e UL JEfOP--SSY 22
(onf G50 1572,

script has been authore¢:
] by a contractor of the U.S. 1Gc'gv;r£éngg
under contract No. W-31- >-38-
Accordingly, the U. §. Government retanbr:?Sh
ive - ficense to pu
exclusive, royaity freg t
Z?nreproduce the published forr:o o:o f:n‘;:
contribution, of allow others to .

U. 5. Government purposes.

Robert L. Johnson!

A Bayesian/Geostatistical Approach to the Design of Adaptive Sampling Programs

REFERENCE: R. L. Johnson, "A Bayesian/Geostatistical Approach to the Design
of Adaptive Sampling Programs"', Geostatistics for Environmental and Geotechnical
Applications, ASTM STP 1283, R. Mohan Srivastava, Shahrokh Rouhani, Marc V.
Cromer, A. Ivan Johnson, Ed., American Society for Testing and Materials,
Philadelphia, 1996.

ABSTRACT: Traditional approaches to the delineation of subsurface contamination
extent are costly and time consuming. Recent advances in field screening technologies
present the possibility for adaptive sampling programs---programs that adapt or change
to reflect sample results generated in the field. A coupled Bayesian/geostatistical
methodology can be used to guide adaptive sampling programs. A Bayesian approach
quantitatively combines "soft" information regarding contaminant location with "hard"
sampling results. Soft information can include historical information, non-intrusive
geophysical survey data, preliminary transport modeling results, past experience with
similar sites, etc. Soft information is used to build an initial conceptual image of
where contamination is likely to be. As samples are collected and analyzed, indicator
kriging is used to update the initial conceptual image. New sampling locations are
selected to minimize the uncertainty associated with contaminant extent. An example
is provided that illustrates the methodology. '

KEYWORDS: adaptive sampling program, indicator kriging, Bayesian analysis, site
- characterization, sampling strategy '

INTRODUCTION

Characterizing the nature and extent of contamination at hazardous waste sites
is an expensive and time-consuming process that typically involves successive _
sampling programs. The total cost per sample can be prohibitive when sampling
program mobilization costs, drilling or bore hole expenses, and sample analysis costs
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are all included. For example, the Department of Energy (DOE) estimates that it will
spend between $15 and $45 billion dollars for analytical services alone over the next
30 years to support environmental restoration activities at its facilities (DOE 1992).

One of the primary products of a site characterization study is an estimate of
the extent of contamination. Traditional characterization methodologies rely on pre-
planned sampling grids, off-site sample analyses, and multiple sampling programs to
determine contamination extent. Adaptive sampling programs present the potential for
substantial savings in the time and cost associated with characterizing the extent of
contamination. Adaptive sampling programs rely on recent advances in field analytical
methods (FAMs) to generate real-time information on the extent and level of
contamination (McDonald et al. 1994). Adaptive sampling programs result in more
cost effective characterizations by reducing the analytical costs per sample collected,
by limiting the number of samples collected by strategically locating samples in
response to field data, and finally by bringing characterization to closure in the course
of one sampling program. Adaptive sampling programs can result in characterization
cost savings on the order of 50% to 80% (Johnson, 1993).

Supporting adaptive sampling programs requires the ability to estimate the
extent of contamination based on available information, to measure the uncertainty
associated with those estimates, to determine the reduction of uncertainty one might
expect from collecting additional samples, and to direct sample collection so that
sample locations maximize information gained. Two key characteristics of
contaminated sites must be taken into account. The first is that spatial autocorrelation
is often present when samples are collected. The second is that there may be abundant
"soft" information regarding the location and extent of contamination, even if little
"hard" sample data are initially available. Soft data refers to information such as
historical records, non-intrusive geophysical survey results, preliminary fate and
transport modeling results, aerial photographs, past experience with similar sites, etc.

A number of geostatistical approaches to the design of sampling programs for
characterizing hazardous waste sites have been proposed in the past. Early methods
focused on minimizing some form of kriging variance (e.g., Olea 1984 and Rouhani
1985). More recent work has centered on stochastic conditional simulation techniques,
Bayesian implementations of geostatistics and more complex decision rules (for
example, Englund and Heravi 1992; MclLaughlin et al. 1993; James and Gorelick
1994). In practice, site characterization sampling program designs tend to blend rigid
sampling grids with selective sampling based on best engineering judgement.
Typically there is little quantitative analysis to support the final sampling program
design.

A combined Bayesian/geostatistical methodology is well suited to quantitative
adaptive sampling program support. Bayesian analysis allows the quantitative
integration of soft information with hard data. Geostatistical analysis provides a
means for interpolating results from locations where hard data exists, to areas where it
does not. This combined approach differs from other methodologies in the way

uncertainty is handled, and the implementation of a distributed approach to Bayesian
updating.



METHODOLOGY

Classical statistics estimates the most likely value for &, the probability of
encountering contamination, by using hard sample data results. For example, if 20
random locations were sampled at a site and 5 of these samples returned
contamination levels above an action threshold, then an unbiased estimator of the true
probability of observing contamination above that threshold for any random location at
the site would be the number of hits divided by the number of samples, or 0.25. In
classical statistics one could carry the analysis one step further and develop confidence
intervals around this estimator with some basic assumptions about the underlying
probability distribution. Kriging provides similar results for individual points in space,
accommodating spatial autocorrelation as well. Neither classical statistics nor
geostatistics provide a means of quantitatively accommodating soft information in the
analysis. For the design of sampling programs to characterize contamination extent
and subsequent analysis of sampling program results, soft information often plays a
crucial role.

A Bayesian approach differs from classical statistics by assuming that
parameters (such as the presence of contamination at a node) are unknown initially,
but have some known probability distribution called the prior probability density
function (pdf). As additional information becomes available (such as results from new
sampling locations), these prior pdfs can be updated quantltatlvely usmg Bayes’ rule to
produce posterior probability density functions:

PX|Y) = PX)P(Y|X) M

P(XIY) is the posterior pdf for X, P(X) is the prior pdf for X, and P(YIX) reflects the
probability distribution associated with observing what was observed given the prior
distribution of X.

From a Bayesian perspective, a two parameter beta d1str1but10n Be(a,p) is a
conjugate prior in the context of Bernoulli trials and the binomial distribution (Lee
1989). Be(c,B) ranges between zero and one, and can assume a variety of shapes
depending on the values of o and B. For a random variable 7t that follows a beta
distribution, the expected value of &t is given by:
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where:
0B = parameters associated with the beta pdf for .

The variance of &t is given by:
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Binomial distributions provide the probability of observing a specified number
of successes within a specified number of trials. Conjugate priors are priors that retain
their same underlying pdf after the application of Bayes rule. In the case of a
binomial trial with an unknown underlying probability © of seeing a success in any
given trial, if X successes are obtained in N trials, a prior for t of the form Be(c,)
becomes the posterior Be(o+X,p+N-X). N functions as the total amount of additional
information supplied to the prior. As N grows large, E() approaches the classical
maximum likelihood estimator for wt, X/N, and the Var(m) decreases monotonically.

When one considers only the presence or absence of contamination above some
threshold, environmental sampling resembles a binomial trial---N samples collected, X
of which encounter contamination above the threshold. The primary difference is that
environmental samples are not independent, as required in a traditional binomial
sampling sequence. Sample values, even at an indicator level, are spatially
autocorrelated. The issue is how to update a prior beta distribution at a given point in
space with results from samples nearby that is consistent with the derivation of beta
distributions as conjugate priors for binomial distributions and that recognized their
spatial autocorrelation.

Two pieces of information are required from the set of samples: N, the total
amount of information represented by the set of samples appropriate for that point in
space, X,, and p o, the expected probability of encountering contamination at x, based
on the samples’ results. Indicator kriging provides an means for deriving these two
pieces of information. An unbiased estimator of p* at x, is given by:

N
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where
x; = locations where samples have been collected;
Z(x) = 0 or 1, depending on whether the sample at x; encountered

contamination below or above the threshold;
w; = kriging weights.

The set of kriging weights, w, can be derived by solving the following set of
simultaneous linear equations:
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C; = covariance between sample locations x; and x;;

= covariance between sample location x; and the point where the
interpolation is taking place, x,.
N at x, can be tied to N, the number of samples taken, through the following
relationship:
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where
Var

estim

the estimation variance associated with the interpolation of p~ at
location x;

the variance of the indicator values;

the average of the indicator values for the sample locations involved
in the updating. :
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Equation (7) is heuristically based. When the sampled locations are all
"distant" from the point of interest (i.e., greater than the spatial autocorrelation range),
N goes to zero, implying that the sampled locations contribute no information at the
point of interest. As a sampled location comes close to the point of interest, N* goes
to infinity, indicating that the sample information has specified the probability at the
point of interest exactly.

The methodology begins by defining a uniform grid over the region of interest.
Grid nodes are designated as Decision Points (DPs). At each DP, a pdf based on the
two parameter beta distribution Be(e,3) is defined. The beta pdf associated with each
DP describes the probability of encountering contamination above a pre-selected
threshold level at that DP. Initial values for o and P are selected to represent a
synthesis of any soft information available for a site, using equations (2) and (3). ‘In
the unlikely case where no information is available, a "non-informative" prior can be
selected that sets o and B equal to one.

Updating the set of decision points with hard sampling data requires knowledge




of the variogram or covariance function for the site. Because the values of p and N at
x are independent of C, the primary covariance function parameters of concern are its

shape, or functional form, and its range. If sufficient hard data exist, one can estimate
the covariance function from an experimental variogram analysis.

A simple measure of the uncertainty associated with contamination extent is to
categorize decision points as either "clean", "contaminated”, or state uncertain at a
given certainty level, where the probability of contamination being present at any
given decision point is based on equation (2) using the posterior beta pdf parameters
that are associated with that decision point. For example, if one wishes to be 90%
certain that the classification is correct when a decision point is classified as either
clean or contaminated, then decision points with E(r) ranging between 0.1 and 0.9
would be classified as state uncertain. This definition of uncertainty parallels the use
of uncertainty by the EPA in its Data Quality Objectives approach to decision-making.

This method for handling uncertainty also leads naturally to measures of
benefit one might expect from additional data collection. For example, one might
wish to sample those locations that would be expected to maximize the number of
decision points classified as "contaminated" at a given certainty level, or as "clean", or
to minimize the number classified as state uncertain.

EXAMPLE APPLICATION

A simple example illustrates this methodology in action. Figure 1 provides a
plan view of a hypothetical site with surface soil contamination. The site contains a
waste lagoon that was breached during a storm. The owner’s property is bounded by
two secondary roads. The area shaded in grey indicates where surface soil
contamination actually exists (7 940 m?)---an area unknown to the site owner. The
owner acknowledges that contamination exists, and that portions of the site will
require remedial action. The purpose of the characterization effort is to determine the
extent of contamination so that the soils can be removed and treated off-site.

The responsible regulator wants all contaminated soils identified and removed.
The regulator wants to ensure that the sampling program is designed so that soils that
are contaminated are not erroneously classified as clean. The owner will have to pay
for the characterization, excavation and remediation of all soils believed to be
contaminated. The owner wants to avoid remediating soils that are actually clean, and
also to minimize his characterization costs. After negotiations, the regulator agrees to
tolerate a 20% chance that a soil volume identified as clean is actually contaminated.
The owner will be responsible for removing and remediating all areas that have greater
than 20% chance of contamination being present.

There is no initial hard sampling data for this site. The available soft
information includes the location of the lagoon, scattered survey points from which a
terrain model can be built to indicate the probable direction of overland flow and
hence contaminant migration, the location of a utility building on site that would have
been a barrier to flow, and the location of rcads with embankments that would have
also blocked flow. This soft information is used to construct the initial conceptual
image of where contamination likely is, and where it likely is not.




A grid is superimposed over the site that consists of 625 decision points
(Figure 2). At each decision point, a beta distribution is defined, with parameters
selected to reflect the soft information. For decision points that are in the building, o
is set equal to zero and § to a very large number to reflect the fact that the interior of
the building is known clean. For decision points within the lagoon, o is set equal to a
very large number and B equal to zero, to reflect that fact that the lagoon is known to
be contaminated. For the balance of the decision points, o and [ are set to values less
than 0.5, with their relative sizes selected so that equation (2) reflects the initial
probability of the presence of contamination.

Figure 3 shows the grey-scale representation of the initial conceptual model
once the beta distribution parameter values have been selected, along with a set of
terrain contours based on the available survey points. As is obvious from Figure 3,
the initial conceptual image is faithful to the location of the lagoon, building, and land
surface contours. Based on this initial conceptual model, without any sampling, the
owner would have to clean up 34 440 m? of soil, more than four times what is
actually contaminated.

- Before the adaptive sampling program can begin, the methodology requires a
covariance function. At the outset there is no hard data upon which to base a
covariance function choice. If the covariance function were selected to honor the
initial conceptualization, a range of approximately 200 meters would used. The larger
the assumed range, however, the fewer the samples that would be required to
characterize the site. As a conservative start, for this example an isotropic exponential
covariance function is assumed with range 50 meters.

A traditional sampling program for a site such as this would probably rely on a
preplanned, regular sampling grid. As a point of comparison for the subsequent
adaptive sampling examples, Figure 4 shows an example preplanned sampling program
based on a triangular grid pattern. The gray-shaded surface contained in Figure 4
shows the results when the a non-informative initial conceptual model is updated with
the information that would have been derived from this sampling program. The
underlying beta distribution parameters for each decision point were setto @ = =
0.1. In this scenario, the 14 samples result in classifying 23 230 m’® of soil as
requiring remedial action. This captures 87% of the soils actually contaminated, and
includes 16 230 m’ of uncontaminated soil. -

If one uses the initial conceptual model shown in Figure 3, and updates it with
the results from the sampling program shown in Figure 4, one obtains a different
interpretation of the site. Figure 5 shows the results graphically. Using an initial
conceptual model that reflects what is known at the outset about the site results in
classifying 22 000 m® of soil as requiring remedial action. This captures more than
98% of the soil actually contaminated, and includes 14 190 m? of uncontaminated soil.

If one incorporates the underlying soft information available for the site, as
displayed in Figure 3, and then selects 14 sampling locations that maximize the area
that would be classified as clean at the 80% certainty level, then one obtains the
preplanned sampling program shown in Figure 6. The sampling locations were
selected sequentially, with the selection of the next location conditioned on the
expected sampling results from the already selected locations. Figure 6 also shows the
results from updating the underlying conceptual model with the results that would




actually have been obtained from this preplanned sampling program. These 14
samples result in classifying 15 120 m* of soil as requiring remedial action. This
captures more than 97% of the soils that is actually contaminated, and includes 7 395
m’® of uncontaminated soil. Each sample reclassified, on average, 1 380 m’ of soil as
clean.

An adaptive sampling program at this site, driven by the objective of
maximizing the area classified as clean at the 80% certainty level, would initially
follow the same course as the preplanned program shown in Figure 6. The reason is
that for the fourteen samples collected as part of the preplanned sampling program, all
encountered what was expected---no contamination. In the case of an adaptive
sampling program, however, one has the option of continuing sampling until the goals
of the program have been met. Figure 7 shows the locations of an additional 14
samples for this site, along with the results from updating the underlying conceptual
model with their results. The additional 14 samples reduced the area classified as
requiring remedial action to 10 070 m*. This included 96% of the soil actually
contaminated, and 2 460 m® of uncontaminated soils. Each sample reclassified, on
average, 350 square meters of soil, a significantly smaller amount than obtained from
the first 14 sampled. There are two reasons for this: first, there is simply less area
available for reclassification to clean. The second is that the sampling has begun to
encounter the unexpected---contaminated soil.

CONCLUSIONS

Adaptive sampling programs provide the opportunity for significant cost
savings during the characterization of a hazardous waste site. The challenge for
adaptive sampling programs is providing real-time sampling program support that both
incorporates the typically significant amounts of soft information available, and that
accounts for the spatial autocorrelation that is omnipresent. A joint Bayesian
analysis/indicator geostastistical method can be used to guide the selection of sampling
locations, to estimate the extent of contamination based on available data, and to
determine the expected benefits to be gained from additional sampling.

The example provided illustrates how the addition of soft information to the
design of a sampling program can result in a more directed sampling strategy. When
the ability to guide the program while in the field is added, the potential for cost
savings is great.
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