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Chapter 1

Executive Summary

1.1 Research Objectives

The present generation of reactor analysis methods uses few-group nodal diffusion approxi-
mations to calculate full-core eigenvalues and power distributions. The cross sections, diffu-
sion coefficients, and discontinuity factors (collectively called ” group constants”) in the nodal
diffusion equations are parameterized as functions of many variables, ranging from the obvi-
ous (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator
temperature history, etc.). These group constants, and their variations as functions of the
many variables, are calculated by assembly-level transport codes. The current methodology
has two main weaknesses that this project addressed. The first weakness is the diffusion
approximation in the full-core calculation; this can be significantly inaccurate at interfaces
between different assemblies. This project used the nodal diffusion framework to implement
nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of
accuracy. The second weakness is in the parameterization of the group constants; current
models do not always perform well, especially at interfaces between unlike assemblies. The
project developed a theoretical foundation for parameterization and homogenization models
and used that theory to devise improved models. The new models were extended to tabulate
information that the nodal quasidiffusion equations can use to capture transport effects in
full-core calculations.

1.2 Main Research Results

Improved Boundary Conditions for Assembly-Level Transport Codes: We have developed an
extension of present-day reactor-analysis methodology that systematically accounts for the
effects that different neighbors have on a given assembly’s few-group constants. The new
technique centers on energy- and angle-dependent albedos that simulate the effect of the
unlike neighbors. Each set of albedos defines a branch case and thus fits into the frame-
work of present-day methodology. The parameter varied in each new branch case is the
fractional difference in the neighbor’s concentration of an isotope or mixture. (The base
case corresponds to a zero difference in all concentrations - an identical neighbor - which
produces the usual reflecting boundary condition.) The key simplification is that the albedos
are generated by a one-dimensional transport calculation with a homogenized assembly and
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homogenized neighbor.

We have found that the albedo produced from 1D homogenized (1DH) calculations does
an extremely good job of capturing the effects of different neighbors in the rather restricted
case of lattices that are uniform in one direction (in which the only large-scale variation
is in the other direction). In fully 2D problems, the 1DH albedos are accurate near the
center of an interface but in general lose accuracy at corners. This loss of accuracy in the
albedo produces large errors in corner-pin powers in the worst cases. We have found that
very simple modifications to the 1DH albedos can dramatically reduce these large errors.
This encouraging result has led us to pursue systematic (but simple) modifications that are
theoretically sound and that produce very accurate results.

Our complete methodology relies on albedos to estimate the changes in few-group param-
eters that are induced by differences in a neighboring assembly’s composition. Another part
of the methodology is to assume superposition and thus build the change in a parameter by
summing the partial changes from a variety of differences in a neighbor’s composition.

Homogenization Methodology for the Low-Order Equations of the Quasidiffusion (QD)
Method: We have developed a coarse-mesh discretization of the low-order QD (LOQD)
equations that is consistent with the given fine-mesh differencing method for the LOQD
equations in the sense that it preserves average values of the fine-mesh scalar flux over the
given coarse cells as well as reaction rates, the first and second spatial Legendre moments of
the fine-mesh scalar flux over coarse intervals, currents at edges of coarse cells, and the fine-
mesh multiplication factor. All these facts are rigorous mathematical results. The definition
of discontinuity factors has been derived. The resulting discretization scheme enables one to
approximate accurately the large-scale behavior of the transport solution within assemblies.

The developed method can be applied to a general transport method as well, if this
method preserves the particle balance. If a fine-mesh solution is obtained directly from a
transport differencing method, and it is used to calculate spatially averaged cross sections
and special functionals defined in the method, then the resulting coarse-mesh solution of the
LOQD equations will be consistent with the given transport method. The reason is that
the coarse-mesh scheme was derived by algebraically consistent discretization based on the
discrete particle balance equation, and thus this scheme works also for any transport method
whose solution satisfies the discrete balance equation.

The developed coarse-mesh algorithm can be coupled with other parts of a complete
reactor analysis methodology (generation of tables of constants, interpolation using tables,
pin-power reconstruction).

Numerical Method for Solving QD Low-Order Equations: We have developed a splitting
method that can efficiently solve coarse-mesh discretized low-order quasidiffusion (LOQD)
equations. The LOQD problem can reproduce exactly the transport scalar flux and current.
The developed method splits the LOQD problem into two parts: (i) the D-problem that
captures a significant part of transport solution in the central parts of assemblies and can be
reduced to a diffusion-type equation, and (ii) the Q-problem that accounts for the compli-
cated behavior of the transport solution near assembly boundaries. Independent coarse-mesh
discretizations are applied: the D-problem equations are approximated by means of a finite-
element method, whereas the @)-problem equations are discretized using a finite-volume
method. Numerical results demonstrate the efficiency of the presented methodology.



Chapter 2

Technical Summary

2.1 Introduction

The overall goal of the proposed project is to make significant specific progress toward the
next generation of methods for the analysis of nuclear reactors. While there are many aspects
of present-generation methods that could be improved, we focused upon two areas — the
full-core few-group diffusion-like calculation and the assembly-level many-group transport
calculation — and upon the interface between them.

Present-day methods use few-group nodal diffusion approximations to calculate full-core
eigenvalues and power distributions. Nodal diffusion equations contain “group constants” —
few-group cross sections, diffusion coefficients, and discontinuity factors. Group constants
are modeled as simple functions of many parameters (such as boron concentration, fuel
temperature, etc.), each of which is either input to the full-core calculation or estimated
during it. These group constants and their variations as functions of the many parameters
are created from assembly-level calculations that solve two-dimensional transport problems.
Given this background, we can re-state our specific objectives as follows: (1) Create a full-
core few-group coarse-mesh diffusion-like method that will produce essentially the same results
as a full-core many-group fine-mesh transport calculation. (2) Create a methodology that
permits single-assembly transport calculations to construct all information that the full-core
calculation needs to achieve the first goal.

Present-day reactor-analysis methodology has two main weaknesses that keep it from
performing at the high standards indicated by our objectives. One weakness is the diffusion
approximation in the full-core calculation, which can cause significant errors at interfaces.
We overcame this weakness by putting quasidiffusion equations into the nodal diffusion
framework, allowing full-core calculations to capture transport effects to an arbitrary degree
of precision. The second weakness is in the simple models used to “functionalize” the group
constants; many of the current models do not always perform well, especially at interfaces
between unlike assemblies, and those that seem to perform well lack a sound theoretical
foundation. In this project we developed a theoretical foundation for these functional models,
use that theory to assess current models, and further use it to devise improved models. The
new models were extended to provide information that the nodal quasidiffusion equations
need to capture transport effects in full-core calculations.

There is strong incentive for a reactor analysis methodology to require only single-



assembly calculations from its assembly-level many-group transport calculations. If multi-
assembly “colorsets” are required, the amount of data that must be stored becomes much
larger and bookkeeping becomes cumbersome. Reactor analysts greatly prefer a method-
ology that stores one table of group constants for each type of fuel assembly; this is why
we have specified “single-assembly” calculations in our second main objective above. The
restriction to single-assembly transport calculations places a significant burden upon the
methodology: the effects of an unlike neighboring assembly upon a given assembly’s group
constants must be accurately estimated without knowledge of the neighbor. Capturing such
“interface effects” is one of the major challenges that we addressed in this project.

Main results of this NERI project were published in the proceedings of the following
ANS conferences [1-8]: 2000 ANS Winter Meeting, Washington DC; Int. Conf. on the New
Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing
(PHYSOR 2002), Seoul, Korea, Oct. 7-10 (2002); Nuclear Mathematical and Computational
Sciences: A Century in Review - A Century Anew, Gatlinburg, Tennessee, April 6-11, 2003;
2003 ANS Winter Meeting, New Orleans. The latest results will be submitted this year for
publication in Nuclear Science and Engineering and proceedings of PHYSOR 2004 (Chicago).

2.2 Approximation of the Transport Solution by Form
and Spectrum Shape Functions

Let us define: ¢,(7) as a fine-mesh fine-group transport scalar flux, ¢c(r) = > o ¢y(7)
as a fine-mesh few-group transport solution, ®4(7) as a coarse-mesh few-group transport
solution. Then, we have:

o7 pc(r) 909(77)‘ (2.1)

Oc(r) pe(7)

Fopee = @g/pc is a spectrum shape function that often depends only weakly on position
within a single assembly. The form function Fy,mm = ¢a/Pc is a detailed fine-mesh solution
superimposed upon coarse-mesh shape. It is often depends weakly on neighbors, etc.. The
spectrum and form functions are generated by single-assembly transport calculations as
functions of various parameters that affect them. Current methods perform their single-
assembly calculations with reflective boundary conditions, which effectively means that an
assembly is surrounded by an infinite sea of identical assemblies. This makes it difficult to
obtain the form and spectrum functions that will be accurate if in the full core there is a
neighboring assembly that is significantly different.

We addressed this difficulty by using more general boundary conditions in the single-
assembly calculations, thus removing the approximation of identical neighbors. Part of the
research was to determine how best to do this. We used energy- and angle-dependent albedo
boundary conditions. If the albedo boundary conditions capture the effects that different
neighbors have on the form and spectrum shape functions, and if the full-core calculations
obtain the correct leakage at node surfaces, then the result should be a very accurate analysis
method.

—
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2.3 The Quasidiffusion Method for Solving the Trans-
port Equation

The proposed methodology is based on the quasidiffusion (QD) method for solving the
transport equation. The basic idea behind the QD method is to effectively reduce the
dimensionality of the problem by averaging the transport equation over angular and energy
variables. The QD system of equations is closed by special linear—fractional functionals that
depend weakly upon the transport solution. The resulting nonlinear problem of the QD
method is equivalent to the original linear transport problem. The moment QD equations
can be reduced to equations whose structure is similar to that of the diffusion equations.
These features of the QD method make it a natural and efficient approach for developing
reactor core analysis methodology based on transport theory and for implementation of it
in the framework of existing diffusion theory codes. The QD approach has been successfully
used to solve multigroup neutron transport equation with anisotropic scattering and fission,
problems of reactor kinetics, burnup, and radiative hydrodynamics.

2.4 Improved Boundary Conditions for Assembly-Level
Transport Calculations

We have developed extensions of present-day reactor-analysis methodology that systemati-
cally account for the effects that different neighbors have on a given assembly’s few-group
constants. One extension is branch cases that generate the effect of unlike neighbors on
a given assembly’s group constants. Another extension is to use superposition of the ef-
fects of neighboring assemblies to reduce the number of branch calculations that are needed
to tabulate the effects of all possible neighbor permutations. Finally, we also use energy-,
angle-, and position-dependent albedos to simulate the presence of the unlike neighbors in
our branch calculations. We have developed and tested a procedure for efficiently estimating
these albedos.

We envision two neighbor-assembly branches for each type of neighboring assembly, one
for an adjacent configuration and one for diagonal. For each type and configuration we further
envision a small number of branches on the neighbor’s burnup and one branch with the
neighbor containing a control rod. Other branches might be necessary in some applications.
For each branch case we estimate an albedo and perform a single-assembly calculation;
this fits into the framework of present-day methodology. (The base case corresponds to all
identical neighbors - which produces the usual reflecting boundary condition.) The keys
to computational efficiency are rapid estimation of albedos, the use of superposition, and
keeping the number of branch cases reasonably low. The keys to accuracy are accurate
estimation of albedos and careful attention to the limits of the superposition approximation.

We have found that spatial superposition of the effects of adjacent and diagonal neighbors
provides an excellent approximation to the effects of multiple neighbors on the assembly cross
sections and the diagonal (zz and yy) Eddington-tensor components. There is a large relative
error in the superposition approximation of the very small off-diagonal (xy) component, the
significance of which has not yet been determined.



We have found that the albedos produced from 1D homogenized calculations do a reason-
ably good job of capturing the effects of a different neighbor except near assembly corners,
although it appears likely that explicit representation of the water gap will add enough accu-
racy to warrant its complexity. We have devised a 2D homogenized diffusion approximation
combined with a fixed-source long-characteristics transport sweep to obtain 2D correction
factors for the 1D albedo. This does not cause the off-diagonal tensor component to be accu-
rate, but it does improve the cross sections and diagonal tensor components. Our estimated
albedos produce significant improvements over the reflecting condition, but we believe that
further significant improvement is possible, and we are actively pursuing such improvement.

We are currently working to couple our assembly-level results with full-core quasi-diffusion
calculations to assess the impact of the errors that remain in our cross sections and Eddington
tensors. If this assessment shows that further assembly-level improvements will noticeably
improve the accuracy of the overall methodology, then we believe we can accomplish these
improvements, beginning with simple improvements to our albedo boundary conditions.

In summary, we believe the new methodology described here is promising, and we expect
to continue to refine it, couple it to other pieces of a full reactor-analysis system, and test
the coupled system.

2.5 Homogenization Methodology and Consistent Spa-
tial Coarse-Mesh Discretization for the Low-Order
Equations of the Quasidiffusion Method

We have developed a high-order coarse-mesh finite-element method for discretization of the
QD low-order equations that is consistent with the given fine-mesh transport differencing
method in the sense that it preserves the fine-mesh values of cell-average scalar flux, cell-
edge current, multiplication factor, and reaction rates. On the basis of this method, we have
developed an advanced consistent coarse-mesh finite-element method that preserves extra
two spatial Legendre moments of the fine-mesh transport scalar flux over coarse-mesh cells.
All these facts are rigorous mathematical results. The definition of discontinuity factors has
been derived. The resulting discretization scheme enables one to approximate accurately the
large-scale behavior of the transport solution within assemblies.

The developed method can be applied to a general transport method as well, if this
method preserves the particle balance. If a fine-mesh solution is obtained directly from a
transport differencing method, and it is used to calculate spatially averaged cross sections
and functionals, then the resulting coarse-mesh solution of the LOQD equations will be
consistent with the given transport method. The reason is that the coarse-mesh scheme
was derived by algebraically consistent discretization based on the discrete particle balance
equation, and thus this scheme works also for any transport method whose solution satisfies
the discrete balance equation.

We have analyzed the developed methods on a set of test problems that simulate the
interaction of MOX and uranium assemblies. These tests included assemblies with enrich-
ment variations, and water holes that introduce within-assembly flux variations. In spite of
this the CMFE-2 method is able to generate solution that mimic accurately the large-scale



behavior of the transport solution within assembly.

The proposed methodology can be extended to multidimensional geometries, multigroup
case, finite-element methods based on higher order expansions of the coarse-mesh scalar
flux that creates an option of preserving more spatial moments of the fine-mesh transport
solution over coarse cells. The developed method is a part of a new methodology for reactor
core calculations, and this method will be coupled with other pieces of this methodology,
including usage of group data obtained by means of single-assembly calculations that use
efficient albedo boundary conditions. Another important issue is possibility of improvement
of pin-power reconstruction using the discretization methods that preserve extra spatial
moments of the fine-mesh transport solution within assembly. We are working now on such
extensions.

2.6 Methodology for Solving the Low-Order Equations
of the Quasidiffusion Method

We have developed a splitting method to solve the coarse-mesh discretized LOQD equations.
The method effectively splits a problem into two parts. The D-problem captures a signif-
icant portion of the transport solution in the central part of assembly, and the Q-problem
accounts for the complicated behavior of the transport solution in the vicinity of assembly
boundaries. The calculation of discontinuity factors for the splitting method has been in-
troduced, and corresponding interfacial conditions have been formulated for this particular
method. Each part of the LOQD equations in the split form has been approximated by a
different discretization scheme. The D-problem equations were approximated by means of
the high-order finite element method. The @-problem equations were discretized by using
a finite volume method with second-order accuracy. Numerical results showed high accu-
racy of the proposed splitting method with the considered independent discretization of the
equations of D- and @)- problems.

The successful performance of the splitting method in 1D geometry stimulates the efforts
in extension of this method to multidimensional geometries. In 2D and 3D cases the solu-
tion of the LOQD equations discretized with high-order methods is rather computationally
intensive problem. According to the proposed approach, one can split the LOQD problem
into a D-problem that can be solved with current efficient methodologies for diffusion-type of
equations and a Q)-problem that can be discretized with a second-order finite-volume method
because the solution of this problem is a small correction to solution of D-problem. Special
interface conditions allow spatial decomposition of the ()-problem such that it can be solved
in each coarse cell (part of assembly) independently of other cells. Thus, the presented split-
ting method enables us to reduce significantly computational costs for obtaining solution
that very accurately accounts for transport effects in full-reactor calculations.

It is important to note that the proposed splitting method can be also utilized to upgrade
current codes for full-reactor core calculations that are based on the diffusion theory. In such
case, it is necessary to add solution of @-problem and modify the definition of the diffusion
coeflicient as well as of the fission source term to account for the ()-problem solution. As a
result, one gets a code based on transport theory calculations, provided that all extra group
data and functionals are supplied from assembly-level calculations.
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Chapter 3

Capturing The Effects Of Unlike Neighbors In
Single-Assembly Calculations

3.1 Introduction — The Interface Problem

One of the main challenges that a reactor analysis methodology faces is obtaining the power
distribution and averaged cross sections for an assembly whose neighboring assemblies are
significantly different. If the neighbors are identical to the assembly in question, then an
excellent approximation to the solution in the assembly can be obtained by solving a two-
dimensional single-assembly problem with reflecting boundaries. However, if a neighboring
assembly is significantly different, the reflecting boundary condition does not accurately model
reality.

Reactor analysts have tried many different approaches to approximating the effects of unlike
neighbors on an assembly’s averaged cross sections. The most straightforward is to run multi-
assembly calculations (“colorsets’), one for each four-assembly permutation that will appear in
the core [1,2]. While straightforward in principle, this approach is computationally unwieldy,
taxing to the user, and it does not eliminate the need to branch and interpolate on conditions in
the neighboring assemblies. Thus, most analysis systems attempt to retain the single-assembly
calculation and somehow account for the effects of different neighbors.

In this chapter we describe our recent efforts to capture and tabulate the effects of different
neighbors on the important parameters of a given assembly. This includes all parameters needed
by the core-level quasi-diffusion equations that are described in other chapters. We describe our
algorithms and present results from many difficult test problems containing MOX and UO,
assemblies.

Part of the assembly-level methodology described here is to use the following detailed angle- and
energy-dependent albedo boundary conditions to represent the effects of an unlike neighbor:

Yo (r_s,\AI) =g, (r_s,\i\/)yg (Q,V_V’) ,W ° exiting direction that reflects onto W. (1)

Here w is angular flux and yis our specialized albedo. (A general albedo function would relate
each incoming (g, W) to all outgoing(g',W').) While albedo boundary conditions have been

explored before, our approach is different and offers several advantages, as we describe below.
Another part of our system is to invoke superposition to estimate the combined effects of the
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eight neighboring assemblies that surround a given assembly. In this paper we carefully study
the accuracy of the superposition approximation, independent of the accuracy of any albedo
boundary conditions.

In the next section we explain the core-level quasi-diffusion approach to reactor analysis and
the data requirements that this approach places upon the assembly-level code. In a subsequent
section we describe the results of our multiple analyses. Part of this is a study of the use of
superposition of effects of unlike neighboring assemblies, which can significantly reduce the
number of required analyses. We also study an albedo approximation that simulates the effects
of neighbors in a representative set of colorsets. We then provide the results from an analysis
that combines spatial superposition and our albedo approximation of the boundary condition.
The final section contains a summary and draws conclusions.

3.2 Reactor Analysis Methodology: Present And Proposed

Today’s reactor-analysis methodology is reasonably accurate, despite the use of reflecting
boundaries for single-assembly calculations and two-group coarse-mesh diffusion for core-level
calculations. Even on the most difficult commercial-reactor problems, the current methodology
produces pin-power distributions that err by only a few percent [3,4]. This suggests that radical
changes in the methodology are not needed; rather, we should carefully extend the existing
methodology to try to capture most of the effects of different neighbors in our assembly
calculations and most of the transport effects in our core-level calculations. This should
eliminate most of the error in today’s calculations.

Today’s methodology employs single-assembly calculations to generate “base-case” few-
group constants (cross sections, diffusion coefficients, and discontinuity factors), where “base-
case” means a given set of parameters such as temperatures, power density, soluble boron or void
concentration, etc. The variation of the constants with respect to changes in each parameter is
estimated by solving one or more “branch cases” for each parameter. In a branch case on soluble
boron concentration, for example, all other parameters are held at their base values, the boron
concentration is changed, and the single-assembly calculation is performed. A branch on
parameter p generates an estimate of dC/dp for each few-group constant C. The parameters that
are tabulated are those that are needed to perform the core-level calculation and to reconstruct
pin-by-pin powers.

In this chapter we describe the single-assembly portion of a larger effort to develop an
improved reactor-analysis methodology that is a natural extension of today’s methodology. The
larger effort replaces the core-level diffusion calculation with a core-level guasi-diffusion (QD)
calculation.™ QD uses diffusion-like equations that contain transport information in the form of
“Eddington” tensors; if the correct tensors are used, then the QD equations yield the correct
transport solution. In 2D problems, each component of the tensor is an angular-flux-weighted
average of the product of two direction cosines:

13
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Thus, in addition to the usual few-group cross sections and discontinuity factors, our new single-
assembly methodology must generate appropriately averaged Eddington tensors to prepare for
later core-level QD calculations.

, U=XOry, V=XO0r). (2)

Our new single-assembly methodology also adds branch cases on parameters that describe the
difference between the given assembly and its neighbors. Each branch case will be a single-
assembly calculation with albedo boundary conditions that represent the effects of the unlike
neighbor, either adjacent or diagonal to the given assembly. The result will be the same type of
dC/dp values as are currently generated; there are simply additional p’s to consider, p’s that
describe the unlike neighboring assemblies.

3.3 Results

The most difficult real-world commercial LWR problems involve LEU assemblies interspersed
with MOX assemblies. We have considered several such problems to test our new methodology.
We first explore the possibility of superimposing the effects of a single unlike neighbor to
represent the effects of multiple unlike neighbors. We then test a two-dimensional albedo that
we have developed to approximate the effects of a single unlike neighbor, either adjacent or
diagonal to the current assembly. Finally, we combine the albedo boundary condition with the
superposition approximation and test the ability of the resulting complete methodology to
capture the effects of a set of unlike neighbors.

All of our two-dimensional transport results were obtained with a modified version of TALC,
a long-characteristics assembly-level transport code written previously at Texas A&M University
[5,6]. Each TALC calculation employed 12 flat-source regions per pin cell, 16 energy groups, 4
polar angles, 8 azimuthal angles per quadrant, and 0.5-mm spacing between rays. Each assembly
in our test problems was a uniform lattice of geometrically identical pin cells — there were no
water holes. Macroscopic cross sections were calculated from a pin-cell analysis using CASMO-
3. The UO; fuel pins are all 4.0% enriched. The MOX assembly contains an enrichment grading
that ranges from 6% to 10% in total Pu content. The corner pins had 6%, the outer rows had 8%,
and the interior had 10%. The circular pins were represented exactly.

3.3.1 Spatial Superposition of Colorsets

In a “colorset” analysis, an assembly-level calculation is performed for each four-assembly
permutation that will appear in the core. Each calculation requires up to ten times the CPU time
of a single-assembly calculation and more input from the user. We propose to use spatial
superposition of the effects of single unlike neighbors to approximate the effects of multiple
unlike neighbors and thus reduce the number of calculations that are needed to cover the entire
parameter space of neighboring assemblies.
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3.3.1.1 Superimposing the effects of perturbed neighbors

For each assembly in the core, a “base” calculation of the current assembly is performed using
reflecting boundaries to determine the “base” few-group constants (Cpase). Suppose for the
moment that we were willing to perform colorset calculations. Then only a single “colorset”
calculation, with three of the given assemblies and one unlike neighbor, would be needed in
order to determine the effects of a UO, neighbor on an adjacent MOX assembly (red underline in
Figure 3.1) as well as a diagonally opposite one (blue italics in Figure 3.1). That is, one such
colorset calculation would yield the change in few-group constants due to an adjacent neighbor
(dC/dp)agjacen: and the change due to a diagonal neighbor (dC/dp)aiagonai-

MOX U0,

MOX MOX

Adjacent and Diagonal MOX

Figure 3.1 The basic colorset for determining direct effects of a UO; on a MOX assembly.

To estimate the effects of multiple perturbed neighbors, we would like to invoke superposition
of the effects of single-assembly perturbations. To test the validity of such a superposition we
consider three two-dimensional test configurations, as shown in Figure 3.2. For instance, if a
given assembly were surrounded by unlike assemblies (an isolated configuration), then the
formula to determine the few-group constants would be:

T
Cis'oae = Ca?€+(d(/ ) +(dC/ ) +(dc/ ) ’ 3
solated ba dp adjacent dp diagonal dp adjacent ( )

Because some of the constants (Eddington tensor and boundary current) are spatially and
directionally dependant, a transpose-type operation on the adjacent perturbation is required to
simulate a neighbor below, as opposed to on the right of, the given assembly.
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MOX U0, MOX U0, MOX U0,

U0, MOX MOX U0, U0, U0,

Checkerboard Plane Isolated

Figure 3.2 The three 2D test configurations for a MOX assembly.

3.3.1.2 Results of the superposition tests

We have tested the accuracy of superposition for each of the three test configurations shown in
Figure 3.2, which are tests for computing parameters in the MOX assembly. We have repeated
this test for three similar configurations for computing UO, parameters. These configurations
simply replace each MOX assembly with a UO; assembly and vice versa. Thus, we have tested
superposition for six different configurations.

For each of the six test configurations, the few-group assembly-averaged cross-sections and
Eddington tensors were calculated directly from a four-assembly TALC run to determine the
reference value for each of the constants. A “base” case was calculated using a single assembly
with reflecting boundaries. Then a fourth four-assembly calculation (basic configuration, shown
in Figure 3.1) was performed to determine the effects on the assembly from an unlike adjacent
and unlike diagonal neighbor. Sets of dC/dp’s were calculated for these configurations. The
base-case parameters and the dC/dp’s were then combined as in Eq. 3 to estimate the few-group
parameters in the given assembly, and these estimated parameters were compared against the
reference values.

The relative cross section errors were similar across all three test configurations for each
assembly type. Thus, the results presented for the plane configuration, in Table 3.1, are
representative of all three. All of the relative errors of the cross sections are reduced by a factor
of 10 or more as compared to the reflecting-boundary case, and the maximum error (which
always occurred in the downscattering cross section) in both the UO, and the MOX is reduced by
a factor of 50. Therefore, the spatial superposition of the effects of a neighbor on cross sections
appear to provide an excellent approximation to the exact value, especially when compared
against the reflecting-boundary cross sections used in today’s methodology. This is very
encouraging.

The relative errors of the assembly-averaged transport constants (components of the
Eddington tensor) are shown in Table 3.2. The diagonal (E,, and E},) constants are near 1/3, as
expected, and are well approximated by the superposition (maximum error is 0.5%).
Superposition errors are an order of magnitude lower than the reflecting-boundary (base) errors.
The off-diagonal E,, value is exactly zero in the base UO, (because of no enrichment grading
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and reflecting boundaries) and very small in the “base” MOX assembly. Therefore, there is no
off-diagonal transport data conveyed when simply using the “base” case and the relative error is
always ~100%. The superposition does not do a good job of approximating the E,,’s, especially
when an unlike “diagonal” assembly is involved. There is a strong effect on E,, with a single
unlike assembly diagonal to the given assembly, but this effect is significantly reduced when
another unlike assembly is introduced adjacent to the current assembly, as in the plane or isolated
configuration. However, in these test problems E,, is very small relative to E\, or E,,, and it is
not clear that a large relative error in this component will seriously harm the accuracy of the full-
core calculation. This is an issue that we are now investigating.

Table 3.1 Relative errors in the MOX and UQ; cross sections in plane configurations.

Relative Error
Reference Value| Superposition | Reflecting
MOX Assembly
2 Group K-inf 1.164 0.00% -0.12%
Fast Group
Total 0.506 0.00% 0.24%
Absorption 0.017 0.02% 1.04%
Nu*Fission 0.014 0.00% 0.35%
Fission 0.005 0.00% 0.36%
Inscatter 0.479 0.00% 0.16%
Downscatter 0.011 0.05% 2.19%
Thermal Group
Total 1.606 0.03% 0.39%
Absorption 0.361 -0.02% -0.24%
Nu*Fission 0.593 -0.02% -0.23%
Fission 0.207 -0.02% -0.21%
Inscatter 1.242 0.04% 0.60%
UO2 Assembly
2 Group K-inf 1.270 0.02% -0.26%
Fast Group
Total 0.508 -0.01% -0.20%
Absorption 0.010 -0.01% -0.49%
Nu*Fission 0.008 0.05% -0.57%
Fission 0.003 0.04% -0.60%
Inscatter 0.483 -0.01% -0.13%
Downscatter 0.015 0.03% -2.09%
Thermal Group
Total 1.292 0.00% -0.26%
Absorption 0.106 -0.01% -0.54%
Nu*Fission 0.169 -0.02% -0.54%
Fission 0.070 -0.02% -0.54%
Inscatter 1.184 0.00% -0.24%
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Table 3.2 Relative errors in the MOX and UO; Eddington components.

Reference Value Spatial Superposition Reflecting
Checker Plane Isolated]Checker Plane Isolated]Checker Plane Isolated
MOX Assembly
Fast
E xx 0.335 0.337 0.336 | 0.03% -0.03% -0.02%1]-0.85% -0.23% -0.68%
E xy 2.E-04 -2.E-05 2.E-04 6% -418%  99% 90% 230% 87%
E_vyy 0.335 0.337 0.336 | 0.03% -0.01% -0.02%1]-0.85% -0.25% -0.68%
Thermal
E_ xx 0.334 0.335 0.336 |-051% 0.27% -0.23%]| 4.85% 5.10% 5.30%
E xy 2.E-03 -4E-05 4E-04] -17% 610% -180% | 104% -56% 114%
E_yy 0.334 0.321 0.336 | -0.51% 0.04% -0.23%] 4.85% 1.00% 5.30%
UO2 Assembly
Fast
E_xx 0.341 0.339 0.340 | 0.01% -0.02% -0.02% ] 0.81% 0.19% 0.62%
E_xy -4.E-05 6.E-05 1.E-04] -129% 146% 151% | 100% 100% 100%
E vy 0.341 0.339 0.340 | 0.01% -0.01% -0.02% ] 0.81% 0.24% 0.62%
Thermal
E_xx 0.361 0.361 0.361 | -0.10% 0.06% -0.05%1]-1.25% -1.27% -1.28%
E_xy -9.E-04 -4.E-05 -7.E-04] 17% 248% 53% 100% 100% 100%
E vy 0.361 0.365 0.361 | -0.10% -0.02% -0.05%1]-1.25% 0.01% -1.28%

3.3.2 Albedo Boundary Conditions to Simulate the Effects of a Single
Perturbed Neighbor

Because of the CPU and user-interface requirements, most reactor analysis code systems today
attempt to retain a single-assembly calculation and somehow account for the effects of different
neighbors. We propose to work within this framework and to approximate the effects of a
neighbor using a “specialized” albedo boundary condition.

3.3.2.1 One-dimensional albedo approximation

Consider Figure 3.3’s two-dimensional approximation of a real assembly (denoted “L” below)
with an unlike neighbor (denoted “R”) on one side. If we knew exactly what materials were in
region “R”, we could solve a two-assembly transport problem to obtain the angular flux, v, at
the interface. At that point we could define:

9 (7 W) = ¥, (1. W)/, (r. W) )

(If R were a mirror image of L, then y would equal 1 for each group and angle.) If this energy-
and angle-dependent albedo were used as a boundary condition for assembly L, then a single-
assembly solution in L would be identical to the two-assembly solution. We wish to avoid
solving multi-assembly problems; thus, this definition at first appears to be of little value.

The effect of a “different” neighbor is fairly localized to a good approximation (because
thermal neutron mean-free paths are very small compared to the assembly width); thus, much of
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the interface physics is effectively one-dimensional in space. Further, because y is a ratio of
angular fluxes, it should be relatively insensitive to symmetric changes in geometric details. We
therefore propose to estimate the albedo by solving a 1D problem with two homogeneous
regions, as depicted in Figure 3.4. Each region has the width of a half-assembly, and we employ
reflecting boundaries on the outer edges.

O00O0OO0OO0O0OO0O0O|0OO0OO0O0O0O0OO0OO
O0O0OO0O0OO0OO0O0OO0O|0OO0O0OOO0OOO0OO
0000000000000 0O0O0O0OO
O0OO0OO0OO0O0O|0O0O0O0OO0OO0
L OO0OO0OO0OO0OO0O|0OO0OO0O0O0OO0 R
O0OO0OO0OO0OO0O|0OO0O0O0O0OO0
O00OO0OO0OO0O0OO0O0O|0OO0OO0O0O0O0OO0OO
O00OO0OO0OO0OO0OO0O0O|0O0O0O0O0OO0OOO
O00OO0OO0OO0O0OO0O0O|0OO0OO0O0O0O0OO0OO

Figure 3.3 Interface between unlike assemblies

This problem is simple enough that an accurate numerical solution will incur relatively low
computational cost. We are using a linear-discontinuous finite-element (LD FE) method in
space, multi-group in energy, and discrete-ordinates in angle, with logarithmically spaced spatial
zoning at the interface, to quickly calculate the solution, which we then use to estimate the
albedo:

¢ (W) = g (r,ma) » y* (r.m)/y " (- m),  mecosine(W- n)< 0.  (5)

This approximation provides a significant improvement over the reflecting boundary “base”
case, but it still yields appreciable errors near the “corner” interface among four assemblies, as
one might expect [7]. Therefore, a two-dimensional modification to the 1D albedo is required to
achieve the accuracy we seek.

L R

Figure 3.4 Approximate 1D model of interface between assemblies
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3.3.2.2 Two-dimensional albedo modification

Because the 1D homogeneous albedo produces a very good approximation to the boundary
condition away from corner points, a simple modification should be able to account for the 2D
effects, which are strongest at corners. Our procedure for obtaining an improved albedo begins
by arranging the given assembly (denoted MOX) and the neighbor (denoted UO;) as shown in
Figure 3.2. Each quarter-assembly is spatially homogenized into pin cells and a simple multi-
group, finite-volume diffusion calculation is used to estimate the multi-group, pin-averaged flux
shape. This calculation is inexpensive compared to a single-assembly fine-mesh fine-group
transport calculation.

The pin cells are then represented as multi-group flat-source regions, with the scattering and
fissions sources derived from the finite-volume diffusion solution. Using one simplified long-
characteristics sweep, for each azimuthal and polar angle from the assembly-level code’s
quadrature set, the angular flux at the center of each pin-cell edge on both the L/L and the L/R
interfaces are calculated. These angular fluxes are used to calculate a multi-group, pin-cell-edge

two-dimensional albedo ggD R, W) for each direction used in the assembly-level code.

This 2D albedo is then used to modify the existing 1D homogenous albedo. The albedo of the
pin cell nearest the center of the interface between adjacent assemblies is assumed to be exactly
the 1D homogenous albedo. The ratio of the 2D albedo on a given pin-cell edge to the 2D
albedo at the center-pin edge is then used to modify the 1D albedo:

Q7" (R,.W) !

g (R, W) = g™ (W) * :
¢ ¢ & (R W)t

(6)

where R; is any pin-cell edge along the interface and R. is the centerline pin cell.

We construct the albedo as in Eq. (6) along both the L/R and L/L interface in the configuration
of Figure 3.2. Different combinations of these albedos and reflecting boundary conditions allow
us to model a single adjacent R neighbor or a single diagonal R neighbor; all other R-neighbor
configurations can then be built from superposition.

3.3.2.3 Results of the two-dimensional albedo approximation

For both assemblies in a “basic” colorset configuration, the few-group, assembly-averaged cross-
sections and Eddington tensors were calculated to determine the reference value of the
“diagonal” and “adjacent” assemblies. A “base” case was calculated using a single assembly
with reflecting boundaries. The resulting multi-group assembly-averaged cross sections were
used in both the LD FE code, to determine the 1D homogenous albedo, and the diffusion code, to
determine an approximate albedo boundary condition for the “diagonal” and ‘“adjacent”
configurations.  Two single-assembly calculations, using the two-dimensional boundary
conditions, were calculated to determine the approximate few-group, assembly-averaged cross-
sections and Eddington tensors. Also, a single-assembly calculation using the 1D homogeneous
boundary condition was used to provide a “1D” approximation of the constants due to an
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adjacent unlike assembly. The 1D and 2D constants were compared, along with the “base”
(reflecting-boundary) constants, to the reference values.

The relative cross section errors, shown in Table 3.3, are very small in both “adjacent” and
“diagonal” configurations, but the 2D albedo does improve accuracy. In the “adjacent” case, the
sign of the error, for nearly all cross sections, changes from the “base” to the “1D
approximation”, which leads to the expectation that an improved 1D albedo might significantly
improve the results. The 2D modification reduces the error of the 1D approximation; the
maximum error is less than 1% using the 2D albedo. The most significant improvement occurs
in the thermal group in the UO, assembly, where the relative error drops to less than 0.02%. In
the “diagonal” case, the 2D approximation reduces the error for nearly all cross sections, but
with very little change, especially in the fast group, to already small errors.

Table 3.3 2D approximation of MOX and UQO, assemblies in diagonal and adjacent

configurations.
Adjacent Diagonal
2D 1D Reflect 2D Reflect
Reference Relative Error Reference Relative Error
MOX Assembly
2 Group K-inf 1.164 0.06% 0.07% -0.07% 1.164 -0.03%  -0.04%
Fast Group
Total 0.506 -0.14% -0.17% 0.12% 0.506 0.09% 0.12%
Absorption 0.017 -0.42%  -0.55% 0.77% 0.016 0.15% 0.26%
Nu*Fission 0.014 -0.11%  -0.14% 0.26% 0.014 0.07% 0.09%
Fission 0.005 -0.12%  -0.15% 0.26% 0.005 0.07% 0.10%
Inscatter 0.479 -0.12%  -0.13% 0.06% 0.479 0.09% 0.11%
Downscatter 0.011 -0.89%  -1.25% 1.69% 0.010 0.19% 0.47%
Thermal Group
Total 1.606 -0.10% -0.19% 0.37% 1.600 -0.05% 0.00%
Absorption 0.362 0.10% 0.29% -0.12% 0.362 0.06% -0.10%
Nu*Fission 0.593 0.09% 0.30% -0.11% 0.594 0.06% -0.11%
Fission 0.208 0.09% 0.29% -0.09% 0.207 0.06% -0.10%
Inscatter 1.241 -0.16%  -0.34% 0.53% 1.235 -0.08% 0.03%
UO2 Assembly
2 Group K-inf 1.270 0.03% 0.07% -0.25% 1.273 0.03% -0.03%
Fast Group
Total 0.509 0.11% 0.14% -0.10% 0.509 -0.08%  -0.09%
Absorption 0.010 0.21% 0.26% -0.30% 0.010 -0.14%  -0.18%
Nu*Fission 0.008 0.10% 0.16% -0.47% 0.008 -0.04%  -0.15%
Fission 0.003 0.13% 0.19% -0.48% 0.003 -0.05% -0.16%
Inscatter 0.483 0.10% 0.12% -0.04% 0.483 -0.08%  -0.08%
Downscatter 0.015 0.58% 0.85% -1.67% 0.015 -0.14%  -0.44%
Thermal Group
Total 1.292 -0.02% 0.04% -0.23% 1.295 0.03% -0.02%
Absorption 0.106 -0.04% 0.07% -0.49% 0.106 0.06% -0.04%
Nu*Fission 0.170 -0.04% 0.07% -0.49% 0.170 0.06% -0.03%
Fission 0.070 -0.04% 0.07% -0.49% 0.070 0.06% -0.03%
Inscatter 1.184 -0.02% 0.04% -0.22% 1.186 0.03% -0.02%
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The relative errors in the assembly-averaged Eddington tensors are shown in Table 3.4. The
relative errors in the diagonal (E\. and E,,) components are, in each approximation, not large
(under 5%). The 2D albedo reduces the maximum error (thermal-group MOX E,,) by a factor of
five to less than 1%. E., is the transport constant in the direction of the unlike neighbor. The 1D
albedo improves the E,, in both assemblies and groups, with a more significant change in the
thermal groups. The 2D albedo further reduces the error in the thermal constants, but has the
opposite effect in the fast group. A similar trend is seen in the diagonal assembly: a poor
modification in the fast groups and an over-modified albedo in the thermal groups (as evidenced
by a change in sign of the error).

E,, 1s approximately zero in the base case; therefore, its error is nearly 100%. Similarly, the
1D approximation of the UO, assembly has no effect on E,, because it is simply a 1D
modification to a uniformly enriched assembly. The MOX error is actually increased. The 2D
approximation shows improvement in the thermal groups, but decreases the accuracy in the fast
groups; the fast UO, E|, even has the incorrect sign. We are currently investigating the cause of
this poor E,, behavior as well as the significance of such errors when E, is this small.

The 1D albedo improves accuracy compared to the reflecting-boundary approximation, but is
not sufficient to account for the two-dimensional transport effects of the off-diagonal (E,,)
component of the Eddington tensor. In addition, the 1D albedo overestimates the effects of the
neighbor because it uses an assembly-averaged cross section for an assembly with graded
enrichment, which leads to a change in sign of the error. Our 2D modification to the albedo
reduces this error in several instances, especially in the thermal group, but in its current form it
does not correctly model the off-diagonal Eddington tensor either. We are investigating simple
strategies for further improvements.
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Table 3.4 2D approximation of the Eddington tensor in the adjacent and diagonal

configurations.
Adjacent Diagonal
2D 1D Reflect 2D Reflect
Exact Relative Error Exact Relative Error
MOX Assembly
Fast Group
E_xx 0.337 -0.34% -0.20% -0.42% 0.339 0.24% 0.22%
E xy 1.E-04 257% 153% 80% -2.E-04 135% 112%
E_vyy 0.337 -0.19% -0.15% -0.46% 0.339 0.24% 0.22%
Thermal Group
E_xx 0.334 -0.88% -1.82% 4.65% 0.319 -0.27% 0.22%
E xy 1.E-03 -75% 146% 106% -8.E-04 -103% 92%
E_vyy 0.321 -0.33% -0.87% 0.75% 0.319 -0.27% 0.22%
UO2 Assembly
Fast Group
E xx 0.339 0.19% 0.20% 0.38% 0.337 -0.28% -0.17%
E_xy -4.E-05 565% 100% 100% 2.E-05 2665% 100%
E vy 0.339 0.23% 0.13% 0.42% 0.337 -0.28% -0.17%
Thermal Group
E_xx 0.361 -0.01% 0.04% -1.25% 0.365 0.05% -0.08%
E xy -4.E-04 -67% 100% 100% 4.E-04 -68% 100%
E vy 0.366 -0.03% 0.13% 0.10% 0.365 0.05% -0.08%

In summary, the 2D albedo that we have devised is a computationally efficient way to capture
most of the effects that unlike neighbors have on a given assembly. Albedo-based single-
assembly calculations produce significantly more accurate few-group cross sections and
somewhat more accurate Eddington tensors. We have hypotheses about the causes of the largest
remaining errors and ideas for simple ways to improve our albedos and reduce those errors. We
will study these in the near future.

3.3.3 2D Albedo Boundary Condition Coupled with Spatial Superposition

To fully utilize the single-assembly calculation with albedo boundary conditions and minimize
the number of required branches, we must combine spatial superposition with the 2D albedo
approximation. In this subsection we test this combination for each of our six test configurations
(three for a MOX assembly and three for UO;). For each configuration we generate a reference
solution with a four-assembly TALC calculation. All other solutions in this subsection use
TALC only for single-assembly calculations, some with albedo boundary conditions as described
above.

A summary of the cross section results is shown in Table 3.5. The highest cross section error
is consistently found in the downscatter cross section, so we display this error. In general, there
is a reduction in the error as the boundary condition improves from reflecting to 1D albedo to 2D
albedo, but the error in the 2D approximation is much greater than the error from the
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Table 3.5 Cross-section errors from all tested approximations.

MOX uo2

Downscatter 2-Group K-inf|Downscatter 2-Group K-inf
Reference values
Checkerboard 0.0107 1.1632 0.0147 1.2671
Plane 0.0106 1.1635 0.0149 1.2702
Isolated 0.0108 1.1627 0.0146 1.2670
Spatial Superposition
Checkerboard -0.05% 0.00% -0.06% 0.00%
Plane 0.05% 0.00% 0.03% 0.02%
Isolated 0.04% 0.00% 0.01% 0.03%
2D Albedo with Spatial Superposition
Checkerboard -1.81% 0.12% 1.12% 0.07%
Plane -0.66% 0.03% 0.47% 0.07%
Isolated -1.53% 0.08% 1.06% 0.12%
1D Albedo with Spatial Superposition
Checkerboard -2.50% 0.14% 1.68% 0.14%
Plane -0.74% 0.03% 0.44% 0.06%
Isolated -1.95% 0.10% 1.30% 0.14%
Reflecting Boundaries
Checkerboard 3.28% -0.15% -3.45% -0.51%
Plane 2.19% -0.12% -2.09% -0.26%
Isolated 3.80% -0.19% -3.85% -0.51%

superposition of the colorsets (reported in earlier tables).

We must investigate further to

determine whether further improvements are needed in our albedo boundary conditions; it is
possible that they are accurate enough that a different part of our overall methodology is now the
limiting factor. As mentioned above, we believe we can devise simple modifications to improve
our albedos if this is needed.

The Eddington-tensor results are displayed in Tables 3.6 and 3.7 for UO, and MOX,
respectively. The E,, and E,, components are very accurate and improve with each improvement
in the boundary condition. E,, suffers from inaccuracy as described previously; further
investigation will determine whether this is significant. [Note that today’s reactor analyses use
diffusion theory, which corresponds to Ey, =0 and E,, = E,, = 1/3.]
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Table 3.6 Eddington-tensor errors from all approximations: UO; assembly.

Fast Group Thermal Group
E_xx E_xy E_yy E_xx E_xy E_yy
Reference values
Checkerboard | 0.3407 @ -4.E-05 | 0.3407 0.3606 | -9.E-04 @ 0.3606
Plane 0.3386 @ 6.E-05 0.3387 0.3606 @ -4.E-05 @ 0.3652
Isolated 0.3400 1.E-04 0.3400 0.3605 | -7.E-04 @ 0.3605
Spatial Superposition
Checkerboard | 0.01% -129% 0.01% -0.10% 17% -0.10%
Plane -0.02% 146% -0.01% 0.06% 247% -0.01%
Isolated -0.02% 151% -0.02% | -0.04% 53% -0.04%
2D Albedo with Spatial Superposition
Checkerboard | 0.43% 1163% 0.43% -0.14% -38% -0.14%
Plane -0.11% 458% -0.06% 0.10% 365% 0.00%
Isolated 0.13% 106% 0.13% -0.04% 23% -0.04%
1D Albedo with Spatial Superposition
Checkerboard | 0.35% 100% 0.35% 0.07% 100% 0.07%
Plane 0.01% 100% -0.05% 0.02% 100% 0.03%
Isolated 0.15% 100% 0.15% 0.05% 100% 0.05%
Reflecting Boundaries
Checkerboard | 0.81% 100% 0.81% -1.25% 100% -1.25%
Plane 0.19% 100% 0.24% -1.27% 100% 0.01%
Isolated 0.62% 100% 0.62% -1.28% 100% -1.28%

Table 3.7 Eddington tensor from the superposition of all approximations in the MOX

Fast Group Thermal Group
E_xx E_xy E vy E_xx E_xy E vy

Reference values
Checkerboard | 0.3354  2.E-04 0.3354 | 0.3344 2E-03 0.3344
Plane 0.3375 -2.E-05 0.3374 | 0.3353 -4.E-05 0.3214
Isolated 0.3360 2.E-04 0.3360 | 0.3360 4.E-04 0.3360
Spatial Superposition
Checkerboard 0.03% 6% 0.03% -0.51% -17% -0.51%
Plane -0.03%  -418%  -0.01% | 0.27% 610% 0.04%
Isolated -0.02% 99% -0.02% | -0.23%  -180% -0.23%
2D Albedo with Spatial Superposition
Checkerboard | -0.51% 274% -051% | -1.71%  -102% -1.71%
Plane -0.13%  -687% 0.04% | -0.87% 281% -0.57%
Isolated -0.31% 299% -0.31% | -1.68% -314% -1.68%
1D Albedo with Spatial Superposition
Checkerboard | -0.32% 166% -0.32% | -3.15% 149% -3.15%
Plane -0.01%  -248% 0.05% | -1.33% -1019% -0.61%
Isolated -0.15% 185% -0.15% | -2.66% 289% -2.66%
Reflecting Boundaries
Checkerboard | -0.85% 90% -0.85% | 4.85% 104% 4.85%
Plane -0.23% 230% -0.25% 5.10% -56% 1.00%
Isolated -0.68% 87% -0.68% | 5.30% 114% 5.30%
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3.4 Conclusions

We have developed extensions of present-day reactor-analysis methodology that systematically
account for the effects that different neighbors have on a given assembly’s few-group constants.
One extension is branch cases that generate the effect of unlike neighbors on a given assembly’s
group constants. Another extension is to use superposition of the effects of neighboring
assemblies to reduce the number of branch calculations that are needed to tabulate the effects of
all possible neighbor permutations. Finally, we also use energy-, angle-, and position-dependent
albedos to simulate the presence of the unlike neighbors in our branch calculations. We have
developed and tested a procedure for efficiently estimating these albedos.

We envision two neighbor-assembly branches for each type of neighboring assembly, one for
an adjacent configuration and one for diagonal. For each type and configuration we further
envision a small number of branches on the neighbor’s burnup and one branch with the neighbor
containing a control rod. Other branches might be necessary in some applications. For each
branch case we estimate an albedo and perform a single-assembly calculation; this fits into the
framework of present-day methodology. (The base case corresponds to all identical neighbors —
which produces the usual reflecting boundary condition.) The keys to computational efficiency
are rapid estimation of albedos, the use of superposition, and keeping the number of branch cases
reasonably low. The keys to accuracy are accurate estimation of albedos and careful attention to
the limits of the superposition approximation.

We have found that spatial superposition of the effects of adjacent and diagonal neighbors
provides an excellent approximation to the effects of multiple neighbors on the assembly cross
sections and the diagonal (xx and yy) Eddington-tensor components. There is a large relative
error in the superposition approximation of the very small off-diagonal (xy) component, the
significance of which has not yet been determined.

We have found that the albedos produced from 1D homogenized calculations do a reasonably
good job of capturing the effects of a different neighbor except near assembly corners, although
it appears likely that explicit representation of the water gap will add enough accuracy to warrant
its complexity. We have devised a 2D homogenized diffusion approximation combined with a
fixed-source long-characteristics transport sweep to obtain 2D correction factors for the 1D
albedo. This does not cause the off-diagonal tensor component to be accurate, but it does
improve the cross sections and diagonal tensor components. Our estimated albedos produce
significant improvements over the reflecting condition, but we believe that further significant
improvement is possible, and we are actively pursuing such improvement.

We are currently working to couple our assembly-level results with full-core quasi-diffusion
calculations to assess the impact of the errors that remain in our cross sections and Eddington
tensors. If this assessment shows that further assembly-level improvements will noticeably
improve the accuracy of the overall methodology, then we believe we can accomplish these
improvements, beginning with simple improvements to our albedo boundary conditions.
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In summary, we believe the new methodology described here is promising, and we expect to
continue to refine it, couple it to other pieces of a full reactor-analysis system, and test the
coupled system. We hope to report on further progress in future communications.
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Chapter 4

Recent Improvements in Boundary Conditions
for Single-Assembly Calculations

4.1 Introduction

A major challenge in reactor analysis is obtaining the local power shape and homogenized few-
group constants for an assembly whose neighbors are significantly different. If the neighbors are
similar to the assembly in question, then the solution in the assembly is well-approximated by
solving a single-assembly problem with reflecting boundaries. However, if an assembly’s
neighbor is significantly different, the reflecting boundary condition produces inaccuracies.

In recent papers [1][2] we reported some attempts to reduce this inaccuracy. Our strategy is to
add branch cases that account for unlike neighbors, much like branch cases now account for
other deviations from “base-case” conditions. FEach neighbor-branch considers a known
assembly touching the given assembly along a surface or at a corner. The desired solution could
be obtained by solving a four-assembly “colorset” with three given assemblies and one different
neighbor. We wish to avoid the expense of this four-assembly fine-mesh transport solution by
using a one-assembly calculation with albedo boundary conditions that simulate the neighbor.

Here we describe an improved procedure for generating albedos for the single-assembly
calculation and compare the results against reference solutions and against previous results from
[2]. Our test problems show that the new albedos yield substantial improvements in few-group
constants.

This work is part of a larger collaborative project that uses quasi-diffusion equations for core-
level analysis [3][4][5]. To support this project our single-assembly calculation must produce
components of the “Eddington tensor,” defined as follows, where u=x or y, v=2x or y.

r
o ,W)dW
En(r)= O“"\V\Myr(: Waw
04py(r, dW

4.2 Estimation of Albedo

Our albedo boundary condition is implemented in a long-characteristics transport code as
follows:
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y( V\/) gge(W)y( r, ),zt | edge e. (2)

Here g is the energy-group mdex and W is the dlrectlon that reflects onto W on edge e. (The
reflecting condition is g, (W) 1 for all g, e, and W) The question addressed here is how to

I
inexpensively but accurately estimate g, . (W) .

As in previous work [2], we assume that reflecting-boundary calculations have been
performed for all assemblies before any neighbor branches are calculated. Thus, when a
neighbor branch is calculated, homogenized cross sections are available for the neighbor
assembly.

Let “A” denote the given assembly with neighbor “N.” We arrange one “N” and three “A”
assemblies (or quarter-assemblies if symmetry permits) into a 2x2 array. We assume that each
quarter-assembly has four homogeneous regions: the corner pincell, two edge rows of pincells,
and the interior. Figure 4.1 shows a sketch of this simplified colorset.

I i
EW//////

_

Fig. 4.1 Sketch of simplified four-assembly colorset showing homogeneous regions.

We solve the k-eigenvalue problem for this simplified colorset using cell-centered finite-
volume diffusion with one mesh cell per pin cell, using reflecting (zero-current) boundary
conditions on the outer surfaces. This calculation, which uses the same energy groups as the
single-assembly transport, produces an estimate of the scattering + fission source in each pin cell.
We then perform an inexpensive long-characteristic transport calculation to obtain angular fluxes
at the midpoints of pin-cell edges that wi%l need albedos (i.e., on two surfaces of one “A”

assembly). IThe calculation for direction W marches backward from each edge midpoint in

direction —W, accumulating contributions until it has traversed at least 10 mean-free paths, at
which point further contributions are neglected. Ratios of edge-center angular fluxes produce the

albedos, g, . (\IN) .

One difference from previous work [2] is the use of nine separate homogenized regions in
each assembly in the simplified colorset calculation. Previously each assembly was fully
homogenized. This difference is important for non-uniform assemblies. Previously we forced
the albedo at the center of the surface between two assemblies to equal an albedo calculated from
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a simple 1D transport calculation, reasoning that far from corners the effects should be largely
one-dimensional and that the transport calculation should add accuracy. We have now found
that in the high-energy groups, even far from corners, the effects are not one-dimensional. Our
new method, therefore, does not employ a 1D transport calculation in its estimation of albedos.

4.3 Results

We consider two assembly types: MOX with three enrichment zones and U with uniform
enrichment. Problem A generates MOX constants given a U assembly diagonally opposed
(touching a corner); B generates MOX constants given an adjacent U assembly (sharing a
surface); C generates U constants given an adjacent MOX assembly. In Table 4.11 we compare
few-group constants generated by our previous and new methods against reference results, which
are generated by applying our fine-mesh long-characteristic code [6] to each full colorset. We
also compare results from reflecting-boundary calculations (albedo=1). The “old” albedo of [2]
improves the 2-group homogenized cross sections compared to the standard reflecting-boundary
method. The new albedo produces further improvements. The largest cross-section error in the
table is 1.69% for reflecting, 0.63% for the old albedo, and 0.26% for the new albedo. All
methods produce accurate E,, and E,, values. Only the new albedo produces accurate thermal-
group E,, values. No method shown here produces accurate fast-group E,, values. We expect to
address this issue in a future communication.

All methods produce accurate E,, and E,, values. Only the new albedo produces accurate

thermal-group E,, values. No method shown here produces accurate fast-group E,, values. We
expect to address this issue in a future communication.
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TABLE 1. Errors in results from various methods. (1 = fast; 2 = thermal)

Test Problem

A B C
Con-
stant % Relative Error or value % Relative Error or value % Relative Error or value
Ref. Val.[ Albedo (o[ New | Ref.Val. Albedo Old New Ref.Val [ Albedo oid New
=1 Alb. Alb. =1 Alb. Alb. =1 Alb. Alb.

28| 4 y6a | —0.04 | —0.04 | —0.03 | 1.164 | —0.07 | 009| 0.05]1270 | —025| o001 | —0.01

il 0.506 0.12 0.10 0.09 | 0.506 0.11 | -0.13 | -0.07 | 0.509 | —-0.10 0.11 0.09

Xl 0.016 0.26 0.19 0.17 1 0.017 0.76 | —0.38 | —0.10 | 0.010 | —0.30 0.20 0.16

vXs | 0.014 0.09 0.08 0.07 1 0.014 0.25 | -0.10 0.01 | 0.008 | —0.43 0.10 0.06

21> | 0.010 0.47 0.29 0.2510.011 1.69 | —0.63 | —-0.09 | 0.015 | —1.69 0.42 0.26

X0 1.600 0.00 | -0.03 [ -0.03 | 1.607 0.41 0.04 | -0.09 ] 1.291 | -0.27 | —-0.04 [ —0.05

2u2 0.362 | -0.10 0.03 0.02 | 0362 | -0.12 | —0.05 0.12 ] 0.106 | -0.58 | —=0.04 | —0.07

VX |0.594 | -0.11 0.03 0.0110.594 | —-0.10 | —0.05 0.1310.170 | —-0.58 | —0.03 | —0.06

E.1 ]0333 0.03 0.02 0.02 | 0.333 | —-0.03 | —0.03 0.29 | 0.333 0.03 | —-0.02 | —0.01

E,i ]0.333 0.03 0.02 0.0210.333 | -0.03 | -0.02 | —0.11 ] 0.333 0.02 0.05 0.05

Eyi | -7E-5| I1E-5| 2E-5| 3E-5|4.E-5 IE-5 | —]E-4 | 9E-5 | -7TE-6 | —IE-9 | S8E-5| I1E-4

E., ]0332 0.03 0.02 0.02 1 0.336 134 | -0.19 0.56 1 0.333 | —0.48 | —0.01 | —0.01

E,» ]0.332 0.03 0.02 0.02 | 0.330 | —0.66 0.08 | —0.19 ] 0.336 0.00 [ -0.03 | —0.03

Eoo | -4E-4 | 3E-5| «4E-4 | <4E-4|5E4 | 3E-5| 4E-4| SE-4| 2E-4 | 2E-9| 2E-4 | 2E-4

4.4 Summary

Our new method for estimating albedos allows the efficient generation of homogenized cross
sections that more accurately include the effects of unlike neighbors. In its current stage of
evolution the method does not produce accurate xy components of the Eddington tensor in the
fast energy group.
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Chapter 5

Consistent Spatial Discretization of
the Low-Order Quasidiffusion
Equations on Coarse (Grids

5.1 Abstract

In this chapter we develop a spatial discretization method for the low-order quasidiffusion
equations on coarse grids for full-core reactor calculations. The proposed method reproduces
accurately the complicated large-scale behavior of the transport solution within assemblies.
The resulting discretization is spatially consistent with a fine-mesh discretization of the
transport equation in the sense that it preserves zeroth, first and second spatial Legendre
moments of the fine-mesh transport solution over coarse-mesh cells along with the surface
currents, and eigenvalue. Numerical results that demonstrate accuracy of the proposed
methodology are presented.

5.2 Introduction

The present computational methodologies for reactor analysis are based on full-core and
assembly-level calculations. Full-core calculations generate eigenvalues and power distribu-
tions for a reactor core using few-group diffusion equation approximated on coarse grids.
Each grid cell represents a large part of an assembly. The group data (i.e. cross sections,
diffusion coefficients, discontinuity factors and other functionals) are obtained from assembly-
level transport calculations in which the many-group transport equation is solved in isolated
assembly with reflective boundary conditions on fine spatial grids.

An alternative approach was recently developed [1, 2, 3, 4, 5, 6]. To account for the
complicated transport effects in full-core calculations, a new methodology is based on low-
order quasidiffusion (LOQD) equations [7, 8, 9]. This approach is also combined with single-
assembly transport calculations that use special albedo boundary conditions which enable
one to simulate efficiently effects of an unlike neighboring assembly on assembly’s group data
2, 6].

The LOQD equations can capture transport effects to an arbitrary degree of accuracy.
These equations can be reduced to a diffusion-like form. These features make the LOQD
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equations very attractive for using them as a background for methodology for reactor core
calculations. In full reactor core calculations, it is necessary to use discretization methods
that are very accurate on coarse meshes. In this paper we develop methods for approxi-
mating of the LOQD equations on coarse grids. It is necessary for such method to preserve
the averaged reaction rates, surface-averaged group currents, and eigenvalue [10]. The way
to improve accuracy of coarse-mesh calculations is to put more physics into coarse-mesh
solution. This can be achieved by developing coarse-mesh discretization methods that re-
produce accurately the large-scale behavior of the transport solution within assemblies that
is characterized by a set of its pin-cell average values.

In this paper we present a finite-element discretization scheme of the low-order equations
of the quasidiffusion (QD) method on coarse grids. On the basis of this scheme, we develop
a coarse-mesh discretization of the LOQD equations that preserves exactly several spatial
moments of the fine-mesh transport solution over coarse-mesh cells (e.g., assembly or quarter
assembly). We analyze the behavior of the proposed method on numerical test problems that
simulate the interaction of MOX and uranium assemblies with enrichment variations and
water holes, and consider sensitivity of the coarse-mesh solution to perturbations in group
data.

The reminder of the paper is organized as follows. In Sec. 5.3 we formulate the few-group
LOQD equations. In Sec. 5.4 we derive a basic coarse-mesh finite element method for the
LOQD equations that preserves zeroth moment of the fine-mesh transport solution as well
as surface currents and eigenvalue. In Sec. 5.5 we present an advanced coarse-mesh finite-
element method that preserves extra spatial moments of the fine-mesh transport solution. In
Sec. 5.6 we demonstrate numerical solutions of test problems that simulate the interaction
of MOX and uranium assemblies. We conclude with a discussion in Sec. 5.7.

5.3 The Few-Group Low-Order Quasidiffusion Equa-
tions

5.3.1 The LOQD Equations

We consider a few-group k-eigenvalue transport problem for 1D slab geometry with vacuum
boundary conditions, 0 <z < X, g = 1,..., M,;. The LOQD equations [7, 9, 11, 12] for the
group scalar flux ¢ and current JY are

M
d pH p 1 - PP P
d_Jg+Eg¢g_pZ_:E g keffx ;u Py (5.1)
(B0 15400 =0, (52)
J9(0) = C7¢(0) , JU(X) = Cpe?(X) . (5.3)

The functionals E9, CY and CY, are calculated by means of the few-group transport solution

W—/¢Myyww, (5.4)



Cr= [O W“’du/ Z e y , Ch= 0/1 uwgdu/ 0/1 YIdp B (5.5)

where 9 is the group angular flux. The LOQD problem (5.1)-(5.3) exactly reproduces the
transport scalar flux and current provided that the functionals are exact.

5.3.2 Generation of Few-Group Data

The LOQD equations are used in combination with assembly-level transport calculations that
utilize the albedo boundary conditions without making color-set calculations, to simulate
interaction with adjacent assembly in a reactor core.

Let us consider that each coarse-mesh cell represents a whole assembly. To generate
fine-mesh transport solution for a given assembly (coarse cell) and calculate the averaged
cross sections and functionals for the few-group coarse-mesh discretized LOQD equations,
we perform a set of single-assembly fine-group transport calculations on fine spatial mesh
with albedo boundary conditions (0 < z < X)

Y0, ) = 7 ()P (0, —p) 5 for p >0, P™(X,p) =g (@)™ (X, —p), for p <0 (5.6)

where 7", vg are albedos. The resulting boundary conditions for the fine-group LOQD
equations have the following form:

J"™(0) = v —=CT'o™(0), AL, = /OM”V?(—u)wm(O,u)du//o p" ™ (0, wydp ,  (5.7)

m
)\Rl

THX) = 1+ )\

0 0
R¢m( ) Xi%,nz/u”vﬁ(—u)wm(X,u)du// p" Y™ (X, p)dp
—1 —1

(5.8)
where n = 0, 1. In this methodology various albedos are used to simulate interface phenom-
ena between different assemblies [1, 2, 6].

5.3.3 Fine-Mesh Transport Solution

Assume that the reference fine-mesh transport solution of a given problem is known from
calculations by means of some transport differencing method, and we have the fine-mesh
transport solution defined by fine-mesh eigenvalue /{:éf}'}, discrete grid functions of fine-mesh

scalar flux gzﬁf;f "™ and current Jfl”f " which are defined as

J}%fm = {Jg {77277; =1,. Ng{m +1}, (5.9)
oI = {0 =1, ... NI™, 7 f{’;z,z' =1,.,N/™ 41} . (5.10)
where the fine mesh is given by {xﬁ”lﬂ, i=1,...,N/m+1, x{/"; =0, van;m+1/2 X}.
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5.4 Coarse-Mesh Finite-Element Discretization Method
for the LOQD Equations

Let us define the following coarse mesh {x;_1/2, j = 1,..., NJ™ + 1}. The width of the jth
coarse-mesh interval is H; = xj11/2 — xj_12. The LOQD equations are approximated by
means of a coarse-mesh finite-element (CMFE) method based on the following expansion of
the coarse-mesh scalar flux

= 3@+ DI R(G @) + P sinh (e (2 — 7)) + 909 cosh( @ — ;) , (5.11)
=0

where P, are Legendre polynomials,
Glx) =2(x —x;)/Hj, x;=05(xj01p2 +x5-102), 1<J <N, (5.12)

and

s = /(B0 — (Se0)T (S04 (B)S. (5.13)

Note that we use brackets (e) for quantities spatially averaged over coarse cells and defined
as

(A= AP " h; [ 68y, (5.14)
’iewj iELUj
where
wj =i wjmap Sl < Tjaap) (5.15)
is a set of indices of fine-mesh cells that belong to the jth coarse-mesh cell, h; = xﬁ"i /2 x{i”l /2

is the width of the ¢th fine-mesh cell.

To derive a scheme for the LOQD equations, we integrate the balance equation (5.1) with
weights P((j(x)) I = 0,1,2 over coarse interval z;_1/2 < & < j11/2. Using Eq.(5.2), we get
the following set of coarse-cell spatial moments of the balance equation:

My

H;
— s (0)7
Ty = J0y + (S)IH; 0 = H, Z s0)t 0ol +k—ﬁz<xyf2f>§gq>j 7, (5.16)
e p=1
2
) T (1)7 —_
STt (S0H, (B} @ (@j01p0) — {EY) DY (wjo172)) + (Z0)H;®; 7 = (5.17)
M, H My
— 1), ] , 1),
Hp > (S0) 90807 + k_] > xsp)hoaitr
—1 eff p=1
6 , - (0), (2),
Jfﬂ/z—JﬁuﬁW <{E}?+‘I’?(%+1/2) +{E} ®5(xj-172) — 2(E);P; g)+<2t>§HJ‘pj =
(5.18)
My H My
— 2), j , 2),
H; ) (8,007 00 + k_fjf PRl
p=1 el p=1
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where

Tj+1/2
1
20 = / B¢ () (2)dr, 1=0,1,2 (5.19)
J
Tj—1/2

are spatial moments of the coarse-mesh scalar flux. The definitions of { £}~ and{E }?’+ are
given below.

On the basis of Eq. (5.2), we formulate the relationship between the current, scalar flux
and its derivative at the coarse-cell edges

_ dof dE " B
S IS b A LR ST AR
d®j dE 7"
{EYT —= + {%} O (w41/2) + {5}, =0. (5.21)
T=Tj+1/2 J

The coefficients of these equations are calculated by means of pin-cell average data. Such
quantities are denoted by {e}. Assume that there are Z; pin cells in the jth coarse interval.
We define the pin-cell averaged quantities of the following form:

{AYgrmim = N MG [y ¢, (5.22)
g g
where wg?m#m is a set of indices of fine-mesh intervals that belong to the mth pin cell. In

Egs. (5.17)-(5.21) the functional EY and total cross section are averaged over boundary pin
cells

,— ,pin s , in#Z]‘ — ,pin s . , in#Zj
{EY)™ = {EY"™ 1 {BY)T = {E}Y]7™7 {27 = (S {27 = {23577

(5.23)
and
dE o g,DinF2 g,pin#l pin#2 pin#l
Y s ) () oo
J
dFE o+ g,pin#Z; g,pin#Zj—1 DINHZ; pin#tZ;j—1
ol P (TR i VA U A R
J

where HY M#M is the width of the mth pin cell. The equations (5.20) and (5.21) with group
data defined by (5.23)-(5.25) enable us to approximate the large-scale behavior of the trans-
port solution next to boundaries of coarse intervals. Note that the homogenization algorithms
developed by Kord Smith [14] use group data that is averaged over boundary pin cells.

To complete the system of discretized equations of the proposed method, we define the
discontinuity conditions for the scalar flux

G?’+(I)?<Ij+1/2) = G?;-_lq)?—i-l(xj-i-l/?) y j = ]., cevy chm -1 3 (526)
and boundary conditions (5.3)
Iy = CIGT 0 (2172) s Semi1jo = CRGRim ®hom (Tnemy1/2) - (5.27)
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As a result the coarse-mesh discretization method consists of the spatial moment equations
(5.16)-(5.18), equations (5.20) and (5.21) at the edges of coarse cells, the discontinuity con-
ditions (5.26), and the QD boundary conditions (5.27). Substituting the expansion (5.11)
into these equations, one obtains the final set of algebraic equations for cpg-l)’g , 1 =0,...,4,
j=1,...,N& and JY J=1. ,N"+1, (g=1,..,M,).

j—1/2
The dlscontlnmty factors are defined as the ratio

GY* = ¢i’fm(xjil/2>/ CHETYR (5.28)

where gbi’f (x4 /2)~ is the fine-mesh transport scalar flux at & = x;11/,. Here we utilize an
auxiliary function ®4(z)
i 2
&) =320+ 1D)FVIP(¢ () + @ sinh (3 (@ — 25)) + @\ cosh(3 ( — z5)) (5.29)
1=0

which is the solution of Egs. (5.17)-(5.21) in each jth coarse cell provided that the cell-edge
currents, cell average scalar flux, and eigenvalue equal to their fine-mesh values.

The coarse-mesh discrete LOQD equations (5.16)-(5.18), (5.20)-(5.21), (5.26) and (5.27)
are consistent with the given transport differencing method that generates the reference
numerical transport solution gzﬁfl’f " and J}f’f "™ in the sense that the coarse-mesh solution
®(x) preserves the average value of the fine-mesh scalar flux and reaction rates over each
coarse-mesh cell, fine-mesh currents on edges of coarse cells, and fine-mesh k-eigenvalue, i.e.

. Z ¢!™h; | (5.30)

) iew,
k= k™, (5.31)
J? —1/2 = Jg’fm(xj—lﬂ)’ J]+1/2 J "(@jr1/2) s (5.32)
(D)0 H; 00 = 3" 08 69 (Do)t 0O H =Y s gp I, (5.33)
i€w;j i€w;
(SO @P Hy = Y X S8 (5.:34)
iCw;

Note that in terms of spatial moments of the scalar flux, the resulting coarse-mesh finite-
element method (5.16)-(5.18), (5.20)-(5.21), (5.26) and (5.27) preserves only zeroth moment
of fine-mesh transport solution. Hereafter we refer to this method as CMFE-0, where the
number indicates the maximum order of the spatial moment of the fine-mesh transport
solution preserved by the method.

5.5 Advanced Consistent Coarse-Mesh Discretization

We now develop an advanced consistent coarse-mesh discretization method that preserves
extra spatial moments of the fine-mesh transport solution, namely, first and second spatial
Legendre moments of the fine-mesh scalar flux over each coarse cell,

(I)gl),g _ ¢(l)797fm 1=1,2, (5.35)

J )
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where

D.gfm _ 1 sli g fmy

g\ = EZR ¢ " h (5.36)
1EW;

is the discrete form of spatial Legendre moments of the fine-mesh scalar flux over z;_;/5 <
x < xji1/2, and

z+l/2
Pl = / e (5.37)

T 1/2

To formulate a scheme with the desired properties, we use the above method as a basis
and add special consistency terms in the first and second spatial moments on the balance
equations. The proposed CMFE method is defined by

M M,
0 - -~ H; 9 (0),
‘]51-1-1/2 J‘g—1/2 + <Et>gHch§' b9 = H, Z sO ) gCI)( P + 2 Z<nyzf>§gq)§ )P , (5.38)
p=1 eff p=1
2
J+1/2 + Jg 12t g <Et>gH' ({E}?jL(I)?(J;jJrl/?) {E}g (xj 1/2)) +
i At
(E3H20 + (o 4 61 Hol = (5.39)
My H My, .
3 S e 3 (s L) ae
p=1 eff p=1 p=1 eff
6 - 0
Trae =i ¥ sy, (1B} @(wy010) + {BV @ (w;0110) — 2(ENJO) +
2 2 0),
(2)9H<1>(>9+( @9 4 g )Hj©§)g: (5.40)
H 50 p—>g(1) + nyz PQCD( pH (ﬂ@) p—’g ﬁ( ),P ) (I)(O)
Z eff pz; Z k ef f fa
_ dP] dE?™ -
By - + {@} O (j172) + {07, =0, (5.41)
=Tj—1/2 J
dd? dE) 9T
{ }g+ dr — + {%} 4 7 (x]+1/2) + {Zt} j+1/2 =0. (5.42)
r= CL’J'+1/2
Gg (IJ_H/Q) G]+1(I)]+1(13]+1/2) j = ].,,Nzcm— 1, (543)
Jig/Z = Og/GL(I]’_ésll(xl/Q) ) JN§m+1/2 - C}%G?\};mq)?v;m ($N§nz+1/2) . (544)

Here we use new discontinuity factors G9* that are determined by means of different auxil-
iary function compared to one used to calculate G9* in the CMFE-0 method.

The oz(l , ﬁt s ﬁ D-P=9 and ﬁj(clgp Y are consistency terms that are defined such that
the resultlng scheme preserves: (i) fine-mesh values of the transport currents at edges of
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coarse cells, (ii) zeroth, first and second spatial Legendre moments of the fine-mesh transport
scalar flux over each coarse cell. To derive such terms and get spatial moments equations
consistent with the fine-mesh discretization scheme, we performed the operation of taking
spatial moments of the balance equation (5.1) in discrete form by multiplying the fine-mesh
discretized balance equation by P” [=1,2, (Eq.(5.37)) and summing it over all fine-mesh
cells that belong to the jth coarse interval

P (U8 = ) + PRt =

1EW; 1EW;

I ILCTIEINEE 3 o, DL P LT

p=1 i€w; kffp 1 icw;
j=1,.. N

As a result we define the following functionals:

P = T = T (s g) = T o)

1EW;

2 g+¢h "(x Tji1/2) B g,fd)%f (j-1/2
ot ({} )y o) )

J J

> ot ", (5.46)

1EW;

2 2 m m Jm I
()g ZP J <JZ£J+J;/2_J25U’1/2) —Jﬁf (q;j+1/2)+Jgf (xj_1/2)_

'LE(A)]
¢ ( 1/2) _¢gf ($ 1/2)
Eg’+h— Eg —]_QEQ 0),9,fm gfmh“
(5.47)
0, =17 g, fm Fm
ﬂt(J) = Z (21— (0] Pl 6" Z ¢, (5.48)
iewj iGLUj
BT = NSt (S )] PE Ty [ S gy (5.49)
’iEWj ’iEUJj
BN =3 [ S = (xS b ] P or ™ h, / S e, (5.50)
1EW; 1€EW;
[=1,2.

Note that we assumed that the discontinuity factors are known.
To define the discontinuity factors G?’i, we use an auxiliary function

2

=Y @+ D)V R(G () + B sinh (4] (@ — ;) + B0 cosh (s (w — 1)) (5.51)

J
1=0
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which is the solution of Eqs. (5.38)-(5.44) for the jth coarse cell such that it reproduces the
average value of the fine-mesh transport scalar flux, the first and second spatial Legendre
moments of the fine-mesh transport scalar flux, and currents on edges of this coarse cell.
To calculate the coefficients of expansion of ®f(z), we need to solve the following set of

equations in terms of Qy)’g, [ =0,...,4 in the jth cell:

_ d<I>g dE?™ ~ .
I e ) VS R CE
T=Tj_1/2 J
dzf)g dE 97-"—/\ -
e IR < - P R R NP R CE
T=T;j11/2 !
oo = glhodm =012, (5.54)
The discontinuity factors are defined as the ratio
I = o™ (wm1/2) | Bj012). (5.55)

The following theorem is true for the derived advanced consistent coarse-mesh discretiza-
tion method:

Theorem The coarse-mesh discrete low-order QD equations (5.38)-(5.44), with dis-
continuity factors (5.55), cross sections and functionals defined by (5.14), (5.23)-(5.25) and
(5.46)-(5.50) are consistent with the given transport differencing method that generates the
reference fine-mesh transport solution gzﬁ;ql’fm and Jﬁ’fm in the sense that the coarse-mesh
solution @?(x) preserves the average value of the fine-mesh scalar flux and reaction rates
over each coarse-mesh cell, the first and second spatial Legendre moments of the fine-mesh
scalar flux over coarse intervals, fine-mesh currents at edges of coarse cells, and fine-mesh
k-eigenvalue, 1.e.

0), 1),g9,fm Jfm m
ol = ¢§»)gf C =012, Ty = M (@) keps = KL (5.56)
(D)0 H; 00 =N "0 69 (Sa0)t T H; R = YT s g, (5.57)
1EW; 1EW;
()l Hyo 0% =3~ x3up 5 6Py (5.58)
1EW;

Thus, the resulting coarse-mesh finite-element method preserves up to the second Legen-

dre spatial moment of the fine-mesh transport scalar flux over coarse-cells. We refer to this
method as CMFE-2.

5.6 Numerical Results

5.6.1 Test Problems that Simulate the Interaction of MOX and
Uranium Assemblies

We present numerical results of Kord Smith’s test problems in 1D slab geometry with two
energy groups [14]. In these test problems, model uranium and MOX assemblies are used.
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There are two half-assemblies next to each other with reflective boundary conditions on the
outside. A MOX half-assembly is on the left and a uranium half-assembly is on the right.
Each half-assembly consists of 8 pin cells. A fuel pin cell is 1.25 cm wide with fuel pin (0.625
cm) located in its center and surrounded by water. The half-assembly width is 10 cm. Table
5.1 shows cross sections of different types of fuels and water. Figures 5.1-5.5 demonstrate
design of assemblies for each test problem. Test 1 and 2 consists of assemblies with the same
type of fuel pins. Test 3 and 4 differ from Test 2 by design of MOX assemblies. These tests
simulate variation in enrichment near the interface with a uranium assembly. Test 5 has a
MOX assembly with a water hole.

The fine-mesh solutions were calculated by the QD method using a second order finite-
volume scheme for the LOQD equations and step characteristic method for the transport
equation to calculate the QD functionals [13]. The fine spatial mesh consists of 128 equal
cells, i.e. 8 mesh cells per pin cell. The angular mesh has 10 intervals. The multiplication
factor equals 1.5. The coarse mesh consists of one cell per half-assembly; thus, N = 2.

Figures 5.6-5.15 show the fine-mesh transport scalar fluxes versus position, pin-cell av-
erage values of the scalar flux represented as a histogram plot, and coarse-mesh solutions
obtained by means of the CMFE-0 and CMFE-2 methods. Tables 5.2-5.11 present the rela-
tive difference in pin-cell average values of the fine-mesh transport solution and coarse-mesh
LOQD solution calculated by the CMFE-0 and CMFE-2 methods. In each assembly pin
cells are numbered from left to right. The largest absolute values of relative differences in
pin-cell average values of the fine-mesh transport solution and coarse-mesh LOQD solution
in MOX assemblies are listed in Table 5.12.

The results of Tests 1 an 2 demonstrate that both methods generate very accurate coarse-
mesh solutions, if assemblies consist of the same type of fuel pins. In Tests 3 and 4 that
simulate spatial variation of fuel enrichment in MOX assembly, the CMFE-2 method ap-
proximates accurately the large-scale behavior of the transport solution characterized by the
pin-cell average values. The resulting coarse-mesh solution of the CMFE-2 is significantly
more accurate compared to the coarse-mesh solution obtained by the CMFE-0 method that
preserves only zeroth spatial moment of the scalar flux. In Test 5 with the water hole in
the MOX assembly the CMFE-2 method mimics the large-scale behavior of the fine-mesh
transport solution and generates coarse-mesh solution with sufficiently good accuracy. These
results demonstrate that the preservation of extra spatial moments of the fine-mesh transport
solution leads to significant improvement in accuracy of the coarse-mesh solution.

5.6.2 Stability of Consistent Discretization to Variation of Group
Data

In calculations of the presented test problems, all necessary assembly-averaged cross sec-
tions and functionals (discontinuity factors, quasidiffusion functionals, consistency terms,
etc.) were exact, because they were generated by means of fine-mesh transport solutions
of corresponding coupled assemblies. In terms of the methodology for full-core calculations
described above, this means that exact albedos were used in single-assembly calculations to
generate assembly group data. However, in realistic calculations the assembly group data
are arranged in form of tables, and necessary quantities are determined by means of inter-
polation of tabulated data. Thus, it is interesting to study the stability of solution obtained

43



by means of CMFE-2 to variation in cross sections and functionals of this method, to find
out how this can influence the accuracy of the coarse-mesh solution generated by CMFE-2.

To perform this kind of analysis, we calculated Test 3 with the group data for the MOX
assembly obtained by using perturbed averaging function. The group data were obtained by
means of transport solutions of two assembly problems similar to Test 3 but in which the
neighboring uranium assembly had perturbed o7 (Test 6) or v} (Tests 7), namely, decreased
by 5% and 10%. Figures 5.16-5.19 show the results of Tests 6 and 7.

From these results we notice that the obtained solutions in each case is very close to
the solution of Test 3 in which exact group data were used. Thus, the proposed advanced
consistent coarse-mesh discretization method, CMFE-2, demonstrates stability to variation
in averaging function that is used for calculating group data, and, as a result, to variation
in group data.

5.7 Conclusions

We have presented a high-order coarse-mesh finite-element (CMFE-0) method for discretiza-
tion of the QD low-order equations that is consistent with the given fine-mesh transport
differencing method in the sense that it preserves the fine-mesh values of cell-average scalar
flux, cell-edge current, multiplication factor, and reaction rates. On the basis of this method,
we have developed an advanced consistent coarse-mesh finite-element (CMFE-2) method
that preserves extra two spatial Legendre moments of the fine-mesh transport scalar flux
over coarse-mesh cells.

We have analyzed the developed methods on a set of test problems that simulate the
interaction of MOX and uranium assemblies. These tests included assemblies with enrich-
ment variations, and water holes that introduce within-assembly flux variations. In spite of
this the CMFE-2 method is able to generate solution that mimic accurately the large-scale
behavior of the transport solution within assembly.

The proposed methodology can be extended to multidimensional geometries, multigroup
case, finite-element methods based on higher order expansions of the coarse-mesh scalar
flux that creates an option of preserving more spatial moments of the fine-mesh transport
solution over coarse cells. The developed method is a part of a new methodology for reactor
core calculations, and this method will be coupled with other pieces of this methodology,
including usage of group data obtained by means of single-assembly calculations that use
efficient albedo boundary conditions. Another important issue is possibility of improvement
of pin-power reconstruction using the discretization methods that preserve extra spatial
moments of the fine-mesh transport solution within assembly. We are working now on such
extensions.
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Table 5.1: Cross Sections Data

Notation |  Material X Bt | Bt [ Xy vy | BT Xt Bt ] 2% | v
M1 MOX fuel 0.2] 0.2 0 0] 0] 06 0 0 0.6 | 1.5
M2 MOX fuel 0.2 0185|0015 0 | 0| 1.2 0.9 0 0.3 | 1.5
M3 MOX fuel 0.2]0.18|0.015| 0 | 0 |1.13| 0.9 0 0.23 | 1.5
M4 MOX fuel 0.2]0.18|0.015| 0 | 0 |1.07] 0.9 0 0.17 | 1.5
Ul Uranium fuel | 0.2 | 0.2 0 0 ]0] 02 0 0 0.2 | 1.5
U2 Uranium fuel | 0.2 | 0.185 [ 0.015] 0 | 0 | 1.0 0.9 0 0.1 | 1.5
W Water 02| 017 | 0.03 | 0 | O | 1.1 1.1 0 0 0

pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M1 | M1 | M1 | M1 | M1 | M1 | M1 | M1 Ul U1l U1 U1l U1 U1 Ul Ul

pin 1

M2

pin 2

M2

pin 1

M2

pin 2

M2

pin 1

M2

pin 2

M2

pin 1

M2

pin 2

M2

pin 3 pin 4

M2 | M2

pin 3 pin 4

M2 | M2

pin 3 pin 4

M2 | M2

M2 | W

pin 3 pin 4

Figure 5.1: Test 1, design of assemblies.

pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M2 | M2 | M2 | M2 U2 (U2 | U2 | U2 | U2| 02| U2 U2
Figure 5.2: Test 2, design of assemblies.

pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M2 | M2 | M2 | U2 U2 | U2 | U2 | U2 | U2 | U2 | U2 | U2
Figure 5.3: Test 3, design of assemblies.

pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M2 | M2 | M3 | M4 || U2 | U2 | U2 | U2 | U2 | U2 | U2 | U2
Figure 5.4: Test 4, design of assemblies.

pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8
W | M2 | M2 | M2 U2 (U2 | U2 | U2 | 02| 02| U2 U2

Figure 5.5: Test 5, design of assemblies.

45



Table 5.2: Test 1.

CMFE-0 Method, Relative Difference in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 1-107% | 4107* | 5107* | 2.107% | -4.107* | -9-107* | -4.107* | 5.107*
MOX 2 31073 | 41073 | 41073 | 41072 | 41073 | 1-1073 | -5-1073 | -1-1072

U 1 6-100* | 6.10°% | 810°° | 4.10°® | -1.107* | -2.107* | -2.107* | -1-107¢
U 2 1-1072 | 41073 | -1.1073 | -3-107% | -3-1072 | -2.1073 | -2.107°3 | -3-1073

Table 5.3: Test 1.

CMFE-2 Method. Relative Difference

in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 -7.107* | 3.10°°® | 610~* | 6-107* | 4.107° | -5.107* | -4.107* | 3-1074
MOX 2 41072 | -2.1073 | 7.107* | 31072 | 41072 | 41073 | -3.107* | -5-1073

U 1 31074 | 4107* | 2.107* | 5.107* | 5.107* | 2.107* | -2.107* | -4.107*
U 2 2102 1-1072 | 111072 | 21072 | 61073 | -7.1072 | -2.10°3 | 4.10°3

Table 5.4: Test 2.

CMFE-0 Method. Relative Difference

in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 510°° | 510°* | 6107* | 1-107* | -7.107* | -1.1073 | -3-107* | 9-107°¢
MOX 2 -2107* | -2.107* | -2.107* | -2.107* | -1:107* | -3-107* | -1-1073 | 2:10°3

U 1 510~%* | -3-107* | -8107° | 7.107® | -2.107° | -1.107* | -3-10°° | 8&107°
U 2 510~* | 1.107* | -7.107% | -4.107* | 8107 | 3.107* | 2107 | -5.107°

Table 5.5: Test 2.

CMFE-2 Method. Relative Difference

in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 -7.10~* | 1.107* | 810~* | 6107* | -1.107* | -7:107* | -3-107* | 41074
MOX 2 -3.1072 | -6-107* | 2.10=% | 3.1072 | 31072 | 9-107% | -2.1073 | -2.1073

U 1 -2.107* | -7.107* | 1.107* | 6107* | 6-107* | 2:107* | -2.107* | -5-107*
U 2 -1-1073 | -2.107* | 410 | 810°* | 11073 | &10* [ -2.107* | 1.10°3

46




Table 5.6: Test 3.

CMFE-0 Method. Relative Difference in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 41073 | 51073 | 51073 | 41073 | 21073 | 5.107% | -1.1073 | -2-1072
MOX 2 -1-107t | -1.107t | -1.207t | 1107 | -9-1072 | -2.1072 | 1107t | 3.107!

U 1 -4107* | -3.107* | 6107 | 2.107* | 2.107* | 1.107* | 9.107° | 7-10°°
U 2 510~% | -3-107* | -4.107* | -2.107* | 4.107° | 2-107* | 1-.107* | 5.107°

Table 5.7: Test 3.

CMFE-2 Method. Relative Difference in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 1-1072% | -9.107° | -2.1073 | -2.1073 | -1-1073 | 3.107% | 81073 | -7.107°
MOX 2 -5-107% | 1-107% | 61072 | 51072 | 2.107° | -6:1072 | -6-10~2 | 5-1072

U 1 -4107* | -2.107* | 3.107* | 510~* | 3.107* | 1.107* | -2.107* | -3-107*
U 2 -1-103 | -7107* | 22107 | 11072 | 1:107% | &10°% | -3:107% | -1-10°3

Table 5.8: Test 4. CMFE-0 Method. Relative Difference in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 31072 | 21073 | 21073 | 21072 | 21072 | 21073 | -9:.1073 | -5-1073
MOX 2 -1.107* | -1.107t | -1.107t | -81072 | -5-1072 | 31072 | 1107t | 1.1071

U 1 2.107% | -3107* | -3.10° | 1-107* | 410° | -410° | 4107 | 7.10°°
U 2 2.100* | 910°° | -5.107% | -3.107* | 610 | 3-107* | 2.107% | -1.107°

Table 5.9: Test 4. CMFE-2 Method. Relative Difference in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 510~% | -6-10~* | -1.1072 | -5.107* | 2.1073 | 41073 | -5-1073 | 1.10°3
MOX 2 -1-.1072 | 81073 | 211072 | 31072 | -2.1072 | -2:1072 | 31072 | -1-1072

U 1 -3107* | -5.107* | 2.107* | 6107* | 5107* | 2:107* | 2107 | -4.107*
U 2 -1.1072 | -3.107* | 1.107* | 9-107* | 11072 | 810°* | -3.107* | -1-1073
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Table 5.10:

Test 5. CMFE-0 Method. Relative Difference in Pin-Cell Average

Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin# 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 1-.1072 2.102 11072 | -6:1072 | -6-1072 | 11072 | 2102 2102
MOX 2 -410-1 | -3.107t | 3.1072 | 3-107! | 31071 | 2.1072 | -3-107! | -4.10°1

U 1 1.1072 | -310°* | -=22107* | -9.10°° | -2.107%* | -3.10* | -1-107% | 4-10°°

U 2 3100% | 4107* | -5107* [ -4107* | 41076 | 2.107% | 1.107* | -1.1077
Table 5.11: Test 5. CMFE-2 Method. Relative Difference in Pin-Cell Average
Values.

Assembly | Group | Pin # 1 | Pin # 2 | Pin # 3 | Pin # 4 | Pin # 5 | Pin # 6 | Pin # 7 | Pin # 8
MOX 1 -9.102% | 1-1072% | 31072 | -3.10°2 | -3-10=% | 3-1072 | 11072 | -810°
MOX 2 1-1071 | -1:107 | -2.1072 | 1-107F 1-1071 | -1:107t | -1.1071 | -7-1072

U 1 -1.107* | -8107* | 5.10°° | 6.107* | 6-107* | 3-107* | -2.107* | -5.107*
U 2 -1.1072% | -1.107* | 6-10°° | &10°* | 11073 | &10°* | -2.107* | -1-103

Table 5.12: Maximum Relative Differences in Pin-Cell Average Values in MOX
Assemblies.

CMFE-0 CMFE-2
Test | fast group | thermal group | fast group | thermal group
1 5-10~* 1-1072 7-107% 5107°
2 1-1073 2:1073 81074 5107°
3 2:1072 31071 81073 6-102
4 91073 1-1071 51072 31072
5 6-1072 4-1071 3-1072 1-1071

48




0.95
I Y I A

—Fine-mesh transport solution

034 H H ﬂ 1 ] I ﬂ — Pin-cell average values

0% —CMFE{
CMFE-2
082 Ry
= - -><
o

«JUUUUL

087 LJ u U

U UL

0 125 25 375 5 6256 75 875 10 11.25 125 1375 15 1625 175 1875 20
X

Figure 5.6: Test 1. The fast scalar flux
versus position.

0.82
I Y I A

H ﬂ ﬂ q —Fine-mesh transport solution

il E=
IO

077

” ' ”HHHH
075 |
m—

0 125 25 375 5 625 75 875 10 1135 125 1375 15 1625 175 875 2
X

Figure 5.8: Test 2. The fast scalar flux
versus position.

R I
0.6 {| — Fine-mesh transport solution
215 || — Pin-cell average values
— CMFEQ LA
044 g
CMFE-2 U U
043
0.12 (L
01
04
0.09 ,
0.08 ‘
0407 J
0.06 J
= YU
0.04 —_—
0 125 25 375 5 625 75 875 10 1125 125 1375 15 16.25 175 1875 20
X

Figure 5.7: Test 1. The thermal scalar flux
versus position.

0375
N N N

035 | —Fine-mesh transport solution

—Pin-cell average values

- oV
CMFE-0 X

03| — CMFE2 X

7

0215 )

025 7[
/

0225 /

[

0475 /|

n N

0325

0.15 ;' ﬁ#
04125 Ur\U[)UL%l\VT[ J

01

0 12 25 375 5 625 75 875 10 1125 125 1375 15 1625 175 1875 20
X

Figure 5.9: Test 2. The thermal scalar flux
versus position.



e [T T T T[] o
081 —Fine-mesh transport solution uzs || Fine-mesh transport solution A/
—Pin-cell average values j;,ﬁ’ﬂ'j T
H —Pin-cell average values 03254 \T\T\T
i1 ] ﬂ CMFE-) o
—CMFE-0 03— CMFE-2 7
019 W
1 i~ A CMFE-2 0275 7‘
078
025
o :
0225
076
02
075 ﬂ ﬂ H H H 0475 VL
0.74 }» {J 0.45 _,ra%/
A A
0 n.1zs"/\f\,\j£\f
072 —— 04 L S S S w
0 125 25 375 5 625 75 875 10 11.25 125 1375 15 1625 175 1875 20 0 125 25 375 5 625 15 875 10 1125 125 1375 15 1625 175 1875 20
X X
Figure 5.10: Test 3. The fast scalar flux Figure 5.11: Test 3. The thermal scalar
versus position. flux versus position.
082
e ——— b I B
| —Fine-mesh transport solution . -
0.81 035 | | —Fine-mesh transport solution
M —Pin-cell average values ’ —Pin-col average values AWA
n ﬂ ﬂ — CMFE-0 0325 | v VAV
—CMFE-0 vE
01 ] CMFE-2 03 —f

| = N ] CMFE-2 ~ /Xj‘
Rl Iy

. JU
- M g
W

Sk

. [ =AY

0 125 25 375 5 625 75 875 10 11.25 125 1375 15 1625 17.5 1875 20
X

0 125 25 375 5 625 7.5 875 10 1125 125 1375 15 1625 175 1875 20
X

Figure 5.12: Test 4. The fast scalar flux Figure 5.13: Test 4. The thermal scalar
versus position. flux versus position.

20



08
HEEEEN un
079 ﬂ — Fine-mesh transport solution 035
—Pin-cell average values
0.78
” — CMFE-0 0325 [k ﬂ(ff%ﬂvr
077 CMFE-2 T Y
' I w vea
076 | 11 0275 "-«7(
075
\_//F h v -’//L
074 Qﬁ- 025 /
N . [/
5 T R w7
o2 U’ l J { J U U l 0475 /" | —Fine-mesh transport solution
o U o5 30[ —Pin-cell average values
" —CMFE-0
o1 V) 0125 CMFE-2
0.69 T T T T T T T T 04 . . . . . . . . ! ! ! ! ! ! !
0 125 25 375 5 625 75 875 10 1125 125 1375 15 1625 175 1875 20 0 125 25 375 5 625 75 875 10 1125 125 1375 15 1625 175 1875 20
X X
Figure 5.14: Test 5. The fast scalar flux Figure 5.15: Test 5. The thermal scalar
versus position. flux versus position.
b2 I B b
—Test 3, Fine-mesh transport solution 035
— Test 3, Pin-cell average values ;_LL[ N M
—Test3, CMFEQ 0328 Wignvid VIV
Test 3, CMFE-2 - \I
03 i
—Test 6, CMFE-2, perturbation: 5% _
Test 6, CMFE-2, perturbation: 10% 0.275 /
025
0225

—Test 3, Fine-mesh transport solution
—Test 3, Pin-cell average values
—Test 3, CMFE-0

R
I - —;ﬂjﬂ@é e

i

0.73
Test 6, CMFE-2, perturbation: 10%
M o —t
0 12525375 5 625 7.5 875 10 11.3125138 15 16.317.518.8 20 0 125 25 375 5 625 75 875 10 1125 125 1375 15 1625 175 1875 20
X X
Figure 5.16: Test 6. The fast scalar flux Figure 5.17: Test 6. The thermal scalar
versus position. flux versus position .

o1



0.82 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0375
—Test 3, Fine-mesh transport solution
o —Test 3, Pin-cell average values W ;_L)_[L[ N/
08 H — Test 3, CMFE-) 0325 yﬁff Jv|V|J
Test 3, CMFE-2 " 7}'/ U
079 IREREECSSCE — Test 7, CMFE-2, perturbation: 5% | )
- N Test 7, CMFE-2, perturbation: 10% 0275 vi
025
0.77
\ 0.225
0.76 NS
. 0.2
0.75 N\ —Test 3, Fine-mesh transport solution
L LU 0475 —Test 3, Pin-cell average values
074 J —Test3, CMFED
015 _————Tjjf’ Test 3, CMFE-2
0 A l\_ﬂ-ﬁf —Test 7, CMFE-2, perturbation: 5%
. 5 s ,
v-\/ L Test 7, CMFE-2, perturbation: 10%
L ]
0 12525375 5 62575875 10 113125138 15 163175188 20 0 125 25 375 5 625 75 875 10 1125 125 1375 15 1625 175 1875 20
X X
Figure 5.18: Test 7. The fast scalar flux Figure 5.19: Test 7. The thermal scalar
versus position. flux versus position.

02



Bibliography

1]

[7]

8]

[9]

D.Y. Anistratov and M.L. Adams, “Consistent Coarse-Mesh Discretization of the Low-
Order Equations of the Quasidiffusion Method,” Trans. Am. Nucl. Soc., 83, 250-251
(2000).

K. T. Clarno and M. L. Adams, “Improved Boundary Conditions for Assembly-Level
Transport Codes,” Int. Conf. on the New Frontiers of Nuclear Technology: Reactor
Physics, Safety and High-Performance Computing (PHYSOR 2002), Seoul, Korea, Oct.
7-10 (2002).

R. Nes and T. S. Palmer, “An Advanced Nodal Discretization for the Quasi-Diffusion
Low-Order Equations,” Int. Conf. on the New Frontiers of Nuclear Technology: Reactor
Physics, Safety and High-Performance Computing (PHYSOR 2002), Seoul, Korea, Oct.
7-10 (2002).

D. Y. Anistratov, “Homogenization Methodology for the Low-Order Equations of the
Quasidiffusion Method,” Int. Conf. on the New Frontiers of Nuclear Technology: Reac-
tor Physics, Safety and High-Performance Computing (PHYSOR 2002), Seoul, Korea,
Oct. 7-10 (2002).

H. Hikaru, D. Y. Anistratov, and M. L. Adams, “Splitting Method for Solving the
Coarse-Mesh Discretized Low-Order Quasidiffusion Equations,” Proceedings of Ameri-
can Nuclear Society Topical Meeting in Mathematics & Computations, Nuclear Mathe-

matical and Computational Sciences: A Century in Review - A Century Anew, Gatlin-
burg, TN, April 6-10, 2003, 20 pp.(2003).

K. T. Clarno and M. L. Adams, “Capturing the Effects of Unlike Neighbors in Single-
Assembly Calculations,” Proceedings of American Nuclear Society Topical Meeting in
Mathematics € Computations, Nuclear Mathematical and Computational Sciences: A
Century in Review - A Century Anew, Gatlinburg, TN, April 6-10, 2003, 20 pp.(2003).

V.Ya. Gol’din, “A Quasidiffusion Method for Solving the Kinetic Equation,” USSR
Comp. Math. and Math. Phys. 4, 136-149 (1964).

N. N. Aksenov and V. Ya. Gol’din, “Computation of the Two-Dimensional Stationary
Equation of Neutron Transfer by the Quasi-Diffusion Method,” USSR Comp. Math. and
Math. Phys., 19, No. 5, 263-266 (1979).

V. Ya. Gol’din, “On Mathematical Modeling of Problems of Non-Equilibrium Transfer
in Physical Systems,” in Modern Problems of Mathematical Physics and Computational
Mathematics, Nauka, Moscow, 113-127 (1982) (in Russian).

23



[10] K. S. Smith, “Assembly Homogenization Techniques for Light Water Reactor Analysis,”
Progress in Nuclear Energy, 17, 303-335 (1986).

[11] D. Y. Anistratov and V. Ya. Gol'din, “Solving the Multigroup Transport Equation by
the Quasidiffusion Method,” Preprint of the Keldysh Institute for Applied Mathematics,
the USSR Academy of Sciences, No. 128 (1986) (in Russian).

[12] E.N.Aristova, V.Ya. Gol'din, and A.V.Kolpakov, “Multidimensional Calculations of Ra-
diation Transport by Nonlinear Quasi-Diffusion Method,” Proceeding of ANS Interna-
tional Conference on Mathematics and Computation, Reactor Physics and Environmen-
tal Analysis in Nuclear Applications, Sept. 27-30, 1999, Madrid, Spain, 667-676 (1999).

[13] D.Y. Anistratov and V.Ya. Gol'din, “Nonlinear Methods for Solving Particle Transport
Problems,” Transport Theory Statist. Phys. 22 4277 (1993).

[14] K. S. Smith, private communication.

o4



Chapter 6

Splitting Method for Solving the
Coarse-Mesh Discretized Low-Order
Quasidiffusion Equations

6.1 Abstract

In this chapter, the development is presented of a splitting method that can efficiently solve
coarse-mesh discretized low-order quasidiffusion (LOQD) equations. The LOQD problem
can reproduce exactly the transport scalar flux and current. To solve the LOQD equations
efficiently, a splitting method is proposed. The presented method splits the LOQD problem
into two parts: (i) the D-problem that captures a significant part of transport solution in
the central parts of assemblies and can be reduced to a diffusion-type equation, and (ii)
the @-problem that accounts for the complicated behavior of the transport solution near
assembly boundaries. Independent coarse-mesh discretizations are applied: the D-problem
equations are approximated by means of a finite-element method, whereas the Q-problem
equations are discretized using a finite-volume method. Numerical results demonstrate the
efficiency of the presented methodology.

6.2 Introduction

The current generation of reactor physics methodology for full reactor-core calculations is
based on the diffusion equation. To obtain highly accurate results using such methodology, it
is necessary to address the limitations of diffusion theory. A series of significant improvements
have been developed over the years by means of sophisticated methods of preparation of group
cross section data, effective transport corrections at the interface of assemblies, etc [1]. An
alternative approach is to create a general methodology that is based on equations that can
take into account the transport effects exactly. The low-order equations of the quasidiffusion
(QD) method meet this criterion [2, 3, 4]. In this paper we develop a methodology for reactor
physics calculations based on the ideas of the QD method [5, 6, 7, 8].

The QD method is an efficient approach for solving particle transport problems. The

25



system of equations of this method consists of two parts: high-order and low-order equations.
The high-order equation is the transport equation itself, and the system of the low-order
equations is a set of equations for the scalar flux and current. The resulting system of
equations is closed by means of linear-fractional functionals that are calculated from the
solution of the high-order problem. These functionals become coefficients in the LOQD
equations. They are weakly dependent on the transport solution. It is important to note
that the LOQD equations generate the exact transport solution provided the functionals are
exact.

The work reported here is a part of a homogenization methodology for full-core cal-
culations that will be used in combination with assembly-level transport calculations that
utilize albedo boundary conditions, without making color-set calculations, to simulate in-
teractions with adjacent assemblies in a reactor core [6]. Note that if the albedo boundary
conditions accurately represent the presence of a different neighboring assembly, then the
single-assembly transport calculation accurately reproduces the correct fine-mesh solution,
and all functionals calculated from the single-assembly solution will be accurate. To gen-
erate all necessary data for the coarse-mesh LOQD equations it is necessary to calculate
few-group cross sections and functionals, using the fine-mesh fine-group transport solution
obtained from assembly-level calculations.

The structure of the low-order quasidiffusion (LOQD) equations is similar to the structure
of the P1 and diffusion equations, which partially explains the name of the method. However,
the LOQD equations reproduce exactly the scalar flux and current of the transport solution
provided that the functionals are exact, because no approximation is made to derive the
QD equations. Another significant difference from the P1 equations (and hence the diffusion
equation) is that instead of the gradient of the scalar flux the first moment equation contains
the divergence of a product of a spatially dependent tensor and the scalar flux. A consequence
is that the LOQD equations do not have a self-adjoint operator, unlike the diffusion equation.
This feature of the LOQD equations requires special effective methods for discretizing them
and solving the resulting non-symmetric system of discretized equations. A group of efficient
methods have been developed that solve these issues for a certain class of problems and
type of discretizations [9, 10, 11, 12]. However, in full-core reactor calculations, it is highly
desirable to use methods that are very accurate on coarse meshes. Such discretizations of the
LOQD equations give rise to a large system of algebraic equations with rather complicated
structure. Thus, in this type of computational physics problem, it is necessary to develop
an efficient new approach for solving the discretized equations.

A methodology that accounts for transport effects in reactor core calculations requires
extra computational effort compared with solving the diffusion equation. It is highly desirable
to minimize these extra costs. In this paper, we propose a splitting method that formulates
two problems instead of one original LOQD problem. The first problem is a tensor diffusion
equation, and hence existing advanced methods for diffusion problems can be used to solve
it efficiently. The solution of the second problem is basically a transport correction to the
first solution. We study ways to minimize costs for solving the second problem to optimize
the solution of the overall LOQD problem.

Note that recently different research groups have begun developing methodologies for
solving the transport equation for multidimensional full-core models on fine spatial grids
and with fine energy groups. Here we develop a different kind of methodology accounting
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for transport effects, which can be directly used in existing production reactor-physics codes
for full-core calculations. Our goal is to obtain an excellent approximation of the fine-mesh
fine-group transport solution for approximately the cost of coarse-mesh few-group diffusion.

The reminder of the paper is organized as follows. In Sec. 6.3 we formulate the few-group
LOQD equations. In Sec. 6.4 we define our splitting method for solving the LOQD equations
in differential form. In Sec. 6.5 we present the method for calculating discontinuity factors
and formulate the interface conditions for the solution of the split problems. In Sec. 6.6 we
present the discretization of equations of the splitting method. In Sec. 6.7 we demonstrate
numerical solutions of test problems that simulate the interaction of MOX and uranium
assemblies. We conclude with a discussion in Sec. 6.8.

6.3 The Few-Group Low-Order Quasidiffusion Equa-
tions

Let us consider a few group k-eigenvalue transport problem in 1D slab geometry. The LOQD
equations for the group scalar flux ¢9 and current J9 have the following form [4]:

M,

3+ TP = D) + ) S @@, 6
L (B(@)69 (@) + D () (a) =0, (6.2)
a<z<b, g=1,..,M,. (6.3)
The boundary conditions are given by
J(a) = Cl#(a) . ) = ClP(D) (6.4)
in case of vacuum boudaries and
J(a)=0, JOb) =0 (6.5)

in case of reflective boundaries. Note that for simplicity we consider problems with isotropic
group-to-group scattering.

The functionals E9, CY, and Cj are calculated by means of the group angular flux ¢9(z, p)
and defined as

Ei(x) = /uzwg(:v, u)du//dfg(w, p)dp (6.6)

03/Om/ﬂ(a»u)du//owg(a,ﬂ)du, Cf/lwg(b»u)du//lwg(b,u)du- (6.7)

The complete system of equations of the QD method includes also the transport equation,
and the resulting nonlinear problem is equivalent to the original linear transport problem.
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The E9, C9, and C} contain all information about the transport solution. Hence, if these
functionals are known exactly, then the solution of the LOQD equations is the exact transport
scalar flux and current, i.e. ¢9 and JY9. The functional EY is spatially dependent, and
this feature of E9 makes the LOQD significantly different from P1 equations, especially in
multidimensional geometries. The equations (6.1) and (6.2) can be reduced to a diffusion-like
group equations for the group scalar flux

My

d 1 d 9( )b (2 9(2) 9 (1) — p—g VAL
i (S s P00 ) |1 = 3SR Z e

(6.8)
The important difference from the neutron diffusion equation is that the spatially dependent
E9 is a factor of the scalar flux under the second derivative. In the multidimensional case,
there also exist terms with mixed derivatives of elements of the QD (Eddington) tensor [2].

6.4 Splitting Method for Solving the LOQD Equations

In full-core calculations, the LOQD equations are to be solved on coarse grids each cell of
which represents a part of an assembly [1]. In the new methodology the group data for
each type of assembly will contain all necessary information about spatially averaged cross
sections, discontinuity factors, etc., as well as quasidiffusion functionals (Eddington ten-
sors) that are to be determined in assembly-level calculations using special albedo boundary
conditions [6, 13]. Assuming that the cross sections and QD functionals are known, the iter-
ation process for determining the k-eigenvalue and associated eigenfunction from the LOQD
problem is defined as follows for a 1D problem:

M,
d d 1

- = gelsl 4 Ey¢g[S] — Z EP—*Hqu[S] + — X Z Vp2p¢p[s 1] (6.9)

p#g keff p=1
d F9 91! Y9 galsl — 6.10
% ( ¢ ) + tr - ) ( . )
JH(a) = CogPHl(a) ) = C) (6.11)

Mg b Pzp p[s]d:c

kS, = 2p1 7 (6.12)

o (Jp[sl(b) J(a) + [ Shorldr)

where s is the iteration index.

To develop an efficient method for solving the LOQD equations, we split this system of
equations into two problems, taking advantage of the nature of the large-scale behavior of
neutron transport in fuel assemblies. On each s-iteration we solve two problems. The first
problem (D-problem) is defined as

M, M

d s s . — s 1 - s5—

%Jg | + E£¢% 1 _ Z EP 9¢P[ | k[s—l] Xg Z V§E§¢P[ 1] , (613)
= T

o8



=g d s s
Egd—ﬁﬂ + 30 g8 =0 (6.14)
X

T3 a) = Costa), THI0) = Co ) | (6.15)

Here EY (x) is a piece-wise constant function on a set of coarse-mesh cells. The method for
choosing the values of EY in each cell is discussed below.
The second problem (Q-problem) is given by

M,
d s X N pg pls
@Jg[ ] + qu%[ ] _ ZEIS”OHQ%[ ] ’ (6.16)
o
d g 1+9(s] g 79ls] d g g\ 4 91s]
— (E70) + 28087 = — ((B7 = B0 (6.17)
I @) = Cooa) . THN0) = ol v) (6.18)

The group scalar flux and current are the sums of the corresponding solutions of the above
two problems
ng[S] — ¢9A5] + ngg[S] , JQ[S] — Jg)[s] + Jé]?[s] . (619)

The equations of the resulting D-problems are similar to P1 equations, and, thus, they
can be reduced to a diffusion equation. The differential operator of the D-problem is self-
adjoint. All these features of the D-problem enable one to use high-order approximations
and efficient iterative methods that were previously developed for the diffusion equation.
Note that if the cross sections in Eqgs. (6.13)-(6.15) are constant in each cell, it is possible
to obtain solutions in analytic form and use them in expansion of ¢%, for the discretization
of these equations [14]. This can significantly increase accuracy of the numerical solution
of the overall problem. The @-problem equations have properties that are similar to those
of the original LOQD equations described above. The extension of this splitting method to
multidimensional geometries is straightforward.

Figure 6.1 shows pin-cell average values of the functional EY in the thermal group across
a model assembly. The left boundary corresponds to the center of an assembly, whereas the
right boundary is the interface with an unlike assembly. This figure demonstrates a typical
shape of EY9 within assemblies. Note that the large-scale behavior of the functional EY is
such that it is almost flat in the central part (interior) of an assembly and changes in vicinity
of assembly boundaries, having a form of “bath-tub” function across the assembly. Hence, if
we choose EY as an average value of E9(z) over the interior of the assembly (in this particular
case over 0 < x < 5), then the terms in the right-hand side of Eq. (6.17) will be small in
the central part of assemblies. Thus, in our methodology we define E9 in the following way

| Eo(2)¢ ™ (x)dx

./E\g __interior

[ oerim(@)de

wnterior

(6.20)

where ¢9/™ is the fine-mesh scalar flux obtained from assembly-level transport calculations.
The solution ¢p of the D-problem (6.13)-(6.15) captures a significant part of the transport
solution in the central parts of assemblies. The solution ¢¢ of the Q-problem (6.16)-(6.18)
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Figure 6.1: Pin-cell average values of £Y in thermal group in a model assembly.

accounts for the complicated behavior of the transport solution near interfaces between unlike
assemblies. Note that if in the D-problem we neglect ¢g, then in Eq. (6.13) ¢ = ¢p. Thus,
the system of equations for ¢p is similar to P1 equations with a modified diffusion coefficient

9

DI = — . 6.21
o (021

Hereafter we refer to such problem for ¢p as modified diffusion.

6.5 Calculation of Discontinuity Factors and Interface
Conditions for Global Calculations

6.5.1 Discontinuity Factors

The single-assembly calculations with albedo boundary conditions generate the fine-mesh
fine-group transport solution, ¢9/™, Jo-fm, kg}'}, which is used to compute necessary assembly-
averaged cross sections and functionals [6]. Another component of the group data is a set of
discontinuity factors. To calculate them for the LOQD equations (6.1) and (6.2), one needs
to solve these equations for an assembly with boundary conditions defined by the known

fine-mesh currents, i.e.
|y, = Ty, € 0T . (6.22)

where OI" is the boundary of an assembly. In case of the splitting method, we need to formu-
late specific boundary conditions for both D- and Q-problems that will meet the following

condition:
(JD + I aemay, = J?T ™ oma, w4 € OT. (6.23)
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The choice of boundary conditions for each of two problems is not unique. We have chosen
to impose the following boundary conditions:

TDle=ey = I omeys  Jglama, =0 xy €0, (6.24)

which is similar to the way the fission term was split between two problems. Note that there
is no a priori information on the ratio between J7, and Jc% that could be used to split the
known boundary current between the two.

Finally, to determine the discontinuity factors, we calculate auxiliary functions ¢ and
(bgg as the solution of the differential problem defined as:

M M,
d . \ g 1 - m
B TR = D GO + e Y vy (6.25)
> AN
79 d *,9 g 7%9
B + 35 =0, (6.26)
Jgg|x:x7 = ngfm|m::v7 s (627)
d I
%Jgg + o5t = SR (6.28)
reo
d g 4*:9 g 7%, d g 9\ 4%,9
(') + 24,5 :%(u; —E)D>, (6.29)
I, =0, (6.30)
¢ = op’ + o5 . (6.31)

As a result, we obtain the auxiliary function ¢*9 that reproduces the fine-mesh eigenvalue,
assembly-averaged scalar flux and current at boundaries of an assembly. The discontinuity
factors G9 at assembly boundaries are defined as:

ng,fm

qb*Vg T=x

GY

x, € 0l'. (6.32)

~

Note that the final algorithm of calculation of the auxiliary function is defined for equa-
tions (6.25)-(6.31) in discretized form, and only zeroth moment of the fission source term is
defined by means of the fine-mesh transport solution. Other algorithms can be formulated
as well. They would generate auxiliary functions ¢*¢ with different features.

6.5.2 Interface Conditions

In global calculations on a coarse mesh, it is necessary to impose interface conditions at each
coarse-cell edge, x = x¢/

edge’
Jg|x:xg;lgle—0 = Jg|z:xgglgle+o ) (6.33)
[Ggﬁbg”x:xg;lgle—o = [Ggﬁbng:xgglgleJro (6-34)
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that express current continuity and discontinuity of the coarse-mesh scalar flux at the in-
terface between coarse cells. For the equations of splitting method, we specify interface
conditions for D- and Q-components of the solution. Based on conditions (6.33) and (6.34),
we define the interface conditions for D- and Q-problems as

(]%|.7}:$23lgl5—0 = ‘]%|ac:acgfilgle+0 ) J%|.7} xeelt = O (635)

edge

(G20 + ]|, per o = (G20 + ]|,y o - (6.36)

Note that these interface conditions give rise to independent @)-problems in each coarse-cell,
which are very inexpensive to solve.

6.6 Independent Coarse-Mesh Discretization of the LOQD
Equations in Split Form

We use different methods to approximate equations of D- and @-problems, i.e. independent
discretization. The solution of the D-problem accounts for the major part of the transport
solution, and we use high-order accuracy methods to discretize its equations. The structure of
these equations gives us an opportunity to use sophisticated discretization methods developed
for the diffusion equation. To solve the equations of the ()-problem, we apply a discretization
method with second-order accuracy. Here we consider this approach in 1D case to study basic
features of the proposed methodology.

6.6.1 Discretization of the D-Problem Equations

Let us define the coarse mesh {z;_1/2, j = 1,...,N; + 1, 215 = a, wn,41/2 = b}. The D-
problem equations (6.13)-(6.15) are discretized utilizing a high-order finite-element method
based on the following expansion of the scalar flux &%, () in each jth coarse cell ( x;_1/s <

T < Tjyi )

2
%, (@) = > (2 + 1) PG () + @y sinh(s) (w0 — 3;)) + @) cosh(s¢), j(x — 7)),
1=0
(6.37)
where P, are Legendre polynomials,
2(x — xj) ,
Cj(:c) = H. ) Hj =Tjy1/2—Tj-1/2, Tj = 0~5(96j+1/2+$j—1/2), 1< < Nj> (638)
j
<Er>g<ztr>g
%%J = #. (6.39)
J

Hereafter we use brackets (o) to denote the coarse-mesh averaged cross sections generated
by means of fine-mesh scalar flux ¢9/™ obtained from assembly-level transport calculations.

To discretize the D-problem equations, we integrate the balance equation (6.13) over the
jth coarse cell with Legendre polynomials as weight functions and approximate Eq. (6.14)
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at coarse-cell edges using the information from pin-cells next to the boundaries of the given
coarse cell [14]. Then, we formulate a set of discrete equations for Legendre moments of the
coarse-cell scalar flux

Tj+1/2
1
o) = = / P(¢(2))®% ,(2)dz, 1=0,1,2, (6.40)
chj71/2
cell-edge scalar fluxes, ®%, ;(7;+1/2), and currents, J}, 12 &of J3(xj41/2). The discretization

scheme for the D-problem equations is defined as

M
—g (0 1 - 9(0),
J%]+1/2 ‘]%73‘—1/2 +(Er >gH (I)D] = H; Z p gq)( )p + k’_ij Z(XVEJ”>§QCI)§' b )
p#g p=1
(6.41)
9 g QEJQ g g g (1).9
JD J+1/2 + ‘]D,jfl/2 + <Et >9H, (cI)D,j(Ij+1/2) - ‘I)D,j(37jfl/2)) + <Er>jqu)D,} = (6-42)
r/jt4g
Mg 1 Mg
—g (1), g (1),
H; Y (Seo)f 00+ —H; ) (s e
o R
J —JI 6Eg oY oY 2(1)(0),9 YN @(2)79 _
D,j+1/2 D,j—1/2 t e <Etr>gH ( D,j(ijrl/Z) + D,j($j71/2) —2%p ) + 7“>j i®¥Dj =
(6.43)
M, ] M,
—g £ (2), 95 (2),
H; ) (Seo)f 705 + —H; ) (S e
p;l eff p=1
~ dDY, .
EY de {8} I 1 =0, (6.44)
T=Tj_1/2
~ dPY,
o S0} T e =0, (6.45)
T=Tj+1/2
j - 1, ceey N] 5
GIT (@D (@ja12) + DY (w511/2)) = GTy (P ja (T511/2) + @ 1 (w51172)) » (6:46)
j: 1,...,Nj—1,
Jpap =CaGl™ (%1 (w1/2) + Ph 1 (21/2)) (6.47)
Jh oy = CIGH (@%ij(xNjH 2) + By (T, /2)> , (6.48)
where
Tjt1/2
def 1
o0 [ R )e @ (6.49)
J
j—1/2



Here G?’i are the right and left discontinuity factors, respectively, {2, }?’i are cross sections
averaged over boundary pin-cell next to the right and left edges of jth coarse cell, corre-
spondingly. Substituting the expansion (6.37) into Eqgs. (6.41)-(6.48), we get the equations

for the expansion coefficients gp(Dl)f (I=0,...,4) and cell-edge currents J%jq Jo-

6.6.2 Discretization of the ()-Problem Equations

Assume that a coarse-mesh cell represents half of an assembly. Such meshes are in common
practice. To discretize the @)-problem equations, we divide each jth coarse cell into two
subcells that are defined by 7;;, i=1,2,3, where Z;; = x;_1/2 and Z;3 = x;11/2. The width of
subcells is determined by the large-scale behavior of the functional £Y within a given coarse-
mesh cell. A second-order finite-volume method described in previous publications [15] is
used to approximate the equations (6.16)-(6.18). Note that if a coarse-mesh cell corresponds
to a whole assembly, then four subcells are needed.

If we integrate Eq. (6.16) over each subcell and Eq. (6.17) over half-subcells, then make

simple approximations [15], we obtain a system of discrete equations for subcell-edge currents

IO o Jo(%j.), coarse-cell edge scalar fluxes & —f ¢4 (2 j+1/2), and subcell-average scalar

fluxes N
ot L[ G ) 6.50
Qi E o ¢Q<x) €, ( : )

where hj; = ;41 — Z;;. The equations are:

MQ
ngﬂﬂ Jg)“ (3, >gh (IJ*ZQN h;; (Zsoﬁ_)gq)g”, 1=1,2, (6.51)
pro
1 SN
B9, 8, — () 0l (000,105, = (Eg—Egl) Y, — ( (B} > B9, (25 12),
(6.52)

_ 1 -
B0 0 — B ¥ 1+ 5 (Su)THJG o = (BY = BL,) 80— (B — BS) @, (653)

1 ~ ~ _ _
[BY 05— BBl ot 5 (Sur)ihsadd o = (BY = {BYY) @4 (wy110)— (BY = Bla) B0

2
(6.54)
Jj=1,..,N;,

J0.is =0, (6.55)
Jo011 = I 8 (6.56)

] = 1,...,Nj—1,
Jo11 =0, Jon,3=0, (6.57)

where

e 1 [P

pgi = 5 ¢p(z)dx (6.58)
70 JTj;
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and Eg - is the value of functional EY averaged by means of the fine-mesh scalar flux over
the given subcell region. {E }g are values of the QD functional averaged over the boundary
pin-cell next to the right and left edges of jth coarse cell, respectively. The quantities <I>9D i
defined by Eq. (6.58) are calculated from the solution of the D-problem, i.e. in the followmg
way:

g 1 e g
B = i / (s (6.59)

In order to solve the coupled systems of D- and )- problems, we need to calculate the
Legendre spatial moments of gbgz

Tjt1/2

g d_ef% / PG ()¢S (x)de, 1=0,1,2, (6.60)

Tj—1/2

using the solution of the above discrete equations (6.51)-(6.57). The zeroth moment is
computed as

05" = 7 Z%N (6.61)

The other two spatial moments are calculated, using approximation of gbg in jth coarse cell
by means of a third-order polynomial interpolation function that fits coarse-cell edge values
@%i and two subcell-average values ®, ji- As aresult for @ B9 (Eq. (6.49)) we get

M9 _ 509 Mg 7 _
Q=057+ 057 1=0,1,2. (6.62)

The position of interface between subcells (i.e. Z;2) is chosen such that one subcell covers
the region where EY is almost flat and another subcell corresponds to the area where EY
changes significantly near the interface with neighboring assembly. For example, in the case
that is shown in Figure 6.1, it is reasonable to use z2 = 5.

6.7 Numerical Results

In this section, we present the numerical results to demonstrate the performance of the
proposed splitting method. We consider two test problems (Test A and B) for 1D slab
geometry with two energy groups. They consist of MOX and uranium half-assemblies next
to each other with reflective boundary conditions [16, 8]. The half-assembly width is 10 cm.
The MOX assembly is located on the left of UOy assembly. Each half-assembly contains 8
fuel pin cells of the same type. The design of a fuel pin is shown in Figure 6.2. The cross
sections for each test problem are listed in Tables 6.1 and 6.2. The fine-mesh solutions are
calculated by the QD method using the second order finite-volume scheme for the LOQD
equations and step characteristic method for the transport equation [15]. The fine mesh is
uniform and consists of 128 equal cells (8 per pin cell). The angular mesh has 10 intervals.
The multiplication factors in Tests A and B equal 1.5. The coarse mesh consists of one
cell per half-assembly, i.e. N; = 2. We recall that to solve the )-problem, we define two
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Figure 6.2: Pin-cell design.

subcells per coarse cell. Table 6.3 presents the values of E9 used in these test problems.
These values are generated by averaging fine-mesh FEY with fine-mesh scalar flux over the
subcells adjacent to reflective boundaries. These subcells represent the interior assembly
regions, where the functional EY varies weakly. In our calculations, the subcells adjacent
to the interface between assemblies are 3 pin cells wide, and the subcells next to reflective
boundaries are 5 pin cells wide.

Table 6.1: Cross Sections for Test A.

’ Cross Sections H I ‘ 2;31 ‘ 2;32 ‘ E} ‘ 1/} ‘ 2 ‘ 2532 ‘ 2331 ‘ E? ‘ 1/% ‘
MOX fuel 02| 02 0 0] 0106 0 0 06 | 1.5
Uranium fuel || 0.2 | 0.2 0 0 0 |02 0 0 02| 1.5
Water 0.2 | 0.17 | 0.03 0]0]11] 11 0 0 0

Table 6.2: Cross Sections for Test B.

’ Cross Sections H I ‘ E;Hl ‘ 2;32 ‘ E} ‘ v ‘ 2 ‘ E§32 ‘ Eiﬁl ‘ Efc ‘ V% ‘

[~

MOX fuel 0.2 ]0.18 | 0.015 | O 0|12 09 0 03| 1.5
Uranium fuel | 0.2 | 0.185 | 0.015 | 0 0 (10| 09 0 0.1 |15
Water 0.2 | 0.17 0.03 0 0|11 1.1 0 0 0

Table 6.3: E9 for Test A and B.
|

\ Region H Test A \ Test B ‘

9

1| MOX | 0.3330 | 0.3327
1| UO; 0.3340 | 0.3345
2

2

MOX | 0.3470 | 0.3332
U0, 0.3522 | 0.3331

To evaluate the accuracy of the splitting method with independent discretization of equa-
tions, we use the numerical results obtained by means of a high-order finite-element (HOFE)
method developed for solving LOQD equations [14]. We also apply the proposed splitting
method (Egs. (6.13)-(6.19)) to the discrete equations of the HOFE method and derived
corresponding discretization of equations for D- and )- problems, where the equations of
both problems are approximated by the HOFE method. Note that this can be considered
as consistent way of discretizing the equations of the splitting method. This enables us to
analyze the accuracy of each part of solution, ¢p and ¢g, by the proposed independent
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discretization.

Figures 6.3, 6.4, 6.9, and 6.10 show the group scalar fluxes for Tests A and B obtained by
the proposed splitting method with independent discretization and the results of the HOFE
method for the LOQD equations. The z-axis gridlines correspond to pin-cell boundaries.
These figures also demonstrate the solution of the diffusion equation (EY(x) = 3) calculated
by means of the HOFE method. We note that in fast group the diffusion solution has signifi-
cantly different spatial shape and, thus, its behavior is qualitatively different compared with
the coarse-mesh transport solution that is represented by solution of the LOQD equations.
The quantitative difference between transport and diffusion solutions in thermal group is
not seen because of the scale. We explicitly demonstrate the relative difference between the
transport and diffusion solutions on Figures 6.5, 6.6, 6.11, and 6.12. These graphs show that
the largest relative errors in diffusion solution are the following: (a) 4-1072 in fast group and
2:1072 in thermal group for Test A, (b) 7-1073 in both fast and thermal groups for Test B.

The scalar fluxes of the proposed splitting method have very good agreement with those
of the HOFE method. In both test problems, the maximum relative differences between the
scalar fluxes obtained by the splitting and the HOFE methods are (i) Test A: 6-107* in fast
group and 8-1072 in thermal group, (i) Test B: 8:107* in fast group and 4-1073 in thermal
group. Figures 6.7, 6.8, 6.13, and 6.14 demonstrate the relative difference between the scalar
fluxes obtained by the splitting method and the HOFE method.

Figures 6.15-6.18 present the solutions of the D- and Q)-problems for Test A obtained by
the splitting and HOFE methods. Figures 6.19-6.22 demonstrate the same set of results for
Test B. The figure for ¢p also show the solution of the modified diffusion. Smooth curves
that represent the solution of the @)-problem calculated by the finite-volume method were
obtained by means of a third-order polynomial interpolation function that fits coarse-cell
edge values q)% and two subcell-average values &)ZM@" i.e. the same polynomial function
that is used to calculate necessary spatial moments of ¢¢ for the fission source term in the
D-problem.

These results show that the splitting method generates accurate solution for the D-
problem. For the Q-problem, we used the second-order accurate finite-volume method and
hence it is expected that there will be the difference compared to the results obtained by the
HOFE method. In the fast group, the subcell average values and shapes of the Q)-problem
solutions generated by these two methods are fairly close to each other. The difference
increases in the thermal group. The overall effect on the resulting scalar flux is small, and
the splitting method with the considered discretization produces sufficiently accurate scalar
fluxes. We note that the splitting method uses the third-order polynomial to reconstruct the
@-problem solution, whereas the HOFE utilizes more accurate approximation based on the
second-order polynomial combined with hyperbolic sine and cosine.

The relative difference in pin-cell average values compared to the fine-mesh results are
listed in Tables 6.4 and 6.5, where we present the results of the proposed splitting method.
Pins are numbered from left to right in each assembly. In Test A, the maximum absolute
values of relative differences in fast group are 1-1072 and 6-10~* for MOX and UQO, assemblies,
respectively, and in thermal group are 91072 in MOX and 1-1072 in UQ,. In Test B, the
maximum absolute values of relative differences in fast group are 2-10~% in MOX and 5-10~*
in UO,, and in thermal group 4-10~2 and 7-10~*, correspondingly. These results show that
the splitting method reproduces the pin-cell average values of the scalar flux with high
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accuracy. Note that pin-power reconstruction using a form function will almost certainly
produce even greater accuracy.

For the iteration process we used relative point-wise convergence criteria with values of
1077 for the scalar flux and 1078 for the eigenvalue. It took 15 and 16 iterations in case
of the splitting method to calculate the solution of Test A and B, respectively. In case
of the HOFE method the number of iterations are 13 and 17, correspondingly. Thus, the
convergence behavior of the splitting method in these test problems is similar to that of the
method without splitting.

Table 6.4: Test A. Relative difference in pin-cell average values for the splitting method
’ g ‘ Region H pin #1 ‘ pin #2 ‘ pin #3 ‘ pin #4 ‘ pin # 5 ‘ pin # 6 ‘ pin #7 ‘ pin #8 ‘

1] MOX [ 6107* [ 11073 [ 9-107% [ 2.107% [ -7.10~* | -1.1073 [ -1.10—3 | 3-10~%

1] UO, 6:10-* [ 2.107* | 3.107* | 2.107* | -9.107° | -4.10~* | -5-107* | -3-10~*

2 MOX || 6102 [ 91073 | 6-1072 | 7-10% | 41073 | -5:10=3 | -5:10~3 | -5-10~3

2| UOy 1-1072 | 41073 | -1.1073 | -3.1073 | -3-1073 | -3-1073 | -2.1073 | -1.1073

Table 6.5: Test B. Relative difference in pin-cell average values for the splitting method
’ g \ Region H pin #1 \ pin #2 \ pin #3 \ pin #4 \ pin # 5 \ pin # 6 | pin #7 \ pin #8 ‘

1] MOX [[7107* ] 11073 | 1-1073 | 2-107% [ -1.1073 [ -2.1073 [ -1.1073 | 5-10°%

U0, 5107% [ -1.107* [ 3.107* | 4107¢ 7-107° | -3.107* | -5-10~% | -3-107 ¢

MOX | 11073 | 3.1073 | 11073 | -2.1073 | -4-10=3 | -4.1073 | -2.1073 | 4.1073

UO, 7107* ] 6107 [ -5-10°* [ -7.107* | -5-107* | -2.107* | 1-107%* | 6-107%

NN —

6.8 Discussion

In this paper, we have developed a splitting method to solve the coarse-mesh discretized
LOQD equations. The method effectively splits a problem into two parts. The D-problem
captures a significant portion of the transport solution in the central part of assembly, and
the @Q-problem accounts for the complicated behavior of the transport solution in the vicin-
ity of assembly boundaries. The calculation of discontinuity factors for the splitting method
has been introduced, and corresponding interfacial conditions have been formulated for this
particular method. Each part of the LOQD equations in the split form has been approxi-
mated by a different discretization scheme. The D-problem equations were approximated by
means of the high-order finite element method. The Q-problem equations were discretized
by using a finite volume method with second-order accuracy. Numerical results showed high
accuracy of the proposed splitting method with the considered independent discretization of
the equations of D- and ()- problems.

The successful performance of the splitting method in 1D geometry stimulates the efforts
in extension of this method to multidimensional geometries. In 2D and 3D cases the solu-
tion of the LOQD equations discretized with high-order methods is rather computationally
intensive problem. According to the proposed approach, one can split the LOQD problem
into a D-problem that can be solved with current efficient methodologies for diffusion-type of
equations and a ()-problem that can be discretized with a second-order finite-volume method
because the solution of this problem is a small correction to solution of D-problem. Special

68



0.925 T T T
— HOFE method
— splitting method
— - diffusion
092 B

0.915

0.91

0.905

Normalized Scale

0.9

0.895

0.89

0.885 ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
0 125 25 375 5 625 75 875 10 11.25 1251375 15 16.25 17.5 18.75 20

x[em]

Figure 6.3: Test A. Fast scalar flux, ¢'(z).
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Figure 6.9: Test B. Fast scalar flux, ¢'(z).
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interface conditions allow spatial decomposition of the ()-problem such that it can be solved
in each coarse cell (part of assembly) independently of other cells. Thus, the presented split-
ting method enables us to reduce significantly computational costs for obtaining solution
that very accurately accounts for transport effects in full-reactor calculations.

It is important to note that the proposed splitting method can be also utilized to upgrade
current codes for full-reactor core calculations that are based on the diffusion theory. In such
case, it is necessary to add solution of ()-problem and modify the definition of the diffusion
coefficient as well as of the fission source term to account for the ()-problem solution. As a
result, one gets a code based on transport theory calculations, provided that all extra group
data and functionals are supplied from assembly-level calculations.
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Chapter 7

A Coupled Nodal/Finite Volume
Discretization of the 2D Quasidiffusion
Low-Order Equations for Reactor
Calculations

7.1 The Quasidiffusion Equations

The quasi-diffusion (QD) method was developed in 1964 by Gol’din[3] as a non-linear
method of solving the linear Boltzmann equation. Basically, QD methods accelerate the
transport schemes by using the angular flux resulted from transport sweeps to calculate
the values of the scalar flux which in turn are the source of particles in the next transport
sweeps. QD methods allow obtaining discrete transport solutions that are influenced by
both the discretizations of the transport and the low-order diffusion-like operator. The
low-order operator contains transport corrections, thus the QD-accelerated solution does
not converge to unaccelerated transport solution in case of independent discretization of
the low-order and transport equations [4]. However, if the size of the mesh cells tends to
zero and the difference schemes for the transport and low-order equations converge, then
these solutions of discretizad low-order and transport equations tend to each other and to
the exact solution of the discrete-ordinates equations. Consider the general-geometry £ -
eigenvalue transport equation for monoenergetic neutrons with isotropic scattering

Q- Vy(7,Q) + Py (#,Q) = ﬁ 2 (ADF) + ﬁ VE  (FO(F) (1)

where

- Q is the particle direction unit vector
- w(#,Q)is the angular neutron flux,

- () is the total cross section,

- X, (7)1s the scattering cross section,

- O(7)1is the scalar flux,

- k is the multiplication factor,
- v is the number of neutrons per fission, and

- X ¢ (7)is the fission cross section.
Integrating each term of Eq. (1) over all directions, yields[5]
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V-J+3, (HOF) = Ls NGLGE )
4
where we have used the definition of the scalar flux ®(7),

() = [y (7.Q)dQ. 3)
4z
In Eq. (2), X, (7) is the removal cross-section, defined as

Z“r(f):z(f)_zs(f)' (4)

Multiplying Eq. (1) by Q,,Q,, and Q_and integrating over all directions yields

TP =SV (B (OF) i, j=x,,2. (5)

()

In Eq. (5), J'(#) are the projections of the neutron current in each of the three dimensions
and Ej;(7) are the components of the symmetric, positive-defined Eddington tensor:

Q9 ;v/(7,Q)dO
E; (F)=2E _ Lj=xv,z. 6
! [y (7,$)d0 ©
4r

Equations (2) and (5) are known as the quasi-diffusion low-order (QDLO) equations. Eq.
(2) is simply a balance equation and Eq. (5) is an exact definition of the transport current,
which has a form similar to Fick’s law.

If we consider two neutron energy groups (l=fast neutrons, 2=thermal neutrons) the
QDLO equations become

- . . 1 . . . .
V-J+ 24P (r) :;(szl (PP (F) +VE 2 (r)D,(r)), (7
VJy + 2, (R0 (R) =2, (O (7)., ®)
and
i A 1 A N
Jg(l’)=—m§Vj(Eg’U(V)®g(F)), (9)
where
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19,9 ¢ (7,£)dQ
4z -
E, .= - fori,j=x,y,z and g=1,2. (10)
&Y ”
Jv g (A, Q)dO)
4

In deriving Egs. (7) and (8), we assumed that the only source of thermal neutrons consists
of fast neutrons slowing down from group 1 to group 2 and no upscattering occurs. [In
fact, an “effective” down-scattering cross section is calculated by subtracting from the
downscattering cross section the upscattering cross-section times the ratio of the thermal

flux to fast flux.]

7.2 The Splitting Procedure for the Solution of the QDLO
Equations in 2D

We present a splitting method for solving the QDLO equations in x-y geometry, which is
a natural extension of that presented in [8]. The goal of this splitting is to derive two
systems of equations, whose solutions when combined will reproduce the solution of Egs.
(7)-(9). The particular choice of splitting is motivated by the spatial shape of the
Eddington functionals. Observations of the spatial shape of the Eddington functionals
show that they are smooth (nearly flat) in the interior of the fuel assembly, and sharply
changing near the assembly boundaries. Figures 7.1-7.3 show this behavior in a MOX
fuel assembly adjacent to a UO; fuel assembly.
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T o
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3.1E-01
8
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Figure 7.1: Thermal Ey vs. position in a quarter MOX assembly with an unlike neighbor

on one side

The QDLO equations are split into (i) a system of equations utilizing the node-averaged
Eddington functional and cross-section data whose solution will be accurate in the
interior of the node [the “D” problem], and (i1) a system of equations that incorporate the
spatial shape of the Eddington functionals and total cross section near assembly interfaces
whose solution will contain important assembly interface behavior [the “Q” problem].

Unit Cell #

2 3 Unit Cell #

Figure 7.2: Thermal E,y vs. position in a quarter MOX assembly with an unlike neighbor
on one side (orange data are negative numbers)
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Unit Cell #
Unit Cell #

Figure 7.3: Thermal Ey, vs. position in a quarter MOX assembly with an unlike neighbor

on one side

In x-y geometry, the “D” problem is defined by

o 7D ANF D A 1 ~ D/n ~ ~ D/n ~
V-J© 42, (), (r):;(vzfl(r)[q)l (r)+®?(r)]+v2f2(r)[®2 (r)+q)2Q(r)])a
VIR 42,00 () =20, Mol (),
and
R oo | oo |
JlD’x(r)=—é[<E>l,xx S (E), T,
1
R ooP | ool |
I ()= —é[(li)w T OHE) =5 A,
1
o ooy ooy
P (r)=——<;> ) ) (B 2,
2
R ovl ovl |
Jf’y(r):_$[<E>2,xy axz (l")+<E>2’yy ayz (r)].
2

In these equations, the angle brackets [(£) and (X)] indicate node-averaged data.

will discuss the preparation of this data in a later section of this report.

The “Q” problem is defined by
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v J€ sz, mof# =0,

VI 42, 0d(») =2, M),

and
JO¥ ()= 1()[a (Elxx<r>d>Q(r>)+ (El,xy(f)cb?(f»]
1
<E>]’xx 6@1 ~ 1
o a D s 2B (DL ()]
(E), ., ooP
b OOy L O heP o)

(), o Z1(7) oy

72 () =— 11( )[a (B (0L )+ 2 SCMCLG)

(Z), o S1(7) ox
<E>1,yy afle (f) _ 1
=, v LG

By, (DOP ()]

B, P ()]

JzQ’x(f)—‘z;() (s (MO PN+ SCRGLEGIE
<2>2 823 D53 el 2 POE )
<f>§xy a‘;’yz - 221( o DT )

195 ()= - — )[a (szy(r)fl)Q(r))Jray(Ezyy(r)CDQ(r))]
+<2§jy achz 0= 221( ) 2 (o)
(E)y,y o0P F-— g, Ly (AOP ()]

(), o %5 (F) &y

(15)

(16)

(17a)

(17b)

(18a)

(18b)

The complete solution to the QDLO equations is reconstructed by summing the D and Q

pieces:

D, (=0 A +dL(F), g=12

82

(19a)



Je(P)=Tg (P +T2 @), g=12 (19b)
We must also constrain these equations with boundary conditions on the outer boundaries
of the problem. The QDLO boundary condition has the form:

n(7y)-J g () = Cg (7)D g (7)), (20)

where 7jis a position on the problem boundary, and C,(7)is a fractional functional
defined by

I |G- Qv de
A(7,) <0

Cg(Fg)= (21)

Jy (7. Q) dQ
A(7,)Q<0
While C, (%) is shown as an analytic function of space, we will employ relationships that

are averaged over boundary surfaces. We split Eq. (20) by using the same C, for both
the D and Q equations:

n(iy)- I P () = Co (7@ D (), (222)
n(iy) - T2 (Gy) = Cy (7L (7). (22b)

The D and Q problems are coupled, meaning an iteration procedure is required. In order
to allow Inverse Power Iteration to be applied to the solution of the k-eigenvalue
problem, we employ the following iteration procedure:

1. Begin with an initial guess for & and the fission source,
2. Solve Egs. (12)-(14) subject to boundary conditions Eq. (22a) for o2,

3. Solve Eqs. (15)-(18) subject to boundary conditions Eq. (22b) for ®<, using CD?

from step 2.

4. Compute a new estimate of & from this relationship:

D2 1 (@F +@2) 415 1y (@F +0F)ar
k= v
. —D — . —D —
[0 +T) +7-(T5 +TNdA+ [[Z(@P + L)+ 30 (@F + 0D))av
o v
where 0V and V indicate the boundary and domain of the problem respectively.

(23)
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It is important to note that the hyperbolic basis functions are the analytic solution of the
zero-source thermal QDLO equation with constant Eddington functionals and cross
sections. We have made a slight modification [11] to the splitting methodology to
account for the within-node spatial variation of the total cross section.

There are two types of calculations to be performed in the characterization of the reactor
core. The first is the calculation of surface and corner discontinuity factors, and the
second is the global core calculation that incorporates the discontinuity factors at node
interfaces.

In the discontinuity factor calculation, we use the k-eigenvalue, total fission source, and
node surface net currents from the fine-mesh, fine-group transport calculation as a source
to calculate the spatial shape of the two group fluxes. This means that we no longer
perform an Inverse Power iteration to find the eigenvalue and power distribution. [Using
the node-averaged cross-sections, eigenvalue, total fission source and net currents ensures
that we will preserve the transport node averaged flux.] The D and Q problems are still
coupled through fission term, and an iteration is still necessary. The transport net
currents are used as the boundary condition for the D solution, and zero current boundary
conditions are used in the Q problem. This is one possible splitting of the boundary
condition; others have been considered, but this splitting has proven successful in one

dimension so we extend it here to 2D. Surface and corner discontinuity factors are
defined by

fm
Py

G5€ = = 5 , (24)
g ‘CDg +CDg )S’C

where s refers to surface average quantities, and c¢ refers to evaluation at a corner of the
node.

In the global calculation, we impose continuity conditions on the current at node
interfaces and discontinuity conditions on the scalar flux at node interfaces and corners:

JX,S _ JX,S
g ~ . - n . 5
r=vertical surface-0 r=vertical surface+0 (2 5)
A el ,
r=horizontal surface-0 r=horizontal surface+0
GS @S — GS q)S
& &= surface-0 & &l r=surface+0’
(26)
GSD¢ =GEDE .
€7 &= corner-0 €7 8lr= corner+0

We choose the following splitting of these equations:
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JD,X,S _ JD,x,s
g n . —vg A . >
r=vertical surface-0 r=vertical surface+0
gD =J5 : 27)
r=horizontal surface-0 r=horizontal surface+0
JQa-xas — JQ’xas — 0’
£ r=surface g r=surface
Gg(cpg’s +q>g’~*] =G§(CD§’S +c1>gQ’S] ,
r=surface-0 r=surface+0 (28)
Gg(q)gD’c +c1>g€?’°’] =G§,(CD§’C +q>§’c] .
7= corner-0 7= corner+0

7.3 Discretizing the “D” Problem: Extending the Advanced
Nodal Discretization of Palmtag

In this section, we describe a nodal discretization of the “D” problem. This nodal method
is an extension of the weighted residual method described by Palmtag, and uses
polynomial basis functions to represent the fast flux, and both polynomial and hyperbolic
basis functions to represent the scalar flux. The hyperbolic basis functions are chosen to
be the analytic solutions of the thermal group modified tensor diffusion equation with
zero source. Incorporating these hyperbolic functions into the expansion for the thermal
flux permits the thermal polynomial coefficients to be written directly as a function of the
fast polynomial coefficients, reducing the number of unknowns that must be computed in
each node.

Other discretizations of the “D” problem are possible; in fact, Hiruta and Anistratov [9]
have developed a finite element discretization with polynomial and hyperbolic basis
functions for the 1D QDLO equations and are currently working to extend this method to
two dimensions.

We begin by defining the problem domain as the x-y plane divided into non-
overlapping

Yy
A 1 1
i i
| |
| |
| |
]
Yi+1 [~ [ .
| |
v
| |
v pee-e-- e bommooeees
' i i
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Figure 7.4: 2-D representation of a square node located at position x;, y;

square regions (nodes) of dimension h. Non-dimensional coordinates (u,v)are

introduced, and Figure 7.4 illustrates these for a square node that occupies the position
(i, j)in a regular array.

Based on the geometry of the problem, the coordinates (u,v) are defined by

2X = Xjy —%;
2N X X 29
Y (29)

and

2y=yin-V;
V:#_

oy (30)

Using these coordinates, assuming constant cross-sections and Eddington tensor
components, and inserting the neutron currents given by Egs. (13)-(14) into Egs. (11) and
(12), the balance equations become

1
h

<E>1,xx azq)lD(uav) +2<E>1,xy a2(1)1D(uav) +

( <Z>1 ou’ <Z>1 Oudv

<E>1,yy azq)lD (u,v)
), o

= %(szl (@7 (u,v) + DY (1, 9) +VE 1, (3 (1,v) + OF (u, ),

)+ 2,7 (u,v) (€1)

and

_L(<E>w 0wy (Fly 200wy
(g, ou’ (Z),  oudv
<E>2,w azq)zD(uav) D
B, o et .
=Z,,®) (u,v).
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[We have, for the moment ignored the Q component of the flux in the fission source in
Egs. (31) and (32). We discuss this omission later in this section.] The Eddington
functionals in these D equations are averages over the interior region of the node, where
their spatial shapes are relatively smooth. The removal, fission and downscattering cross
sections are true node averages, and the total cross sections are averages over the node
outer boundary pin cell rows.

The method used to spatially discretize equations (31) and (32) is the method of weighted
residuals (MWR). The fast flux in the interior of each node is approximated by a 2-D,
non-separable expansion of polynomial functions:

D 4 4
O (V)= 2 Zapyfnw)f, (). (33)

m=0n=0

The functions f,, are polynomial basis functions of the form

fo(©) =1,
N =¢,

H@=3 -1, (34)

1

fﬂ@=%@+§@—?,

-y bl
J4(&) = (7 =5 )E+2)(E =)

The thermal flux is approximated by a 2-D, non-separable, expansion of polynomial and
hyperbolic functions

D 4 4 8
CDZ (u,v)z 2 zbmnfm(u)fn(v)+lglclgl(”av)- (35)

m=0n=0

In Egs. (33) and (35) only 15 of 25 q,,, coefficients and 19 of 25 b,,, coefficients are
non-zero.

The hyperbolic basis functions used in (35) are
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g1 (u,v) =cosh(yu),

g (u,v)=sinh(yu),
g3(u,v)=cosh(y,v),

g4 (u,v)=cosh(y,v),

g5 (u,v) = cosh(y3 (v — 01u) /2),
g6 (u,v) =sinh(y3 (v - Oju) /2),
g7 (u,v) =cosh(y3 (v— 0,u) //2),
g5 (u,v) =sinh(y3 (v — 0,u)/2),

(36)

with

h°,5(Z),
<E>2xx

W3, (2),
<E>2yy

3= hzd&*%“, (37)

()2 (E)yy —(E >2xy

<E 2xy +\/ <E 2y T 2xx<E>2yy
-\-(2)

7=

B

V2=

b

b

<E>2xx

2xy 2xx <E> 2yy

<E>2xx

These functions are exact (analytic) solutions of the zero-source thermal neutron balance
equation [Eq. (32)] given constant cross sections and Eddington functionals.

2xy

The weighted residual method requires a set of weight functions, which we choose to be
the low-order polynomials:

wo (u,v) =1,

wy (u,v) = f1(u),

wy (u,v) = f1(v),

ws(u,v) =144 f1(u) £ (v), (38)
wa(u,v) =415 (u),

ws(u,v)=4/,(v),

We (u,v) =16 15 (1) /2 (v).
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We define the n-th weighted moment of a function R(u,v) by

1/2 1/2
<wn (u,v),R(u,v)> = [ [Ru,v)w,(u,v)dudv. 39)
-1/2-1/2

The zero-th weighted moment of the fast and thermal neutron fluxes represent node-
averaged quantities. The average fast flux is thus ®; =a, and the average thermal flux is
given by
©, = byy +—2-cy sinh(ZL) + 2 ¢y sinh(Z2)

7 2 2

72 (40)

3 ) sinh(39L 8 e sinh(-/3)sinh(22%2,,

N W2 2

+ 28 Ccs smh(

7306 242

In order to solve the quasidiffusion low-order equations by the MWR, 23 equations for
23 coefficients are needed for each node of the problem. The 23 equations are generated
from the following conditions:

e 7 weighted residual moments in the fast group

e 4 surface-averaged continuity conditions in the fast group

e 4 surface-averaged continuity conditions in the thermal group
e 4 corner conditions in the fast group

e 4 corner conditions in the thermal group.

The 19 thermal polynomial expansion coefficients are expressed in terms of the 15 fast
flux expansion coefficients based on fact that the hyperbolic basis functions [Eq. (27)] are
analytic solutions of the zero-source thermal neutron balance equations with spatially
constant components of the Eddington tensor and cross-sections.

The previously reported one-dimensional splitting procedure [8] used a finite element
discretization of the fast and thermal D equations, and the thermal polynomial
coefficients were not represented directly in terms of the fast polynomial coefficients.
Our 2D procedure will require fewer unknowns to be computed in each node of the
global matrix than that of a comparable finite element procedure (23 unknowns vs 30 if
both thermal and fast fluxes are expanded in terms of 15 polynomial coefficients).

The coupling of the D and Q problems through the fission source in Eq. (11) implies that
weighted moments of the Q solution will be required to iterate the system to
convergence. In the next section we describe the discretization of the Q problem, and
introduce a procedure for calculating these moments.
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7.4 Discretizing the “Q” Problem: Applying the Finite Volume
Methodology of Gol’din

To solve the Q problem, we subdivide each node (the coarse mesh) into four subcells and
apply the finite volume methodology of Gol’din. Figure 7.2 shows a single node (1/4 of
a fuel assembly with N unit cells) and the associated subcell mesh we use to discretize
the Q problem. We have chosen a (N —2)x (N —2) interior subcell, a 2 x 2 corner subcell,

and two edge subcells.

The black lines in the interior of the square node on the right of Figure 7.2 are the
submesh cell boundaries. The red and green dotted lines, in combination with the black
lines, indicate the volumes used to calculate the submesh surface Eddington functionals
and total cross section (transport cross section if anisotropic scattering is included).

Gol’din’s finite volume discretization involves integrations of the coupled first-order
form of the Q equations [Egs. (15)-(18)]. First, we integrate Eqs. (15) and (16) over each
of the four subcell volumes:

olo[o[olo[oolo] [ . -
olololololololol "
olololololololo]
olololololo]o]o

ololololo[ololo] w4+ 1 ,
olololololo]o]o

olololololo]o]o

ololo[o[o[clolo] | .

Figure 7.5: A quarter assembly node and the subcell mesh used to discretize the Q

problem
O,x O,x 0,y 0,y 0
A il g = gia 17 A g o = gi i 11 g i Pgi

0, g=1 (42)
B z:s12,g,i,ch%’ja g=2

for subcell mesh indices i, j =1,2 and groups g =1,2. This equation relates subcell
average values of Q scalar flux to subcell surface values of Q current. To generate

90



equations for the subcell surface currents, we integrate Egs. (17) and (18) over subcell
half-volumes. For example, to generate an equation for the x-component of the fast Q
current on surface (i=1/2, j=1), we integrate Eq. (17a) over xfrom x;,,to x;and over

yfrom yjrto y3o:

Ax, Ay, = ~ ~
1=V1 Ox _ o _ 0
z:1,1/2,1J1,1/2,1 = AJ’1 [El,xx,l,lq)l,l,l El,xx,1/2,1®1,1/2,1]

Ax, [~ ~
a5 o _ 0 ]
2 [El,xy,l,3/2ch,1,3/2 El,xy,l,l/Zq)l,l,l/Z

~

i’~<E">xx = Z’ ’<E> . 43
+ Ay, 11<12—>11,_ E .., @, - 1”212—>11_ o o2 (43)
Ax, | (ZisalE), - SunlE),
21 113£2Z>1 Lxy _El’xy,1,3/2 q)fm/z— %%W_El,xy,l,l/z (1)1[”1,1/2

This equation relates subcell surface Q currents to subcell average and surface Q and D
fluxes. The D fluxes in this equation are obtained by performing the appropriate
averaging of the basis function expansions using the most recent values of the expansion
coefficients from step (2) of our iterative procedure.

We can derive a similar equation for the y-component of the fast Q current on the surface
(i=1, j=1/2), by integrating Eq. (17b) over x from x;,5to x3,,and over y from y;,,to

Y-

Axi Ay 0.y = 0 = 0
Xy11/27 LL1/2 = —Ax El,yy,l,lq)l,l,l ~Ep 11/ 2‘1)1,1,1/2

Ay [N 0 E Q0 ]
- E1,3/20P 3721 ~ Elxy 17219112,
S (E 3 E
" LCE) L, s oP 2(E), z o (44)
1 —<E> Lyy,LL [FL1,1 —<2> Ly L1/2 11,172
1 1
. Ayl 21,3/2,1<E>1’yy _El . q)D ~ 21,1/2,1<E'>1,yy —El Ul Q)D
x,3/21 (13721 2 1/2,0 (11721
2 =), (=)

Subcell surface Q currents in the interior of the node have somewhat more complicated
equations. For example, the x-component of the fast Q current on the surface (i=3/2,
j=1), is generated by integrating Eq. (17a) over x from x;to x,and over y from yy,,to

Y3/2-
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(Axl + Ax,

5 Ox  _ o) 0 r 0
) jAy121,3/2,1J1,3/2,1 =—Ay, [El,)oc,z,lq)l,Z,l - El,xx,l,lq)l,l,l]

Ax, [~ ~
__1 o _ 0 ]
I:El,xy,l,3/2(Dl,l,3/2 El,xy,l,l/Zq)l,l,l/Z

Ax ~
i)
[El xy23/2q)123/2 El xy,2,1/2(D1,2,1/2

21,2,1<E>1,xx = D Z 11 = D (45)
_El,xx,Z,l q)1,21 El,xx,l,l (I)l,l,l

AX .13 2< > y NE D < > E 2 ] 2
Zl : </ > = l,xy,l,3/2 (D1,1,3/2 %2>1 - - 1)0/11/ LLI/
sz 1,2,3 < >1X L < > 2,1/2 2
:Z </2 >1 - Lxy,2,3/2 ®1,2,3/2 </ >1 - El XY, 1/ 1,2,1/2

A similar expression can be obtained for y-component of the fast Q current on the surface
(i=1, j=3/2):

Ay + Ayy S \ = =
[T A0E |32 0% 0 = A0 E) 41 2®F 5 By @
Ay
[El xy,3/21®1Q3/21 _El xy,l,l/Zlq)lQl/zl]
Ayy [~ 0 = 0 ]
- ) El,xy,3/2,2q)1,3/2,2 _El,xy,l/z,zq)l’l/z’z
1 2<E>1yy L1l <E>l,yy =~ D
+Ax 5 ~Ey 10 @112 - —<Z> —E 11 (P11 (46)
1 1
L 21’3/21<E>1xy ~E 321 @2, - —21’1/2’1<E>1’xy —Ey 121 [@))
2 <Z> nyss > 1,3/2,1 <z> nys H 1,1/2,1
1 1
+ A2 21’3/2’2<E>1xy ~Ei 322 | O] —21’1/2’2<E>1’xy — Ei 122 @)
XY, 13/22 ~ a1/2,2 P12
2 & &

The X’s and E ’s in these discretized Q equations are averages over pin cell rows nearest
the surface, if their indices are fractional, or averages over subcell volumes if their
indices are integers.

Using the subcell surface current definitions, it is possible to formulate a system of

equations containing only the subcell surface and subcell average Q fluxes -- a total of 16
unknowns in each node. These equations are solved via a marching method called

92



“u—r—-o” fiteration [10], given the previously specified zero-current boundary

conditions. These Q problems are “local” in that the Q solution in each node depends
only on the within-node D solution — not on Q solutions from neighboring nodes. This
means that the additional computational expense to solve the Q equations is very small
compared to cost of the D solution.

It is important to remember that, because the D and Q problems are coupled through the
fission source, weighted moments of the Q solution will be required to iterate the QDLO
equations to convergence. To compute these weighted residuals, we fit the 12 subcell
surface and 4 subcell average fluxes to a bi-cubic polynomial, and then use this
functional form in the 7 weighted residual equations that constrain the polynomial
coefficients of the fast D flux expansion.

7.5 Testing the Nodal Methodology for the “D” Problem

In this section we present the results of a variety of one and multi-node test problems to
verify the properties of our nodal discretization of the D equations. We solve several
diffusion (diagonal Eddington tensor with diagonal entries equal to 1/3), and “transport”
(Eddington tensor with diagonal entries different from one-third and general off-diagonal
components) test problems. In the transport problems, the Eddington functionals are
chosen to be within the range of values representative of two-node UO,-MOX fuel
assembly transport calculations.

The method provides accurate solutions (multiplication factor k and thermal to fast flux
ratio) for one-node, constant cross-section and Eddington tensor component problems,
with zero-flux or zero-current boundary conditions.

The two-node problems assume a UO,-fueled assembly next to a MOX-fueled
assembly[2]. This configuration is chosen because UO, and MOX have significantly
different neutronic properties, so UO,/MOX systems are excellent for investigating the
behavior of neutron fluxes at the surface between unlike assemblies. Zero current
boundary conditions are applied to the boundaries of the configurations, as shown in
Figure 7.6.

Various configurations are obtained by using UO, and MOX fuels of various enrichments
in 2°U and Pu, respectively.

Table 7.1 shows, in columns 1 to 4, the multiplication factor, UO, assembly power and
their relative errors from QDLO calculations using the two-group, single assembly cross
sections from Table 7.2. These results are compared to CASMO-4 14-group, fine-mesh
diffusion calculation results[2] which are reproduced here in columns 5 and 6. In Table
7.1 Uy and M, stand for x %-enriched UO, and y %-enriched MOX.
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Figure 7.6: UO,-MOX configuration

The fast and thermal neutron flux shapes for the UO, (3%)-MOX (12%)
configuration are presented in Figure 7.3 and Figure 7.4, respectively. In both figures, the
UO; fuel assembly is the closest to the viewer. The fast flux is higher in the MOX
assembly, due to its higher fission cross-sections. The steepest variation is observed near
the surface between the two assemblies, smoothing out as the reflecting boundaries are
approached. The smallest errors occur for the case of two UO, assemblies. The thermal
flux varies strongly at the surface between nodes mainly due to X,,, which is higher in
the UO, assembly than in the MOX assembly. Better results are obtained if, instead of

two-group single-assembly cross-sections, 14-group cross-sections are collapsed to two-
group with the actual spectrum|2].

Table 7.1 Two-node UO,-MOX assembly, multiplication factor and power calculations

Relative U0, Relative | Reference | Reference
Config. k error k assembly | error (%) k UO; power
(%) power U0,
0 1 p) ? 4 s A

Us/Uy 1.29121 | 6.2x107 0.93167 0.74 1.29113 0.9386
Uy4/Us 1.34542 | 2.2x107 0.93569 2.3 1.34545 0.9580
Us/Us 1.31531 | 8.4x107 0.88585 1.2 1.31520 0.8969
Us/Mg | 1.21959 0.2 0.94005 0.9 1.21721 0.9312
Us/Mj, | 1.23201 0.25 0.90553 0.7 1.22896 0.8986
Uy/Mg | 1.25176 0.28 1.01040 1.6 1.24830 0.994
Uy/Mj, | 1.26292 0.32 0.97583 1.5 1.25888 0.9611
Us/Mg | 1.27410 0.3 1.05199 1.5 1.27035 1.0372
Us/Mj, | 1.28502 0.38 1.02376 2.0 1.28014 1.0042
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Table 7.2 Two-group single assembly cross sections

Assembly type

Propert U0, U0, U0, MOX 4% | MOX 8% MOX

y 3% 4% 5% 12%
P 0.286867 | 0.286714 | 0.204091 | 0.286466 | 0.285875 | 0.285233
2, 0.97970 | 0.980551 | 0.987944 1.07985 1.16774 1.23263
z, 0.016756 | 0.016229 | 0.015738 | 0.013630 | 0.011853 | 0.010644
z, 0.009530 | 0.010234 | 0.010895 | 0.012956 | 0.015327 | 0.017049
., 0.082606 | 0.098603 | 0.113317 | 0.197823 | 0.290164 | 0.350338
DIP 0.006758 | 0.008092 | 0.009357 | 0.008436 | 0.012259 | 0.015427
DIPS 0.129545 | 0.163555 | 0.194709 | 0.321278 | 0.483443 | 0.587795
k. 1.256776 | 1.323053 | 1.366686 | 1.149925 | 1.177585 | 1.201939

I, M N N 1 1 1 1 1
24531.:, 10 15 E0

Figure 7.3 Fast neutron flux in U02 (3%)-MOX (12%) configuration

1 1 1 1 1 1 1 1 1 1 1 1
24531,:, 10 15 20

Figure 7.4 Thermal neutron flux in UOz (3%)-MOX (12%) configuration

In the multiple-node problems, the & -eigenvalues and power distributions are calculated
for configurations of UO, (UX), MOX (PX), and water (R) presented in Figure 7.5.
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Figure 7.5 UO»-MOX (C1, C2) and UO»-MOX-water (C3) configurations

Cross-section data for these problems come from single assembly NEACRP benchmark
calculations (zero-current boundary conditions)[2], and are presented in Table 7.3.
Results from QDLO calculations of these problems are shown in Table 7.4, columns 2
through 4. The relative errors, columns 5 through 7, are calculated with respect to
reference k -eigenvalues and normalized assembly powers presented in Table 7.5[2] The
reference solution (Table 7.5) for each configuration is a 2-D, 2-group, heterogeneous
static diffusion calculation performed using one node per fuel pin[2].

Table 7.3 Assembly homogenization results for NEACRP benchmark

Table 7.4.1 NEACRP benchmark, homogenized node calculations

Homogenized Assembly type
parameter UXx PX
k, 0.998181 1.026669
2, 0.277778 0.277778
2, 0.833333 0.833333
2, 0.009226 0.013791
z, 0.092663 0.231691
DI 0.004570 0.006852
(DIP 0.113537 0.344583
2, 0.020430 0.015864

Assembly Power Error (%)
Config. | N k UX PX k UX PX
n 1 7 2 4 g A 7
C, 60 | 1.01986 | 0.87142 | 1.12860 | 7.1x10~ | 0.37 0.39
C, 40 | 0.90831 | 1.02452 | 0.97548 0.16 0.39 0.39
Cs 48 | 0.93904 | 0.91283 | 1.0872 0.10 0.36 0.37
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Table 7.4.2 NEACRP benchmark, homogenized node calculations, using discontinuity

factors
Assembly Power Error (%)
Config. | N k UX PX k UX PX
0 1 ” ? 4 s A 7
C 52 | 1.01927 | 0.87575 | 1.12425 | 1.3x10° | 0.12 0.09
C, 40 | 0.90791 | 1.03012 | 0.96988 0.12 0.26 0.19
Cs 48 | 0.93806 | 0.91842 | 1.08158 0.05 0.21 0.19

Table 7.5 NEACRP benchmark, homogenized node calculations, reference values

Reference values [2]
Config. k UX PX
0n 7 R Q
C 1.01914 0.8747 1.1253
C, 0.90685 1.0282 0.9718
Cs 0.93806 0.9165 1.0835

Compared to the two-group, 2-D, static diffusion code STENCIL that uses non-separable
polynomial and hyperbolic function expansions [2], the QDLO results from Tables 7.4.1
and 4.2 are reproducing the reference values, Table 7.5, with close or the same accuracy
when discontinuity factors are included in QDLO calculations. Palmtag[2] shows also the
results produced by other methods (CONQUEST, SIMULATE-3, and PANTHER).
QDLO yields results comparable to these other codes for assembly powers, and & -
eigenvalues are predicted as accurately as Palmtag’s STENCIL code.

In the QD problem with realistic Eddington tensor components we consider a 4-node
domain with semi-reflecting boundaries as shown in Figure 7.6. Each node corresponds

to a fuel assembly, all assemblies being identical.

D=0

3 “

(1) 2

J=0
Figure 7.6 Semi-reflecting boundaries, four-node problem
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The multiplication factor £ of this configuration is calculated by using the nodal QDLO
methodology for E! . =E  from0.30t0 0.36 and E]  =E]  from 0.0 to 0.04. Cross-

&>Xy &, yx

sections are the ones in Table 7.3, for PX assemblies. The results show that k decreases
when Eddington functionals increase. This behavior is due to increased leakage, directly
related to bigger functional values. The calculated values for £ and the dependence of &
on E are shown in Table 7.6 and Figure 7.7.

Table 7.6 Calculated multiplication factors for various Eddington functionals

i Eg'xx :Egyy
Egxy 0.30 0.32 0.34 0.36
0.00 | 0.928595 | 0.922699 | 0.916875 | 0.911121
0.01 | 0.927200 | 0.921318 | 0.915508 | 0.909769
0.02 | 0.925912 | 0.920036 | 0.914233 | 0.908502
0.03 | 0.924729 | 0.918852 | 0.913050 | 0.907321
0.04 | 0.923653 | 0.917766 | 0.911958 | 0.906225
\ _E’ =0.00
0-32% ‘m\:h‘\ Ej) -0.01 [
\\ £ =002 |1
U.QE h— k o g__’)ty _-
k \ . E! =003 |1
\\H E' =004 |]
0_.915 —
o.91
III.IEI - ;:I.E.'LI - IIZI_EEI ;ZI.EEI - ;:I.
Eg,xx

Figure 7.7 Multiplication factor versus diagonal components at various values of oft-
diagonal components of Eddington tensor

Increased off-diagonal Eddington tensor components also affect the power distribution
between nodes by enhancing the flow of neutrons towards certain nodes. For example in

our problem the power in node 4 increases with increasing £ ,,,

2 and 3 decreases. Table 7.7 summarizes these results, showing the variation of node-

while power in nodes 1,

g
g,xy

. . oy P .
averaged, normalized power (P) and its rate of Varlatlon( d.‘ ] In Figure 7.8 node

averaged power is plotted against off-diagonal Eddington functionals.
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Table 7.7 The effect of off-diagonal Eddington tensor components on the power

distribution
Node 1 Node 2, 3 Node 4
E],, P dP P dP P dP
dEZ’xy dEZ’xy dE g,xy

0.00 |0.28215| -0.4065 |0.11687 | -0.1465 | 0.48410 | 0.6965
0.01 ]0.27818 | -0.3855 | 0.11541 | -0.1450 | 0.49098 | 0.6805
0.02 10.27440 | -0.3705 | 0.11396 | -0.1455 | 0.49769 | 0.6600
0.03 ]10.27077 | -0.3555 |0.11251 | -0.1445 | 0.50421 | 0.6440
0.04 ]0.26729 | -0.3405 |0.11107 | -0.1435 | 0.51057 | 0.6280

0.5 b — &
o +—
Node 4
Node 1
0.4 —
Node 2, 3
Power
.32
L — *
—
0.z
F
] 0.005 0.0l 0.015 0.0z 0.025 0.02
Eij

&:Xy
Figure7. 8 Node-averaged power versus off-diagonal Eddington tensor elements

7.6 Testing the Coupled Methodology

Our ongoing (and future) work is focused on the testing of a FORTRAN code that
incorporates the previously described methodology to solve the coupled D and Q
problems. At this time, we are debugging the code for the calculation of the discontinuity
factors, and our plan is to have a working code for global reactor core calculations by
September 1, 2003. We will extensively test the full methodology on a variety of four
node (node = quarter assembly) problems. Results of this testing will be presented at the
2004 PHYSOR Topical Meeting in Chicago in April, 2004.

Initially, we will be using Eddington functionals and cross-section data from a transport
calculation that contains the correctly represents neighboring fuel assemblies. These
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calculations will contain the most accurate eigenvalue and power density predictions our
methodology can produce, given the absence of tabular interpolation on neighbor type.
In current reactor methodologies, single assembly transport calculations are performed
for a variety of conditions the fuel assembly will experience over its in-core life. These
cross sections (and other data) are then parameterized as a function of the conditions
(void fraction, fuel and moderator temperature, exposure, boron concentration, control
rod insertion, etc.) to allow for quick calculation of nodal data in the global code. This
parameterization introduces an error into the global calculation. We will also test the
accuracy of our methodology given the parameterization of the assembly data.
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