> L) did not show this. Figure 6 also shows the
magnetic fields along the axial direction for both solenoid models. The average errors for
both models between our simulation results and the results from the above analytical form
are 21.0 A/m and 28.5 A/m, respectively. Especially, the average relative errors around the

solenoid coils are both less than 1.3 %.

s |
[/ =
[

oz e —

iy

Figure 5. Contour lines of magnetic flux for two solenoid models with current { =1A, N=1000 turns: (a)
D=2.54cm and 1.=12.7cm, (b) D=12cm and L=Icm
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Figure 6. Comparison between simulation and analytical results: (a) the dimension of background space is 10cm
% 20cm, (b) the dimension of background space is 45¢m x 30cm
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2.1.2. Verification of a Nonlinear Permeability Test

An axisymmetric problem was tested for the verification of a nonlinear permeability
material with the geometric layout of both a steel object and a solenoid coil as shown in
Figure 7(a). The permeability of this steel was experimentally measured as shown in Figure
7(b). The spatial size of the FEM background space was chosen as 15cm (r-axis: 0 em to 15

cm) by 20cm (z-axis: -10 cm to 10 cm).

25
D5cm
2 &
25em 1
Som |5 15}
S 35cm [ ‘. é
._" | /@ 1
' 05 |,
fcm
0
0 2000 4000 6000 8000 1000C 12000
H (A/m)
(a) (b)

Figure 7. Simulation test settings for a steel sample: (a) the geometries of both a test material and a solenoid
source coil (the size of background space was chosen as 10 cm width by 20 cm length), and (b) the permeability
of this material

This problem was tested with both our MPI simulation package (named ‘MPLSIM’ in
Figure 9) and the ANSOFT commercial package [27]. Figure 8 shows the resulting contour
plots of equivalent magnetic flux density fields from both programs; they are almost
identical: our simulation package gives more detailed magnetic flux contour lines. Figure 9
shows the results of magnetic flux density fields (B-fields) from both packages. Three
positions at the r-axis (radial) along the axial direction (z-axis} were chosen for reading B-
fields: (1) the center line of the z-axis (r = 0 cm), (2) the inner position at r = 2 cim, and (3)
the outer position at r = 4 cm. The results from both packages are almost identical around the

defect hole of the test material. However, the difference in calculated B-fields at r = 4cm and
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z = 0 cm between both packages may be beyond the acceptable tolerance limit. This was
caused by both poor quality of an FEM approximation and the errors from cubic-spline

interpolation of the graph.

Figure 8. Contour lines of equivalent magnetic flux: (a} ANSOFT and (b} Our MPI Simulation

B (x10° tesla)

¢ MPISIMatr=0cm 0 MPLSIMatr=2cm O  MPISIMatr=4cm
———ANSOFFatr=0cm =-=----- ANSOFTatr=2cm ——— ANSOFT atr=4cm

Figure 9. The results of magnetic flux density fields from both our MPI Simulation package and ANSOFT
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As shown in Figure 9, there are some irregular curvatures of B-fields at z-axis (r=0
cm) from the ASNOFT results. This also resulted from poor quality of mesh generation
results in the ANSOFT. If more refinement processes of mesh generation provided by

ANSOFT were applied, these unexpected curvatures could be easily removed.

2.2. Model Design for MPI-Simulation Environment

We simulated a test sample in the shape of a cylindrical tube by solving Maxwell’s
equations in a cylindrical coordinate system (r, 6, z). Figure 11 shows the geometry of the
solenoid MPI simulation used in the FEM calculations. For axisymmetric geometry, the

equation for Ampére’s law under DC conditions [28] is

1 (0°A 10A ’°A A -
— —e e | =T 2.4
ﬂ(arz ror o7 rz} 5 (2.4)
where J, and A are the source current density and the vector potential respectively.

Asymptotic boundary conditions were applied on the outer surface of the spatial domain.
Using the Ritz method [28] one can show that the solution of Equation (2.4) is equivalent to

minimizing the energy function W described as:

st

) |LE

— 2 2 ]
o4 J— 7, -Z{}rdrdz . (2.5)
J

0z

A A

+_
ar r

From the vector potential;f obtained by equation (2.5), the magnetic flux density [28] is

computed as follows

B= 0,

A oA AY
[_T‘:)? 5 ?J. (2.6)

Since we are using an FEM computation (i.e., each finite element has unique values of B, H,

and £, it is assumed that the value of 4 is constant for each finite element. Therefore, the
magnetic field intensity A and the magnetic field gradient components (both oH /3r and

9H /9z ) for each finite element can be easily computed.
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For the simulation of a sample using the finite element method (FEM), we modeled a
test for investigating the behavior of magnetic particles when a magnetic field was applied
using a solenoid. The test sample was assumed to be cylindrical in shape and the shape of
the defect on the surface was in the form of a groove. The cross section of the cylindrical
sample and the defect is shown in Figure 10. The length and wall thickness of the sample
were chosen to be 16 cm and 1 cm, respectively. The defect is located at the center of the
sample. The defect size was varied during simulation tests. The distance between the outer
boundary and the test sample was set to be sufficiently large to satisfy boundary conditions.

Asymptotic boundary conditions were applied to the outer surface.
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Figure 10. The geometry of simulated test sample with axial symmetry: The defect sizes used in the calculation
were depth, d =3, 5,7, or 9 mm and width, w=1, 2, 3, or 5 mm

2.2.1. Simulation of Magnetic Flux Leakage Field

The permeability of the test sample has a nonlinear behavior as shown in Figure 8(b).
The magnetic force per unit volume of magnetic particles to retain them is proportional to the
product of, the susceptibility of magnetic particles, external magnetic field and the field
gradient [21,22]. Therefore, the distribution of the magnetic field gradient around a defect is
an important factor in magnetic particle inspection. The gradient of magnetic flux density
along the radial direction versus depth (d in Figure 10) and width (w in Figure 10) are shown

in Figure 11.
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Figure 11. The gradients of magnetic flux density along the radial direction (dB/dr) from 2.0 MA/m? current
density: () 9B/dr vs. defect depths (defect width=1mm), and (b) 0B/ dr vs. defect widths (defect depth=>mm)
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In the absence of defects the calculations suggested that the magnetic flux density B
under a solenoid current field increases linearly from the center of the z-axis to the outside of
the cylinder. However, the change of B-field along the radial direction (dB / dr) is higher at
the center of the defect than outside of the defect. This result is crucial for the magnetic flux
leakage (MFL) test. According to our calculations, as the depth of the defect increases as
shown in Figure 11(a), the magnitude of the magnetic field gradient should increase. The
peak-to-peak value of magnetic ficld gradient decreased as the width of the defect increased
as shown in Figure 11(b). However, it is very difficult to find the relationship between the
peak-to-peak values of magnetic flux leakage and the defect widths since the peak-to-peak

values is much less sensitive to the defect width than to defect depths in general.

2.2.2. Magnetic Force on a Magnetic Particle

For magnetic particles to adhere to a defect, the magnetic force generated by an
applied current source should be large enough to attract magnetic particles to the defect.

Magnetic force on a saturated magnetic particle can be described by the equation
F, -V -M)=-kV(d &) 2.6)

where M is the magnetization vector of the magnetic particle, and X is a constant which

contains information on the magnetic property of the magnetic particle such as magnetic

susceptibility and its volume.

For the cylindrical coordinate system, the magnetic field vector H can be
decomposed into a radial component H, and an axial component H,. From equation (2.6), the

magnetic force components along the r- and z-directions can be written as:

F. =—K(H, i aHZ}

or toor

oH oH @7)
F=-K H, t+H L
¢ [ © oz T 0z )

The quantities A, = F, /K and A, = F,/ K are proportional to the magnetic force components.
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An MPI simulation test was set up as shown in Figure 10. The defect size was
assigned as 1-mm width and 5-mm depth. The applied current density was 2.0 MA/m?.
Figure 12(a) shows the nonlinear permeability of the test material obtained by experimental

test, and Figure 12(b) shows the susceptibility of the magnetic particles, calculated from the

measurement results in Figure 13(a).

{a)
o
0
©
L
m
60 80 100 120 140 160
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z
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i00 1,000 10,000 A
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Figure 12. Set up test materials: (a) permeability of the test material, and (b) the susceptibility of the magnetic

particles



31

When the length of a test material is several times larger than its diameter, a
Jongitudinal magnetic field can be relatively easily established in the material. When the
orientation of a defect is perpendicular to the direction of magnetic field, one can detect
leakage fields at the center of the flaw. The material should be placed longitudinally in the
concentrated magnetic field that fills the center of a solenoid. Liquid magnetic particle ink is
the most appropriate way for this MPI test environment. We assumed the liquid magnetic ink
was sprayed uniformly onto the surface of material while a DC current is activating as shown
in Figure 13. Also, we assumed the test material slowly rotated 360 degree while the material
was being sprayed, so that the gravitation at force on the magnetic particles can remove some
magnetic particles that have weaker magnetic force that this gravitational force in the radial
direction. It will only allow the detection of significant sizes of flaws that may have stronger

magnetic attraction force on the magnetic particles than the force of gravitation.

CURRENT
LS/

Figure 13. MPI test using a solenoid’

The values of (A, and A, are plotted in Figure 14. The applied current density is
here 2.0 MA/m®. The black dotted line shown in Figure 14(a) indicates the values of A,
without any defect in the test material. When a test material is been rotating while it is being
strayed, the axial component of magnetic force at the surface of the material is perpendicular
to the gravitational force of magnetic particles, but the radial component of it is opposite to
the gravitation. Therefore, the values of radial force A, are more important for MPI for than

the axial force pA,.

' This Figure is provided by the NDT Resource Center. For more details, see the following web page:
hitp:/www.ndt-ed.org/EducationResources/CommunityCollege/MagParticte/Physics/Magnetization.hitm.
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Figure 14, Magnetic force per unit volume on magnetic particles (without consideration of their susceptibility):
{(a) LA, along the axial direction, where the centers of a defect (with 1-mm width) and the coil rod are located at
z=0, and (b) fpA, along the radial direction, where the defect starts from r=3.5 cm and ends at r=4.0 cm

Both black solid lines and gray dotted lines shown in Figure 14(a) represent the

values of A, when the measuring points from the radial axis (r-axis) are at r = 4 cm (the
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outer surface of the test object), 4.1 cm (1-mm off the surface), and 4.2 cm (2-mm off the
surface), respectively. The force on the magnetic particles was decreased from the end of the
test object. The force almost disappeared around 0.3 cm of r-axis. Then, force extremely
increased up to the boundary of defect hole around the center axis (i.e., z-axis) and suddenly
decreased to the center of z-axis. As shown in Figure 14(a), the strength of force depends on
the offset distance from the surface of the test material, the depth of defect, and the magnetic
field strength. Therefore, this axial component of magnetic force tpA, explains how magnetic
particles will be moved on the surface of the test material and a defect site. However, this

axial component of magnetic force cannot keep magnetic particles from gravitational force.

Figure 14(b) shows the values of i%A,, the radial component of relevant magnetic
force, by which the particles are attracted along the radial direction. There are two positions
of magnetic particle stacks: at the bottom of the defect and at the top of it. The black solid
line in Figure 14(b) represents the values of A, at the center line of defect hole (z=Ocm).
The force at the surface of the defect hole (the black dotted line) shows stronger than that at
the center line (the gray solid line). This results in the effect of extremely strong magnetic
ficlds inside of the test material. Figure 15 shows the contour lines of magnetic flux around a
defect site. As shown in Figure 15, the magnetic potential energy is a maximum at the bottom
of the defect, and there are some leakage fields at the top of i, so that the particles may be
retained there. The values of A, are more important than f4A,, because this component
opposes the gravitational force. Figure 16 shows a three-dimensional plot of the values of
HoA,. Because of the average computation for each finite element in Figure 16, the values of
HoA- at the center line are the same with those at the surface, to the contrary of Figure 14(b).
The reason why the relative forces at the surface of defect hole is less than those at the center

line is the susceptibility of magnetic particles.
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2.3. MPI-FEM Algorithm

Schwartzender has pointed out that the modeling of MPI is complex problem
involving magnetic force, gravitational force, viscous force, and interactive force between
magnetic particles [9,29]. In this thesis, for a simple MPI simulation, the gravitational force
was considered as the resistance against the magnetic force that makes magnetic particles
retained in the defect site. The mass density o of liquid magnetic particles (iron oxides) is
about 5000 kg/m’. Let g be the gravitational constant (9.80 m/sec?), and p,, be the water
density (=1000 kg/m®). Suppose the volume Vjp of magnetic particles is retained inside of

the defect. Then gravitational force F, of these particles is computed as
Fo=(0—p) g Ve 2.8)

Suppose the magnetic field is measured as H at the center of the magnetic particle cluster.

Let the susceptibility of these particles be known as y(H) . Then, the magnetostatic energy

is given by

Wy = toV,gp | M(H)-dH

o (2.9)
= UoVip fZ(H)HdH
The magnetic forces on the magnetic particles are given by [12]
i OH 9 @ 4o = o
Fo=—SM e v, 5= [ i) -aif
ar dor oH (2.10)
=—tto |V, -0H 13 7= o 1 (HV, A,
and similarly
F, = o (AP V,p A, 2.11)

From our axisymmetric modeling, since F; is perpendicular to the gravitational force, F, is
the only signifiant force against F. If F, is greater than F, the magnetic volume Vjp will be
retained in the defect site. From the equations (2.8) and (2.10), a new MPI-test function is

defined as
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_ 1, R(H,4)=1
T\ (H,4,) = i 2.12
s ) {0’ R(H,4)<] (2.12)
where
) Hox (A4,
R(H,A4)= £ =¢. (2.13)
F,l (p—p.)g

This MPI-test function 7}, (H, 4,) represents the possibility that a single magnetic particle
is retained around a defect site or a particular position with the condition of a2 magnetic field

H and its gradient (8H, /8r ,8H _/r ) along the radial direction in the real situation.

For the purpose of FEM numerical calculations it was assumed that the magnetic field
intensity A and the susceptibility y(H) of magnetic particles are constant in the area of each

finite element. This means that all values of magnetic properties for each finite element are
averaged. The value of R(H ,A4,) for each finite element represents the average value of
force ratio in this element. Therefore, if it is very close to unity, but less than one, the real
value of R(H,A4,) at some points in this finite element may be greater than one because
magnetic fields strengths are different at any point in a real environment. For example,

suppose the value of R(H, 4,) 1s 0.5 for an arbitrary finite element. If this finite element can
be split as two elements so that the value of R(H, A} at the one element is more than 1, and

the value at the other element is less than 1. Because of the unknown function of R(H,4,),

it is impossible to estimate the volume ratio between two finite elements. However, by

assuming the uniform distribution of magnetic particles in these finite elements, it is more

reasonable to say that the element, at which the value of R(};‘r ,A,) is more than 1, has the

half volume of the original finite element. Similarly suppose the value of R(H,4,) is 0.8 for
an arbitrary finite element. Then this element can be evenly split to ten small finite elements.
The probability that eight small elements among ten elements have the value of R(H,4,)
more than 1 is more possible than any other cases (i.e., the probability that any number of

less than or more than eight elements among them have the value of R(H, A.) more than 1)
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according to the assumption of uniform distribution (this is the same concept of maximum
likelihood of an unknown probability function in statistics [29]). For better approximate of
the estimate volume of magnetic particles, the probability function of detecting magnetic

particles around a defect site at the steady state is defined as

]- R(H>Ar)219
Py (H,A)=1R(H,4,) 05<R(H, 4,)<], 2.14)
0 R(H,A)<0.5.

Equation (2.14) is employed in our MPI simulation tool only for a heuristic approximation of
estimate volume of magnetic particles. It is obvious that the estimate magnetic particles Vs
is located in the range of
V, I(R(H,A)2 1)<V < DV, - I(R(H,4,)>0). (2.15)
I elair}
where I(x) is the unity function that it has unity only when x is true; otherwise zero. In this
thesis it is assumed that the approximate volume of magnetic particles at the steady state is

Vier = ZVr “ Pygpy () (2.16)

FEye{air)

The following algorithm for this thesis, denoted the MPI-FEM algorithm, has been
developed. It can be extended to any three dimensional problems in general. However, it is
more suitable for applying to a DC mode than to an AC mode to simulate an MPI test. In this
thesis any AC-mode problem has not been tested and evaluated. The relationship between

eddy currents on the behaviors of magnetic particles is beyond scope of the present research.

2.3.1. MPI-FEM Algorithm

(STEP 0) Preparing for an MPI simulation: There are three initial steps for starting an MPI

simulation:

¢ Preparing for PDE input parameters: One must prepare for either user-defined
B-H curves (for permeability) for all test materials (in the case of nonlinear

PDE problems) or user-defined Jiles-Atherton hysteresis parameters for



(STEP 1)

(STEP 2)

(STEP 3)

(STEP 4)

(STEP 5)
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hysteretic magnetic materials), a user-defined susceptibility table for magnetic

particles with respect to magnetic fields, and a source current density.

e Preparing for FEM information: One must prepare for all geometries of test
materials, a source coil, a background space, and the boundary conditions of
the background. Also, one must prepare for mesh information including
meshed finite elements, vertex information of the elements, and neighborhood

for each element.

e Preparing for MPI information: One must prepare for the gravitational
information of magnetic particles such as the mass density of a magnetic
particle liquid (the default is 5,000 kg/m®), and a scale parameter ¥(the default
is zero) in (2.10).

Solve the current Maxwell problem constructed as the form of equation (1.44).

For each finite element in the air (the material properties of each finite element
consist of user-defined material, magnetic particles, source coil, and air), compute
Trr (H ,A,). Note that the material properties in a defect are treated as the same

as the air.

If the values of T, (H,A ) for all finite elements in the air are zero, go to (STEP

5) for exiting the loop.

If T, (H,A)=1 at any finite element in the air, replace the material property of

this element with magnetic particles from the air. Reconstruct a new FEM
problem as shown in (1.44). Then, go to (STEP 1).

(Termination) Let E; be the i™ finite element, which is located in the air, and
P, (i) be the probability of magnetic particles to be retained in E; computed

from (STEP 2). For the estimation of the magnetic particle volume in a defect site,

process the appropriate step among the following cases.
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For an axisymmetric case: Let (x; y;) be the center position of E;, and 4; be the
size of its area. Then, the volume (Vyp;) of retained magnetic particles around
the defect site is computed as

Vipr =278 D %A, - Py (D). (2.17)

Eclair}

For a 2-D planar case: Let 4; be the area of E;. Then, the volume per a unit
thickness of the test material (Ayp;; i.€., the cross-sectional area) of retained
magnetic particles around the defect site is computed as

Ay = ZA;' * Pogpr (). (2.18)

Eelair]

For a 3-D case: Let V; be the volume of E;. Then, the volume of retained

magnetic particles around the defect site is computed as

Vier = 2 Vi Pypy (). (2.19)

Eieluir)

For computing A, in Py, (H,4,) in (STEP 2), the FEM computation of magnetic

field gradients is essential. Suppose that there are three finite elements (a, b, and c¢) in the air

as shown in Figure 17(a). Let A(#y, z;), B(rz, z2), and C(ry, z;) be the center of these elements

(b) (c)
Clry, z,) Ar C(H)
AH i
A,z :
(7)) DG, 2) AH) 4 F‘E

z z

AH~ S o -,
B(r, z,) . B(H,)
;

Figure 17. Computing the magnetic field gradient along the radial direction at the center A of the element a: ()
three finite elements, «, b, and ¢, (b) the center points of them, A, B, and C, and (c) the differences of magnetic
fields (4H,) and distance (4r) of two points A and D
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Let D(r, z) be the point on the line BC such that the vector AD should be parallel to the r-axis

as shown in Figure 17(b). Then, the position of D(r, z) is computed as

D(r,z) :D(r_a, —-(n —rz)[ 474 } Z J (2.20)

2374,

Let E and F be the cross-sections of the two parallel lines to the r-axis passing through either
point D or B and the perpendicular line to the r-axis passing through the point C, respectively.
Let H;, H; H;, and H be any arbitrary physical values at A, B, C, and D, respectively. As
shown in Figure 17(c), it is obvious that the distances of the line CE and CF are respectively
(z;-z;) and (z3-z2), and the differences in physical values of vectors DC and EC are

respectively (H;-H) and (H;-H>). From two triangles CDE and CBF, H is easily computed as

H,-H=(H, —Hz)[ﬂJ 2.21)
374

Let Hy (H,,, H,,), Hg (Hpr, Hy,), He (H,r, H.;), and Hp (Hyy, Hy,) be the magnetic fields at the
points A, B, C, and D, respectively. Then, the difference AHsp of magnetic fields of the
vectors AD is (Hy-H,,, Hy-H,;). Also, the differences AHpe and AHpce of magnetic fields of
the vectors BC and DC are respectively (H.-Hp,, H.;-H};) and (H.~-Hgr, H.;-Hy;). Since these
are the values of (H3-H;) and (H;-H) in Equation (2.21), the components of AH ,,= (Ha-Hor,

H,-H,,) are computed as

(Hdr _H“r) =(HCF _Hur)_(Hcr _ler)[ s }
s (2.22)
(Hdz B H“Z) = (HCZ - Huz ) - (Hr:z - H.’:z ){ﬂj

2372

Therefore, since AH, =AH ,, and Aris the distance of the line segment AD, the magnetic

field gradient at the point A can be approximately computed as AH /Ar, where

23— 2,

Ar=(r3—r1)—(a~rz)[z3“z‘ J (2.23)
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2.3.2. Example: MPI test for a defect with 2-mm width and 5-mm depth

To demonstrate this MPI-FEM algorithm, an example is provided in this thesis.
Suppose that the geometric conditions for an MPI problem were the same as shown in Figure
11. As boundary conditions, the Dirichlet condition (any vector potential A = 0 at the
boundary) was also chosen. The applied current density (as a DC mode) was set up as 100
kA/m? (2 MA/ m?® is too large for simulating an MPI test). The permeability of the test
materials and the susceptibility of the magnetic particles are assumed to be the same as

shown in Figure 12.

Figure 18 shows the results of R(IEI ,A,) of each finite element in the air for each loop
of the MPI-FEM algorithm. For this problem, total three iterations were consumed. Black
dots in Figure 18 represent finite element mesh areas of which values of R(H ,A ) are greater

than two, dark gray dots for the values of greater than 1.0 but less than 2.0, and light gray
dots for the values of less than 1.0, but greater than 0.5, respectively. Therefore, the black
and dark gray dots represent the mesh areas that are 100 % filled by magnetic particles, and

light gray dots represent those that are partially filled.

R

Figure 18. Three iterations of MPI-FEM algorithm for the simulation of an MPI test: (a) to {c) represent the
iteration number of the MPI-FEM algorithm. Block dots have the values of R(H, A, ) greater than or equal to

2,0, dark gray dots have the values greater than or equal to 1.0 but less than 2.0, and light gray dots have the
values less than 1.0, but greater than or equal to 0.5. The size of this defect was 5-mm depth and 2-mm width,
and the applied current density was 100 kA/m>
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Figure 19. Magnetic flux lines from example: (a) before magnetic particles are retained, and (b) after they are
finally retained

After some magnetic particles were retained in position for each loop step shown in
Figure 18, a new calculation was made. This MPI-FEM procedure is a generic algorithm for
the consideration of an effect of the existence of magnetic particles from the previous history.

The total volume of magnetic particles was 2,662 mm® at the final step for this problem.

Figure 19(a) shows the magnetic flux contour lines without the effect of magnetic
particles, and Figure 19(b) shows the flux lines after magnetic particles are retained. In the
absence of magnetic particles there were some magnetic flux leakage fields around the defect
as shown in Figure 19(a). However, the magnetic particles absorbed all magnetic flux

leakage fields as shown in Figure 19(b).

2.4. Sensitivity Analysis of Simulations for MPI using FEM

Several sizes of defect geometry were simulated using a solenoid as a magnetic field
source as shown in Figure 11. Table 3 shows the estimated volume of retained magnetic
particles around a defect with respect to its various sizes from our MPI simulation package.
The distributions of retained magnetic particles for different size of defects are also shown in
Figure 20. The volume (V.p..) of defect size with the depth d and width w can be computed

for this axisymmetric case shown in Figure 11 as following:

0
Vgea =200 || rdr = mwd 80+ d) (mm?’). 2.24)

L3
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Figure 20. The results of calculations for 16 different defect sizes from our MPI Simulation package: For each
result, d means the depth of a defect, and w means its width. Black and gray colors represent the density of
magnetic particles. Black dots indicate that magnetic particles are 100 % filled in those positions. Gray dots
indicate the particles are partially filled in those areas.

Table 4 shows the defect volume (Vi) with different sizes according to Equation
(2.24). For finding the relationship between a simulated MPI result and the shape of a defect,
we introduce an MPI volume ratio ( @, ), such that

_ Vun
Pupr = .

Vi (2.25)
Figure 21 shows the above volume ratios. For a fixed size of a defect width, the MPI volume
ratio increased as the size of a defect depth increased as shown in Figure 21(a). On the other
hand, the volume ratio decreased as the size of defect width increased with a fixed size of
defect depth as shown in Figure 21(b). When the size of a defect width is extremely large
compared with defect depth (namely, if the thickness of a pipeline is changed), retained
magnetic particles will be found at the border of the thickness change. This is very similar to

the result of the defect of 3-mm depth and 5-mm width as shown in Figure 20.



Table 3. Simulation results for different size of defects with the current density 100 kA/m® (unit: mm®)

Retained volumes of magnetic Defect width
particles around a defect site 1 mm 2 mm 3 mm 5 mm
3 mm 730 1,220 1,212 1,320
Defect 5 mm 1,534 2,738 3,217 4552
depth 7 mm 2,548 4,582 5,886 9023
9 mm 3,606 6,807 8,807 13,672
Table 4. The defect volume (V) with different sizes
Defect width
Defect volume (mm?)
1 mm 2 mm 3 mm 5 mm
3 mm 782 1,565 2,347 3,911
Defect 5 mm 1,335 2,738 4,006 6,676
depth 7 mm 1,913 3,827 5,740 9,566
9 mm 2,516 5,033 7.549 12,582
(b)
1.5

YMPI

0.5

3mm 5mm

7 mm

9mm

1.5

VMPi

0.5

™ T T

1 mm 2 mm

5mm

Defect Depth Defect Width

vty -mim width —E— 2-mm width
—&— 3-mm width —&— 5-mm width

—&—3-mm depth -~ 5-mm depth
—a—7-mm depth --&--- 9-mm depth

Figure 21. Sensitivity analysis showing accumulation of magnetic particles with {a) varying defect depths and
(b) varying defect widths



45

An important result is that MPI is more sensitive to the narrower and deeper defects
than to wider and shallower ones, and is not simply sensitive to the “size” of flaw. For
example, the defect with 9 mm depth and 1 mm width has much larger amount (3,606 mm”)
of retained magnetic particles than the defect with 3 mm depth and 5 mm width (1,320 mm’),
even though the defect volume (V) of the narrower one is less than the wider one. Figure
21 explains that the estimated volume of retained magnetic particles is more sensitive to the
defect depth than the defect width. If the defect becomes wider, the distribution of retained
magnetic particles will be found on the surface of the defect as shown in Figure 20. On the
other hand, if the defect depth is deeper, retained magnetic particles are found at not only the
bottom of defect but also the top of it. The bridges of retained magnetic particles as shown in
Figure 20 are weakened as the defect width is increased. However, defect depth makes them

stronger and thicker.

When one processes a numerical simulation for an MPI test, there is very important
design for appropriate simulation: any test material must be located far from a source
solenoid; otherwise, a simulation result may show some magnetic particles makes some
bridge between a defect site and the solenoid, because of very strong magnetic field gradient

between the test material and the solenoid.

2.5. Summary

Using the finite element method, the magnetic flux density, the magnetic field
gradient, and the magnetic force on magnetic particles at the site of a defect were calculated.
The calculation showed that the magnetic flux leakage field at the defect created a magnetic
force, which attracted and retained the magnetic particles at the defect location. The magnetic
particle inspection technique is more sensitive to the defect geometry than the magnetic flux
leakage measurement technique, from which method it is difficult to predict the geometry of
a defect. Reduction of the inspection design cost, time, and improvement of analysis of
experimental data can be achieved by the use of FEM simulations combined with careful
incorporation of MPI parameters such as magnetic field source, magnitude of the applied
current, defect size, position of defect, and magnetic properties of both test sample and

magnetic particles.
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In situations of general axisymmetric problems, since the geometry of a solenoid
system and the positioning of a (given) test material are fixed at the beginning of an MPI test,
the only control parameter for the MPI test is the current density of DC mode. Because of the
assumption that there is no hysteresis in the ferromagnetic materials, an MPI simulation must
be processed while a current density still exists. In the situation after the power is turned off,
the magnetic field and magnetization in the test material is antomatically reduced to zero
according to the assumption. However, in real situations of ferromagnetic materials, there
exists hysteresis of the materials, which results in a finite remanent magnetization even in the
absence of an applied field [21,22]. Then, there exists some relationship between defect
geometry and the properties of hysteresis in the field of MPI applications. The next chapter

will discuss the effect of hysteresis on an MPI test.
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CHAPTER 3.

HYSTERESIS ANALYSIS ON SIMPLE GEOMETRY PROBLEMS

When a ferromagnetic material is magnetized in one direction, its magnetization will
not relax back to zero when the imposed magnetic field is removed. It must be driven back to
zero by a coercive field in the opposite direction. If an alternating magnetic field is applied to
the material, its magnetization will trace out a loop called a hysteresis loop as shown in
Figure 22(a). The lack of reversibility of the magnetization curve is called hysteresis and it is
related to the existence of magnetic domains in the material. Once the magnetic domains are
reoriented, it takes some dissipation of energy to turn them back again to the original
direction. This property of ferromagnetic materials is useful as a magnetic “memory”. Some
compositions of ferromagnetic materials will retain high levels of an imposed magnetization
even in the presence of large opposite fields and are useful as “permanent magnets”. A good
permanent magnet should produce a high magnetic field with a low mass, and should be
stable against the influences, which would demagnetize it. The desirable properties of such
magnets are typically stated in terms of the remanence and coercivity of the magnet materials

as shown in Figure 22(b).

Ferromagnetic materials in which the magnetization can be reversed by a small
opposing field are said to be magnetically soft. Magnetically soft materials are used for the
cores of transformers to reduce the energy losses associated with the reversing fields of the
AC currents. The magnetically soft materials may have high permeability but small
coercivity, and therefore have very narrow hysteresis loops as shown in Figure 23. On the
contrary, the materials with low permeability and high coercivity from which permanent
magnets are made are sometimes said to be magnetically hard. A magnetically hard material

can generate a useful flux in the air gap of a device without external sources.
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Figure 22. Hysteresis loop”: (a) the characteristics of a hysteresis loop, (b) coercivity and remanence in a
hysteresis loop [31]

% These figures are provided by the web site at http:/hyperphysics.phy-astr.gsu.edwhbase/solids/hyst.himl.
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Figure 23, Magnetically soft materials and magnetically hard materials

3.1 Introduction to Hysteresis Modeling

Hysteresis occurs often in nature, arising usually as a result of cooperative behavior
of a large number of identical interactive elements [21,22]. The most familiar examples occur
in ferromagnetic materials. In recent years the widespread and increasing capability of
computers has made the modeling of hysteresis available to a much wider range of
investigators and researchers. There are several studies for numerical analysis of hysteresis
effects. The most popular models for hysteresis are Jiles-Atherton model [21,22] and
Preisach model [32,33]. The Jiles-Atherton model is a statistical and mechanical model [21],
which it is more suitable for the ferromagnetism in soft magnetic materials, such as electrical

steel.

The liles-Atherton model for ferromagnetism is based on domain wall motion,
including both bending and translation. The hysteresis-free (anhysteretic) magnetization

curve [21] is described by

M“,;=M{c0th if —-‘LJ (3.1)
‘ a H

¢
where M, is anhysteretic magnetization (occurring when domain walls can move completely

freely), M, the fully saturated magnetization (one of parameters in Jiles-Atherton model)
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shown in Figure 23, a is the domain density as a parameter of Jiles-Atherton model, and H, is

the effective magnetic field [21] defined as
H,=H+aM,,. (3.2)

H is an external magnetic field, M, is the irreversible component of a bulk magnetization of
a material, and « is the coupling between domains (another parameter of Jiles-Atherton
model). The anhysteretic magnetization represents the global energy state of the material if
the domain walls move completely freely, but domain walls in general are pinned and bent in
materials. If the bulk magnetization M is expressed as the sum of an irreversible component
M, (due to domain-wall displacement) and a reversible component M., (due to domain-wall

bending), then

M=M,+M,,, (3.3)
another parameter for the Jiles-Atherton model can be introduced by defining
Mrev = C(Mrm - Mirr) (34)

where ¢ represents the reversibility of magnetization valued within the range of [0,1]. If ¢ =0,
then the magnetization process in this material is completely irreversible [22]. On the other
hand, the magnetization of a material can be completely reversible if ¢ = 1. The irreversible
magnetization changes can be obtained from an energy equation, in which the supplied

energy is equal to magnetostatic energy changes and the hysteresis loss [22]

to [M,-dH, =y [M,, -dH, + 1y J.k% dH, . (3.5)

[

Consequently

M, =M, +kb M,
dH

an

(3.6)

[

where k the final parameter of the Jiles-Atherton model, which represents the pinning

coefficient related to hysteresis loss, and Jis the switching parameter defined as
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[+1 if dH[/dt>0

:1 : 3.7)
~1 ifdH/dt<0

From Equation (3.6), the following the irreversible component of susceptibility with respect

to an effective magnetic field was adapted for our MPI simulation on hysteresis:

dMirr — (th _Mr'r'r‘)

dH, kS

(3.8)

Preisach introduced a model for description of hysteresis [32,33]. This model was
built up on some hypotheses concerning the mechanism of magnetization and the model used
to describe behavior of magnetic hysteresis loops in ferromagnetic materials. The Preisach
model is based on the assumption that a ferromagnetic material may be described by a
system, which consists of very large number of elementary interacting fragments (volumes).
Each fragment has an elementary rectangular hysteresis loop, which has two parameters: the
coercive field of the free fragment A, and the interaction field between fragments A, It is

convenient to introduce the switching field parameters A, and hp as
hA = hM + hc, and hB = hM - hc, (39)
where A i8 non-negative, so that i4 is always greater than or equal to #g. The meaning of the

switching fields is as follows:

(1) if the external magnetic field is increased to Hj, all fragments whose switching field h4

was lower or equal to the external field (£, < H,) would switch their magnetization "up”,

(2) if the external magnetic field is decreased to H, all fragments whose switching field %z

was higher or equal to the external field (2, = H,) would be switched "down", and
(3) all other fragments remain in their same state.

Let y(h,,hs)H(t) define the hysteresis operator which has the value of (+1) when

(ha, hg) with an external magnetic field H(¢) at time ¢ belongs to the case of (1) from the
above descriptions, and which has the value of (—1) when (&, 2p) with H(¢) is in the case of
(2). The Preisach function P(h,, hp) is defined as a probability distribution function of the

elementary fragments (volumes) with the switching fields A4 and s in the plane of the
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Preisach variables k4 and kg, According to the classical Preisach model [32,33] the total

magnetization of the system with hysteresis is written as

M©) =M, [[PlUy,hy)y(hy,hy)H (D)dhydhy (3.10)

hyzhy
where M, represents the saturated magnetization of specimen.

The Preisach model is more difficult than Jiles-Atherton model to implement a
numerical simulation because for every time segment the double integration in Equation
{3.10) must be computed for calculating magnetization for each element. Therefore, in this

thesis, Jiles-Atherton model was adopted for the FEM implementation on hysteresis effects.

3.2. Application of FEM with Hysteresis

From equation (3.1), it is easily derived that

2
thm =£ l—CO[hZ&'i‘ i (311)
dH a a H

4

Denoting B and B, as magnetic flux density from the external magnetic filed and the bulk
magnetization and effective magnetic flux from the effective magnetic field H,, respectively,

has the relationship as follows:
B=u, (H+M)and B, = u,H,. (3.12)

From equations (3.2) and (3.12),

B=B, +uM —au,M, ,sothat
dB 14 dM—a dM ., (3.13)
aB,  ogp MTup
Form equations (3.3) and (3.4),
aM aM . aM
il (1 _ C) o4 e an_ (314)
dB, dB, dB,

Therefore, from (3.14), the equation (3.13) can be rewritten as
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dB aM aM

=1+ gy (1~ c— @) —= + o 3.15
4B, ty(l-c—-a) dB, Hot 4B, (3.15)
From (3.15) one can compute
dM dM dB dM dM, dM
- = 1+ g (l—c— i 4 a 3.16
dB,  dB dB, dB{ I ) } (3.16)

For the calculation of the change of bulk magnetization with respect to the change of flux

density can be easily derived from equations (3.14) and (3.16) as following

M, dM,
(1 - c) e + c (21}
M 4B, 4B, 617
By -y, My oy WMo |
Hq 4B o 4B

e &

Since dB,/dH, = u,, the equation (3.17) can be rewritten as

(1 _C) dMirr + i dMan

dM Lo dH,  p, dH,
= ¢ A (3.18)
dB l+(l"““C"“"a)dMI” +Cthlﬂ
dH, = dH.

The above equation represents the change of bulk magnetization with respect to the change
of magnetic flux density. Since the magnetic flux density can be directly computed from the
vector potential, the equation (3.18) is very essential for our MPI simulation algorithm on

hysteresis effects.

Now, consider 2-D planar objects for an MPI simulation. Suppose there is a single
electric current source, and the direction of current flow is perpendicular to the plane space.
A current density is assumed as a function of time. With a small time elapse, the change of
current flow only affects the strength of magnetic field, not the direction. When the applied
external field is in the opposite direction of the current magnetization, the magnetization
direction of a ferromagnetic material will be gradually changed to the opposite direction, so
that the directional change of magnetization at each position always lies on individual one-

dimensional axis. Therefore, one-dimensional Jiles-Atherton model can be extended to this
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simple 2-D case. Once a unit vector of magnetization at each position is found, the strength
of magnetization at the position is only updated by the equation (3.18), but the direction does
not change at all as shown in Figure 24(a). The present MPI simulation package has been
implemented to this situation only. Suppose there are two or more different current sources
with individual time functions for the current flow. At any location in space of a problem, the
external magnetic field can be changed not only in terms of its strength but also n its
direction. In this case it is incorrect to apply the above equations to this situation. Figure

24(b) shows this case.

@) H(t+dt) ®)
/,H(t) dH(P)%B .
ay B(t+df) H(tHdt) .. & dB(t) It ©

AN

B(t+dt). Cy

current

flow, I(t) dEi(tyde

dH(t) // dM(D) // dB(t) for any time t.
dB()dt

Two different
current flow, T (1), 1,(t)

dH(t), dM(t), and dB(t) may be not parallel for some time t.

Figure 24, 2-D Maxwell problems with hysteresis effects: (a) a single current source, and (b) two different
current sources with time varying

3.2.1. Algorithm for an Isotropic Model with Hysteresis Effects

For the development of an FEM algorithm with hysteresis effects, there are some
restrictions to apply such that a test material must be isotropic, there is only a single source
current field, and the current field must be either magnetostatic or quasi-magnetostatic.
Consider a 2-D planar magnetic problem. Suppose the center of a planar test material is
located at the origin of this 2-D Cartesian space, and the current field flows the normal to this

plane passing through the origin. Let P(x,y) be an arbitrary position on the surface of this
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material. Since the magnetic force to retain magnetic particles is toward the origin, it is
important to compute the unit vector (r) at the position P(x,y) along the radial direction,

which is defined as follows:

T

re| X 2 (3.19)
sz +y? -\/)c2 +y°

In the hysteresis modeling, the magnetic force to attract the particles is highly related the

overall magnetic field Hgy, which is yielded by not only the external magnetic field H but

also the magnetized hysteresis materials, such that they have the following relationship

VxH,=J +VxM . (3.20)
Therefore, the relative force density to the origin described in section 2.2.2 is redefined here
as follows:
- 0H — oH , 9x 0H, dy
A=K, - all . afl 25 afl ¥
i A r ot { ox or dy or ]
- - (3.21)
= F oy oH x + oH Y
) ox sz +y? dy \/xz +y°

where r represent the redial axis starting from the origin. The effective magnetic force to the

origin is now defined as
F, = o B,V A, (3.22)

The definitions of R(H ,,A), Typ (H,»A), and P,y (H,,,A) are the same as mentioned

n section 2.2.2.

Each finite element in MPI-FEM modeling with hysteresis contains the information
of the direction and magnitude of magnetization, which is obtained by a starting external
magnetic field with the initial nonlinear B(H} curve. After obtaining the unit vector of
magnetization for each finite element, the MPI-FEM algorithm will update the magnitude of

magnetization as the external magnetic field changes.

Technically, our MPI-FEM algorithm does not restrict the type of a wave function of
a source current field over time. Figure 25 shows two examples of user-defined current

density for the analysis of hysteresis effects. From Figure 25(a), our MPI-FEM algorithm
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with hysteresis updates magnetization for each finite element by sampling N times of time
intervals [0, tp), [t,", t2), [tz, t3), [t3’, tal, and [ts, ts). At time t (i=1,2,3,4,5), our MPI
simulation package reads the solution of magnetic fields, and MPI results. From Figure 25(b),
the MPI simulation package took N time sampling for each time interval [ti., t;) (i=1,2,3,4,5)
to update magnetization for each finite element. At the beginning of time interval [to, t;] for
both cases in Figure 25, the initial hysteresis loop looks like a nonlinear permeability B(H)
curve. Therefore, in this time period, it is unnecessary to update magnetization N times, but it
is required to solve the nonlinear problem with the initial nonlinear B(H) curve generated by
the Jiles-Atherton model. The following section provides the algorithm for MPI-FEM with

hysteresis.

J@) (@)

\ t4’
t; '/tz t3 tJS/ s time —
t \

I(b) ®)

t3

1 t2 t4 iz time —

Figure 25. User-defined current density function: (a) for a magnetostatic case (b) for a quasi-magnetostatic case

3.3.2. Algorithm for MPI-FEM with Hysteresis

The following information must be prepared before applying MPI-FEM algorithm for

hysteresis:
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1. Hysteresis parameters (M _,a,k, &, ¢ ) of the Jiles-Atherton model

2. Maximum current density: Jyex

3. Sampling scheme for a user-defined current density function as shown in Figure 25.

PHASE I: NONLINEAR PERMEABILITY REGION

Step I) Build a B(H) table until it obtains fully saturated B-field for the initial hysteresis loop
from the Jiles-Atherton model. Figure 26 shows an example of the initial hysteresis loop
(However, the hysteresis shown in Figure 26 does not reached the condition of fully saturated

B-field. It requires to generate more until the magnitude of magnetization reaches Mj).

Step 2) J(-At)y=J __, —AJ . Solve A(-4¢) such thatiV XV X A(—Af) = J(—A?), then
B(—At) = VX A(—At) and M(~At) =B(-At)(1/ u, —1/ p£) for each finite element.

Step 3) J(0) = Jur. Solve A(f) such that iv *xVxA(0)=J(0), then for each finite element

B(0) =V xA(0), AB(0) =B(0) - B(-A?)
M(0) = BOXL/ t, —1/ 1), H(0) = B(0)/ 1t, —M(0),

H(-A) g
a  H,(-AY)

(—A) = MEA)—cM ,
1-c¢

M, =M, (coth J, and M,

where
H,(=At) = H(~At) + aM (=A1) .

Step 4) Compute the unit vector (n) of M for each finite element, and record it into the
database of finite element. Save (A, H, B, M) for each finite element, and set ¢ = 0. M(t)

denotes the magnitude of magnetization (i.e., scalar value) in this thesis for convenience.

Step 5) Apply MPI-FEM algorithm described in section 2.3.1. Use the effect magnetic field
in Equation (3.2) and the magnetic force in Equation (3.21).
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M (A/m)

H (A/m)

Figure 26. Phase I: the initial hysteresis loop of the Jiles-Atherton Model

PHASE II: THE FIRST ELIMINIATION OF EXTERNAL CURRENT FIELD
Step I) Set & =—1since dH (r)/dt <0.Set1=0.

Step 2) Jt+ A =J@)-AJ(t). If J(t+ At) <0, then go to (Step 4). Otherwise, update the
magnetization as follows:

M(t+Af) = M () +(dM [dB)AB(?)

where
(-0 dM,, , c dM,,
dM — #[} dHe IuO dHt
dB 1+ (1 _C_a) dMirr +e dM(ur
dH, = dH,
2
d
Mlﬂl :£ 1—COth2 He(t) + a .
dH, a a H,(t)
dMirr _ (M{m _Miﬂ' (t)) :
dH, kS ’
M, (D)= M@ -cM,, :
l-¢
Mﬂn = M\' COthM_ - ? and
’ a H . (t)

H, () =H@)+aM, (t-A1).

rr

Step 3) Compute J'(t+A8) = J (1 +A8) +[V XM(t + A1) .
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Solve A(r+ Ar) for a linear PDE problem, —I—V xVxAG+D)=J'(¢+ 1.

0

From the vector potential A(z+ Af), compute B(t+At), AB(t+Ar), and H (¢t +Ar). Save (A,
H, B, M), and let ¢ = t+4r. For the MPI test, every finite element, which has retained
magnetic particles, must be verified by the T,,,, (H,, A, ) test to keep them. Go to (Step 1).

Step 4) Exit the (Phase II) and go to the (Phase III).

M (A/m)

=

H (A/m)

Figure 27, Phase II: the first elimination of external current field

PHASE HI: DECREASE EXTERNAL CURRENT FIELD TO NEGATIVE DIRECTION

Step 1) J(t +AD) =J(@)—-AJ(t). If J(t+Ar) <0, then go to (Step 3). Otherwise, update the
magnetization as follows:
Mt +Af) =M (t) + (dM [dB)AB(2) .

Step 2) Compute J'(t +At) = J (1 + A +[VXM(z + A1) .

Solve A(r+ Ar) for a linear PDE problem, LV XVXA(+1D) =J'(t+1).

0]

From the vector potential A(f+ Af), compute B(t+At), AB(r+Atr), and H(r+ Ar). Save (A,
H, B, M), and let ¢ = 1+A4t. For MPI test, every finite element, which does not have magnetic
particles, must be verified by the T, (H,,,A,) test to retain them. Go to (Step 1).

Step 3) Exit the (Phase III) and go to the (Phase IV).
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M (A/m)
/
H (A/m}
Figure 28. Phase III: decrease external current field to negative direction
M (A/m)
i H (A/m)

Figure 29. Phase IV: the second elimination of external current field

PHASE IV: THE SECOND ELIMINIATION OF EXTERNAL CURRENT FIELD
Step 1) Set & =+1since dH (r)/dt > 0.
Step 2) J(t+ A =J()+AJ(r). If J(+Ar) >0, then go to (Step 4). Otherwise, update the
magnetization as follows:
M (z+Ar) = M (1) + (dM [dB)AB(t) .
Step 3) Compute J'(t +Ar) = J (£ +Ar) +|VxM(t + ,Azr)lz .

Solve A(t+ At) for a linear PDE problem, LV' XVXAG+D)=J'¢+1).
Ho
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From the vector potential A(z+ Ar), compute B(t+Ar), AB(t+At), and H(t+At). Save (A,
H, B, M), and let ¢ = #+4z. For the MPI test, every finite element, which has retained
magnetic particles, must be verified by the T, (H ,, A, ) test to keep them. Go to (Step 2).

Step 4) Exit the (Phase IV) and go to the (Phase V).
PHASE V: INCREASE EXTERNAL CURRENT FIELD TO POSITIVE DIRECTION

Step 1) J+ A =J@)+AJ(@). If J(t+ A1) 2] __ , then go to (Step 3). Otherwise, update the
magnetization as follows:
Mt +Af) =M @)+ (dM [dB)AB(2) .

Step 2) Compute J'(t+Af) = J (£ + Ar) +[V XM(t +At)]_.

Solve A(f+ Ar) for a linear PDE problem, LV>~<V XA+D=J'(¢+1).

0]

From the vector potential A(z+ Ar), compute B(t+At), AB(f+At), and H(r+Az) . Save (A,
H, B, M), and let ¢ = t+At. For MPI test, every finite element, which does not have magnetic
particles, must be verified by the T, (H,,,A,) test to retain them. Go to (Step 1).

Step 3) Terminate the whole procedure of MPI-FEM algorithm with hysteresis.

M (A/m)

/" H (A/m)

Figure 30. Phase V: increase external current field to positive direction
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3.3. Experimental Design for MPI Simulations with Hysteresis

A cylinderal material was used for the test of hysteresis effects as shown in Figure 31.
Figure 31 shows the cross sectional view of the cylinder shape of test material that has six
different sizes of longitude defects. Since the directions of defects are all parallel to longitude
of this test material, the 2-D planar space is adequate for this problem (any magnetic filed

generated by a solenoid system cannot detect these defects since the position of defect and

the direction of magnetic fields are parallel).

This material has hysteresis properties as shown in Figure 32. The light cross marks
in Figure 32 indicate the real experimental data, and black boxes indicate an estimated

hysteresis loop from the Jiles-Atherton model. The five parameters for the Jiles-Atherton

hysteresis model have been found by trial-and-errors as shown in Figure 32.

Artificial Defects: a ~ f

o L O O e

: 1/16” width x 1/16” depth
: 1/16” width x 2/16” depth
: 1/16” width x 3/16” depth
: 1/16” width x 4/16” depth
: 1/16” width x 5/16” depth
: 1/16” width x 6/16” depth

25F
°f b/"ﬂ—w—h""‘\\ a
N ir
15} // ~ \\
4/ \
1t / N,
4'/ \"
Y
o5l / Current flow | i
| y
o ¢ ® _; f -
05k /' J
A\ /
AN s
A5F \_\ f/‘ \g\ /./
14 ~
2} d s ———
25 2 -i5 1l -U.'5 li.l U.IS 1I 1.I5 'é

Figure 31. Geometry of a test material with six artificial defects: The current flows at the center of this material
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{ | L 0-NFE.
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15000 -10000  -5000 &f

£

5000 10000
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-1.56E+06 - c =014

Figure 32. Find the five parameters of the Jiles-Atherton Model from experimental hysteresis loop of the test
material as shown in Figure 31

3.4. Simulation Results from MPI-FEM Algorithm with Hysteresis

The applying DC current field has been set up as shown in Figure 25(a). Figure 33
shows the five steps of phases described in section 3.2.2. Figure 33(a) shows the magnetic
flux leakage around defect sites. In Figure 33(b) to 33(f), the gray colored meshes indicated
retained magnetic particles. Retained Magnetic particles shown in Figure 33(b) to 33(f) were
obtained at the end step for each phase procedure of MPI-FEM algorithm (see Figure 26 to
30). For Figure 33(c) and 33(e), there are some magnetic forces due to existing remanent
magnetization so that it may keep retained magnetic particles even if the external magnetic
fields were removed. At the smallest defect all magnetic particles were removed since the

magnetic force for the particles is less than their gravitational forces.
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3.5. Summary

Maxwell 2D problems (for axisymmetric or planar coordinate) have been
implemented in this thesis for hysteresis materials with a single DC current source. An MPI-
FEM algorithm for hysteresis materials has been developed for the estimation of the volume
and distribution of retained magnetic particles around a defect site by magnetic forces against

the gravitation of the particles.

The volume of retained magnetic particles depends on not only the current source
strength but also the curl of magnetization strength of a hysteretic material. Since these are
vectors so that they may have different directions, the distribution of magnetic particles may
be influenced by the switching pattern of DC currents or the manipulation of AC power, the

hysteresis material properties, and location and geometry of defects.

In this thesis we do not consider about the influence or effective change of
temperature caused by hysteresis energy loss. Also we do not consider about multiple field
sources to make more complex magnetic flux fields around defect sites to read more
informative measures. However, with only single current source field, the MPI simulation
problem is very complex to characterize the behavior of magnetic particles. There are a lot of
works to identify the relationship between parameters of the Jiles-Atherton hysteresis model
and the geometry and position of defects. Since the five parameters of the Jiles-Atherton
hysteresis model were obtained by trial-and-errors, a sensitivity analysis of these parameters
and MPI simulation results should be significantly considered. Also, the quality of mesh size
also affects the estimated volume of magnetic particles. Therefore, these considerations can

be further research to improve the reliability of MPI simulation software package.
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CHAPTER 4.

CONCLUSION AND DISCUSSION

4.1. Conclusion and Summary

We demonstrated the sensitivity analysis of MPI simulations under the assumption of
material properties such as reversible nonlinear permeability or irreversible hysteresis
permeability. For the case of reversible nonlinear permeability, the estimated volume of
magnetic particles is dependent upon the quality of mesh (i.e., the shapes and sizes of
meshes) and the applied current fields. On the contrary, for the case of irreversible hysteresis
materials, it depends on not only the above two cases but also the measurement of domain
coupling. Even though the importance of the domain coupling property in MPI simulation is
very critical, it is very hard to estimate the correct value of this parameter. Therefore, a
sensitivity analysis of not only the size of a defect but also the range of domain coupling

should be accomplished to characterize the reliability of our MPI simulation package.

Our MPI simulation software package will allow nondestructive test engineers to
understand the effect of all parameters in the MPI test as well as allow a user to quickly
optimize an inspection while minimizing the need for experiments. The software will also
help users control the quality of an MPI test, i.e., sensitivity of magnetic particle clusters vs.
defect geometries on a test material. The software package may be used to answer difficult

standards related complicated magnetic questions.

4.2. Discussion

Our MPI simulation package was limited to the use of only single current source. If a
user wants to use multiple field sources so that it may improve the detectability of very
complicate or delicate defects, it is essential to update the current MPI-FEM algorithm with
hysteresis effects. Also, the extension of MPI simulations for 3-dimensional objects can be

considered as a future works.
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Also, the quality of mesh size also affects the estimated volume of magnetic particles.
Therefore, it is very simple and possible to find the relationship between the number of
meshes and the estimated volume of magnetic particles around a particular geometry of a
defect. Then, it will give us some information of the confidential limit or reliability of the
estimate volume of retained magnetic particles as a function of the number of meshes or the

average size of meshes around a defect site.

There are a lot of future works to determine or predict the relationship between
parameters of the Jiles-Atherton hysteresis model and the geometry and position of defects.
Since the five parameters of the Jiles-Atherton hysteresis model were obtained by trial-and-
errors in real situations, a sensitivity analysis of these parameters and MPI simulation results
should be significantly considered to verify our simulation result with respect to real

experimental analysis.
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APPENDIX A
LIST OF SYMBOLS
Symbol Quantity Unit Conversion
A Magnetic vector potential A

Product of magnetic field and its gradient

2,3
Ar along radial direction (H-0H/dr) A'fm

Product of magnetic field and its gradient

2, 3
4s along axial direction (H-0H/dz) Afm

a Domain density in hysteresis equation

o Domain coupling in hysteresis equation

B Magnetic flux density Tesla/Gauss 1 tesla = 10* gauss
c Reversibility in hysteresis equation

X Susceptibility of materilas

D Electric flux density (or displacement)

D Diameter of Solenoid m 1 m = 1000 mm

d diameter mm 1 m = 1000 mm

£ Permittivity

& Permittivity of free space F/m 8.854x10"2F/m

F, Gravitational force N
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Symbol  Quantity Unit Conversion
Fresist Resistance force against magnetic force
F, Magnetic force along radial direction N
F, Magnetic force along axial direction N
H Electric field intensity (A/m)/Oe 1 Oe=79.58 A/m
H, ~ Coercivity (A/m)/Oe  10e=79.58 A/m
Hy Effective magnetization (A/m)/Oe 1 Oe=79.58 A/m
] Current A Ampere
J Current density Alm~ 1 A/mm’*=1 MA/m>
I Current density of a source coil A/m>
k Pinning coefficient in hysteresis equation
L Length of solenoid m 1 m = 1000 mm
M., Anhysteretic magnetization (A/m)/Oe 1 0Oe=79.58 A/m
Saturated Magnetization in hysteresis
M, equation (A/m)Oe  10e=79.58 A/m
N Number of turns of solenoid coil
y7, Permeability of materials tesla-m/A
Ho Permeability of empty space teslam/A  1.257x10°° tesla-m/A
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Symbol Quantity Unit Conversion
Force density without consideration of
Hods the susceptibility along radial direction N/m’ I Nfm’=1 tesla-A/m
Force density without consideration of
Hohe the susceptibility along radial direction N/m® I N/m’=1 tesla-A/m
© Angular frequency Hz 1Hz = 1cycle/sec
Pupr Probability of magnetic particle existence
¢ Magnetic flux Weber 1 weber = 1 tesla-m®
0 Resistivity (or, electric charge density)
O Mass density of liquid magnetic paricle kg/m®
Dy Mass density of water keg/m’ 1000 kg/m’
o Conductivity
Vi Volume of retained magnetic particles mm- 1 mm>=10?°
W Energy J
Wi Magnetostatic energy I
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APPENDIX B

ASSEMBLING MAXWELL’S EQUATIONS WITH FEM

If e{x) = 8> 0, a(x) = 0 and g(x) = 0 with g(x) > 0 on some part of 92 [19], then,
UT(K+M +Q)U = L(cquIz +au® Jdx + [ quds>0, if U0, (B.1)

where, UT(K+M+Q)U is the energy norm. There are many choices of the test-function spaces.
Piecewise linearity on each triangle of the mesh guarantees that the integrals defining the

stiffness matrix K exist. Projection onto V), is no more than linear interpolation, and the

evaluation of the solution inside a triangle is done just in terms of the nodal values. If the

mesh is uniformly refined, VN,: approximates the set of smooth functions on €.

A suitable basis {¢,(x) } for VNJ: can be selected by setting ¢.(x) to be the value 1

only where the node is x;; otherwise, the value 0 is taken at any other nodes except x;. That is,
a suitable basis { ¢,(x) } can be designed for activating only one for each finite element. Then,

it yields
NJ"
u(x)=>U,8,(x;)=U, (B.2)
J=1

Finally note that the basis function ¢ vanishes on all the triangles that do not contain
the node x;. The immediate consequence is that the integrals appearing in Ky, My, Q;;, F; and
G; only need to be computed on the triangles that contain the node x;. Also, it means that Kj
and Mj; are zero unless x; and x; are vertices of the same triangle and thus X and M are very
sparse matrices. Their sparse structure depends on the ordering of the indices of the mesh

points.

The integrals in the FEM matrices are computed by adding the contributions from
each triangle to the corresponding entries (i.e., only if the corresponding mesh point is a
vertex of the triangle). This process is known as “assembling”. The assembling routines scan

the triangles of the mesh. For each triangle the assembling routines compute the local
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matrices’ and add their components to the correct positions in the sparse matrices or vectors.
The integrals are computed using the mid-point rule. This approximation is optimal since it
has the same order of accuracy as the piecewise linear interpolation. Consider a triangle

given by the nodes P, P, and P as in Figure B.1.

Figure B1. The local triangle AP,P,P4

The simplest computations are for the local mass matrix M:

= L (B0 (230,00 = () LR 146, ®.3)

where P, is the center of mass of AP P2P;, i.e.,
ﬂz——ﬂR*?’LP-‘. (B.4)

The contribution to the right-hand side F is just
f,= p(p) reclbhbE) (B.5)

3

For the local stiffness matrix we have to evaluate the gradients of the basis functions
that do not vanish on AP;P,P3. Since the basis functions are linear on the triangle AP\ PyP4,
the gradients are constants. Denote the basis functions @, ¢», and ¢; such that ¢(P;) = 1. If

Py—P;5 =[x, y;]T then we have

® The local 3-by-3 matrices contain the integrals evaluated only on the current triangle. The coefficients are assumed constant on
the triangle and they are evaluated only in the triangle center.
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1 [ M
" 2area(APP,P)| - xl} (B-6)

and after integration (taking ¢ as a constant matrix on the triangle)

[ ~x1]s<ﬂ>[_y; ] ®.7)

k, =
Y darea(AP,P,P,)

If two vertices of the triangle lie on the boundary, they contribute to the line integrals

associated to the boundary conditions. If the two boundary points are P; and P, then we have

g, = q(P)" ||(1 8;) 1Jj,=12, (B.8)

and

— B

Cmenl
i _g(}Jb)......._........._, 1319_152’ (B9)

where P, is the mid-point of Py P;.

For each triangle the vertices P, of the local triangle correspond to the indices i, of
the mesh points. The contributions of the individual triangle are added to the matrices such

that, e.g.,

mn=123. (B.10)

m?

K, . (new) <K, , (old)+k
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Sensitivity Analysis of Simulations for Magnpetic Particle Inspection using Finite
Element Method

1. Y. Lee, S. 1. Lee, D. C. Jiles, Fellow, IEEE
M. Garton, R. Lopez, and L. Brasche

Abstract-- Magnetic particle inspection is widely used for nondestructive evaluation in aerospace
applications in which interpretation of inspection results is currently limited to empirical knowledge and
experience-based approaches. Advances in computational magnetics, particularly the use of finite
element calculations, have enabled realistic numerical simulations of magnetic particle inspection to be
undertaken with complicated geometries. In this paper we report a sensitivity analysis using finite
element method simulations of magnetic particle inspection for defects with various sizes and
geometries. As a result, improved quantitative understanding of the MPI technique and factors that
affects its sensitivity and reliability has been achieved. These results can be used to optimize conditions
for conducting these inspections and should lead to improvement in analysis and interpretation of

experimental results.

Index Terms-- Finite element method, Magnetic particle inspection, Sensitivity analysis, Nondestructive evaluation.

INTRODUCTION

A number of nondestructive evaluation (NDE) techniques have been developed for evaluating defects in
materials; including surface discontinuities, voids, surface flaws, and cracks on the surface or in the body of
materials [1-4]. NDE techniques, when properly applied, prevent unexpected operational failures of the
mechanical parts by locating critical defects and allowing remediation before failure occurs. Different NDE
techniques should be used depending on whether the materials are magnetic or non-magnetic. For magnetic
materials, eddy current [1], magnetic flux leakage {2}, magnetic Barkhausen noise [3], and magnetic particle
inspection [4] techniques can be employed. Magnetic particle inspection (MPI) is widely used for
nondestructive evaluation in aerospace applications, with current inspection methods being essentially limited
to empirical or experience-based approaches [4]. Better quantitative understanding of the MPI technique and
factors that affect its sensitivity and reliability contribute not only to reductions in inspection cost and time but
also to improvement of analysis of experimental data and ultimately to improvements in design.

The magnetic field generator and the magnetic powder particies are essential components of the MPI

Manuscript received December 27, 2002. This work was supported in part by the Federal Aviation Administration under Contract
#DTFA03-98-D-00008, Delivery Order #4051 at lowa State University's Center for NDE as part of the Center for Aviation Systems
Reliability. J. Y. Lee is with the Electrical and Computer Engineering Department {telephone: 515-294-5385, e-mail: jylee @iastate.
edu), 8. J. Lee is with Ames Laboratory, D. C. Jiles is with the Material Science & Engineering Department; M. Garton, R. Lopez,
and L. Brasche are with the Center for Aviation Systems Reliability. All are at lowa State University, Ames, lowa 50011, USA.
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method. The magnetic force, which causes the magnetic particles to adhere to the defect sites, is proportional to
the magnetic field gradient. The distortion of the magnetic field is greatest when the direction of the magnetic
field is perpendicular to the axis of a defect, which maximizes the magnitude of the magnetic field gradient. The
magnetic properties of the magnetic particles are also critical factors in MP1 testing.

Computational advances have allowed numerical simulations of MPI to be performed for complicated
geometries [5). In this paper, we report the use of the finite element method (FEM) numerical simulations of
MPI for defects with various sizes. The results provide indications of the expected behavior of magnetic

particles around a defect and the viability of magnetic particle inspection under a variety of different conditions.
Finite Element Numerical Simulations

Equations for an Axisymmetric Geometry
We simulated a test sample in the shape of a cylindrical tube by solving Maxwell’s equations in a
cylindrical coordinate system (r, 8, z). Figure 1 shows the geometry of the solenoidal MPI simulation used in

the FEM calculations. For axisymmetric geometry, the equation for Ampére’s law under dc conditions is

or:  rar az* ot

1 [E)ZX 194 3°A Z} - (1)
= L Py
H

where f_\_ and A are the source current density and the vector potential, respectively. Asymptotic boundary

conditions were applied on the outer surface. From the vector potential A obtained by equation (1), the

magnetic field intensity H , the magnetic field gradients (3H /9r and 0H /9z) and the magnetic potential

energy W were computed.
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Fig. 1. The geometry of simulated test sample with axial symmetry; The defect sizes used in the calculation
were depth (d) =3, 5,7, 9 (mm) and width (w) =1, 2, 3, 5 (mm).
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Magnetic Force on a Magnetic Particle

For magnetic particles to adhere to a defect, the magnetic force generated by an applied current source
should be large enough to attract and maintain magnetic particies at the defect site. For a cylindrical coordinate
system, the magnetic field vector H can be decomposed into the radial component, H, and the component

along the axial direction H,. Magnetic force on a saturated magnetic particle can be described by the equations

F,:—K(H, H  u, aHa]

or s gr @)
F =— (H_.a_H_::_.i.H ai}
: P 9z " oz

where K is a constant which contains information on the magnetic properties of the magnetic particle such as
magnetic susceptibility and the volume of the magnetic particle. The quantities A, = F,/ K and A,= F,/ K are
proportional to the magnetic force components.

For purposes of the calculation we assumed that magnetic particles are uniformly sprayed on the surface of

the sample. The magnetic energy of a materiaf with nonlinear permeability can be described by the equation

W= j( jﬂ” B(h)- dﬁ}iv, 3

where B(j)represents the magnetic flux density as a function of arbitrary magnetic field h,and H is the

magnetic field in a small volume dV. For the calculation of energy at the i element of meshes, it is computed
gy p

approximately as

i=]

W, =[ E(];i)-A]Ef.}',., such that
)

—,.: Aﬁk and H :ZAEL.,
k=1

k=1

=

where H and V; are the magnetic field and volume of the i element, and the sum given in (4) is the
approximate value of the integral in parentheses in equation (3). The B(H) curve is obtained from user-defined
nonlinear permeability data. The radial component of magnetic force makes magnetic particles adhere to the
defect site. With a volume V (caused by the radial component of magnetic force) and its susceptibility y{(H) at
the magnetic field H, the radial component of the magnetic force acting on the magnetic particles is given by

[6]:

F, =—dW/dr=—u,x(A\\V(H,0H, /3r + H 3H  /37)
(%)
= oz (H VA, .

For purposes of the calculation, it was assumed that the magnetic field intensity H and the susceptibility
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#H) of magnetic particles are constant in the area of each finite element. This is of course an unrealistic
assumption, but aids tractability of the equations. Therefore, from (5), the volume of magnetic particles in the "

finite element retained inside the defect is given by

yo_ | [dW/erz ] (AW] ”
l ﬂu,‘((|ﬁ|) —A, ,u(,z(|ﬁ|) HAF]

where AH is the difference vector of H and AW is the difference scalar of W in the radial direction,

respectively.

FEM algorithm for Magnetic Particle Inspection

If R; be the radius of the center position of the i finite element in the defect, then the approximated volume
of the {* finite element is the product of 27R; and cross-sectional area A; of the element. Note this is an axially
symmetric problem. Therefore, the cross-sectional area of the magnetic particles at the i finite element from

(6)is

A= | _ [-AW~) D
275Ri#ul(|H|) H-AH

For the estimation of the magnetic particle volume at a defect site, the cross-sectional area given in (7) was
calculated for each finite element at the defect site. If the cross-sectional area A; of potential magnetic particle
volume is smaller than the mesh area A, then the simulation algorithm is terminated, and the value of A; is
recorded into the data structure of the i element. The total sum of recorded areas (2A;) provides the estimated
volume of accumulated magnetic particles in the defect. If A; = 4, for any finite element j, the magnetic particles

fully occupy in the area of the finite element region.
The material properties of some finite elements were then changed and the solutions were recalculated.
This simulation loop was repeated until the termination rule was satisfied. This FEM algorithm is a generic
programming to update material properties of finite elements by an interaction between the magnetic particles

and the updated magnetic field conditions (H, AH, and AW).

Sensitivity Analysis of FEM Simulations

Several sizes of defect geometry were simulated with a solenoid as a magnetic field source. Figure 2 shows
the results of sensitivity analysis with various defect geometries using FEM. The volume of magnetic particles
that attach to the defect increases as the depth of the defect increases when the size of defect width is fixed as
shown in Fig. 2(a). The stack height of magnetic particles inside the defect site decreases as the width of the
defect increases as shown in Fig. 2(b). The most important result is that MPI is more sensitive to sharper and

deeper defects than to wider ones, and is not simply sensitive to the size of the flaws.
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Fig. 2. Sensitivity analysis showing accumulation of magnetic powder (the applied current density was 100kA/m?).
(a) varying defect depths. (b} varying defect widths.

Conclusion

Using the finite element method, the magnetic flux density, magnetic field gradient, and magnetic forces on
magnetic powder particles due to magnetic flux leakage at the site of a defect, were calculated. These were used
to determine optimum conditions for detection of different sizes and geometries of defects in materials using
magnetic particle inspection.

Reduction of inspection design cost and time, and improvement of analysis of experimental data can be
achieved by the use of FEM simulations combined with careful incorporation of model parameters such as
magnetic field source, magnitude of the applied current, defect size, position of defect, and magnetic properties

of both sample and magnetic particles.
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DEVELOPMENT OF MODELING AND SIMULATION FOR MAGNETIC
PARTICLE INSPECTION USING FINITE ELEMENTS

J.Y. Lee, 8. I. Lee, D. C. Jiles, M. Garton, R. Lopez, and L. Brasche

Center for Aviation Systems Reliability, Iowa State University, Ames, Iowa 50011

ABSTRACT Magnetic particle inspection (MPI) is a widely used inspection method for aerospace
applications with inspection development essentially limited to empirical knowledge and experience-based
approaches. Better quantitative understanding of the MPI technique and factors that affect its sensitivity and
reliability would contribute not only to reductions in inspection design cost and time but also improvement of
analysis of experimental data. We employed a finite element method (FEM} for numerical calculation because
this is known to be suitable for complicated geometric objects such as the part shapes encountered in aviation
components and defects of concern. Magnetic particles are usually soft magnetic materials and sensitive to the
magnetic field distribution around them. They are easily attracted toward a high magnetic field gradient.
Selection of magnetic field source, which produces a magnetic field gradient large enough to detect a small
defect in the sample, is an important factor in magnetic particle inspection. The magnetic field gradient and
magnetic force at the sites of defects having different widths and depths have been calculated. The simulated

results can be used to assist in understanding the behavior of magnetic particles around a defect.

INTRODUCTION

A number of nondestructive evaluation (NDE) techniques have been developed for evaluating defects; surface
discontinuities, voids, surface flaws, and cracks on the surface or in the body of materials [1-8]. Properly applied
NDE techniques will prevent operational failures of the mechanical parts by locating critical defects. Metallic
materials are widely evaluated in NDE applications due to their common usage in industry. Different NDE
techniques should be used depending on whether the metallic materials are magnetic or non-magnetic. For
magnetic metallic materials such as steel, eddy current [1,2], magnetic flux leakage [3,4], magnetic Barkhausen
noise [5,6], and magnetic particle inspection [7,8] techniques can be employed. Among these techniques, the
magnetic particle inspection (MPI) and the magnetic flux leakage (MFL) are popular due to their inexpensive and
simple procedures. Both techniques depend on the distortion of magnetic flux lines caused by a defect on the
surface or sub-surface of a ferromagnetic material. The difference between the techniques is the method of
detecting defects. The MPI technique uses fine magnetic particles, dry iron powder or wet magnetic particles
suspended in a liquid medium, to identify the defect while the MFL technique employs a magnetometer to
measure the magnetic leakage field occurring around the defect. Easy distribution of magnetic particles on a test
sample makes the MPI technique suitable for samples with large surface areas while the MFL technique may be
appropriate for detecting defects in the areas where access would be difficult for visualization such as inside

surfaces of pipelines.
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The magnetic field generator and the magnetic particles are essential components of the MPI method. The
magnetic field strength should be large enough to magnetize the sample so that the magnetic particles can interact
with the leakage fields. The magnetic force, which dragé the magnetic particles to the defect sites, is proportional
to the product of the magnetic field and the magnetic field gradient. The distortion of the magnetic field is greatest
when the direction of the magnetic field is perpendicular to the axis of a defect, which maximizes the magnitude of
the magnetic field gradient. Magnetic fields can be generated either by a direct contact of current source to the test
material using prods (not recommended for aerospace components) or by using current coils such as a solenoid or
a yoke. The magnetic properties of the magnetic particles are a very important factor in MPI testing. A simple
analytical model for the calculation of the magnetic leakage field of surface-breaking cracks and an estimation of
the magnetic force on the magnetic particle were studied with an assumption of constant permeability [9].
Computational advances enabled the numerical simulations of MPI for a complicated geometry [10]. In this paper
we report the use of the finite element method (FEM) numerical simulations of MPI for defects with various sizes.

The simulated results can provide indications of the expected behavior of magnetic particles around a defect.

FINITE ELEMENT NUMERICAL SIMULATIONS

Equations for an Axisymmetric Geometry

We simulated a test sample in the shape of a cylindrical tube by solving Maxwell’s equations in a cylindrical
coordinate system (r, 9, z). For axisymmetric geometry, the Maxwell’s equation for Ampére’s law under DC mode

is as follows:

art  ror 8z% r®

15 g 24 T
1_[6A+16A+6A_i]=_js ey,
i

where J ¢ and A are the source current density and the vector potential respectively. Asymptotic boundary

conditions are applied on the outer surface of the domain. Using the Ritz method one can show that the solution of

the Maxwell Equation (1) is equivalent to minimizing the energy function described as {11]:

- el ) 7

Using the vector potential A obtained from Equation (2), the magnetic flux density B, the magnetic field intensity

oAl

8d A
hull + =
oz

+_
or r

H, the magnetic field gradient B/ dr , and the magnetic potential energy W were computed.

Simulation of Magnetic Flux 1.eakage Field

For the simulation of a sample using the finite element method (FEM), we modeled a test for investigating the
behavior of magnetic particles when a solenoidal current field is applied. The test sample was assumed to be
cylindrical in shape and the shape of the defect on the surface in the form of a groove. The cross section of the

cylindrical sample and the defect is shown in Figure 1.
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FIGURE 1. The geometry of simulated test sample with axial symmetry: The defect sizes used in the
calculation were depth (d) =1, 3, 5, 7, 9 (mm) and width (w) = 1, 3, 5 (mm).

The length and wall thickness of the sample were chosen to be 16 cm and 1 cm, respectively. The defect is
located at the center of the sample. The defect size was varied during the batch of simulation tests. The distance
between the outer boundary and the test sample was set to be sufficiently large to satisfy boundary conditions.
Asymptotic boundary conditions were applied to the outer surface. The B-H curve of the test sample showed a
nonlinear behavior as shown in Figure 2. The magnetic force that attracts magnetic particies is proportional to the
magnitude of the magnetic field gradient [12]. Therefore, the distribution of the magnetic field gradient around a
defect is an important factor in magnetic particle inspection. The magnetic field gradient versus depth (d in Figure

[} and width (w in Figure 1) are shown in Figure 3.
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FIGURE 2. The B-H curve of the testing sample.
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In the absence of defects the calculations suggested that the magnetic flux density B under a solenoidal current
field increases linearly as a probe moves from the center of the z-axis to the outside of the cylinder. However, the
change of B-field along the radial direction (dB / dr} is higher at the center of the defect than outside of the defect.
This result is crucial for the magnetic flux leakage (MFL) test. According to our calculations, as the depth of the
defect increases as shown in Figure 3(a), the magnitude of the magnetic field gradient should increase. The peak-
to-peak value of magnetic field gradient decreased as the width of the defect increased as shown in Figure 3(b).

This implies that the magnetic force should become weaker as the defect becomes wider.
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FIGURE 3. Simulation of magnetic field gradient (dB/dr); (a) dB/dr vs. defect depths (defect width=1mm,
current density=2.0A/mm?), (b} dB/dr vs. defect widths (defect depth=5mm, current density=1.0A/mm?).
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Magnetic Force on a Magnetic Particle

For magnetic particles to adhere to a defect, the magnetic force generated by an applied current source should

be large enough to drag magnetic particles into the defect. Magnetic force on a saturated magnetic particle can be
described by the equation

F, eV -#)=-xV(d-A) ®)

where M is the magnetization vector of the magnetic particle, and X is a constant which contains information of

the magnetic property of the magnetic particle such as magnetic susceptibility and the volume of the magnetic
patticle.

r (cm)

£
<
~'~_; 02 03 04
f‘i z {cm)
-1000 T
-1500 -~
(a) (b)

FIGURE 4. Proportional quantities to magnetic force component (a)} along z direction and (b} along radial
direction.

For the cylindrical coordinate system, the magnetic field vector H can be decomposed into the radial

component, H, and the component along the z direction H,. From Equation (3), the magnetic force components
along the 1- and z- directions can be written as:

F. =—K'(Hr OH, +H,aiJ

ar s oor 4
. oH oH
F=—K|H,—+H L
I ( I az + r az }

where K'=2K. The quantities A, = F, / K’ and A, = F, / K’, which are proportional to the magnetic force
components, can provide some information on the behavior of a magnetic particle around a defect,

The values of A, and A, are plotted in Figure 4. The geometry of the sample for this simulation was the same as
shown in Figure 1. The size of a defect was assigned as 1-mm width and 5-mm depth. The applied current density

is 2x10°A/m*. Figure 4(a) shows that the magnetic leakage field from the defect induces a magnetic force that



88

makes the magnetic particle around the defect region move to the center of the defect. If there is no defect in the
test material, the magnetic field from the solenoid coil will make the magnetic particle pull out of the center
position of the z-axis. Figure 4(b) shows that the quantity proportional to the radial component of magnetic force
increases as the magnetic particle moves toward the bottom of the defect. It suggests how the magnetic force

attracts and retains magnetic particles at the defect against their weight.

FEM algorithm for Magnetic Particle Inspection

The next step is the description of physical behavior of the magnetic particles at the defect. We assume that the
magnetic particles are uniformly sprayed on the surface of a sample. The magnetic energy of a material with

nonlinear permeability can be described as

W= J’( j:'B(h)dfr)dv, (5)

where B(h} represents the magnetic flux density as a function of magnetic field k, and H is the magnetic field in a

small volume dV. For the calculation of energy at the i element of meshes, it is computed approximately as

W = (i B(k)A, }/ such that i, = 3" Ak and H =Y Ak, ©)
i= k=1 k=L

where H and V; are the magnetic field and volume of the i element, and the sum given in Equation (6) is the

approximate value of the integral in the parenthesis of the Equation (5). The B{H) curve is obtained from the user-
defined nonlinear permeability data. The magnetic force on the magnetic particles with a volume V and a
susceptibility 7(H) at magnetic field of H, is given by [12]:
F =—dW /dr=—pu,y(H)V(H dH Ildr+H dH /dr)=u,y(H)V-A,. )

Figure 5 shows a simulation result of magnetic potential energy and the corresponding magnetic force. The
light bars in Figure 5(b) represent the magnetic forces at the bottom surface of defect holes and the dark bars in
Figure 5(b) show the forces at 1 mm above the flaw bottoms. The solid lines are the logarithmic interpolation
curves of magnetic energy and forces, respectively. The magnetic forces are proportional to the magnetic potential
energy as shown in Figure 5.

We assumed that the magnetic field intensity H and the susceptibility 37H) of magnetic particles are constant in
the area of each finite element. Therefore, from Equation (7), the volume of magnetic particles in the i finite
element retained inside the defect is given by

_ 1 [dW/erz I [ AW Jz 1AW @
wxHW A ) poy(HYHAH +HAH, ) py(H) H-AH'

i

Let R; be the radius of the center position of the /* finite element in the defect. Then, the approximated volume
of the / finite element is the product of 22R; and the cross-sectional area A; of the element. Note this is an axially
symmetric problem. It is assumed that the wet magnetic particles are uniformly distributed on the surface of the
test material. Therefore, the magnetic particles are uniformly accumulated inside the defect region. From Equation

th

(8), the cross-sectional area of the magnetic particles at the " finite element is



89

2.5E-06 2.50E-03 -
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FIGURE 5. Simulation of Magnetic Particle Inspection; {(a) magnetic potential energy at the bottom of defect
and (b) magnetic force around the bottom of defect.
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For the estimation of the magnetic particle volume in the defect region, the cross-sectional area given by
Equation (9) was calculated for each finite element in the defect region. If each of the cross-sectional areas
obtained from Equation {9) is smaller than the area of the corresponding finite element, then the value of the cross-
sectional area of the retained magnetic particles {A;) is recorded to the database of the finite element. At this step
the simulation loop is terminated. The total sum of the recorded areas (2.A;) of magnetic particles in the finite
elements around a defect indicates the estimated volume of accumulated magnetic particles in the defect.

If any of the areas of the retained magnetic particles is larger than or equal to the area of the corresponding
finite element, then the material property of this finite element is changed from air to magnetic particles. That is,
the magnetic particles are fully occupied in the area of the finite element region. The next step is rebuilding and
solving a new MPI problem given by Equation (2). This simulation loop is continued until the termination rule is
satisfied. This is a generic algorithm to update material properties of finite elements by an interaction between the
magnetic particles and the updated magnetic field conditions (H, AH, and AW).

Table | shows that the volume of the magnetic particles increases proportionally as the depth of the defect
increases when the size of defect width is fixed. For the sensitivity analysis of defect width, the defect geometry
was set at a fixed depth of 5-mm and variable widths of 1 mm, 3 mm, and 5 mm. The stack heights of magnetic
particles inside defects were 1.175 mm, 0.748 mm, and 0.648 mm, respectively. Therefore, the height of the stack

of particles inside the defect proportionally decreased as the width of defect increased.



90

TABLE 1. Simulation Results of FEM algorithm for MPL

Defect Geometry Cross-Section Area of Magnetic Particles inside Defect’

(Depth x Width) Sim.* Loop 1 Sim. Loop 2 Sim. Loop 3 Sim. Loop 4 Sim. Loop 5
1 mmx 1 mm 0.194 mm” N/A N/A N/A N/A

3 mmx | mm 0.416 mm" N/A N/A N/A N/A

5 mm x 1 mm 1.000 mm* 1.175 mm® N/A N/A N/A

7 mm x 1 mm 1.000 mm” 2.000 mm* 3.000 mm” 3.208 mm® N/A

9 mm x | mm 1.000 mm* 2.000 mm” 3.000 mm~ 4,000 mm” 4.936 mm”
5 mm x 3 mm 2.243 mm’ N/A N/A N/A N/A

5mm x 5 mm 3.239 mm” N/A N/A N/A N/A

1 The current field is fixed at 2.0x10%° A/m®.

f “Sim.” means simulation.

CONCLUSIONS

Using the finite element method, the magnetic flux density, the magnetic field gradient, and the magnetic force
on magnetic powder particles at the site of a defect were calculated. The calculation showed that the magnetic flux
leakage field at the defect created a magnetic force, which attracted and retained the magnetic particles at the
defect location. The magnetic particle inspection technique is more sensitive to the defect geometry than the
magnetic flux leakage measurement technique, from which method it is difficult to predict the geometry of a
defect. Reduction of the inspection design cost, time, and improvement of analysis of experimental data can be
achieved by the use of FEM simulations combined with careful incorporation of MPI parameters such as magnetic
field source, magnitude of the applied current, defect size, position of defect, and magnetic properties of both

sample and magnetic particles.
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