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Generalizing the Thermodynamics State Relationships in KIVA-3V

Mario F. Trujillo, Peter O’Rourke, and David Torres

Abstract

The Peng-Robinson equation of state has been implemented into the KIVA-3V code to better
handle high-pressure conditions typical of Diesel engine environments. The implementations mod-
ify pressure-volume-temperature relationships, specific heats, and departures in internal energy,
among other thermodynamic partial derivatives. Computations show that significant deviations
do occur for progressively heavier hydrocarbons. However, when these hydrocarbons exist in a
mixture with a non-negligible portion of air, the departures from ideal behavior are mitigated.
Internal energy calculations have been extended to allow for pressure effects, but the strongest
factor continues to be temperature. Hence departures from ideal behavior in internal energy and
related specific heats are minimum.



1 Introduction

We are interested in employing the KIVA-3V code to simulate physical processes occurring in Diesel
environments. One of the major concerns is the assumption of ideal-gas behavior under the high-pressure and
-temperature conditions of a Diesel Engine. In addition to affecting P-V-T (Pressure-Volume-Temperature)
relationships, the ideal-gas assumption also ignores departures in internal energy at high pressures, changes in
important thermodynamic partial derivatives such as specific heats at constant pressure or volume, isentropic
sounds speeds, and other thermodynamic derivatives that are used in KIVA-3V. Overall, the ideal-gas
assumption currently implemented in KIVA-3V occurs in over 20 subroutines and is basically ”hard-wired”
into the code.

Our first objective is to remove the limitation of the ideal-gas assumption by introducing an equation of
state (EOS) that can more accurately predict thermodynamic quantities at a much wider range of pressures
and temperatures. Secondly, we would like to express quantities such as thermodynamic partial derivatives
in an abstract form, independent of the type of EOS employed, and to isolate these changes to their own
subroutines. This applies also to the calculation of P-V-T relationships. We feel that this approach would

facilitate future implementation of other EOS and improve the modularity of the code.

2 The Peng-Robinson Equation of State

We have a number of options with regard to choosing a P-V-T relationship, but we desire an EOS form
that is both relatively simple and efficient to calculate and also sufficiently accurate. Therefore, we focus on
cubic equations of state, given generally as ( [1], p. 43)

_ R,T a
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among which we find the van-der-Waals (VDW), Redlich-Kwong (RK), Redlich-Kwong-Soave (RKS), and
Peng Robinson (PR). The first and most famous of these four EOS is the VDW (1873). Following the VDW
form, the RK EOS was proposed in 1949 significantly improving the accuracy ( [2], p. 393). Nevertheless
both a and b were fixed parameters obtained from the critical properties of the substance.

In order to incorporate a temperature dependence on the attractive parameter, a, Soave introduced a
correction «(7T,w) that was applied to a as a = a.a(T,w) ( [3], p. 79). This modification became known as
the RKS EOS. The Peng-Robinson EOS [4] has a similar form, and only deviates from RKS in the value of
the constants in the correlations. But by comparison to the RKS, the PR EOS is better at predicting vapor
pressures [4] and phase equilibria [5] over a wide range of conditions. Therefore in our work we adopt the
PR EOS, which has the form,
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where the parameters a and b (units FL * L3/Mo? and (L3/Mo) respectively, Mo is moles) are defined
below. The above expression applies only to a pure substance. To extend it for a mixture, the values of a
are calculated based on mixing rules ( [1] p. 82), where

am =D D wiws(aiag) (1= kij); (2)
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The mixture parameters are denoted by subscript m, the mole fractions by z; or z;, the pure component
parameters by a; or b, and the binary-interaction coefficient by k;;. The accentric factor (w;) data comes
from tables in Reference 1 and the binary-interaction parameters can be found in Reference 6. The relations

for a; or b; are from Peng-Robinson [4]:
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where f(w;) = 0.37464+1.54226w,—0.26992w?, subscript ¢’ denotes critical quantities, and T} is the reduced
temperature T'/T.

2.1 Numerical Solution of the EOS

We use a Newton-Raphson method in the solution of the PR EOS. The residual is

R,T Am

R=P—
@m—bm+@,2n+2b@m—b2n’

from which we can calculate the derivatives

d_R L R, n dam, 1 (4)
dT' Opm —by  dT 02, + 2b0,, — b2’

and
dR R,T 20 (Um + bim)

— = — — ) (5)
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The numerical solution updates guess values of temperature or specific volume, depending on what is

being solved, according to
dR(T™)

n+1\ _ n
R(T™) = 0= R(I"™) + =

(TnJrl _ Tn)
for temperature, and

R(@L™) =0=R(0%) + LR(,U’”) (optt — o)

do, m
for specific volume.
Noting the symmetry of da,,/dT above (2), we calculate it as

dam — daz
:ZZ@% 1/2dT ;/2(1—k’ i) (6)

The pure component values of da;/dT are given by
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We observe that for subcritical values of temperature, we may have more than one real root in the PR
polynomial. This means that more than one phase is present. We are interested only in the vapor phase,
i.e., our efforts are not aimed at simulating condensation/vaporization, which are modeled separately in the
treatment of sprays. Also if the pressure is high enough, at subcritical temperature, the only root in the PR
polynomial corresponds to the liquid phase. If this occurs, the code does have a problem converging to the
solution due to the shape of the residual curve; but even if this is overcome, there is an obvious problem
with the presence of only liquid, therefore the code is designed to exit with a warning.

3 Internal Energy Departure from Ideal Behavior

In the ideal description of a gas, the internal energy is only a function of temperature. As we move to
higher pressures and temperatures, this ideal behavior no longer holds. Therefore, our energy description
must incorporate one more independent thermodynamic variable, either P or v. We examine both of these

representations below.

3.1 I(T,P)
With I = I(T, P) we have

oI oI

dl = —| dI'+ —| dP. (7)
orT | OP |,
(Note that for an ideal gas % p= g—{r , = Cy.) To transform this expression to something we can calculate,
let T'dS = dI + Pdv from the First Law. Taking the derivative of this expression and employing the Maxwell
relationship, g—1§|T =— g—;i|P, yields
ov o1 ov o1 Jv v
or|, 0P| OP | OP | orT | p OP |
We can use the cyclic relation g—; |P 3_5 ‘T g—]Z , = —1, above, to give
oP
or| _ . 5l, P
— - ap oP| -
OP|r v |T %‘T

This expression is substituted in (7) to give a relation for calculating internal energy differences, i.e.,
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dT-FW
P %|T
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[T T

- P] dP. 8)

Suppose that we are interested in finding the internal energy of a mixture at some (7, P) far removed
from ideal-gas behavior. This is done by integrating (8) above:

T P
or 1 [ 0P
I(T,P) — I(T,, P, :/ 9 dT+/ —[T— —P]dP;
( ) ( ) To aT P, P, ?3_5|T 8TU
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Here the reference values are T, = 0 K and P, = 0 or P, = 1 atm. The choice of reference pressure is
not important since the difference in internal energy at either 1 atm or zero pressure is extremely small.
Substituting the PR-EOS to calculate all partial derivatives gives

P

1 1 da
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1 W 2am b
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which requires a numerical solution. An easier method of computing the internal energy deviation is given
next.
3.2 I(T,v)
The other form of describing internal energy, I = I(T,v), gives a differential
ol ol
dl = —| dT'+ —| dv.
ar| “ " 80,
Employing the First Law, T'dS = dI + Pdv, and the Maxwell relation, ‘g—f r = ‘3—? o gives T ‘3—? v
% -+ P. This is substituted above to yield
ol oP

We would like to integrate this from the reference (T,,v,) to some point (T, v).

— P> dv.

The reference ideal state has an infinite specific volume, i.e., v, = co. The argument here is probably

I(T,v) — I(T,,v,) = I(T,v,) — I(To,v5) —|—/ <T g—{;

based on a notion that with infinite specific volume, the molecules are sufficiently far apart that no interaction
occurs between them. (Note that we could alternatively define v, = v(P,,T). The difference between these
two quantities is negligible since ideal gas behavior predominates making (T’ g—g , — P) = 0. Returning to
the previous equation, we have

I(T,v) = I(T, o0) +/O: (T 2—5

— P) dv.
The first term on the right is obtained from ek() arrays in KIVA-3V, and the second term is calculated using
the PR-EOS. The result is

(" 1 dam
I(T,v) = I(T m—T do
(Tov) =X ’Oo)+wavg/oov2+2bmv—b,2n (a dT) Y
da, v dv
:I(T,oo)+<am—TdT>/oo e (11)



In closed form the integral can be expressed as

V—=A — (b+2cv)
b+2cv) +V-AY
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where

R=a+bv+ cv?, az—bil, b = 2b,,
c=1, and A = dac — b* = —8b2,.

Substituting this into (11) gives

I(T,v) = I(T, 00) + am — TG
,U) = ;00 —2 | X
wavg2\/§bm

4 Thermodynamic Partial Derivatives

Employing the PR-EOS and the thermodynamic tables available in KIVA-3V, we can readily compute
specific heats, isentropic sound speeds, and other thermodynamic partial derivatives, which are used through-
out the code. In this section, we summarize their mathematical form. The PR coefficients a,,, b,,, and the
derivatives da,,/dT are computed from Egs. (2), (3), and (6) respectively.

oP

® o7l

Using the PR-EOS, we get

or| _obl _ Ry _dam L (13)
oT |, ~ oT|, " 0-b  dT 0+ 2o b2,
2 _ 0P
o (4 = % |
Substituting the PR-EOS gives
op| _opop ov
op |y 0vov dp|,’
—-R,T 24, (0 + by —w
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The internal energy corresponding to a fixed composition is a function of two independent variables, e.g.,
I(T, p) = I(T, P). Hence the differential
ol o1

ar= 22| ar 4 94
ar|, " op

ol
dp= —
T or

ar+ 2L

dP
b oP

)
T

and if we are considering a change in internal energy occurring at constant pressure then

oI oI oI
T dl' = dT + —

9 dp.
- oT apl,

T
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We can similarly write the differential for p(T, P) as

Jdp ap
dp= —| dI'+ —=| dP
’=or|, " T ap|,
and introduce it above, at constant P, to yield
o _or| ot op
5TP_5TP op|p OT |p~
From the cyclical relationship
op| OP| OT| _ 0| oo 0T| _ |
oT|p dp|p 0P|, OT|, T oP|,
we can also express this as
or| oIl oprP| 1
GTP_ Y BpTanC%'

In the code, we compute this as

o1
orT

_I[T + AT, o(T + AT, P)] — I[T, (T, P)]
AT

P

where AT is 100 K, and the internal energies are calculated using Eq. (12).

op
Op

e Isentropic sound speed, C? =
s

We regard P(p,T') = P(p,S) and write the differential

opP oP opP oprP

dP = —| d —| AT = —| dS+ —
apT“aTL 5|, " ap s
For an isentropic process, this reduces to
oP oP oP
—| dp+ ==| dT'= —| dp.
op | aor|, op |g
Combining this with the differential of T'(p, S),
oT oT
dT = —| dp+ —=| dS,
ap|g oS 0
evaluated for dS = 0, and substituting it above gives
op)  oby ory _ ob
oplp  OT|, Oplg Oplg
Employing again a cyclical relation for T, S, p, i.e.,
or| 0S| op| _
dp s OT'|, 0S|y B

(15)
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dp.



yields

op| _op| _op| os/ody "
oplg Oplp OT , as/oT|,
We would like to clean up the far right term. From the First Law, T %}p = (. We can equate S(v,T) =
. . : as _ 88
S(p,T) and compute the differential to yield > ‘T dv = 52 . dp or
_1os| _os
p2 Ovl|,  Oplp
One of Maxwell’s relations is
or| _ o
or|, - ov|y]
which gives
os| _ 1 or @
oplp  p* 0T .

Substituting back into (#) results

oP
2—_
ci=3,

_op
s Op

2
) | an

By definition, C), = g—? ‘ p- From the First Law and the definition of enthalpy, we get T'dS = dH — vdP,
which gives C, =T g—:ﬂ p- Entropy can be written as S(7', P) = S(T), p); consequently at constant pressure,

the differential of these quantities results in

L1 (op
r Cyp* \ OT

e Constant pressure specific heat, C),

g—ipdT:g—;pdT+%po
:g—f,pdT+%T{g—;PdT+g—;TdP};
r%) <r || 2
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The last step here comes from (&). Substituting the cyclic relationship

SN
or|,\ op |y oT | p
above, gives
T (op|\* /0P| \
=0t > | 2 — : 1
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ov

® arlp
The specific volume, v = V/m, can be introduced into the cyclic relationship
oo| op| or| _
oT |, ov |, oP|,
to give
ov| v 5,
— =— (19)
orlp  »p B_P‘
s
e Constant Volume Specific Heat, C,
From definition C, = g—:lp ,» the specific heat is calculated using the expression
(T + AT,v) — I(T
Ofu — ( + ) U) ( 7U) (20)

AT ’
where I(T + AT, v) and I(T,v) are computed from Eq. (12) and AT=100 K, since the table entries in
fuelib.f are in 100-degree intervals.

e Verifying C? = yC?%

We would like to verify C2 = yC2:

2
_%_14_ T 8_P a_P
7T, T e, \or|,) \op

)

2
T oP -1
=14+ — | = (C3) s
p2C, <8T p)

2

2 2 T or .

7Cr=Cr + 20, \ a7 , ;
VCF = CE. (21)

5 A Brief Overview of the Outer Iteration

The central part of the KIVA-3V code is the gas-flow solver. On top of this part, the models for sprays,
chemical reactions, impingement processes, etc., are built. The variables that are computed in the gas-flow
part are the species densities, p,,, the turbulent kinetic energy and dissipation, k and €, the velocity field u,
the temperature T, the cell volumes V', the pressure P, and related quantities. Since the equations governing
the relationship of these variables are typically interwoven with one another, iteration procedures are used
to arrive at solutions to these equations.

The outer iteration consists of the computation of the velocity, temperature, cell volume, and pressure.
Subset to this are smaller iterations for specific variables. Turbulent kinetic energy, dissipation, and species
densities do not enter into the outer iteration because they are weakly linked to the former terms.

The steps outlining the outer iteration are as follows:



1. Initial guess on the pressure using Eq. (108) of the KIVA-II manual.

2. Calculation of the velocity field based on Eq.(78) of the KIVA-II manual. Notice that the pressure,

PEB | on the r.h.s corresponds to the pressure calculated in step 1.

3. The temperature is solved using Eq. (110) of the KIVA-II manual or in the general case of a real gas
Eq. (28) derived in this paper. In this step, the pressure and the velocities computed previously for
the B level are used.

4. Based on this temperature and pressure and knowledge of the mass, which come from solving the

species density equation, the cell volume, VP, is computed, employing Eq. (111).
5. This cell volume is typically different than the cell volume calculated in Eq. (102), i.e.,

VE=Ve=V" 4 ALY (uAd)l.

To bring both of these volumes to a sufficiently similar value, a relationship is needed between volume
and pressure. The objective is to modify the pressure with the intent of reducing the gap between the
volumes. The relationship is

ve—yr g I
t o

from which the unknown P°€ is solved for. The value of P¢— PP is checked to determine if convergence

(PC_Pp)a
S

as been achieved. Eq. (86) is used to modify the fluxes uA in this iteration.

6. If P¢— PP is too large, then PP = P¢ and we return to step 2.

5.1 General Internal Energy Equation

The subscripts ijk on field variables are omitted.
The central energy equation solved in KIVA-3V is Eq. (89) of the KIVA-IT manual, shown below. It
represents a process of heat and mass addition (the latter occurs in the presence of vaporizing spray) that

takes place under variable pressure and volume.

MBIB — M -
AT B

_ <Pn;PB) (VBA_tvn) (1= A) [6o? : VuP + (1= 6p)a™ : Vu] V"

D IV (pY,2 + (1= 6p)Y,0)a| - AL

n

+ A MEBA + Z (pD),"

+ DKLV [60TP + (1= 6p)T| - AL+V"(Q"+Q°). (22)

This equation is solved in a sequence of three steps, which are denoted here as (S1), (S2), and (S3). Each
of these steps is done at either constant volume or constant pressure.

The first step is from the n-level discretization to the A-phase, and it proceeds at constant volume:

ATA _ nin . .
T V@ Q) 51
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The second step is from the A-phase to the t-state:

It —14

MB
At

= AMPe* +> (pD)." [Z B TPV (ppYE + (1 — ¢p)Y D)o | - AT

The last step occurs at constant pressure, and it is from the t-state to the B-phase:

Bt AV [P
B =P — 1— A, B: B 1— n. n n
AL arl, +( ) [¢po®? : VuP + (1 - ¢p)o™ : VU]V

+S KV [¢>DTB +(1- ¢D)T]a -A7,

M

where T is given in Eq. (94) of the Kiva manual and
pAVIY (P PPN (VP v
At ], 2 At '

(23)

In our current efforts to generalize the caloric equation of state in KIVA-3V, we concentrate on the last

step. First, the differentials dI and dV, hinted by (S3), can be expressed as

oI

IB-rt=_—| (18 -1t
8TP( )7
and
B n B t t n av B t t n
VeE-vr=(V _V)+(V_V):_8T (T° =TY) 4+ (VP =V"),
P

since Eq. (S3) represents a constant pressure process.
Second, for brevity in notation, we define

Dirs = Y KiV{épT? +(1-6p)T} - Al
and
Diss = [QSDUB :Vu? + (1 —-¢p)o™: Vu"] v,

Substituting (23), (24), (25), (26), and (27) into (S3), we get

MB oI P+ PBN\ [0V
— | B -THY=—-(——-— ) |=| (TP -1 tyn i 1—A4,)Diss.
ar 7| 07 - =- (T ) |55 @ -t -vn)| e a- )
Multiplying through by ﬁ and manipulating the equation we get
9T | p

n B
T' + 2]’\23—’—5 [g_‘iﬂp T~ (Vt - Vnﬂ + MBA& (Qiff + (1 - AO)DiSS)
TB 6T|p 8T|P

14 ( Brtp? v,
[ 2MB%|P aT |p
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5.1.1 Special case of an ideal gas

In the case we have an ideal gas, then 2% p»=C, and g—‘:ﬂp = M;jé; also ‘g—‘;}PTt = V. Substituting
above,
n B
T (o) V™1 + w8t (Dirs + (1= A0)Disy) )
ideal — =
pPr4+PB\ MBR
[+ () 47
This is the original expression which appears in the KIVA-II manual.
5.2 Changes to the Pressure Iteration
The pressure correction currently done in KIVA-3V, and presented in Eq. (112) is
ve=v?P Ve pe—pP
=Vr—= W( - P?), (30)

where V¢ is calculated by Eq. (102),
Ve=V" 4 ALY (ud)l.

Since the volumes VP and V¢ are typically different in the first iterations, the equation above is used to
modify the pressures, which gives rise to a new value of V?. The modified or corrected pressures also change
the values of uA through Eq. (82) of the KIVA-II manual, and hence V¢. The iteration continues until the
pressures and volumes are sufficiently close.

In the generalization of the code, the isentropic relationship between volume and pressure (30) is changed

to
ove
Ve=VP 4 —| (P°— PP). 31
+ G| PP G)
Since V' = M/p, we have that
ovey _ M opry _ V Op”
OP |4 p? OP |4 p OP|g
or
ove V1
[ = ———. 2
OP | p C? (32)
6 Results

We are interested in examining the departure from ideal behavior in quantities such as PVT relationship,
thermodynamic partial derivatives, and caloric quantities. The first cases studied correspond to a cylinder
in compression with temperature and pressure conditions typical of Diesel engine environments. The calcu-
lations presented next correspond to departures in internal energy, specific heat, and isentropic sound speed
and represent a select number of all the thermodynamic partial derivatives that were modified to the PR
EOS form.

12



6.1 Cylinder in Compression

Four different gaseous mixtures undergoing compression in a typical engine geometry are studied. The
first mixture is composed of pure air, the second mixture contains 75% N3 and 25% C1¢Hg, the third mixture
is made up of 25% Ny and 75% C19Hg, and the final mixture is 5% Ny and 95% C19Hg. These compositions
were chosen to examine the effect of hydrocarbon addition in decreasing or increasing the departure from
ideal gas behavior. In order to measure such departure, the compressibility factor defined as

Po
R, T
is used, which shows that the closer Z is to 1.0, the closer the gas behavior is to ideal. The initial conditions

7 =

for all compression cases are as follows: temperature = 620 K, pressure = 0.175 MPa, and a compression
ratio of 15.1. The results are shown in Figures 1 through 8 in terms of the Z-factor at both the bottom
center position, where pressure is not significantly large, and the top center position, where it is expected
that the greatest deviation from ideal behavior occurs as a consequence of the maximum pressure.

If we consider the pure-air case first, the value of Z is 1.0 at bottom center (Fig.1) and then increases
slightly by the time the piston reaches top center (Fig.2). Since the deviation is approximately 1%, it can be
concluded that air behaves like an ideal gas. In the next pair of Figures (Figs. 3 and 4), air has been replaced
with pure nitrogen, and 25 % C19Hg has been introduced. At bottom center, the Z-factor is still at 1.0 and
at top center the values are very close to the ones predicted for pure air. If we increase the hydrocarbon
content to 75 % Ci9Hg and 25 % N», then the results show a neglibible departure from 1.0 at bottom center
(Fig.5). As the mixture is compressed the deviation from Z = 1 becomes approximately 4 % (Fig.6). If we
continue to increase the hydrocarbon content by nearly displacing all of the N, e.g. 95 % C19Hg and 5 %
N3, the values for Z are around 0.98 at bottom center (Fig.7) and approximately 0.80 at top center (Fig.8).
The deviation becomes significant with an increasing presence of the hydrocarbon, particularly in the cooler
regions of the domain, e.g., near the walls.

This trend is explained by studying the compressibility chart shown in Figure 9. For pure air, which is
composed mainly of nitrogen and then oxygen, the critical temperatures are respectively 126 K and 154.5 K
and the critical pressures are 3.39 and 5.05 MPa. This gives reduced temperatures (T'/T.) that are beyond
4.0 at bottom center and continue to increase as the cylinder undergoes compression. By examining the
compressibility chart, this places air in a path of slightly increasing Z with pressure. In contrast to either
nitrogen or oxygen, hydrocarbons have typically much higher critical temperatures, e.g., C1oHs T.=748.4,
which results in reduced temperatures in the range between 1.0 and 2.0. Hence, as they are compressed, the
path that they follow is one of decreasing Z, and the closer that path is to the isotherm 7'/T, = 1.0, the
more drastic the deviation from ideal behavior. This helps to understand the reason for the greater decrease
in Z in the cooler regions near the walls (e.g., see Figure 8). (Note that major deviations in Z can occur
for air at pressures 10 times the critical pressure, but these conditions are not reached during typical diesel

engines conditions.)

6.2 Internal Energy, Specific Heats, and Isentropic Sound Speed

In the following plots (Figures 10- 21), we examine the departure from ideal behavior of some thermody-
namic quantities. Our results are presented as a function of temperature for three different pressures, namely
0.1 MPa, 2.0 MPa, and 5.0 MPa. The predictions at 0.1 MPa (= 1 atm) can be interpreted as pertaining to
ideal-gas behavior.

13



First, we look at deviations of internal energy caused by pressure. Our calculations are presented in
terms of the change in internal energy between an ideal state and a compressed state normalized by the
internal energy of the ideal state. A given temperature, T, and an infinite specific volume specify the ideal
state, and the same temperature but a much lower specific volume defines the compressed state. The infinite
value of the specific volume guarantees no molecular interactions. (It should be noted that the difference
between this ideal state and the one defined by a state having the same temperature but a specific volume
corresponding to standard pressure is insignificant.)

The results presented in Figures 10, 11, and 12 correspond to air, C4H1g, and C19Hag, respectively. The
trend is the same for all three gases. It consists of a more pronounced deviation at lower temperature that
gradually decreases as the temperature is increased; and as expected, the departure is greater with higher
pressure. The tapering of the internal energy departure is due to an increase in the normalizing internal
energy with temperature and also to a closer proximity to the Z = 1 line as we move in the compressibity
chart in the direction of higher temperature at a fixed pressure. Physically, this corresponds to a greater
distance between gas molecules with higher temperatures which reduces the interaction between them and
hence approaches ideal behavior. The difference among the three gases is in the magnitude of the deviation,
which for air is approximately 1% maximum, and for the heavier gas C19Ha2, is around 4 %.

The next set of calculations is for constant volume specific heat, C,, plotted as a function of temperature
for increasing values of pressure. The results for air, CyH1(, and C1gHos are shown respectively in Figures 13,
14, and 15. Since the internal energy departures were relatively insignificant as shown in the previous plots
and the specific heats are derived from internal energy behavior, it is no surprise to see that all three lines
representing the different pressures fall almost on top of one another. Air, due to its low critical temperature,
shows the lowest sensitivity to pressure changes.

Related to the specific heat calculation is the calculation for «, the specific heat ratio. The results are
presented in Figure 16, for air, Figure 17 for C4H1o, and Figure 18 for CgH22. The deviations are once
again more noticeable for the heavier hydrocarbons by contrast to the almost negligible effect for air. For
all three mixtures, the influence of pressure is mitigated as one moves to higher temperatures, as previously
shown.

The last set of plots illustrates the behavior of the isentropic sound speed, shown in Figures 19, 20, and
21 for air, C4H1g, and CigHaa, respectively. The ideal result gives Cy = /yRT, and for air this behavior
is insignificantly altered as one moves to higher pressures. By contrast, C19gH2o displays large differences,
particularly at lower temperatures where it has been explained that large deviations from ideal behavior are

likely to occur. The CyH1g case falls in between air and the heavier hydrocarbon, as expected.

7 Summary and Conclusions

The thermodynamic relationships in KIVA-3V have been modified from the ideal to a Peng-Robinson
EOS to better predict quantities at high pressures typical of Diesel environments. The changes involve PVT
relationships, internal energy departures from ideal behavior, specific heats, isentropic sound speed, and
other thermodynamic partial derivatives that are used, for instance, in the internal energy calculation. A
number of computations have been presented which illustrate the effect of high pressure on the departure
from ideal behavior. The main conclusion from these results is that hydrocarbons, particularly heavier

hydrocarbons with high critical temperatures, exhibit significant deviations from ideal behavior. This is

14



reflected mostly in the PVT relationship, where the compressibility factor is used to measure the deviation,
but not so significantly in departures of internal energy or in quantities derived from the internal energy
(e.g., specific heats). Moreover, the presence of air in mixture with hydrocarbons has a strong tendency to
diminish the real gas behavior.
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Figure 2: Z-factor for pure air at top center

17

1.830491e+02



3.156000e+00

Cells

Ffacto r1

Figure 3: Z-factor for a mixture of 75% N> and 25% C1oHg at bottom center
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Figure 4: Z-factor for a mixture of 75% Ny and 25% C19Hg at top center
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Figure 11: Normalized internal energy departure for Cy Hyp.
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Figure 12: Normalized internal energy departure for C9Hao.
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Figure 13: Pressure influence over constant volume specific heat behavior for air
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Figure 14: Pressure influence over constant volume specific heat behavior for C4H.
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Figure 17: Specific heat ratio for CyH1g at various pressures
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A Notation

Cp= Constant pressure specific heat C,= Constant volume specific heat

Cs= Isentropic sound speed Cr= Isothermal sound speed

~= Specific heat ratio Cp/C, H, h= Enthalpy per unit mass

I= Internal energy per unit mass M= Mass

P= Pressure R,, Universal gas constant

p= Density S= Entropy per unit mass

T'= Temperature V= Volume

v= Specific volume (L3/M) = Molar specific volume (L3/M,)

Ym, ym= Mass fraction of species m  X,,, x,,= Mole fraction of species m
Z= Compressibility factor
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B Changes to the Code

A sizable number of changes were made to KIVA-3V in order to generalize the thermodynamic relations
from ideal behavior to real-gas behavior. A list detailing these changes is included below.

BCCCIN.f

e Change from
P(i4) 1

TEMPAMB =
RGASS. SPD,, wm

to
tempamb = eos(p(i4),1/xx,0.0,3),

where zz =Y SPD,,/wp,, or simply
tempamb = p(id)/(zx * rgas)

in the case of ideal gas conditions.

CHEMEQ.f

e Change from
B GAMM A(i4) = P(i4) YR
CPT = R o01) x TEMP(id) x (GAMMAGD) —1.0) 71

to either
temp(i4) dpdtro(. . .)?

ro(i4)? dpdrot(...)

for general EOS, where the partial derivatives are computed based on PR. The other option is to use

ept = cvheat(...) +

the original calculation above.

CHMQGM.f

e Change from
B GAMM A(id) * P(i4) YR
CPT = RoGa) x TEMP(id) x (GAMMAGY) —1.0) 7 -1

to either
temp(id) dpdtro(. . .)?

ro(i4)? dpdrot(...)

for general EOS, where the partial derivatives are computed based on PR.The other option is to use

ept = cvheat(...) +

the original calculation above.

DRDP.f

e Change from

VOLB(I4)

RDRDP =10/ |- P08

— AT %« PHIP « RPGS2 % (SIP + ...

to
RDRDP =1.0/[DVDPS — AT « PHIP « RPGS2 « (SIP +...)].
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DRDT.f

e Here, we compute the derivative of the residual RES(i4) with respect to T2 and take the inverse.

dRES(i4) 1 CVTERM % AtK(geo)op

- 8 ,
T M,
. dRES(i4)] ™" CVTERM * RPR* SUMT|
orT | p

This replaces the original,

—1
RDRDT(14) = [1 _ CVITERM(I4)+ RPR + SU MT}

RO(I4) x VOL(I4) x CV (I4)
EXDIF.f

e Change from
GAM M A(i4) x P(i4)

CPC(H) = (GANATAGH) — 1.0) x RON(id) x TENTP(id)

to
temp(i4) dpdtro(. . .)?

ron(i4)? dpdrot(...)
for general EOS, where the partial derivatives are computed based on PR. For the ideal-gas case the

epe(id) = cvheat(...) +

original version is used.

LAWALL.f

e Change from
GAM M A(i4) x P(i4)
(GAMM A(i4) — 1.0) x RO(i4) x TEM P(i4)

CP =

to
temp(i4) dpdtro(. . .)?
ro(i4)? dpdrot(...)

for general EOS, where the partial derivatives are computed based on PR. For the ideal-gas case the

cp = cvheat(...) +

original version is used.

PHASEB.f
e Change from
VOLLTE = VOLB(i4) % (1.0 + RGAM M A(i4) % [1.0 — P(i4) x RPA(:4)])
( This is based on

V;Se_VB
I

Po—P _ AV _1dP _ Vo (P 1/”)
P, V ~P Vi '

- P,

2|

to

VOLLTE = VOLB(i4) + DVDPS(i4) x (P(i4) — PPRED(i4)).
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PINIT.f
e Original
PHIPTE = DT « SQRT(GAM M A(i4) x RPGS2 x P(i4)/RO(i4) * RD138)

replaced by
PHIPTE = DT « SQRT(C? + RPGS2 + RD138),

where C? is calculated for either an ideal or PR equation of state following Eq. (17).

PSOLVE.f
e Omit RPA(i4) = 1.0/P(i4) in favor of
PPRED(i4) = P(i4).
e Toward the end of the subroutine, delete PPRED = 1.0/RPA(i4). PPRED(i4) has already been
defined.
e Related to this, replace
PERR = MAX(PERR, ABS(P(I4) — PPRED) «+ RPDIF)
with
PERR = MAX(PERR, ABS(P(I4) — PPRED(i4)) « RPDIF).
RESP.f
e Eq. (112) of the KIVA-II manual
VOLP = VOLB(I4) * [1.0 +1(1.0 — P(14) % RPA(I4))}
is changed to
VOLP = VOLB(I4) + DVDPS % (P(i4) — PPRED(i4)).
REST.f

e We want to calculate the residual of Eq. (28). This is done by subtracting the r.h.s of Eq. (28) from
the Lh.s. The implicit part of the heat diffusion is also subtracted. The original version is
SIE(i4) — SIETIL(i4)
Cv(id)
At(KVTP - Aaép)
~ Cw(id) * RO(id) = VOL(z'4)}

RES(i4) = TEMP(i4) + CVTERM[ — TTIL(i4)

and is replaced by

SIETIL(i4) — STE(i4)
o7 p

Aty KaV(épT ) - AE}

RO(i4) * VOL(i4) » 95|,

RES(id) = TEMP(id) — CVTERM[ + TTIL(i4)
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SETUP.f

e Change from

PAMB
TEMPAMB =
(3. SPDAMB,, x RMW,,) R,,
to
tempamb = eos(pamb, 1/xx,0.0, 3)
or

tempamb = pamb/(zx * rgas),

depending on whether we apply the ideal or PR EOS. fmol array is computed previously and zx is
total molar density.

e Change from
TEMPIN = PCCEFF/ <Z SPDINO,, x RMWm> R,
to
tempin = eos(pccef f,1/xx,0.0,3)

or
tempin = pecef f /(zx * rgas),

depending on whether we apply the ideal or PR EOS. fmol array is computed previously and zx is
total molar density.

GAMMA(i4) = 1.4 * fac

when ¢4 is an obstacle or a ghost cell.

SETUPRO.f

e Change from

PRESIT PRESIT
SUMRO — RESI(n) _ RESI(n)
WTOTDEN x RyTEMPI(n) (3., Ym/wm)RuT
to
vmolmix = eos(presi(n), 0.0, tempi(n),2),
1.0
sumro = - )
vmolmiz x wtotden
or

sumro = presi(n)/(wtotden x rgas x tempi(n)),

depending on whether we apply ideal or PR EOS.
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e Change from

P @ T

PCHK = SUMROOW * TEMPI(n) + R, => P =Y
w

to
pchk = eo0s(0.0, (1.0/sumroow), tempi(n), 1)

or

pchk = sumroow * tempi(n) * rgas,

depending on which EOS is used.

STATE.f

Major changes made to this subroutine

e Change from
p(id) = <Z SPD; * RMWi> « RGAS « TEM P(i4)
to
p(i4) = e0s(0.0, (1.0/p(i4)), temp(i4), 1)

or

p(i4) = p(i4) x rgas * temp(i4),
depending on which EOS is employed.
e The calculation for internal energy departure handled by function DELTAE.f is introduced.

CSUBV = (EHI — ELO) x 0.01

is left unchanged, since by definition, the constant-volume specific heat is the same regardless of which
EOS is employed.

P(i4)
RO(i4) x CSUBV x TEMP(i4)

GAMMA(i4) = 1.0 +

TINVRT.f

Major changes made to this subroutine

e The inclusion of DELT AE() to calculate internal energy departure in both computations of ELO and
FHI,;

)

e The calculation of C, based on either ideal or PR-EOS;

e Calculation of 3—7{|P.

CV (I4) + R(I4)

GAMMA(I4) = =~ 0
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TSOLVE.f

Major changes made to this subroutine

e The volume at the t-state, V', is calculated either for the ideal gas case, which is the original formu-
lation, or the PR case.

o ‘g—‘; p 1s calculated since it appears now in the new and more general energy equation. It is computed
for either the ideal or PR case. Note that this derivative is computed at the t-state. In the PR case,

the additional derivatives g—g and %—P’ are also computed.
P P

e CVTERM is the denominator in the temperature equation (28) or (29). It is given originally by

pr4pB 17!
TERM = |1+ ————
CVIER { +20UP(2'4)R} ’

where R is the averaged gas constant. This is replaced by

pr + pB ov
L+ 2MB 9L aT
8_T|P

-1
CVTERM =

P

e SIETIL(i4)-SIE(i4) originally from the numerator of Eq. (29),

pP" + pPB At
()

7 —5 (K(l —Gp)VT - Ap + (1 _Ao)mss),

is replaced by
pr+ pB oV
2MB oT

e T5. originally given in the code as

A

MB (K;Lv[(l - ¢D)T]0¢ : Ag + (1 - Ao)Diss) .

PTt — (V' - V”)} +

75 — ovrmra |t STETIL(4) — STE(4)]
C, ’

is replaced by ) .

IETIL(i4) — SIE (14
TE — OVTERM | Tt + 2 (21) STE(4)
L aTlp _

e Once the temperature 7'Z has been calculated, the calculation for volume quickly follows in the original

code using the ideal gas law, i.e.,
VOLB(I4) = RO(I4) * VOL(I4) « R(14) « TEM P(I4)/P(14).

This is replaced by
t
VOLB(i4) = VOL(i4) + o (TP — 1.
T |p
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e The rgamma(i4) calculation has been removed. In its place, the calculation for dvdps(id) = g—g‘ g 18

performed, where,
VP 1

as given in Eq. (32).
e The isentropic sound speed

aP
2—_
=3,

_or
s Op

2
T oprP
+ s\ a7 )
r Cup T 0
used to calculate dvdps(i4) above, is calculated based either on ideal gas or PR.

WALLFILM.f and EVAP.f

The modifications in these subroutines incorporate the following changes. Phase equilibrium is computed

by equating liquid and vapor fugacities,

=1 (33)
For the Peng-Robinson EOS, fugacities are given by [7]
fi b;
In2" = 2 (Z-1)—In(Z — By)—
n e = po(Z = 1)~ (Z - B)
25 i i : m
A, Zk:l Trki b_ In Z +2.414B 7 (34)
2V2B,, am bm Z —0.414B,,
where p b P
a
A, =dm” g _mo
R2T? RT (35)
and the compressibility factor Z is calculated from [7]:
Z3—(1—Byn)Z%+ (A, —3B% —2B,)Z — (A B,, — B2, — B3) =0. (36)

The smaller root of the cubic equation (36) applies to the liquid and the larger to the vapor.
We also correct for the latent heat of vaporization at high pressures using partial molar enthalpies h;.
The molar latent heat of vaporization W;L; is

W;L; = h? — ht.
Partial molar enthalpies in each phase can be computed using [8]:

_ _ b f;
_hO — _ 2_ 7 Jr
hi — h; RT a7 In (sz) ,

where the superscript o denotes the quantity in the ideal state. We correct for the pure fuel enthalpies
using [6]:

(T4 — a;)

(2v/2)b;

Zi+(1+v2)B;

W; hi—hf =RT(Z;—1)+
(hi — h9) = RT(Z; 1) a|F

3

bip

where B; =
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C Additions to the Code

CVHEAT.f

Calculates the specific heat based on Eq. (20). This is done for either an ideal or PR EOS.

DELTAE.f

Computes the internal energy departure based on Eq.(12), employing the PR EOS.

DPDTRO.f

Calculates the thermodynamic partial derivative g—; ) using Eq. (13) corresponding to the PR EOS; i.e.,

this quantity is used to calculate the isentropic sound speed.

DPDROT.f

Calculates the thermodynamic partial derivative %—ﬂT for the PR EOS, employing Eq. (14).

EOSPROG.f

Includes the computation of PR parameters a.,, b,,, and d;—:;”. These are not only used in obtaining

P-V-T relationships, but also in computing some partial derivatives.

EOS.f

Computes either the pressure, molar specific volume, or temperature of a gaseous mixture using the PR

EOS.

FRACMOLAR.f

This subroutine is included to readily calculate molar fractions, and average molecular weight for mix-
tures. This information is needed before a call is made to EOS.f. We decided to include it as a separate

subroutine to avoid writing duplicate code and to unclutter other subroutines.
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