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ABSTRACT

For many least squares problems, the uncertainty is in one of the variables [for
example, y=£(x) or z=f(x,y)]. However, for some problems, the uncertainty is in the
geometric transformation from measured data to Cartesian coordinates and all of the
calculated variables are uncertain.

We have formulated a constrained optimization problem to determine the least
squares fit of a hyperplane to uncertain data. The first order necessary conditions
require the solution of an eigenvalue problem. We have shown that the solution
satisfies the second order conditions (the Hessian matrix is positive definite). Thus,
our solution satisfies the sufficient conditions for a local minimum. We have
performed numerical experiments that demonstrate that our solution is superior to
alternative methods.



1. INTRODUCTION

We became interested in this problem because we wanted to calibrate our laser
range cameras. Laser range cameras are powerful tools for defining the Cartesian
coordinates of surfaces of objects in an environment. The camera scans a laser beam

over a scene and determines the distance (r) by the time required for the beam to
reach an object and return. The beam is directed back and forth (¢) and up and
down (8) by two rotating mirrors. Thus, the data measured by the camera has the
form (r,4,8). The geometry of the camera can be used to map the measured data
to Cartesian coordinates (x,y,z).

Since the geometry of the camera may not be known precisely, the cameras can
be calibrated by comparing the calculated surface shapes to the known surface
shapes. The most simple surface is a plane and many physical objects have planar
surfaces. Thus, an important problem in the calibration of range cameras is to find
the best (least squares) fit of a plane to a set of 3D points.

For many least squares problems, the uncertainty is in one of the variables [for

example, y=f(x) or z=f(x,y)]. However, for this problem, the uncertainty is in the
geometric transformation from measured data to Cartesian coordinates and all three
of the calculated variables are uncertain.

We are all familiar with the linear regression problem of determining the least
squares fit of data to a straight line (y=a+bx). Two linear equations (the normal
equations) are solved to determine the parameters (g and b). For the general case
with M basis functions, the M parameters are determined by solving the M normal
equations. The book by Lawson [1] provides a good introduction to the methods for
- solving least squares problems.

When both x and y are uncertain, a line is determined by three parameters
(a+bx+cy = 0). To minimize the sum of the squares of the errors, the three

parameters satisfy a system of three homogeneous equations [Ds = 0 where
sT = (a,b,c)]. For the general case of a hyperplane in an N dimensional space, the
parameters satisfy a system of N+1 homogeneous equations. The homogeneous
equations will have a zero solution unless the matrix D is singular.

In a recent paper [2], we estimated an approximate solution of the homogeneous
equations by adding a small pertubation to make the matrix D singular and by solving
the resultant eigenvalue problem [Ds=ys]. The approximate solution was compared
to the set of solutions obtained by neglecting one of the homogeneous equations at
a time. Pratt [3] estimates the solution of the homogeneous equations by neglecting
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the last row of the Cholesky decomposition of the matrix D. Nievergelt[4] has
followed a different path to derive the same algorithm that we shall develop in this

paper.

In the next section, we will formulate a constrained optimization problem to
determine the least squares fit of a hyperplane to uncertain data. The first order
necessary conditions require the solution of an eigenvalue problem. We will show
that the solution satisfies the second order conditions (the Hessian matrix is positive
definite). Thus, our solution satisfies the sufficient conditions for a local minimum.
In the third section, we will discuss the results of numerical experiments that
demonstrate that our solution is superior to both our previous method and to Pratt’s
method.



2. LEAST SQUARES ESTIMATION OF A HYPERPLANE

Our motivation was to fit a plane to three dimensional range data. We will
generalize our problem from three dimensions to N dimensions. We assume that we
receive noisy measurements of points (p) in an N dimensional space:

p= (xpxp “'st) (1)

The data will be a set of points (p;), where j ranges from 1 to M:

p; = (xvsxzp ---’x}g) : (2)
A hyperplane is defined by the following equation:

N
d+Y ax =0 3
i=i

If the parameter vector a is a unit vector, d is the perpendicular distance from the
origin to the plane. We will require that the parameter vector a be a unit vector:

f:(ay =1 @

i=i

Since the data will not all lie on the hyperplane, we can define an error (e,) for
each point:

N
e =d+ Ea,xu o)

i=i

We will choose the parameters (the N vector ¢ and the scalar d) to minimize the
weighted sum of the squares of the errors subject to the constraint that a is a unit
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vector. We use a Lagrange multiplier A for the constraint and define the Lagrangian

function L by:
M N
L=Y wieP+all-Y @)]
j=1 i=1
where the weights (w,) are nonnegative and sum to 1.

Using Eq. (5), L may be written:

N N

N N
L=d*+2dY.aB,+Y Y aad,+A[1-) @)1
i=1

i=1 im]l k=1

where:

M
Ay = jz; WX

M
B, = ijxij
et

The A matrix is symmetric (A, = A,).

©

™

(C)

®)

The first order necessary conditions for the parameters that minimize L is that

the partial derivatives of L with respect to each parameter are zero:

N
d+Y aB, =0
i=1

(10)



N
dBk+‘zl:aiA&—lak=0, for k=1 to N. (11)

Nievergelt[4] shows that the hyperplane must pass through the centroid of the data.
Equation (10) requires that the vector B be a point on the hyperplane, while Eq. (9)
defines the vector B to be the centroid of the data. Thus, Eq. (10) supports
Nievergelt’s conclusion.

We can use Eq. (10) to eliminate the parameter d from Eq. (11):

N N
-YaBB, + Y aA, - ra,=0,for k=1t N. (12)
i=1 i=l

Thus, the first order necessary conditions for the parameters that minimize L [Eq.
(12)] require the solution of an eigenvalue problem:

(G-ADa=0 (13)

where the matrix G is defined by:
Gy = 4,-B;B, (14)
In reference 2, we did not include the constraint in the Lagrangian function (I).
When the Lagrange multiplier (&) is zero, first order necessary conditions for the

parameters that minimize L [Eqs. (10) and (11)] are a set of N+1 homogeneous
equations:

Ds =0 (15

where the column vector s is defined by:



s=[g] (16)

and D is a real symmetric matrix:

D=[;,i] (7

Eq. (15) will have a zero solution unless the matrix D is singular and in general
the matrix D will not be singular. In reference 2, we estimated an approximate
solution of Eq. (15) by adding a small pertubation to make the matrix D singular and
by solving the resultant eigenvalue problem:

Ds = As (18)

The solution of Eq. (18) that corresponds to the eigenvalue y with the smallest
magnitude is our best approximate solution to Eq. (15).

Both our previous method and our current method require the solution of
eigenvalue problems. However, the justification for the two methods are quite
different. The first order necessary conditions for the parameters that minimize the
constrained Lagrangian function require the solution of the first eigenvalue problem
[Eq. (13)]. The first order necessary conditions for the parameters that minimize the
unconstrained Lagrangian function requite the solution of a set of N+ 1
homogeneous equations. The approximate solution of the set of homogeneous
equations requires the solution of the second eigenvalue problem [Eq. (18)].

We conclude this section by showing that our current method satisfies the
necessary conditions for a local minimum. The second partial derivative matrix of the
Lagrangian function is called the Hessian matrix. Sufficient conditions for a local
minimum are that the Hessian matrix is positive definite:

N N
Q=Y Y vvH;>0 19

i=0 j=0



where v is an arbitrary vector (with a positive magnitude) and the Hessian matrix is
defined by:

&L
H, = —
Y asds, (20)

where s,=d and s;=g, for i=1to N.

For our Lagrangian function [Eq. (7)], the Hessian matrix is given by:

Hy =2 (21)
Hy = 2B, (22
H, =2 (A,-18)) N <))

where 3, is the Kronecker delta (the elements of the identity matrix).

The quadratic form for the Hessian matrix (Q) is given by:

N N N N
Q=2{v,l+v, Y v,B;+Y, E"t"j“ij‘}‘z(vi)z} 29
i1

isl i=] ju=l

We can modify the third term in Eq. (24) by using Eq. (14), the definition of the G
matrix:

vy = vT (G+BBT)v = vTGv + (BTv)? (25)

To transform the quadratic form for the G matrix, we will make a coordinate
transformation. Let the ¢, be the eigenvectors for the G matrix:



Gy, = A, ¥, (26)

Since G is a real symmetrical matrix, we can construct a set of eigenvectors that are
an orthonormal basis for the space of N vectors. Let the columns of the matrix T
be the eigenvectors for the G matrix:

T =100 ¥, . ¥yl (¢4))

T is an orthogonal matrix. We will make a coordinate transformation from the v
vector to a new vector (r):

v=Tr (28)

Using our new coordinates, the quadratic form for the G matrix becomes:

vIGv = r'TTGTr (29)

Since the columns of the matrix T are the eigenvectors for the G matrix:

GT = TE

where:

E = diag[h ;14,5 42yl (1)

Since T is an orthogonal matrix, the right side of Eq. (29) becomes:



N
vIGv = rTEr = ¥ A,(r)? (32)

i=1

An orthogonal transformation preserves length:

N N
E(vi)z = VTV = rTTTT" =r Tr = E(r i)z (33)
inl i=l

Our goal is to show that the Hessian matrix is positive definite. We have
modified several terms on the right side of Eq. (24). Using Eq. (25), Eq. (32), and

Eq. (33), Eq. (24) becomes:

N
Q=2 {v, + BHWY + Y (4,-2) (r)*} (39

i=1

The parameter A in Eq. (34) is one of the eigenvalues of G [see Eq. (13)]. If A is
the smallest of the eigenvalues, the second term in Eq. (34) will be non negative.
The Hessian matrix is positive definite except for the following special case: assume
v, =0 and A, is the smallest of the eigenvalues. Choose the r vector with r, = 1 and
the other r, = 0. Then the second term in Eq. (34) will be zero. The v vector is
determined by Eq. (28). The first term will be positive unless B and v are

orthogonal (B™v = 0).

For our previous method, the solution of Eq. (18) that corresponds to the
eigenvalue with the smallest magnitude is our best approximate solution to Eq. (15).

For our current method, we chose the smallest of the eigenvalues. Thus, A can be
negative and may not have the smallest magnitude.






3. NUMERICAL EXPERIMENTS

We have developed a method for obtaining the last squares fit of a hyperplane to
uncertain data. In this section, we will apply our method to synthetic data sets in
three dimensions. We will compare the results for our eigenvalue method with three
other methods: our previous method, Pratt’s method, and a partial information
approach [neglecting one equation at a time in Eq. (15)]. The partial information
approach produces four different solutions for the unknown parameters, rather than
a single solution. For each method, we can calculate an error measure [the error is
the square root of the first term on the right side of Eq. (6)]. We will find that our
method produces the smallest errors.

We consider a plane in three dimensional space with parameters:
a=(0.57735, 0.57735, 0.57735) and d=-1. To create a synthetic data set, we calculate
81 data points with random errors that are proportional to a parameter (o). Given
the data set and the weights (w,=1/81), we can calculate the B vector and the 4
matrix and solve the eigenvalue problem. The error measure is displayed in Table 1
for five values of ¢ for the four methods (New, Old, Pratt, and Partial Information).
In the last section, we proved that our new method should have the minimum error.
In Table 1, our new method always has the lowest error, followed by: the old method,
the Pratt method, and the partial information method. As the data errors increase

(o becomes larger), the errors for our new method become substantially less than the
errors for the other methods (when there are no errors in the data, all four of the
methods have zero errors).

The parameters a and d calculated by our new method are displayed in Table 2
for five values of 0. As o increases, the magnitude of the parameter d increases.
There is not a trend in the direction parameters (a,); sometimes they are greater than
the true values and sometimes they are less.
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Table 1. The error measure for synthetic data set for four methods.

!

Method ¢=0.1 0=02 =04 c=0.8

New 0.034953 0.070039 0.140247 0.279550

Old 0.034966 0.070148 0.141092 0.285753

Pratt 0.034968 0.070182 0.141465 0.287659
a P1 0.035002 0.070398 0.142629 0.293255
P2 0.035030 0.070597 0.143843 0.297911

" P3 0.035031 0.070608 0.143947 0.298470
P4 0.034983 0.070259 0.141706 0.287899

Table 2. The least squares estimates of parameters a and d

for five synthetic data sets.
o a a as d
0.0 0.57735 0.57735 0.57735 -1.00000
ﬂ 0.1 0.57704 0.57576 0.57924 -1.05197
E 0.2 0.57733 0.57513 0.57958 -1.10130
0.4 0.57906 0.57591 0.57708 -1.19361
ﬂ 0.8 0.56550 -1.36040

0.58196




4. CONCLUSIONS

We have developed a method for obtaining the least squares fit of a hyperplane
to uncertain data. The first order necessary conditions require the solution of an
eigenvalue problem. We have shown that the solution satisfies the second order
conditions (the Hessian matrix is positive definite). Thus, our solution satisfies the
sufficient conditions for a local minimum. We have performed numerical
experiments that demonstrate that our solution is superior to alternative methods.
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