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Abstract

An optimization scheme for final focus systems is discussed
and applied to the NLC design. The optical functions at
the defocusing sextupoles, the sextupole strength, and the
length of the system must obey eight conditions that are
imposed by the spot size increase due to higher-order aber-
rations, the effects of synchrotron radiation in the bending
magnets, power supply ripple, magnet vibration tolerances,
and the estimated orbit stability at the sextupoles. These
eight conditions determine the minimum optimum length
of the system. The NLC final focus design was shortened
to this optimum.

I. INTRODUCTION

In this report, an optimization scheme for final focus
systems is proposed. The spot size increase by higher-order
aberrations, synchrotron radiation effects, and the toler-
ances on power supply ripple, mechanical vibrations, and
orbit stability depend on the length of the final focus sys-
tem. This dependence results in scaling laws that are dis-
cussed in the next section. To evaluate these for the NLC
final focus system, the values of certain length-independent
parameters have been extracted from a preliminary, not
optimized final-focus design. Based on these values, the
optimum choice for dispersion and beta functions at the
Y-sextupoles, for the sextupole strength and the length of
the bend section are found. We roughly follow the analy-
sis presented in Ref. [1]. However, the final optimization
procedure is different.

| II. SCALING LAWS
A. A General Telescope

We assume that the final focus system contains a hor-
izontal and a vertical chromatic correction section (CCX
and CCY) which are separated by a beta-exchange module
(BX). Considering only quadrupole magnets of strength k;,
the Hamiltonian for either one of these three modules may
be written
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We now transform to the starting point of the module using
the sine- and cosine-like trajectories, z; = cfz; + s¥zi,
= c¥y; + s¥y}, to define the chromatic coefficients
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cx,y = kic:-:’y , zy =2 E k C z,Y x,y
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By symmetry, ¢¢ =d? = ¢ =0 for CCX and CCY, and

we assume the same for the BX. The S-dependence is then
extracted from the coordinates, z; = \/—ﬁ_fx' , and 7} =
ﬁ, n =By, v = 7”-:;, where z,2',y,y' are now
normalized IP-coordinates, and Iength-mdependent chro-
matic coefficients are introduced, d* = d*'L, ¢*¥ = ¢y I
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&V = F&V &'V = [&"Y, The Hamiltonian (3) is
then written
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Finally, the dispersion at the y-sextupoles is converted into
a length-independent parameter 712 via

(4)

(5)
where fp is the bend angle of the last bending section at
the end of the CCY, and L the total length of the final
focus system.

B. The CCX and the BX

We rewrite Eq. (4) for the CCX in the form

= BBL'F12 ’

e~Hox xy g~ 3FE' ) g=Clay) = 3F(E' ) (6)
where
F(z ,y)———sf" 2 4+ 50" 2 (7
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and we have introduced the horizgntal and vertical chro-
maticities ¢$X = c‘”%’— gcx = *yELa The Hamiltonians of
the two X-sextupoles at the beginning and the end of the
CCX, denoted by 1 and 2, read

Hy = H(zr+nréyr), (8)
Hy = —H(zp +nrb,yr) +krnré(z% —v%), (9)
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respectively, where H is the usual sextupole-Hamiltonian

= 1
H(z,y) = ghp(z* — 3ay?) , (10)

the term kr denotes the integrated sextupole strength and

= /B%x/, and yr = /B 5y are the coordinates at
the ﬁrst X-sextupole. Now the total CCX, including sex-

tupoles, is
e~ H1g~3F(@'¥)o~C2.9) o= $ F(z'4) g~ Hz — o~GF¥ g—HR™
(11)
where
68X =q (a:+ __(H1 +F),y+ y'(Hl +F)) (12)
and .
HSCX = FOCX 4 kpnpé(z —y%) . (13)

In much the same manner the chromaticity can be propa-
gated through the BX to give

HEX = FBX + FOOX 4 kpnpé(a —vE)  (14)

and a term CEX analogous to C§°X. The generators
GCCX and Gp X contain fourth- and fifth-order terms,
Whlch have to be small.

C. The CCY

The Hamiltonian (14) to be carried through the CCY
is of the form

Hw —g§§3)x'2 + 3553)%/2 Foens (15)
where
O =elX+eBx + -ff Y —2kpnpBEY —kpnpBEY, (16)

and it interacts with a term analogous to G(z,y) above,
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The largest aberrations generated by the kick in z is a
§3-dispersion that could, at least in principle, be canceled
downstream, and a §3-chromaticity, from which

B > ~—A0,6%¢ 25y L, (18)

G (z,y) =

where A, = 1 denotes the maximum tolerable relative in-
crease of the horizontal spot size. Similarly, the y-kicks
generate a third-order vertical chromaticity and a z'2y'?6-
term, giving rise to the two conditions

\/_53 ___,5(3) 2< A, (19)

where A, ~ 1//2 (see Section F).

D. Synchrotron Radigtion and Chromaticity

The beam size increase, due to the additional energy
spread 8pms, induced by synchrotron radiation inside and
behind the CCY and to the uncompensated doublet chro-

maticity, £ = 2¢$?), has to be small:

26rmstlD < A (21)

where Ag ~ 1 denotes the maximum tolerable relative in-
crease of the vertical spot size due to synchrotron radiation
(see later), and the energy spread rms is [3]
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Here, Lp denotes the length of the last bending section
behind the CCY, and the factor 2 accounts for the contri-
butions from bending magnets in the center of the CCY.
The length of the central section is more than two times
Lg, but in this case about half the doublet chromaticity is

(22)

-compensated by the final sextupole Combining Eqgs. (5),

(20) and (21) and using a = -L—— we find
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The overall chromaticity balance reads approximately
b

~ £® w Pb
ATty o

nokpBy (24)
where b~ 2.

E. Long-Sextupole Effect

A long sextupole generates octupole-like aberrations
[2], which impose a limit on the tolerable sextupole length.
For two sextupoles separated by a —I, these aberrations
are described by the Hamiltonian

Hi, = kDD(B“ 4y oBE ALy 4 B2, (25)

where lp denotes the sextupole length. From the resulting
increase of the vertical spot size, we deduce

kblo 3 058, + VIEBLZ) <4, . (20

Decomposing the integrated sextupole strength as kp =
Ipkp, it follows that
1
6A ¢
; ) (27)

Ip<|=
i (k%(ﬁﬂfaﬁ%fz ++/156% %)

Assuming a pole tip field of 0.5 T' at a radius of 5 mm, the
maximum value of kp is about

IED,max ~24 m~3 at 500 GeV beam energy .  (28)
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F. The A-Values

To determine the optimum relative spot-size increases
Az, Ay, and Ag, we take A AE = A,. Using G;, ~

y (which follows from &3y ~ 1/8; ., Bp¥ ~ 1/6z 4
and Eqs (18), (19), and (20)) we find

1
2 2 2
cryo<A(1+2A) and O'xcx——Ax(l-i-A), (29)
from which the smallest spot size is obtained for
1
AyzAEzT/_E and Ay=~1. (30)

G. Vibration Tolerance and Power Supply Ripple

Denoting the horizontal vibration amplitude of the Y-
sextupoles (this is equivalent to an orbit-change due to a
vibrating quadrupole between the sextupole-pair) by Az,
we find 1

Y
kB < o (31)

allowing a maximum spot size increase of 2% due to the
induced waist shift. Moreover, if we suppose that the
strength of all quadrupoles in the CCY varies by a factor
Ak/k due to power supply ripple, it follows

_L_

5%y

This has to be compared with inequality (19).
II1. OPTIMIZATION

The minimum length of a final focus can be derived
from the eight conditions (18), (19), (20), (23), (24), (26),
(31) and (32). The achievable orbit stability at the second
Y-sextupole regarding perturbations internal to the CCY,
Az, determines the maximum value of kpS% via Eq. (31),
while Eq. (18) gives a minimum value of 8% /L. If these
two limits are inserted into Eq. (20), a lower bound on

Y /L2 is obtained. Inequality (23) shows that the smallest
value for np allows the shortest length L. Ideally, therefore,
we would like to choose the smallest value for 8% /L on
the right-hand side of (24). However, a compromise has
to be made in order to keep the sextupole strength ip
at a tolerable level. The semi-arbitrary requirement that
the second term on the right-hand side contribute about
15% to the total may be a reasonable choice. Inserting
the optimum value of the dispersion 77, deduced from Eq.
(24), into Eq. (23), the minimum length L follows. It still
remains to be verified whether the usually looser conditions
(19), (26) and (32) are fulfilled.

As an example, from the initial design of an NLC final
focus at 1 TeV, we extract 713 ~ 0.062, b = 1.6, &%y ~ —24,
&y ~ —0.67, &2y ~0.12, €& ~ —2000 (for 8% & 25 mm),

3(,3) ~ 15 800, and & = 34. The rms-energy spread is taken
to be § =~ 2 x 103, the horizontal normalized emittance
€;n = 5 mm mrad, and the emittance ratio €, /¢, ~ 100.

Assuming that at the second sextupole an orbit stabil-
ity of Az =~ 230 nm can be achieved, the optimum final-
focus parameters are-obtained by the outlined procedure.

By < (32)

They are listed in Table I and compared with the initial and
the present final focus design. The length of the final focus
was shortened by about a factor of two. This was achieved
by lowering the value of dispersion and beta functions at
the Y-sextupoles, while increasing the sextupole strength
kp. The present design is even somewhat shorter than the
estimated optimum. The reason for this is that new sex-
tupoles, similar in spirit to those proposed by Brinkmann
[4], have been added throughout the system, which locally
correct the chromaticity in each module. For more details
on the NLC final focus, see Ref. [5].

- Table I
Initial and optimized CCY parameters for an NLC final focus
gystem at 1 TeV c.m. energy.

Parameter 1 TeV
Initial Optimum | Present
ﬁyanm] 160 140 120
np [mm] 15 54 73
kp Im—7] 2.8 6.4 7.4
ip [m] 0.4 0.4 0.4
Az [nmj 400 230 230
Ak/k 8.107> | 6-107 6-10"°
Lot [m] 1461 917 7431
IV. SUMMARY

We have derived eight scaling laws that characterize
the length-dependent effects in a final focus system, and
can be used as a guideline for optimization. The optimum
length of the NLC final focus is primarily determined by the
achievable level of orbit perturbations internal to the CCY,
as measured at the second Y-sextupole, and by the effect of
synchrotron radiation in the bending magnets. Assuming
an orbit stability of Az ~ 230 nm, the initial length of
the final focus design for an NLC with 1 TeV c.m. energy
was reduced by about a factor of two. The distance from
the CCX to the IP is now about 800 m. For a final focus
system at a c.m. energy of 1.5 TeV, the optimum length is
estimated to be about 1000 m.
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