

ENERGY-FILTERED PLASMON IMAGES OF  $\text{MgAl}_2\text{O}_4$  IMPLANTED WITH  $\text{Al}^+$  AND  $\text{Mg}^+$  IONSN. D. Evans<sup>†</sup>, J. Bentley<sup>\*</sup>, and S. J. Zinkle<sup>\*</sup><sup>†</sup>Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, TN 37831-0117<sup>\*</sup>Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376

Magnesium aluminate spinel ( $\text{MgAl}_2\text{O}_4$ ) is a candidate material for specialized applications in proposed fusion reactors, and previously, has been irradiated with  $\text{Al}^+$  or  $\text{Mg}^+$  ions to assess the effects of high-dose irradiation. Electron energy-loss spectrometry (EELS) has been used to confirm the identity of metallic aluminum colloids located in the ion-implanted region of the spinel because electron diffraction experiments were inconclusive for phase identification.<sup>1</sup> In the present study, energy-filtered plasmon images of the ion-implanted region have been obtained to reveal this colloid distribution.

Following implantation with 2 MeV  $\text{Al}^+$  ions to a fluence of  $3.8 \times 10^{21}$  ions/m<sup>2</sup> at 923 K, or with 2.4 MeV  $\text{Mg}^+$  to a fluence of  $2.8 \times 10^{21}$  ions/m<sup>2</sup> at room temperature, spinel specimens were prepared in cross-section for analytical electron microscopy.<sup>2</sup> Energy-filtered images were obtained using a Philips CM30 microscope with an attached Gatan Imaging Filter. Acquired images were  $512 \times 512$  pixels in size and gain normalized. Filtered images were recorded with 5-eV-wide windows and 1 s exposure times; windows were centered about 0, 10, 15, 20, and 25 eV losses. Images acquired using 15 eV loss electrons ( $I_B$ ) contained contributions from both spinel matrix,  $I_s$ , and metallic colloids,  $I_m$ , and  $I_B \sim I_s + I_m$ . For some images, an estimate of  $I_s$  was subtracted from  $I_B$  to improve the contrast between the colloids and the matrix. This background subtraction of the spinel contribution was accomplished by estimating  $I_s \sim I_A + (I_C - I_A)/n$ , where  $I_A$  and  $I_C$  were images with losses centered at 10 and 20 eV, respectively, and  $n$  is a suitable weighting factor (typically  $2 \leq n \leq 3$ ).<sup>3</sup>

Energy-filtered bright-field images were acquired from both  $\text{Al}^+$  and  $\text{Mg}^+$  ion-implanted spinel. These images appear similar to conventional bright-field images, and show little diffraction contrast between the spinel matrix and the colloids. A filtered bright-field image of the  $\text{Mg}^+$  implanted spinel is shown in Fig. 1. Figures 2, 3, and 4 are energy-filtered images of the same region shown in Fig. 1. Figure 2 was acquired with loss electrons corresponding to the spinel volume plasmon (~25 eV), so the continuous spinel matrix appears bright. Because the zero-loss electrons have been attenuated by the filter, the hole in the specimen appears dark at the top of the figure. The dark features in the spinel image, which are complementary to bright features in Figs. 3 and 4, are metallic aluminum colloids. Figure 3 was acquired with 15-eV-loss electrons corresponding to the metallic aluminum volume plasmon. In this figure, the colloids in the implanted-ion region have the greatest intensity, although there is significant intensity from the spinel matrix. This is expected as the spinel volume plasmon can be excited over the loss range of ~10-40 eV. However, with the spinel background subtracted from Fig. 3, the contrast between the colloids and the spinel matrix is improved (Fig. 4). Similar features were observed in the spinel implanted with  $\text{Al}^+$  ions. Presently, the background subtraction routine assumes the weighting factor  $n$  is constant everywhere in the whole image. A possible further improvement in background subtraction could be made by allowing  $n$  to vary with thickness (position) in the image. A suitable routine for accomplishing this is being examined. Small colloids with diameters ~2 nm are clearly resolvable near the edge of the  $\text{Mg}^+$  (Fig. 5) and the  $\text{Al}^+$  implanted-ion regions (Fig. 6), respectively. Because of delocalization effects, the "chemical" resolution in a volume plasmon image has been suggested to be of the order of 10 nm.<sup>4</sup> However, an advantage of energy-filtering is clearly demonstrated here: very small features, similar to the matrix in chemistry but having different volume plasmon spectra, can be imaged in non-specific diffracting conditions.<sup>5</sup>

1. N.D. Evans et al., *Proc. Ann MSA Meeting* 49(1991)728; *Proc. Ann MSA Meeting* 52(1994)980.
2. N.D. Evans et al., in *Microstructure of Irradiated Materials*, Mat. Res. Soc. Symp. Proc. 373 (1995) in press.
3. N.D. Evans et al., *Proc. 29th Ann MAS Meeting* (1995), to be published.
4. R. F. Egerton, *Electron Energy-Loss Spectroscopy in the Electron Microscope*, New York: Plenum Press (1986)306.
5. Research sponsored by the Division of Materials Sciences and Office of Fusion Energy, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc., and through the SHaRE Program under contract DE-AC05-76OR00033 with Oak Ridge Associated Universities.

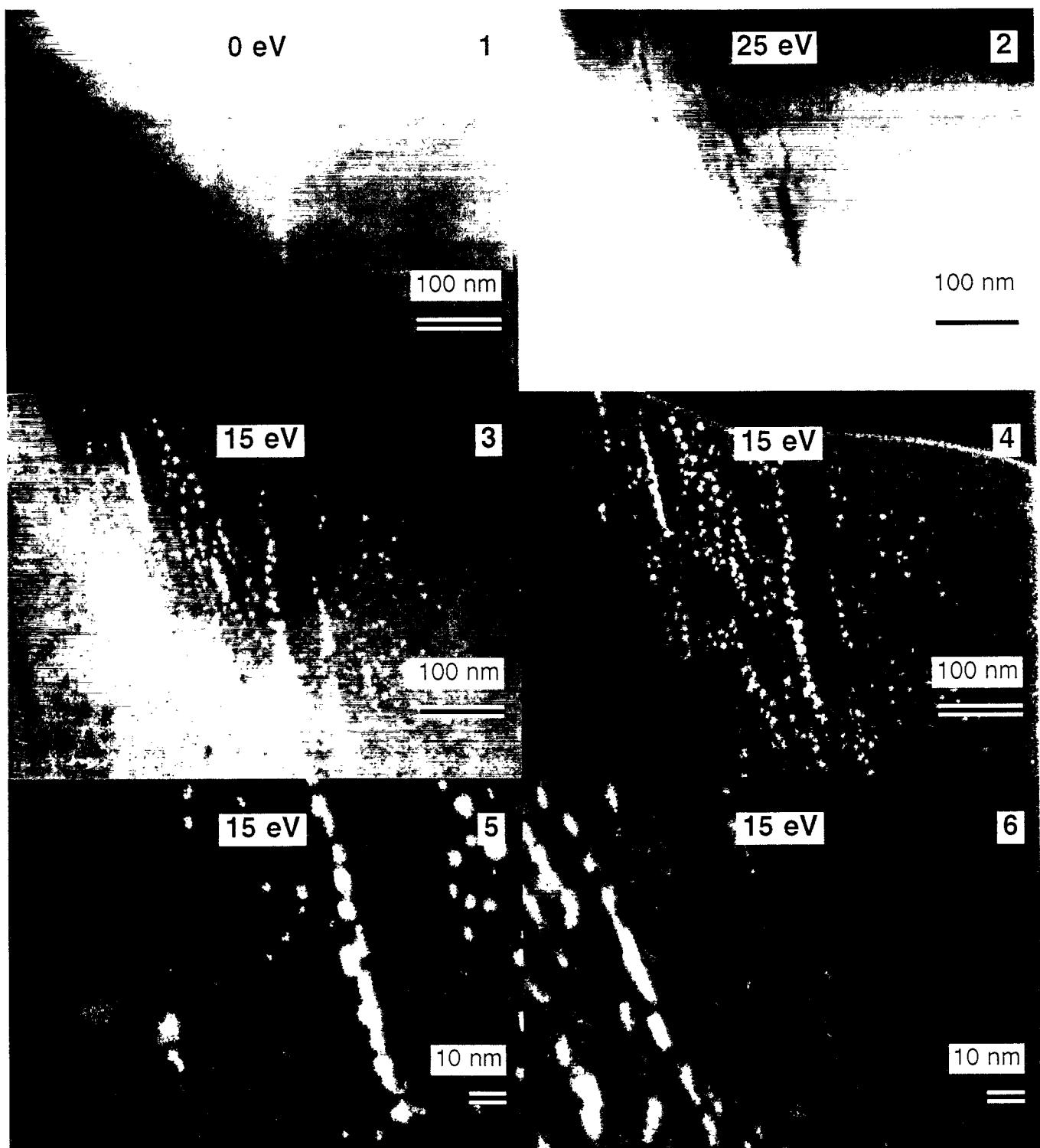



FIG. 1.--Energy-filtered bright-field image of implanted  $Mg^+$  region of  $MgAl_2O_4$  spinel.  
FIG. 2.--25 eV loss plasmon image, implanted  $Mg^+$  region.  
FIG. 3.--15 eV loss plasmon image, implanted  $Mg^+$  region.  
FIG. 4.--Background subtracted 15 eV loss plasmon image, implanted  $Mg^+$  region.  
FIG. 5.--nanometer-sized metallic aluminum colloids in  $Mg^+$  implanted spinel.  
FIG. 6.--nanometer-sized metallic aluminum colloids in  $Al^+$  implanted spinel.

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

## **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.