

## VIBRATION ANALYSIS OF COMPOSITE DISK

RECEIVED  
JUL 01 1999  
OSTI

A. Gupta\*, T. Mulcahy<sup>A</sup>, J. Hull<sup>A</sup> and R. Abboud<sup>□</sup>

\* Northern Illinois University  
Dept. of Mechanical Engineering  
DeKalb, IL 60115

<sup>A</sup>Argonne National Laboratory  
Energy Technology Division  
Argonne, IL 60439

<sup>□</sup>Commonwealth Research Corp.  
Chicago, IL 60690

**ABSTRACT.** Often, disks rotating at high speeds are fabricated from high-strength, filament-wound composites. The carbon and glass fiber bundles, or tows that make up a filament, are often similar in different disk designs, and steady-state stress analyses are usually reported. Typically, little information is reported about the dynamic deformation and vibrations of the disk, which are important for understanding instabilities at high rotational speeds.

First, experimental and FEM modal analyses are performed for a non-rotating disk to verify the FEM model. The disk is made from composite rings which are press-fit or urethane bonded onto a hub. Then, the FEM model is used to analyze the effect of prestressing and stress stiffening due to rotation at various speeds.

### 1. INTRODUCTION

Rotors are quite often made of multiple layers which are press fit to induce compressive hoop stress to somewhat offset the tensile hoop stress due to spinning. The analysis involving isotropic materials for different layers are simple and available in classical text books on strength of materials [1]. However, application of isotropic materials are limited due to the fact that hoop stress is much greater than the radial stress resulting in inefficient or bulky design.

A solution to such problems of stresses of different magnitude in different directions is the use of composite

materials. Use of composite materials due to their anisotropic (in this case orthotropic) properties have been prevalent for years. Analysis of such composite materials have also been integrated into finite element codes such as ANSYS [2]. However, comparison of theory and experiment lacks in general.

### 2. FINITE ELEMENT ANALYSIS

In general it is not recommended to perform modal analysis (which is linear analysis) of a structure which has contact elements. Contact elements were needed to simulate the appropriate prestress due to interferences/gaps. By nonlinear static analysis using contact elements, prestress was generated. Since the modal analysis is linear, whereas contact elements are nonlinear, after computing prestress contact elements were "frozen": nodes were coupled instead of connected by contact elements. Also, in order to observe the effect of prestress, modal analysis was performed ignoring the gaps/interference. Subspace method was used (along with eigenvalue shift) to compute first few nonrigid body natural frequency and mode shapes.

### 3. RESULTS

The press-fit rotor was tested with an impact hammer under free-free boundary condition (supported on sponge), using a PCB accelerometer, Brüel & Kjaer dual channel FFT analyzer, and STAR MODAL software.

## **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

Natural frequencies and mode shapes were obtained. The experimental results and finite element results are presented in Table 1.

Next the rotor with urethane layer connections was analyzed both experimentally and by finite element analysis. Since urethane stiffness is much lower than the rest of the components, the stiffness of urethane primarily governs the natural frequency. The urethane modulus increases with frequency and tensile modulus data up to 400 Hz only is available. Table 2 presents the experimental frequencies as well as finite element results with various moduli of urethane.

Finally, natural frequencies of the press-fit rotor were obtained by finite element analysis at various speeds, including stress stiffening and spin softening. Results are presented in Table 3.

#### 4. CONCLUSIONS:

Finite element results are in close agreement with experimental results for the press-fit rotor, if pre-stress is included. However, the presence of the visco elastic connection material, whose modulus changes with frequency, makes correlation with experiment difficult. Finite element results for spinning case shows that stress stiffening has significant effect at higher speeds but spin softening did not have much effect. For future work it is recommended to perform experimental analysis under rotation to correlate with finite element analysis.

#### 5. REFERENCES

- [1] Cook, R.D. and Young, W.C.  
Advanced Mechanics of Materials, MacMillan, New York, 1985.
- [2] ANSYS version 5.3, ANSYS Inc., PA, 1996.

| Mode # | Mode Shape  | Experiment (Hz) | FEM w/o Pre-stress | FEM with Pre-stress |
|--------|-------------|-----------------|--------------------|---------------------|
| 1      | 2 nodal dia | 850             | 761                | 834                 |
| 2      | 0 nodal dia | 1400            | 1389               | 1451                |
| 3      | 1 nodal dia | 1800            | 1732               | 1767                |
| 4      | 3 nodal dia | 2030            | 1807               | 1868                |

Table 1. Rotor with Press-fit

| Mode # | Mode Shape  | Experiment Hz | FEM (Hz)            |                       |                       |
|--------|-------------|---------------|---------------------|-----------------------|-----------------------|
|        |             |               | Urethane = 15.1 MPa | E urethane = 45.3 MPa | E urethane = 90.6 MPa |
| 1      | 2 nodal dia | 310           | 241                 | 258                   | 271                   |
| 2      | 0 nodal dia | 630           | 400                 | 542                   | 607                   |
| 3      | 1 nodal dia | 861           | 489                 | 683                   | 783                   |

Table 2. Rotor with Urethane

| Mode # | Mode Shape  | Frequency with prestress at zero speed | Frequency with prestress and stress stiffening at 1000 rad/sec | Frequency with prestress and stress stiffening at 2000 rad/sec | Frequency with prestress and stress stiffening at 4000 rad/sec |
|--------|-------------|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| 1      | 2 nodal dia | 834                                    | 886                                                            | 1028                                                           | 1468                                                           |
| 2      | 0 nodal dia | 1451                                   | 1453                                                           | 1465                                                           | 1502                                                           |
| 3      | 1 nodal dia | 1767                                   | 1770                                                           | 1802                                                           | 1925                                                           |
| 4      | 3 nodal dia | 1868                                   | 1927                                                           | 2069                                                           | 2564                                                           |

Table 3. Press-fit Rotor at Various Speeds

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.