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Abstract

Recent advances in reverse engineering have focused on recovering a boundary

representation (b-rep) of an object, often forintegration with rapid proto~ping. --This
boundary representation may be a 3-D point cloud, a triangulation of points, or piecewise
algebraic or parametric surfaces. This paper presents work in progress to develop an

algorithm to extend the current state of the art in reverse engineering of mechanic~ parts.
This algorithm will take algebraic surface representations as input and will produce a
constructive solid geometry (CSG) description that uses solid primitives such as

rectangular block, pyramid, sphere, cylinder, and cone. The proposed algorithm will

automatically generate a CSG solid model of a part given its algebraic b-rep, thus

allowing direct input into a CAD system and subsequent CSG model generation.

1. Introduction

1.1 Solid Modeling

Solid modeling is the process of defining and manipulating unambiguous computer

representations of physical solid objects that are specified using normalized or specific
dimensions. Computer systems designed for this purpose are calIed solid modeling or
CAD (Computer Aided Design) systems. A fundamental use of these systems is
designing or engineering mechanical parts, although their use in other application areas,
such as free-form sculpting and automated mesh generation, is currently growing.
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Two basic types of C,L\D system xchitccturcs wx in use toduy: ~J) boumky

representation \b-rep’) rmxklers. which score objects’ boundaries :md other neighborhood

and orientation information; Jnd (b) constructive solid geometry (CSG) modelers. which

consuwt objects from solid primitives by using the Boolean operations union, intersect,

and difference: store CSG trees; and compute boundary representations when needed [3].

In practice, few CAD systems can be classified strictly as one type or the other, however.

Sweep representations, in which a 2-D or 3-D object is swept along a 3-D trajectory, and

spatial partitioning representations, in which a solid is decomposed into collections of

adjoining cells or solids, are often included in CAD modelers as well [1.2]. Hybrid CAD

systems, in which some combination of the above representations are used in tandem or

conjunction with each other in a single CAD system, are the norm for current modeling

systems. In particular, CAD systems for the design of mechanical objects provide a CSG
interface, regardless of the underlying architecture(s) of the CAD system itself. For

example, a CAD system with a Non-Uniform Rational B-Spline (NURBS) b-rep

representation as its base architecture may provide a CSG-type input interface for the

engineer. In this case, a part definition is entered as the union, intersection, and

difference of instances of (properly parameterized) solid primitives. The boundary of the

resulting CSG-specified solid object is then evaluated and represented internally in b-rep

fashion. The initial CSG representation of the object maybe stored internally as well.

User interfaces that allow sweeps to be entered are also common in conjunction with

CSG user interfaces, regardless of the underlying CAD architecture.

1.2 Reverse Engineering

Reverse engineering (or geometry recovery) of a part (mechanical, biomedical, etc.)

is the general process of recovering a model of a physical object from information

obtained by some type of sensing technique. These sensing techniques include, but are
not limited to, computed tomographic imaging (CAT scans), nuclear magnetic resonance

imaging (MRI scans), laser rangefinder scans, stereoscopic sensing, and coordinate

measuring machine (CMM) sensing. In some cases, the process of recovering a model of
the part is enhanced by using an existing model of an as-designed part and altering the
existing model on the basis of information from the sensing device. In many other cases,

however, an original model of the part does not exist. Many currently manufactured parts

predate the existence or prevalence of CAD systems, which are a relatively new

development. In addition, many parts have been modified in use and no record exists of
these modifications. In these cases, it is advantageous to derive a CAD model of an
existing part.

Most current advances in reverse engineering of mechanical parts have focused on

recovering a b-rep of the part under study. Recovered boundary representations of the
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sLufLJct!s of the part can vary from a triangulation of points UJpiecewise p~wametric

surfxes (common representations include parametric spline surfaces and NL~RBS

surfaces) to piecewise algebraic surfwxs. For reverse engineering, a triangulation (or

tesse{ation) of points is often not sufficiently detailed to fully recover the original

geometry of an object. Piecewise parametric surfaces, while providing a high level of

detail, can fail to recover the original geometry of the object due to inherent limitations of

parametric representations. Consider for example a circular cyfinder. A typical b-rep of

a cylinder describes the surfaces on the boundary of the cylinder; two planar surfaces at
the top and bottom, and a parametric surface wrapped around the cylinder. Anyone who
wishes to recover specific quantitative information from this object desires information

such as the height and diameter of the cylinder. Such parameters are not readily available

from a parametric boundary representation of the cylinder [3].

Most mechanical objects are composed of well-defined primitives, and mechanical

designers often think in terms of primitives when describing an object. Recovering a

bounded solid CSG representation of an object does provide information about the object
that is directly applicable to the way an engineer would model the object in the usual

forward engineering sense. Figure 1 is a diagram of a CSG tree of a mechanical part (a

portion of an injection mold), indicating the constructive process inherent in the
engineering process. For the purpose of reverse engineering, a CSG representation of a

solid is a “user friendly” form for the geometric data, because it is easier than a boundary
representation for an engineer to visualize and mimipuiate and could be entered into CSG,

b-rep, and hybrid modeling CAD systems through a CSG user interface. The Initial
Graphics Exchange Specification (IGES), a standard representation for interchange of
CAD data, includes a specification for CSG trees as an exchange data format. This is

important for portability of any CSG file.

1.3 Previous Work

Extensive research has ah-eady been conducted in computing a b-rep of a solid from

sensed data, but that work is not discussed here because of space limitations. The work
described in this paper focuses on the development of a CSG-type solid model. The

importance of CSG in rapid prototyping, an area related to reverse engineering, has been
discussed by Crawford [4].
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Fig. 1. Diagram of a CSG tree of a mechanical object.

At the advent of modern CAD systems, a duality developed between CSG and b-rep
representations. Algorithms were quickly developed and optimized for the CSG-to-b-rep

conversion process. The problem of b-rep-to-CSG was considered too difficult and

unnecessary for general-purpose implementation. In recent years, however, progress has

been made in the b-rep-to-CSG conversion process.

In 2-D, Peterson [5] presented a solution to the problem of finding a halfspace CSG
representation for the interior of a closed curve. Peterson approached the problem from a

reverse engineering viewpoint, recognizing that many 3-D mechanical objects are sweeps

of a closed 2-D curve along an orthogonal axis. Nso in 2-D, Vossler [6] presented a

solution to finding a CSG representation for the interior of a closed curve using bounded
primitives, such as rectangle, circle, chorded circle, and right triangle. In 2-D, therefore,
the problem is considered solved for cases with modest (and realistic) limitations, for

both halfspace and bounded solid CSG.

Lhnited attempts have been made to date to construct a solid-primitive 3-D CSG
representation from a point cloud or a b-rep of an object [7-10]. These works do not

extend to general 3-D objects. For example, in Lin and Chen’s work [7], all planar



surfaces are ussumed to be part of a cube. .+ further xsumption of Lin and Chen is that

each primitive can act as J subtracter no more than once, which in general prohibits

objects that contain more than one subtraction operator on any path from the root to a leaf

in the CSG tree representing the object. The work of Woo [8] and Tang and Woo [9, 10]

does not scale to ncmpolyhedral objects due to the use of the convex hull operator.

The general 3-D b-rep-to-CSG conversion has only recently been tackled [ 11- 13];

these pioneering works deal only with halfspace CSG representations, however. A

halfspace CSG tree is a CSG tree in which the leaves of the tree are haifspaces. In the
present work, a CSG tree is used in which the leaves of the tree are bounded solid

primitives (the typical case in CAD systems with a CSG interface) and such a CSG tree is

defined as a bounded solid CSG tree (e.g., that shown in Fig. 1).

Shapiro and Vossler [11] first presented a solution to recovering a halfspace CSG

tree for 2-D objects. They also presented a solution to recovering a halfspace CSG tree of
polyhedral solids [12]. Shapiro and Vossler followed up this work with steps to extend

the work to include solids bounded by quadric surfaces [13]. The solution technique

employed by Shapiro and VossIer is cumbersome and necessitates extensive CSG tree

simplification. However, their method [13] of adding separating ha.lfspaces to a solid

object to make the object describable is of significant importance.

2. Problem Descrbtion

2.1 Background

CAD systems typically use regularized sets and regularized set operations. This

avoids problems with manipulating regions of space with empty interiors that are not
meaningful in a solid modeling context. The reguhirization of a set X, reg (X), is the

closure of the interior of the set X. Thus, the regularization of a set with empty interior,

such as a line in 2-D or a surface in 3-D, is the empty set. The regularized set operations
u * (union), m * (intersection), -* (difference), and’* (complement) produce a
regularized set as the result of the operation on the regularized set operands and are

defined as follows:

au*b=reg(au b), (1)

an*b=reg(an b), (2)
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d = /-e:;{;’) , (4)

.4 halt’space v of R3 is a set OFthe. form ~ = {(r. y, :J:,y(x,y,:) 20} for some timction

g: R’ + R. The work herein utilizes quadric functions, that is, polynomial functions of
degree 2. The zeros of the function map a surface in 3-D. A surface,

SW= {(.r,y,z):g(-r. y,;) = O}, induces the two halfspaces V= {(x,y,=):g{.r.y,z)20} and

~ = {(x, y. z):g(.r,.y, z) S O}. It can be shown that for the surfaces under consideration in
this work, namely planar, spherical, cylindrical, and conical surfaces, the halfspaces

induced by these surfaces are regularized sets. A solid will be defined as a non-empty

regularized subset of R3. A natural halfspace of a solid is defined to be a halfspace

induced by a surface in the b-rep of the solid.

A solid r is said to be describable by halfspaces Y = {V(,..., VN} if there exists a

(halfspace) CSG tree representing the solid, such that each leaf of the tree is an element

{
of the set yl,~”...,~,v,~”

}
[11,12].

2.2 Approach

In our approach, a mechanical object is represented as a bounded solid, a

regularized, non-empty, bounded subset of R3. The subset of quadric surfaces that is
allowable to bound the solid contains td-iesurfaces of the bounded solid CSG primitives to

be used as primitives in the CSG representation. Primitives to be used consist of a
rectangular solid, a pyramid, a sphere, a cylinder, and a cone. Therefore, the allowable

surfaces in the boundary representation of the solid are planes, spherical surfaces,

cylindrical surfaces, and conical surfaces (surfaces bounding cones), although other

nondegenerate quadric surfaces of a single sheet could be used as well. It is assumed that

the input bounding surfaces are piecewise algebraic surfaces in implicit form (e.g., a
spherical surface in the form X2+ y2 + Z* - r2 = O), with an additional representation of
the boundary of each surface patch. Our approach seeks to produce a bounded solid CSG

tree of r consisting of the operations union, intersection, and difference operating on the

canonical primitives rectangular solid, pyramid, sphere, cylinder, and cone, if the solid r
is describable by its natural halfspaces. If the solid r is not describable by its natural

hrdfspaces, this condition will be detected and the attempt will be terminated.*

“An extension would be to use the work of Shapiro and Vossler [131 to add separating
half-spaces to make the solid describable.
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This approach is shown schematically in Fig .2. A quadric binary space partitioning
tree (BSP tree) is used as an intermediate representation, which facilitates the process. A

(typical) BSP tree is a binary tree used to represent arbitrary polyhedm, in which internal

nodes are planes and leaf nodes represent homogeneous regions of space called “in” cells

and “out” cells [1]. The definition of a BSP tree is extended to a quadric BSP tree, in
which internal nodes are no longer limited to be planes, but can also be quadric surfaces

such as the spherical, cylindrical, and conical surfaces we will use. Thus, in a quadric

BSP tree, each internal node is a quadric surface with two child pointers, one for each

side of the halfspace induced by the surface. Just as in a typical BSP tree, if either child
halfspace is subdivided further, then it is the root of a subtree; if the halfspace is

homogeneous with respect to the solid, then it is a leaf node, classified as either an “in”

cell or an “out” cell. Figure 3 shows an example of a 2-D solid and a BSP tree

representation of the solid.

Input Solid Representation
(Algebraic B-rep)

*

●

No

m
I Match Halfspacesinto I

IBounded Solid Primitives I

(Bounded Solid CSG Tree)

Fig. 2. Flow chart of approach.



[n our approach. the input is currently an algebraic b-rep of the solid r and a null

BSP tree. Surtkes are systematically Factored from the b-rep of the object. and once

ktored, the surfwes and their induced haifspaces are added to the BSP tree

representation. .% the surfaces are f~ctored, additional information in the form of special

jizces is added to the data structure representing the solid

facilitate the building of a valid BSP tree representation.

r (partially factored), to

\l I

7 “+’7

Y,

/\
Y. “out”

/i
“’out”

‘y{ “out,,

/y’\’,Out,,
Y9

/ \’60ut,9
/ 5\
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“in” y ~6.99
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a) A 2-D solid b) Its associated BSP tree

Fig. 3. BSP Example: a) Diagram of a 2-D bounded solid (shaded region is interior
of bounded solid); b) BSP tree representation of solid shown in a).

When there are no more unfactored surfaces in the b-rep of the solid, the BSP tree

representation is complete. The BSP tree is converted to a halfspace CSG tree,

performing some simplification techniques as a part of this process. Further
simplification may be performed after this operation to the halfspace CSG tree itself, if

desired. The last step is to match the halfspaces into solid primitives and construct the

bounded solid CSG tree.

3. con elusions

A new approach that uses 3-D CSG has been described to allow an advancement in

reverse engineering. In particular, this method will allow algebraic surface

representations (that can be obtained from a 3-D point cloud data set) to be used as input
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to the 3-D CSG algorithm. which can be used to provide direct input into any CAD

package. This research is an extension of the work of Shapiro and Vossler to allow for

bounded solid CSG conversion from a b-rep of an object. The approach is expected to be

more intuitive and computationally efficient.

Theoretical and algorithmic development of this process is continuing. In

particular, computational analysis theory, halfspace CSG tree simplification, and

heuristics needed to construct the bounded solid CSG tree have yet to be fully

investigated. Implementation, beginning with the b-rep to BSP procedure. is

commencing.

Possible extensions to this work may facilitate its usefulness in the areas of reverse

engineering and solid modeling. First, the possibility of including sweep representations

as primitives in the bounded solid CSG tree would increase the applicability of the

process, because sweep representations are often combined with CSG interfaces in

mechanical CAD systems. It is currently unknown if parametric rather than algebraic

representations of the quadric surfaces (or sweeps) maybe used in practice; this would
also increase the applicability of the procedure because most commercially available
point-cloud-to-b-rep software outputs parametric surface representations. Converting

parametric to algebraic representations has been discussed [14], but there may exist

fi.mdarnental problems of numerically unstable computations.

The work described here is part of a contribution to the early stages of general-

purpose 3-D b-rep-to-CSG conversion. The advantages of the proposed algorithm in the

area of reverse engineering are in providing a more intuitive model representation of a

mechanical part than that provided by existing b-rep recovery methods.
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