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Chapter 1

Executive Summary

1.1 Research Objectives

The present generation of reactor analysis methods uses few-group nodal diffusion approxi-
mations to calculate full-core eigenvalues and power distributions. The cross sections, diffu-
sion coefficients, and discontinuity factors (collectively called ”group constants”) in the nodal
diffusion equations are parameterized as functions of many variables, ranging from the obvi-
ous (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator
temperature history, etc.). These group constants, and their variations as functions of the
many variables, are calculated by assembly-level transport codes. The current methodology
has two main weaknesses that this project addressed. The first weakness is the diffusion
approximation in the full-core calculation; this can be significantly inaccurate at interfaces
between different assemblies. This project used the nodal diffusion framework to implement
nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of
accuracy. The second weakness is in the parameterization of the group constants; current
models do not always perform well, especially at interfaces between unlike assemblies. The
project developed a theoretical foundation for parameterization and homogenization models
and used that theory to devise improved models. The new models were extended to tabulate
information that the nodal quasidiffusion equations can use to capture transport effects in
full-core calculations.

1.2 Main Research Results

Improved Boundary Conditions for Assembly-Level Transport Codes: We have developed an
extension of present-day reactor-analysis methodology that systematically accounts for the
effects that different neighbors have on a given assembly’s few-group constants. The new
technique centers on energy- and angle-dependent albedos that simulate the effect of the
unlike neighbors. Each set of albedos defines a branch case and thus fits into the frame-
work of present-day methodology. The parameter varied in each new branch case is the
fractional difference in the neighbor’s concentration of an isotope or mixture. (The base
case corresponds to a zero difference in all concentrations - an identical neighbor - which
produces the usual reflecting boundary condition.) The key simplification is that the albedos
are generated by a one-dimensional transport calculation with a homogenized assembly and
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homogenized neighbor.
We have found that the albedo produced from 1D homogenized (1DH) calculations does

an extremely good job of capturing the effects of different neighbors in the rather restricted
case of lattices that are uniform in one direction (in which the only large-scale variation
is in the other direction). In fully 2D problems, the 1DH albedos are accurate near the
center of an interface but in general lose accuracy at corners. This loss of accuracy in the
albedo produces large errors in corner-pin powers in the worst cases. We have found that
very simple modifications to the 1DH albedos can dramatically reduce these large errors.
This encouraging result has led us to pursue systematic (but simple) modifications that are
theoretically sound and that produce very accurate results.

Our complete methodology relies on albedos to estimate the changes in few-group param-
eters that are induced by differences in a neighboring assembly’s composition. Another part
of the methodology is to assume superposition and thus build the change in a parameter by
summing the partial changes from a variety of differences in a neighbor’s composition.

Homogenization Methodology for the Low-Order Equations of the Quasidiffusion (QD)
Method: We have developed a coarse-mesh discretization of the low-order QD (LOQD)
equations that is consistent with the given fine-mesh differencing method for the LOQD
equations in the sense that it preserves average values of the fine-mesh scalar flux over the
given coarse cells as well as reaction rates, the first and second spatial Legendre moments of
the fine-mesh scalar flux over coarse intervals, currents at edges of coarse cells, and the fine-
mesh multiplication factor. All these facts are rigorous mathematical results. The definition
of discontinuity factors has been derived. The resulting discretization scheme enables one to
approximate accurately the large-scale behavior of the transport solution within assemblies.

The developed method can be applied to a general transport method as well, if this
method preserves the particle balance. If a fine-mesh solution is obtained directly from a
transport differencing method, and it is used to calculate spatially averaged cross sections
and special functionals defined in the method, then the resulting coarse-mesh solution of the
LOQD equations will be consistent with the given transport method. The reason is that
the coarse-mesh scheme was derived by algebraically consistent discretization based on the
discrete particle balance equation, and thus this scheme works also for any transport method
whose solution satisfies the discrete balance equation.

The developed coarse-mesh algorithm can be coupled with other parts of a complete
reactor analysis methodology (generation of tables of constants, interpolation using tables,
pin-power reconstruction).

Numerical Method for Solving QD Low-Order Equations: We have developed a splitting
method that can efficiently solve coarse-mesh discretized low-order quasidiffusion (LOQD)
equations. The LOQD problem can reproduce exactly the transport scalar flux and current.
The developed method splits the LOQD problem into two parts: (i) the D-problem that
captures a significant part of transport solution in the central parts of assemblies and can be
reduced to a diffusion-type equation, and (ii) the Q-problem that accounts for the compli-
cated behavior of the transport solution near assembly boundaries. Independent coarse-mesh
discretizations are applied: the D-problem equations are approximated by means of a finite-
element method, whereas the Q-problem equations are discretized using a finite-volume
method. Numerical results demonstrate the efficiency of the presented methodology.
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Chapter 2

Technical Summary

2.1 Introduction

The overall goal of the proposed project is to make significant specific progress toward the
next generation of methods for the analysis of nuclear reactors. While there are many aspects
of present-generation methods that could be improved, we focused upon two areas – the
full-core few-group diffusion-like calculation and the assembly-level many-group transport
calculation – and upon the interface between them.

Present-day methods use few-group nodal diffusion approximations to calculate full-core
eigenvalues and power distributions. Nodal diffusion equations contain “group constants” –
few-group cross sections, diffusion coefficients, and discontinuity factors. Group constants
are modeled as simple functions of many parameters (such as boron concentration, fuel
temperature, etc.), each of which is either input to the full-core calculation or estimated
during it. These group constants and their variations as functions of the many parameters
are created from assembly-level calculations that solve two-dimensional transport problems.
Given this background, we can re-state our specific objectives as follows: (1) Create a full-
core few-group coarse-mesh diffusion-like method that will produce essentially the same results
as a full-core many-group fine-mesh transport calculation. (2) Create a methodology that
permits single-assembly transport calculations to construct all information that the full-core
calculation needs to achieve the first goal.

Present-day reactor-analysis methodology has two main weaknesses that keep it from
performing at the high standards indicated by our objectives. One weakness is the diffusion
approximation in the full-core calculation, which can cause significant errors at interfaces.
We overcame this weakness by putting quasidiffusion equations into the nodal diffusion
framework, allowing full-core calculations to capture transport effects to an arbitrary degree
of precision. The second weakness is in the simple models used to “functionalize” the group
constants; many of the current models do not always perform well, especially at interfaces
between unlike assemblies, and those that seem to perform well lack a sound theoretical
foundation. In this project we developed a theoretical foundation for these functional models,
use that theory to assess current models, and further use it to devise improved models. The
new models were extended to provide information that the nodal quasidiffusion equations
need to capture transport effects in full-core calculations.

There is strong incentive for a reactor analysis methodology to require only single-
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assembly calculations from its assembly-level many-group transport calculations. If multi-
assembly “colorsets” are required, the amount of data that must be stored becomes much
larger and bookkeeping becomes cumbersome. Reactor analysts greatly prefer a method-
ology that stores one table of group constants for each type of fuel assembly; this is why
we have specified “single-assembly” calculations in our second main objective above. The
restriction to single-assembly transport calculations places a significant burden upon the
methodology: the effects of an unlike neighboring assembly upon a given assembly’s group
constants must be accurately estimated without knowledge of the neighbor. Capturing such
“interface effects” is one of the major challenges that we addressed in this project.

Main results of this NERI project were published in the proceedings of the following
ANS conferences [1-8]: 2000 ANS Winter Meeting, Washington DC; Int. Conf. on the New
Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing
(PHYSOR 2002), Seoul, Korea, Oct. 7-10 (2002); Nuclear Mathematical and Computational
Sciences: A Century in Review - A Century Anew, Gatlinburg, Tennessee, April 6-11, 2003;
2003 ANS Winter Meeting, New Orleans. The latest results will be submitted this year for
publication in Nuclear Science and Engineering and proceedings of PHYSOR 2004 (Chicago).

2.2 Approximation of the Transport Solution by Form

and Spectrum Shape Functions

Let us define: ϕg(~r) as a fine-mesh fine-group transport scalar flux, ϕG(~r) =
∑

g∈G ϕg(~r)
as a fine-mesh few-group transport solution, ΦG(~r) as a coarse-mesh few-group transport
solution. Then, we have:

ϕg(~r) = ΦG(~r)
ϕG(~r)

ΦG(~r)

ϕg(~r)

ϕG(~r)
. (2.1)

Fspec = ϕg/ϕG is a spectrum shape function that often depends only weakly on position
within a single assembly. The form function Fform = ϕG/ΦG is a detailed fine-mesh solution
superimposed upon coarse-mesh shape. It is often depends weakly on neighbors, etc.. The
spectrum and form functions are generated by single-assembly transport calculations as
functions of various parameters that affect them. Current methods perform their single-
assembly calculations with reflective boundary conditions, which effectively means that an
assembly is surrounded by an infinite sea of identical assemblies. This makes it difficult to
obtain the form and spectrum functions that will be accurate if in the full core there is a
neighboring assembly that is significantly different.

We addressed this difficulty by using more general boundary conditions in the single-
assembly calculations, thus removing the approximation of identical neighbors. Part of the
research was to determine how best to do this. We used energy- and angle-dependent albedo
boundary conditions. If the albedo boundary conditions capture the effects that different
neighbors have on the form and spectrum shape functions, and if the full-core calculations
obtain the correct leakage at node surfaces, then the result should be a very accurate analysis
method.
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2.3 The Quasidiffusion Method for Solving the Trans-

port Equation

The proposed methodology is based on the quasidiffusion (QD) method for solving the
transport equation. The basic idea behind the QD method is to effectively reduce the
dimensionality of the problem by averaging the transport equation over angular and energy
variables. The QD system of equations is closed by special linear–fractional functionals that
depend weakly upon the transport solution. The resulting nonlinear problem of the QD
method is equivalent to the original linear transport problem. The moment QD equations
can be reduced to equations whose structure is similar to that of the diffusion equations.
These features of the QD method make it a natural and efficient approach for developing
reactor core analysis methodology based on transport theory and for implementation of it
in the framework of existing diffusion theory codes. The QD approach has been successfully
used to solve multigroup neutron transport equation with anisotropic scattering and fission,
problems of reactor kinetics, burnup, and radiative hydrodynamics.

2.4 Improved Boundary Conditions for Assembly-Level

Transport Calculations

We have developed extensions of present-day reactor-analysis methodology that systemati-
cally account for the effects that different neighbors have on a given assembly’s few-group
constants. One extension is branch cases that generate the effect of unlike neighbors on
a given assembly’s group constants. Another extension is to use superposition of the ef-
fects of neighboring assemblies to reduce the number of branch calculations that are needed
to tabulate the effects of all possible neighbor permutations. Finally, we also use energy-,
angle-, and position-dependent albedos to simulate the presence of the unlike neighbors in
our branch calculations. We have developed and tested a procedure for efficiently estimating
these albedos.

We envision two neighbor-assembly branches for each type of neighboring assembly, one
for an adjacent configuration and one for diagonal. For each type and configuration we further
envision a small number of branches on the neighbor’s burnup and one branch with the
neighbor containing a control rod. Other branches might be necessary in some applications.
For each branch case we estimate an albedo and perform a single-assembly calculation;
this fits into the framework of present-day methodology. (The base case corresponds to all
identical neighbors - which produces the usual reflecting boundary condition.) The keys
to computational efficiency are rapid estimation of albedos, the use of superposition, and
keeping the number of branch cases reasonably low. The keys to accuracy are accurate
estimation of albedos and careful attention to the limits of the superposition approximation.

We have found that spatial superposition of the effects of adjacent and diagonal neighbors
provides an excellent approximation to the effects of multiple neighbors on the assembly cross
sections and the diagonal (xx and yy) Eddington-tensor components. There is a large relative
error in the superposition approximation of the very small off-diagonal (xy) component, the
significance of which has not yet been determined.
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We have found that the albedos produced from 1D homogenized calculations do a reason-
ably good job of capturing the effects of a different neighbor except near assembly corners,
although it appears likely that explicit representation of the water gap will add enough accu-
racy to warrant its complexity. We have devised a 2D homogenized diffusion approximation
combined with a fixed-source long-characteristics transport sweep to obtain 2D correction
factors for the 1D albedo. This does not cause the off-diagonal tensor component to be accu-
rate, but it does improve the cross sections and diagonal tensor components. Our estimated
albedos produce significant improvements over the reflecting condition, but we believe that
further significant improvement is possible, and we are actively pursuing such improvement.

We are currently working to couple our assembly-level results with full-core quasi-diffusion
calculations to assess the impact of the errors that remain in our cross sections and Eddington
tensors. If this assessment shows that further assembly-level improvements will noticeably
improve the accuracy of the overall methodology, then we believe we can accomplish these
improvements, beginning with simple improvements to our albedo boundary conditions.

In summary, we believe the new methodology described here is promising, and we expect
to continue to refine it, couple it to other pieces of a full reactor-analysis system, and test
the coupled system.

2.5 Homogenization Methodology and Consistent Spa-

tial Coarse-Mesh Discretization for the Low-Order

Equations of the Quasidiffusion Method

We have developed a high-order coarse-mesh finite-element method for discretization of the
QD low-order equations that is consistent with the given fine-mesh transport differencing
method in the sense that it preserves the fine-mesh values of cell-average scalar flux, cell-
edge current, multiplication factor, and reaction rates. On the basis of this method, we have
developed an advanced consistent coarse-mesh finite-element method that preserves extra
two spatial Legendre moments of the fine-mesh transport scalar flux over coarse-mesh cells.
All these facts are rigorous mathematical results. The definition of discontinuity factors has
been derived. The resulting discretization scheme enables one to approximate accurately the
large-scale behavior of the transport solution within assemblies.

The developed method can be applied to a general transport method as well, if this
method preserves the particle balance. If a fine-mesh solution is obtained directly from a
transport differencing method, and it is used to calculate spatially averaged cross sections
and functionals, then the resulting coarse-mesh solution of the LOQD equations will be
consistent with the given transport method. The reason is that the coarse-mesh scheme
was derived by algebraically consistent discretization based on the discrete particle balance
equation, and thus this scheme works also for any transport method whose solution satisfies
the discrete balance equation.

We have analyzed the developed methods on a set of test problems that simulate the
interaction of MOX and uranium assemblies. These tests included assemblies with enrich-
ment variations, and water holes that introduce within-assembly flux variations. In spite of
this the CMFE-2 method is able to generate solution that mimic accurately the large-scale
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behavior of the transport solution within assembly.
The proposed methodology can be extended to multidimensional geometries, multigroup

case, finite-element methods based on higher order expansions of the coarse-mesh scalar
flux that creates an option of preserving more spatial moments of the fine-mesh transport
solution over coarse cells. The developed method is a part of a new methodology for reactor
core calculations, and this method will be coupled with other pieces of this methodology,
including usage of group data obtained by means of single-assembly calculations that use
efficient albedo boundary conditions. Another important issue is possibility of improvement
of pin-power reconstruction using the discretization methods that preserve extra spatial
moments of the fine-mesh transport solution within assembly. We are working now on such
extensions.

2.6 Methodology for Solving the Low-Order Equations

of the Quasidiffusion Method

We have developed a splitting method to solve the coarse-mesh discretized LOQD equations.
The method effectively splits a problem into two parts. The D-problem captures a signif-
icant portion of the transport solution in the central part of assembly, and the Q-problem
accounts for the complicated behavior of the transport solution in the vicinity of assembly
boundaries. The calculation of discontinuity factors for the splitting method has been in-
troduced, and corresponding interfacial conditions have been formulated for this particular
method. Each part of the LOQD equations in the split form has been approximated by a
different discretization scheme. The D-problem equations were approximated by means of
the high-order finite element method. The Q-problem equations were discretized by using
a finite volume method with second-order accuracy. Numerical results showed high accu-
racy of the proposed splitting method with the considered independent discretization of the
equations of D- and Q- problems.

The successful performance of the splitting method in 1D geometry stimulates the efforts
in extension of this method to multidimensional geometries. In 2D and 3D cases the solu-
tion of the LOQD equations discretized with high-order methods is rather computationally
intensive problem. According to the proposed approach, one can split the LOQD problem
into a D-problem that can be solved with current efficient methodologies for diffusion-type of
equations and a Q-problem that can be discretized with a second-order finite-volume method
because the solution of this problem is a small correction to solution of D-problem. Special
interface conditions allow spatial decomposition of the Q-problem such that it can be solved
in each coarse cell (part of assembly) independently of other cells. Thus, the presented split-
ting method enables us to reduce significantly computational costs for obtaining solution
that very accurately accounts for transport effects in full-reactor calculations.

It is important to note that the proposed splitting method can be also utilized to upgrade
current codes for full-reactor core calculations that are based on the diffusion theory. In such
case, it is necessary to add solution of Q-problem and modify the definition of the diffusion
coefficient as well as of the fission source term to account for the Q-problem solution. As a
result, one gets a code based on transport theory calculations, provided that all extra group
data and functionals are supplied from assembly-level calculations.
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Chapter 3 

Capturing The Effects Of Unlike Neighbors In 
Single-Assembly Calculations  

 
 
3.1 Introduction – The Interface Problem 
 
One of the main challenges that a reactor analysis methodology faces is obtaining the power 
distribution and averaged cross sections for an assembly whose neighboring assemblies are 
significantly different.  If the neighbors are identical to the assembly in question, then an 
excellent approximation to the solution in the assembly can be obtained by solving a two-
dimensional single-assembly problem with reflecting boundaries.  However, if a neighboring 
assembly is significantly different, the reflecting boundary condition does not accurately model 
reality. 
  
    Reactor analysts have tried many different approaches to approximating the effects of unlike 
neighbors on an assembly’s averaged cross sections.  The most straightforward is to run multi-
assembly calculations (“colorsets”), one for each four-assembly permutation that will appear in 
the core [1,2]. While straightforward in principle, this approach is computationally unwieldy, 
taxing to the user, and it does not eliminate the need to branch and interpolate on conditions in 
the neighboring assemblies.  Thus, most analysis systems attempt to retain the single-assembly 
calculation and somehow account for the effects of different neighbors. 
 
    In this chapter we describe our recent efforts to capture and tabulate the effects of different 
neighbors on the important parameters of a given assembly.  This includes all parameters needed 
by the core-level quasi-diffusion equations that are described in other chapters.  We describe our 
algorithms and present results from many difficult test problems containing MOX and UO2 
assemblies. 
 
Part of the assembly-level methodology described here is to use the following detailed angle- and 
energy-dependent albedo boundary conditions to represent the effects of an unlike neighbor: 
 
 ( ) ( ) ( ), , , 'g s g s g sr r ry g yW = W W , ' exiting direction that reflects onto  W º W . (1) 

 
Here ψ is angular flux and γ is our specialized albedo.  (A general albedo function would relate 
each incoming ( ),g W  to all outgoing( )', 'g W .)  While albedo boundary conditions have been 
explored before, our approach is different and offers several advantages, as we describe below.  
Another part of our system is to invoke superposition to estimate the combined effects of the 
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eight neighboring assemblies that surround a given assembly.  In this paper we carefully study 
the accuracy of the superposition approximation, independent of the accuracy of any albedo 
boundary conditions. 
 
    In the next section we explain the core-level quasi-diffusion approach to reactor analysis and 
the data requirements that this approach places upon the assembly-level code.  In a subsequent 
section we describe the results of our multiple analyses.  Part of this is a study of the use of 
superposition of effects of unlike neighboring assemblies, which can significantly reduce the 
number of required analyses.  We also study an albedo approximation that simulates the effects 
of neighbors in a representative set of colorsets.  We then provide the results from an analysis 
that combines spatial superposition and our albedo approximation of the boundary condition.  
The final section contains a summary and draws conclusions.  
 
 
3.2 Reactor Analysis Methodology:  Present And Proposed 
 
Today’s reactor-analysis methodology is reasonably accurate, despite the use of reflecting 
boundaries for single-assembly calculations and two-group coarse-mesh diffusion for core-level 
calculations.  Even on the most difficult commercial-reactor problems, the current methodology 
produces pin-power distributions that err by only a few percent [3,4].  This suggests that radical 
changes in the methodology are not needed; rather, we should carefully extend the existing 
methodology to try to capture most of the effects of different neighbors in our assembly 
calculations and most of the transport effects in our core-level calculations.  This should 
eliminate most of the error in today’s calculations. 
 
    Today’s methodology employs single-assembly calculations to generate “base-case” few-
group constants (cross sections, diffusion coefficients, and discontinuity factors), where “base-
case” means a given set of parameters such as temperatures, power density, soluble boron or void 
concentration, etc.  The variation of the constants with respect to changes in each parameter is 
estimated by solving one or more “branch cases” for each parameter.  In a branch case on soluble 
boron concentration, for example, all other parameters are held at their base values, the boron 
concentration is changed, and the single-assembly calculation is performed.  A branch on 
parameter p generates an estimate of dC/dp for each few-group constant C.  The parameters that 
are tabulated are those that are needed to perform the core-level calculation and to reconstruct 
pin-by-pin powers. 
 
    In this chapter we describe the single-assembly portion of a larger effort to develop an 
improved reactor-analysis methodology that is a natural extension of today’s methodology.  The 
larger effort replaces the core-level diffusion calculation with a core-level quasi-diffusion (QD) 
calculation.3-5  QD uses diffusion-like equations that contain transport information in the form of 
“Eddington” tensors; if the correct tensors are used, then the QD equations yield the correct 
transport solution.  In 2D problems, each component of the tensor is an angular-flux-weighted 
average of the product of two direction cosines:   
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Thus, in addition to the usual few-group cross sections and discontinuity factors, our new single-
assembly methodology must generate appropriately averaged Eddington tensors to prepare for 
later core-level QD calculations.   
 
    Our new single-assembly methodology also adds branch cases on parameters that describe the 
difference between the given assembly and its neighbors.  Each branch case will be a single-
assembly calculation with albedo boundary conditions that represent the effects of the unlike 
neighbor, either adjacent or diagonal to the given assembly.  The result will be the same type of 
dC/dp values as are currently generated; there are simply additional p’s to consider, p’s that 
describe the unlike neighboring assemblies. 
 
3.3 Results 
 
The most difficult real-world commercial LWR problems involve LEU assemblies interspersed 
with MOX assemblies.  We have considered several such problems to test our new methodology.  
We first explore the possibility of superimposing the effects of a single unlike neighbor to 
represent the effects of multiple unlike neighbors.  We then test a two-dimensional albedo that 
we have developed to approximate the effects of a single unlike neighbor, either adjacent or 
diagonal to the current assembly.  Finally, we combine the albedo boundary condition with the 
superposition approximation and test the ability of the resulting complete methodology to 
capture the effects of a set of unlike neighbors.   
 
    All of our two-dimensional transport results were obtained with a modified version of TALC, 
a long-characteristics assembly-level transport code written previously at Texas A&M University 
[5,6].  Each TALC calculation employed 12 flat-source regions per pin cell, 16 energy groups, 4 
polar angles, 8 azimuthal angles per quadrant, and 0.5-mm spacing between rays.  Each assembly 
in our test problems was a uniform lattice of geometrically identical pin cells – there were no 
water holes.  Macroscopic cross sections were calculated from a pin-cell analysis using CASMO-
3.  The UO2 fuel pins are all 4.0% enriched.  The MOX assembly contains an enrichment grading 
that ranges from 6% to 10% in total Pu content.  The corner pins had 6%, the outer rows had 8%, 
and the interior had 10%.  The circular pins were represented exactly. 

3.3.1  Spatial Superposition of Colorsets 

In a “colorset” analysis, an assembly-level calculation is performed for each four-assembly 
permutation that will appear in the core.  Each calculation requires up to ten times the CPU time 
of a single-assembly calculation and more input from the user.  We propose to use spatial 
superposition of the effects of single unlike neighbors to approximate the effects of multiple 
unlike neighbors and thus reduce the number of calculations that are needed to cover the entire 
parameter space of neighboring assemblies.   
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3.3.1.1 Superimposing the effects of perturbed neighbors 

For each assembly in the core, a “base” calculation of the current assembly is performed using 
reflecting boundaries to determine the “base” few-group constants (Cbase).  Suppose for the 
moment that we were willing to perform colorset calculations.  Then only a single “colorset” 
calculation, with three of the given assemblies and one unlike neighbor, would be needed in 
order to determine the effects of a UO2 neighbor on an adjacent MOX assembly (red underline in 
Figure 3.1) as well as a diagonally opposite one (blue italics in Figure 3.1).  That is, one such 
colorset calculation would yield the change in few-group constants due to an adjacent neighbor 
(dC/dp)adjacent and the change due to a diagonal neighbor (dC/dp)diagonal.   
 

MOX 

MOX 

UO2 

MOX 

Adjacent and Diagonal MOX 
 

Figure 3.1  The basic colorset for determining direct effects of a UO2 on a MOX assembly. 

 
    To estimate the effects of multiple perturbed neighbors, we would like to invoke superposition 
of the effects of single-assembly perturbations.  To test the validity of such a superposition we 
consider three two-dimensional test configurations, as shown in Figure 3.2.  For instance, if a 
given assembly were surrounded by unlike assemblies (an isolated configuration), then the 
formula to determine the few-group constants would be: 

 ( ) ( ) ( )
T

isolated base
adjacent diagonal adjacent

dC dC dCC C dp dp dp= + + + . (3) 

Because some of the constants (Eddington tensor and boundary current) are spatially and 
directionally dependant, a transpose-type operation on the adjacent perturbation is required to 
simulate a neighbor below, as opposed to on the right of, the given assembly. 
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MOX 

MOX 

UO2 

UO2 

MOX 

UO2 

UO2 

MOX 

MOX 

UO2 

UO2 

UO2 

Plane Isolated Checkerboard  

Figure 3.2  The three 2D test configurations for a MOX assembly. 

 
3.3.1.2  Results of the superposition tests 

We have tested the accuracy of superposition for each of the three test configurations shown in 
Figure 3.2, which are tests for computing parameters in the MOX assembly.  We have repeated 
this test for three similar configurations for computing UO2 parameters.  These configurations 
simply replace each MOX assembly with a UO2 assembly and vice versa.  Thus, we have tested 
superposition for six different configurations. 
 
    For each of the six test configurations, the few-group assembly-averaged cross-sections and 
Eddington tensors were calculated directly from a four-assembly TALC run to determine the 
reference value for each of the constants.  A “base” case was calculated using a single assembly 
with reflecting boundaries.  Then a fourth four-assembly calculation (basic configuration, shown 
in Figure 3.1) was performed to determine the effects on the assembly from an unlike adjacent 
and unlike diagonal neighbor.  Sets of dC/dp’s were calculated for these configurations.  The 
base-case parameters and the dC/dp’s were then combined as in Eq. 3 to estimate the few-group 
parameters in the given assembly, and these estimated parameters were compared against the 
reference values.   
 
    The relative cross section errors were similar across all three test configurations for each 
assembly type.  Thus, the results presented for the plane configuration, in Table 3.1, are 
representative of all three.  All of the relative errors of the cross sections are reduced by a factor 
of 10 or more as compared to the reflecting-boundary case, and the maximum error (which 
always occurred in the downscattering cross section) in both the UO2 and the MOX is reduced by 
a factor of 50.  Therefore, the spatial superposition of the effects of a neighbor on cross sections 
appear to provide an excellent approximation to the exact value, especially when compared 
against the reflecting-boundary cross sections used in today’s methodology.  This is very 
encouraging. 
 
    The relative errors of the assembly-averaged transport constants (components of the 
Eddington tensor) are shown in Table 3.2.  The diagonal (Exx and Eyy) constants are near 1/3, as 
expected, and are well approximated by the superposition (maximum error is 0.5%).  
Superposition errors are an order of magnitude lower than the reflecting-boundary (base) errors.  
The off-diagonal Exy value is exactly zero in the base UO2 (because of no enrichment grading 
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and reflecting boundaries) and very small in the “base” MOX assembly.  Therefore, there is no 
off-diagonal transport data conveyed when simply using the “base” case and the relative error is 
always ~100%.  The superposition does not do a good job of approximating the Exy’s, especially 
when an unlike “diagonal” assembly is involved.  There is a strong effect on Exy with a single 
unlike assembly diagonal to the given assembly, but this effect is significantly reduced when 
another unlike assembly is introduced adjacent to the current assembly, as in the plane or isolated 
configuration.  However, in these test problems Exy is very small relative to Exx or Eyy, and it is 
not clear that a large relative error in this component will seriously harm the accuracy of the full-
core calculation.  This is an issue that we are now investigating. 

Table 3.1  Relative errors in the MOX and UO2 cross sections in plane configurations. 

Reference Value Superposition Reflecting
MOX Assembly
     2 Group K-inf 1.164 0.00% -0.12%
     Fast Group
         Total 0.506 0.00% 0.24%
         Absorption 0.017 0.02% 1.04%
         Nu*Fission 0.014 0.00% 0.35%
         Fission 0.005 0.00% 0.36%
         Inscatter 0.479 0.00% 0.16%
         Downscatter 0.011 0.05% 2.19%
     Thermal Group
         Total 1.606 0.03% 0.39%
         Absorption 0.361 -0.02% -0.24%
         Nu*Fission 0.593 -0.02% -0.23%
         Fission 0.207 -0.02% -0.21%
         Inscatter 1.242 0.04% 0.60%
UO2 Assembly
     2 Group K-inf 1.270 0.02% -0.26%
     Fast Group
         Total 0.508 -0.01% -0.20%
         Absorption 0.010 -0.01% -0.49%
         Nu*Fission 0.008 0.05% -0.57%
         Fission 0.003 0.04% -0.60%
         Inscatter 0.483 -0.01% -0.13%
         Downscatter 0.015 0.03% -2.09%
     Thermal Group
         Total 1.292 0.00% -0.26%
         Absorption 0.106 -0.01% -0.54%
         Nu*Fission 0.169 -0.02% -0.54%
         Fission 0.070 -0.02% -0.54%
         Inscatter 1.184 0.00% -0.24%

Relative Error

 



 18 

Table 3.2  Relative errors in the MOX and UO2 Eddington components. 

Checker Plane Isolated Checker Plane Isolated Checker Plane Isolated
MOX Assembly
     Fast
         E_xx 0.335 0.337 0.336 0.03% -0.03% -0.02% -0.85% -0.23% -0.68%
         E_xy 2.E-04 -2.E-05 2.E-04 6% -418% 99% 90% 230% 87%
         E_yy 0.335 0.337 0.336 0.03% -0.01% -0.02% -0.85% -0.25% -0.68%
     Thermal
         E_xx 0.334 0.335 0.336 -0.51% 0.27% -0.23% 4.85% 5.10% 5.30%
         E_xy 2.E-03 -4.E-05 4.E-04 -17% 610% -180% 104% -56% 114%
         E_yy 0.334 0.321 0.336 -0.51% 0.04% -0.23% 4.85% 1.00% 5.30%
UO2 Assembly
     Fast 
         E_xx 0.341 0.339 0.340 0.01% -0.02% -0.02% 0.81% 0.19% 0.62%
         E_xy -4.E-05 6.E-05 1.E-04 -129% 146% 151% 100% 100% 100%
         E_yy 0.341 0.339 0.340 0.01% -0.01% -0.02% 0.81% 0.24% 0.62%
     Thermal
         E_xx 0.361 0.361 0.361 -0.10% 0.06% -0.05% -1.25% -1.27% -1.28%
         E_xy -9.E-04 -4.E-05 -7.E-04 17% 248% 53% 100% 100% 100%
         E_yy 0.361 0.365 0.361 -0.10% -0.02% -0.05% -1.25% 0.01% -1.28%

Reference Value Spatial Superposition Reflecting

 

3.3.2 Albedo Boundary Conditions to Simulate the Effects of a Single 
Perturbed Neighbor 

Because of the CPU and user-interface requirements, most reactor analysis code systems today 
attempt to retain a single-assembly calculation and somehow account for the effects of different 
neighbors.  We propose to work within this framework and to approximate the effects of a 
neighbor using a “specialized” albedo boundary condition. 
 
3.3.2.1 One-dimensional albedo approximation 

Consider Figure 3.3’s two-dimensional approximation of a real assembly (denoted “L” below) 
with an unlike neighbor (denoted “R”) on one side.  If we knew exactly what materials were in 
region “R”, we could solve a two-assembly transport problem to obtain the angular flux, ψg, at 
the interface.  At that point we could define: 
 
 ( ) ( ) ( ), , / , 'g s g s g sr r rg y yW = W W  . (4) 
 
(If R were a mirror image of L, then γ would equal 1 for each group and angle.)  If this energy- 
and angle-dependent albedo were used as a boundary condition for assembly L, then a single-
assembly solution in L would be identical to the two-assembly solution.  We wish to avoid 
solving multi-assembly problems; thus, this definition at first appears to be of little value. 
 
    The effect of a “different” neighbor is fairly localized to a good approximation (because 
thermal neutron mean-free paths are very small compared to the assembly width); thus, much of 
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the interface physics is effectively one-dimensional in space.  Further, because γ is a ratio of 
angular fluxes, it should be relatively insensitive to symmetric changes in geometric details.  We 
therefore propose to estimate the albedo by solving a 1D problem with two homogeneous 
regions, as depicted in Figure 3.4.  Each region has the width of a half-assembly, and we employ 
reflecting boundaries on the outer edges. 
 

L R
 

Figure 3.3  Interface between unlike assemblies 

 
    This problem is simple enough that an accurate numerical solution will incur relatively low 
computational cost.  We are using a linear-discontinuous finite-element (LD FE) method in 
space, multi-group in energy, and discrete-ordinates in angle, with logarithmically spaced spatial 
zoning at the interface, to quickly calculate the solution, which we then use to estimate the 
albedo: 
 
 ( ) ( ) ( ) ( ) ( )1DH 1DH, , , , / , ,     =cosineg s g s g s g sr r r r n 0g g m q y m y m mW = » - W · <  . (5) 
 
This approximation provides a significant improvement over the reflecting boundary “base” 
case, but it still yields appreciable errors near the “corner” interface among four assemblies, as 
one might expect [7].  Therefore, a two-dimensional modification to the 1D albedo is required to 
achieve the accuracy we seek. 
 

L R
 

Figure 3.4  Approximate 1D model of interface between assemblies 

 
 



 20 

3.3.2.2 Two-dimensional albedo modification 

Because the 1D homogeneous albedo produces a very good approximation to the boundary 
condition away from corner points, a simple modification should be able to account for the 2D 
effects, which are strongest at corners.  Our procedure for obtaining an improved albedo begins 
by arranging the given assembly (denoted MOX) and the neighbor (denoted UO2) as shown in 
Figure 3.2.  Each quarter-assembly is spatially homogenized into pin cells and a simple multi-
group, finite-volume diffusion calculation is used to estimate the multi-group, pin-averaged flux 
shape.  This calculation is inexpensive compared to a single-assembly fine-mesh fine-group 
transport calculation. 
 
    The pin cells are then represented as multi-group flat-source regions, with the scattering and 
fissions sources derived from the finite-volume diffusion solution.  Using one simplified long-
characteristics sweep, for each azimuthal and polar angle from the assembly-level code’s 
quadrature set, the angular flux at the center of each pin-cell edge on both the L/L and the L/R 
interfaces are calculated.  These angular fluxes are used to calculate a multi-group, pin-cell-edge 
two-dimensional albedo ( ),D

g sR2g W  for each direction used in the assembly-level code. 
 
    This 2D albedo is then used to modify the existing 1D homogenous albedo.  The albedo of the 
pin cell nearest the center of the interface between adjacent assemblies is assumed to be exactly 
the 1D homogenous albedo.  The ratio of the 2D albedo on a given pin-cell edge to the 2D 
albedo at the center-pin edge is then used to modify the 1D albedo: 
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where Rs is any pin-cell edge along the interface and Rc is the centerline pin cell.   
 
    We construct the albedo as in Eq. (6) along both the L/R and L/L interface in the configuration 
of Figure 3.2.  Different combinations of these albedos and reflecting boundary conditions allow 
us to model a single adjacent R neighbor or a single diagonal R neighbor; all other R-neighbor 
configurations can then be built from superposition.  
 
3.3.2.3 Results of the two-dimensional albedo approximation 

For both assemblies in a “basic” colorset configuration, the few-group, assembly-averaged cross-
sections and Eddington tensors were calculated to determine the reference value of the 
“diagonal” and “adjacent” assemblies.  A “base” case was calculated using a single assembly 
with reflecting boundaries.  The resulting multi-group assembly-averaged cross sections were 
used in both the LD FE code, to determine the 1D homogenous albedo, and the diffusion code, to 
determine an approximate albedo boundary condition for the “diagonal” and “adjacent” 
configurations.  Two single-assembly calculations, using the two-dimensional boundary 
conditions, were calculated to determine the approximate few-group, assembly-averaged cross-
sections and Eddington tensors.  Also, a single-assembly calculation using the 1D homogeneous 
boundary condition was used to provide a “1D” approximation of the constants due to an 
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adjacent unlike assembly.  The 1D and 2D constants were compared, along with the “base” 
(reflecting-boundary) constants, to the reference values.  
 
    The relative cross section errors, shown in Table 3.3, are very small in both “adjacent” and 
“diagonal” configurations, but the 2D albedo does improve accuracy.  In the “adjacent” case, the 
sign of the error, for nearly all cross sections, changes from the “base” to the “1D 
approximation”, which leads to the expectation that an improved 1D albedo might significantly 
improve the results.  The 2D modification reduces the error of the 1D approximation; the 
maximum error is less than 1% using the 2D albedo.  The most significant improvement occurs 
in the thermal group in the UO2 assembly, where the relative error drops to less than 0.02%. In 
the “diagonal” case, the 2D approximation reduces the error for nearly all cross sections, but 
with very little change, especially in the fast group, to already small errors.   

Table 3.3  2D approximation of MOX and UO2 assemblies in diagonal and adjacent 
configurations. 

2D 1D Reflect 2D Reflect
Reference Reference

MOX Assembly
     2 Group K-inf 1.164 0.06% 0.07% -0.07% 1.164 -0.03% -0.04%
     Fast Group
         Total 0.506 -0.14% -0.17% 0.12% 0.506 0.09% 0.12%
         Absorption 0.017 -0.42% -0.55% 0.77% 0.016 0.15% 0.26%
         Nu*Fission 0.014 -0.11% -0.14% 0.26% 0.014 0.07% 0.09%
         Fission 0.005 -0.12% -0.15% 0.26% 0.005 0.07% 0.10%
         Inscatter 0.479 -0.12% -0.13% 0.06% 0.479 0.09% 0.11%
         Downscatter 0.011 -0.89% -1.25% 1.69% 0.010 0.19% 0.47%
     Thermal Group
         Total 1.606 -0.10% -0.19% 0.37% 1.600 -0.05% 0.00%
         Absorption 0.362 0.10% 0.29% -0.12% 0.362 0.06% -0.10%
         Nu*Fission 0.593 0.09% 0.30% -0.11% 0.594 0.06% -0.11%
         Fission 0.208 0.09% 0.29% -0.09% 0.207 0.06% -0.10%
         Inscatter 1.241 -0.16% -0.34% 0.53% 1.235 -0.08% 0.03%
UO2 Assembly
     2 Group K-inf 1.270 0.03% 0.07% -0.25% 1.273 0.03% -0.03%
     Fast Group
         Total 0.509 0.11% 0.14% -0.10% 0.509 -0.08% -0.09%
         Absorption 0.010 0.21% 0.26% -0.30% 0.010 -0.14% -0.18%
         Nu*Fission 0.008 0.10% 0.16% -0.47% 0.008 -0.04% -0.15%
         Fission 0.003 0.13% 0.19% -0.48% 0.003 -0.05% -0.16%
         Inscatter 0.483 0.10% 0.12% -0.04% 0.483 -0.08% -0.08%
         Downscatter 0.015 0.58% 0.85% -1.67% 0.015 -0.14% -0.44%
     Thermal Group
         Total 1.292 -0.02% 0.04% -0.23% 1.295 0.03% -0.02%
         Absorption 0.106 -0.04% 0.07% -0.49% 0.106 0.06% -0.04%
         Nu*Fission 0.170 -0.04% 0.07% -0.49% 0.170 0.06% -0.03%
         Fission 0.070 -0.04% 0.07% -0.49% 0.070 0.06% -0.03%
         Inscatter 1.184 -0.02% 0.04% -0.22% 1.186 0.03% -0.02%

Adjacent Diagonal

Relative Error Relative Error
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The relative errors in the assembly-averaged Eddington tensors are shown in Table 3.4.  The 
relative errors in the diagonal (Exx and Eyy) components are, in each approximation, not large 
(under 5%).  The 2D albedo reduces the maximum error (thermal-group MOX Exx) by a factor of 
five to less than 1%.  Exx is the transport constant in the direction of the unlike neighbor.  The 1D 
albedo improves the Exx in both assemblies and groups, with a more significant change in the 
thermal groups.  The 2D albedo further reduces the error in the thermal constants, but has the 
opposite effect in the fast group. A similar trend is seen in the diagonal assembly: a poor 
modification in the fast groups and an over-modified albedo in the thermal groups (as evidenced 
by a change in sign of the error). 
 
    Exy is approximately zero in the base case; therefore, its error is nearly 100%.  Similarly, the 
1D approximation of the UO2 assembly has no effect on Exy, because it is simply a 1D 
modification to a uniformly enriched assembly.  The MOX error is actually increased.  The 2D 
approximation shows improvement in the thermal groups, but decreases the accuracy in the fast 
groups; the fast UO2 Exy even has the incorrect sign.  We are currently investigating the cause of 
this poor Exy behavior as well as the significance of such errors when Exy is this small. 
 
    The 1D albedo improves accuracy compared to the reflecting-boundary approximation, but is 
not sufficient to account for the two-dimensional transport effects of the off-diagonal (Exy) 
component of the Eddington tensor.  In addition, the 1D albedo overestimates the effects of the 
neighbor because it uses an assembly-averaged cross section for an assembly with graded 
enrichment, which leads to a change in sign of the error.  Our 2D modification to the albedo 
reduces this error in several instances, especially in the thermal group, but in its current form it 
does not correctly model the off-diagonal Eddington tensor either.  We are investigating simple 
strategies for further improvements. 
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Table 3.4  2D approximation of the Eddington tensor in the adjacent and diagonal 
configurations. 

2D 1D Reflect 2D Reflect
Exact Exact 

MOX Assembly
     Fast Group
         E_xx 0.337 -0.34% -0.20% -0.42% 0.339 0.24% 0.22%
         E_xy 1.E-04 257% 153% 80% -2.E-04 135% 112%
         E_yy 0.337 -0.19% -0.15% -0.46% 0.339 0.24% 0.22%
     Thermal Group
         E_xx 0.334 -0.88% -1.82% 4.65% 0.319 -0.27% 0.22%
         E_xy 1.E-03 -75% 146% 106% -8.E-04 -103% 92%
         E_yy 0.321 -0.33% -0.87% 0.75% 0.319 -0.27% 0.22%
UO2 Assembly
     Fast Group
         E_xx 0.339 0.19% 0.20% 0.38% 0.337 -0.28% -0.17%
         E_xy -4.E-05 565% 100% 100% 2.E-05 2665% 100%
         E_yy 0.339 0.23% 0.13% 0.42% 0.337 -0.28% -0.17%
     Thermal Group
         E_xx 0.361 -0.01% 0.04% -1.25% 0.365 0.05% -0.08%
         E_xy -4.E-04 -67% 100% 100% 4.E-04 -68% 100%
         E_yy 0.366 -0.03% 0.13% 0.10% 0.365 0.05% -0.08%

Adjacent Diagonal

Relative Error Relative Error

 

 
In summary, the 2D albedo that we have devised is a computationally efficient way to capture 
most of the effects that unlike neighbors have on a given assembly.  Albedo-based single-
assembly calculations produce significantly more accurate few-group cross sections and 
somewhat more accurate Eddington tensors.  We have hypotheses about the causes of the largest 
remaining errors and ideas for simple ways to improve our albedos and reduce those errors.  We 
will study these in the near future. 

3.3.3  2D Albedo Boundary Condition Coupled with Spatial Superposition 

To fully utilize the single-assembly calculation with albedo boundary conditions and minimize 
the number of required branches, we must combine spatial superposition with the 2D albedo 
approximation.  In this subsection we test this combination for each of our six test configurations 
(three for a MOX assembly and three for UO2).  For each configuration we generate a reference 
solution with a four-assembly TALC calculation.  All other solutions in this subsection use 
TALC only for single-assembly calculations, some with albedo boundary conditions as described 
above. 
 
    A summary of the cross section results is shown in Table 3.5.  The highest cross section error 
is consistently found in the downscatter cross section, so we display this error.  In general, there 
is a reduction in the error as the boundary condition improves from reflecting to 1D albedo to 2D 
albedo, but the error in the 2D approximation is much greater than the error from the  
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Table 3.5  Cross-section errors from all tested approximations. 

Downscatter 2-Group K-inf Downscatter 2-Group K-inf
Reference values
Check erboard 0.0107 1.1632 0.0147 1.2671
Plane 0.0106 1.1635 0.0149 1.2702
Isolated 0.0108 1.1627 0.0146 1.2670
Spatia l Superposition
Check erboard -0.05% 0.00% -0.06% 0.00%
Plane 0.05% 0.00% 0.03% 0.02%
Isolated 0.04% 0.00% 0.01% 0.03%
2D Albedo w ith Spatia l Superposition
Check erboard -1.81% 0.12% 1.12% 0.07%
Plane -0.66% 0.03% 0.47% 0.07%
Isolated -1.53% 0.08% 1.06% 0.12%
1D Albedo w ith Spatia l Superposition
Check erboard -2.50% 0.14% 1.68% 0.14%
Plane -0.74% 0.03% 0.44% 0.06%
Isolated -1.95% 0.10% 1.30% 0.14%
Reflecting Boundaries
Check erboard 3.28% -0.15% -3.45% -0.51%
Plane 2.19% -0.12% -2.09% -0.26%
Isolated 3.80% -0.19% -3.85% -0.51%

MOX UO2

 

 
superposition of the colorsets (reported in earlier tables).  We must investigate further to 
determine whether further improvements are needed in our albedo boundary conditions; it is 
possible that they are accurate enough that a different part of our overall methodology is now the 
limiting factor.  As mentioned above, we believe we can devise simple modifications to improve 
our albedos if this is needed. 
 
    The Eddington-tensor results are displayed in Tables 3.6 and 3.7 for UO2 and MOX, 
respectively.  The Exx and Eyy components are very accurate and improve with each improvement 
in the boundary condition.  Exx suffers from inaccuracy as described previously; further 
investigation will determine whether this is significant.  [Note that today’s reactor analyses use 
diffusion theory, which corresponds to Exy =0 and Exx = Eyy = 1/3.] 
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Table 3.6  Eddington-tensor errors from all approximations: UO2 assembly. 

E_xx E_xy E_yy E_xx E_xy E_yy
Reference values
Check erboard 0.3407 -4.E-05 0.3407 0.3606 -9.E-04 0.3606
Plane 0.3386 6.E-05 0.3387 0.3606 -4.E-05 0.3652
Isolated 0.3400 1.E-04 0.3400 0.3605 -7.E-04 0.3605
Spatia l Superposition
Check erboard 0.01% -129% 0.01% -0.10% 17% -0.10%
Plane -0.02% 146% -0.01% 0.06% 247% -0.01%
Isolated -0.02% 151% -0.02% -0.04% 53% -0.04%
2D Albedo w ith Spatia l Superposition
Check erboard 0.43% 1163% 0.43% -0.14% -38% -0.14%
Plane -0.11% 458% -0.06% 0.10% 365% 0.00%
Isolated 0.13% 106% 0.13% -0.04% 23% -0.04%
1D Albedo w ith Spatia l Superposition
Check erboard 0.35% 100% 0.35% 0.07% 100% 0.07%
Plane 0.01% 100% -0.05% 0.02% 100% 0.03%
Isolated 0.15% 100% 0.15% 0.05% 100% 0.05%
Reflecting Boundaries
Check erboard 0.81% 100% 0.81% -1.25% 100% -1.25%
Plane 0.19% 100% 0.24% -1.27% 100% 0.01%
Isolated 0.62% 100% 0.62% -1.28% 100% -1.28%

Fast Group Thermal Group

 

Table 3.7  Eddington tensor from the superposition of all approximations in the MOX 

E_xx E_xy E_yy E_xx E_xy E_yy
Reference values
Checkerboard 0.3354 2.E-04 0.3354 0.3344 2.E-03 0.3344
Plane 0.3375 -2.E-05 0.3374 0.3353 -4.E-05 0.3214
Isolated 0.3360 2.E-04 0.3360 0.3360 4.E-04 0.3360
Spatial Superposition
Checkerboard 0.03% 6% 0.03% -0.51% -17% -0.51%
Plane -0.03% -418% -0.01% 0.27% 610% 0.04%
Isolated -0.02% 99% -0.02% -0.23% -180% -0.23%
2D Albedo with Spatial Superposition
Checkerboard -0.51% 274% -0.51% -1.71% -102% -1.71%
Plane -0.13% -687% 0.04% -0.87% 281% -0.57%
Isolated -0.31% 299% -0.31% -1.68% -314% -1.68%
1D Albedo with Spatial Superposition
Checkerboard -0.32% 166% -0.32% -3.15% 149% -3.15%
Plane -0.01% -248% 0.05% -1.33% -1019% -0.61%
Isolated -0.15% 185% -0.15% -2.66% 289% -2.66%
Reflecting Boundaries
Checkerboard -0.85% 90% -0.85% 4.85% 104% 4.85%
Plane -0.23% 230% -0.25% 5.10% -56% 1.00%
Isolated -0.68% 87% -0.68% 5.30% 114% 5.30%

Fast Group Thermal Group
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3.4 Conclusions  
 
We have developed extensions of present-day reactor-analysis methodology that systematically 
account for the effects that different neighbors have on a given assembly’s few-group constants.  
One extension is branch cases that generate the effect of unlike neighbors on a given assembly’s 
group constants.  Another extension is to use superposition of the effects of neighboring 
assemblies to reduce the number of branch calculations that are needed to tabulate the effects of 
all possible neighbor permutations.  Finally, we also use energy-, angle-, and position-dependent 
albedos to simulate the presence of the unlike neighbors in our branch calculations.  We have 
developed and tested a procedure for efficiently estimating these albedos.   
 
    We envision two neighbor-assembly branches for each type of neighboring assembly, one for 
an adjacent configuration and one for diagonal.  For each type and configuration we further 
envision a small number of branches on the neighbor’s burnup and one branch with the neighbor 
containing a control rod.  Other branches might be necessary in some applications.  For each 
branch case we estimate an albedo and perform a single-assembly calculation; this fits into the 
framework of present-day methodology.  (The base case corresponds to all identical neighbors – 
which produces the usual reflecting boundary condition.)  The keys to computational efficiency 
are rapid estimation of albedos, the use of superposition, and keeping the number of branch cases 
reasonably low.  The keys to accuracy are accurate estimation of albedos and careful attention to 
the limits of the superposition approximation. 
 
    We have found that spatial superposition of the effects of adjacent and diagonal neighbors 
provides an excellent approximation to the effects of multiple neighbors on the assembly cross 
sections and the diagonal (xx and yy) Eddington-tensor components.  There is a large relative 
error in the superposition approximation of the very small off-diagonal (xy) component, the 
significance of which has not yet been determined. 
  
   We have found that the albedos produced from 1D homogenized calculations do a reasonably 
good job of capturing the effects of a different neighbor except near assembly corners, although 
it appears likely that explicit representation of the water gap will add enough accuracy to warrant 
its complexity.  We have devised a 2D homogenized diffusion approximation combined with a 
fixed-source long-characteristics transport sweep to obtain 2D correction factors for the 1D 
albedo.  This does not cause the off-diagonal tensor component to be accurate, but it does 
improve the cross sections and diagonal tensor components.  Our estimated albedos produce 
significant improvements over the reflecting condition, but we believe that further significant 
improvement is possible, and we are actively pursuing such improvement. 
 
   We are currently working to couple our assembly-level results with full-core quasi-diffusion 
calculations to assess the impact of the errors that remain in our cross sections and Eddington 
tensors.  If this assessment shows that further assembly-level improvements will noticeably 
improve the accuracy of the overall methodology, then we believe we can accomplish these 
improvements, beginning with simple improvements to our albedo boundary conditions. 
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    In summary, we believe the new methodology described here is promising, and we expect to 
continue to refine it, couple it to other pieces of a full reactor-analysis system, and test the 
coupled system.  We hope to report on further progress in future communications. 
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Chapter 4 
 
Recent Improvements in Boundary Conditions 
for Single-Assembly Calculations 
 
 
4.1 Introduction 

 
A major challenge in reactor analysis is obtaining the local power shape and homogenized few-
group constants for an assembly whose neighbors are significantly different.  If the neighbors are 
similar to the assembly in question, then the solution in the assembly is well-approximated by 
solving a single-assembly problem with reflecting boundaries.  However, if an assembly’s 
neighbor is significantly different, the reflecting boundary condition produces inaccuracies.   
 
    In recent papers [1][2] we reported some attempts to reduce this inaccuracy.  Our strategy is to 
add branch cases that account for unlike neighbors, much like branch cases now account for 
other deviations from “base-case” conditions.  Each neighbor-branch considers a known 
assembly touching the given assembly along a surface or at a corner.  The desired solution could 
be obtained by solving a four-assembly “colorset” with three given assemblies and one different 
neighbor.  We wish to avoid the expense of this four-assembly fine-mesh transport solution by 
using a one-assembly calculation with albedo boundary conditions that simulate the neighbor.   
 
    Here we describe an improved procedure for generating albedos for the single-assembly 
calculation and compare the results against reference solutions and against previous results from 
[2].  Our test problems show that the new albedos yield substantial improvements in few-group 
constants.  
 
    This work is part of a larger collaborative project that uses quasi-diffusion equations for core-
level analysis [3][4][5].  To support this project our single-assembly calculation must produce 
components of the “Eddington tensor,” defined as follows, where u=x or y, v = x or y. 
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4.2 Estimation of Albedo 

 
Our albedo boundary condition is implemented in a long-characteristics transport code as 
follows: 
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 ( ) ( ) ( ),, , ' ,g g er r ry g yW = W W Î
r r rr r r edge e. (2) 

Here g is the energy-group index and 'W
r

 is the direction that reflects onto W
r

 on edge e.  (The 
reflecting condition is ( ),g eg W

r
= 1 for all g, e, and W

r
.)  The question addressed here is how to 

inexpensively but accurately estimate ( ),g eg W
r

. 

 
    As in previous work [2], we assume that reflecting-boundary calculations have been 
performed for all assemblies before any neighbor branches are calculated.  Thus, when a 
neighbor branch is calculated, homogenized cross sections are available for the neighbor 
assembly. 
 
    Let “A” denote the given assembly with neighbor “N.”  We arrange one “N” and three “A” 
assemblies (or quarter-assemblies if symmetry permits) into a 2x2 array.  We assume that each 
quarter-assembly has four homogeneous regions:  the corner pincell, two edge rows of pincells, 
and the interior.  Figure 4.1 shows a sketch of this simplified colorset. 
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Fig. 4.1 Sketch of simplified four-assembly colorset showing homogeneous regions. 

 
 
    We solve the k-eigenvalue problem for this simplified colorset using cell-centered finite-
volume diffusion with one mesh cell per pin cell, using reflecting (zero-current) boundary 
conditions on the outer surfaces.  This calculation, which uses the same energy groups as the 
single-assembly transport, produces an estimate of the scattering + fission source in each pin cell.  
We then perform an inexpensive long-characteristic transport calculation to obtain angular fluxes 
at the midpoints of pin-cell edges that will need albedos (i.e., on two surfaces of one “A” 
assembly).  The calculation for direction W

r
 marches backward from each edge midpoint in 

direction −W
r

, accumulating contributions  until it has traversed at least 10 mean-free paths, at 
which point further contributions are neglected.  Ratios of edge-center angular fluxes produce the 
albedos, ( ),g eg W

r
. 

 
    One difference from previous work [2] is the use of nine separate homogenized regions in 
each assembly in the simplified colorset calculation.  Previously each assembly was fully 
homogenized.  This difference is important for non-uniform assemblies. Previously we forced 
the albedo at the center of the surface between two assemblies to equal an albedo calculated from 
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a simple 1D transport calculation, reasoning that far from corners the effects should be largely 
one-dimensional and that the transport calculation should add accuracy.  We have now found 
that in the high-energy groups, even far from corners, the effects are not one-dimensional.  Our 
new method, therefore, does not employ a 1D transport calculation in its estimation of albedos. 
 
4.3 Results 

 
We consider two assembly types: MOX with three enrichment zones and U with uniform 
enrichment.  Problem A generates MOX constants given a U assembly diagonally opposed 
(touching a corner); B generates MOX constants given an adjacent U assembly (sharing a 
surface); C generates U constants given an adjacent MOX assembly.  In Table 4.1I we compare 
few-group constants generated by our previous and new methods against reference results, which 
are generated by applying our fine-mesh long-characteristic code [6] to each full colorset.  We 
also compare results from reflecting-boundary calculations (albedo=1).  The “old” albedo of [2] 
improves the 2-group homogenized cross sections compared to the standard reflecting-boundary 
method.  The new albedo produces further improvements.  The largest cross-section error in the 
table is 1.69% for reflecting, 0.63% for the old albedo, and 0.26% for the new albedo. All 
methods produce accurate Exx and Eyy values.  Only the new albedo produces accurate thermal-
group Exy values.  No method shown here produces accurate fast-group Exy values.  We expect to 
address this issue in a future communication. 
 
    All methods produce accurate Exx and Eyy values.  Only the new albedo produces accurate 
thermal-group Exy values.  No method shown here produces accurate fast-group Exy values.  We 
expect to address this issue in a future communication. 
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TABLE I.  Errors in results from various methods.  (1 = fast; 2 = thermal) 

Test Problem 
A B C 

% Relative Error or value  % Relative Error or value % Relative Error or value 
Con-
stant 

Ref. Val. Albedo
=1 

Old  
Alb. 

New  
Alb. 

Ref. Val. Albedo
=1 

Old  
Alb. 

New  
Alb. 

Ref.Val Albedo
=1 

Old  
Alb. 

New  
Alb. 

2-grp 
k∞ 1.164 −0.04 −0.04 −0.03 1.164 −0.07 0.09 0.05 1.270 −0.25 0.01 −0.01 

Σt,1 0.506 0.12 0.10 0.09 0.506 0.11 −0.13 −0.07 0.509 −0.10 0.11 0.09 

Σa,1 0.016 0.26 0.19 0.17 0.017 0.76 −0.38 −0.10 0.010 −0.30 0.20 0.16 

νΣf,1 0.014 0.09 0.08 0.07 0.014 0.25 −0.10 0.01 0.008 −0.43 0.10 0.06 

Σ1→2 0.010 0.47 0.29 0.25 0.011 1.69 −0.63 −0.09 0.015 −1.69 0.42 0.26 

Σt,2 1.600 0.00 -0.03 -0.03 1.607 0.41 0.04 −0.09 1.291 −0.27 −0.04 −0.05 
Σa,2 0.362 −0.10 0.03 0.02 0.362 −0.12 −0.05 0.12 0.106 −0.58 −0.04 −0.07 
νΣf,2 0.594 −0.11 0.03 0.01 0.594 −0.10 −0.05 0.13 0.170 −0.58 −0.03 −0.06 
Exx,1 0.333 0.03 0.02 0.02 0.333 −0.03 −0.03 0.29 0.333 0.03 −0.02 −0.01 
Eyy,1 0.333 0.03 0.02 0.02 0.333 −0.03 −0.02 −0.11 0.333 0.02 0.05 0.05 
Exy,1 −7E-5 1E-5 2E-5 3E-5 4.E-5 1E-5 −1E-4 −9E-5 −7E-6 −1E-9 8E-5 1E-4 
Exx,2 0.332 0.03 0.02 0.02 0.336 1.34 −0.19 0.56 0.333 −0.48 −0.01 −0.01 
Eyy,2 0.332 0.03 0.02 0.02 0.330 −0.66 0.08 −0.19 0.336 0.00 −0.03 −0.03 
Exy,2 −4E-4 −3E-5 −4E-4 −4E-4 5.E-4 −3E-5 4E-4 5E-4 −2E-4 −2E-9 −2E-4 −2E-4 

 
 
4.4 Summary 
 

Our new method for estimating albedos allows the efficient generation of homogenized cross 
sections that more accurately include the effects of unlike neighbors.  In its current stage of 
evolution the method does not produce accurate xy components of the Eddington tensor in the 
fast energy group. 
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Chapter 5

Consistent Spatial Discretization of
the Low-Order Quasidiffusion
Equations on Coarse Grids

5.1 Abstract

In this chapter we develop a spatial discretization method for the low-order quasidiffusion
equations on coarse grids for full-core reactor calculations. The proposed method reproduces
accurately the complicated large-scale behavior of the transport solution within assemblies.
The resulting discretization is spatially consistent with a fine-mesh discretization of the
transport equation in the sense that it preserves zeroth, first and second spatial Legendre
moments of the fine-mesh transport solution over coarse-mesh cells along with the surface
currents, and eigenvalue. Numerical results that demonstrate accuracy of the proposed
methodology are presented.

5.2 Introduction

The present computational methodologies for reactor analysis are based on full-core and
assembly-level calculations. Full-core calculations generate eigenvalues and power distribu-
tions for a reactor core using few-group diffusion equation approximated on coarse grids.
Each grid cell represents a large part of an assembly. The group data (i.e. cross sections,
diffusion coefficients, discontinuity factors and other functionals) are obtained from assembly-
level transport calculations in which the many-group transport equation is solved in isolated
assembly with reflective boundary conditions on fine spatial grids.

An alternative approach was recently developed [1, 2, 3, 4, 5, 6]. To account for the
complicated transport effects in full-core calculations, a new methodology is based on low-
order quasidiffusion (LOQD) equations [7, 8, 9]. This approach is also combined with single-
assembly transport calculations that use special albedo boundary conditions which enable
one to simulate efficiently effects of an unlike neighboring assembly on assembly’s group data
[2, 6].

The LOQD equations can capture transport effects to an arbitrary degree of accuracy.
These equations can be reduced to a diffusion-like form. These features make the LOQD
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equations very attractive for using them as a background for methodology for reactor core
calculations. In full reactor core calculations, it is necessary to use discretization methods
that are very accurate on coarse meshes. In this paper we develop methods for approxi-
mating of the LOQD equations on coarse grids. It is necessary for such method to preserve
the averaged reaction rates, surface-averaged group currents, and eigenvalue [10]. The way
to improve accuracy of coarse-mesh calculations is to put more physics into coarse-mesh
solution. This can be achieved by developing coarse-mesh discretization methods that re-
produce accurately the large-scale behavior of the transport solution within assemblies that
is characterized by a set of its pin-cell average values.

In this paper we present a finite-element discretization scheme of the low-order equations
of the quasidiffusion (QD) method on coarse grids. On the basis of this scheme, we develop
a coarse-mesh discretization of the LOQD equations that preserves exactly several spatial
moments of the fine-mesh transport solution over coarse-mesh cells (e.g., assembly or quarter
assembly). We analyze the behavior of the proposed method on numerical test problems that
simulate the interaction of MOX and uranium assemblies with enrichment variations and
water holes, and consider sensitivity of the coarse-mesh solution to perturbations in group
data.

The reminder of the paper is organized as follows. In Sec. 5.3 we formulate the few-group
LOQD equations. In Sec. 5.4 we derive a basic coarse-mesh finite element method for the
LOQD equations that preserves zeroth moment of the fine-mesh transport solution as well
as surface currents and eigenvalue. In Sec. 5.5 we present an advanced coarse-mesh finite-
element method that preserves extra spatial moments of the fine-mesh transport solution. In
Sec. 5.6 we demonstrate numerical solutions of test problems that simulate the interaction
of MOX and uranium assemblies. We conclude with a discussion in Sec. 5.7.

5.3 The Few-Group Low-Order Quasidiffusion Equa-

tions

5.3.1 The LOQD Equations

We consider a few-group k-eigenvalue transport problem for 1D slab geometry with vacuum
boundary conditions, 0 ≤ x ≤ X, g = 1, ..., Mg. The LOQD equations [7, 9, 11, 12] for the
group scalar flux φg and current Jg are

d

dx
Jg + Σg

t φ
g =

Mg∑
p=1

Σp→g
s,0 φp +

1

keff

χg

Mg∑
p=1

νp
fΣ

p
fφ

p , (5.1)

d

dx
(Egφg) + Σg

t J
g = 0 , (5.2)

Jg(0) = Cg
Lφg(0) , Jg(X) = Cg

Rφg(X) . (5.3)

The functionals Eg, Cg
L and Cg

R are calculated by means of the few-group transport solution

Eg =

1∫

−1

µ2ψgdµ

/ 1∫

−1

ψgdµ , (5.4)
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Cg
L =

0∫

−1

µψgdµ

/ 0∫

−1

ψgdµ

∣∣∣∣∣∣
x=0

, Cg
R =

1∫

0

µψgdµ

/ 1∫

0

ψgdµ

∣∣∣∣∣∣
x=X

(5.5)

where ψg is the group angular flux. The LOQD problem (5.1)-(5.3) exactly reproduces the
transport scalar flux and current provided that the functionals are exact.

5.3.2 Generation of Few-Group Data

The LOQD equations are used in combination with assembly-level transport calculations that
utilize the albedo boundary conditions without making color-set calculations, to simulate
interaction with adjacent assembly in a reactor core.

Let us consider that each coarse-mesh cell represents a whole assembly. To generate
fine-mesh transport solution for a given assembly (coarse cell) and calculate the averaged
cross sections and functionals for the few-group coarse-mesh discretized LOQD equations,
we perform a set of single-assembly fine-group transport calculations on fine spatial mesh
with albedo boundary conditions (0 ≤ x ≤ X)

ψm(0, µ) = γm
L (µ)ψm(0,−µ) , for µ > 0 , ψm(X, µ) = γm

R (µ)ψm(X,−µ) , for µ < 0 (5.6)

where γm
L , γm

R are albedos. The resulting boundary conditions for the fine-group LOQD
equations have the following form:

Jm(0) =
1− λm

L,1

1 + λm
L,0

Cm
L φm(0) , λm

L,n =

∫ 1

0

µnγm
L (−µ)ψm(0, µ)dµ

/∫ 1

0

µnψm(0, µ)dµ , (5.7)

Jm(X) =
1− λm

R,1

1 + λm
R,0

CL
Rφm(X) , λm

R,n =

∫ 0

−1

µnγm
R (−µ)ψm(X, µ)dµ

/∫ 0

−1

µnψm(X,µ)dµ ,

(5.8)
where n = 0, 1. In this methodology various albedos are used to simulate interface phenom-
ena between different assemblies [1, 2, 6].

5.3.3 Fine-Mesh Transport Solution

Assume that the reference fine-mesh transport solution of a given problem is known from
calculations by means of some transport differencing method, and we have the fine-mesh
transport solution defined by fine-mesh eigenvalue kfm

eff , discrete grid functions of fine-mesh

scalar flux φg,fm
h , and current Jg,fm

h , which are defined as

Jg,fm
h = {Jg,fm

i−1/2, i = 1, ..., N fm
x + 1} , (5.9)

φg,fm
h = {φg,fm

i , i = 1, ..., N fm
x ; φg,fm

j−1/2, i = 1, ..., N fm
x + 1} . (5.10)

where the fine mesh is given by {xfm
i−1/2, i = 1, ..., N fm

x + 1, xfm
1/2 = 0, xfm

Nfm
x +1/2

= X}.
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5.4 Coarse-Mesh Finite-Element Discretization Method

for the LOQD Equations

Let us define the following coarse mesh {xj−1/2, j = 1, ..., N cm
x + 1}. The width of the jth

coarse-mesh interval is Hj = xj+1/2 − xj−1/2. The LOQD equations are approximated by
means of a coarse-mesh finite-element (CMFE) method based on the following expansion of
the coarse-mesh scalar flux

Φg
j (x) =

2∑

l=0

(2l + 1)ϕ
(l),g
j Pl(ζj(x)) + ϕ

(3),g
j sinh(κg

j (x− xj)) + ϕ
(4),g
j cosh(κg

j (x− xj)) , (5.11)

where Pl are Legendre polynomials,

ζj(x) = 2(x− xj)/Hj , xj = 0.5(xj+1/2 + xj−1/2) , 1 ≤ j ≤ N cm
x , (5.12)

and

κg
j =

√
(〈Σt〉gj − 〈Σs,0〉g→g

j )〈Σt〉gj
/ 〈E〉gj . (5.13)

Note that we use brackets 〈•〉 for quantities spatially averaged over coarse cells and defined
as

〈A〉gj =
∑
i∈ωj

Ag
i φ

g,fm
i hi

/ ∑
i∈ωj

φg,fm
i hi , (5.14)

where
ωj = {i : xj−1/2 ≤ xfm

i−1/2 < xj+1/2} (5.15)

is a set of indices of fine-mesh cells that belong to the jth coarse-mesh cell, hi = xfm
i+1/2−xfm

i−1/2

is the width of the ith fine-mesh cell.
To derive a scheme for the LOQD equations, we integrate the balance equation (5.1) with

weights Pl(ζj(x)) l = 0, 1, 2 over coarse interval xj−1/2 ≤ x ≤ xj+1/2. Using Eq.(5.2), we get
the following set of coarse-cell spatial moments of the balance equation:

Jg
j+1/2 − Jg

j−1/2 + 〈Σt〉gjHjΦ
(0),g
j = Hj

Mg∑
p=1

〈Σs,0〉p→g
j Φ

(0),p
j +

Hj

keff

Mg∑
p=1

〈χνfΣf〉p,g
j Φ

(0),p
j , (5.16)

Jg
j+1/2 + Jg

j−1/2 +
2

〈Σt〉gjHj

({E}g,+
j Φg

j (xj+1/2)− {E}g,−
j Φg

j (xj−1/2)
)
+ 〈Σt〉gjHjΦ

(1),g
j = (5.17)

Hj

Mg∑
p=1

〈Σs,0〉p→g
j Φ

(1),p
j +

Hj

keff

Mg∑
p=1

〈χνfΣf〉p,g
j Φ

(1),p
j ,

Jg
j+1/2−Jg

j−1/2+
6

〈Σt〉gjHj

(
{E}g,+

j Φg
j (xj+1/2) + {E}g,−

j Φg
j (xj−1/2)− 2〈E〉gjΦ(0),g

j

)
+〈Σt〉gjHjΦ

(2),g
j =

(5.18)

Hj

Mg∑
p=1

〈Σs,0〉p→g
j Φ

(2),p
j +

Hj

keff

Mg∑
p=1

〈χνfΣf〉p,g
j Φ

(2),p
j ,
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where

Φ
(l),g
j =

1

Hj

xj+1/2∫

xj−1/2

Pl(ζj(x))Φg
j (x)dx , l = 0, 1, 2 (5.19)

are spatial moments of the coarse-mesh scalar flux. The definitions of {E}g,−
j and{E}g,+

j are
given below.

On the basis of Eq. (5.2), we formulate the relationship between the current, scalar flux
and its derivative at the coarse-cell edges

{E}g,−
j

dΦg
j

dx

∣∣∣∣
x=xj−1/2

+

{
dE

dx

}g,−

j

Φg
j (xj−1/2) + {Σt}g,−

j Jg
j−1/2 = 0 , (5.20)

{E}g,+
j

dΦg
j

dx

∣∣∣∣
x=xj+1/2

+

{
dE

dx

}g,+

j

Φg
j (xj+1/2) + {Σt}g,+

j Jg
j+1/2 = 0 . (5.21)

The coefficients of these equations are calculated by means of pin-cell average data. Such
quantities are denoted by {•}. Assume that there are Zj pin cells in the jth coarse interval.
We define the pin-cell averaged quantities of the following form:

{A}g,pin#m
j =

∑

i∈ωpin#m
j

Ag
i φ

g,fm
i hi

/ ∑

i∈ωpin#m
j

φg,fm
i hi , (5.22)

where ωpin#m
j is a set of indices of fine-mesh intervals that belong to the mth pin cell. In

Eqs. (5.17)-(5.21) the functional Eg and total cross section are averaged over boundary pin
cells

{E}g,−
j = {E}g,pin#1

j , {E}g,+
j = {E}g,pin#Zj

j , {Σt}g,−
j = {Σt}g,pin#1

j , {Σt}g,+
j = {Σt}g,pin#Zj

j ,
(5.23)

and {
dE

dx

}g,−

j

= 2
(
{E}g,pin#2

j − {E}g,pin#1
j

)/(
Hpin#2

j + Hpin#1
j

)
, (5.24)

{
dE

dx

}g,+

j

= 2
(
{E}g,pin#Zj

j − {E}g,pin#Zj−1
j

)/(
H

pin#Zj

j + H
pin#Zj−1
j

)
, (5.25)

where Hpin#m
j is the width of the mth pin cell. The equations (5.20) and (5.21) with group

data defined by (5.23)-(5.25) enable us to approximate the large-scale behavior of the trans-
port solution next to boundaries of coarse intervals. Note that the homogenization algorithms
developed by Kord Smith [14] use group data that is averaged over boundary pin cells.

To complete the system of discretized equations of the proposed method, we define the
discontinuity conditions for the scalar flux

Gg,+
j Φg

j (xj+1/2) = Gg,−
j+1Φ

g
j+1(xj+1/2) , j = 1, ..., N cm

x − 1 , (5.26)

and boundary conditions (5.3)

Jg
1/2 = Cg

LGg,−
1 Φg

1(x1/2) , Jg
Ncm

x +1/2 = Cg
RGg,+

Ncm
x

Φg
Ncm

x
(xNcm

x +1/2) . (5.27)
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As a result the coarse-mesh discretization method consists of the spatial moment equations
(5.16)-(5.18), equations (5.20) and (5.21) at the edges of coarse cells, the discontinuity con-
ditions (5.26), and the QD boundary conditions (5.27). Substituting the expansion (5.11)

into these equations, one obtains the final set of algebraic equations for ϕ
(l),g
j , l = 0, ..., 4,

j = 1, ..., N cm
x and Jg

j−1/2, j = 1, ..., N cm
x + 1, (g = 1, ..., Mg).

The discontinuity factors are defined as the ratio

Gg,±
j = φg,fm

h (xj±1/2)
/

Φ̃g
j (xj±1/2) . (5.28)

where φg,fm
h (xj±1/2) is the fine-mesh transport scalar flux at x = xj±1/2. Here we utilize an

auxiliary function Φ̃g
j (x)

Φ̃g
j (x) =

2∑

l=0

(2l + 1)ϕ̃
(l),g
j Pl(ζj(x)) + ϕ̃

(3),g
j sinh(κg

j (x− xj)) + ϕ̃
(4),g
j cosh(κg

j (x− xj)) (5.29)

which is the solution of Eqs. (5.17)-(5.21) in each jth coarse cell provided that the cell-edge
currents, cell average scalar flux, and eigenvalue equal to their fine-mesh values.

The coarse-mesh discrete LOQD equations (5.16)-(5.18), (5.20)-(5.21), (5.26) and (5.27)
are consistent with the given transport differencing method that generates the reference
numerical transport solution φg,fm

h and Jg,fm
h in the sense that the coarse-mesh solution

Φg
j (x) preserves the average value of the fine-mesh scalar flux and reaction rates over each

coarse-mesh cell, fine-mesh currents on edges of coarse cells, and fine-mesh k-eigenvalue, i.e.

Φ
(0),g
j =

1

Hj

∑
i∈ωj

φfm
i hi , (5.30)

k = kfm , (5.31)

Jg
j−1/2 = Jg,fm

h (xj−1/2) , Jg
j+1/2 = Jg,fm

h (xj+1/2) , (5.32)

〈Σt〉gjHjΦ
(0),g
j =

∑
i∈ωj

Σg
t,iφ

g,fm
i hi , 〈Σs,0〉p→g

j Φ
(0),p
j Hj =

∑
i∈ωj

Σp→g
i φp,fm

i hi , (5.33)

〈χνfΣf〉p,g
j Φ

(0),p
j Hj =

∑
i∈ωj

χg
i ν

p
f,iΣ

p
i,fφ

p,fm
i hi . (5.34)

Note that in terms of spatial moments of the scalar flux, the resulting coarse-mesh finite-
element method (5.16)-(5.18), (5.20)-(5.21), (5.26) and (5.27) preserves only zeroth moment
of fine-mesh transport solution. Hereafter we refer to this method as CMFE-0, where the
number indicates the maximum order of the spatial moment of the fine-mesh transport
solution preserved by the method.

5.5 Advanced Consistent Coarse-Mesh Discretization

We now develop an advanced consistent coarse-mesh discretization method that preserves
extra spatial moments of the fine-mesh transport solution, namely, first and second spatial
Legendre moments of the fine-mesh scalar flux over each coarse cell,

Φ
(l),g
j = φ

(l),g,fm
j , l = 1, 2 , (5.35)
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where

φ
(l),g,fm
j =

1

Hj

∑
i∈ωj

P̄ l,j
i φg,fm

i hi (5.36)

is the discrete form of spatial Legendre moments of the fine-mesh scalar flux over xj−1/2 ≤
x ≤ xj+1/2, and

P̄ l,j
i =

1

hi

xfm
i+1/2∫

xfm
i−1/2

Pl(ζj(x))dx . (5.37)

To formulate a scheme with the desired properties, we use the above method as a basis
and add special consistency terms in the first and second spatial moments on the balance
equations. The proposed CMFE method is defined by

Jg
j+1/2 − Jg

j−1/2 + 〈Σt〉gjHjΦ
(0),g
j = Hj

Mg∑
p=1

〈Σs,0〉p→g
j Φ

(0),p
j +

Hj

keff

Mg∑
p=1

〈χνfΣf〉p,g
j Φ

(0),p
j , (5.38)

Jg
j+1/2 + Jg

j−1/2 +
2

〈Σt〉gjHj

({E}g,+
j Φg

j (xj+1/2)− {E}g,−
j Φg

j (xj−1/2)
)
+

〈Σt〉gjHjΦ
(1),g
j +

(
α

(1),g
j + β

(1),g
t,j

)
HjΦ

(0),g
j = (5.39)

Hj

Mg∑
p=1

〈Σs,0〉p→g
j Φ

(1),p
j +

Hj

keff

Mg∑
p=1

〈χνfΣf〉p,g
j Φ

(1),p
j + Hj

Mg∑
p=1

(
β

(1),p→g
s,j +

1

keff

β
(1),p,g
f,j

)
Φ

(0),p
j ,

Jg
j+1/2 − Jg

j−1/2 +
6

〈Σt〉gjHj

(
{E}g,+

j Φg
j (xj+1/2) + {E}g,−

j Φg
j (xj−1/2)− 2〈E〉gjΦ(0),g

j

)
+

〈Σt〉gjHjΦ
(2),g
j +

(
α

(2),g
j + β

(2),g
t,j

)
HjΦ

(0),g
j = (5.40)

Hj

Mg∑
p=1

〈Σs,0〉p→g
j Φ

(2),p
j +

Hj

keff

+

Mg∑
p=1

〈χνfΣf〉p,g
j Φ

(2),p
j Hj

Mg∑
p=1

(
β

(2),p→g
s,j +

1

keff

β
(2),p,g
f,j

)
Φ

(0),p
j ,

{E}g,−
j

dΦg
j

dx

∣∣∣∣
x=xj−1/2

+

{
dE

dx

}g,−

j

Φg
j (xj−1/2) + {Σt}g,−

j Jg
j−1/2 = 0 , (5.41)

{E}g,+
j

dΦg
j

dx

∣∣∣∣
x=xj+1/2

+

{
dE

dx

}g,+

j

Φg
j (xj+1/2) + {Σt}g,+

j Jg
j+1/2 = 0 . (5.42)

Ĝg,+
j Φg

j (xj+1/2) = Ĝg,−
j+1Φ

g
j+1(xj+1/2) , j = 1, ..., N cm

x − 1 , (5.43)

Jg
1/2 = Cg

LĜg,−
1 Φg

1(x1/2) , Jg
Ncm

x +1/2 = Cg
RĜg,+

Ncm
x

Φg
Ncm

x
(xNcm

x +1/2) . (5.44)

Here we use new discontinuity factors Ĝg,± that are determined by means of different auxil-
iary function compared to one used to calculate Gg,± in the CMFE-0 method.

The α
(l),g
j , β

(l),g
t,j , β

(l),p→g
s,j and β

(l),p,g
f,j are consistency terms that are defined such that

the resulting scheme preserves: (i) fine-mesh values of the transport currents at edges of
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coarse cells, (ii) zeroth, first and second spatial Legendre moments of the fine-mesh transport
scalar flux over each coarse cell. To derive such terms and get spatial moments equations
consistent with the fine-mesh discretization scheme, we performed the operation of taking
spatial moments of the balance equation (5.1) in discrete form by multiplying the fine-mesh
discretized balance equation by P̄ l,j

i l=1,2, (Eq.(5.37)) and summing it over all fine-mesh
cells that belong to the jth coarse interval

∑
i∈ωj

P̄ l,j
i

(
Jg,fm

i+1/2 − Jg,fm
i−1/2

)
+

∑
i∈ωj

P̄ l,j
i Σg

t,iφ
g,fm
i hi =

Mg∑
p=1

∑
i∈ωj

P̄ l,j
i Σp→g

s,0,i φ
p,fm
i hi +

1

keff

Mg∑
p=1

∑
i∈ωj

P̄ l,j
i χg

i ν
p
f,iΣ

p
f,iφ

p,fm
i hi , (5.45)

j = 1, ..., N cm
x .

As a result we define the following functionals:

α
(1),g
j =


∑

i∈ωj

P̄1,j
i

(
Jg,fm

i+1/2 − Jg,fm
i−1/2

)
− Jg,fm

h (xj+1/2)− Jg,fm
h (xj−1/2)−

2

〈Σt〉gjHj

(
{E}g,+

j

φg,fm
h (xj+1/2)

Ĝg,+
j

− {E}g,−
j

φg,fm
h (xj−1/2)

Ĝg,−
j

)]/ ∑
i∈ωj

φg,fm
i hi , (5.46)

α
(2),g
j =


∑

i∈ωj

P̄2,j
i

(
Jg,fm

i+1/2 − Jg,fm
i−1/2

)
− Jg,fm

h (xj+1/2) + Jg,fm
h (xj−1/2)−

6

〈Σt〉gjHj

(
{E}g,+

j

φg,fm
h (xj+1/2)

Ĝg,+
j

+ {E}g,−
j

φg,fm
h (xj−1/2)

Ĝg,−
j

− 2〈E〉gjφ(0),g,fm
j

)]/ ∑
i∈ωj

φg,fm
i hi ,

(5.47)

β
(l),g
t,j =

∑
i∈ωj

[
Σg

t,i − 〈Σt〉gj
] P̄ l,j

i φg,fm
i hi

/ ∑
i∈ωj

φg,fm
i hi , (5.48)

β
(l),p→g
s,j =

∑
i∈ωj

[
Σp→g

s,0,i − 〈Σs,0〉p→g
j

] P̄ l,j
i φp,fm

i hi

/ ∑
i∈ωj

φp,fm
i hi , (5.49)

β
(l),p,g
f,j =

∑
i∈ωj

[
χg

i ν
p
f,iΣ

p
f,i − 〈χνfΣf〉p,g

j

] P̄ l,j
i φp,fm

i hi

/ ∑
i∈ωj

φp,fm
i hi , (5.50)

l = 1, 2 .

Note that we assumed that the discontinuity factors are known.
To define the discontinuity factors Ĝg,±

j , we use an auxiliary function

Φ̂g
j (x) =

2∑

l=0

(2l + 1)ϕ̂
(l),g
j Pl(ζj(x)) + ϕ̂

(3),g
j sinh(κg

j (x− xj)) + ϕ̂
(4),g
j cosh(κg

j (x− xj)) (5.51)
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which is the solution of Eqs. (5.38)-(5.44) for the jth coarse cell such that it reproduces the
average value of the fine-mesh transport scalar flux, the first and second spatial Legendre
moments of the fine-mesh transport scalar flux, and currents on edges of this coarse cell.
To calculate the coefficients of expansion of Φ̂g

j (x), we need to solve the following set of

equations in terms of ϕ̂
(l),g
j , l = 0, ..., 4 in the jth cell:

{E}g,−
j

dΦ̂g
j

dx

∣∣∣∣∣
x=xj−1/2

+

{
dE

dx

}g,=

j

Φ̂g
j (xj−1/2) = −{Σt}g,−

j Jg,fm
h (xj−1/2) , (5.52)

{E}g,+
j

dΦ̂g
j

dx

∣∣∣∣∣
x=xj+1/2

+

{
dE

dx

}g,+

j

Φ̂g
j (xj+1/2) = −{Σt}g,+

j Jg,fm
h (xj+1/2) , (5.53)

Φ̂
(l),g
j = φ

(l),g,fm
j , l = 0, 1, 2 . (5.54)

The discontinuity factors are defined as the ratio

Ĝg,±
j = φg,fm

h (xj±1/2)
/

Φ̂g
j (xj±1/2) . (5.55)

The following theorem is true for the derived advanced consistent coarse-mesh discretiza-
tion method:

Theorem The coarse-mesh discrete low-order QD equations (5.38)-(5.44), with dis-
continuity factors (5.55), cross sections and functionals defined by (5.14), (5.23)-(5.25) and
(5.46)-(5.50) are consistent with the given transport differencing method that generates the
reference fine-mesh transport solution φg,fm

h and Jg,fm
h in the sense that the coarse-mesh

solution Φg
j (x) preserves the average value of the fine-mesh scalar flux and reaction rates

over each coarse-mesh cell, the first and second spatial Legendre moments of the fine-mesh
scalar flux over coarse intervals, fine-mesh currents at edges of coarse cells, and fine-mesh
k-eigenvalue, i.e.

Φ
(l),g
j = φ

(l),g,fm
j , l = 0, 1, 2 , Jg

j±1/2 = Jg,fm
h (xj±1/2) , keff = kfm

eff , (5.56)

〈Σt〉gjHjΦ
(0),g
j =

∑
i∈ωj

Σg
t,iφ

g,fm
i hi , 〈Σs,0〉p→g

j HjΦ
(0),p
j =

∑
i∈ωj

Σp→g
s,0,i φ

p,fm
i hi , (5.57)

〈χνfΣf〉p,g
j HjΦ

(0),p
j =

∑
i∈ωj

χg
i ν

p
f,iΣ

p
f,iφ

p,fm
i hi . (5.58)

Thus, the resulting coarse-mesh finite-element method preserves up to the second Legen-
dre spatial moment of the fine-mesh transport scalar flux over coarse-cells. We refer to this
method as CMFE-2.

5.6 Numerical Results

5.6.1 Test Problems that Simulate the Interaction of MOX and
Uranium Assemblies

We present numerical results of Kord Smith’s test problems in 1D slab geometry with two
energy groups [14]. In these test problems, model uranium and MOX assemblies are used.
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There are two half-assemblies next to each other with reflective boundary conditions on the
outside. A MOX half-assembly is on the left and a uranium half-assembly is on the right.
Each half-assembly consists of 8 pin cells. A fuel pin cell is 1.25 cm wide with fuel pin (0.625
cm) located in its center and surrounded by water. The half-assembly width is 10 cm. Table
5.1 shows cross sections of different types of fuels and water. Figures 5.1-5.5 demonstrate
design of assemblies for each test problem. Test 1 and 2 consists of assemblies with the same
type of fuel pins. Test 3 and 4 differ from Test 2 by design of MOX assemblies. These tests
simulate variation in enrichment near the interface with a uranium assembly. Test 5 has a
MOX assembly with a water hole.

The fine-mesh solutions were calculated by the QD method using a second order finite-
volume scheme for the LOQD equations and step characteristic method for the transport
equation to calculate the QD functionals [13]. The fine spatial mesh consists of 128 equal
cells, i.e. 8 mesh cells per pin cell. The angular mesh has 10 intervals. The multiplication
factor equals 1.5. The coarse mesh consists of one cell per half-assembly; thus, N cm

x = 2.
Figures 5.6-5.15 show the fine-mesh transport scalar fluxes versus position, pin-cell av-

erage values of the scalar flux represented as a histogram plot, and coarse-mesh solutions
obtained by means of the CMFE-0 and CMFE-2 methods. Tables 5.2-5.11 present the rela-
tive difference in pin-cell average values of the fine-mesh transport solution and coarse-mesh
LOQD solution calculated by the CMFE-0 and CMFE-2 methods. In each assembly pin
cells are numbered from left to right. The largest absolute values of relative differences in
pin-cell average values of the fine-mesh transport solution and coarse-mesh LOQD solution
in MOX assemblies are listed in Table 5.12.

The results of Tests 1 an 2 demonstrate that both methods generate very accurate coarse-
mesh solutions, if assemblies consist of the same type of fuel pins. In Tests 3 and 4 that
simulate spatial variation of fuel enrichment in MOX assembly, the CMFE-2 method ap-
proximates accurately the large-scale behavior of the transport solution characterized by the
pin-cell average values. The resulting coarse-mesh solution of the CMFE-2 is significantly
more accurate compared to the coarse-mesh solution obtained by the CMFE-0 method that
preserves only zeroth spatial moment of the scalar flux. In Test 5 with the water hole in
the MOX assembly the CMFE-2 method mimics the large-scale behavior of the fine-mesh
transport solution and generates coarse-mesh solution with sufficiently good accuracy. These
results demonstrate that the preservation of extra spatial moments of the fine-mesh transport
solution leads to significant improvement in accuracy of the coarse-mesh solution.

5.6.2 Stability of Consistent Discretization to Variation of Group
Data

In calculations of the presented test problems, all necessary assembly-averaged cross sec-
tions and functionals (discontinuity factors, quasidiffusion functionals, consistency terms,
etc.) were exact, because they were generated by means of fine-mesh transport solutions
of corresponding coupled assemblies. In terms of the methodology for full-core calculations
described above, this means that exact albedos were used in single-assembly calculations to
generate assembly group data. However, in realistic calculations the assembly group data
are arranged in form of tables, and necessary quantities are determined by means of inter-
polation of tabulated data. Thus, it is interesting to study the stability of solution obtained
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by means of CMFE-2 to variation in cross sections and functionals of this method, to find
out how this can influence the accuracy of the coarse-mesh solution generated by CMFE-2.

To perform this kind of analysis, we calculated Test 3 with the group data for the MOX
assembly obtained by using perturbed averaging function. The group data were obtained by
means of transport solutions of two assembly problems similar to Test 3 but in which the
neighboring uranium assembly had perturbed σ2

f (Test 6) or ν2
f (Tests 7), namely, decreased

by 5% and 10%. Figures 5.16-5.19 show the results of Tests 6 and 7.
From these results we notice that the obtained solutions in each case is very close to

the solution of Test 3 in which exact group data were used. Thus, the proposed advanced
consistent coarse-mesh discretization method, CMFE-2, demonstrates stability to variation
in averaging function that is used for calculating group data, and, as a result, to variation
in group data.

5.7 Conclusions

We have presented a high-order coarse-mesh finite-element (CMFE-0) method for discretiza-
tion of the QD low-order equations that is consistent with the given fine-mesh transport
differencing method in the sense that it preserves the fine-mesh values of cell-average scalar
flux, cell-edge current, multiplication factor, and reaction rates. On the basis of this method,
we have developed an advanced consistent coarse-mesh finite-element (CMFE-2) method
that preserves extra two spatial Legendre moments of the fine-mesh transport scalar flux
over coarse-mesh cells.

We have analyzed the developed methods on a set of test problems that simulate the
interaction of MOX and uranium assemblies. These tests included assemblies with enrich-
ment variations, and water holes that introduce within-assembly flux variations. In spite of
this the CMFE-2 method is able to generate solution that mimic accurately the large-scale
behavior of the transport solution within assembly.

The proposed methodology can be extended to multidimensional geometries, multigroup
case, finite-element methods based on higher order expansions of the coarse-mesh scalar
flux that creates an option of preserving more spatial moments of the fine-mesh transport
solution over coarse cells. The developed method is a part of a new methodology for reactor
core calculations, and this method will be coupled with other pieces of this methodology,
including usage of group data obtained by means of single-assembly calculations that use
efficient albedo boundary conditions. Another important issue is possibility of improvement
of pin-power reconstruction using the discretization methods that preserve extra spatial
moments of the fine-mesh transport solution within assembly. We are working now on such
extensions.
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Table 5.1: Cross Sections Data

Notation Material Σ1
t Σ1→1

s,0 Σ1→2
s,0 Σ1

f ν1
f Σ2

t Σ2→2
s,0 Σ2→1

s,0 Σ2
f ν2

f

M1 MOX fuel 0.2 0.2 0 0 0 0.6 0 0 0.6 1.5
M2 MOX fuel 0.2 0.185 0.015 0 0 1.2 0.9 0 0.3 1.5
M3 MOX fuel 0.2 0.185 0.015 0 0 1.13 0.9 0 0.23 1.5
M4 MOX fuel 0.2 0.185 0.015 0 0 1.07 0.9 0 0.17 1.5
U1 Uranium fuel 0.2 0.2 0 0 0 0.2 0 0 0.2 1.5
U2 Uranium fuel 0.2 0.185 0.015 0 0 1.0 0.9 0 0.1 1.5
W Water 0.2 0.17 0.03 0 0 1.1 1.1 0 0 0

pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M1 M1 M1 M1 M1 M1 M1 M1 U1 U1 U1 U1 U1 U1 U1 U1

Figure 5.1: Test 1, design of assemblies.

pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M2 M2 M2 M2 M2 M2 M2 M2 U2 U2 U2 U2 U2 U2 U2 U2

Figure 5.2: Test 2, design of assemblies.

pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M2 M2 M2 M2 M2 M2 M2 U2 U2 U2 U2 U2 U2 U2 U2 U2

Figure 5.3: Test 3, design of assemblies.

pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M2 M2 M2 M2 M2 M2 M3 M4 U2 U2 U2 U2 U2 U2 U2 U2

Figure 5.4: Test 4, design of assemblies.

pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8 pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8

M2 M2 M2 W W M2 M2 M2 U2 U2 U2 U2 U2 U2 U2 U2

Figure 5.5: Test 5, design of assemblies.
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Table 5.2: Test 1. CMFE-0 Method, Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 1·10−4 4·10−4 5·10−4 2·10−4 -4·10−4 -9·10−4 -4·10−4 5·10−4

MOX 2 3·10−3 4·10−3 4·10−3 4·10−3 4·10−3 1·10−3 -5·10−3 -1·10−2

U 1 6·10−4 6·10−6 8·10−5 4·10−5 -1·10−4 -2·10−4 -2·10−4 -1·10−4

U 2 1·10−2 4·10−3 -1·10−3 -3·10−3 -3·10−3 -2·10−3 -2·10−3 -3·10−3

Table 5.3: Test 1. CMFE-2 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 -7·10−4 3·10−5 6·10−4 6·10−4 4·10−5 -5·10−4 -4·10−4 3·10−4

MOX 2 -4·10−3 -2·10−3 7·10−4 3·10−3 4·10−3 4·10−3 -3·10−4 -5·10−3

U 1 -3·10−4 -4·10−4 2·10−4 5·10−4 5·10−4 2·10−4 -2·10−4 -4·10−4

U 2 -2·10−2 1·10−2 1·10−2 2·10−3 -6·10−3 -7·10−3 -2·10−3 4·10−3

Table 5.4: Test 2. CMFE-0 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 5·10−5 5·10−4 6·10−4 1·10−4 -7·10−4 -1·10−3 -3·10−4 9·10−4

MOX 2 -2·10−4 -2·10−4 -2·10−4 -2·10−4 -1·10−4 -3·10−4 -1·10−3 2·10−3

U 1 5·10−4 -3·10−4 -8·10−5 7·10−5 -2·10−5 -1·10−4 -3·10−5 8·10−5

U 2 5·10−4 1·10−4 -7·10−4 -4·10−4 8·10−5 3·10−4 2·10−4 -5·10−5

Table 5.5: Test 2. CMFE-2 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 -7·10−4 1·10−4 8·10−4 6·10−4 -1·10−4 -7·10−4 -3·10−4 4·10−4

MOX 2 -3·10−3 -6·10−4 2·10−3 3·10−3 3·10−3 9·10−4 -2·10−3 -2·10−3

U 1 -2·10−4 -7·10−4 1·10−4 6·10−4 6·10−4 2·10−4 -2·10−4 -5·10−4

U 2 -1·10−3 -2·10−4 4·10−5 8·10−4 1·10−3 8·10−4 -2·10−4 1·10−3
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Table 5.6: Test 3. CMFE-0 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 4·10−3 5·10−3 5·10−3 4·10−3 2·10−3 5·10−4 -1·10−3 -2·10−2

MOX 2 -1·10−1 -1·10−1 -1·10−1 -1·10−1 -9·10−2 -2·10−2 1·10−1 3·10−1

U 1 -4·10−4 -3·10−4 6·10−5 2·10−4 2·10−4 1·10−4 9·10−5 7·10−5

U 2 5·10−4 -3·10−4 -4·10−4 -2·10−4 4·10−5 2·10−4 1·10−4 5·10−5

Table 5.7: Test 3. CMFE-2 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 1·10−3 -9·10−5 -2·10−3 -2·10−3 -1·10−3 3·10−3 8·10−3 -7·10−3

MOX 2 -5·10−2 1·10−2 6·10−2 5·10−2 2·10−3 -6·10−2 -6·10−2 5·10−2

U 1 -4·10−4 -2·10−4 3·10−4 5·10−4 3·10−4 1·10−4 -2·10−4 -3·10−4

U 2 -1·10−3 -7·10−4 2·10−4 1·10−3 1·10−3 8·10−4 -3·10−4 -1·10−3

Table 5.8: Test 4. CMFE-0 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 3·10−3 2·10−3 2·10−3 2·10−3 2·10−3 2·10−3 -9·10−3 -5·10−3

MOX 2 -1·10−1 -1·10−1 -1·10−1 -8·10−2 -5·10−2 3·10−2 1·10−1 1·10−1

U 1 2·10−4 -3·10−4 -3·10−5 1·10−4 4·10−5 -4·10−5 4·10−6 7·10−5

U 2 2·10−4 9·10−5 -5·10−4 -3·10−4 6·10−5 3·10−4 2·10−4 -1·10−5

Table 5.9: Test 4. CMFE-2 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 5·10−4 -6·10−4 -1·10−3 -5·10−4 2·10−3 4·10−3 -5·10−3 1·10−3

MOX 2 -1·10−2 8·10−3 2·10−2 3·10−3 -2·10−2 -2·10−2 3·10−2 -1·10−2

U 1 -3·10−4 -5·10−4 2·10−4 6·10−4 5·10−4 2·10−4 -2·10−4 -4·10−4

U 2 -1·10−3 -3·10−4 1·10−4 9·10−4 1·10−3 8·10−4 -3·10−4 -1·10−3
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Table 5.10: Test 5. CMFE-0 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 1·10−2 2·10−2 1·10−2 -6·10−2 -6·10−2 1·10−2 2·10−2 2·10−2

MOX 2 -4·10−1 -3·10−1 3·10−2 3·10−1 3·10−1 2·10−3 -3·10−1 -4·10−1

U 1 1·10−3 -3·10−4 -2·10−4 -9·10−5 -2·10−4 -3·10−4 -1·10−4 4·10−5

U 2 3·10−4 4·10−4 -5·10−4 -4·10−4 4·10−6 2·10−4 1·10−4 -1·10−4

Table 5.11: Test 5. CMFE-2 Method. Relative Difference in Pin-Cell Average
Values.

Assembly Group Pin # 1 Pin # 2 Pin # 3 Pin # 4 Pin # 5 Pin # 6 Pin # 7 Pin # 8
MOX 1 -9·10−3 1·10−2 3·10−2 -3·10−2 -3·10−2 3·10−2 1·10−2 -8·10−3

MOX 2 1·10−1 -1·10−1 -2·10−2 1·10−1 1·10−1 -1·10−1 -1·10−1 -7·10−2

U 1 -1·10−4 -8·10−4 5·10−5 6·10−4 6·10−4 3·10−4 -2·10−4 -5·10−4

U 2 -1·10−3 -1·10−4 6·10−5 8·10−4 1·10−3 8·10−4 -2·10−4 -1·10−3

Table 5.12: Maximum Relative Differences in Pin-Cell Average Values in MOX
Assemblies.

CMFE-0 CMFE-2
Test fast group thermal group fast group thermal group

1 5·10−4 1·10−2 7·10−4 5·10−3

2 1·10−3 2·10−3 8·10−4 5·10−3

3 2·10−2 3·10−1 8·10−3 6·10−2

4 9·10−3 1·10−1 5·10−3 3·10−2

5 6·10−2 4·10−1 3·10−2 1·10−1
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Figure 5.6: Test 1. The fast scalar flux
versus position.

Figure 5.7: Test 1. The thermal scalar flux
versus position.

Figure 5.8: Test 2. The fast scalar flux
versus position.

Figure 5.9: Test 2. The thermal scalar flux
versus position.
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Figure 5.10: Test 3. The fast scalar flux
versus position.

Figure 5.11: Test 3. The thermal scalar
flux versus position.

Figure 5.12: Test 4. The fast scalar flux
versus position.

Figure 5.13: Test 4. The thermal scalar
flux versus position.
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Figure 5.14: Test 5. The fast scalar flux
versus position.

Figure 5.15: Test 5. The thermal scalar
flux versus position.

Figure 5.16: Test 6. The fast scalar flux
versus position.

Figure 5.17: Test 6. The thermal scalar
flux versus position .
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Figure 5.18: Test 7. The fast scalar flux
versus position.

Figure 5.19: Test 7. The thermal scalar
flux versus position.
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Chapter 6

Splitting Method for Solving the
Coarse-Mesh Discretized Low-Order
Quasidiffusion Equations

6.1 Abstract

In this chapter, the development is presented of a splitting method that can efficiently solve
coarse-mesh discretized low-order quasidiffusion (LOQD) equations. The LOQD problem
can reproduce exactly the transport scalar flux and current. To solve the LOQD equations
efficiently, a splitting method is proposed. The presented method splits the LOQD problem
into two parts: (i) the D-problem that captures a significant part of transport solution in
the central parts of assemblies and can be reduced to a diffusion-type equation, and (ii)
the Q-problem that accounts for the complicated behavior of the transport solution near
assembly boundaries. Independent coarse-mesh discretizations are applied: the D-problem
equations are approximated by means of a finite-element method, whereas the Q-problem
equations are discretized using a finite-volume method. Numerical results demonstrate the
efficiency of the presented methodology.

6.2 Introduction

The current generation of reactor physics methodology for full reactor-core calculations is
based on the diffusion equation. To obtain highly accurate results using such methodology, it
is necessary to address the limitations of diffusion theory. A series of significant improvements
have been developed over the years by means of sophisticated methods of preparation of group
cross section data, effective transport corrections at the interface of assemblies, etc [1]. An
alternative approach is to create a general methodology that is based on equations that can
take into account the transport effects exactly. The low-order equations of the quasidiffusion
(QD) method meet this criterion [2, 3, 4]. In this paper we develop a methodology for reactor
physics calculations based on the ideas of the QD method [5, 6, 7, 8].

The QD method is an efficient approach for solving particle transport problems. The
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system of equations of this method consists of two parts: high-order and low-order equations.
The high-order equation is the transport equation itself, and the system of the low-order
equations is a set of equations for the scalar flux and current. The resulting system of
equations is closed by means of linear-fractional functionals that are calculated from the
solution of the high-order problem. These functionals become coefficients in the LOQD
equations. They are weakly dependent on the transport solution. It is important to note
that the LOQD equations generate the exact transport solution provided the functionals are
exact.

The work reported here is a part of a homogenization methodology for full-core cal-
culations that will be used in combination with assembly-level transport calculations that
utilize albedo boundary conditions, without making color-set calculations, to simulate in-
teractions with adjacent assemblies in a reactor core [6]. Note that if the albedo boundary
conditions accurately represent the presence of a different neighboring assembly, then the
single-assembly transport calculation accurately reproduces the correct fine-mesh solution,
and all functionals calculated from the single-assembly solution will be accurate. To gen-
erate all necessary data for the coarse-mesh LOQD equations it is necessary to calculate
few-group cross sections and functionals, using the fine-mesh fine-group transport solution
obtained from assembly-level calculations.

The structure of the low-order quasidiffusion (LOQD) equations is similar to the structure
of the P1 and diffusion equations, which partially explains the name of the method. However,
the LOQD equations reproduce exactly the scalar flux and current of the transport solution
provided that the functionals are exact, because no approximation is made to derive the
QD equations. Another significant difference from the P1 equations (and hence the diffusion
equation) is that instead of the gradient of the scalar flux the first moment equation contains
the divergence of a product of a spatially dependent tensor and the scalar flux. A consequence
is that the LOQD equations do not have a self-adjoint operator, unlike the diffusion equation.
This feature of the LOQD equations requires special effective methods for discretizing them
and solving the resulting non-symmetric system of discretized equations. A group of efficient
methods have been developed that solve these issues for a certain class of problems and
type of discretizations [9, 10, 11, 12]. However, in full-core reactor calculations, it is highly
desirable to use methods that are very accurate on coarse meshes. Such discretizations of the
LOQD equations give rise to a large system of algebraic equations with rather complicated
structure. Thus, in this type of computational physics problem, it is necessary to develop
an efficient new approach for solving the discretized equations.

A methodology that accounts for transport effects in reactor core calculations requires
extra computational effort compared with solving the diffusion equation. It is highly desirable
to minimize these extra costs. In this paper, we propose a splitting method that formulates
two problems instead of one original LOQD problem. The first problem is a tensor diffusion
equation, and hence existing advanced methods for diffusion problems can be used to solve
it efficiently. The solution of the second problem is basically a transport correction to the
first solution. We study ways to minimize costs for solving the second problem to optimize
the solution of the overall LOQD problem.

Note that recently different research groups have begun developing methodologies for
solving the transport equation for multidimensional full-core models on fine spatial grids
and with fine energy groups. Here we develop a different kind of methodology accounting
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for transport effects, which can be directly used in existing production reactor-physics codes
for full-core calculations. Our goal is to obtain an excellent approximation of the fine-mesh
fine-group transport solution for approximately the cost of coarse-mesh few-group diffusion.

The reminder of the paper is organized as follows. In Sec. 6.3 we formulate the few-group
LOQD equations. In Sec. 6.4 we define our splitting method for solving the LOQD equations
in differential form. In Sec. 6.5 we present the method for calculating discontinuity factors
and formulate the interface conditions for the solution of the split problems. In Sec. 6.6 we
present the discretization of equations of the splitting method. In Sec. 6.7 we demonstrate
numerical solutions of test problems that simulate the interaction of MOX and uranium
assemblies. We conclude with a discussion in Sec. 6.8.

6.3 The Few-Group Low-Order Quasidiffusion Equa-

tions

Let us consider a few group k-eigenvalue transport problem in 1D slab geometry. The LOQD
equations for the group scalar flux φg and current Jg have the following form [4]:

d

dx
Jg(x) + Σg

r(x)φg(x) =

Mg∑
p=1
p6=g

Σp→g
s,0 (x)φp(x) +

1

keff

χg(x)

Mg∑
p=1

νp
f (x)Σp

f (x)φp(x) , (6.1)

d

dx
(Eg(x)φg(x)) + Σg

tr(x)Jg(x) = 0 , (6.2)

a ≤ x ≤ b , g = 1, ..., Mg . (6.3)

The boundary conditions are given by

Jg(a) = Cg
aφg(a) , Jg(b) = Cg

b φg(b) (6.4)

in case of vacuum boudaries and

Jg(a) = 0 , Jg(b) = 0 (6.5)

in case of reflective boundaries. Note that for simplicity we consider problems with isotropic
group-to-group scattering.

The functionals Eg, Cg
a , and Cg

b are calculated by means of the group angular flux ψg(x, µ)
and defined as

Eg(x) =

1∫

−1

µ2ψg(x, µ)dµ

/ 1∫

−1

ψg(x, µ)dµ , (6.6)

Cg
a =

0∫

−1

µψg(a, µ)dµ

/ 0∫

−1

ψg(a, µ)dµ , Cg
b =

1∫

0

µψg(b, µ)dµ

/ 1∫

0

ψg(b, µ)dµ . (6.7)

The complete system of equations of the QD method includes also the transport equation,
and the resulting nonlinear problem is equivalent to the original linear transport problem.
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The Eg, Cg
a , and Cg

b contain all information about the transport solution. Hence, if these
functionals are known exactly, then the solution of the LOQD equations is the exact transport
scalar flux and current, i.e. φg and Jg. The functional Eg is spatially dependent, and
this feature of Eg makes the LOQD significantly different from P1 equations, especially in
multidimensional geometries. The equations (6.1) and (6.2) can be reduced to a diffusion-like
group equations for the group scalar flux

− d

dx

(
1

Σg
tr(x)

d

dx
(Eg(x)φg(x))

)
+Σg

r(x)φg(x) =

Mg∑
p=1
p6=g

Σp→g
s,0 (x)φp(x)+

1

keff

χg

Mg∑
p=1

νp
fΣ

p
f (x)φp(x) .

(6.8)
The important difference from the neutron diffusion equation is that the spatially dependent
Eg is a factor of the scalar flux under the second derivative. In the multidimensional case,
there also exist terms with mixed derivatives of elements of the QD (Eddington) tensor [2].

6.4 Splitting Method for Solving the LOQD Equations

In full-core calculations, the LOQD equations are to be solved on coarse grids each cell of
which represents a part of an assembly [1]. In the new methodology the group data for
each type of assembly will contain all necessary information about spatially averaged cross
sections, discontinuity factors, etc., as well as quasidiffusion functionals (Eddington ten-
sors) that are to be determined in assembly-level calculations using special albedo boundary
conditions [6, 13]. Assuming that the cross sections and QD functionals are known, the iter-
ation process for determining the k-eigenvalue and associated eigenfunction from the LOQD
problem is defined as follows for a 1D problem:

d

dx
Jg[s] + Σg

rφ
g[s] =

Mg∑
p=1
p6=g

Σp→g
s,0 φp[s] +

1

k
[s−1]
eff

χg

Mg∑
p=1

νp
fΣ

p
fφ

p[s−1] , (6.9)

d

dx

(
Egφg[s]

)
+ Σg

trJ
g[s] = 0 , (6.10)

Jg[s](a) = Cg
aφg[s](a) , Jg[s](b) = Cg

b φg[s](b) , (6.11)

k
[s]
eff =

∑Mg

p=1

∫ b

a
νp

fΣ
p
fφ

p[s]dx
∑Mg

p=1

(
Jp[s](b)− Jp[s](a) +

∫ b

a
Σp

aφp[s]dx
) , (6.12)

where s is the iteration index.
To develop an efficient method for solving the LOQD equations, we split this system of

equations into two problems, taking advantage of the nature of the large-scale behavior of
neutron transport in fuel assemblies. On each s-iteration we solve two problems. The first
problem (D-problem) is defined as

d

dx
J

g[s]
D + Σg

rφ
g[s]
D =

Mg∑
p=1
p6=g

Σp→g
s,0 φ

p[s]
D +

1

k
[s−1]
eff

χg

Mg∑
p=1

νp
fΣ

p
fφ

p[s−1] , (6.13)
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Êg d

dx
φ

g[s]
D + Σg

trJ
g[s]
D = 0 , (6.14)

J
g[s]
D (a) = Cg

aφ
g[s]
D (a) , J

g[s]
D (b) = Cg

b φ
g[s]
D (b) , (6.15)

Here Êg(x) is a piece-wise constant function on a set of coarse-mesh cells. The method for

choosing the values of Êg in each cell is discussed below.
The second problem (Q-problem) is given by

d

dx
J

g[s]
Q + Σg

rφ
g[s]
Q =

Mg∑
p=1
p6=g

Σp→g
s,0 φ

p[s]
Q , (6.16)

d

dx

(
Egφ

g[s]
Q

)
+ Σg

trJ
g[s]
Q =

d

dx

(
(Êg − Eg)φ

g[s]
D

)
, (6.17)

J
g[s]
Q (a) = Cg

aφ
g[s]
Q (a) , J

g[s]
Q (b) = Cg

b φ
g[s]
Q (b) . (6.18)

The group scalar flux and current are the sums of the corresponding solutions of the above
two problems

φg[s] = φ
g[s]
D + φ

g[s]
Q , Jg[s] = J

g[s]
D + J

g[s]
Q . (6.19)

The equations of the resulting D-problems are similar to P1 equations, and, thus, they
can be reduced to a diffusion equation. The differential operator of the D-problem is self-
adjoint. All these features of the D-problem enable one to use high-order approximations
and efficient iterative methods that were previously developed for the diffusion equation.
Note that if the cross sections in Eqs. (6.13)-(6.15) are constant in each cell, it is possible
to obtain solutions in analytic form and use them in expansion of φg

D for the discretization
of these equations [14]. This can significantly increase accuracy of the numerical solution
of the overall problem. The Q-problem equations have properties that are similar to those
of the original LOQD equations described above. The extension of this splitting method to
multidimensional geometries is straightforward.

Figure 6.1 shows pin-cell average values of the functional Eg in the thermal group across
a model assembly. The left boundary corresponds to the center of an assembly, whereas the
right boundary is the interface with an unlike assembly. This figure demonstrates a typical
shape of Eg within assemblies. Note that the large-scale behavior of the functional Eg is
such that it is almost flat in the central part (interior) of an assembly and changes in vicinity
of assembly boundaries, having a form of “bath-tub” function across the assembly. Hence, if
we choose Êg as an average value of Eg(x) over the interior of the assembly (in this particular
case over 0 ≤ x ≤ 5), then the terms in the right-hand side of Eq. (6.17) will be small in

the central part of assemblies. Thus, in our methodology we define Êg in the following way

Êg =

∫
interior

Eg(x)φg,fm(x)dx

∫
interior

φg,fm(x)dx
, (6.20)

where φg,fm is the fine-mesh scalar flux obtained from assembly-level transport calculations.
The solution φD of the D-problem (6.13)-(6.15) captures a significant part of the transport

solution in the central parts of assemblies. The solution φQ of the Q-problem (6.16)-(6.18)
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Figure 6.1: Pin-cell average values of Eg in thermal group in a model assembly.

accounts for the complicated behavior of the transport solution near interfaces between unlike
assemblies. Note that if in the D-problem we neglect φQ, then in Eq. (6.13) φ = φD. Thus,
the system of equations for φD is similar to P1 equations with a modified diffusion coefficient

Dg =
Êg

Σg
tr

. (6.21)

Hereafter we refer to such problem for φD as modified diffusion.

6.5 Calculation of Discontinuity Factors and Interface

Conditions for Global Calculations

6.5.1 Discontinuity Factors

The single-assembly calculations with albedo boundary conditions generate the fine-mesh
fine-group transport solution, φg,fm, Jg,fm, kfm

eff , which is used to compute necessary assembly-
averaged cross sections and functionals [6]. Another component of the group data is a set of
discontinuity factors. To calculate them for the LOQD equations (6.1) and (6.2), one needs
to solve these equations for an assembly with boundary conditions defined by the known
fine-mesh currents, i.e.

Jg|x=xγ = Jg,fm|x=xγ xγ ∈ ∂Γ . (6.22)

where ∂Γ is the boundary of an assembly. In case of the splitting method, we need to formu-
late specific boundary conditions for both D- and Q-problems that will meet the following
condition:

(Jg
D + Jg

Q)|x=xγ = Jg,fm|x=xγ xγ ∈ ∂Γ . (6.23)
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The choice of boundary conditions for each of two problems is not unique. We have chosen
to impose the following boundary conditions:

Jg
D|x=xγ = Jg,fm|x=xγ , Jg

Q|x=xγ = 0 xγ ∈ ∂Γ , (6.24)

which is similar to the way the fission term was split between two problems. Note that there
is no a priori information on the ratio between Jg

D and Jg
Q that could be used to split the

known boundary current between the two.
Finally, to determine the discontinuity factors, we calculate auxiliary functions φ∗,gD and

φ∗,gQ as the solution of the differential problem defined as:

d

dx
J∗,gD + Σg

rφ
∗,g
D =

Mg∑
p=1
p6=g

Σp→g
s,0 φ∗,pD +

1

kfm
eff

χg

Mg∑
p=1

νp
fΣ

p
fφ

p,fm , (6.25)

Êg d

dx
φ∗,gD + Σg

trJ
∗,g
D = 0 , (6.26)

J∗,gD |x=xγ = Jg,fm|x=xγ , (6.27)

d

dx
J∗,gQ + Σg

rφ
∗,g
Q =

Mg∑
p=1
p6=g

Σp→g
s,0 φ∗,pQ , (6.28)

d

dx

(
Egφ∗,gQ

)
+ Σg

trJ
∗,g
Q =

d

dx

(
(Êg − Eg)φ∗,gD

)
, (6.29)

J∗,gQ

∣∣
x=xγ

= 0 , (6.30)

φ∗,g = φ∗,gD + φ∗,gQ . (6.31)

As a result, we obtain the auxiliary function φ∗,g that reproduces the fine-mesh eigenvalue,
assembly-averaged scalar flux and current at boundaries of an assembly. The discontinuity
factors Gg at assembly boundaries are defined as:

Gg =
φg,fm

φ∗,g

∣∣∣∣
x=xγ

xγ ∈ ∂Γ . (6.32)

Note that the final algorithm of calculation of the auxiliary function is defined for equa-
tions (6.25)-(6.31) in discretized form, and only zeroth moment of the fission source term is
defined by means of the fine-mesh transport solution. Other algorithms can be formulated
as well. They would generate auxiliary functions φ∗,g with different features.

6.5.2 Interface Conditions

In global calculations on a coarse mesh, it is necessary to impose interface conditions at each
coarse-cell edge, x = xcell

edge,
Jg|x=xcell

edge−0 = Jg|x=xcell
edge+0 , (6.33)

[Ggφg]|x=xcell
edge−0 = [Ggφg]|x=xcell

edge+0 (6.34)
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that express current continuity and discontinuity of the coarse-mesh scalar flux at the in-
terface between coarse cells. For the equations of splitting method, we specify interface
conditions for D- and Q-components of the solution. Based on conditions (6.33) and (6.34),
we define the interface conditions for D- and Q-problems as

Jg
D|x=xcell

edge−0 = Jg
D|x=xcell

edge+0 , Jg
Q|x=xcell

edge
= 0 , (6.35)

[
Gg(φg

D + φg
Q)

]∣∣
x=xcell

edge−0
=

[
Gg(φg

D + φg
Q)

]∣∣
x=xcell

edge+0
. (6.36)

Note that these interface conditions give rise to independent Q-problems in each coarse-cell,
which are very inexpensive to solve.

6.6 Independent Coarse-Mesh Discretization of the LOQD

Equations in Split Form

We use different methods to approximate equations of D- and Q-problems, i.e. independent
discretization. The solution of the D-problem accounts for the major part of the transport
solution, and we use high-order accuracy methods to discretize its equations. The structure of
these equations gives us an opportunity to use sophisticated discretization methods developed
for the diffusion equation. To solve the equations of the Q-problem, we apply a discretization
method with second-order accuracy. Here we consider this approach in 1D case to study basic
features of the proposed methodology.

6.6.1 Discretization of the D-Problem Equations

Let us define the coarse mesh {xj−1/2, j = 1, ..., Nj + 1, x1/2 = a, xNj+1/2 = b}. The D-
problem equations (6.13)-(6.15) are discretized utilizing a high-order finite-element method
based on the following expansion of the scalar flux Φg

D,j(x) in each jth coarse cell ( xj−1/2 ≤
x ≤ xj+1/2 ):

Φg
D,j(x) =

2∑

l=0

(2l + 1)ϕ
(l),g
D,j Pl(ζj(x)) + ϕ

(3),g
D,j sinh(κg

D,j(x− xj)) + ϕ
(4),g
D,j cosh(κg

D,j(x− xj)) ,

(6.37)
where Pl are Legendre polynomials,

ζj(x) =
2(x− xj)

Hj

, Hj = xj+1/2−xj−1/2, xj = 0.5(xj+1/2+xj−1/2), 1 ≤ j ≤ Nj , (6.38)

κg
D,j =

√
〈Σr〉gj〈Σtr〉gj

Êg
j

. (6.39)

Hereafter we use brackets 〈•〉 to denote the coarse-mesh averaged cross sections generated
by means of fine-mesh scalar flux φg,fm obtained from assembly-level transport calculations.

To discretize the D-problem equations, we integrate the balance equation (6.13) over the
jth coarse cell with Legendre polynomials as weight functions and approximate Eq. (6.14)
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at coarse-cell edges using the information from pin-cells next to the boundaries of the given
coarse cell [14]. Then, we formulate a set of discrete equations for Legendre moments of the
coarse-cell scalar flux

Φ
(l),g
D,j =

1

Hj

xj+1/2∫

xj−1/2

Pl(ζj(x))Φg
D,j(x)dx , l = 0, 1, 2 , (6.40)

cell-edge scalar fluxes, Φg
D,j(xj±1/2), and currents, Jg

D,j+1/2

def
= Jg

D(xj+1/2). The discretization
scheme for the D-problem equations is defined as

Jg
D,j+1/2 − Jg

D,j−1/2 + 〈Σr〉gjHjΦ
(0),g
D,j = Hj

Mg∑
p=1
p6=g

〈Σs,0〉p→g
j Φ

(0),p
D,j +

1

keff

Hj

Mg∑
p=1

〈χνΣf〉p,g
j Φ

(0),p
j ,

(6.41)

Jg
D,j+1/2 + Jg

D,j−1/2 +
2Êg

j

〈Σtr〉gjHj

(
Φg

D,j(xj+1/2)− Φg
D,j(xj−1/2)

)
+ 〈Σr〉gjHjΦ

(1),g
D,j = (6.42)

Hj

Mg∑
p=1
p6=g

〈Σs,0〉p→g
j Φ

(1),p
D,j +

1

keff

Hj

Mg∑
p=1

〈χνΣf〉p,g
j Φ

(1),p
j ,

Jg
D,j+1/2 − Jg

D,j−1/2 +
6Êg

j

〈Σtr〉gjHj

(
Φg

D,j(xj+1/2) + Φg
D,j(xj−1/2)− 2Φ

(0),g
D,j

)
+ 〈Σr〉gjHjΦ

(2),g
D,j =

(6.43)

Hj

Mg∑
p=1
p6=g

〈Σs,0〉p→g
j Φ

(2),p
D,j +

1

keff

Hj

Mg∑
p=1

〈χνΣf〉p,g
j Φ

(2),p
j ,

Êg
j

dΦg
D,j

dx

∣∣∣∣
x=xj−1/2

+ {Σtr}g,−
j Jg

D,j−1/2 = 0 , (6.44)

Êg
j

dΦg
D,j

dx

∣∣∣∣
x=xj+1/2

+ {Σtr}g,+
j Jg

D,j+1/2 = 0 , (6.45)

j = 1, ..., Nj ,

Gg,+
j

(
Φg

D,j(xj+1/2) + Φg
Q,j(xj+1/2)

)
= Gg,−

j+1

(
Φg

D,j+1(xj+1/2) + Φg
Q,j+1(xj+1/2)

)
, (6.46)

j = 1, ..., Nj − 1 ,

Jg
D,1/2 = Cg

aGg,−
1

(
Φg

D,1(x1/2) + Φg
Q,1(x1/2)

)
, (6.47)

Jg
D,Nj+1/2 = Cg

b Gg,+
Nj

(
Φg

D,Nj
(xNj+1/2) + Φg

Q,Nj
(xNj+1/2)

)
, (6.48)

where

Φ
(l),g
j

def
=

1

Hj

xj+1/2∫

xj−1/2

Pl(ζj(x))φg(x)dx . (6.49)
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Here Gg,±
j are the right and left discontinuity factors, respectively, {Σtr}g,±

j are cross sections
averaged over boundary pin-cell next to the right and left edges of jth coarse cell, corre-
spondingly. Substituting the expansion (6.37) into Eqs. (6.41)-(6.48), we get the equations

for the expansion coefficients ϕ
(l),g
D,j (l=0,...,4) and cell-edge currents Jg

D,j−1/2.

6.6.2 Discretization of the Q-Problem Equations

Assume that a coarse-mesh cell represents half of an assembly. Such meshes are in common
practice. To discretize the Q-problem equations, we divide each jth coarse cell into two
subcells that are defined by x̃j,i, i=1,2,3, where x̃j,1 = xj−1/2 and x̃j,3 = xj+1/2. The width of
subcells is determined by the large-scale behavior of the functional Eg within a given coarse-
mesh cell. A second-order finite-volume method described in previous publications [15] is
used to approximate the equations (6.16)-(6.18). Note that if a coarse-mesh cell corresponds
to a whole assembly, then four subcells are needed.

If we integrate Eq. (6.16) over each subcell and Eq. (6.17) over half-subcells, then make
simple approximations [15], we obtain a system of discrete equations for subcell-edge currents

Jg
Q,j,i

def
= Jg

Q(x̃j,i), coarse-cell edge scalar fluxes Φg,±
Q,j

def
= φg

Q(xj±1/2), and subcell-average scalar
fluxes

Φ̄g
Q,j,i

def
=

1

hj,i

∫ x̃j,i+1

x̃j,i

φg
Q(x)dx , (6.50)

where hj,i = x̃j,i+1 − x̃j,i. The equations are:

Jg
Q,j,i+1 − Jg

Q,j,i + 〈Σr〉gjhj,iΦ̄
g
Q,j,i = hj,i

Mg∑
p=1
p6=g

〈Σs,0〉p→g
j Φ̄p

Q,j,i , i = 1, 2 , (6.51)

Ēg
j,1Φ̄

g
Q,j,1−{E}g,−

j Φg,−
Q,j+

1

2
〈Σtr〉gjhj,1J

g
Q,j,1 =

(
Êg

j − Ēg
j,1

)
Φ̄g

D,j,1−
(
Êg

j − {E}g,−
j

)
Φg

D,j(xj−1/2) ,

(6.52)

Ēg
j,2Φ̄

g
Q,j,2 − Ēg

j,1Φ̄
g
Q,j,1 +

1

2
〈Σtr〉gjHjJ

g
Q,j,2 =

(
Êg

j − Ēg
j,2

)
Φ̄g

D,j,2 −
(
Êg

j − Ēg
j,1

)
Φ̄g

D,j,1 , (6.53)

{E}g,+
j Φg,+

Q,j−Ēg
j,2Φ̄

g
Q,j,2+

1

2
〈Σtr〉gjhj,2J

g
Q,j,3 =

(
Êg

j − {E}g,+
j

)
Φg

D,j(xj+1/2)−
(
Êg

j − Ēg
j,2

)
Φ̄g

D,j,2 ,

(6.54)
j = 1, ..., Nj ,

Jg
Q,j,3 = 0 , (6.55)

Jg
Q,j+1,1 = Jg

Q,j,3 , (6.56)

j = 1, ..., Nj − 1 ,

Jg
Q,1,1 = 0 , Jg

Q,Nj ,3 = 0 , (6.57)

where

Φ̄g
D,j,i

def
=

1

hj,i

∫ x̃j,i+1

x̃j,i

φg
D(x)dx (6.58)

64



and Ēg
j,i is the value of functional Eg averaged by means of the fine-mesh scalar flux over

the given subcell region. {E}g,±
j are values of the QD functional averaged over the boundary

pin-cell next to the right and left edges of jth coarse cell, respectively. The quantities Φ̄g
D,j,i

defined by Eq. (6.58) are calculated from the solution of the D-problem, i.e. in the following
way:

Φ̄g
D,j,i =

1

hj,i

∫ x̃j,i+1

x̃j,i

Φg
D,j(x)dx (6.59)

In order to solve the coupled systems of D- and Q- problems, we need to calculate the
Legendre spatial moments of φg

Q

Φ
(l),g
Q,j

def
=

1

Hj

xj+1/2∫

xj−1/2

Pl(ζj(x))φg
Q(x)dx , l = 0, 1, 2 , (6.60)

using the solution of the above discrete equations (6.51)-(6.57). The zeroth moment is
computed as

Φ
(0),g
Q,j =

1

Hj

2∑
i=1

Φ̄g
Q,j,ihi,j . (6.61)

The other two spatial moments are calculated, using approximation of φg
Q in jth coarse cell

by means of a third-order polynomial interpolation function that fits coarse-cell edge values
Φg,±

Q,j and two subcell-average values Φ̄g
Q,j,i. As a result for Φ

(l),g
j (Eq. (6.49)) we get

Φ
(l),g
j = Φ

(l),g
D,j + Φ

(l),g
Q,j l = 0, 1, 2 . (6.62)

The position of interface between subcells (i.e. x̃j,2) is chosen such that one subcell covers
the region where Eg is almost flat and another subcell corresponds to the area where Eg

changes significantly near the interface with neighboring assembly. For example, in the case
that is shown in Figure 6.1, it is reasonable to use x̃j,2 = 5.

6.7 Numerical Results

In this section, we present the numerical results to demonstrate the performance of the
proposed splitting method. We consider two test problems (Test A and B) for 1D slab
geometry with two energy groups. They consist of MOX and uranium half-assemblies next
to each other with reflective boundary conditions [16, 8]. The half-assembly width is 10 cm.
The MOX assembly is located on the left of UO2 assembly. Each half-assembly contains 8
fuel pin cells of the same type. The design of a fuel pin is shown in Figure 6.2. The cross
sections for each test problem are listed in Tables 6.1 and 6.2. The fine-mesh solutions are
calculated by the QD method using the second order finite-volume scheme for the LOQD
equations and step characteristic method for the transport equation [15]. The fine mesh is
uniform and consists of 128 equal cells (8 per pin cell). The angular mesh has 10 intervals.
The multiplication factors in Tests A and B equal 1.5. The coarse mesh consists of one
cell per half-assembly, i.e. Nj = 2. We recall that to solve the Q-problem, we define two
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Figure 6.2: Pin-cell design.

subcells per coarse cell. Table 6.3 presents the values of Êg used in these test problems.
These values are generated by averaging fine-mesh Eg with fine-mesh scalar flux over the
subcells adjacent to reflective boundaries. These subcells represent the interior assembly
regions, where the functional Eg varies weakly. In our calculations, the subcells adjacent
to the interface between assemblies are 3 pin cells wide, and the subcells next to reflective
boundaries are 5 pin cells wide.

Table 6.1: Cross Sections for Test A.

Cross Sections Σ1
t Σ1→1

s,0 Σ1→2
s,0 Σ1

f ν1
f Σ2

t Σ2→2
s,0 Σ2→1

s,0 Σ2
f ν2

f

MOX fuel 0.2 0.2 0 0 0 0.6 0 0 0.6 1.5
Uranium fuel 0.2 0.2 0 0 0 0.2 0 0 0.2 1.5

Water 0.2 0.17 0.03 0 0 1.1 1.1 0 0 0

Table 6.2: Cross Sections for Test B.

Cross Sections Σ1
t Σ1→1

s,0 Σ1→2
s,0 Σ1

f ν1
f Σ2

t Σ2→2
s,0 Σ2→1

s,0 Σ2
f ν2

f

MOX fuel 0.2 0.185 0.015 0 0 1.2 0.9 0 0.3 1.5
Uranium fuel 0.2 0.185 0.015 0 0 1.0 0.9 0 0.1 1.5

Water 0.2 0.17 0.03 0 0 1.1 1.1 0 0 0

Table 6.3: Êg for Test A and B.

g Region Test A Test B
1 MOX 0.3330 0.3327
1 UO2 0.3340 0.3345
2 MOX 0.3470 0.3332
2 UO2 0.3522 0.3331

To evaluate the accuracy of the splitting method with independent discretization of equa-
tions, we use the numerical results obtained by means of a high-order finite-element (HOFE)
method developed for solving LOQD equations [14]. We also apply the proposed splitting
method (Eqs. (6.13)-(6.19)) to the discrete equations of the HOFE method and derived
corresponding discretization of equations for D- and Q- problems, where the equations of
both problems are approximated by the HOFE method. Note that this can be considered
as consistent way of discretizing the equations of the splitting method. This enables us to
analyze the accuracy of each part of solution, φD and φQ, by the proposed independent
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discretization.
Figures 6.3, 6.4, 6.9, and 6.10 show the group scalar fluxes for Tests A and B obtained by

the proposed splitting method with independent discretization and the results of the HOFE
method for the LOQD equations. The x-axis gridlines correspond to pin-cell boundaries.
These figures also demonstrate the solution of the diffusion equation (Eg(x) = 1

3
) calculated

by means of the HOFE method. We note that in fast group the diffusion solution has signifi-
cantly different spatial shape and, thus, its behavior is qualitatively different compared with
the coarse-mesh transport solution that is represented by solution of the LOQD equations.
The quantitative difference between transport and diffusion solutions in thermal group is
not seen because of the scale. We explicitly demonstrate the relative difference between the
transport and diffusion solutions on Figures 6.5, 6.6, 6.11, and 6.12. These graphs show that
the largest relative errors in diffusion solution are the following: (a) 4·10−3 in fast group and
2·10−2 in thermal group for Test A, (b) 7·10−3 in both fast and thermal groups for Test B.

The scalar fluxes of the proposed splitting method have very good agreement with those
of the HOFE method. In both test problems, the maximum relative differences between the
scalar fluxes obtained by the splitting and the HOFE methods are (i) Test A: 6·10−4 in fast
group and 8·10−3 in thermal group, (ii) Test B: 8·10−4 in fast group and 4·10−3 in thermal
group. Figures 6.7, 6.8, 6.13, and 6.14 demonstrate the relative difference between the scalar
fluxes obtained by the splitting method and the HOFE method.

Figures 6.15-6.18 present the solutions of the D- and Q-problems for Test A obtained by
the splitting and HOFE methods. Figures 6.19-6.22 demonstrate the same set of results for
Test B. The figure for φD also show the solution of the modified diffusion. Smooth curves
that represent the solution of the Q-problem calculated by the finite-volume method were
obtained by means of a third-order polynomial interpolation function that fits coarse-cell
edge values Φg,±

Q,j and two subcell-average values Φ̄g
Q,j,i, i.e. the same polynomial function

that is used to calculate necessary spatial moments of φQ for the fission source term in the
D-problem.

These results show that the splitting method generates accurate solution for the D-
problem. For the Q-problem, we used the second-order accurate finite-volume method and
hence it is expected that there will be the difference compared to the results obtained by the
HOFE method. In the fast group, the subcell average values and shapes of the Q-problem
solutions generated by these two methods are fairly close to each other. The difference
increases in the thermal group. The overall effect on the resulting scalar flux is small, and
the splitting method with the considered discretization produces sufficiently accurate scalar
fluxes. We note that the splitting method uses the third-order polynomial to reconstruct the
Q-problem solution, whereas the HOFE utilizes more accurate approximation based on the
second-order polynomial combined with hyperbolic sine and cosine.

The relative difference in pin-cell average values compared to the fine-mesh results are
listed in Tables 6.4 and 6.5, where we present the results of the proposed splitting method.
Pins are numbered from left to right in each assembly. In Test A, the maximum absolute
values of relative differences in fast group are 1·10−3 and 6·10−4 for MOX and UO2 assemblies,
respectively, and in thermal group are 9·10−3 in MOX and 1·10−2 in UO2. In Test B, the
maximum absolute values of relative differences in fast group are 2·10−3 in MOX and 5·10−4

in UO2, and in thermal group 4·10−3 and 7·10−4, correspondingly. These results show that
the splitting method reproduces the pin-cell average values of the scalar flux with high
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accuracy. Note that pin-power reconstruction using a form function will almost certainly
produce even greater accuracy.

For the iteration process we used relative point-wise convergence criteria with values of
10−7 for the scalar flux and 10−8 for the eigenvalue. It took 15 and 16 iterations in case
of the splitting method to calculate the solution of Test A and B, respectively. In case
of the HOFE method the number of iterations are 13 and 17, correspondingly. Thus, the
convergence behavior of the splitting method in these test problems is similar to that of the
method without splitting.

Table 6.4: Test A. Relative difference in pin-cell average values for the splitting method
g Region pin #1 pin #2 pin #3 pin #4 pin # 5 pin # 6 pin #7 pin #8
1 MOX 6·10−4 1·10−3 9·10−4 2·10−4 -7·10−4 -1·10−3 -1·10−3 3·10−4

1 UO2 6·10−4 2·10−4 3·10−4 2·10−4 -9·10−5 -4·10−4 -5·10−4 -3·10−4

2 MOX 6·10−3 9·10−3 6·10−3 7·10−4 -4·10−3 -5·10−3 -5·10−3 -5·10−3

2 UO2 1·10−2 4·10−3 -1·10−3 -3·10−3 -3·10−3 -3·10−3 -2·10−3 -1·10−3

Table 6.5: Test B. Relative difference in pin-cell average values for the splitting method
g Region pin #1 pin #2 pin #3 pin #4 pin # 5 pin # 6 pin #7 pin #8
1 MOX 7·10−4 1·10−3 1·10−3 2·10−4 -1·10−3 -2·10−3 -1·10−3 5·10−4

1 UO2 5·10−4 -1·10−4 3·10−4 4·10−4 7·10−5 -3·10−4 -5·10−4 -3·10−4

2 MOX 1·10−3 3·10−3 1·10−3 -2·10−3 -4·10−3 -4·10−3 -2·10−3 4·10−3

2 UO2 7·10−4 6·10−4 -5·10−4 -7·10−4 -5·10−4 -2·10−4 1·10−4 6·10−4

6.8 Discussion

In this paper, we have developed a splitting method to solve the coarse-mesh discretized
LOQD equations. The method effectively splits a problem into two parts. The D-problem
captures a significant portion of the transport solution in the central part of assembly, and
the Q-problem accounts for the complicated behavior of the transport solution in the vicin-
ity of assembly boundaries. The calculation of discontinuity factors for the splitting method
has been introduced, and corresponding interfacial conditions have been formulated for this
particular method. Each part of the LOQD equations in the split form has been approxi-
mated by a different discretization scheme. The D-problem equations were approximated by
means of the high-order finite element method. The Q-problem equations were discretized
by using a finite volume method with second-order accuracy. Numerical results showed high
accuracy of the proposed splitting method with the considered independent discretization of
the equations of D- and Q- problems.

The successful performance of the splitting method in 1D geometry stimulates the efforts
in extension of this method to multidimensional geometries. In 2D and 3D cases the solu-
tion of the LOQD equations discretized with high-order methods is rather computationally
intensive problem. According to the proposed approach, one can split the LOQD problem
into a D-problem that can be solved with current efficient methodologies for diffusion-type of
equations and a Q-problem that can be discretized with a second-order finite-volume method
because the solution of this problem is a small correction to solution of D-problem. Special
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Figure 6.3: Test A. Fast scalar flux, φ1(x).
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Figure 6.4: Test A. Thermal scalar flux,
φ2(x).
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Figure 6.5: Test A. Relative difference in
the fast scalar flux calculated by the dif-
fusion equation compared to the coarse-
mesh transport solution obtained from the
LOQD equations.
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Figure 6.6: Test A. Relative difference in
the thermal scalar flux calculated by the
diffusion equation compared to the coarse-
mesh transport solution obtained from the
LOQD equations.
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Figure 6.7: Test A. Relative difference in
the fast scalar flux calculated by the split-
ting method compared to the results of the
HOFE method.
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Figure 6.8: Test A. Relative difference in
the thermal scalar flux calculated by the
splitting method compared to the results
of the HOFE method.
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Figure 6.9: Test B. Fast scalar flux, φ1(x).
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Figure 6.10: Test B. Thermal scalar flux,
φ2(x).
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Figure 6.11: Test B. Relative difference in
the fast scalar flux calculated by the dif-
fusion equation compared to the coarse-
mesh transport solution obtained from the
LOQD equations.
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Figure 6.12: Test B. Relative difference in
the thermal scalar flux calculated by the
diffusion equation compared to the coarse-
mesh transport solution obtained from the
LOQD equations.
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Figure 6.13: Test B. Relative difference in
the fast scalar flux calculated by the split-
ting method compared to the results of the
HOFE method.

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10 11.25 12.5 13.75 15 16.25 17.5 18.75 20
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−3

x [cm]

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

Figure 6.14: Test B. Relative difference in
the thermal scalar flux calculated by the
splitting method compared to the results
of the HOFE method.
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Figure 6.15: Test A. Solution of the D-
problem in fast group, φ1

D(x).
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Figure 6.16: Test A. Solution of the D-
problem in thermal group, φ2

D(x).
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Figure 6.17: Test A. Solution of the Q-
problem in fast group, φ1

Q(x).
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Figure 6.18: Test A. Solution of the Q-
problem in thermal group, φ2

Q(x).
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Figure 6.19: Test B. Solution of the D-
problem in fast group, φ1

D(x).
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Figure 6.20: Test B. Solution of the D-
problem in thermal group, φ2

D(x).

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10 11.25 12.5 13.75 15 16.25 17.5 18.75 20
−3

−2

−1

0

1

2

3

4

5

6

7
x 10

−3

x [cm]

N
o
rm

a
liz

e
d
 S

c
a
le

HOFE method                                    
splitting method                               
subcell average values for the splitting method
subcell average values for the HOFE method     

Figure 6.21: Test B. Solution of the Q-
problem in fast group, φ1

Q(x).
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Figure 6.22: Test B. Solution of the Q-
problem in thermal group, φ2

Q(x).
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interface conditions allow spatial decomposition of the Q-problem such that it can be solved
in each coarse cell (part of assembly) independently of other cells. Thus, the presented split-
ting method enables us to reduce significantly computational costs for obtaining solution
that very accurately accounts for transport effects in full-reactor calculations.

It is important to note that the proposed splitting method can be also utilized to upgrade
current codes for full-reactor core calculations that are based on the diffusion theory. In such
case, it is necessary to add solution of Q-problem and modify the definition of the diffusion
coefficient as well as of the fission source term to account for the Q-problem solution. As a
result, one gets a code based on transport theory calculations, provided that all extra group
data and functionals are supplied from assembly-level calculations.
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Chapter 7 
 
A Coupled Nodal/Finite Volume 
Discretization of the 2D Quasidiffusion 
Low-Order Equations for Reactor 
Calculations 

 
 
 

7.1 The Quasidiffusion Equations 
 
The quasi-diffusion (QD) method was developed in 1964 by Gol’din[3] as a non-linear 
method of solving the linear Boltzmann equation. Basically, QD methods accelerate the 
transport schemes by using the angular flux resulted from transport sweeps to calculate 
the values of the scalar flux which in turn are the source of particles in the next transport 
sweeps. QD methods allow obtaining discrete transport solutions that are influenced by 
both the discretizations of the transport and the low-order diffusion-like operator. The 
low-order operator contains transport corrections, thus the QD-accelerated solution does 
not converge to unaccelerated transport solution in case of independent discretization of 
the low-order and transport equations [4]. However, if the size of the mesh cells tends to 
zero and the difference schemes for the transport and low-order equations converge, then 
these solutions of discretizad  low-order and transport equations tend to each other and to 
the exact solution of the discrete-ordinates equations. Consider the general-geometry k -
eigenvalue transport equation for monoenergetic neutrons with isotropic scattering 
 

 )ˆ()ˆ(
4
1)ˆ()ˆ(

4
1)ˆ,ˆ()ˆ()ˆ,ˆ(ˆ rr

k
rrrrr fs ΦΣ+ΦΣ=ΩΣ+Ω∇⋅Ω ν

ππ
ψψ  (1) 

where 
 

- Ω̂  is the particle direction unit vector 
- )ˆ,ˆ( Ωrψ is the angular neutron flux, 
- )ˆ(rΣ is the total cross section, 
- )ˆ(rsΣ is the scattering cross section, 
- )ˆ(rΦ is the scalar flux, 
- k is the multiplication factor, 
- ν is the number of neutrons per fission, and 

  
- )ˆ(rfΣ is the fission cross section. 

Integrating each term of Eq. (1) over all directions, yields[5] 
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, (2) 

 
where we have used the definition of the scalar flux )ˆ(rΦ , 
 
 ∫ ΩΩ=Φ

π
ψ

4
)ˆ,ˆ()ˆ( drr . (3) 

In Eq. (2), )ˆ(rrΣ is the removal cross-section, defined as 
 
 )ˆ()ˆ()ˆ( rrr sr Σ−Σ=Σ . (4) 
 
Multiplying Eq. (1) by xΩ , yΩ , and zΩ and integrating over all directions yields 
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In Eq. (5), )ˆ(rJ i  are the projections of the neutron current in each of the three dimensions 
and )ˆ(rEij  are the components of the symmetric, positive-defined Eddington tensor: 
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ψ
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Equations (2) and (5) are known as the quasi-diffusion low-order (QDLO) equations. Eq. 
(2) is simply a balance equation and Eq. (5) is an exact definition of the transport current, 
which has a form similar to Fick’s law. 
 
If we consider two neutron energy groups (1=fast neutrons, 2=thermal neutrons) the 
QDLO equations become 
 

 ))ˆ()ˆ()ˆ()ˆ((1)ˆ()ˆ( 2211111 rrrr
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and 
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where 
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In deriving Eqs. (7) and (8), we assumed that the only source of thermal neutrons consists 
of fast neutrons slowing down from group 1 to group 2 and no upscattering occurs.  [In 
fact, an “effective” down-scattering cross section is calculated by subtracting from the 
downscattering cross section the upscattering cross-section times the ratio of the thermal 
flux to fast flux.] 
 
 
7.2 The Splitting Procedure for the Solution of the QDLO 
Equations in 2D 

 
We present a splitting method for solving the QDLO equations in x-y geometry, which is 
a natural extension of that presented in [8].  The goal of this splitting is to derive two 
systems of equations, whose solutions when combined will reproduce the solution of Eqs. 
(7)-(9).  The particular choice of splitting is motivated by the spatial shape of the 
Eddington functionals.  Observations of the spatial shape of the Eddington functionals 
show that they are smooth (nearly flat) in the interior of the fuel assembly, and sharply 
changing near the assembly boundaries. Figures 7.1-7.3 show this behavior in a MOX 
fuel assembly adjacent to a UO2 fuel assembly. 
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Figure 7.1: Thermal Exx vs. position in a quarter MOX assembly with an unlike neighbor 
on one side 

 
 
The QDLO equations are split into (i) a system of equations utilizing the node-averaged 
Eddington functional and cross-section data whose solution will be accurate in the 
interior of the node [the “D” problem], and (ii) a system of equations that incorporate the 
spatial shape of the Eddington functionals and total cross section near assembly interfaces 
whose solution will contain important assembly interface behavior [the “Q” problem]. 
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Figure 7.2: Thermal Exy vs. position in a quarter MOX assembly with an unlike neighbor 

on one side (orange data are negative numbers) 
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Figure 7.3: Thermal Eyy vs. position in a quarter MOX assembly with an unlike neighbor 

on one side 
 

In x-y geometry, the “D” problem is defined by 
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In these equations, the angle brackets [ E  and Σ ] indicate node-averaged data. We 
will discuss the preparation of this data in a later section of this report.   
 
The “Q” problem is defined by 
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The complete solution to the QDLO equations is reconstructed by summing the D and Q 
pieces: 
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We must also constrain these equations with boundary conditions on the outer boundaries 
of the problem.  The QDLO boundary condition has the form: 
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where sr̂ is a position on the problem boundary, and )ˆ( sg rC is a fractional functional 
defined by  
 

 
∫ ΩΩ

∫ ΩΩΩ⋅

=

<Ω⋅

<Ω⋅

0ˆ)ˆ(ˆ

0ˆ)ˆ(ˆ

)ˆ,ˆ(

)ˆ,ˆ(ˆ)ˆ(ˆ

)ˆ(

s

s

rn
s

rn
ss

sg dr

drrn

rC
ψ

ψ

. (21) 

 
While )ˆ( sg rC is shown as an analytic function of space, we will employ relationships that 
are averaged over boundary surfaces.  We split Eq. (20) by using the same gC for both 
the D and Q equations: 
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The D and Q problems are coupled, meaning an iteration procedure is required.  In order 
to allow Inverse Power Iteration to be applied to the solution of the k-eigenvalue 
problem, we employ the following iteration procedure: 
 
1. Begin with an initial guess for k and the fission source, 
2. Solve Eqs. (12)-(14) subject to boundary conditions Eq. (22a) for D

gΦ , 

3. Solve Eqs. (15)-(18) subject to boundary conditions Eq. (22b) for Q
gΦ , using D

gΦ  
from step 2. 

 
4. Compute a new estimate of k from this relationship: 
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       where V∂ and V indicate the boundary and domain of the problem respectively. 
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It is important to note that the hyperbolic basis functions are the analytic solution of the 
zero-source thermal QDLO equation with constant Eddington functionals and cross 
sections.  We have made a slight modification [11] to the splitting methodology to 
account for the within-node spatial variation of the total cross section.   
 
There are two types of calculations to be performed in the characterization of the reactor 
core.  The first is the calculation of surface and corner discontinuity factors, and the 
second is the global core calculation that incorporates the discontinuity factors at node 
interfaces.   
 
In the discontinuity factor calculation, we use the k-eigenvalue, total fission source, and 
node surface net currents from the fine-mesh, fine-group transport calculation as a source 
to calculate the spatial shape of the two group fluxes. This means that we no longer 
perform an Inverse Power iteration to find the eigenvalue and power distribution.  [Using 
the node-averaged cross-sections, eigenvalue, total fission source and net currents ensures 
that we will preserve the transport node averaged flux.]  The D and Q problems are still 
coupled through fission term, and an iteration is still necessary.  The transport net 
currents are used as the boundary condition for the D solution, and zero current boundary 
conditions are used in the Q problem.  This is one possible splitting of the boundary 
condition; others have been considered, but this splitting has proven successful in one 
dimension so we extend it here to 2D.  Surface and corner discontinuity factors are 
defined by 
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where s refers to surface average quantities, and c refers to evaluation at a corner of the 
node. 
 
In the global calculation, we impose continuity conditions on the current at node 
interfaces and discontinuity conditions on the scalar flux at node interfaces and corners: 
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We choose the following splitting of these equations:   
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7.3  Discretizing the “D” Problem: Extending the Advanced 
Nodal Discretization of Palmtag 
 
 
In this section, we describe a nodal discretization of the “D” problem.  This nodal method 
is an extension of the weighted residual method described by Palmtag, and uses 
polynomial basis functions to represent the fast flux, and both polynomial and hyperbolic 
basis functions to represent the scalar flux.  The hyperbolic basis functions are chosen to 
be the analytic solutions of the thermal group modified tensor diffusion equation with 
zero source.   Incorporating these hyperbolic functions into the expansion for the thermal 
flux permits the thermal polynomial coefficients to be written directly as a function of the 
fast polynomial coefficients, reducing the number of unknowns that must be computed in 
each node.   
 
Other discretizations of the “D” problem are possible; in fact, Hiruta and Anistratov [9] 
have developed a finite element discretization with polynomial and hyperbolic basis 
functions for the 1D QDLO equations and are currently working to extend this method to 
two dimensions. 
 
We begin by defining the problem domain as the yx −  plane divided into non-
overlapping  
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Figure 7.4:  2-D representation of a square node located at position xi, yj 
 
 
 
square regions (nodes) of dimension h. Non-dimensional coordinates ),( vu are 
introduced, and Figure 7.4 illustrates these for a square node that occupies the position 

),( ji in a regular array. 
 
Based on the geometry of the problem, the coordinates ),( vu are defined by 
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Using these coordinates, assuming constant cross-sections and Eddington tensor 
components, and inserting the neutron currents given by Eqs. (13)-(14) into Eqs. (11) and 
(12), the balance equations become 
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[We have, for the moment ignored the Q component of the flux in the fission source in 
Eqs. (31) and (32).  We discuss this omission later in this section.] The Eddington 
functionals in these D equations are averages over the interior region of the node, where 
their spatial shapes are relatively smooth.  The removal, fission and downscattering cross 
sections are true node averages, and the total cross sections are averages over the node 
outer boundary pin cell rows.   
 
The method used to spatially discretize equations (31) and (32) is the method of weighted 
residuals (MWR). The fast flux in the interior of each node is approximated by a 2-D, 
non-separable expansion of polynomial functions: 
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The functions mf are polynomial basis functions of the form 
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The thermal flux is approximated by a 2-D, non-separable, expansion of polynomial and 
hyperbolic functions 
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In Eqs. (33) and (35) only 15 of 25 mna  coefficients  and 19 of 25 mnb  coefficients are 
non-zero. 
 
The hyperbolic basis functions used in (35) are 
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These functions are exact (analytic) solutions of the zero-source thermal neutron balance 
equation [Eq. (32)] given constant cross sections and Eddington functionals. 
 
The weighted residual method requires a set of weight functions, which we choose to be 
the low-order polynomials: 
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We define the n-th weighted moment of a function ),( vuR  by 
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The zero-th weighted moment of the fast and thermal neutron fluxes represent node-
averaged quantities. The average fast flux is thus 001 a=Φ  and the average thermal flux is 
given by 
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In order to solve the quasidiffusion low-order equations by the MWR, 23 equations for 
23 coefficients are needed for each node of the problem. The 23 equations are generated 
from the following conditions: 
 
• 7 weighted residual moments in the fast group  
• 4 surface-averaged continuity conditions in the fast group 
• 4 surface-averaged continuity conditions in the thermal group 
• 4 corner conditions in the fast group 
• 4 corner conditions in the thermal group. 
 
The 19 thermal polynomial expansion coefficients are expressed in terms of the 15 fast 
flux expansion coefficients based on fact that the hyperbolic basis functions [Eq. (27)] are 
analytic solutions of the zero-source thermal neutron balance equations with spatially 
constant components of the Eddington tensor and cross-sections. 
 
The previously reported one-dimensional splitting procedure [8] used a finite element 
discretization of the fast and thermal D equations, and the thermal polynomial 
coefficients were not represented directly in terms of the fast polynomial coefficients.  
Our 2D procedure will require fewer unknowns to be computed in each node of the 
global matrix than that of a comparable finite element procedure (23 unknowns vs 30 if 
both thermal and fast fluxes are expanded in terms of 15 polynomial coefficients).  
 
The coupling of the D and Q problems through the fission source in Eq. (11) implies that 
weighted moments of the Q solution will be required to iterate the system to 
convergence.  In the next section we describe the discretization of the Q problem, and 
introduce a procedure for calculating these moments. 
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7.4 Discretizing the “Q” Problem: Applying the Finite Volume 
Methodology of Gol’din 
 
To solve the Q problem, we subdivide each node (the coarse mesh) into four subcells and 
apply  the finite volume methodology of Gol’din.  Figure 7.2 shows a single node (1/4 of 
a fuel assembly with N2 unit cells) and the associated subcell mesh we use to discretize 
the Q problem.  We have chosen a )2()2( −×− NN interior subcell, a 22 × corner subcell, 
and two edge subcells. 
 
The black lines in the interior of the square node on the right of Figure 7.2 are the 
submesh cell boundaries.  The red and green dotted lines, in combination with the black 
lines, indicate the volumes used to calculate the submesh surface Eddington functionals 
and total cross section (transport cross section if anisotropic scattering is included). 
 
Gol’din’s finite volume discretization involves integrations of the coupled first-order 
form of the Q equations [Eqs. (15)-(18)].  First, we integrate Eqs. (15) and (16) over each 
of the four subcell volumes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.5: A quarter assembly node and the subcell mesh used to discretize the Q 
problem 
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for subcell mesh indices 2,1, =ji  and groups 2,1=g .  This equation relates subcell 
average values of Q scalar flux to subcell surface values of Q current.  To generate 
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equations for the subcell surface currents, we integrate Eqs. (17) and (18) over subcell 
half-volumes.  For example, to generate an equation for the x-component of the fast Q 
current on surface (i=1/2, j=1), we integrate Eq. (17a) over x from 2/1x to 1x and over 
y from 2/1y to 2/3y : 
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This equation relates subcell surface Q currents to subcell average and surface Q and D 
fluxes.  The D fluxes in this equation are obtained by performing the appropriate 
averaging of the basis function expansions using the most recent values of the expansion 
coefficients from step (2) of our iterative procedure. 
 
We can derive a similar equation for the y-component of the fast Q current on the surface 
(i=1, j=1/2), by integrating Eq. (17b) over x  from 2/1x to 2/3x and over y  from 2/1y to 

1y : 
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Subcell surface Q currents in the interior of the node have somewhat more complicated 
equations.  For example, the x-component of the fast Q current on the surface (i=3/2, 
j=1), is generated by integrating Eq. (17a) over x  from 1x to 2x and over y  from 2/1y to 

2/3y : 
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A similar expression can be obtained for y-component of the fast Q current on the surface 
(i=1, j=3/2): 
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The Σ~ ’s and E~ ’s in these discretized Q equations are averages over pin cell rows nearest 
the surface, if their indices are fractional, or averages over subcell volumes if their 
indices are integers. 
 
Using the subcell surface current definitions, it is possible to formulate a system of 
equations containing only the subcell surface and subcell average Q fluxes -- a total of 16 
unknowns in each node.  These equations are solved via a marching method called 
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“ στµ −− ” iteration [10], given the previously specified zero-current boundary 
conditions.  These Q problems are “local” in that the Q solution in each node depends 
only on the within-node D solution – not on Q solutions from neighboring nodes.  This 
means that the additional computational expense to solve the Q equations is very small 
compared to cost of the D solution. 
 
It is important to remember that, because the D and Q problems are coupled through the 
fission source, weighted moments of the Q solution will be required to iterate the QDLO 
equations to convergence.  To compute these weighted residuals, we fit the 12 subcell 
surface and 4 subcell average fluxes to a bi-cubic polynomial, and then use this 
functional form in the 7 weighted residual equations that constrain the polynomial 
coefficients of the fast D flux expansion. 
 
7.5 Testing the Nodal Methodology for the “D” Problem 
 
In this section we present the results of a variety of one and multi-node test problems to 
verify the properties of our nodal discretization of the D equations. We solve several 
diffusion (diagonal Eddington tensor with diagonal entries equal to 1/3), and “transport” 
(Eddington tensor with diagonal entries different from one-third and general off-diagonal 
components) test problems. In the transport problems, the Eddington functionals are 
chosen to be within the range of values representative of two-node UO2-MOX fuel 
assembly transport calculations. 
 
The method provides accurate solutions (multiplication factor k and thermal to fast flux 
ratio) for one-node, constant cross-section and Eddington tensor component problems, 
with zero-flux or zero-current boundary conditions.  
 
The two-node problems assume a UO2-fueled assembly next to a MOX-fueled 
assembly[2]. This configuration is chosen because UO2 and MOX have significantly 
different neutronic properties, so UO2/MOX systems are excellent for investigating the 
behavior of neutron fluxes at the surface between unlike assemblies. Zero current 
boundary conditions are applied to the boundaries of the configurations, as shown in 
Figure 7.6. 
 
Various configurations are obtained by using UO2 and MOX fuels of various enrichments 
in 235U and Pu, respectively.  
 
Table 7.1 shows, in columns 1 to 4, the multiplication factor, UO2 assembly power and 
their relative errors from QDLO calculations using the two-group, single assembly cross 
sections from Table 7.2. These results are compared to CASMO-4 14-group, fine-mesh 
diffusion calculation results[2] which are reproduced here in columns 5 and 6. In Table 
7.1 Ux and My stand for x %-enriched UO2 and y %-enriched MOX. 
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Figure 7.6: UO2-MOX configuration 

 
 

The fast and thermal neutron flux shapes for the UO2 (3%)-MOX (12%) 
configuration are presented in Figure 7.3 and Figure 7.4, respectively. In both figures, the 
UO2 fuel assembly is the closest to the viewer. The fast flux is higher in the MOX 
assembly, due to its higher fission cross-sections. The steepest variation is observed near 
the surface between the two assemblies, smoothing out as the reflecting boundaries are 
approached. The smallest errors occur for the case of two UO2 assemblies. The thermal 
flux varies strongly at the surface between nodes mainly due to 2aΣ , which is higher in 
the UO2 assembly than in the MOX assembly. Better results are obtained if, instead of 
two-group single-assembly cross-sections, 14-group cross-sections are collapsed to two-
group with the actual spectrum[2].  

 
 

Table 7.1 Two-node UO2-MOX assembly, multiplication factor and power calculations 
 

Config. 
 

k 
Relative 
error k 

(%) 

UO2 
assembly 

power 

Relative 
error (%) 

UO2 

Reference 
k 

Reference 
UO2 power 

0 1 2 3 4 5 6
U3/U4 1.29121 6.2x10-3 0.93167 0.74 1.29113 0.9386 
U4/U5 1.34542 2.2x10-3 0.93569 2.3 1.34545 0.9580 
U3/U5 1.31531 8.4x10-3 0.88585 1.2 1.31520 0.8969 
U3/M8 1.21959 0.2 0.94005 0.9 1.21721 0.9312 
U3/M12 1.23201 0.25 0.90553 0.7 1.22896 0.8986 
U4/M8 1.25176 0.28 1.01040 1.6 1.24830 0.994 
U4/M12 1.26292 0.32 0.97583 1.5 1.25888 0.9611 
U5/M8 1.27410 0.3 1.05199 1.5 1.27035 1.0372 
U5/M12 1.28502 0.38 1.02376 2.0 1.28014 1.0042 

 

y 

x 

J=0 J=0 UO 

10.71 cm 10.71 cm 

MOX 
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Table 7.2 Two-group single assembly cross sections 
Assembly type  

Propert
y 

UO2  
3% 

UO2  
4% 

UO2  
5% 

MOX 4% MOX 8% MOX 
12% 

1Σ   0.286867 0.286714 0.204091 0.286466 0.285875 0.285233 

2Σ  0.97970 0.980551 0.987944 1.07985 1.16774 1.23263 

12Σ  0.016756 0.016229 0.015738 0.013630 0.011853 0.010644 

1aΣ  0.009530 0.010234 0.010895 0.012956 0.015327 0.017049 

2aΣ  0.082606 0.098603 0.113317 0.197823 0.290164 0.350338 

1fυΣ  0.006758 0.008092 0.009357 0.008436 0.012259 0.015427 

2fυΣ  0.129545 0.163555 0.194709 0.321278 0.483443 0.587795 

infk  1.256776 1.323053 1.366686 1.149925 1.177585 1.201939 
 

                                                

                                     
Figure 7.3 Fast neutron flux in UO2 (3%)-MOX (12%) configuration 

 
 

                                       
Figure 7.4 Thermal neutron flux in UO2 (3%)-MOX (12%) configuration 

 
In the multiple-node problems, the k -eigenvalues and power distributions are calculated 
for configurations of UO2 (UX), MOX (PX), and water (R) presented in Figure 7.5.  
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 (C1) (C2) (C3) 
 

Figure 7.5 UO2-MOX (C1, C2) and UO2-MOX-water (C3) configurations 
 
Cross-section data for these problems come from single assembly NEACRP benchmark 
calculations (zero-current boundary conditions)[2], and are presented in Table 7.3. 
Results from QDLO calculations of these problems are shown in Table 7.4, columns 2 
through 4. The relative errors, columns 5 through 7, are calculated with respect to 
reference k -eigenvalues and normalized assembly powers presented in Table 7.5[2] The 
reference solution (Table 7.5) for each configuration is a 2-D, 2-group, heterogeneous 
static diffusion calculation performed using one node per fuel pin[2].  
 

Table 7.3 Assembly homogenization results for NEACRP benchmark 
Assembly type Homogenized 

parameter UX PX 
infk  0.998181 1.026669 

1Σ  0.277778 0.277778 

2Σ  0.833333 0.833333 

1aΣ  0.009226 0.013791 

2aΣ  0.092663 0.231691 

1fυΣ  0.004570 0.006852 

2fυΣ  0.113537 0.344583 

21Σ  0.020430 0.015864 
 

Table 7.4.1 NEACRP benchmark, homogenized node calculations 
 

Assembly Power Error (%)  
Config. 

 
N 

 
k UX PX k UX PX 

0 1 2 3 4 5 6 7
C1 60 1.01986 0.87142 1.12860 7.1x10-2 0.37 0.39 
C2 40 0.90831 1.02452 0.97548 0.16 0.39 0.39 
C3 48 0.93904 0.91283 1.0872 0.10    0.36 0.37 

 

 PX  UX 

 UX  PX 
 J=0   J=0 

J=0 

  J=0 
R R 

PX UX  J=0   Φ=0 

 Φ=0 

UX 

R 

R 

R   PX 

 PX  UX 

 UX  PX 
 J=0   Φ=0 

J=0 

  Φ=0 

     J=0 
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Table 7.4.2 NEACRP benchmark, homogenized node calculations, using discontinuity 

factors 
 

Assembly Power Error (%)  
Config. 

 
N 

 
k UX PX k UX PX 

0 1 2 3 4 5 6 7
C1 52 1.01927 0.87575 1.12425 1.3x10-2 0.12 0.09 
C2 40 0.90791 1.03012 0.96988 0.12 0.26 0.19 
C3 48 0.93806 0.91842 1.08158 0.05    0.21 0.19 

 
Table 7.5 NEACRP benchmark, homogenized node calculations, reference values 

 
Reference values [2]  

Config. k UX PX 
0 7 8 9
C1 1.01914 0.8747 1.1253 
C2 0.90685 1.0282 0.9718 
C3 0.93806 0.9165 1.0835 

 
Compared to the two-group, 2-D, static diffusion code STENCIL that uses non-separable 
polynomial and hyperbolic function expansions [2], the QDLO results from Tables 7.4.1 
and 4.2 are reproducing the reference values, Table 7.5, with close or the same accuracy 
when discontinuity factors are included in QDLO calculations. Palmtag[2] shows also the 
results produced by other methods (CONQUEST, SIMULATE-3, and PANTHER). 
QDLO yields results comparable to these other codes for assembly powers, and k -
eigenvalues are predicted as accurately as Palmtag’s STENCIL code.  
 
In the QD problem with realistic Eddington tensor components we consider a 4-node 
domain with semi-reflecting boundaries as shown in Figure 7.6. Each node corresponds 
to a fuel assembly, all assemblies being identical.  
 

    0Φ =  
       

 
 

 
 
 

 
 
 
 
 

Figure 7.6 Semi-reflecting boundaries, four-node problem 
 

0Φ =   

 (3) (4) 

  (1)    (2) 

   0J =  

0J =  
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The multiplication factor k  of this configuration is calculated by using the nodal QDLO 
methodology for , ,

ij ij
g xx g yyE E=  from 0.30 to 0.36 and , ,

ij ij
g xy g yxE E= from 0.0 to 0.04. Cross-

sections are the ones in Table 7.3, for PX assemblies. The results show that k decreases 
when Eddington functionals increase. This behavior is due to increased leakage, directly 
related to bigger functional values. The calculated values for k  and the dependence of k  
on E are shown in Table 7.6 and Figure 7.7. 

 
Table 7.6 Calculated multiplication factors for various Eddington functionals 

ij
gyy

ij
gxx EE =   

ij
gxyE  0.30 0.32 0.34 0.36 

0.00 0.928595 0.922699 0.916875 0.911121 
0.01 0.927200 0.921318 0.915508 0.909769 
0.02 0.925912 0.920036 0.914233 0.908502 
0.03 0.924729 0.918852 0.913050 0.907321 
0.04 0.923653 0.917766 0.911958 0.906225 

 
 

         
                                                       ij

xxgE ,  
 

 Figure 7.7 Multiplication factor versus diagonal components at various values of off-
diagonal components of Eddington tensor 

 
Increased off-diagonal Eddington tensor components also affect the power distribution 
between nodes by enhancing the flow of neutrons towards certain nodes. For example in 
our problem the power in node 4 increases with increasing ij

xygE , , while power in nodes 1, 
2 and 3 decreases. Table 7.7 summarizes these results, showing the variation of node-

averaged, normalized power ( P ) and its rate of variation
,

ij
g xy

dP
dE

 
  
 

. In Figure 7.8 node 

averaged power is plotted against off-diagonal Eddington functionals. 

___  , 0.00ij
g xyE =  

___  , 0.01ij
g xyE =  

___  , 0.02ij
g xyE =  

___  , 0.03ij
g xyE =  

___  , 0.04ij
g xyE =  

k 



 99 

 
Table 7.7 The effect of off-diagonal Eddington tensor components on the power 

distribution 
Node 1 Node 2, 3 Node 4  

,
ij
g xyE  P  

,
ij
g xy

dP
dE

 P  
,

ij
g xy

dP
dE

 P  
,

ij
g xy

dP
dE

 

0.00 0.28215 -0.4065 0.11687 -0.1465 0.48410 0.6965 
0.01 0.27818 -0.3855 0.11541 -0.1450 0.49098 0.6805 
0.02 0.27440 -0.3705 0.11396 -0.1455 0.49769 0.6600 
0.03 0.27077 -0.3555 0.11251 -0.1445 0.50421 0.6440 
0.04 0.26729 -0.3405 0.11107 -0.1435 0.51057 0.6280 

 
 

     
,

ij
g xyE  

Figure7. 8 Node-averaged power versus off-diagonal Eddington tensor elements 
 

 
7.6 Testing the Coupled Methodology 
 
Our ongoing (and future) work is focused on the testing of a FORTRAN code that 
incorporates the previously described methodology to solve the coupled D and Q 
problems.  At this time, we are debugging the code for the calculation of the discontinuity 
factors, and our plan is to have a working code for global reactor core calculations by 
September 1, 2003.  We will extensively test the full methodology on a variety of four 
node (node = quarter assembly) problems.  Results of this testing will be presented at the 
2004 PHYSOR Topical Meeting in Chicago in April, 2004.  
 
Initially, we will be using Eddington functionals and cross-section data from a transport 
calculation that contains the correctly represents neighboring fuel assemblies.  These 

Power 

___ Node 4 
___ Node 1 
___ Node 2, 3 
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calculations will contain the most accurate eigenvalue and power density predictions our 
methodology can produce, given the absence of tabular interpolation on neighbor type.  
In current reactor methodologies, single assembly transport calculations are performed 
for a variety of conditions the fuel assembly will experience over its in-core life.  These 
cross sections (and other data) are then parameterized as a function of the conditions 
(void fraction, fuel and moderator temperature, exposure, boron concentration, control 
rod insertion, etc.) to allow for quick calculation of nodal data in the global code.  This 
parameterization introduces an error into the global calculation.  We will also test the 
accuracy of our methodology given the parameterization of the assembly data. 
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