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1 Abstract 
“Intelligent Extruder” described in this report is a software system and associated support 
services for monitoring and control of compounding extruders to improve material 
quality, reduce waste and energy use, with minimal addition of new sensors or changes to 
the factory floor system components. Emphasis is on process improvements to the 
mixing, melting and de-volitization of base resins, fillers, pigments, fire retardants and 
other additives in the “finishing” stage of high value added engineering polymer 
materials. While GE Plastics materials were used for experimental studies throughout the 
program, the concepts and principles are broadly applicable to other manufacturers 
materials. The project involved a joint collaboration among GE Global Research, GE 
Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of 
compounding equipment. Scope of the program included development of algorithms for 
monitoring process material viscosity without rheological sensors or generating waste 
streams, a novel detection scheme for rapid detection of process upsets and an adaptive 
feedback control system to compensate for process upsets where at line adjustments are 
feasible. Software algorithms were implemented and tested on a laboratory scale extruder 
(50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at 
GE Plastics was used to validate the monitoring and detection software. Although not 
evaluated experimentally, a new concept for extruder process monitoring through 
estimation of high frequency drive torque without strain gauges is developed and 
demonstrated in simulation. A plan to commercialize the software system is outlined, but 
commercialization has not been completed. 
 

2 Introduction 

2.1 Background 

U.S. polymer resins and their compounds are produced at the rate of 90 billion lb/ yr, 
one-third of which are engineering thermoplastics valued at more than $1/lb and used in 
applications from small electrical connectors to medical products, optics to computer 
cases, kitchen countertops, and automotive fenders and bumpers. Before reaching the 
injection molder manufacturer, nearly every pound of resin passes through a final 
“finishing” stage in a compounding line ( Figure 1), in which component materials are 
blended in a 1000 to 15,000 hp extruder to achieve critical properties such as melt flow 
behavior, color, mechanical strength, and fire resistance. Injection molders depend on the 
values of these properties for their equipment to produce quality parts. Variations in resin 
properties increase the initial setup time for injection molding and readjustments during a 
run, resulting in more scrapped parts due to incomplete or excessive mold flow or 
substandard properties such as color. The outcome, for both molders and resin makers, is 
productivity loss, missed deliveries, additional landfill scrap, higher production costs, and 
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dissatisfied customers. By improving the quality of material produced to meet molders’ 
expectations,  the compounding industry and its customers benefit while energy and 
waste generated in recycle is reduced. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Extruder for Polymer Compounding 

2.2 Compounding basics 

Extruders are widely used, not only in polymer preparation, but throughout the petro-
chemical and food industries for mixing, blending, reacting, cooking, devolatilizing and 
numerous other tasks, often at the end of the manufacturing chain where material quality 
attributes are established and value has been added.  Figure 1 shows the principle 
components. Dry materials are conveyed from storage hoppers with loss-of-weight 
feeders into various ports in the barrel. The screw conveys, recirculates, mixes and 
kneads the materials toward the die head, imparting sufficient work to achieve the 
required degree of mixing and temperature and pressure rise by the time it reaches the die 
head that melted material emerges in continuous multiple strands. After cooling in a 
water bath, the solid polymer strands are chopped into pellets and packed in boxes or 
railcars for shipment to injection molding customers. 
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Figure 2  Profile of Material State in Extruder 
 
 
Figure 2 shows what the internal material state transitions might look like, moving from 
the input to the output of the extruder barrel at the die head, recognizing that at any 
position the material flow and melt state is highly complex and 3-dimensional. The 
design of the screw is a complex science and art is not part of our investigation. For a 
given screw, base resin and complementary components to create a desired alloy, there is 
a desired profile the process engineer seeks.  This cartoon example illustrates typical 
complexities encountered, with dry ingredients added at two locations, an open de-
volatization vent, and changes in the solid melt ratio along the barrel, but ultimately 
producing 100% melt at the die head with an appropriate melt temperature and pressure 
to assure well mixed strand formation. Heaters and/or cooling jackets are located along 
the barrel length to help maintain temperature conditions in the melt, but the bulk of the 
energy that melts and blends the material comes from the screw drive.  
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2.3 Problem and program objectives 

 

The objective of the intelligent extruder program is to 
develop and demonstrate a prototype software-based 
monitoring, diagnostic, and control package that will reduce 
production variability, energy use, and offgrade or waste 
stream generation. 

Both large manufacturers and small independent operations, have used extruders and 
associated feeders, mixers, and pelletizers for polymer compounding for many years 
without exotic automation equipment. But market forces are driving change in the 
industry: 

•  Smaller lots of material, especially those made to order with short lead times (72 
hr), put a premium on efficiency of setup and changeover, which today can 
consume an entire shift. 

•  To improve the productivity of their equipment, injection molders are narrowing 
acceptable quality limits on material properties (melt viscosity and color) from 
their resin suppliers. 

•  Price deflation and cost pressures mandate increased productivity (dollars per 
pound produced), while reducing energy used and landfill waste generation. 

•  For products in demand, every pound of recycle processed is a pound loss in 
virgin material capacity that will lead to missed orders or expensive capital 
equipment to raise plant capacity to compensate for low first-pass yield. 

 
Some of the principle sources of variability in compounding are illustrated in  .  
Variability can be attributed to: (1) operator errors; (2) incoming material variations; (3) 
equipment faults of various types; (4) process faults/upsets. Each listed fault types in the 
figure can have an impact quality metrics of importance. 
 
Developing a coherent and systems-based approach to these challenges is the objective of 
this program, leading to products and services that the GE-Coperian Werner-Pfleiderer 
Corp. team can sell, and that resin manufacturers can exploit for increased profitability.  

 
A cross-functional team was formed to identify the most important needs in 

compounding as identified in. Prioritized goals by the team included:    
•  Reduce operator errors. Continuous online monitoring could reduce or 

eliminate human errors by detecting them quickly and allowing corrective 
intervention
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Figure 3  Sources of Finishing Variability 

•  Reduce the effects of incoming material variation. New inferential sensing 
technology could be used to provide a continuous on line estimate of 
property shifts, which can be used in closed loop or manually to initiate 
trim corrections with secondary feeds or other machine adjustment. 

•  Detect and correct process faults. Algorithms to detect and diagnose 
process faults could be used to quickly divert product and/or initiate 
operator intervention to make corrective action before upsets produce a 
degraded product. 

•  Anticipate and detect equipment faults. New diagnostic methods could 
look for online data trends characteristic of impending faults (e.g., screw 
wear). 

 
The objective of the intelligent extruder program is to develop advanced diagnostics and 
controls, responsive to the challenges described above, which show technical feasibility 
to reduce product variability, increase first-pass yield, while reducing energy use and 
waste generation in the compounding of polymer resin. The primary deliverables include: 
demonstration of software and algorithms to provide process and equipment diagnostics 
for a defined scope of fault coverage; provide an “inferential” predictor of output material 
properties (melt viscosity) from available temperature, pressure, power, speed, and torque 



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  12 

and internal extruder data derived from torque; provide closed-loop control based on 
estimates from the inferential predictor; prove that the methods scale from laboratory to 
full-scale production for at least one GE polymer material; and implement, test, and 
integrate all software/controls  for demonstration purposes on commercially available 
industrial hardware. 
 
 

2.4 Prior and related work 

 
A vast literature exists on modeling, diagnostics and adaptive control in general, and we 
make no attempt at a comprehensive survey here. What follows are some of the past and 
ongoing work of others that motivated this work. In the following, citation numbers in 
bracket [] refer to references in Section 14 of this report. 
 
 In an effort to develop more comprehensive closed loop controls for composition and 
MFI, the use of melt flow rheometers has been popular and is used widely, for example 
as described by Gottfert [6] and Dealy [7], the latter providing a useful survey of known 
techniques, but the cost, maintenance and generation of a waste stream of these sensors is 
a major drawback. Moreover, to minimize the waste produced, low flow rates are 
employed with the result that latency in obtaining a suitable measurement can be several 
minutes. Sensors working in the near IR have been developed for extruder rheological 
measurements, exemplified by the work of Hansen et al [10], but these costly devices are 
at least today expensive and complex to use at the production level. A promising, non-
contact transient IR spectroscopy being developed by McClelland et al is described in 
[16]. This technique uses laser induced transient ultrasound spectroscopy to extract 
information about composition and viscosity (among other properties). Following 
correspondence and discussions by Prof. McClelland with the GE team, this method 
looked very promising as an at-line system since it could work with hot strands as they 
emerged from a die head, and we will continue to follow his developments. Like all 
optical systems, it may be a challenge to use in a production environment due to 
contamination, steam, suspended dust and other grime. Many other at-line sensors have 
been studied for use in compounding, particularly for color. On-line colorimetry using 
video based systems for pellet color, for example, are available for sale by Macbeth 
instruments and others. But these systems suffer accuracy from the end “stress 
whitening” that results from cutting strand into pellets. The GE team has developed and 
demonstrated, but not commercialized, a video colorimetry system (see Campo et al[2]) 
that works directly on strand and uses off the shelf RGB video cameras and can measure 
color to within 1.5 delta E (in the CIE L-a-b color coordinate system). While all of these 
systems have shown promise for production operations, they all have limitations, and will 
still require a QA lab for calibration and maintenance. 
 
Prior work by the GE team on process control for extruders was focused on color control 
by Houpt [2] which was enabled by a real-time video based colorimeter above. Process 
control in extruders can go beyond the alloying or non-reactive blending addressed in this 
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program, e.g. Pabedinskas [5] and Curry [13, 14]. In fact, the team believes reaction 
control is a promising future direction for the Intelligent Extruder system development. 
In this program, our goal has been to overcome deficiencies of controls that arise from 
transient dynamics that confound the simplest steady-state relationships or transfer-
functions between system inputs and responses. And while there is no shortage of solid 
fundamental work in understanding process dynamics for purposes of process 
optimization and screw design (see e.g. Curry [13-15], McKay [8]), such models are 
typically unsuitable for control design owing to their complexity. Rather, the philosophy 
is to extract the simplest possible model  to capture the “important” dynamics (where 
what constitutes importance is the outputs in response to inputs are correct), and further 
to link these models that relate measurable process variables (speed, torque, feed rates, 
temperature etc.) to un-measurable ones (viscosity etc).  Purely heuristic models such as 
derived from neural networks (e.g. Eerikainen et al [9] who have applied such methods to 
food extrusion) have been extremely popular in many other fields, or taking a fuzzy 
modeling and control approach  (see Isermann [4] for an overview), and may yet provide 
value for this effort. But “neuro-fuzzy” approaches almost always over-parameterize data 
that models input/output behavior to match and require lots of (scarce) data. There is 
usually little physical insight to what is going on that can be explained by the model fits. 
Models that formed the basis of our work were first used by Gao and Bigio [11,12]. 
These models were originally aimed at studying residence time distributions for extruders 
(how we have adapted and extended the models is described in Section 5.1 of this report). 
Diagnostics and controls based on these models are described in detail in this report. The 
underlying philosophy of model based detection and some of the potential techniques 
considered for use in this effort are described in a survey by Gertler in [3]; the reader 
interested in a comprehensive treatment of the subject can consult his excellent book [17] 
which also provides numerous examples in the “art” of the methodology as applied here. 

3 Overview of Tasks and Key Results 
In this section we provide a summary of the major task objectives, actual 
accomplishments and provide a road map to the relevant sections of the report where the 
details are discussed. 
 
Work was broken down into eight major tasks plus program management. The eight 
major tasks are summarized below, with details provided in Sections 4-13 of the report. 
The approach to and estimates of projected benefits is described in Section 11. 
 

3.1 Task 1: System Requirements 

Objective 
Four major sub-systems were identified for development, including  

•  Extruder process diagnostics 
•  Extruder inferential estimation  
•  Extruder inferential control system 
•  Control implementation platform 
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The goal for this task was to identify requirements for each of these systems applied to 
polymer compounding applications, recognizing that our vision for Intelligent Extruder 
included other products (see Commercialization Plan details in Section 12.1). Table 1 
provides a brief summary of the purpose of each system to be developed, key functional 
requirements, and where applicable, specific targets to be achieved. These requirements, 
identified by a cross-functional team, address many of the upsets known to occur in 
typical polymer processing operations. A more comprehensive list of  “critical to quality” 
(CTQ) parameters which is the source of  Table 1, is provided in  Table 2. The team  
examined more than 60 potential needs, grouped by sub-system. After prioritizing based 
on impact and likelihood, the proposed functionality was proposed. 
 

Table 1: System Requirements for Intelligent Extruder 
 
 
The main conclusion from examining Table 2, is that most upsets of importance derive 
from problems external to the extruder (feeders and material variation). The drive, 
gearbox and controls are comparatively reliable and have extensive diagnostics of their 
own, or are already provided by 3rd parties, e.g. vibration based gear-box monitors. 
Clearly, there are other important process defects that lead to rejected material, e.g. color, 
surface defects and mechanical strength. But other means must be provided for tracking 

System Key Requirements Specific targets 
Inferential Process Sensing / 
Estimation: Obtain estimates 
of process model constants 
and dynamic variables from 
measurable machine sensors 
(drive torque, die pressure, 
speed, etc) with minimum 
material use and lab checks 

Identify key system model 
parameters (see 5.1.2) and 
provide means to track 
changes from process shifts 
and grade changes 
 
Estimate process viscosity 
(or corresponding melt flow 
index (MFI) from model 
and machine variables 

Model parameters to match 
input/output dynamic response 
 
Viscosity(MFI) +/- 10% or 
better (vs. 5% 1-σ for typical 
lab rheometry) 
  

Process diagnostics- Use 
process understanding and 
models to detect and classify 
process upsets of interest 

Detect and correctly classify 
process upsets from raw 
material variations, feeder 
anomalies (blockage, drift, 
sensor bias etc)  

95% Detection of feeder/resin 
shift faults as defined in 
Section 8.2, with 10% false 
alarm rates 

Inferential control – Building 
on above systems, develop 
control strategy to make 
feeder or drive adjustments 
on-line to keep process 
viscosity within specs 

Regulate viscosity to no worse 
the twice the measurement 
error variance steady state; 
provide adaptive framework to 
simplify the modeling efforts 
over material grade changes 

For correctable upsets, 
maintain viscosity +/- 10% of 
target value 
 
Achieve continuous adaptation 
for “neighboring” grades to 
minimize transition waste 
material 

Control implementation 
platform 

Design all software to be 
capable of running on typical 
industrial DCS process control 
equipment and/or PC-class 
industrial controllers 

Target PC class control 
computer interfaced to drive 
PLC within scope of 
demonstration program 
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color shifts/upsets since these are rarely, except in extreme cases, detectable from 
machine variables. But viscosity, important in its own right, is often leading indicator of 
problems in composition which in turn is linked to material properties.  Thus it was the 
opinion of the team that considerable benefits derive from detecting and managing 
viscosity related upsets, which became the primary focus of this effort. 
 

 

Table 2 "Complete" List of CTQs for Upset Coverage in Intelligent Extruder 
 

System Fault Likelihood CTQ Impacted (0=none; 1= weak; 3=moderate; 9=strong) Total

(1=LOW;2=MED;3=HI) 1<LIK<4 Capacity Melt V Composition FP Yield Ult Yield Pellet Size Pellet App. Matl Cost Proc EHS Other Weighted

blocked main  feed port 3 9 9 9 9 9 9 9 9 216

blocked chute 3 8 8 9 9 9 8 8 9 204

blocked sec feed port 3 8 7 8 8 8 3 5 9 168

FEEDERS resin l.o.w. feed controller 2 8 8 8 8 8 8 8 8 128

pigment line block 2 8 6 9 6 6 2 6 9 104

filler feeder drive 1 9 9 9 9 9 5 5 9 64

filller conveyer 1 9 9 9 9 9 5 5 9 64

transfer conveyer drive 1 9 9 9 9 9 0 0 9 54

pigment l.o.w. drive 1 8 6 9 6 6 2 6 9 52

drive computer 1 9 0 0 0 0 0 0 9 18

SCREW drive power electronics 1 9 0 0 0 0 0 0 9 18

DRIVE drive setup error 1 9 0 0 0 0 0 0 9 18

drive / DCS comm error 1 9 0 0 0 0 0 0 9 18

gearbox lube pump 2 9 0 0 0 0 0 0 9 36

gearbox lube contamination 2 6 0 0 0 0 0 0 4 20

MOTOR motor shaft 1 9 0 0 0 0 0 0 9 18

and motor winding 1 9 0 0 0 0 0 0 9 18

GEARS motor brushes 1 9 0 0 0 0 0 0 9 18

gearbox shaft 1 9 0 0 0 0 0 0 9 18

gearbox bearings 1 9 0 0 0 0 0 0 9 18

gearbox gears 1 9 0 0 0 0 0 0 9 18

motor bearing 1 6 0 0 0 0 0 0 6 12

feedport(s) blockage 4 8 7 7 7 7 4 6 8 216

feed hopper bridge 3 8 7 9 7 6 8 5 7 171

unmelt particle passage 4 6 4 0 5 6 3 5 4 132

feed hopper buildup & sloughing 3 4 6 6 5 4 6 3 4 114

vent port blockage 4 6 5 2 2 3 0 2 4 96

clogged die port(s) 4 3 2 0 1 1 6 6 5 96

SCREW strand fuse=fused pellets 4 0 0 0 0 0 9 9 5 92

feed cycling (bad tuning?) 2 5 6 7 6 5 5 3 6 86

blend separation in feeder 2 3 7 8 7 5 4 2 5 82

worn screw elements 3 4 6 0 5 5 1 1 4 78

wrong screw makeup 3 5 5 0 5 5 0 2 4 78

clogged die screen 4 5 3 0 2 2 1 2 4 76

wrong KWH/# input 4 5 2 0 3 4 1 1 3 76

broken screw elements 2 7 8 0 7 7 1 1 6 74

feed flooding 2 6 5 5 4 5 4 4 4 74

vent vacuum failure 3 6 5 2 2 3 0 2 4 72

pigment aglom. via cold working 2 2 2 6 5 7 0 5 5 64

barrel heater(s) failure 3 4 1 0 1 1 2 1 1 33

barrel temp sens failure 3 4 1 0 1 1 2 1 1 33

strand drop 4 3 0 0 0 0 0 0 5 32
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3.2 Task 2: Process Models for Diagnostics and Controls 

Objective- Develop simplified extruder process dynamic models suitable for use in 
advanced diagnostics and controls. Because of the complex, dynamic nature of 
extruder physics, it was the team’s experience that many past efforts at monitoring and 
diagnostics, e.g. based on simple statistical models, failed or were not robust. On the 
other hand, detailed 3-D extruder flow models are too complex to exploit in a real-time 
setting. The goal was to find a simple enough, but physically “correct”, model to use in 
various aspects of the controls and diagnostic development. 
 
Accomplishments – Motivated by work by Bigio and Gao [11,12], a lumped model is 
derived and which despite its simplicity, is adequate to capture the nonlinear input-output 
dynamics of the extruder. In response to changes in feeds and drive speed (inputs), the 
model predicts die pressure/temperature and torques (outputs). Details on the model 
derivation and its validation on both research scale and production scale extruders are 
contained in Section 5 and 10 of this report respectively. The model contains certain 
unknown parameters, which depend on the machine type and screw configuration, and on 
the material being used and operating conditions (temperatures, pressures, production 
rate). Explicit means to identify and adaptively track these parameters in a highly 
efficient manner are developed as part of Task 4, and are described in Section 6 of the 
report. The machine parameters need to be identified only once (for a given screw 
configuration), whereas the material parameters vary for each grade or major change in 
operating regime. Having an efficient means to identify and track model parameters is 
key to making all the methods developed in this program practical with a minimum of 
calibration/test and wasted material. 
 

3.3 Task 3: Extruder Diagnostics 

Objective—Develop and demonstrate algorithms for detection and classification of 
key extruder compounding system faults, emphasizing material feed sub-systems   
 
Accomplishments 
The models from Task 2 and the identification methods from Task 4 form the basis of our 
proposed algorithms for fault detection. As discussed above in the requirements task, our 
investigation of process related faults suggested that feeder anomalies and material 
variation were among the most important events to be able to detect rapidly and take 
corrective action. In Section 8 of the report, the main method is derived. The derivation 
shows that detection of fault events derives from comparing  measured variables with 
those predicted by a system model,  assuming no faults exist.  Differences that exceed a 
threshold indicate a fault condition. A new approach is developed in which the pattern of 
identified parameters following the fault occurrence can be used to isolate among the 
possible causes. A demonstration case study illustrates the method using data from the 
three-feeder research extruder with Noryl materials, in the presence of various property 
shifts and feeder faults. Section 8 also outlines how the method can be extended to 
materials with multiple constituents. It is shown that typical upset events can be detected 
in time frames as short as a few seconds up to a few minutes of operation. The main 
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limitation of the methodology is that faults are assumed to occur one at time. Multiple 
concurrent faults can be handled, but the decision logic is more complex (see 
Gertler[17]). Although concurrent extruder system faults are detectable, it may be 
impossible to disambiguate the root cause in general, but at least manual intervention via 
an alarm can be flagged. 

3.4 Task 4: Extruder Inferential Estimation and Parameter 
Identification 

 Objective – Develop and validate experimentally, algorithms to identify unknown 
parameters in the extruder system models from Task 2.  Using these models, derive 
and demonstrate means to “infer” or estimate process states, emphasizing viscosity 
or MFI, from machine variables. 
 
Accomplishments  
Model Parameter Identification 
Simplified dynamic process models form the foundation for all the results in this 
program, including estimation, diagnostics and controls.  In Section 6 of the report, we 
show that a total of six parameters must identified, four dependent on machine geometry 
and two of which depend on the specific material (and process operating conditions). 
Even though the two material parameters must be found for each grade of material (of 
which there may be hundreds), the fact that only two material parameters suffice to 
parameterize models for the estimation and diagnostics results that follow was surprising 
and counter-intuitive. Moreover, it can be shown that material of similar grades can be 
identified during the grade transition and lineout. That is, starting from a calibrated grade 
for which the coefficients are known, the models can be continuously adapted to grades 
with different MFI’s and material feeds that influence it. While we offer no definitive 
“proof”, we believe this capability can reduce by an order of magnitude the complexity of 
the data-base requirements that would otherwise be needed. Section  6 also illustrates the 
recursive on-line method for parameter identification using classical techniques, and 
provides a brief summary of experimental results on various grades of GE’s Noryl (PPO) 
material. 
 
Inferential Sensing and Estimation 
 
Using the models and adaptive identification above, the goal of inferential sensing of 
viscosity is shown in Section 7 to be a straightforward extension using a linearized 
viscosity relation from Section 5. Using data from both our 25 mm research extruder and 
a 120 mm production facility for Noryl, we showed that viscosity predictions within +/- 
10% or better can be obtained. The significance of this approach in comparison to 
traditional discrete lab quality control checks typically good for 2% accuracy, is that a 
continuous audit of viscosity results. Task 3 on leverages this capability in developing 
diagnostic algorithms. 
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Fast Response Torque Estimation 
 
The team had proposed using  “high frequency” components of shaft reaction torque as a 
measurement for use in estimation / diagnostics of screw condition, proper fill conditions, 
surge behavior etc. High frequency in this context means torque variation at or faster than 
the per-revolution rate of the screw. That such data would be informative and valuable in 
monitoring and diagnostics was conjecture based on preliminary experimental studies by 
one of the team members. Torque signals provided in the control electronics of most of 
the installed base of extruders is heavily filtered due to the noise that would be present, 
and because it is not required for proper drive operation.  It was therefore believed that 
this could not provide information of interest at or near the frequencies that result from 
torque fluctuations on a per-revolution basis. Direct torque measurement with high 
bandwidth was found to be technically possible using a variety of strain-gauge or in-line 
shaft-strain devices, but not practical or cost effective for use in retrofit in a production 
environment, so this sub-task was initially abandoned. Late in the program, a concept was 
proposed using an adaptation of ideas used in conventional AC drive controls. A small 
effort was devoted to show the potential of this technique, using an “observer” torque 
estimation algorithm, optimized to provide high frequency torques. The results of a 
design and detailed circuit simulation study (without the details of the screw load) are 
provided in Appendix B. Observer based torque estimation requires measurement of 
certain voltages and currents (or power) in the machine, but it is feasible and inexpensive 
to add such sensors, and a CPU to do the required signal processing, even to existing 
drives. Since AC drives are used in a large percentage of the installed base and most new 
systems (particularly large machines), we believe this approach has merit for 
investigation in future studies. Since we did not have time or resources to go beyond the 
basic simulations studies, we can make no claim to benefits that would derive from this 
estimation scheme, but believe it merits experimental validation in future studies. 
 
 

3.5 Task 5: Inferential Control System 

Objective: Develop and demonstrate a computer control system that integrates all 
the diagnostic and estimation algorithms with a control system that allows 
automatic on-line recovery to correctable faults. 
 
Accomplishments 
Section 9.1 summarizes the philosophy and approach to control design for inferential 
adaptive control of viscosity. The methodology integrates all elements developed during 
the program, i.e. to monitor viscosity with an estimator, to detect when an upset occurs, 
to classify the root cause of the upset, and initiate corrective action, all in a timely manner 
to minimize out of spec material. In Section 9.2, the details of design are presented with 
consideration to key tradeoffs which must be selected by the designer. The resulting 
control requires either sufficient natural process disturbance presence or introduction of 
small set-point perturbations (well within spec limits) to be able to reliably isolate root 
cause of the disturbance and to then take the right corrective action. A key benefit of this 
approach is shown in Section 9.3 to be the ability to reliably change the operating set 



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  19 

point. The significance of this is allowing a production operator to change grade on the 
fly, with the adaptive control re-tuning the models so that both control performance (e.g. 
stability) and detection algorithms follow the new set point automatically. This is one of 
the key benefits of the integrated Intelligent Extruder approach when viewed from a 
production point of view. Although our closed-loop feedback controller was only 
demonstrated on the research extruder, our success in proving scalability with the 
modeling  and diagnostics (see Task 7 and the results in Section 10 ) gives us confidence 
that adaptive control will scale similarly. 
 
 

3.6 Task 6: Control Platform and Experimental Extruder System 

 
Objective: Implement and demonstrate the diagnostic and control systems developed 
in Tasks 1-5 on a research scale extruder. 
 
Accomplishments 
Section 4 of this report describes the 25-mm research extruder used throughout this 
program. Using a 30HP drive, the Werner & Pfleiderer ZSK-25  is capable of producing 
about 50-100 lb/hr compared to commercial production rates of 2000 lb/hr and up. Using 
identical but scaled screw geometry, however, it is possible to correctly compound most 
polymer materials in the same manner as they will produced on the big machines. 
(Scaling is addressed in Task 7). This section of the report also identifies the lab test 
procedures used for measuring the actual material properties in the intelligent extruder 
validation. To prototype the various diagnostic and control strategies developed in the 
program, all logic was first implemented in well known and widely Matlab and/or 
Simulink, a high level analysis package by The Mathworks Inc. Using the “Real-Time 
Workshop” capability, it was possible to compile the various algorithms into executable 
software that would run real-time on a special target hardware system called D-Space. 
The D-Space package offered extensive data acquisition and user interface prototyping 
capability making interfacing and control of the extruder particularly easy. While this 
platform offers far greater computer power than needed to implement these algorithms on 
a commercial product, the software modules make rapid prototyping easy and all the code 
is in a C-language format that can be readily ported to other platforms, e.g. high end 
PLCs or plant distributed control systems that support C. Further details on the control 
algorithms developed and how they were implemented on the extruder control platform 
are described in Section  9 of this report. The software developed in this program is for 
research purposes only and is not available as a commercial product. Researchers and 
other potential users wishing to replicate the software should contact the principal 
investigator or GE Industrial Systems for more information. 
 

3.7 Task 7: Production Scale Demonstration and Validation 

Objective: Demonstrate that Intelligent Extruder diagnostics and control concepts 
developed on the lab scale system are extensible to production scale operations. 
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Since the majority of the experimental work in this program was carried out on a small 
laboratory research extruder, a major question addressed in this task is: do the concepts 
work on extruders at more typical production rates which are 20-100x the production rate 
of the ZSK-25 lab system? As described in Section 10 of the report, data was obtained 
from a 120 mm extruder system at GE Plastics making the same Noryl grade used 
throughout our lab testing. The system was operating at approximately 2000 lb/hr, a 
typical production rate in the Selkirk, N.Y. facility. This was special test in which 
perturbations in feed rates were allowed (still keeping product within spec). Results show 
that the simplified modeling and adaptive parameter identification framework scales to 
predict viscosity within +/- 4% on the production rate machine. While it was not 
permitted to perturb the machine out of spec to produce faults, simulation with the model 
suggests identical qualitative behavior and that therefore all the proposed diagnostics 
should perform similar to the research extruder. The extruder line where tests were 
conducted did not have a means to close the loop on extruder feeds so it was not possible 
to demonstrate the closed loop control capability as planned within the original scope of 
this task. However, given that the modeling and adaptive identification methodology 
appeared to scale well, we are confident that production scale closed loop correction 
should be feasible to accommodate feeder upsets and base resin property shifts. 
 

3.8 Task 8: Commercialization Plan 

Objective: Develop a commercialization plan to transition the research results of the 
Intelligent Extruder program to a product and/or service offering for the polymer 
compounding industry. 
 
Accomplishments 
Section 12 of this report provides an overview of the commercialization plan developed 
by the team to market the Intelligent Extruder as a value add product/service offering to 
potential customers in the polymer industry. The size of the market for potential retrofits 
and new installations is segmented. Alternative sales channels are identified. Market 
forces driving the need for such offerings are identified, leading to a summary 
opportunity fishbone for both polymer and non-polymer applications where Intelligent 
Extruder ideas are applicable. Based on the expected benefit (see Section 11) of 
approximately 2% in first pass yield, it was anticipated that an attractive value 
proposition could be presented to customers through a services offering for new and 
retrofit markets.  Over the course of the program, three potential customers were 
approached who possessed large numbers of production extruders, and two proposals 
were submitted which included various elements of the Intelligent Extruder system 
concept. While the nature and details of these commercial discussions are proprietary, as 
of the date of this report submission, no sales or implementations have been 
consummated. 
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3.9 Publications and Patents 

This research has resulted in one accepted paper in a refereed conference, with two other 
papers planned for submission in 2003. 
 
Alper Eker, Aditya Kumar and Paul K. Houpt, “A Model Based approach for an 
Intelligent Extruder,” 2003 IEEE Conference on Control Applications, June 2003. 
 
One patent disclosure has been filed as part of the program, 
“Model based estimation diagnostics and control of an extruder,” Docket filing RD-
30498 (GE Internal reference), April 12, 2002 

4 Experimental Extruder Setup for Demonstrations 

4.1 WP 25mm Lab Extruder Description 

In this section, we describe the extruder setup used at GE Global Research to perform the 
experiment runs during the various phases of inferential estimation, diagnostics and 
control. The setup used consisted of a WP ZSK-25mm twin-screw extruder, two K-Tron 
loss-of-weight feeders with K-Tron feeder controllers and a high-performance data 
acquisition system from IOtech. Figure 4 shows the ZSK-25mm extruder used which was 
capable of maximum screw speed of 1200rpm, maximum throughputs of 100 lb/hr with a 
maximum torque of 164 Nm. The extruder was powered by a 30HP GE Innovation drive, 
which provided a measurement of total screw torque (estimated from motor current and 
voltage) and screw speed (measured using a high-resolution optical encoder). The 
extruder had six thermocouples along the barrel length and heating elements to control 
the temperatures in the corresponding barrel zones. In addition to these, the extruder had 
a thermocouple and pressure probe in the die zone to measure the melt product 
temperature and the die pressure. Finally, the K-Tron feeder controllers had provision to 
remotely command a desired set-point for the feed-rates and provided the measurement 
of the actual feed-rates estimated internally by monitoring the loss of weight in the feeder 
hoppers. 
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Figure 4: WP ZSK-25mm twin-screw extruder used at GE Global Research for 
experiment runs 

4.2 Data Acquisition and Monitoring 

The signals for the machine variables were recorded using an IOTech data acquisition 
system capable of recording up to 24 channels. The torque, screw speed and die pressure 
measurements were available as voltage signals, which could be directly interfaced with 
the IOTech equipment. Also, the IOTech equipment had extensions to directly hook up 
with thermocouple measurements. However, the feed-rate signals provided by the K-Tron 
feeder controllers were in frequency, which had to be converted to voltage signals using 
frequency to voltage converters before interfacing with the IOtech equipment. For our 
experiments we recorded the main signals, i.e. torque, die pressure, two feed-rates, screw 
speed and melt temperature, and for the most part they were recorded at a sampling rate 
of 10Hz-1kHz and later sub-sampled through software as required. The collected data 
was analyzed in Matlab and the algorithm development for modeling, inferential 
estimation, diagnostics and control was carried out using Matlab/Simulink. For analyzing 
the performance of the estimated viscosity using the measured extruder signals in 
comparison to lab measurements, we collected samples of the product pellets at several 
steady state operating conditions and measured their viscosity in the lab using two main 
techniques shown in Figure 5.  
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The capillary rheometer is commonly used to measure the static viscosity of the molten 
polymer at medium to high shear rates. On the other hand, the RDS rheometer measures 
the dynamic viscosity of the molten polymer subjected to oscillatory shear between two 
discs at low shear rates. The initial experiment runs with polycarbonate mixtures used 
both capillary and RDS rheometers, while in the later runs with Noryl (blend of 
polyphenylene oxide (PPO) and polystyrene (PS) obtained from GEP Selkirk), we 
exclusively used the capillary rheometer. 
 

 
Figure 5: Schematic representation of capillary and RDS rheometers 

4.3 D-Space Implementation for Closed-Loop Experiments 

The final implementation of the developed algorithms for estimation and closed-loop 
control was done using D-Space, a high-end data acquisition and controls platform that 
readily allows implementing algorithms developed in Matlab/Simulink. In addition to  
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measuring the regular signals from the extruder, for the closed-loop control runs we also  
 

 
 
needed the capability to automatically adjust the feed-rates. This was achieved using two 
voltage to frequency converters that converted the voltage output signals from D-Space to 
corresponding frequency signals used by the K-Tron feeder controllers to adjust the feed-
rate set-points. Figure 6 shows a screen shot of the GUI interface built in D-Space for on-
line data acquisition, monitoring and closed-loop control. The interface allowed 
monitoring measured values of raw material feed-rates, measured and predicted (by 
model) values of die pressure and torque, estimated values of viscosity used in control 
and other parameters used in diagnostics, all in real time. 
 

Figure 6: GUI interface for estimation and controls algorithms using D-Space. 
 
 
In addition to experiments performed at GE Global Research on the ZSK-25mm extruder, 
we also obtained and analyzed data from production-scale extruders – 120mm, 2000lb/hr 
throughput – at GEP Selkirk.  
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5 Extruder Modeling for Estimation, Diagnostics and 
Control 

We adopted a model-based approach to achieve the estimation, diagnostics and control 
objectives in a unified framework. There are several types of models that one can develop 
using measured input-output data, e.g. static correlations for steady state relationships or 
linear dynamic input/output dynamic models identified using standard identification 
techniques. However, models obtained by these methods are often sensitive to the 
particular data set and are not readily generalized. Moreover, they often lack any insight 
into the physical process itself. On the other hand, first principles physics for melt flows 
in extruders can be too complicated. A dynamic model which captures only enough of the 
behavior to enable proposed methods is the goal. 

The developed model is a representation of the physical process of extrusion that captures 
the dynamic effect of common process inputs, e.g. raw material feed-rates and screw 
speed, on measured process outputs, e.g. total screw torque and die pressure, without 
getting into unnecessary details of the actual screw geometry and detailed material flow 
characteristics. In particular, we used the work of Gao et al [11,12] on steady state 
models for residence time distribution (RTD) in extruders as a starting point. 
 

5.1 Process Description  & Modeling 

5.1.1 Process Description 

Consider a typical extruder setup in Figure 7, which consists of the main drive, the 
extruder barrel with one or two (co- or counter-rotating) screws and feeders (screw or 
belt) for raw materials. Two or more raw materials (typically pre-blended with 
appropriate additives) are fed to the extruder at controlled feed-rates and mixed and 
melted in the extruder via the rotating screws with specifically designed conveying/ 
mixing/ kneading elements to produce the final molten product that is extruded at the end 
as strands through holes in a die plate. The molten strands are then typically cooled and 
solidified in a water bath and finally chopped into pellets for packaging and shipping as 
final product. While typically some heat for the melting of the solid raw materials is 
added to the extruder barrel externally through heating elements along the extruder barrel 
length, most of the heat required for melting the raw materials is provided by friction 
from the turning screws. This is especially true for the large industrial production-scale 
extruders. Moreover, the extruder geometry, specifically the individual screw elements 
and their sequence, varies from one application to another. In a typical plant, however, 
the extruder geometry is often optimized and fixed for a wide grade of products, and 
changed only occasionally for maintenance or when changing to very different product 
grades. 
 
 
 
 



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  26 

 

Figure 7: A typical extruder setup 
 

5.1.2 Physics-Based Lumped Model 

We start with a dynamic model that describes the dominant characteristics associated 
with the mixing of the raw materials. To this end we develop a lumped two-section 
dynamic mixing model that captures the effect of the inputs to the process (raw material 
feed-rates and screw speed) on the measured process outputs ( total screw torque and die 
pressure:  the pressure developed prior to the die plate as the molten product is stranded 
into the water bath). 
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Figure 8: Schematic representation of extrusion process 
Consider the schematic representation of a typical extrusion process shown in Figure 8. 
For simplicity here, consider extruders with two key raw materials fed at rates Q1 and Q2. 
In our experiments we worked with the NORYL resins from GE plastics which is 
produced from polyphenylene oxide (PPO) and polystyrene (PS), but the methodology 
can be generalized to multiple raw material feeds. The operating conditions of an 
extruder are typically characterized by the combination of total throughput Q=Q1+Q2 and 
screw speed N. Capacity of the machine depends on the screw design, material, and drive 
torque power capability. As process outputs we measure the total shaft torque T and the 
die pressure DP, which vary as a function of the operating conditions. Leveraging the 
work of Gao et al (1999, 2000) [1,2] for steady state RTD, we consider the extruder with 
two distinct sections during regular operation - a completely filled section (mixing, 
kneading) and a partially filled section (conveying). Note that in an actual extruder there 
are multiple conveying, mixing and kneading blocks and hence the partially/completely 
filled sections may be interspersed. It will be shown that for the purpose of capturing the 
overall dominant dynamics for use in estimation, diagnostics and control, it suffices to 
assume two “equivalent partially”  filled and completely filled zones into the respective 
sections. 



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  27 

5.1.3 Dynamic Model for Internal Holdup and Compositions 

Under steady state operating conditions with a specific total feed-rate (throughput) 
Q=Q1+Q2, and screw speed N, the total material holdup M1 and M2 in the partially and 
completely filled sections, respectively, are given by 

Eq 1  
AM

N
QBM == 21         ,

    
where the ratio Q/N is referred to as the specific throughput and the parameters A, B are 
related to the maximum capacities of the completely filled and partially filled sections, 
respectively, depending on the specific screw design/geometry (see Gao et al (1999, 
2000) [1,2] for more details). While the holdup M2 in the completely filled section is 
constant, the holdup M1 in the partially filled section varies with the operating conditions, 
specifically the ratio Q/N. In particular, the transient variation in the holdup M1 due to 
changes in total feed-rate Q and screw speed N is described by the total material balance: 

Eq 2  
oQQ

dt
dM

1
1 -=

      
In the above equation, the total inlet feed-rate to this section (from the feeders) is Q while 
the total outlet mass flow rate, denoted by Q1o, varies with the operating conditions, in 
particular the fill fraction φ  (i.e. the fraction of the total void volume filled with the 
material holdup) and the screw speed N.  More specifically, the maximum flow capacity 
of this section Q1fc corresponding to the maximum filled capacity M1fc (based on the void 
volume from screw geometry) is proportional to the screw speed N, i.e., Q1fc = k N with 
the proportionality constant k depending on the screw design/geometry. During regular 
operation, when this section is only partially filled and the fill fraction is φ =M1  / M1fc ,  
(0 < φ  < 1), the total outlet mass flow rate is given by 

Eq 3 B
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where B=M1fc / k  is a parameter that depends only on the screw design/geometry. 
Combining equations Eq 2 and Eq 3 gives the dynamic mass balance relation for the 
holdup M1: 

Eq 4  
B

NMQ
dt

dM 11 -=  

Note that at steady state, the inlet and outlet mass flow rates are equal, i.e. Q=Q1o, and 
the dynamic material balance in Eq 4 reduces to the steady state version:  M1 = BQ/N.  In 
contrast with the partially filled section, the total holdup M2 in the filled section is 
constant (since the void volume is filled to maximum capacity). Furthermore, the outlet 
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flow rate from this filled section is always the same as the inlet flow rate, which in turn is 
the same as the outlet flow rate from the partially filled section, i.e. Q1o. 

Furthermore, in addition to the total material balance, we also need to capture variations 
in composition of this material holdup to be able to predict the final product composition 
as a function of the operating conditions (feed-rates & screw speed), which has a direct 
bearing on the product properties, e.g. viscosity. To this end, we denote the weight 
fraction of PPO in the material holdup in the partially and completely filled sections by x1 
and x2, respectively. At steady state, these compositions are the same and are determined 
solely by the feed rates Q1 and Q2, i.e. 

Eq 5  21
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21 QQ
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Similar to the dynamic total mass balance, we also need to model the transient variations 
in the compositions x1 and x2 in the partially and completely filled sections, respectively. 
The composition in these sections changes due to mixing of the two raw materials in the 
respective sections. More specifically, as the inlet feed-rates are changed thereby 
changing the raw material composition at the extruder inlet, this change in composition at 
the inlet propagates down the length of the extruder depending on the degree of mixing in 
various sections. The detailed mixing mechanisms are governed by the screw design for 
the various conveying, mixing, kneading sections and are too complex to model. For our 
purposes, we seek a simple parameterized mixing model where the parameters can be fit 
with measured input/output data to describe the overall effect of the mixing in the 
partially and completely filled sections. This is achieved by modeling the level of mixing 
in the individual sections through a combination of delay and recycle. Figure 9 shows 
schematically this representation in the two sections.  
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Figure 9: Schematic representation of mixing in partially and completely filled 
sections. 
For instance, the mixing in the first section that governs relation between the composition 
x1 and the inlet composition xi, is governed by the delay depending on the ratio M1/Q1o 
and the recycle ratio R1. The actual level of mixing can be captured by adjusting the 
recycle ratio R1 between the extreme limits of 0 (no mixing) and infinite – in practice a 
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large value (perfect mixing). Similarly, the level of mixing in the second section is 
captured by the recycle ratio R2. The overall model for the transient behavior of the 
compositions in the two sections is given in a compact form in the Laplace domain: 

Eq 6 
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For a more detailed derivation of the above model, see APPENDIX-A Extruder Dynamic 
Models. 

5.1.4 Torque, Die Pressure and Viscosity Relations 

The above equations (Eq 4 and Eq 6) describe the dynamics for the material holdup M1, 
M2 (constant) and the compositions x1, x2. However, these internal state variables are not 
measured on-line and need to be related to the output variables that are measured, namely 
torque T and die pressure DP. The overall shaft torque arises from the combination of the 
resistive torque in the individual conveying, mixing, kneading sections and a detailed 
physics-based model involving the details of the screw design would be too complex. We 
seek to develop a simple overall relationship for the total shaft torque in the following 
general form: 

Eq 7  22312110 )( NxMxNMT αααα +++=  

The above expression for torque has three key terms, the offset and the two contributions 
from the partially and completely filled sections, respectively. The latter two terms 
depend on the respective holdups and compositions and the screw speed. We tested the 
validity of the above relationship for torque, using multiple measurements of torque at 
various steady state operating conditions. At steady state, using the corresponding steady 
state relations for the holdups, the above relation for torque reduces to the following 
relation: 

Eq 8 
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We tested the validity of this equivalent steady state relation using measured input-output 
data for feed-rates, screw speed and torque at various steady state conditions over 
multiple days.  
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Figure 10: Input-output relation for torque at steady state 
 
Figure 10 shows the comparison of the measured torque and the model fit using Eq 8 for 
45 steady state points obtained on four separate days. In particular, we fit the model 
parameters ci, or equivalently αi, using the data from the first 25 points and tested its 
validity against the last 20 points. Clearly, the model validates very well against the 
measured torque data with an overall R2 value of 93.4%. 
 
Similarly, a relation for die pressure DP as a function of the process variables is obtained 
from physics using the laminar flow relation for pressure drop in a circular pipe (treating 
the die plate holes as an effective short pipe) for the molten product with a viscosity µ 
flowing through the die plate at a rate Qo (for a detailed description of die pressure model 
see Appendix Section 2). It can be seen that the key parameters that affect the die 
pressure DP are the product throughput and viscosity. 
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Figure 11: Comparison of measured viscosity variation with PPO fraction and 
model fit. 
 
In general, the product viscosity at the die depends nonlinearly on the corresponding 
product composition, temperature and shear rate. For the NORYL product we tested, the 
viscosity of the product has a quadratic dependence on the weight fraction of PPO 
content. In general, the dependence of viscosity on composition may be described by a 
higher order polynomial. Figure 11 shows the plot of viscosity measured using a capillary 
rheometer for 45 samples collected at steady state conditions over 4 days with a wide 
composition range, and the fit obtained with a 2nd order equation using data from first two 
days and validating against data from the last two days. Clearly, the 2nd order equation for 
viscosity as a function of the product PPO weight fraction has a good fit with an R2 value 
of 96.4% and maximum error between measured and fit values less than 8% (1σ − 3%). 
The dependence of viscosity on shear rate, is typically given by a power law, while its 
dependence on temperature is governed by an Arrhenius-type exponential function. For 
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our purposes, we approximate the nonlinear dependence of viscosity on composition, 
shear rate and temperature with a linearized relation: 

Eq 9  )()()( 321 ooooooo TTQQxx −−−−−+= µµµµµ  
The above relation describes the variation in the product viscosity around the nominal 
operating conditions ooo TQx  , , ; here To denotes the melt temperature measured at the die. 
The above linearized relation for viscosity yields the following relationship for die 
pressure: 
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The dynamic material holdup and composition relations and the relations for torque and 
die pressure comprise the overall dynamic model for the extrusion process, relating 
changes in the process inputs (feed-rates and screw speed) to the measured output 
variables (torque and die pressure) 
 

Dynamic Process Model:  
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The above model is a simple low-order lumped model in the so-called state-space form 
with several input, state, output variables and parameters listed below. 
 
Inputs 
Q1   :  feed-rate of PPO   Qi    :  total feed-rate = Q1 + Q2 
Q2   :  feed-rate of PS   xi     :  weight fraction PPO at inlet  = Q1 /Qi 
N     :  screw speed 

States  
M1   : mass holdup in partially filled section of screw 
M2   : mass holdup in completely filled section of screw 
x1    : wt. fraction PPO in partially filled section 
x2    : wt. fraction PPO in completely filled section 
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Outputs 
Qo   : outlet mass flow rate 
 xo   : PPO fraction at outlet = x2    
 T    : total torque 
 DP : die pressure 
Parameters 
A,B      : extruder geometry-dependent parameters for holdups  
R1, R2  : recycle ratios to capture mixing in partially/completely filled sections 
α0-α3    : parameters in torque relation 
β1-β4    : parameters in die pressure relation 
 

5.1.5 Dynamic Model Parameters 

The parameters in the dynamic model in Eq 11 will depend on the specific extruder 
geometry and the product application and need to be identified from measured 
input/output data. However, the task of identifying these parameters is simplified by 
observing that the parameters can be categorized into two sets: 

1. the first set consisting of the parameters A, B, R1 and R2 depend on the specific 
screw geometry and will be invariant once the extruder screw geometry is fixed.  

2. the second set consisting of the parameters αi and βi depend on the particular 
process conditions and will change from one product grade (family) to another 
and these parameters need to be identified depending on the operating conditions.  

An initial value of all the parameters can be obtained through an off-line least squares fit 
using the measured input-output data from an initial calibration experiment. Thereafter, 
we need to update only the process-dependent parameters αi and βi, while the machine-
dependent parameters A, B, R1 and R2 are kept constant as long as the screw geometry 
remains unchanged. We will address the on-line identification of the process-dependent 
set of parameters αi and βi in a later on-line identification section. In this section, we 
present the results obtained by fitting the parameters to match the model input-output 
predictions with on-line measurements obtained during a calibration run. 

Figure 12 and Figure 13 show the results of the initial off-line least squares fit comparing 
the model predictions for the torque and die pressure (shown in red) with the on-line 
measurements (shown in blue) obtained during an experiment run on 05/08/2001 on the 
25mm extruder with NORYL polymer using nominal raw materials (PPO IV 0.46) and 
nominal composition (PPO fraction 0.52). Clearly, the model predictions match very well 
with the on-line measurements with R2 values of 91% and 93% for die pressure and 
torque, respectively. 
 



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  34 

    
Figure 12: Comparison of Die Pressure measurement with model prediction 
 
 

 
Figure 13: Comparison of torque measurement with model prediction 
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5.1.6 Comparison of Model Predictions 

Despite the simplicity of the model it suffices for our purposes of predicting the 
responses in key measured outputs like total screw torque and die pressure as a function 
of the process inputs like feed-rates and screw speed and other process parameters. In 
particular, the model captures both the steady state and transient characteristics for the 
two measured outputs very well. 

The transient response for total screw torque T shows an inverse response with respect to 
screw speed changes (see Figure 14). This occurs due to the fact that starting at some 
steady state as the screw speed is increased, the torque initially rises proportionally (see 
Eq-A 9). However, due to the increased speed more material is withdrawn from the 
partially filled section until the holdup M1 in this section reaches a new lower steady state 
value – since total feed-rate Q is unchanged, the new steady state value has to be lower 
such that the outlet flow rate Q1o =M1 N / B is the same as before the increase in screw 
speed N. Consequently, as a result of reduced holdup M1, the total torque eventually 
reduces after the initial increase.  

The die pressure DP shows an inverse response with respect to screw speed N (see Figure 
15). This occurs due to the fact that starting from a steady state, as the screw speed N is 
increased, the outlet flow rate Q1o from section 1 and hence from section 2 increases 
thereby leading to an initial increase in DP. But, again since the overall feed-rate has not 
been changed, the outlet flow rate will reach a final steady state value same as before the 
increase in the screw speed. However, the increased speed generates more heat due to 
viscous dissipation thereby increasing the melt temperature, which reduces the product 
viscosity and thus reducing the die pressure DP. 

The die pressure DP shows an inverse response with respect to the PS feed-rate (see 
Figure 16). Initially, starting from a steady state, as the PS feed-rate is increased, the total 
throughput and hence the outlet product flow rate increases thereby increasing the die 
pressure. However, the increased PS feed-rate reduces the PPO weight fraction xi, which 
eventually leads to a reduced PPO weight fraction x2o at the outlet which leads to a 
reduced product viscosity and hence reduced die pressure DP. The die pressure doesn’t 
exhibit such an inverse response with respect to PPO feed-rate since an increase in the 
PPO feed-rate leads to an increased throughput and an increase in x2o, both of which 
contribute to an increased die pressure DP. 
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Figure 14: Inverse response in torque with respect to screw speed 
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Figure 15: Inverse response in die pressure with respect to screw speed 
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Figure 16: Inverse response in die pressure with respect to PS feed-rate 

 

5.2 Extruder Modeling Summary 

We have developed a simple, physics-based dynamic model for a typical extrusion 
process that can be applied to a wide variety of extrusion applications to describe their 
transient input-output behavior. We have demonstrated the application of the model on a 
lab-scale 25mm extruder to describe the dynamic input-output behavior, specifically the 
response in on-line measurements like torque and die pressure (readily measured in most 
extruder applications) as a function of variations in extruder operating conditions. Scale-
up of the model to an industrial production-scale extruder is also demonstrated in Section 
10.  

The model has several unknown parameters, which need to be identified for specific 
applications based on on-line input-output measurements from experiments. However, 
the identification of these parameters is greatly simplified by grouping the parameters 
into machine-dependent and process condition-dependent sets. The former set of 
parameters need to be identified only once for a given extruder geometry, while the latter 
set of parameters will, in general, vary depending on the process conditions. This 
variation of the parameters will be addressed through on-line identification and used for 
the fault diagnostics and inferential estimation as described in later sections. 
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6 On-line Parameter Identification   
 
The dynamic process model described in the previous section involves unknown model 
parameters that need to be identified from measured input-output data. These parameters 
will vary for different extruders and process applications. The physics-based nature of the 
model allows categorizing the parameters into two broad classes:  

(i) parameters depending on the machine geometry (A, B, R1, R2), and  
(ii) parameters depending on the material properties and process operating conditions 

(αi, βi).  

The unknown model parameters can be identified for a given extruder setup once using 
experimental input-output data and a least-squares fit (see previous section). Thereafter, 
the machine parameters are fixed for the specific extruder and screw geometry. In 
contrast, the material parameters will in general vary from day to day, due to variations in 
process conditions, raw materials etc., and need to be identified on-line.  
 
For the on-line identification, the machine-dependent parameters (A, B, R1, R2) are fixed 
at the values obtained by off-line identification, while the parameters αi in the torque 
relation in Eq 7 and the parameters βi in the die pressure relation in Eq 10 are to be 
identified on-line. In our experiment runs with NORYL PX5511 grade resin, we observed 
that the nominal set of parameters αi (identified by off-line identification) captured the 
transient variation in torque with process condition changes quite well, in-spite of 
changes in raw material and composition. Moreover, the parameters αi are difficult to 
interpret due to a lack of explicit relationship to physical parameters. On the other hand, 
the parameters βi for die pressure have explicit relationship with physical parameters µi in 
the viscosity relation (see Eq 9 and Eq 10), given by:  

Eq 12  
12

1

µβ
µβ

k
k o

=
=  

where k is a machine/product grade (family) dependent calibration parameter. 
Furthermore, these parameters varied significantly under varying raw material and/or 
composition variations as expected from the physics. So, we focused exclusively on the 
on-line identification of βi to meet the objectives of diagnostics and estimation. 
 
Equation Eq 10 has two important features for our purposes.  
 

1. It relates process inputs and process output, die pressure, where the parameters βi 
have a physical significance owing to their explicit relationship to the parameters 
µi  – we will exploit this to meet the objectives of estimation and diagnostics. 

2. It is linear with respect to the parameters βi. 
 
Having a relation linear with respect to parameters allows use of on-line recursive 
adaptation techniques, with relatively low computational burden. To facilitate the online 
identification of the parameters βi (or equivalently µi) we provided excitation to the 
system via a pseudo-random binary sequence (PRBS) variation in the inputs (feed-rates 



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  39 

and screw speed) and recorded the corresponding die pressure measurement. This 
excitation of the process (referred to as persistent excitation) is necessary for correct 
identification of the new parameters βi under changing raw material/ process conditions. 
 
For the online identification of the parameters βi, we adopted the following well-known 
recursive least-squares formulation in our approach, given by (see e.g. Ljung[18] Chapter 
11): 
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where T][ 30 ββθ m= denotes the parameters to be recursively identified, 
T

oooo tTtQtxtQtQt ])()()()()(1[)( ∆=φ  denotes the coefficients of these parameters 
in the die pressure relation in Eq 10 and P(t) is the parameter covariance matrix. The 
covariance matrix P(t) is initialized with a pre-selected positive definite covariance 
matrix oP  reflecting the confidence in the initial estimates of the parameters. 
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Figure 17: Schematic representation of on-line parameter identification approach. 
 
Figure 17 shows the schematic approach for the on-line parameter identification for the 
extrusion process. In particular, the measured process inputs (feed-rates and screw speed) 
are fed to the model and its prediction for the outputs (die pressure) are compared with 
the on-line measurements to generate the residual error. Under nominal conditions, the 
residual error will be normally distributed (due to noise) with a zero mean. However, if 
the operating conditions change, e.g. change in raw material, feed composition, then the 
model predictions with the nominal parameters βi will no longer match the measured 
values, i.e. the residual error will no longer be zero mean or normally distributed. Under 
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such a situation, the on-line identification of the unknown parameters βi will be started 
with a pre-set sequence of persistently exciting variations in the inputs, PPO feed, PS 
feed and screw speed that yield a well-conditioned information matrix formed with 
vectors of T

oooo tTtQtxtQtQt ])()()()()(1[)( ∆=φ  in time (see [18] and Section  8   
on fault diagnostics in this report for more detail).  
 

6.1 On-Line Parameter Identification Results 

We tested the on-line identification capability in multiple runs over several months for 
variations in raw material and composition from nominal conditions. We show the results 
of the model predictions compared with the on-line measurements for two representative 
runs after the recursive parameter adaptation, one with change in raw materials and 
another with a large change in composition (similar to a product grade change). In all 
cases, the parameter adaptation started with parameter values initialized for nominal 
conditions obtained by the least squares optimal fit obtained in Section 5.1.5. 
 

 
Figure 18: Comparison of model prediction after on-line adaptation vs 
measurement for die pressure under composition change from nominal conditions 
 
Figure 18 demonstrates the match between die pressure predictions of the extruder model 
and measurements obtained in experiment run on 5/22/01 at GE GR for nominal raw 
materials (0.46 IV PPO) but a significantly different composition (PPO fraction 0.35) – 
this large change in composition corresponds to another product grade. During this run, a 
PRBS variation in the inputs (PPO, PS feed-rates and screw speed) was used and the 
parameters βi were adapted following the above recursive least squares method starting 
from the nominal values obtained on 05/08/2001. Note that the die pressure during this 
run (Figure 18) is distinctly lower than that in the nominal run on 05/08/2001 (Figure 12)  
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- the die pressure is plotted after normalizing with respect to the nominal value of 450psi, 
i.e. the normalized die pressure is 1.0 at nominal conditions. This is as expected, since the 
lower PPO composition implies a lower product viscosity and hence lower die pressure. 
Clearly, the parameters βi were adapted well to match the model predictions with the 
measurements and capture the effect of composition change, with a modified R2 value of 
90.5% and a normally distributed residual error between the measurement and the model 
prediction. 

 

 
Figure 19: Comparison of model prediction after on-line adaptation and 
measurement of die pressure under raw material change from nominal conditions 
Similarly, we conducted another experiment on 8/27/01 at GE GR with the nominal 
composition (PPO fraction 0.52) but with a different raw material. In particular, we used 
a low IV PPO (0.33 IV) and conducted a similar PRBS experiment to facilitate the on-
line identification of the parameters βi. Again, the lower IV PPO results in a product with 
lower viscosity and hence lower die pressure than in the nominal run.  
Figure 19 demonstrates the fit obtained after the on-line identification between die 
pressure measurement and the model prediction with updated βi. Clearly, the parameters 
were identified accurately to capture the effect of raw material change, with a modified 
R2 value of 95.9% and a normally distributed residual error between the model prediction 
and measurement. 
 

6.2 On-line Parameter Identification Summary 

Process dependent parameters αi  and βi  in the torque and die pressure relations will, in 
general, change depending on changes in raw materials and feed composition. Under 
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nominal conditions, the initial set of parameters obtained for a family of product grades 
using the off-line least squares fit described in Section 5.1.5 will suffice for the model 
predictions for torque and die pressure to match with the on-line measurements. 
However, in the presence of deviations from nominal conditions, these parameters will 
need to be adapted on-line. We applied recursive on-line adaptation techniques to track 
changes in these parameters. For the NORYL grade polymers we studied, the nominal 
parameters αi described the variations in torque despite changes in raw materials and 
composition. So we focused exclusively on the adaptation of the parameters βi for die 
pressure. The on-line identification of the parameters βi works very well in the presence 
of changing process conditions. The on-line identification of the parameters βi to capture 
effects of changes in raw material and/or composition will be exploited in the subsequent 
sections for fault diagnostics and inferential sensing. 
 

7 Inferential Sensing 
 
In this section, methods are derived for the on-line inferential estimation of product 
viscosity from on-line measurements of the inputs (feed-rates and screw speed) and the 
outputs (die pressure). In a typical production environment, the product viscosity is 
measured only off-line using samples from the finished product in a QA lab. Very often, 
due to the limited resources and the large number of production lines and production 
batches each day, only one sample is collected per batch for the QA lab analysis. This 
leads to ineffective characterization of good/bad product batches: A batch of good 
material that was out of spec only at the end of the run may be rejected, and bad material 
that was good at the time of sampling may be passed with once per batch QA tests. Such 
inefficient characterization of production quality leads to avoidable losses of material and 
energy. The ability to monitor viscosity on-line is a significant leap that will enable quick 
classification of good or bad product and enable corrective action, e.g., on-line closed-
loop control, to maintain products within specification limits and minimize waste 
production. We will address the on-line estimation of product viscosity using the physics-
based modeling and adaptation framework of previous sections. 
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Figure 20: Approach for model-based estimation of viscosity 
 
Figure 20 shows the approach for online viscosity estimation from the measurements of 
the process inputs and outputs. In particular, as the raw materials or feed compositions 
change, thereby changing the viscosity, we obtain a continuous estimate for the viscosity 
from on-line identification of the parameters β’s. Once the extruder model parameters β’s 
are identified, they are used to estimate nominal viscosity µ0  and slope µ1 using a value 
for k (see Eq 9, Eq 10 and Eq 12). The required value of k is obtained by comparing the 
parameters β’s and the viscosity measured in the lab for samples collected during an 
initial calibration run, and then fixed thereafter for all other runs. The product viscosity is 
then estimated using the linearized viscosity relation  (Eq 9) disregarding the shear rate 
and temperature effects since these are fixed for the lab measurements and the product 
quality specifications, i.e. 

Eq 15  )(1 ooo xx −+= µµµ  

and the product composition at the extruder outlet xo=x2 obtained from the dynamic 
model. The following figures depict the comparison of on-line viscosity estimates with 
the off-line lab viscosity measurements of samples collected at multiple steady state 
conditions with different compositions during each run. In all these comparison figures, 
the magenta line represents the estimated value of viscosity and blue line represents the 
off-line viscosity measurement in the lab.  
 

7.1 Viscosity Estimation Results 

 
Figure 21-Figure 26 that follow, show the viscosity estimation results for the multiple 
runs with nominal raw materials and lower IV PPO over a large composition range 



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  44 

spanning nominal compositions for several NORYL product grades at GEP Selkirk. The 
estimation results shown by magenta lines are compared with the corresponding off-line 
lab measurements of samples collected during steady state operating conditions in each 
run. 
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Figure 21: Comparison of on-line viscosity estimation and off-line lab viscosity 
measurements for experiment on 5/8/2001 with nominal (.46 IV) PPO blend  
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Figure 22: Comparison of on-line viscosity estimation and off-line lab viscosity 
measurements for run on 6/25/2001 with nominal (.46 IV) PPO blend  
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Figure 23: Comparison of on-line viscosity estimation and off-line lab viscosity 
measurements for run on 7/25/2001 with nominal (.46 IV) PPO blend  
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Figure 24: Comparison of on-line viscosity estimation and off-line lab viscosity 
measurements for run on 8/27/2001 with low IV (.33 IV) PPO blend  
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Figure 25: Comparison of on-line viscosity estimation and off-line lab viscosity 
measurements for run on 10/11/2001 medium IV (50/50 mixture of .46 IV and .33 
IV) PPO blend  
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Figure 26: Comparison of on-line viscosity estimation and off-line lab viscosity 
measurements for run on 11/14/2001 with medium IV (50/50 mixture of 0.33IV and 
0.46 IV) PPO blend 
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7.2 Viscosity Estimation Summary 

 

 

Date of 
Experiment 

No. of 
samples 

Raw Materials 
used 

Composition 
(PPO fraction) 

Estimation error 

5/8/2001 10 Nominal 0.42-0.61 -4 to +4% 

6/25/2001 10 Nominal 0.43-0.62 -10 to +2% 

7/25/2001 10 Nominal 0.43-0.62 -12 to +2%  

8/27/2001 10 Low IV PPO 0.43-0.62 -6 to 0% (except 2 
samples) 

10/11/2001 4 Medium IV 
PPO 

0.43-0.6 -6 to 0%  

11/14/2001 4 Medium IV 
PPO 

0.43-0.6 -8 to 0% (except 1 
sample) 

 
Table 3: Summary of viscosity estimation results 

 
 

Table 3 above summarizes the results of model-based on-line viscosity estimation 
compared to off-line lab measurements. Altogether, we collected about 50 samples 
during steady state conditions in experiment runs conducted over several months with a 
wide range of variations in product composition and raw materials spanning multiple 
NORYL product grades. We compared the viscosity of these samples as measured in the 
lab, using a capillary rheometer with those estimated by the model-based estimation. The 
overall estimation results are very good with an error in the range of +/-10% of the 
measured values, which is within the range of error of the off-line viscosity measurement 
using capillary rheometer. The error is larger than 10% for specific samples (e.g. samples 
4 & 8 on 8/27/2001 -Figure 24, and sample 2 on 11/14/2001 - Figure 26) that correspond 
to very low PPO content and thus low viscosity. These samples correspond to the 
maximum deviation from the nominal composition (PPO fraction 0.52) and the linear 
approximation for viscosity as a function of composition used in the die pressure model 
(see Eq 9 and Eq 10) becomes inaccurate under these extreme deviations, thus leading to 
larger error. One way to alleviate these inaccuracies under these extreme composition 
limits is to include higher order nonlinear terms in the dependence of viscosity on 
composition, albeit at the expense of additional model parameters and increased 
complexities in the recursive on-line parameter identification. A simpler approach would 
be to linearize the viscosity model close to the extreme composition limits to minimize 
the errors due to linearization. 
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8 Extruder Diagnostics 
 
In this section, we address the problem of fault diagnostics for the extruder using the 
developed modeling and adaptation framework described in the previous sections. Figure 
27 shows a schematic diagram of a typical extrusion process and various sources of 
variability that cause product variability. The sources of variability include a wide array 
of raw material, equipment and operator variations. Among these possible sources of 
faults, the major ones that occur most frequently and are not readily detected by simple 
practical means, and affect product quality are associated with variations in raw material 
quality and feeder variations. Motivated by this, we will focus on the detection of raw 
material and feeder variation as the main process faults, using available on-line 
measurements.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27: Schematic diagram of extrusion process and sources of product 
variability 
 

8.1 Problem and Approach 

The problem of fault diagnostics entails the detection that a fault has occurred, and the 
classification of the cause of the faults among multiple potential candidates. A standard 
issues that arises in the detection and identification of faults is the trade-off between false 
alarms, i.e. false declaration of faults in nominal conditions, and missed detects, i.e. 
missing the occurrence of an actual fault. A tradeoff between is required between 
acceptable limits of nuisance from false alarms and acceptable losses from missed fault 
detection. Another important issue for fault detection is the latency or time elapsed from 
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the occurrence of a fault to its detection, identification and correction to minimize the 
waste production in this time interval.  

Figure 28 shows a schematic representation of the various phases during a typical fault 
occurrence, detection, identification and correction. In phase 1, the process is initially 
operating at nominal conditions and the model prediction using nominal model 
parameters matches well with the on-line measurements (e.g. for die pressure). An 
unknown fault then occurs (either abruptly or gradually over time) at the end of phase 1, 
which leads to the on-line measurements deviating from the model prediction (using 
nominal parameters). Depending on the type of fault, the difference between the 
measurement and the model prediction  (or the integral square of the difference—see e.g. 
[17] for alternate approaches to detection and classification using comparison of model to 
measurements) would exceed a threshold, indicating the occurrence of a fault (at the end 
of phase 2). The source of fault is however not known at this stage. After the fault 
detection, the process can be excited with changes in the inputs (feed-rates and screw 
speed) and the model parameters adapted to match its prediction with the on-line 
measurement, thereby obtaining a new set of model parameters reflecting the “faulted” 
process conditions. At the end of this adaptation stage 3, the source of the fault is 
uniquely classified and enables appropriate corrective control action in phase 4, which 
may be either a physical action, e.g. recalibration of drifted feed-rate measurements, or an 
automatic on-line closed-loop control correction using inferred viscosity based on the 
adapted model parameters. Finally, the corrective control action brings the process back 
within specification limits to achieve on-spec production in phase 5. The time duration of 
the fault detection, fault identification and corrective control in phases 2, 3 and 4 
determine the amount of off-spec waste produced during a fault. Note however, that the 
detection of a fault at the end of phase 2 enables the possibility of physically diverting the 
off-spec product during phases 3 and 4 to minimize the contamination of the finished 
product. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28: Schematic description of fault detection and correction with distinct 
phases – (1) initial nominal operation, (2) fault occurrence and detection – mismatch 
between model and measurement, (3) model update – on-line model adaptation and 
fault identification, (4) corrective control action for fault, (5) on-spec operation after 
fault correction. 
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The fault diagnostics clearly consists of two phases in the above description, the initial 
detection phase where a fault (unknown) is declared to have occurred, and the second 
classification phase, where a specific fault is identified, e.g. raw material change or 
feeder bias. 
 
For our purposes the two key on-line extruder output measurements are die pressure and 
torque. During our experiments with NORYL, while both torque and die pressure were 
sensitive to composition changes, only die pressure was sensitive to raw material 
changes. Moreover, the changes in torque and die pressure were often correlated. 
Motivated by these, we focused on die pressure for the diagnostics algorithm. Using die 
pressure as the output signal, the detection of occurrence of a fault is addressed simply by 
monitoring the difference between the measured die pressure and the value predicted by 
the dynamic model as a function of measured inputs, i.e. feed-rates and screw speed. 
Under nominal conditions this difference will be below a threshold – chosen based on the 
noise characteristics of the signals ([17]). However, in the presence of a fault, i.e. feeder 
bias or raw material change, the product viscosity will change, thereby changing the die 
pressure. Thus, the measured die pressure will deviate from the model prediction using 
the nominal parameters, and for a sufficiently large enough fault, the discrepancy 
between the measured die pressure and the model prediction will exceed the threshold – 
thereby declaring a fault occurrence. Clearly, the choice of such a threshold for the 
mismatch between the model prediction and measured value depends on the signal to 
noise ratio and affects the occurrence of false alarms and missed detects. Based on the 
actual signal to noise characteristics and the normal operation spec-limits, an optimal 
threshold can be chosen to optimize the trade-off between false alarms and missed 
detects. Once a fault has been declared based on the discrepancy between the model 
prediction and the measured die pressure, the second stage of fault classification, i.e. the 
identification of the fault source will initiate. 
 
There are several techniques available for fault identification, e.g. multi-model 
hypothesis testing, data classification and correlation with fault/nominal signatures, as 
summarized in Gertler for example [17].Multiple-model hypothesis testing approaches 
the problem of fault detection by comparing the measured output with predictions from a 
bank of models, one each for the nominal and all the fault conditions. With assumptions 
of linear dynamic models and Gaussian noise, one can compute the a posteriori likelihood 
that the data came from each model, and classification is as simple as picking the 
maximum likelihood model. It relies critically in properly modeling all individual faults 
and is computationally expensive. On the other hand, data-based classification and 
correlation techniques rely on identification of distinct signatures in the measured data for 
faults and nominal operation, which are often very problem-specific and difficult to 
generalize.  
 
The approach selected for fault classification derives from a variation on the classic 
model based approach: to use the signature of the adaptively tracked process parameters 
as they change over time.. A side benefit of continuous parameter adaptation, is the 
ability to estimate the new viscosity after the occurrence of a fault, and enabling 
automatic corrective action using closed-loop control where feasible (see Section 9 ). 
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To facilitate the identification of the modified model parameters, the process is excited 
through small test signals added to feed-rates and/or screw speeds. Recursive estimates of 
the model parameters βi for die pressure are obtained using the methods in the previous 
section. The adapted parameters βi, will in turn, enable the identification of the fault 
source. Figure 29 depicts this approach to fault identification in more detail. The fault 
identification depends on comparing the obtained set of parameters βi against a pre-
calculated set of distinct signatures for nominal/fault conditions. Clearly, the generation 
of generic fault signatures that are not problem specific is important for successful 
application of this approach to a wide range of products/processes. We develop such 
generic fault signatures that are not related to a specific process or product. While we 
demonstrate the results of this approach as applied to the NORYL product, we emphasize 
that the approach should extend easily to other products due to the generic physics-based 
nature of the underlying model and fault signatures. 
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Figure 29: Schematic of fault detection approach 
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8.2 Fault Diagnostics – Noryl Case Study 

8.2.1 Fault Signatures 

 
The underlying principle behind the developed approach for fault detection is that any 
change observed in on-line identified parameters, β’s, would be due to changes in 
operating conditions or in the raw material, assuming the screw geometry remains fixed 
during the operation (see Eq-A 15). In particular, faults like raw material and feeder 
variation affect the nominal viscosity µο and the slope µ1 of the viscosity with respect to 
composition xo in distinct manner. We will exploit the relation of the identified β’s to the 
physical parameters µ’s, in particular the relation of βο and β1 to µο and µ1, respectively 
(see Eq 12) to identify and isolate these faults. 
 
Note that from Eq 9, for a nominal shear rate or equivalently throughput oo QQ = , and 
nominal melt temperature oo TT = , the viscosity varies with the product composition xo 
according to the linear relation in Eq 15 around the nominal composition ox . Any 
changes in the raw materials PPO or PS or variations in PPO or PS feed-rates will affect 
the viscosity of the product and consequently, the die pressure, which will be manifested 
as distinct changes in the parameters µο and µ1. Figure 30 shows the plots for viscosity as 
a function of composition under various raw material (PPO or PS for NORYL) changes 
and the corresponding distinct combinations of increase/decrease in µο and µ1. These 
variations in µo and µ1 form the basis for the distinct fault signatures. 
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Figure 30: Fault signatures for changes in raw material 
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 As seen in Figure 30 top left corner, if the raw material PPO changes from 
nominal IV to lower IV, while the other raw material PS is nominal, the resulting curve 
for variation in viscosity with respect to composition will be as shown in blue. In 
particular, in comparison to the nominal case (shown in red) the viscosity will remain 
unchanged at xo=0 (pure PS, which is nominal) while it will have the maximum reduction 
at xo=1 (pure PPO). Thus, around the nominal composition ox , the new curve for 
viscosity (blue) will have a reduced value µο as well as a reduced slope µ1, compared to 
the values for original nominal curve (red). Similar logic applies to other cases of raw 
material variations; for example, higher IV PPO, or lower IV PS, or higher IV PS as seen 
in Figure 30,  will yield a distinct set of signatures for changes in µο & µ1 corresponding 
to raw material changes. On the other hand, for nominal raw materials, an unknown bias 
in the PPO or PS feeders resulting in an increase/decrease of PPO fraction xo will also 
affect the product viscosity and thus, die pressure. 
 
Figure 31 shows the variation in µο & µ1 for “small” variations in PPO/PS feeders.  For 
instance as shown in the top left figure, a positive bias in the PPO feeder would imply 
that the observed throughput Q will be greater than the actual throughput. Similarly, the 
observed composition xo will also be greater than the actual. However, the observed die 
pressure DP corresponds to the actual Q and xo. Thus, since both the actual throughput 
and viscosity (as function of composition xo) are lower, the observed die pressure DP will 
be lower than expected with respect to the observed Q and xo. This will be estimated as a 
lower viscosity at nominal conditions and thus lead to the signature: ∆µo < 0. Note that 
for a “small” bias, the local slope will be unaffected i.e. ∆µ1 = 0. Similarly, the signature 
for negative bias in PPO feeder would correspond to the signature: ∆µo > 0, ∆µ1 = 0. In 
contrast to PPO feeder bias, a positive bias in the PS feeder would imply that the 
observed composition xo, will be less than the actual while the observed throughput Q 
will be greater than the actual. These changes in the feed-rate and feed composition have 
opposite effects on the expected change in die pressure (see Eq 10) and effectively reduce 
the net effect on die pressure, thereby making the detection of PS feeder bias more 
difficult. In our experiments, we observed that the effect of composition change (which 
affects viscosity and hence die pressure) is more dominant than the effect of throughput 
change, i.e. the net effect of positive PS feeder bias is an increase in the die pressure DP. 
This leads to the signature ∆µo > 0, ∆µ1 = 0, which is similar to negative bias in PPO 
feeder.  
 
In short, a “small” bias in PPO or PS feeder will correspond to a change in the nominal 
viscosity µo but no appreciable change in µ1, which is distinct from signatures for raw 
material change. On the other hand if the feeder bias is large, then the slope µ1 will also 
change from the nominal value and the resulting fault signatures will be similar to raw 
material changes. We assume that such large feeder biases will be identified through 
other independent means. For instance, in industrial applications the feeder hoppers are 
typically refilled automatically if the weight of the raw material in the hopper falls below 
a critical limit. For large gross errors in the feeders, the refill frequency will change 
significantly from nominal rates, thus indicating a large positive or negative bias in the 
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feeder. We will focus on the detection of “small” feeder biases, which cannot be readily 
detected through other simple practical means. 
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Figure 31: Fault signatures for PPO/PS feeder bias 

 
Condition/Fault ∆µo ∆µ1 

Nominal raw material, no feeder bias 0 0 
High IV PPO > 0 > 0 
Low IV PPO < 0 < 0 
High IV PS > 0 < 0 
Low IV PS < 0 > 0 
Positive bias in PPO feeder < 0 = 0 
Negative bias in PPO feeder > 0 = 0 
Positive bias in PS feeder > 0 = 0 
Negative bias in PS feeder < 0 = 0 

Table 4: Fault Signatures for raw material variation and feeder bias 
 
Table 4 summarizes the fault signatures for raw material and feed-rate changes in terms 
of combinations of changes in µo and µ1 from nominal values. Note that the signatures for 
positive/negative bias in the PPO feed-rate are the same as signatures for 
negative/positive bias in PS feed-rate, respectively. This is due to the fact the signatures 
are governed mainly by the PPO fraction in the product, which may arise from a change 
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in either feed-rate. Thus, the fault detection can identify a feed-rate bias distinctly from 
raw material changes but not distinguish between the PPO and PS feed-rates. 
 
 

8.2.2 Fault Diagnostics with Noryl on 25mm Research Extruder 

The fault occurrence, detection, identification and correction will occur in successive 
stages as shown in Figure 28. We ran multiple experiments with nominal and non-
nominal raw materials over multiple days to test the performance of the fault diagnostics. 
In particular, we used either nominal PPO (high IV = 0.46) or non-nominal PPO 
(medium (0.4) / low (0.33) IV) while using nominal PS in all experiments. Furthermore, 
each experiment run started with the nominal raw materials or the faulty (lower IV) PPO 
from the beginning, focusing in particular on the fault identification stage, since the fault 
detection is achieved simply by monitoring the residual error between measured die 
pressure and the model prediction using nominal parameters against a threshold. Figure 
32 shows the sequence of fault occurrence, detection and identification in a representative 
run using data from the experiment on Nov 14, 2001 with raw material variation. In this 
figure, we consider the scenario of starting with nominal operation in phase 1, and then a 
fault – PPO changed from nominal (0.46IV) to medium IV – occurring at t = 2 min.  
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Figure 32: Fault occurrence, detection and identification using model parameter 
identification for a representative run with raw material change. 
Clearly, in phase 1 under nominal conditions, the measured value for die pressure 
matches well with the model prediction using nominal parameters. However, after the 
fault, i.e. the transition from nominal raw materials to a medium IV PPO, the product 
viscosity, and thus, the die pressure drops significantly leading to a mismatch between 
the measured die pressure and the model prediction. A fault is detected when this residual 
error between the measured die pressure and the nominal model prediction crosses a 
threshold. The choice of the threshold affects the trade-off between false alarms and 
missed detects, and it depends on the signal to noise ratio. For the above change in raw 
material, clearly the change in die pressure is significantly larger than the measurement 
noise. Such a large signal to noise ratio allows an easy selection of a threshold. For 
instance, even a conservative choice for threshold of +/- 30 psi, would trigger a fault 
alarm in phase 2 within less than 2 minutes of the fault occurrence. The detection of a 
fault in phase 2 will then initiate the fault identification in stage 3. In this identification 
stage, the process is excited by a pre-defined PRBS input variation in the feed-rates and 
screw speed and the model parameters are updated using the on-line recursive adaptation. 
Finally, the new adapted parameters, specifically β1 and β2 (or equivalently µ0 and µ1 
from Eq 12), are compared with the nominal values and the fault signatures in Table 4 to 
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identify the specific fault. The lower four plots in Figure 32 show the plots of the 4 
parameters β1-β4 during this adaptation phase 3. The parameters β1 and β2, or 
equivalently µ0 and µ1, converge to a value lower than for nominal conditions by about 
t=20 min., correctly matching the fault signature for lower IV PPO. Thus, the model 
adaptation in phase 3 allows the identification of the correct fault.  
 
Once a fault is correctly identified, then an appropriate corrective action can be taken to 
bring the process back on-spec, e.g. fixing the raw material change, or using closed-loop 
automatic control to correct for the raw material variation (see Section 9 for more 
details). 
 

8.2.3 Fault Identification Results with Noryl for Raw Material Changes 

We summarize the results of the fault identification algorithm based on the modeling and 
adaptation framework for the multiple runs with NORYL using nominal/non-nominal 
raw materials in . The actual nominal/fault conditions imposed in the individual 
experiments are listed in the second column and the nominal viscosity (at nominal PPO 
fraction) measured in the lab using samples collected during steady state conditions are 
listed in column 3. The estimated nominal viscosity µo and the slope µ1 of viscosity with 
respect to PPO fraction obtained after the model adaptations in each run are listed in 
columns 4 and 5, respectively. As mentioned before, the fault identification relies on 
matching the deviations in µo and µ1 from the nominal values against the fault signatures 
in Table 4. Due to the noise in the process measurements, the model parameters for 
nominal conditions will lie in a normally distributed region. Thus, a threshold has to be 
chosen to declare +ve or –ve changes in µo and/or µ1 before comparing with the fault 
signatures. Again, these thresholds can be chosen statistically to optimize the trade-off 
between false alarms and missed detects and their choice depends on the signal to noise 
ratio. For instance, comparing the first three runs with nominal conditions, it is clear that 
the parameters µo and µ1 are tightly clustered together and distinctly different from the 
other runs with non-nominal raw materials. This distinct separation between the 
parameter values for nominal and fault conditions facilitates a clear selection of the 
thresholds. For instance, a choice of the thresholds for ∆µo = +/-50 and for ∆µ1 = +/-150 
would suffice to correctly identify the nominal conditions in the first three runs and 
declare the lower IV PPO in the last three runs (both ∆µo and ∆µ1 are –ve, matching the 
signature for lower IV PPO). The fault identification results are summarized in the last 
column of the table, which can be compared with the actual fault condition introduced 
during each experiment, given in column 2. Clearly, the proposed fault identification 
algorithm works very well to correctly identify the nominal runs and the specific faults 
with raw material changes in each run.   
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Table 5: Diagnostics results for experiment runs with nominal/non-nominal raw 
materials 
In addition to the above six runs, we also analyzed later experiment runs conducted for 
closed-loop control. Table 6 shows the results for the control runs and yields the correct 
fault detection for the run on 12/06/2001. For the run on 12/04/2001 with medium IV 
PPO, the calculated slope µ1 is close to the nominal value while the nominal viscosity µο 
is lower than nominal – matching the signature for a small feeder bias. However, since 
we deliberately changed the raw material, it would mean that two faults (raw material 
change and feeder bias) occurred simultaneously, which cannot be isolated 
unambiguously based on our fault detection method. The last run on 12/14/2001 during 
closed-loop control yields µ0 close to values for nominal raw materials and a slope µ1 that 
is distinctly lower than nominal runs. This change in µ0 and µ1 does not match any of the 
raw material or feeder bias fault indicating possible multiple faults. Indeed, after thee 
xperiment, we found that the feeders had a large bias, which together with the choice 
of medium IV PPO led to a combination of faults in raw material and feed-rate. As 
mentioned earlier, the fault diagnostics, in general, cannot correctly identify simultaneous 
multiple faults since their effects are confounded. Note however that in all these three 
runs, including the ones with multiple faults, the viscosity estimation in column 4 was 
very good (within 10%) of the lab measurements given in column 3 – this will enable the 
corrective closed-loop control based on the updated viscosity estimate. 
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Table 6: Diagnostics results for control runs  (*estimated after feeder bias correction) 

8.2.4 Fault Identification of Feeder Bias 

We also tested the fault detection for PPO/ PS feeder bias through specifically designed 
off-line simulations using actual recorded input/output data from the nominal run on 
06/25/2001. In particular, we added a specific positive/negative bias in the PPO or PS 
feed-rates and performed the recursive parameter identification to test the performance of 
the fault detection based on the fault signatures in Table 4. A positive bias in, for 
example, the PPO feed-rate means that the observed feed-rate is higher than the actual 
feed-rate. Figure 33 shows the comparison of measured die pressure with the die pressure 
predicted using the observed feed-rates (with the bias introduced in PPO/PS feeder) and 
nominal parameters. For instance, in the case of positive PPO feeder bias (upper left 
plot), the observed throughput and PPO fraction are higher than the actual values and 
thus the die pressure prediction is higher than actual. The fault detection results obtained 
for the four cases using the parameter identification are summarized in Table 7. Clearly, 
the calculated changes in µo, µ1 match with the expected fault signatures. However, while 
the parameter µo changes quite significantly from the nominal value for a bias in the PPO 
feeder and is easily detected, the change in this parameter for PS feeder bias is quite 
small, i.e. detection of PS feeder bias is difficult as mentioned before due to the 
competing effects of changes in feed-rate and composition in this case as mentioned 
earlier. 
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predicted

measured

+10% PPO bias

-10% PS bias

-10% PPO bias

+10% PS bias
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measured

+10% PPO bias

-10% PS bias

-10% PPO bias

+10% PS bias

predicted

measured

+10% PPO bias

predicted

measured

+10% PPO bias
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-10% PPO bias

+10% PS bias  
Figure 33: Comparison of measured and predicted die pressure for bias in PPO/PS 
feeder using nominal parameters. 
 

Condition/Fault µo  (∆µο) µ1 (∆µ1) Detection result 
Nominal 1139 (-) 2944 (-) Calibration 
+10% bias in PPO feeder 1042 (-97) 2922 (-22) ∆µo < 0, ∆µ1 = 0 
-10% bias in PPO feeder 1228 (+89) 2926 (-18) ∆µo > 0, ∆µ1 = 0 
+10% bias in PS feeder 1160 (+21) 2914 (-30) ∆µo > 0? , ∆µ1 = 0 
-10% bias in PS feeder 1109 (-30) 2945 (+1) ∆µo < 0? , ∆µ1 = 0 

Table 7: Parameter identification and fault detection for feeder bias 
 

8.3 Diagnostics Summary 

In summary, the proposed modeling and adaptation provides a natural framework for 
fault detection and identification using on-line process measurements and can be used as 
the basis for taking corrective control action in the presence of faults. We have developed 
a novel model-based fault detection methodology that is not tied to any specific process 
or product grade and demonstrated its successful application on the 25mm research 
extruder with NORYL polymer product. The key features of the developed diagnostics 
algorithm are: 
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(i) The approach is generically applicable to wide range of extruder applications 
owing to the generic physics-based underlying model and physically motivated 
fault signatures that are not problem specific. 

(ii) As demonstrated by the multiple runs over a span of several months, the proposed 
fault detection works very well to consistently identify raw material or feeder 
faults, which are the main process faults that affect  product quality. The distinct 
fault signatures allow distinguishing between raw material changes and feed-rate 
variations. However, owing to similar effects of the two raw material feed-rate 
changes, it is not possible to distinguish between a bias in the PPO or the PS feed-
rate. 

(iii)While we demonstrated the application of the developed fault detection approach 
to a process with two main raw materials, it can be extended to the case of more 
than two key raw materials – at the expense of increased number of model 
parameters for viscosity and die pressure and thus, correspondingly increasing 
complexity in the adaptation and fault identification. In particular, for multi-
component mixtures with N components, the relation for viscosity will involve N-
1 slopes µ1,i  and the resulting fault signatures will involve unique combinations of 
changes in µo, µ1,i  making the fault detection for raw material changes more 
complex.  

 
The fault diagnostics algorithm assumes however that the faults occur one at a time. The 
algorithm, in general, will not identify the correct fault in the case of multiple 
simultaneous faults since their effects are confounded. When multiple faults are 
occurring, the it is typical that severe upsets in machine operation have occurred and can 
be detected by more conventional limit checks are gross anomalies like dropped strands. 
The real power of the present technique is detecting small “drift” type faults that may 
take a while for the effects to be seen. With the proposed scheme, such faults can be 
detected, classified and dealt with before out of spec material is shipped.  
 

9 Extruder Control 

9.1 Approach to control in the presence of upsets 

In this section, we present results on the closed-loop on-line control of viscosity. In the 
absence of an on-line measurement/estimate of product viscosity, a common industrial 
practice is to monitor on-line measurements like die pressure and torque to verify that 
they are within a desired tolerance of nominal values. However, such practice is often 
inadequate since the absolute magnitudes of these machine variables depend on both the 
process conditions that affect product quality, e.g. feed composition, raw material 
characteristics, and those that do not, e.g. throughput. In contrast, the online estimation of 
product viscosity using the measurement of machine variables (feed-rates, die pressure 
etc.) enables active closed-loop control of viscosity in the presence of disturbances like 
changes in raw material (see Figure 34). A change in raw material properties can be 
corrected by varying the incoming product composition to maintain the product viscosity 
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on target. Thus, the on-line closed-loop control of viscosity entails the following two key 
steps: 

•  On-line estimation (inferential sensing) of viscosity from measurement of 
machine variables (feed-rates, die pressure) 

•  Corrective action to change feed-rates, and thus product composition, to 
compensate for the effect of raw material changes and maintain product viscosity 
at its nominal set-point. 
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Figure 34: Schematic diagram for closed-loop control of product viscosity 

 

9.2 Viscosity Adaptive Control  

Figure 35 shows the schematic block diagram of the closed-loop control approach for 
maintaining viscosity close to the desired set-point (for any product grade). The product 
viscosity is affected by the main process disturbances like raw material and feeder 
variations. Under nominal conditions, the model predictions with nominal parameters βi 
matches the on-line measurements of die pressure, and thus, the on-line estimate of 
product viscosity is obtained using the nominal parameters. In the presence of significant 
disturbances, the model predictions for die pressure will differ from on-line 
measurements leading to the model parameter adaptation. The newly adapted parameters 
will reflect the effect of the disturbances and provide a corresponding updated estimate of 
viscosity. The estimated viscosity is compared with the target set-point and the PI 
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controller is used to manipulate the feed composition to maintain the estimated viscosity 
at the set-point. The required feed composition is implemented by using ratio control 
logic to vary the individual PPO and PS feed-rates while maintaining desired throughput. 
These calculated PPO and PS feed-rates are finally provided as set-points for the lower 
level feeder controllers.  
 
 

Figure 35: Shematic block-diagram of the closed-loop control algorithm based on 
on-line viscosity estimation 
 
In order to tune the PI controller, the dynamics of the extruder are approximated by a first 
order model. In particular, the product viscosity µ is given as a function of the production 
composition xo (see nomenclature in Section 5), where the product composition xo = x2 is 
given as a function of the feed composition xi by the model in Eq 11. The overall 
response of the product composition, and thus viscosity µ, can be approximated by a 
first-order response: 
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with a time constant τp. For our experiments on the lab-scale extruder we calculated the 
time constant τp=30 seconds. The PI controller is then tuned for a closed-loop first order 
response: 
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where ∆µ and ∆µSP denote the deviation in estimated viscosity and desired set-point from 
nominal values and τf is the desired closed-loop time constant for viscosity set-point 
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tracking – we tuned the PI controller to achieve the closed-loop time constant τf = 60sec. 
For more details on the controller tuning, see Appendix A to Section 5. 

9.3 Control implementation for research extruder 

The developed algorithms for estimation and control using Matlab/Simulink were 
implemented on the extruder for closed-loop experiments using D-Space. Figure 36 
shows the schematic representation of the various software/hardware elements of the 
final implementation on the lab-scale extruder. In particular, the KTron feeder controllers 
provided the internally calculated feed-rates as frequency signals, which were converted 
to voltage signal using frequency to voltage conversion. In addition, the measured torque, 
die pressure, melt temperature and screw speed were recorded as voltage signals. The 
conversion of the raw voltage signals to physical units was handled by the software 
algorithm in D-Space. The calculated feed-rate set-points from the control algorithm in 
D-Space were in volts, which were converted to frequency signals using voltage to 
frequency converters to interface with the KTron feeder controllers for automatic 
adjustment of the feed-rate set-points. The software in D-Space was provided with a GUI 
to allow monitoring the signals in real time, and provide the capability to enable/disable 
the parameter adaptation and closed-loop automatic control (see Figure 6). In our 
experiments, we manipulated the screw speed manually during the PRBS excitation for 
parameter adaptation – screw speed was kept constant at nominal value during closed-
loop control. However, even the screw speed control on the extruder drive could be 
interfaced with the D-Space implementation to allow a completely automated pre-
programmed PRBS feed-rate, screw speed sequence during the parameter adaptation. 
 

 

Figure 36: Schematic diagram of the final implementation using D-Space for closed-
loop control experiments 

DSPACE GUI 
Software

V/F converters

PLC 1

PLC 2

KTron
feeder 1

KTron
feeder 2

PPO feed

PS feed

GE Drive
screw speed (V/I)

die pressure (V/I)

torque (V/I)

WP Extruder

measured feedrates (V)

F/V converters

I/O interface
melt temperature (TC)

DSPACE GUI 
Software

V/F converters

PLC 1

PLC 2

KTron
feeder 1

KTron
feeder 2

PPO feed

PS feed

GE Drive
screw speed (V/I)

die pressure (V/I)

torque (V/I)

WP Extruder

measured feedrates (V)

F/V converters

I/O interface
melt temperature (TC)



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  65 

 
  
Experimental Control results with Noryl Material 
 
Figure 37 depicts the set-point tracking experiment on 12/14/2001 with nominal raw 
materials. As seen in the top figure, in the first part of the experiment, the system was 
subjected to a PRBS input variation to facilitate the parameter identification. The bottom 
plot shows the PRBS variation in the PPO and PS feed-rates during this adaptation phase. 
Note that the estimated viscosity also varies during this phase, partly due to the 
adaptation of the model parameters β, and partly because of the variation in the feed 
composition during the PRBS excitation of the feed-rates. After this parameter adaptation 
phase, in the second part of the experiment, the closed-loop controller was enabled and 
the set-point for viscosity was increased from the initial nominal value of 1116 Pa-s to 
1250 Pa-s and then decreased back to 1116 Pa-s.  Clearly, the controller steered the 
estimated viscosity of the system to the desired values by manipulating the PPO and PS 
feed rates. In particular, the controller increased the PPO:PS feed ratio as expected to 
achieve the higher viscosity when the set-point for viscosity was increased to 1250 Pa-s, 
and then reduced it back to nominal after the set-point was reduced back to 1116 Pa-s. 
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Figure 37: Closed-loop control of viscosity – set point tracking with nominal raw 
materials on 12/14/2001 
 
The blue plot in the figure represents the on-line viscosity estimate, which is dependent 
on the composition determined by the measured feed-rates of the PPO blend and PS. If 
the feed-rates were with out any bias, (feed-rates were implemented by the low level K-
Tron controller exactly the same as set-points of the feeders: 16 lbs/hour PPO blend, 15 

PRBS excitation closed-loop 
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lbs/hour PS rate for nominal composition fraction of 0.516) then the viscosity estimate 
seen in  
 
Figure 37 would be within measurement error range of the off-line viscosity 
measurement. But the off-line lab measurements for two samples collected before and 
after the set-point change and denoted with red line in Figure 38 (same   Figure 37 as  
with off-line measurement data) are higher than estimated values demonstrated in  
 
Figure 37. This means that a large feeder bias caused a higher PPO fraction (this high 
viscosity was later found to correspond to PPO fraction of 0.571) in the mixture, thereby 
increasing the viscosity and the die-pressure measurement.  

Figure 38: Comparison of closed-loop control of viscosity –set point tracking using 
nominal raw materials - with off-line viscosity measurement on 12/14/2001 
 
 
On the day of the experiment (12/14/01), we observed that even with nominal raw 
materials and running at the nominal feed PPO composition of 0.571, the measured die 
pressure was higher by 15% than similar nominal experiments done until that date. 
Moreover, the identified parameters led to a higher µo and µ1, i.e. ∆µo > 0, ∆µ1 > 0, a 
fault signature corresponding to high IV PPO. However, this was not possible since the 
nominal PPO used in the experiments was already the highest IV (0.46IV) PPO available 
for our experiments. In fact, this fault signature was caused by the large feeder bias 
(possibly due to different set of feeders used on 12/14/01), which as mentioned in the 
diagnostics section can yield a fault signature similar to raw material change - in this case 
similar to a higher IV PPO. As mentioned in the diagnostics section, the detection of such 
large feeder biases can be addressed separately through simple practical means (e.g. feed 
hopper refill frequency). The developed diagnostics algorithm focuses only on “small” 
feeder biases that have a distinct signature compared to nominal runs or runs with bad 
raw materials. 
 
Given the large feeder bias indicated by the off-line lab viscosity measurements for the 
samples collected during the nominal run, which were about 20% higher than that 
observed for similar nominal raw material and composition samples on prior days, we 
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analyzed the data from the run after correcting the feed-rates with estimated feeder bias. 
More specifically, the increased viscosity corresponded to an increased PPO fraction of 
0.571 as opposed to the nominal composition of 0.516, indicating a bias in PPO and/or 
PS feeders. Moreover, the increased viscosity and online die pressure measurements were 
of the same order of magnitude indicating that the total throughput Q was close to 
nominal and only the PPO fraction had changed. To verify this hypothesis, we re-
evaluated the online data from the run with an imposed positive bias correction in 
measured PPO feed-rate (+1.7 lb/h), a negative bias correction in PS feed-rate (-1.7 lb/h) 
and using the original calibrated value of k obtained from the nominal calibration run on 
06/25/2001. The resulting viscosity estimation during the adaptation and closed-loop 
control is shown in Figure 39. It shows the estimated viscosity (shown in blue in the 
bottom plots) is close to the off-line measurements (shown in red), corroborating the 
feeder bias hypothesis.  

 
Figure 39: Experiment run on 12/14/2001 with nominal raw materials, accounting 
for PPO and PS feeder bias 
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Figure 40: Experiment run on 12/14/2001 with medium IV PPO, accounting for 
PPO and PS feeder bias 
 
On 12/14/2001 a further control test using medium IV PPO blend and nominal PS 
mixture was conducted. Since the same unknown feeder bias was present for the same 
day, we analyzed the data offline with the above-mentioned feeder bias corrections. The 
results are shown in Figure 40. Again, in the beginning a PRBS excitation on the feed-
rates and screw speed was imposed to aid the adaptation. With the new adapted model 
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parameters a new viscosity estimate was obtained. Finally, the closed-loop control was 
enabled and the viscosity set-point was increased. Clearly, the controller yielded the 
increased viscosity by increasing the PPO feed concentration, specifically by increasing 
the PPO feed-rate and decreasing the PS feed-rate to maintain the nominal total feed-rate.  
The values of viscosity measured in the lab using two samples collected at steady state, 
one before the set-point increase and the other after the set-point change are compared 
with the on-line estimate. Again, the on-line estimate of viscosity matches well with the 
lab measurements and the closed-loop controller smoothly changed the product 
composition and thus viscosity during the set-point increase. 
 
As demonstrated by the above figures the closed-loop control scheme works well to 
compensate for the effects of unknown raw material changes and track changes in desired 
viscosity set-point. The effectiveness of the control scheme is clearly dependent on the 
performance of the online viscosity estimation.  
 
 

10 Scale-Up for Production-Scale Extruders 

10.1 Scale of Dynamic Input-Output Model of Extruder 

In this section, we address the scale-up of the developed approach and its application to 
industrial production scale extruders. In particular, we study the application of the 
approach developed above on the lab-scale 25mm extruder when scaled up to the 
production-scale 120mm extruders at GEP Selkirk. We obtained and analyzed data 
recorded at 0.2 Hz from the GEP Selkirk site on a specific extruder line that was 
instrumented to measure and record the signals like torque, die pressure, feed-rates and 
screw speed during DOE runs conducted on Nov 21, 2000 and Jan 18, 2001 while 
making Noryl PX5511 product. In these two DOE runs, the process inputs, i.e. the screw 
speed and the PPO, PS feed-rates were varied in a PRBS manner with small variations 
from the nominal operating values so as to excite the system dynamics enough for 
analysis while maintaining the product quality within desired specifications. 
 
To test the scale-up of the model developed for the lab-scale extruder, we applied the 
model to the data from the DOE run on Jan 18, 2001 and obtained the best-fit model 
parameters using least squares off-line optimization. Thereafter, we used the model with 
these best-fit parameters and compared its predictions of torque and die pressure using 
the data from the DOE run on Nov 21, 2000, to test the validity of the model. Our initial 
comparison of the measured torque and die pressure data for the two DOE runs showed 
the nominal die pressure on Jan 18, 2001 to be significantly lower than on Nov 21, 2000 
even though the operating conditions were exactly the same. This occurred due to the use 
of a different screen-pack – used to filter out particulates in the molten product just after 
the die pressure probe – which effectively changed the resistance to flow and thus the 
pressure drop. We corrected for this difference by adding a constant bias value from the 
die pressure measured on Jan 18, 2001 to make it consistent with the nominal value on 
Nov 21, 2000. Furthermore, the melt temperature measurement on the extruder was 
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faulty; it measured a constant temperature irrespective of any changes in throughput 
and/or screw speed. In the absence of a good melt temperature measurement, we used a 
simple first-order model to predict the changes in the melt temperature (we need only the 
changes from the nominal value for fitting our model) as a function of the screw speed 
and throughput (see Eq-A 21) and used it in the die pressure relation (see Eq-A 18). 
 
Figure 41 shows the comparison of the measured torque and the model predictions for 
torque during the DOE run on Jan 18, 2001. The model can be seen to fit the measured 
torque variations during the DOE run very well. Figure 42 shows the comparison of the 
model predictions and measured values of die pressure during the same DOE run. Again, 
the model prediction for die pressure matches very well with the measured die pressure 
variations. We tested the validity of the model with the obtained best-fit parameters by 
comparing it against the data from the DOE run on Nov 21, 2000. Figure 43 and Figure 
44 show the model predictions for torque and die pressure compared to measured values 
on Nov 21, 2000, respectively. Clearly the model predictions match very well with the 
measured values, i.e. the model validates very well with independent set of data. This 
validation demonstrates the scale-up of the developed modeling approach and its 
applicability to large industrial production-scale extruders. 
 

 
 

Figure 41: Comparison of model-predictions and measured value of torque on a 
120mm extruder during a DOE run at GEP Selkirk on Jan 18, 2001. 
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Figure 42: Comparison of model-predictions and measured value of die pressure on 
a 120mm extruder during a DOE run at GEP Selkirk on Jan 18, 2001. 
 
 
 
 

 
Figure 43: Validation of model for torque using DOE data on a 120mm extruder at 
GEP Selkirk on Nov 21, 2000. 
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Figure 44: Validation of model for die pressure using DOE data on a 120mm 
extruder at GEP Selkirk on Nov 21, 2000. 
 

10.2 Scale-Up of On-line Adaptation of Model Parameters 

For the DOE run on Jan 18, 2002, we tested the performance of the recursive adaptation 
of the model parameters β, starting from slightly perturbed values to test the performance 
of the adaptation. Table 8 summarizes the results of the parameter adaptation starting 
from the initial perturbed values to yield the final adapted values, which are close to the 
best-fit values obtained by the off-line least squares optimization. Figure 45 shows the 
comparison of the measured die pressure and the model prediction during the adaptation 
starting from the initial perturbed values of β. It can be seen that the model adaptation 
works well to match the predicted values of die pressure with the measured values and 
yield the correct values of the parameters β. 
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Off-line 
optimization

Initial 
values

Final 
values Optimal values

β1 17.38 15.365 15.38
β2 19.02 22.46 23.0
β3 1.077 0.87 0.87
β4 3.43 3.23 3.13

Adaptation Off-line 
optimization

Initial 
values

Final 
values Optimal values

β1 17.38 15.365 15.38
β2 19.02 22.46 23.0
β3 1.077 0.87 0.87
β4 3.43 3.23 3.13

Adaptation

 
Table 8: Scale-Up of parameter adaptation for die pressure for 120mm extruder 
data from DOE run at GEP Selkirk on Jan 18, 2001. 

 

Figure 45: Comparison of measured and model predicted values of die pressure 
during parameter adaptation with DOE data from 120mm extruder at GEP Selkirk 
on Jan 18, 2001 
 

10.3   Scale-Up of Viscosity Estimation 

In order to perform the viscosity estimation using the estimated parameters β1 and β2, and 
the product composition xo, the calibration parameter k needs to be calculated to perform 
the conversion between β1 and β2 and µο and µ1 (see Eq 12). We had QA lab 
measurements of viscosity of 10 samples collected at various steady state operating 
conditions during the DOE run on Nov 21, 2000. Since, this was the only viscosity data 
we had for the DOE runs conducted at GEP Selkirk, we performed the calibration using a 
few samples and compared the estimation against others. More specifically, a linear fit 
between the measured viscosity and PPO weight fraction is performed to calculate the 

D
ie

 p
re

ss
ur

e 
(p

si
)



Intelligent Extruder for Polymer Compounding 

DE-FC02-99-CH10972  75 

parameters µο and µ1 and thus, calculate the calibration parameter k. The linear fit yielded 
the linear relation for viscosity: 

Eq 18  
)(*6.27215.178

*6.27249.25

oo

o

xx
x

−+=
+=µ

 

  

  

  

 

with µο=178.15 and µ1=272.6 at the nominal mean PPO fraction 56.0=ox . Thereafter, 
the values of µο and µ1 and β1 and β2 were used to calculate the calibration parameter k 
and estimate the product viscosity for other samples using the product composition xo. 
The results are summarized in Table 9.  Clearly, the estimated viscosity matches very 
well with the measured values in the QA lab, with maximum error less than 4% even for 
the samples not used in calculating the calibration parameter. 
 
 

Sample no. PPO fraction 
xo 

Measured 
viscosity (Pas) 

Estimated 
viscosity (Pas) 

% error 

       1* 0.58 186 185.0 -0.5376 
       2 0.58 186.6 185.7 -0.48 
       3 0.58 182.7 184.9 1.20 
       4* 0.58 184.6 184.8 0.11 
       5 0.54 171.4 174.9 2.04 
       6* 0.56 175.4 180.3 2.79 
       7 0.54 168.6 175.0 3.80 
       8* 0.54 174.2 175.1 0.52 
       9 0.58 186.9 185.8 -0.59 
     10 0.56 178.8 180.6 1.01 
     11* 0.58 183.7 185.7 1.09 
      12 0.54 171.9 175.1 1.86 
 

Table 9: Comparison of measured and estimated values of viscosity for samples 
collected during DOE run on Nov 21, 2000 at GEP Selkirk  (* samples used in calculating 
the calibration parameter) 

10.4   Scale-Up Summary 

The above-mentioned results clearly demonstrate the scale-up of the developed model-
based framework for estimation, diagnostics and control. In particular, the excellent fit 
and validation of the model with data from a production-scale 120mm extruder 
demonstrates the validity of the physics-based model and its application to any extruder 
irrespective of size. Furthermore, the model-based adaptation also applies equally well to 
the large production-scale extruder. Finally, the viscosity estimation using the model and 
the model-based estimation works very well and the estimated viscosity was within 4% 
of the off-line measurements in the QA lab, well within the accuracy of the capillary 
rheometer. Due to limited resources, we addressed only the modeling, adaptation and 
viscosity estimation on the 120 mm extruder and did not have the opportunity to 
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investigate the fault diagnostics and closed-loop control through multiple experiments. 
However, the extension of the modeling, adaptation and viscosity estimation to the 
120mm extruder gives ample confidence in the scale-up of the diagnostics and closed-
loop control results as well. 
 
We summarize the various steps in the developed model-based approach for estimation, 
diagnostics and control to any extruder application in Figure 46.  
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Figure 46 : Steps for implementing developed model-based estimation, diagnostics 
and control algorithm in an extruder application. 
 

Modeling 
•  Collect experimental data from extruder with a PRBS excitation of the inputs – if 

normal daily operation has enough variability, may be possible to use that historical 
data instead 

•  Obtain an initial value of the model parameters using off-line least-squares 
optimization to get the best-fit between the model prediction and measured values of 
torque and die pressure  

o Identify these parameters under nominal conditions for product grades or 
families of similar product grades (similar key raw materials and composition) 

o Fix the machine-dependent parameters (one for each extruder for multiple 
extruder lines) and use on-line adaptation for process-dependent parameters 

Estimation 
•  Initial calibration: 

o Obtain viscosity vs. composition (key raw materials) data for each product 
grade/family  - use historical data if it covers wide enough composition range, 
else perform controlled experiments 

o Fit linear/nonlinear correlation between viscosity and composition for each 
grade/family – linearize around nominal compositions for each grade/family if 
required 

o Calibrate conversion parameter between model parameters β1, β2 and the 
parameters µο, µ1 in linearized viscosity-composition relation  

•  Parameter adaptation and estimation: 
o Initiate model with nominal parameters β for each grade/family  
o Perform on-line recursive adaptation if there is mismatch between model 

predictions and measured values of torque and die pressure 
o Obtain on-line viscosity estimate with model parameters β and predicted product 

composition 
•  Occasional verification of viscosity estimation with lab measurements of samples 

collected during steady state operation 

Control 
•  Specify target specifications and bounds for viscosity for each product grade 
•  Tune PI controller based on parameters for first-order approximation of process 

dynamics and desired closed-loop response 

Diagnostics 
•  Generate fault signatures for main raw material and feeder variations for each product 

grade/family 
•  Tune thresholds for fault detection and identification based on signal-to-noise ratio 

and desired specifications on product quality – trade-off false alarms vs. missed 
detects 
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11 Benefits 

11.1  Overview of benefits derivation 

 
 

 
 

Figure 47 - How Intelligent Extruder Derives Benefits 
 
As shown in Figure 47, the Intelligent Extruder System provides benefits that include 
reduced waste and energy use, improved quality, and by reducing recycled product, 
increases system capacity to process virgin product, potentially delaying the need to add 
costly compounding equipment. 
 
The intelligent extruder monitor and diagnostic system provides benefits to a polymer 
producer by alerting process control room operators and production line personnel when 
out-of-spec material is being produced, and the closed loop adaptive control system (if 
used) provides a means to bring production back into compliance automatically when 
process corrections are feasible by changing the appropriate feed-stocks or other 
manipulated variables. Specific benefits can be grouped as follows: 
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•  Improved first pass yield by reducing the quantity of out of spec material that 
must be recycled or sold as cheaper grade 

•  Reducing the quantity of material that must scrapped to landfill 
•  Reducing or eliminating material that escapes quality checks but is shipped to the 

customer and returned, incurring transportation expense and unhappy buyers 
•  Reducing the energy consumed in the net land-filled waste plus material recycled 

(recyclable waste plus customer returns) 
•  Reduced loading on the quality lab for process checks  
•  A continuous quality audit assures material shipped meets customer expectations, 

and reduces or eliminates the likelihood of returns: monitoring and controlling 
consistency of product is often as import to end users as conformance to absolute 
specifications 

 

 
Figure 48 Process Timeline for Benefit Calculations 

 
 Figure 48 shows an event time line for a typical extruder based process contrasted with a 
timeline with Intelligent Extruder in place. As suggested in the figure, benefits in waste 
material reduction and recovered production capacity come simply from more rapid 
detection of process upsets and corrections which get the process back on line.  
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11.2  Approach to benefits quantification 

 
To quantify the potential benefits, the following factors must be considered: 

•  Frequency of Process variation—The temporal behavior of process upsets, must 
be quantified, either statistically from past QA data (including customer returns, 
base resin shifts, etc) or based on first principles understanding. Understanding 
this factor would be done as part of an initial process audit; for example, based on 
a pareto of multiple factors as defined in Section  3.1 would be considered. Often 
this data is hard to come by in our experience, either because the temporal 
sampling resolution is not frequent enough, or determinable (e.g. customer 
returns). 

•  Frequency of QC checks during a production run—Because of cost and 
logistics, QA tests from a lab may only be done initially in the formulation for 
short runs, or at low frequencies (e.g. each shift) for long campaigns. The lag 
between when an upset occurs and QA (or the operator in extreme cases) detects 
it is waste or off spec material. 

•  Time and method to correct the problem—Recovery time is dependent on the 
problem and specifics of the material; for the 80% of quickly correctable 
problems ( base resin shifts, feeder blockages etc), it is vital to know whether 
operator intervention is required (e.g. feeder blockage or strand drops) or can be 
handled through automation (adjustment to feed constituent rate set points). 

•  Time to restart and QC check the process 
 
There is no easy way to get numbers for a given process. GE sales teams or the customer 
would use a variety of calculation tools and information about the process capability to 
assess the potential benefits of the Intelligent Extruder services offering. For example, 
Figure 49 shows a typical spread sheet that was prototyped to aid in quantifying the 
benefits in applying Intelligent Extruder at GE Plastics.  
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Figure 49 Process Spread Sheet used for Benefits Analysis with Customer 
Range of Expected Energy and Waste Reduction Benefits Results 
 
The following data represents a composite over several engineering plastic polymers 
similar to those used during this study. A summary of findings for the industry: 

1. The range of first pass yield, the quantity of material that meets customer 
requirements and can be shipped after one pass through the production 
line,  was approximately 88% for a poorly performing line to 98% for a 
well performing line (98-99% is the perfect stoichiometric yield due to 
volatile removal of about 1-2%).  

2. Taking 94% as an average (actual data is confidential), about 6% of 
material produced cannot be sold. Of this about 2% is non-pellet waste, 
including volatiles, drool piles from startup, or strand waste from startup.  

3. The remaining 4% is pellet waste that is out of specification due to 
viscosity, mechanical properties, color or other defects. 

4. The cost of land-fill is about the same as virgin polymer, and recycle in 
high grade materials can degrade properties, so minimal recycle can be 
assumed 

5.  Based on industry data and data from GE, about half or 2% is candidate 
for improvement with our Intelligent Extruder system technology. Where 
first pass yields are lower, the percentage will generally be even >2%, so 
we will use this as a conservative bound. That is, if it can be assumed that 
our technology can yield a 2% improvement in FPY from 94% to 96% (or 
88 to 90% etc), the savings are significant. 

 

GE Advanced Process Services
Compounding Extruder/Finishing Line Economics

Project: GEP Selkirk - Line No. 8 Analysis Period: 24 hours
Product Type: 5 Noryl PX5515 Sales Price 1.90$             /pound

Order size: 20,000              pounds Revenues: 91,854$        
Feeder A: Feeder B: Feeder C: Feeder D: Feedstock Costs: 24,450           27%

Type: 1 2 3 3 Energy Costs: 1,619             2%
Feeder Composition: PPO Chalk PS The rest Recycle Costs: 44                  0%

Feed Ratio: 21% 29% 15% 35% Total Operating Costs: 26,113$        28%
Feedstock Cost: 0.75$                0.75$           0.25$     0.25$       Contribution Margin: 65,741$        71.6%

Sp. Energy (kw-hr/kg): 0.25
Production Rate: 2037.5  lbs/hr

Finished Production Rate: 2014.3  lbs/hr (includes losses)
Motor RPM's Order Transition Time: 101.568 seconds

210.0

Machine Info
Machine Type: 8 Yield loss at transition (1st pass): 0.3% (perfect setup)

Screw Size: 4.72 inches CTQ sampling time: 5 minutes
Screw Pitch: 2.36 inches Yield loss at transition w/sampling: 1.1%
Gear Ratio: 0.13503 speed out/in % Recycle possible: 80%

Screw Length (L/D): 24 inches/inches Recycle costs: 0.10$     /pound

Noryl PX5515

ZSK-120

Screw Vibratory B el t Be l t
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To put a 2% FPY improvement in context, GE produces approximately 7 billion pounds 
of material per year. Table 10 shows a comparison of the potential benefits to GE to go 
from 94% to 96% FPY. The benefit is a savings of $91MM, 140MM lb less solids to the 
land fill, and about 146 MM Mwhr less energy use, and discharged 7MM lbs fewer 
volatiles into the atmosphere. For simplicity we have combined the distillation and drying 
energy to make the resin with specific energy per lb to process the resin in the extruder. 
The reader can readily put his or her own numbers to run the calculation for their own 
situation. To be fair, this projection assumes all extruders for all materials would get the 
full 2% benefit, but the spread of benefits would also be offset by a spread in FPY in 
which the upside could be greater for lines/materials with low FPY. 
 
 

 
 

Table 10 Impact of 2% FPY Improvement on GE Production 
If this table is extrapolated to the whole engineering polymer industry which is about 
30MM pounds per year, the results are shown in Table 11. Again this assumes 100% 
penetration and that all production could benefit, but the interested application engineer 
can readily work the numbers to their situation 

 
 

Table 11 Extrapolation of 2% FPY Improvement to Engineering Polymer Industry 

Assumptions    
Pounds 7.00E+09  

Produced
 

First Pass Yield Loss Material Material Energy Energy Finishing Cost Solids Energy
  (lb) ($) (kwhr) ($) ($) ($-MM) (MM-lb) (Mwhr)

Base 94.00% 6.00% 4.20E+08 2.10E+08 4.37E+08 2.18E+07 4.20E+07 $274 420 436,800   
2% FPY Delta

Comparison 96.00% 4.00% 2.80E+08 1.40E+08 2.91E+08 1.46E+07 2.80E+07 $183 280 291,200   

Savings  
Data  $-MM $91
kwh cost ($) $0.05 Average industrial contract price Land fill (MM-lb) 140
resin mat'l cost ($) $0.50 Base resin +pigments+fillers+other additives Energy (Mwhr) 145,600
spec energy (kwh/lb) 1.04 Includes energy (steam/elect) to produce resin + extruder energy Energy (Quad) 4.968E-04
finishing cost ($/lb) $0.10 Average non-energy compounding cost per pound Volatiles (MM-lb) 7.0
volatiles (lb-vol/lb-resin) 8.000E-05 Average for various engineering polymers

Profile of Waste Produced

Assumptions    
Pounds 3.00E+10  

Produced
 

First Pass Yield Loss Material Material Energy Energy Finishing Cost Solids Energy
  (lb) ($) (kwhr) ($) ($) ($-MM) (MM-lb) (Mwhr)

Base 94.00% 6.00% 1.80E+09 9.00E+08 1.87E+09 9.36E+07 1.80E+08 $1,174 1800 1,872,000
2% FPY Delta

Comparison 96.00% 4.00% 1.20E+09 6.00E+08 1.25E+09 6.24E+07 1.20E+08 $782 1200 1,248,000

Savings  
Data  $-MM $391
kwh cost ($) $0.05 Average industrial contract price Land fill (MM-lb) 600
resin mat'l cost ($) $0.50 Base resin +pigments+fillers+other additives Energy (Mwhr) 624,000
spec energy (kwh/lb) 1.04 Includes energy (steam/elect) to produce resin + extruder energy Energy (Quad) 2.129E-03
finishing cost ($/lb) $0.10 Average non-energy compounding cost per pound Volatiles (MM-lb) 30.0
volatiles (lb-vol/lb-resin) 8.000E-05 Average for various engineering polymers

Profile of Waste Produced
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To more carefully quantify the benefits in a particular manufacturing context, it is 
necessary to work up the details specific the process as outlined above and to establish 
whether composition/viscosity properties and the root causes of variability can have the 
same impact as suggested here. Potential users wishing to carry out a careful audit to 
quantify potential benefits of the Intelligent Extruder system on their process should 
contact GE Industrial Systems for assistance. 
 
 

12 Commercialization Plan 

12.1   Market Opportunity 

The technology developed as part of this program presents sizable market opportunities 
in the application of process control equipment and services primarily, but not limited to, 
the plastics industry in which compounding screw extruders are used. To the end user, as 
discussed in the Benefits discussion above, this technology presents a significant 
opportunity to eliminate waste and increase yield, increase throughput, product quality, 
and as a result, competitiveness.  Because of the attractiveness of this market, GE 
Industrial Systems (GEIS) has maintained ongoing discussion for an alliance with 
Coperion Werner & Pfleiderer Inc (USA) (CWP) in order to expedite the introduction of 
this technology to the market.  

 
GEIS is a supplier of large AC and DC motors, adjustable speed drives, process control 
equipment and related services. CWP is a supplier of state of the art compounding twin- 
screw extruders, related controls and services. Both parties have supplied equipment to 
the plastics industry for over 15 years.  Sales opportunities are anticipated from, in order 
of priority, new CWP extruders, modernization of existing CWP extruders, 
modernization of other existing extruders, and new and existing extruders in other 
industries, as tabulated in Table 12 Market Segmentation . 
 
In all of the markets in Table 12, it is the team’s opinion that service is the cornerstone of 
the product offering as it provides the opportunity to optimize the process and to 
recognize further opportunities for savings and reduction of wastes. Based upon historical 
data, service revenues could exceed 20% of the overall project revenues (precise numbers 
are proprietary to GEIS and CWP) and are attractive due to generation of an ongoing 
revenue stream and an installed based for future upgrades as software innovations are 
developed. 
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Market 
Opportunity 

Anticipated Market 
(based on CWP data) 

Technical, cost and competitive factors 

New CWP 
Extruders 

40 units/year* “Value” price will far exceed cost, so 
economic justification will be inherent to 
the selling process. Customer alternative is 
to buy traditional manual control 

Existing 
CWP 
Extruders 

5000 units worldwide at 
1% annual replacement 
= 50 units/year* 

These customers would normally purchase 
new control equipment only for reliability 
reasons. Will need to overcome customer 
reluctance to new technology (“selling up”) 
through strong economic justification. 
Customer alternative is to do nothing unless 
reliability is an issue.  

Other 
Existing 
Extruders 

10,000 units worldwide, 
0.25% annual replacement 
=25 units/year* 

Selling up to advanced technology may be 
difficult w/smaller users who have differing 
requirements and limited capital resources. 

Extruders  
in other 
Industries 

Food – market 10 times 
plastics market 
Metal casting– few 
customers, but huge 
savings opportunity 

Technology or CTQ’s may not be 
applicable to these processes 

 

Table 12 Market Segmentation linked to extruder sales 
 
 
To examine the market opportunity more broadly, a cross-functional team  from GE, 
CWP and potential customers (GE Plastics and a small independent supplier) developed 
data that identified other segments where Intelligent Extruder technologies might be 
relevant. The results of these discussions are summarized in Figure 50: Potential Extruder 
Market Segments. In addition to the polymer industry segment that is our focus, coatings 
(insulation, toners, etc), fiber and film manufacture and injection molding all looked 
attractive as follow on segments to pursue.  These markets combined could exceed by 2-
3X the value of the polymer manufacturing industry; though these are gross market 
estimates only, it reinforces the potential synergy of the underlying polymer finishing 
Intelligent Extruder technologies with related segments. 
 
This team also drilled down into the polymer market opportunity to better understand the 
factors driving the market. Findings are summarized in Figure 51: Detailed Opportunity 
Fishbone for Intelligent Extruder. Overall, this sub-segment was believed to offer 
approximately a $260MM market for the kinds of advanced automation and monitoring 
products and services being developed in this program, initially targeted and achieving 
resin quality and consistency for the target customers. 
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Figure 50: Potential Extruder Market Segments 
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Figure 51: Detailed Opportunity Fishbone for Intelligent Extruder 

 

12.2  Commercialization Strategy 

The commercialization of new process control technologies is not new to GE Industrial 
Systems. GE has successfully supplied such breakthrough technologies to customers in a 
number of industries since the early 1960’s when the on-line computer became 
commercially viable. As stated above, to expedite the introduction of this technology to 
the marketplace, GEIS and CWP have proposed forming a technology and market 
development alliance. Throughout the definition of this alliance, joint marketing 
discussions have included “what is the product and who will produce it?”, “how will 
customers obtain this product?”, and “how will the product be sold?”.  

12.2.1 Product – Advanced Process Control and Service 

A typical extruder control system is expected to consist of an adjustable speed drive with 
coordinated control, an operator interface with process displays and reporting, a general 
purpose controller for miscellaneous control and sequencing functions, and a controller 
for the monitoring, diagnostic and adaptive control  functions described above.  
The goal remains to have a standard platform that is simple, easy-to-use, and inexpensive 
so that it may be sold on its own. Furthermore, the platform will be constructed so as to 
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facilitate service opportunities including data collection to help field engineers to conduct 
initial plant surveys locate additional opportunities for finishing operations 
improvements, and remote diagnostics. To enhance market opportunities and 
accommodate customer needs, modular software will be written so as to facilitate 
implementation on alternate control platforms from other vendors.  

 

12.2.2 Remote Service Offering 

From the outset, it was the vision that service offerings could be provided remotely, after 
initial setup and equipment validation, utilizing GEIS’ Onsite Center in Salem, Virginia. 
Using telephone or secure web-enabled links, data would be downloaded through the 
factory floor process control equipment, where data conditioning and processing 
algorithms would be maintained. This facility already exists for remote monitoring of 
drive equipment in the steel and paper industry, providing a scalable infrastructure to 
support the needs of this program. 
 

12.2.3 Distribution – Utilizing CWP’s Distribution Channels 

The new control and services platform developed will be sold as an integral part of each 
new mid and high end extruder sold by CWP wherever possible. Therefore, CWP’s direct 
sales and distribution channels will be utilized. In the CWP extruder retrofit market, 
where there are also opportunities for mechanical equipment upgrades, CWP sales and 
distribution channels will be used, just as for new extruders. For other extruder retrofit 
opportunities, sales and distribution will be directly by GE.  

12.2.4 Commercialization Sales Tools 

Through the alliance with CWP, it is planned, outside the scope of this program, that the 
marketing objectives would be achieved by developing several sales tools. These are 
expected to include the following: 
� Plant-wide Benefits/payback awareness presentation – a customer presentation that 

will outline the benefits of the technology developed as it is implemented at the time 
of the presentation and the project costs. An “experience list” will be developed as the 
technology is installed in various facilities.  

� Standard technical specifications which describe the capabilities of the technology 
and its associated control functionality.  

� Utilize full-scale technology pilot plant for future customer sales references. 

� Jointly-developed Advertising and Sales Promotion (A&SP) tools which will include 
brochures, catalog pages, and Internet Web Pages.  

� Additional promotional events are anticipated, such as technical papers presented in 
trade associations as well as KWP’s own Polymer Processing Conference held 
annually in Ramsey, NJ.  
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Each of these sales tools would have been distributed to the GE and CWP sales forces, as 
appropriate, and each tool updated as the technology matured in actual target 
implementations. 

12.3  Commercialization Status 

In spite of a promising market, and the potential for 2% increases in first pass yield, the 
team has not yet succeeded in commercializing the Intelligent Extruder as system as of 
the writing of this report. A key barrier may be the complexity of the system coupled 
with the requirement to maintain a data-base for the models used based on material 
grades. Although efforts have shown various means to streamline this data-base through 
adaptive control, more work needs to be done to stream-line the effort required.  In 
simple terms, the team needs to invest more into developing the value story in the context 
of specific market opportunities.  Readers interested in using, adapting or extending any 
part of this work should contact GE Industrial Systems or Coperian Werner & Pfleiderer 
to initiate further discussion, including assessment of the applicability to their process. 
 

13  Conclusions and Follow on Recommendations 
Concepts developed in this program allow waste and energy reduction in polymer 
compounding operations for high value engineering materials. With advanced diagnostic 
and control software applied to existing extruder drive systems, benefits are obtained 
from a continuous quality audit synthesized by inferring material properties from readily 
measured machine variables. This allows rapid detection of out of spec material and 
corrective action in contrast to the infrequent quality checks that are performed today. We 
estimate that about 2% of first pass yield losses can conservatively be attributed to out of 
spec material produced this way, and caught after manufacture or when received at the 
customer. By increasing first pass yield by 2%, the 30 Billion pound per year engineering 
plastics producers in North America would save some $391MM dollars in material and 
energy costs, avoid land fill solids in excess of 600MM lbs, save 624,000 Mwhr of 
electrical and equivalent steam energy, and remove 30MM lbs of volatiles from the 
atmosphere. This also represents 600MM lbs of found capacity, equivalent to 51, 2000 
lb/hr extruders operating two shifts, 5 days a week for a year. 
 
All the algorithms developed can be run on readily available process control 
instrumentation available off the shelf from multiple suppliers, using PCs, PLCs  with 
PC-class process cards, or plant level DCS systems. Maintenance and calibration of the 
algorithms is required, but means are proposed to efficiently develop and maintain this 
required data. Viscosity estimation within 10% was demonstrated on both 25-mm 
research extruders and a 120-mm production system at GE plastics. A means to detect 
and classify a number of common feeder and disturbance faults was developed, under the 
restriction only one fault at time occurs (though this can be relaxed), and the system was 
demonstrated on the research extruder under various operating conditions. Diagnosis is 
based on certain characteristic process models. Parameters specific to machine geometry 
are identified once, and parameters specific to a grade must be estimated. But means to 
efficiently adapt the material parameters around a nominal grade is demonstrated, 
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simplifying the required database that must be developed. While the methods developed 
do not eliminate the need for a QA lab, the load for QA testing should be greatly reduced 
 
In this program, the power of exploiting greatly simplified but dynamic process models 
was demonstrated. It is believed that more information is contained in machine variable 
data, particularly torque at frequencies at and above the rotation speed of the machine. 
Though we did not have time or resource to conduct experiments with it, a new torque 
observer algorithm was developed and studied in simulation. Because no extruder testing 
was actually conducted, the results are relegated to Appendix B, which shows that “high” 
frequency reaction torque components can be synthesized from measurements of voltage 
and current (and/or power) in any AC drive. By eliminating troublesome strain gauges or 
complex torque sensors, this algorithmic technique we believe can form the basis of new 
diagnostics to complement those developed in this program, and should be implemented 
and tested in a future research program. 
 
Two program goals that were not achieved were the successful commercialization of the 
system, and the feedback control system scale-up demonstration. The full scale 
production system used for validating scale-up did not have provision for closing the loop 
on extruders, and changes needed were not high enough priority to GE Plastics given 
their commercial production constraints. There is no fundamental barrier to 
demonstrating this capability in a follow up study when a willing partner can be 
identified. As to commercialization, the GE Industrial Systems sales team has curtailed 
further investment in marketing this technology until an appropriate customer /partner 
can be identified. Parties interested in some or all aspects of Intelligent Extruder should 
contact GE Industrial Systems through their regional office for further discussions. 
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APPENDIX-A Extruder Dynamic Models  

A.1  Dynamic model for Hold up 

 
The transient variation in the holdup M1 due to changes in total feed-rate Q and screw 
speed N is described simply by the total material balance: 

Eq-A 1  
oQQ

dt
dM

1
1 -=

      
In the above equation, the total inlet feed-rate to this section (from the feeders) is Q while 
the total outlet mass flow rate, denoted by Q1o , varies with the operating conditions, in 
particular the fill fraction φ  (i.e. the fraction of the total void volume filled with the 
material holdup) and the screw speed N.  More specifically, the maximum flow capacity 
of this section Q1fc corresponding to the maximum filled capacity M1fc (based on the void 
volume from screw geometry) is proportional to the screw speed N, i.e., Q1fc = k N with 
the proportionality constant k depending on the screw design/geometry. During regular 
operation, when this section is only partially filled and the fill fraction is φ =M1  / M1fc ,  
(0 < φ  < 1), the total outlet mass flow rate is given by 
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where B=M1fc / k  is a parameter that depends only on the screw design/geometry. 
Combining equations Eq-A 1 and Eq-A 2 gives the dynamic mass balance relation for the 
holdup M1 

Eq-A 3  
B

NMQ
dt

dM 11 -=  

Note that at steady state, the inlet and outlet mass flow rates are equal, i.e. Q=Q1o, and 
the dynamic material balance in Eq-A 3 reduces to the steady state version:  M1 = BQ/N.  
In contrast with the partially filled section, the total holdup M2 in the filed section is 
constant (since the void volume is filled to maximum capacity). Furthermore, the outlet 
flow rate from this filled section is always the same as the inlet flow rate, which in turn is 
the same as the outlet flow rate from the partially filled section, i.e. Q1o. 
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A.2  Dynamic model for composition 
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Figure 52: Schematic representation of mixing in partially and completely filled 
sections. 
 
A way to obtain a simple parameterized model that can capture varying degrees of 
mixing, from no mixing at one extreme to perfect instantaneous mixing at the other, is to 
use a combination of plug flow with recycle. More specifically, consider the schematic 
representation in Figure 52, where raw material is fed to the partially filled section at total 
flow rate Q = Q1+Q2 and composition xi = Q1 /(Q1+Q2), and exits from this section to the 
completely filled section at a total flow rate Q1o and composition x1. The internal mixing 
inside this section can be modeled through a recycle with a flow rate R1*Q1o , where R1 
denotes the ratio of recycle to outlet flow rate. The combination of the recycle stream and 
the feed stream yields a net inlet stream with a total flow rate Q1i = Q+R1*Q1o and 
composition x1i = (Q*xi+R1*Q1o*x1)/(Q+R1*Q1o). 
 
If we model the material flow through the section as pure plug flow (i.e., first in first out) 
then its dynamics are described by a simple time delay, i.e.,  
    x1(t) = x1i(t-td1)     
with a time delay  
    td1 = M1 / (Q1o*(1+R1)) 
governed by the total material holdup and the total outlet flow rate. The above relations in 
time can be expressed equivalently in the Laplace domain: 

Eq-A 4  
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Solving for x1i(s) from the above relations yields the overall input-output relation 
between the inlet composition xi(s) and the outlet composition x1(s): 
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The above relation provides a general mixing relation for the partially filled section, 
where the recycle ratio R1 is the parameter that can be fit to capture the actual degree of 
mixing in a given screw design. In particular, the case R1=0, i.e. no recycle, corresponds 
to no mixing and the input-output relation in Eq-A 5 reduces to a pure time delay 

Eq-A 6   
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On the other hand, the case with infinite recycle, i.e. R1=∞ , corresponds to perfect 
instantaneous mixing and the input-output relation reduces to a simple first order 
response 
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So, the parameter R1 can be fit with measured input-output data to capture the actual 
degree of mixing in the section for a particular screw configuration. Similarly, the mixing 
in the completely filled section can be captured through a combination of plug flow and 
recycle to obtain the following input-output relation: 
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Section 1: Torque relation 
 
We develop the following relationship for the total torque 

Eq-A 9  22312110 )( NxMxNMT αααα +++=  

which has three main components corresponding to the offset and the contributions from 
the partially-filled and completely-filled sections. The above equation yields torque as an 
instantaneous function of the total holdups (M1, M2), the compositions (x1, x2), and the 
screw speed N – it is an algebraic output map relating the process inputs/states to the 
output in a standard state-space description. The validity of such a relation can be tested 
against steady state input-output data from the extruder. In particular, at steady state, the 
relations in Eq 1 and Eq 5 can be used for the holdups and compositions to arrive at the 
equivalent relation for steady state torque: 

Eq-A 10  iii BQxANxx
N
QBT 13210 ααααα +++=   

 

Section 2: Die pressure relation 
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In the above relation, L, D denote the length and diameter of the pipe, ρ is the density of 
the material and they are lumped into an unknown parameter k. Furthermore, Qo is the 
flow rate of the product through the die plate and µ  denotes the viscosity of the product 
at the prevailing temperature and shear rate at the die. The viscosity of the product 
depends on the composition, i.e. the weight fraction xo of PPO, temperature To in the melt 
zone and the shear rate on the molten product as it flows through the die plate holes. 
While the melt temperature To is measured using a thermocouple in the melt pool just 
before the die plate, the shear rate is considered to be proportional to the total material 
flow rate Qo.  
 
We will approximate the nonlinear dependence of the product viscosity on composition, 
temperature and shear rate with a linear approximation that is valid in a local 
neighborhood of the nominal point of operation. In particular, we will use the following 
linear approximation for the product viscosity: 

Eq-A 12  )()()( 321 ooooooo TTQQxx −−−−−+= µµµµµ  

where (  ) denotes respective nominal steady state values at the nominal operating point. 
In the above linear approximation for viscosity, µο denotes the nominal viscosity at the 
nominal operating point, while µ1, µ2, µ3 denote the slope of viscosity with respect to 
composition, shear rate and temperature, respectively at this operating point (see Figure 
53 ) 
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Figure 53: Viscosity vs composition of PPO 
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Section 2: Die pressure relation 
Eq-A 11,  
 
we obtain the following model for die pressure: 

Eq-A 13  )]()()([ 321 oooooooo TTQQxxkQDP −−−−−+= µµµµ  

The above equations together comprise a dynamic model for the extruder that relate the 
changes in the process inputs (feed-rates, screwspeed) to the measured output variables 
(torque, die pressure): 

Eq-A 14 
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Section 3: Linearized DP equation and Nonlinear DP equation 
 
Linear form: 

Eq-A 15 
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or written in a compact form 

Eq-A 16  TQxQQDP ooooo ∆−++= 321 ββββ  

The above relations for die pressure DP yield a simple relationship between the model 
parametes βi and the physical parameters µi.  
On the other hand, if we adopted a model structure for die pressure without any 
linearization, i.e. retaining the same structure as equation, Eq-A 13: 

Eq-A 17  )]()()([ 321 oooooooo TTQQxxkQDP −−−−−+= µµµµ ,  

then it can be written in the following compact form: 

Eq-A 18 TQQQxQQDP oooooo ∆−∆−∆+= 4321 ββββ  
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In this new nonlinear structure, comparing Eq-A 17 and Eq-A 18, we obtain another 
simple relationship between µ0, µ1  and β1, β2  involving only the calibration parameter k 
and independent of any other terms. More specifically, 
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This simplification of calculation for µ0, µ1  from the identified parameters β’s results in 
better estimates and improved diagnostics. 
 

Section 4: Model for Melt Temperature variation 
In the absence of good melt temperature measurement, we can use a simple first-order 
dynamic model to predict the variations in the melt temperature from its nominal value. 
In particular, assuming the heat input from the heating barrels to the extruder is constant 
while the heat generated in the extruder due to friction in the screws varies as a function 
of the operating conditions, we can obtain the model for melt temperature variation 
through a simple dynamic heat balance. It should be mentioned that the ratio of heat input 
from the barrels to the heat generated internally due to friction in the screws is smaller in 
larger industrial-scale extruders compared to the smaller lab-scale extruders due to the 
reduced surface area to extruder volume. The heat generated H by the screws is 
proportional to the shaft work, i.e. H = k1*T*N, where T is the shaft torque, N is the 
screw speed and k1 is a proportionality constant. This heat generated is used to melt the 
solid raw materials and raise the temperature of the molten product to the outlet 
temperature To from the inlet temperature Ti, i.e. at steady state, 
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where Qo is the throughput, ∆Hm is the heat of melting the raw materials, cp is the specific 
heat capacity of the molten material, Ti is the inlet temperature (assumed constant) and To 
is the outlet melt temperature. Since, we need only changes in the melt temperature from 
the nominal steady state value Tos corresponding to the nominal values of Ts, Ns, Qos, we 
can obtain the following relation for the change in melt temperature by subtracting the 
above relation from a similar relation at the nominal steady state: 

Eq-A 20  
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where k2 is another proportionality constant and ∆(T*N/Qo) denotes the deviation in the 
specific energy generation, SE= (T*N/Qo), from the nominal steady state value. Finally, 
since we are interested in the dynamic transient responses of the changes in melt 
temperature, we get it by using a first-order transient response in conjunction with the 
above steady state value (the first-order response can be obtained by performing a simple 
lumped dynamic energy balance): 
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Eq-A 21  
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where τ is the time constant for the transient response in the melt temperature. In the 
absence of a good measurement of melt temperature, the above relation for ∆T can be 
used in the die pressure relation (Eq-A 16 or Eq-A 18). 
 
 

Section 5: Closed-loop Control 

The process response between the product viscosity µ and the feed composition xi has the 
following (linearized) first-order dynamics: 
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Since IMC tuning (see, e.g. Morari and Zafiriou, 1989 [3]) of a first order process such as 
the one given above, for a corresponding first-order closed-loop response: 

Eq-A 23  
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yields a Proportional and Integral (PI) action controller, a PI controller is tuned for robust 
control of this process with Internal Model Control (IMC) rulings. The resulting PI 
controller in Laplace domain is in the following form: 
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in which the proportional gain and the integral time constant are apparent in terms of the 
process parameters µ1 and τp, and the IMC tuning factors, i.e. the closed-loop time 
constant τf. 
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APPENDIX B - Extruder Drive Torque Estimation using 
Electrical Variables 

 

B.1 Summary 

Reaction torque from a loaded extruder is one potential indicator for process health. In 
prior unpublished studies by Coperian Werner-Pfleiderer, strain gauges in line with the 
drive shaft on special research extruders showed that there was potential information 
contained in the shaft torque at frequencies at or above the shaft rotation rate which could 
be correlated to proper filling, mixing  performance and screw condition, for example. 
Unfortunately, strain gauges are not easy to install, maintain and calibrate in a production 
environment, so definitive work on interpreting relationships between dynamic torque 
behavior and quality has not received much attention. Here we propose some alternative 
methods for extracting high frequency torque dynamics which do not rely on strain 
gauges or any other mechanical sensor in the drive line. The proposed methods instead 
exploit readily available electrical sensors, which are commonly found in modern drives 
used in extruders and which can often be retrofit to older machines. Software algorithms 
are derived which use these electrical measurements to extract torque data that is usually 
removed by filtering since it is not required for the functioning of the motor control. 
Scope of this development is limited to preliminary simulations, since  we did not have 
time or resources to evaluate what quality attributes and/or diagnostics can be rigorously 
linked to the torque data; we have included these results as a foundation for future 
“Intelligent Extruder” developments. 

 

B.2  Requirements and Objectives 

 
An “observer” is a software algorithm which takes as inputs certain measured variables 
and produces as outputs unmeasured variables of interest, such as torque. For this project 
the requirements for the observer are as follows: 

1) Obtain a method to determine the fundamental component and harmonic 
components of the electrical torque produced by a synchronous or asynchronous 
machine driving an extruder. Machine is assumed to operate at speed > 0 rpm. 

2) Provide means that the observer can be implemented: 
•  As part of the drive controller. 
•  As a separate unit (e.g. PC or process equipment) able to interface with any 

inverter. 
3) The observer should have a frequency response reaching up to a couple of kHz to 

be able to observe the extruder dynamics of interest 
4) Motor constants are assumed available when used stand alone.  
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5) The observer will be simulated using SABER with the best possible 
approximation to the GE-Innovation drive control. 

Requirement (1) assures that the methods will be applicable to the majority of production 
scale extruders installed today, and normal operation is always at non-zero speed allows 
simplification. Frequency response in (2) is a conjecture based on suggestions by 
Coperian W-P, but the actual frequency range of requirement must be established by 
experiment. Since we were not able to implement the torque observer, the SABER 
simulation provided a well validated drive simulation we could could use to at least 
provide a proof of concept. 

B.3  Approaches to observer based torque estimation 

Instantaneous electromagnetic torque computation can be derived by implementation of 
the following expression: 

Eq B- 1     
−−

×= sgsge iPt λ2
3   

Where P is the number of pole-pairs,
−

sgλ  is the space phasor of the stator flux linkages 

expressed in a general reference frame and 
−

sgi  is the space phasor of the stator currents in 
the same general reference frame. Eq 1 can be further represented using two-axis 
components for stator flux and stator currents as: 
Eq B-2     )(2

3
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In general, there are two ways to obtain the flux value generated by a machine: 

Eq B- 3     ∫=
t
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Or 
EqB-4     )()( tikLt ⋅=λ  
Use of Eq 3 leads to a method known as the Voltage model [1]. On the other hand, using 
Eq 4 leads to a method known as Current model [2]. Both models are depicted in Figure 
1. 
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Figure 1: Block diagram: (a) Current model. (b) Voltage model 
 
The Current model requires sensing of motor currents as well as motor parameters such 
as mutual inductance and electric time constant and coupling inductances. Computation 
of angle γm requires the actual rotor mechanical speed. But no motor voltages are required 
at all. On the other hand, the Voltage model requires motor voltages and currents plus 
some motor parameters such as stator resistance and inductances. Voltage model requires 
an integrator as shown in Eq 3; the use of integrators at low speeds may lead to saturation 
yielding in inaccurate torque calculation. Since both methods employ electric motor 
parameters it is important to note that those parameters change under different 
environmental and electrical conditions, e.g. stator resistance is affected by temperature 
and inductance may saturate. 
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Current model Voltage model 
•  Parameter Sensitive (temperature, 

inductance saturation) 
•  It works well at low frequencies. 
•  Requires the motor mechanical speed 
•  Not suitable for analog implementation 
•  Resulting torque has the full frequency 

spectrum 
•  DSP implementation: 

Resulting torque have limited frequency 
spectrum due to sensors and sampling 

 

•  Works well at high frequency. 
•  Integrator has problems with sensors 

offset  
•  Does not work at zero freq. 
•  Parameter sensitive (Temperature) 
•  Analog implementation possible: 

Complicated to implement in analog 
circuitry 
Integrators have to be replaced by 1st 
order transfer function 
Resulting torque have the full frequency 
spectrum 

•  DSP implementation: 
Requires complicated voltage sensor 
(VCO’s, ASIC) 
Resulting torque have limited frequency 
spectrum due to sensors 

Table B-1: Salient characteristics for voltage model and current model for torque 
estimation 

 
A combination of methods mentioned above can be achieved as shown in Figure 2 [3]. 
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Figure B-2: Current/voltage model 
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Salient features of this method are presented in Table B-2 
 

Current/Voltage model 

•  The use of both models allows the extension of the operating region down to zero 
frequency. 

•  Requires knowledge of motor parameters. 
•  Digital signal processing CPU required for implementation due to its complexity. 
•  Requires complicated voltage and current sensors. 

Table B-2: Salient characteristics of Current/Voltage model 
 
Another method, based on machine’s electric power, is derived from the following 
expression: 
Eq B-5      eetP ω⋅=   
Where P is the electric power and ωe is the machine angular speed. Figure 3 and Table 3 
show the main features of this method. 
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Figure B- 3: Power model 

 
Power model 

•  Less sensitive to parameters variation. 
•  It works only for frequencies not equal zero due to division. 
•  Easily implemented with analog circuits. 
•  Requires the applied frequency from the inverter or a two phase PLL for its 

generation 
•  Can provide the full torque spectrum if implemented in analog fashion. 
•  The model is valid for synchronous and asynchronous motors. 
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•  Two line-to-line voltages could also be used as long as they are isolated (LEM 
voltage sensors). 

•  A small DSP could be used to set up gains and parameters from a PC serial interface.  
•  DSP could also include thermal models to correct for resistance variations. 

Table B-3: Salient characteristics of Power model 

B.4  Saber Simulation 

Results regarding the Power model are presented in this section. Figure 4 shows the 
schematic diagram for SABER used to simulate the motor drive and the torque observer. 
Some basic assumptions for the simulation are: 

•  Detailed induction motor model considering only copper losses and saturation. 
•  Detailed model of a PWM inverter considering: dead-time, device losses and DC 

voltage ripple. 
•  Sampling delays and quantization are included in the speed-current control for the 

motor model. 
The following parameters correspond to the values normally found in GE Innovation 
Series controller. These are readily modified for other motors or controllers. 

DC link voltage=900V rs=0.319Ω 
PWM frequency=2.5KHz rr=0.220Ω 
Sampling Time=250µs ls=0.00269H 
Power=15KW lr=0.004139H 
Pole pairs=2 lmo=0.077H 

Table B-4: Parameters used in simulation 

 
Figure B-4: Schematic diagram used for SABER simulation 

 
A virtual torque sensor (ideal) in the simulation is attached to the motor to obtain the 
“actual” torque. Information from this torque sensor is compared with results from the 
torque observer for validation. Figure 5 shows the behavior of the motor during the 
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starting process. Waveforms for motor speed in rad/s, motor current in Amps, observed 
torque in Nm and motor torque in Nm are presented. Observed torque represents the 
torque estimated using the Power model. 

Starting with 20 Nm as a constant load
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Figure B-5: Behavior of motor at starting.  From top to bottom: Rotor speed, Motor current, 
Observed torque, Motor torque. 
 
It can be noticed that the observed torque is following the actual torque very closely and 
settles down at steady state. 
Figure B-6 is a continuation in time of Figure B-5. It shows the motor running at 40 rad/s 
under no-load conditions (T≈0Nm) when a step load of 20Nm is applied at t=75ms. In 
consequence the torque developed by the motor jumps from 0Nm to 20Nm. This test 
shows the ability of the observed torque to follow sudden load changes. 
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Step response of 20Nm at 40Rad/s
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Figure B-6: Behavior of motor during a step load.  From top to bottom: Observed torque, Motor 
torque, Rotor speed and Motor current. 
 

Step response 0 to 20Nm to 0Nm
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Figure B-7: Behavior of motor during sudden application and demotion of load.  From top to 
bottom: Rotor speed, Observed torque, Motor torque and Motor current. 
 
Figure B-7 shows the motor running at approx. 40 rad/s under driving a load of 20Nm 
applied at t=75ms. Later, the load is removed at 0.15s. This figure shows the ability of 
the observer to follow step loads when the motor is loaded or unloaded.  
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FFT torque at 1200RPM
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Figure B- 8: Torque during steady state.  Top traces: FFT of Observed torque, FFT of Motor torque. 
Bottom traces: expanded view of Observed torque and Motor torque respectively.  
 
Bottom traces of Figure 8 shows the response of the torque with oscillation due to non-
compensated dead-time at inverter side. The frequency of this oscillation is six times the 
fundamental frequency. It can be noticed that even under irregular conditions the 
observed torque is able to follow the actual motor torque. Top traces in same figure 
shows the frequency spectrum for the aforementioned torque traces. The magnitude of 
fundamental torque component is shown to illustrate the accuracy of the observed torque. 
 
 

B.5 Conclusions from simulation results 

•  The observer using the Power model is able to detect the torque with a wide 
bandwidth if implemented using analog components, allowing reaction torques at per-
revolution resolution to be seen for use in advanced diagnostics 

 
•  The observer based on the Power model could be combined with a small 

microprocessor or DSP and multiplying D/As to input the motor parameters and 
correct them on line for temperature variations.  

Since no attempt was made in the scope of this program to implement these concepts on a 
functioning extruder, it remains to validate the value of high frequency information in the 
estimated torque to diagnose process and equipment problems in extruders and drives. 
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