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ABSTRACT

Work has begun under three major tasks of this project.  With respect to increasing the
circumferential strength of a MA956 tube, approximately 60 MA956 rods have been
extruded using a 20:1 extrusion ratio and extrusion temperatures of 1000, 1075, 1150,
and 1200°C.  Also, creep testing is underway for the purpose of determining the “stress
threshold” curves for this alloy.  Regarding joining of the alloy MA956, work has begun
on the friction welding, magnetic impulse welding, explosive welding, and transient
liquid phase bonding aspects of this project.  And finally, material is being prepared for
the laboratory fire-side high temperature corrosion tests, with potential gas and deposits
for a typical Vision 21 plant being reviewed for final determination of these variables in
the test program.
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INTRODUCTION
This research is seeking to develop a MA956 heat exchanger tube which will lead to the
design and fabrication of a MA956 full-scale tube heat exchanger composed of the
referenced alloy. The alloy MA956 is an oxide dispersion strengthened (ODS) material
that possesses superior creep strength and corrosion resistance at very high temperatures
(e.g. T  > 2000°F) compared to traditional wrought or cast alloys.  However, the creep
properties are unidirectional (typically stronger in the longitudinal direction compared to
the transverse direction), fabrication of components made from this alloy is relatively
difficult, and the corrosion limits of the alloy MA956 in coal-fired environments are not
known.  Thus, the technical tasks being executed in this Vision 21 project are:

Task 1:  Project Management
Task 2:  Improvement of Circumferential Creep Strength of MA956 Tubes
Task 3:  Joining
Task 4:  Bending of MA956 Tubes
Task 5:  High Temperature Corrosion Limits of MA956
Task 6:  Generation of Data for Designers
Task 7:  Implication of ODS Properties on Heat Exchanger Design
Task 8:  Reporting

The members of the team conducting this research are: Huntington Alloys (HA), Foster
Wheeler Development Corporation (FWDC), Oak Ridge National Laboratory (ORNL),
University of California, San Diego (UCSD), Michigan Technological University
(MTU), and the Edison Welding Institute (EWI).

EXPERIMENTAL
Experimental work associated with the tasks identified in the previous section are
discussed below.

Task 2: Improvement of Circumferential Creep Strength of MA956 Tubes
The following matrix of tests shown in Table 1 below are currently being performed at
HA.  Extrusions using a 20: 1 extrusion ratio and extrusion temperatures of 1000, 1075,
1150, and 1200°C have been completed.

Table 1
Matrix of Extrusion + Cold Work + Recrystallization Parameters

Extrusion
Temp (°C)

Extrusion
Ratio

Amount of
Cold Work (%)

Recrystallization
Temp (°C)

Recrystallization
Time (h)

1000
1075
1150
1200

10:1
16:1
20:1

0
5
10
15
25

1000
1150
1300

0.5
1
10
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Creep testing is underway at ORNL for the purpose of determining the “stress threshold”
curves of the MA956 alloy.  A creep specimen cut from the axial direction of a nominal 1
inch diameter is currently being tested at 1000°C.  The initial stress was 3 ksi, with
incremental load increases leading to a present stress of 5 ksi being tested.

Task 3:  Joining
EWI:  Difficulties have been experienced in cutting the tubing to be used in preliminary
friction welding trials (small cracks were produced on the cut surfaces) and thus special
saw blades have been ordered to accomplish this task.  Modeling activities have been
completed for the design of a coil to be used in the magnetic impulse welding trials.
Materials for the coil have been purchased with initial welds anticipated in mid April.
And setups for four explosion welding trials are currently being prepared.

MTU:  Recent work has included boriding trials of the MA956 material in which a fairly
uniform boride layer 5-10 microns thick has been produced.  Although this layer is
substantially thinner than previous trials, it is still thicker than desired for diffusion
bonding.  In addition to the boriding trials, progress has been made in developing
metallographic techniques that reveal the grain structure of the material.

Task 4:  Bending of MA956 Tubes
No experimental work has been accomplished on this task during this reporting period.

Task 5:  High Temperature Corrosion Limits of MA956
FWDC has been cutting specimens from ODS material received from Special Metals.
Additionally typical gas and deposit analysis for a typical VISION 21 plant are being
reviewed for final determination of their laboratory corrosion test.

Task 6: Generation of Data for Designers
No experimental work has been accomplished on this task during this reporting period.

Task 7: Implication of ODS Properties on Heat Exchanger Design
No experimental work has been accomplished on this task during this reporting period.

RESULTS AND DISCUSSION

Task 2: Improvement of Circumferential Creep Strength of MA956 Tubes
The as-extruded rods produced using a 20:1 extrusion ratio and extrusion temperatures of
1000, 1075, 1150 and 1200°C all exhibit similar fine grained microstructures.  The
microstructure of the rods to be subjected to 0% cold work + different recrystallization
treatments will provide information as to the importance of extrusion temperature at this
extrusion ratio.

Due to the fact that the oxide dispersoids in an ODS alloy are typically stable up to the
melting point of the alloy, the strength of these materials is relatively independent of
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exposure to elevated temperatures.  Thus the slope of a typical stress to cause rupture
curve for an ODS alloy is much less than that for a traditional wrought alloy.  Figure 1
shows this difference by comparing the allowable stress for a 2 inch OD x 0.25 inch wall
thickness tube made from a range of wrought versus ODS alloys1.  One consequence of
this relatively “flat” stress to cause rupture curve, is extremely long times can be required
to cause rupture if the applied stress is below a “threshold” value below which essentially
no creep occurs.  In order to determine the approximate value of this threshold stress for a
given alloy at a particular temperature, creep tests are conducted where the sample is
incrementally loaded at 100 hour intervals.  Currently ORNL has cut samples from the
axial direction of nominal 1 inch diameter tube of the alloy MA956 and is testing a
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sample at 1000°C.  The initial load on this sample was 3 ksi with testing at 5 ksi in
progress.

In addition to generating the stress threshold curves discussed above, ORNL has
performed a literature search on a European COST-501 program that investigated the use
of ODS alloys for heat exchanger tubing, plus other European work associated with ODS
alloy development.  As of this date, a total of 23 papers have been identified and are
currently being obtained and reviewed2-24.  Notes on pertinent findings will be reported in
the future.

Task 3:  Joining
Although ODS alloys can be successfully fusion welded, such joints have a significantly
reduced high temperature load-bearing capability.  This is because fusion locally destroys
the controlled distribution of the dispersed phase and disrupts the continuity of the
microstructure, which are the essential features that provide high-temperature creep
strength.  Furthermore, fusion welding can result in cracking at grain boundaries.  Solid-
state joining processes are more successful than the melt-based techniques and thus four
solid state joining techniques are being investigated in this work: friction welding,
magnetic impulse welding, explosive welding, and transient liquid phase bonding (TLP).

EWI has experienced difficulties in cutting MA956 tubing for preliminary friction
welding trials.  Attempts to cut the material have resulted in small cracks on the cut
surfaces, a problem not uncommon with this material, and thus special saw blades have
been ordered to alleviate this problem.  Regarding the efforts on magnetic impulse
welding of the MA956 alloy, modeling activities have been completed for the design of a
coil to use in this process and machining of the coil is in process with anticipated joining
trials to begin in April.

Regal Technologies (a subcontractor to EWI) is currently making final preparations for
four preliminary explosion welding trials using plate material instead of tubing.  These
four welds will attempt to bond alloy MA956 to alloy MA956 and alloy MA956 to alloy
601.  One set of welds will be produced using low pressure and kinetic energy to make
the bond and one set using high pressure and kinetic energy.  The welds will then be
characterized with respect to the weld interface morphology, extent of work hardening,
and response of the weld microstructure during subsequent heat treating as a function of
explosion parameters.  These initial four explosion welds are planned for mid April.

MTU is investigating an innovative approach to bond the ODS tubes by using a
combination of the TLP and diffusion bonding processes.  First, carefully controlled
boriding diffusion pretreatments are being studied in order to introduce boron and silicon
into the joint interface.  This boriding approach will then be coupled with demonstrated
diffusion bonding techniques to produce a hybrid process capable of accommodating
wider ranges in joint fit-up and achieving more complete grain growth across the prior
interface than can be attained using the diffusion process alone.  Work accomplished up
to this date includes boriding trials of the MA956 material in which a fairly uniform
boride layer 5-10 microns thick has been produced.  Although this layer is substantially
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thinner than previous trials, it is still thicker than desired for diffusion bonding.  In
addition to the boriding trials, progress has been made in developing metallographic
techniques that reveal the grain structure of the material.

Task 4:  Bending of MA956 Tubes
The effect of strain experienced during the bending of tubes is of critical importance to
designers of heat exchangers.  Therefore, FWDC will bend MA956 tubes imposing 5, 10,
15, 20, and 25% strain on the material and then expose them to 1204oC (2200oF) for 100
hours.  Analysis of the tube microstructure before and after the exposure will be
conducted in order to determine the maximum amount of strain that can be induced into a
MA956 tube without recrystallization occurring during operation.  Presently, FWDC is
waiting to receive tubing in order to start testing under this task.  The tubing has been
ordered and the first shipment is due to arrive at HA in April, after which it will be
shipped to FWDC.

Task 5:  High Temperature Corrosion Limits of MA956
Although the high-temperature corrosion resistance of alloy MA956 at very high
temperatures in oxidizing atmospheres is well known, there is very little experience with
the performance of this material in actual boiler environments at the high temperatures
required in an expected Vision 21 plant environment.  Thus this task involves
complementary laboratory and field exposures in environments that are expected to be
encountered by the external and internal surfaces of MA956 tubes in service.

FWDC has been cutting specimens for their laboratory corrosion testing.  Also, a review
of possible gas and deposit analyses for a typical VISION 21 plant is in progress for final
determination of these variables in their laboratory corrosion test.

CONCLUSIONS

No technical conclusions are available at this time.  Work has been initiated under Tasks
2, 3, and 5, with Task 4 waiting on material delivery.
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